WorldWideScience

Sample records for surface heat balance

  1. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  2. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  3. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  4. Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data

    Directory of Open Access Journals (Sweden)

    Chen-Yi Sun

    2008-09-01

    Full Text Available The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures.

  5. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  6. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Science.gov (United States)

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  7. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be

  8. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    Science.gov (United States)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  9. Estimation of annual heat flux balance at the sea surface from sst (NOAA-satellite and ships drift data off southeast Brazil

    Directory of Open Access Journals (Sweden)

    Yoshimine Ikeda

    1985-01-01

    Full Text Available The objective of this work is to study the possibility of estimating the heat flux balance at the sea surface from GOSSTCOMP (Global Ocean Sea Surface Temperature Computation developed by NOAA/NESS, USA, and sea surface current data based from ships drift information obtained from Pilot Charts, published by the Diretoria de Hidrografia e Navegação (DHN, Brazilian Navy. The annual mean value of the heat flux balance at the sea surface off southeast Brazil for 1977, is estimated from data on the balance between the heat transported by the currents and that transported by eddy diffusion for each volume defined as 2º x 2º (Lat. x Long. square with a constant depth equivalent to an oceanic mixed layer, 100 m thick. Results show several oceanic areas where there are net flows of heat from atmosphere towards the sea surface. In front of Rio de Janeiro the heat flow was downward and up to 70 ly day-1 and is probably related to the upwellirug phenomenon normally occurring in that area. Another coastal area between Lat. 25ºS to 28ºS indicated an downward flow up to 50 ly day-1; and for an area south of Lat. 27ºS, Long. 040ºW - 048ºW an downward flow up to 200 ly day-1, where the transfer was probably due to the cold water of a nortward flux from the Falkland (Malvinas Current. Results also show several oceanic areas where net flows of heat (of about -100 ly day-1 were toward the atmosphere. In the oceanic areas Lat. 19ºS - 23ºS and Lat. 24ºS - 30ºS, the flows were probably due to the warm water of a southward flux of the Brazil Current. The resulting fluxes from the warm waters of the Brazil Current when compared with those from warm waters of the Gulf Stream and Kuroshio, indicate that the Gulf Stream carries about 3.3 times and the Kuroshio 1.7 times more heat than the Brazil Current. These values agree with those of data available on the heat fluxes of the above mentioned Currents calculated by different methods (Budyko, 1974.

  10. Balancing of solar heating options

    NARCIS (Netherlands)

    Veltkamp, W.B.; van Koppen, C.W.J.; Ouden, den C.

    1984-01-01

    In the field of energy conservation many options are presently competing. This study aims at providing more rational criteria for selection between these options.The options considered are; insulation of the walls, regeneration of the heat in the waste air, double glazing, attached sunspace at the

  11. Water and heat balances in Doñana wetlands

    Directory of Open Access Journals (Sweden)

    A. Ramos-Fuertes

    2016-10-01

    Full Text Available This paper presents the main results of the study of water balance and surface heat balance in the Doñana marshlands. The study was based on a broad base of hydrometeorological data taken at 10 minute intervals from 2006 to 2011 by a network of six measuring stations located in areas of vegetation-free marsh. This information is used to characterize, at different time scales, the thermal behavior of the marsh by analyzing its hydrometeorology centering on the surface heat fluxes. Thus, we have modeled and analyzed the heat flux between the water and flooded soil and the processes of heat transfer between the water surface and the atmosphere. Special attention has been paid to evaporation, on which the marsh draining process depends.

  12. Utilization of satellite remote sensing data on land surface characteristics in water and heat balance component modeling for vegetation covered territories

    Science.gov (United States)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2010-05-01

    The model of vertical water and heat transfer in the "soil-vegetation-atmosphere" system (SVAT) for vegetation covered territory has been developed, allowing assimilating satellite remote sensing data on land surface condition as well as accounting for heterogeneities of vegetation and meteorological characteristics. The model provides the calculation of water and heat balance components (such as evapotranspiration Ev, soil water content W, sensible and latent heat fluxes and others ) as well as vertical soil moisture and temperature distributions, temperatures of soil surface and foliage, land surface brightness temperature for any time interval within vegetation season. To describe the landscape diversity soil constants and leaf area index LAI, vegetation cover fraction B, and other vegetation characteristics are used. All these values are considered to be the model parameters. Territory of Kursk region with square about 15 thousands km2 situated in the Black Earth zone of Central Russia was chosen for investigation. Satellite-derived estimates of land surface characteristics have been constructed under cloud-free condition basing AVHRR/NOAA, MODIS/EOS Terra and EOS Aqua, SEVIRI/Meteosat-8, -9 data. The developed technologies of AVHRR data thematic processing have been refined providing the retrieval of surface skin brightness temperature Tsg, air foliage temperature Ta, efficient surface temperature Ts.eff and emissivity E, as well as derivation of vegetation index NDVI, B, and LAI. The linear regression estimators for Tsg, Ta and LAI have been built using representative training samples for 2003-2009 vegetation seasons. The updated software package has been applied for AVHRR data thematic processing to generate named remote sensing products for various dates of the above vegetation seasons. The error statistics of Ta, Ts.eff and Тsg derivation has been investigated for various samples using comparison with in-situ measurements that has given RMS errors in the

  13. Spreadsheet eases heat balance, payback calculations

    International Nuclear Information System (INIS)

    Conner, K.P.

    1992-01-01

    This paper reports that a generalized Lotus type spreadsheet program has been developed to perform the heat balance and simple payback calculations for various turbine-generator (TG) inlet steam pressures. It can be used for potential plant expansions or new cogeneration installations. The program performs the basic heat balance calculations that are associated with turbine-generator, feedwater heating process steam requirements and desuperheating. The printout, shows the basic data and formulation used in the calculations. The turbine efficiency data used are applicable for automatic extraction turbine-generators in the 30-80 MW range. Simple payback calculations are for chemical recovery boilers and power boilers used in the pulp and paper industry. However, the program will also accommodate boilers common to other industries

  14. SURFACE ENERGY BALANCE OVER ORANGE ORCHARD USING SURFACE RENEWAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2009-12-01

    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  15. Surface energy and radiation balance systems - General description and improvements

    Science.gov (United States)

    Fritschen, Leo J.; Simpson, James R.

    1989-01-01

    Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.

  16. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...

  17. Radiative heat exchange between surfaces

    International Nuclear Information System (INIS)

    Yener, Y.; Yuncu, H.

    1987-01-01

    The geometrical features of radiative heat exchange between surfaces are discussed first by developing various radiation shape factor relations. The governing equations for enclosures with diffusely emitting and diffusely reflecting surfaces, as well as the equations for enclosures with gray surfaces having specular component of reflectivity are introduced next. Finally, a simplified model for enclosures with isothermal surfaces under the assumption of uniform radiosity over the surfaces is discussed, and various working relations for different conditions are presented

  18. Balanced and servo control surfaces

    Science.gov (United States)

    1930-01-01

    Many reports on various control systems are available, but the results cannot be generally applied since the effect of particular changes of surface-form and mounting are subject to variations depending upon airfoil section and influences of airplane layout. This report presents a simple analysis of several control systems in more general use. Elevators, ailerons, and rudders are all discussed.

  19. Seasonal contrast in the surface energy balance of the Sahel

    Science.gov (United States)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  20. Energy balance in the ohmically heated FT

    International Nuclear Information System (INIS)

    Bartiromo, R.; Brusati, M.; Cilloco, F.

    1981-01-01

    A typical discharge in the FT Tokamak at 60 kG has been studied in detail in order to derive the power balance between the ohmic input and the plasma losses. Impurity and radiation losses together with ion and electron energy balance are discussed. A power transport term for electrons is derived which is ascribed to anomalous thermal conduction. This resulting thermal transport is compared with those derived from different proposed scalings

  1. Heat balance studies on sea ice near Syowa Station, East Antarctica

    OpenAIRE

    Ishikawa,Nobuyoshi; Kobayashi,Shun'ichi; Ohta,Tetsuo; Kawaguchi,Sadao

    1982-01-01

    Heat balance studies were carried out on the Antarctic sea ice surface in the austral spring and summer of 1980. The surface albedo of sea ice covered by a thin snow-layer was kept nearly constant (around 0.8) in spring, but in summer it was reduced to the same value as that of bare ice owing to the change of the surface properties with a great increase in the amount of absorbed net radiation. Variations of heat balance components were presented for every 10 days and two seasons in this paper.

  2. Power balance in an Ohmically heated fusion reactor

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Roberts, K.V.

    1982-01-01

    A simplified power-balance equation (zero-dimensional model) is used to study the performance of an Ohmically heated fusion reactor with emphasis on a pulsed reversed-field pinch concept (RFP). The energy confinement time tausub(E) is treated as an adjustable function, and empirical tokamak scaling laws are employed in the numerical estimates, which are supplemented by 1-D ATHENE code calculations. The known heating rates and energy losses are represented by the net energy replacement time tausub(W), which is exhibited as a surface in density (n) and temperature (T) space with a saddle point (nsub(*), Tsub(*)), the optimum ignition point. It is concluded that i) ignition by Ohmic heating is more practicable for the RFP reactor than for a tokamak reactor with the same tausub(E), (ii) if at fixed current the minor radius can be reduced or at fixed minor radius the current can be increased, then it is found that Ohmic ignition becomes more likely when present tokamak scaling laws are used. More definitive estimates require, however, a knowledge of tausub(E), which can only be obtained by establishing a reliable set of experimental RFP scaling laws and, in particular, by extending RFP experiments closer to the reactor regime. (author)

  3. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  4. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  5. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    Science.gov (United States)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  6. Energy and heat balance in wet DCT

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Viren; Moser, Alexander; Schaefer, Michael; Ritschel, Michael [BorgWarner Drivetrain Engineering GmbH, Ketsch (Germany)

    2012-11-01

    Wet clutch systems are well known for their thermal robustness and versatility in a wide range of automotive applications. Conventional automatics have used them for a long time as torque converter lock-up clutches, shift elements and launch clutches. With the development of DCTs, wet clutch technology has evolved in terms of launch and shift performance, controllability, robustness and efficiency. This paper discusses improvements in the wet clutch and their impact on today's vehicle applications in terms of heat and energy management. Thermal robustness is a crucial aspect for an automatic transmission. In addition to the clutch thermal performance, the influence of transmission oil cooler and oil sump warm-up behavior are discussed. Based on our latest development activities, test results and simulations, we shall discuss the latest friction material enhancement and its impact on DCTs in terms of efficiency and performance. Drag loss is a much-discussed topic during the development of wet clutch systems. This paper discusses in detail the cause and break-up of various energy losses in a wet DCT. Efficient energy management strategies for actuation systems, cooling, and lubrication, clutch apply, and pre-selection in modern power trains with engine start / stop are evaluated based on the latest test and simulation results. Finally, the paper summarizes the performance and efficiency optimized moist clutch system. (orig.)

  7. Surface engineering and heat treatment

    International Nuclear Information System (INIS)

    Morton, P.H.

    1991-01-01

    This book is the proceedings of a Conference organised jointly by The Institute of Metals and The Centre for Exploitation of Science and Technology (CEST). It sets out to review this role and point the way to the future by collecting together a series of invited papers written by noted authorities in their fields. The opening review by CEST highlights the economic and industrial importance of Surface Engineering and is followed by a group of four articles devoted to specific branches of industry. Several technical papers then describe various aspects of the development of heat treatment over the last twenty-five years. These are followed by papers describing advances made possible by new technologies such as plasma, laser and ion beam. A separate abstract has been prepared for a paper on materials aspects of ion beam technology. (author)

  8. Solar energy and global heat balance of a city

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)

    2001-07-01

    The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)

  9. Constraining the Surface Energy Balance of Snow in Complex Terrain

    Science.gov (United States)

    Lapo, Karl E.

    values and coupled land-atmosphere models have difficulty representing these processes. We developed a new method analyzing turbulent fluxes at the land surface that relies on using the observed surface temperature, which we called the offline turbulence method. We used this method to test a number of stability schemes as they are implemented within land models. Stability schemes can cause small biases in the simulated sensible heat flux, but these are caused by compensating errors, as no single method was able to accurately reproduce the observed distribution of the sensible heat flux. We described how these turbulence schemes perform within different turbulence regimes, particularly noting the difficulty representing turbulence during conditions with faster wind speeds and the transition between weak and strong wind turbulence regimes. Heterogeneity in the horizontal distribution of surface temperature associated with different land surface types likely explains some of the missing physics within land models and is manifested as counter-gradient fluxes in observations. The coupling of land and atmospheric models needs further attention, as we highlight processes that are missing. Expanding on the utility of surface temperature, Ts, in model evaluations, we demonstrated the utility of using surface temperature in snow models evaluations. Ts is the diagnostic variable of the modeled surface energy balance within physically-based models and is an ideal supplement to traditional evaluation techniques. We demonstrated how modeling decisions affect Ts, specifically testing the impact of vertical layer structure, thermal conductivity, and stability corrections in addition to the effect of uncertainty in forcing data on simulated Ts. The internal modeling decisions had minimal impacts relative to uncertainty in the forcing data. Uncertainty in downwelling longwave was found to have the largest impact on simulated Ts. Using Ts, we demonstrated how various errors in the forcing

  10. Thermal heat-balance mode flow-to-frequency converter

    Science.gov (United States)

    Pawlowski, Eligiusz

    2016-11-01

    This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.

  11. Heat storage in forest biomass improves energy balance closure

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  12. Analysis on the heat balance between CEFR and the primary loop system

    International Nuclear Information System (INIS)

    Liu Shangbo; Yang Hongyi; Li Jing; Wang Xiongying

    2013-01-01

    The heat balance ability of reactor is very important to design and operation. Special heat balance analysis and calculation software shall be available. This article analyzes and calculates in details the heat source and cooling power of the main cooling system of the primary loop in China Experimental Faster Reactor (CEFR), and develops a calculation code. By using the steady state heat balance data of 26.5% Pn and 40% Pn in CEFR during power start-up, the heat balance ability of the primary loop is verified. The results show that the calculation model is reliable, and can provide technical support to building heat balance in CEFR operation. (authors)

  13. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  14. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  15. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  16. Heat transfer from rough surfaces

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1977-01-01

    Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de

  17. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  18. Heat balance characteristics and water use efficiency of soybean community

    International Nuclear Information System (INIS)

    Lee, Y.S.; Im, J.N.

    1990-01-01

    A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean ''Paldalkong'' was sown with the space of 40 * 10 cm at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with record 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air

  19. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    International Nuclear Information System (INIS)

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  20. THERMOREGULATION IN CHILDREN: EXERCISE, HEAT STRESS & FLUID BALANCE

    Directory of Open Access Journals (Sweden)

    Shawnda A. Morrison

    2014-12-01

    Full Text Available This review focuses on the specific physiological strategies of thermoregulation in children, a brief literary update relating exercise to heat stress in girls and boys as well as a discussion on fluid balance strategies for children who are performing exercise in the heat. Both sport performance and thermoregulation can be affected by the body’s water and electrolyte content. The recommendations for pre-pubertal fluid intake have been generalized from adult literature, including a limited concession for the physiological differences between adults and children. Considering these body fluid shifts, carbohydrate-electrolyte drinks are thought to be an essential tool in combating dehydration as a result of active hyperthermia (i.e. exercise, thus we examine current hydration practices in exercising children. Finally, this review summarizes research which examines the relationship between cognition and hypohydration on young athletes’ performance.

  1. The relevance of rooftops: Analyzing the microscale surface energy balance in the Chicago region

    Science.gov (United States)

    Khosla, Radhika

    Spatial structure in climate variables often exist over very short length scales within an urban area, and this structure is a result of various site-specific features. In order to analyze the seasonal and diurnal energy flows that take place at a microclimatic surface, this work develops a semi-empirical energy balance model. For this, radiation fluxes and meteorological measurements are determined by direct observation; sensible heat and latent heat fluxes by parameterizations; and the heat storage flux by a 1-D mechanistic model that allows analysis of the temperature profile and heat storage within an underlying slab. Two sites receive detailed study: an anthropogenic site, being a University of Chicago building rooftop, and a natural site, outside Chicago in the open country. Two identical sets of instruments record measurements contemporaneously from these locations during June-November 2007, the entire period for which analyses are carried out. The study yields seasonal trends in surface temperature, surface-to-air temperature contrast and net radiation. At both sites, a temporal hysteresis between net radiation and heat storage flux indicates that surplus energy absorbed during daylight is released to the atmosphere later in the evening. The surface energy balance model responds well to site specific features for both locations. An analysis of the surface energy balance shows that the flux of sensible heat is the largest non-radiative contributor to the roof's surface cooling, while the flux of latent heat (also referred to as evaporative cooling) is the largest heat sink for the soil layer. In the latter part of the study, the surface energy balance model is upgraded by adding the capability to compute changes in surface temperature and non-radiative fluxes for any specified set of thermal and reflective roof properties. The results of this analysis allow an examination of the relationship between the roof temperature, the heat flux entering the building

  2. Surface energy balance of fresh and saline waters : AquaSEBS

    NARCIS (Netherlands)

    Abdelrady, A.R.; Timmermans, J.; Vekerdy, Z.; Salama, M.S.

    2016-01-01

    Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System) model

  3. Interaction between liquid droplets and heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, B I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Vasiliev, N I [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation); Guguchkin, V V [Research and Engineering Centre, LWR Nuclear Plants Safety, Elektrogorsk (Russian Federation)

    1993-06-01

    In this paper, experimental methods and investigation results of interaction between droplets of different liquids and a heated surface are presented. Wetted area, contact time period and transition boundary from wetted to non-wetted interaction regimes are experimentally evaluated. A simple connection of the wetted area value and contact time period with the heat removal efficiency is shown. (orig.)

  4. New calculation method to solve moisture balance in the room with regenerator heat recovery and infiltration

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Drivsholm, Christian

    2017-01-01

    This paper investigates moisture related performance of a regenerator heat exchanger located in a decentralized ventilation unit for residential building application. The decentralized ventilation solutions have recently become a more and more popular alternative to centralized ventilation systems...... in air handling units (AHUs). In the case of regenerator heat exchanger, the higher the heat recovery efficiency obtained the higher risk that condensation might occur. This condensation might form small droplets on the surface of the regenerator that might not be possible to drain in the short switching...... time of the regenerator and consequently might be evaporated in the next cycle back to the building and cause elevated humidity conditions in the indoor spaces. Due to the fact that the traditionally used dilution equation must not be used to solve moisture balance in the room with regenerator heat...

  5. Evaluating infant core temperature response in a hot car using a heat balance model.

    Science.gov (United States)

    Grundstein, Andrew J; Duzinski, Sarah V; Dolinak, David; Null, Jan; Iyer, Sujit S

    2015-03-01

    Using a 1-year old male infant as the model subject, the objectives of this study were to measure increased body temperature of an infant inside an enclosed vehicle during the work day (8:00 am-4:00 pm) during four seasons and model the time to un-compensable heating, heat stroke [>40 °C (>104 °F)], and critical thermal maximum [>42 °C (>107.6 °F)]. A human heat balance model was used to simulate a child's physiological response to extreme heat exposure within an enclosed vehicle. Environmental variables were obtained from the nearest National Weather Service automated surface observing weather station and from an observational vehicular temperature study conducted in Austin, Texas in 2012. In all four seasons, despite differences in starting temperature and solar radiation, the model infant reached heat stroke and demise before 2:00 pm. Time to heat stroke and demise occurred most rapidly in summer, at intermediate durations in fall and spring, and most slowly in the winter. In August, the model infant reached un-compensable heat within 20 min, heat stroke within 105 min, and demise within 125 min. The average rate of heating from un-compensable heat to heat stroke was 1.7 °C/h (3.0 °F/h) and from heat stroke to demise was 4.8 °C/h (8.5 °F/h). Infants left in vehicles during the workday can reach hazardous thermal thresholds quickly even with mild environmental temperatures. These results provide a seasonal analogue of infant heat stroke time course. Further effort is required to create a universally available forensic tool to predict vehicular hyperthermia time course to demise.

  6. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  7. Preliminary measurements on heat balance in pneumatic tires

    Science.gov (United States)

    Nybakken, G. H.; Collart, D. Y.; Staples, R. J.; Lackey, J. I.; Clark, S. K.; Dodge, R. N.

    1973-01-01

    A variety of tests was undertaken to determine the nature of heat generation associated with a pneumatic tire operating under various conditions. Tests were conducted to determine the magnitude and distribution of internally generated heat caused by hysteresis in the rubber and ply fabric in an automobile tire operating under conditions of load, pressure, and velocity representative of normal operating conditions. These included tests at various yaw angles and tests with braking applied. In other tests, temperature sensors were mounted on a road to measure the effect of a tire rolling over and an attempt was made to deduce the magnitude and nature of interfacial friction from the resulting information. In addition, tests were performed using the scratch plate technique to determine the nature of the motion between the tire and road. Finally, a model tire was tested on a roadwheel, the surface covering which could be changed, and an optical pyrometer was used to measure rubber surface temperatures.

  8. Heat-balance integral method for heat transfer in superfluid helium

    Directory of Open Access Journals (Sweden)

    Baudouy Bertrand

    2009-01-01

    Full Text Available The heat-balance integral method is used to solve the non-linear heat diffusion equation in static turbulent superfluid helium (He II. Although this is an approximate method, it has proven that it gives solutions with fairly good accuracy in non-linear fluid dynamics and heat transfer. Using this method, it has been possible to develop predictive solutions that reproduce analytical solution and experimental data. We present the solutions of the clamped heat flux case and the clamped temperature case in a semi-infinite using independent variable transformation to take account of temperature dependency of the thermophysical properties. Good accuracy is obtained using the Kirchhoff transform whereas the method fails with the Goodman transform for larger temperature range.

  9. Response of Cryolite-Based Bath to a Shift in Heat Input/output Balance

    Science.gov (United States)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2017-04-01

    A technology for low amperage potline operation is now recognized as a competitive advantage for the aluminum smelting industry in order to align smelter operations with the power and aluminum price markets. This study investigates the cryolite-based bath response to heat balance shifts when the heat extraction from the bath is adjusted to different levels in a laboratory analogue. In the analogue experiments, the heat balance shift is driven by a graphite `cold finger' heat exchanger, which can control the heat extraction from the analogue, and a corresponding change in heat input from the furnace which maintains the control temperature of the lab "cell." This paper reports the first experimental results from shifting the steady state of the lab cell heat balance, and investigates the effects on the frozen ledge and bath superheat. The lab cell energy balances are compared with energy balances in a published industrial cell model.

  10. Particle and heat balance analysis in scrape-off and divertor regions of the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Nagashima, K.; Shoji, T.; Tamai, H.; Miura, Y.; Takenaga, H.; Maeda, H.

    1995-01-01

    Particle and heat balance in the scrape-off layer and the divertor region were studied in the JFT-2M tokamak. Using particle and energy conservation laws, particle and heat diffusivities perpendicular to the flux surface were evaluated just outside the magnetic separatrix. It was found that the particle diffusivity decreases with increasing electron density in the scrape-off layer and decreases by a factor of 2-3 in the H-mode phase as compared with that in L-mode. The heat diffusivity has almost the same dependence on the electron density. The ratio of the heat diffusivity to the particle diffusivity is about 2. ((orig.))

  11. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  12. Radiogenic heat production and the earth's heat balance. A source of arguments in geoscience

    International Nuclear Information System (INIS)

    Kuczera, B.

    2008-01-01

    The terrestrial heat flow into interstellar space amounts to approx. 32 TW on the basis of an average heat flow density of 63 mW per sq.m. of earth surface. The loss flow derives part of the energy from the residual heat of the nascent phase of the earth (approx. 40%) and the other part from the natural disintegration of longlived radionuclides, i.e. radiogenic heat production (roughly 60%). This concept met with broad consensus in the geosciences until the 1980s. In 1993, Pollack et al. concluded from the evaluation of recent measured data that heat loss via the oceanic crust of the earth was clearly higher, which raises the loss flow to a total of 44 TW. This is contradicted by Hoffmeister and Criss, who conclude from a modified geochemical model that the total heat loss of 31 TW is fully compensated by radiogenic heat production. In 2001, C. Herndon introduced a new idea into the discussion. According to his thesis, planetary differentiation caused a nuclear georeactor to be created in the center of the earth, whose continuous thermal power of approx. 3 TW contributes to compensating heat losses. Physicists and geoscientists hope to be able to derive new findings on this thesis and on the distribution of radiogenic heat production in the interior of the earth from the planned geo-neutrino experiment in Homestake, USA. (orig.)

  13. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  14. A three-region conduction-controlled rewetting analysis by the Heat Balance Integral Method

    International Nuclear Information System (INIS)

    Sahu, S.K.; Das, P.K.; Bhattacharyya, S.

    2009-01-01

    Conduction-controlled rewetting of two-dimensional objects is analyzed by the Heat Balance Integral Method (HBIM) considering three distinct regions: a dry region ahead of wet front, the sputtering region immediately behind the wet front and a continuous film region further upstream. The HBIM yields solutions for wet front velocity, sputtering length and temperature field with respect to wet front. Employing this method, it is seen that heat transfer mechanism is dependent upon two temperature parameters. One of them characterizes the initial wall temperature while the other specifies the range of temperature for sputtering region. Additionally, the mechanism of heat transfer is found to be dependent on two Biot numbers comprising a convective heat transfer in the wet region and a boiling heat transfer in the sputtering region. The present solution exactly matches with the one-dimensional analysis of K.H. Sun, G.E. Dix, C.L. Tien [Cooling of a very hot vertical surface by falling liquid film, ASME J. Heat Transf. 96 (1974) 126-131] for low Biot numbers. Good agreement with experimental results is also observed. (authors)

  15. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  16. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  17. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M; Venaelaeinen, A; Tourula, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  18. Isothermal sinusoidal analysis of balanced compound Vuilleumier heat pumps

    International Nuclear Information System (INIS)

    Finkelstein, T.

    1992-01-01

    This paper reports on Vuilleumier heat pumps with balanced compounding which have been under investigation for about fifteen years but have not yet reached the stage of commercial utilization. Previously published analytical treatment based upon isothermal treatment of the variable-volume spaces resulted in closed form solution of considerable complexity of the coupled differential equations but applied only to free piston machines. In contrast, the procedure presented here is based on previously demonstrated sinusoidal excursions of the reciprocators. It is of the same order of accuracy, but much more simple and usable. It was found that there is only negligible difference between the results of the present and the previous approach. Additionally, the treatment presented here is applicable to kinematic machines, as well as to free piston machines. For the latter design, an equation for the natural frequency is also derived. Ideal proportions and practical expressions for the energy streams are derived. Gas forces are plotted versus displacement and it is shown that they are equivalent to a linear spring, which is of importance for the concept of a free-piston design

  19. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  20. Tritiated hydrogen conversion on heated metallic surfaces

    International Nuclear Information System (INIS)

    Ionita, G.; Mihaila, V.; Purghel, L.; Rebigan, F.

    1995-01-01

    This work reports investigations on tritiated hydrogen conversion to tritiated water on heated metallic surfaces. The HT conversion process has been revealed for copper, aluminium and stainless steel W4541 surfaces in the temperature range 150 to 300 o C, in case of the static regime and in the range 250 to 400 o C for the dynamic case. The most significant catalytic activity was shown by the copper sample. Studies on this subject are used as input information for different nuclear accident scenarios implying tritium leakage

  1. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum

    Science.gov (United States)

    Wagle, Pradeep; Bhattarai, Nishan; Gowda, Prasanna H.; Kakani, Vijaya G.

    2017-06-01

    Robust evapotranspiration (ET) models are required to predict water usage in a variety of terrestrial ecosystems under different geographical and agrometeorological conditions. As a result, several remote sensing-based surface energy balance (SEB) models have been developed to estimate ET over large regions. However, comparison of the performance of several SEB models at the same site is limited. In addition, none of the SEB models have been evaluated for their ability to predict ET in rain-fed high biomass sorghum grown for biofuel production. In this paper, we evaluated the performance of five widely used single-source SEB models, namely Surface Energy Balance Algorithm for Land (SEBAL), Mapping ET with Internalized Calibration (METRIC), Surface Energy Balance System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), and operational Simplified Surface Energy Balance (SSEBop), for estimating ET over a high biomass sorghum field during the 2012 and 2013 growing seasons. The predicted ET values were compared against eddy covariance (EC) measured ET (ETEC) for 19 cloud-free Landsat image. In general, S-SEBI, SEBAL, and SEBS performed reasonably well for the study period, while METRIC and SSEBop performed poorly. All SEB models substantially overestimated ET under extremely dry conditions as they underestimated sensible heat (H) and overestimated latent heat (LE) fluxes under dry conditions during the partitioning of available energy. METRIC, SEBAL, and SEBS overestimated LE regardless of wet or dry periods. Consequently, predicted seasonal cumulative ET by METRIC, SEBAL, and SEBS were higher than seasonal cumulative ETEC in both seasons. In contrast, S-SEBI and SSEBop substantially underestimated ET under too wet conditions, and predicted seasonal cumulative ET by S-SEBI and SSEBop were lower than seasonal cumulative ETEC in the relatively wetter 2013 growing season. Our results indicate the necessity of inclusion of soil moisture or plant water stress

  2. Surface Energy Balance in Jakarta and Neighboring Regions As Simulated Using Fifth Mesoscale Model (MM5

    Directory of Open Access Journals (Sweden)

    Yopi Ilhamsyah

    2014-04-01

    Full Text Available The objective of the present research was to assess the surface energy balance particularly in terms of the computed surface energy and radiation balance and the development of boundary layer over Jakarta and Neighboring Regions (JNR by means of numerical model of fifth generation of Mesoscale Model (MM5. The MM5 with four domains of 9 kilometers in spatial resolution presenting the outermost and the innermost of JNR is utilized. The research focuses on the third and fourth domains covering the entire JNR. The description between radiation and energy balance at the surface is obtained from the model. The result showed that energy balance is higher in the city area during daytime. Meanwhile, energy components, e.g., surface sensible and latent heat flux showed that at the sea and in the city areas were higher than other areas. Moreover, ground flux showed eastern region was higher than others. In general, radiation and energy balance was higher in the daytime and lower in the nighttime for all regions. The calculation of Bowen Ratio, the ratio of surface sensible and latent heat fluxes, was also higher in the city area, reflecting the dominations of urban and built-up land in the region. Meanwhile, Bowen Ratio in the rural area dominated by irrigated cropland was lower. It is consistent with changes of land cover properties, e.g. albedo, soil moisture, and thermal characteristics. In addition, the boundary layer is also higher in the city. Meanwhile western region dominated by suburban showed higher boundary layer instead of eastern region.

  3. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    Science.gov (United States)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  4. Development of balanced downflow type surface condensers, (2)

    International Nuclear Information System (INIS)

    Tomida, Akira; Oshima, Yoshikuni; Okochi, Isao; Izumi, Kenkichi.

    1976-01-01

    As the size of the condensers for power generation plants grew large, the new balanced downflow type condenser was developed and completed on the basis of the experiment on steam flow according to the two-dimensional flow model, the analysis of the performance in a tube nest with a computer, and the studies on the effect of outside liquid film and the reheating deaeration of condensate. When the balanced downflow type condensers were adopted for actual plants, the construction, strength and production method were examined, and the reliability of the new condenser was confirmed by the thermal characteristic experiment with the model similar to the actual machine. The condenser comprises a condenser body, supporting plates, cooling tubes, tube plates, water chambers, and reinforcements, and the cooling tubes are arranged so as to exchange heat effectively. The arrangement of tubes is divided into three regions, namely radiation portion, densely arranged portion, and air cooling portion. In the balanced downflow type condensers, the dilution by utilizing condensate is provided against ammonia attack. The apparatuses for the thermal characteristic experiment and the experimental results, and the results of the performance test on the actual balanced downflow type condenser are reported. (Kako, I.)

  5. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  6. Surface emissions of heat, water and GHGs from a NYC greenroof

    Science.gov (United States)

    McGillis, W. R.; Jacobson, G.; Culligan, P.; Gaffin, S.; Carson, T.; Marasco, D.; Hsueh, D.; Rella, C.

    2012-04-01

    The budgets of heat, water, and GHGs from greenroofs in New York City, needed for adaptation and sustainable policy and infrastructure strategies, requires an accurate measure of their surface emissions. A high speed, Cavity Ring-Down Spectroscopy (CRDS) based analyzer for measuring carbon dioxide (CO2), methane (CH4) and water (H2O) and an ultrasonic wind and temperature anemometer for measuring heat and momentum is used to assess greenroof performance during seasonal, diurnal, and episodic weather conditions. The flux instrument has proven capable of raw 10 Hz precision (one standard deviation) better than 110 parts-per-billion (ppbv) for carbon dioxide, better than 3 ppbv for methane and better than 6 ppmv +0.3% of reading for water vapor. In the water and heat budget, comparison and reconciliation of greenroof evapotranspiration (ET) using micrometeorological techniques, water balance, and heat balance was conducted. The water balance (month timescales), the heat balance (week timescale) show agreement to the micrometeorological surface ET (hour timescale). By using boundary layer flux measurements of ET, the fundamental performance of greenroofs on climate and weather conditions can be explored. These boundary layer measured surface fluxes provide critical information on the physiology of the built environment in New York City. Faced with sewage failures due to water management and exacerbated heating, the accurate assessment of greenroof performance on high spatial and temporal scales in required for the urban environment. Results will be presented and discussed.

  7. Summertime influences of tidal energy advection on the surface energy balance in a mangrove forest

    Directory of Open Access Journals (Sweden)

    J. G. Barr

    2013-01-01

    Full Text Available Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem

  8. An experimental investigation on ground heat flow balance issue for a GCHP

    OpenAIRE

    Jiufa Chen; Hongqi Zheng; Qin Xue; Erming An; Weilai Qiao

    2010-01-01

    For a ground-coupled heat pump (GCHP), it is vital to keep the ground heat flow balanced in order to achieve sustainable energy-saving operation. However, the importance of this issue has not been well studied. Focused on the heat flow balance issue, this paper made an exclusive experimental study using a newly installed GCHP system with the designed cooling capacity 1960 kW and heating capacity 1590 kW. The GCHP system was equipped with a data acquisition system and had temperature sensors i...

  9. Energy balance in TM-1-MH Tokamak (ohmical heating)

    Science.gov (United States)

    Stoeckel, J.; Koerbel, S.; Kryska, L.; Kopecky, V.; Dadalec, V.; Datlov, J.; Jakubka, K.; Magula, P.; Zacek, F.; Pereverzev, G. V.

    1981-10-01

    Plasma in the TM-1-MH Tokamak was experimentally studied in the parameter range: tor. mg. field B = 1,3 T, plasma current I sub p = 14 kA, electron density N sub E 3.10 to the 19th power cubic meters. The two numerical codes are available for the comparison with experimental data. TOKATA-code solves simplified energy balance equations for electron and ion components. TOKSAS-code solves the detailed energy balance of the ion component.

  10. Application of heat-balance integral method to conjugate thermal explosion

    Directory of Open Access Journals (Sweden)

    Novozhilov Vasily

    2009-01-01

    Full Text Available Conjugate thermal explosion is an extension of the classical theory, proposed and studied recently by the author. The paper reports application of heat-balance integral method for developing phase portraits for systems undergoing conjugate thermal explosion. The heat-balance integral method is used as an averaging method reducing partical differential equation problem to the set of first-order ordinary differential equations. The latter reduced problem allows natural interpretation in appropriately chosen phase space. It is shown that, with the help of heat-balance integral technique, conjugate thermal explosion problem can be described with a good accuracy by the set of non-linear first-order differential equations involving complex error function. Phase trajectories are presented for typical regimes emerging in conjugate thermal explosion. Use of heat-balance integral as a spatial averaging method allows efficient description of system evolution to be developed.

  11. Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Foltz, G.R.; Vialard, J.; PraveenKumar, B.; McPhaden, M.J.

    from a long-term moored buoy are used in conjunction with satellite, in situ, and atmospheric reanalysis datasets to analyze the seasonal mixed layer heat balance in the thermocline ridge region of the southwestern tropical Indian Ocean. This region...

  12. Calibration of the heat balance model for prediction of car climate

    OpenAIRE

    Jícha Miroslav; Fišer Jan; Pokorný Jan

    2012-01-01

    In the paper, the authors refer to development a heat balance model to predict car climate and power heat load. Model is developed in Modelica language using Dymola as interpreter. It is a dynamical system, which describes a heat exchange between car cabin and ambient. Inside a car cabin, there is considered heat exchange between air zone, interior and air-conditioning system. It is considered 1D heat transfer with a heat accumulation and a relative movement Sun respect to the car cabin, whil...

  13. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  14. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  15. Heat balance structure of canopies at extreme precipitation in view of long-term records

    International Nuclear Information System (INIS)

    Bubnowska, J.; Gąsiorek, E.; Łabędzki, L.; Musiał, E.

    2005-01-01

    Increasing frequency of extreme weather conditions is attributed to the global variations in climate. Heat balance of substrate is one of the processes affecting the climate. Variations of heat balance in spring wheat during the growing seasons (April-August) and in potatoes during the growing seasons (May-September) with maximal and minimal precipitation are confronted here with long term changes of the balance. Two regions Wroclaw-Swojec (1964-2000) and Bydgoszcz (1945-2003) were involved in the study [pl

  16. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents

    Science.gov (United States)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  17. Energy balance in the TCA tokamak plasma with Alfven wave heating

    International Nuclear Information System (INIS)

    Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming

    1993-01-01

    The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods

  18. The calculation for energy balance of heating plasmas by Alfven waves

    International Nuclear Information System (INIS)

    Long Yongxing; Ding Ning; He Qibing; Qu Wenxiao; Huang Lin; Qiu Xiaoming

    1992-10-01

    A numerical method for computing the energy balance of heating tokamak plasmas by Alfven waves is introduced. The results are in agreement with experiments. This method is not only simpler and more distinct but also considerably saving time in computation. It also can be used in kinetic problems with other types of radio frequency (RF) heating

  19. Identification of the Heat Transfer Coefficient at the Charge Surface Heated on the Chamber Furnace

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2017-06-01

    Full Text Available The inverse method was applied to determine the heat flux reaching the charge surface. The inverse solution was based upon finding the minimum of the error norm between the measured and calculated temperatures. The charge temperature field was calculated with the finite element method by solving the heat transfer equation for a square charge made of 15HM steel heated on all its surfaces. On the basis of the mean value of heat flux, the value of the heat transfer coefficient at each surface was determined depending on the surface temperature of the material heated.

  20. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  1. Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

    Science.gov (United States)

    Ali, Alfatih; Kalisch, Henrik

    2012-06-01

    Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion η and the horizontal velocity w at a given level in the fluid.

  2. Surface wettability and subcooling on nucleate pool boiling heat transfer

    Science.gov (United States)

    Suroto, Bambang Joko; Kohno, Masamichi; Takata, Yasuyuki

    2018-02-01

    The effect of varying surface wettabilities and subcooling on nucleate pool boiling heat transfer at intermediate heat flux has been examined and investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0, 5 and 10 K, respectively. The three types of heat transfer block were used that are bare surface/hydrophilic (polished copper), superhydrophilic/TiO2-coated on copper and hydrophobic/PTFE surface. The experimental results will be examined by the existing model. The results show that the heat transfer performance of surfaces with PTFE coating is better at low heat flux. While for an intermediate heat flux, superhydrophilic surface (TiO2) is superior compared to hydrophilic and hydrophobic surfaces. It is observed that the heat transfer performance is decreasing when the sub cooling degree is increased.

  3. New Departure from Nucleate Boiling model relying on first principle energy balance at the boiling surface

    Science.gov (United States)

    Demarly, Etienne; Baglietto, Emilio

    2017-11-01

    Predictions of Departure from Nucleate Boiling have been a longstanding challenge when designing heat exchangers such as boilers or nuclear reactors. Many mechanistic models have been postulated over more than 50 years in order to explain this phenomenon but none is able to predict accurately the conditions which trigger the sudden change of heat transfer mode. This work aims at demonstrating the pertinence of a new approach for detecting DNB by leveraging recent experimental insights. The new model proposed departs from all the previous models by making the DNB inception come from an energy balance instability at the heating surface rather than a hydrodynamic instability of the bubbly layer above the surface (Zuber, 1959). The main idea is to modulate the amount of heat flux being exchanged via the nucleate boiling mechanism by the wetted area fraction on the surface, thus allowing a completely automatic trigger of DNB that doesn't require any parameter prescription. This approach is implemented as a surrogate model in MATLAB in order to validate the principles of the model in a simple and controlled geometry. Good agreement is found with the experimental data leveraged from the MIT Flow Boiling at various flow regimes. Consortium for Advanced Simulation of Light Water Reactors (CASL).

  4. Responses of Lithium-Modified Bath to a Shift in Heat Input/Output Balance and Observation of Freeze-Lining Formation During the Heat Balance Shift

    Science.gov (United States)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2018-02-01

    In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.

  5. Study on Induction Heating Coil for Uniform Mold Cavity Surface Heating

    OpenAIRE

    Yu-Ting Sung; Sheng-Jye Hwang; Huei-Huang Lee; Durn-Yuan Huang

    2014-01-01

    Recently, energy saving is one of the important issues for polymer processing industry. Electromagnetic induction heating has many advantages such as fast heating and low energy consumption. Previous studies using electromagnetic induction heating for rapid tool heating have indicated that the temperature uniformity on a cavity surface is not easy to be achieved. In this paper, two different coils were used for heating uniform 7 mm thick hot work tool steel (JIS SKD61) surface. One is a four-...

  6. Surface Energy Balance of Fresh and Saline Waters: AquaSEBS

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelrady

    2016-07-01

    Full Text Available Current earth observation models do not take into account the influence of water salinity on the evaporation rate, even though the salinity influences the evaporation rate by affecting the density and latent heat of vaporization. In this paper, we adapt the SEBS (Surface Energy Balance System model for large water bodies and add the effect of water salinity to the evaporation rate. Firstly, SEBS is modified for fresh-water whereby new parameterizations of the water heat flux and sensible heat flux are suggested. This is achieved by adapting the roughness heights for momentum and heat transfer. Secondly, a salinity correction factor is integrated into the adapted model. Eddy covariance measurements over Lake IJsselmeer (The Netherlands are carried out and used to estimate the roughness heights for momentum (~0.0002 m and heat transfer (~0.0001 m. Application of these values over the Victoria and Tana lakes (freshwater in Africa showed that the calculated latent heat fluxes agree well with the measurements. The root mean-square of relative-errors (rRMSE is about 4.1% for Lake Victoria and 4.7%, for Lake Tana. Verification with ECMWF data showed that the salinity reduced the evaporation at varying levels by up to 27% in the Great Salt Lake and by 1% for open ocean. Our results show the importance of salinity to the evaporation rate and the suitability of the adapted-SEBS model (AquaSEBS for fresh and saline waters.

  7. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  8. Impact of highway construction on land surface energy balance and local climate derived from LANDSAT satellite data.

    Science.gov (United States)

    Nedbal, Václav; Brom, Jakub

    2018-08-15

    Extensive construction of highways has a major impact on the landscape and its structure. They can also influence local climate and heat fluxes in the surrounding area. After the removal of vegetation due to highway construction, the amount of solar radiation energy used for plant evapotranspiration (latent heat flux) decreases, bringing about an increase in landscape surface temperature, changing the local climate and increasing surface run-off. In this study, we evaluated the impact of the D8 highway construction (Central Bohemia, Czech Republic) on the distribution of solar radiation energy into the various heat fluxes (latent, sensible and ground heat flux) and related surface functional parameters (surface temperature and surface wetness). The aim was to describe the severity of the impact and the distance from the actual highway in which it can be observed. LANDSAT multispectral satellite images and field meteorological measurements were used to calculate surface functional parameters and heat balance before and during the highway construction. Construction of a four-lane highway can influence the heat balance of the landscape surface as far as 90m in the perpendicular direction from the highway axis, i.e. up to 75m perpendicular from its edge. During a summer day, the decrease in evapotranspired water can reach up to 43.7m 3 per highway kilometre. This means a reduced cooling effect, expressed as the decrease in latent heat flux, by an average of 29.7MWh per day per highway kilometre and its surroundings. The loss of the cooling ability of the land surface by evaporation can lead to a rise in surface temperature by as much as 7°C. Thus, the results indicate the impact of extensive line constructions on the local climate. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Model predictive control to Maintain ATES balance using heat pump

    NARCIS (Netherlands)

    Hoving, J.; Boxem, G.; Zeiler, W.

    2017-01-01

    A rapidly growing amount of sustainable office buildings in the Netherlands is using an Aquifer Thermal Energy Storage (ATES) system. An ATES system uses a well pump to extract cold groundwater for cooling with the use of a heat pump if necessary. An essential condition for optimal ATES operation is

  10. A modified stanton number for heat transfer through fabric surface

    Directory of Open Access Journals (Sweden)

    Zhang Shen-Zhong

    2015-01-01

    Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.

  11. Heat fluxes and energy balance in the FTU machine

    International Nuclear Information System (INIS)

    Ciotti, M.; Ferro, C.; Franzoni, G.; Maddaluno, G.

    1993-01-01

    Thermal loads on the FTU limiter are routinely measured and energy losses via conduction/convection are inferred. A quite small fraction of the input power (4 to 8%) has been measured from mushrooms temperature increase. Numerical evaluation and comparison with thermocouples located at different radial positions in the S.O.L. suggest a long energy decay length λ e . The power loads inferred from the estimated λE in the actual geometry of the limiter and first wall lead to a global energy balance close to be satisfied. (author)

  12. Surface energy balance measurements in the Mexico City: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Jauregui Ostos, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)

    2005-01-01

    During the last decade of the 20th Century, diverse campaigns for measuring the atmospheric energy balance were performed in downtown Mexico City (School of Mines and Preparatory School No. 7), in the southern suburbs (University Reserve) and in the surrounding rural areas (Plan Texcoco), in addition to a campaign carried out in 1985 in the Tacubaya district, a suburban western peripheral site. The objective was to obtain data for a better understanding of the climatic alterations due to urbanization, particularly to describe the role that the modification of the natural ground cover has played as a result of paving and the construction of urban canyons. In this paper, a review of these campaigns is presented. Energy partitioning in some areas (Tacubaya and Preparatory School No.7) is similar to that observed in urban centers of middle latitudes, whereas the major contrast was observed between Texcoco, with maximum energy consumption through evaporation, and School of Mines, where the latent heat is as low as in a desert. From the values of the correlations among the different components of energy balance, it may be possible to attempt the modeling of the diverse components of energy balance by means of regression equations starting from the net radiation. Those same coefficients distinguish the type of environment: urban, suburban or rural. [Spanish] Las primeras mediciones de balance energetico en la Ciudad de Mexico se realizaron en 1985 en un suburbio al poniente de la ciudad (el observatorio de Tacubaya). Ya en la decada de los anos noventa del siglo XX, dichas observaciones se multiplicaron tanto en el centro historico (antigua Escuela de Minas y en el edificio de la Preparatoria No. 7), como en otros sitios al sur (en terrenos de Ciudad Universitaria) y en la periferia rural (Plan Texcoco). El proposito de estas mediciones ha sido tener un mejor entendimiento de las alteraciones climaticas debidas a la urbanizacion. En este trabajo se presenta una revision

  13. Subcooled boiling heat transfer on a finned surface

    International Nuclear Information System (INIS)

    Kowalski, J.E.; Tran, V.T.; Mills, P.J.

    1992-01-01

    Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)

  14. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi; Chen, Ping-Hei

    2012-01-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography

  15. Fusion surface material melting, ablation, and ejection under high heat loading

    International Nuclear Information System (INIS)

    Holliday, M.R.; Doster, J.M.; Gilligan, J.G.

    1986-01-01

    Limiters, divertor plates, and sections of the first wall are exposed to intense heat loads during normal operation and plasma disruptions. This results in severe thermal stresses as well as erosion of the surface material. Large surface areas of compact high-field tokamaks are expected to be exposed to these high heat loads. The need for a fast and accurate computational model describing the heat transfer and phase change process has arisen as a part of the larger model of the plasma-edge region. The authors report on a solution scheme that has been developed that minimizes computational time for this time-dependent, one-dimensional, moving boundary problem. This research makes use of the heat balance integral technique, which is at least an order of magnitude faster than previous finite difference techniques. In addition, we report on the effect of molten material ejection (by external forces) on the total surface erosion rate

  16. Calculating the water and heat balances of the Eastern Mediterranean Basin using ocean modelling and available meteorological, hydrological and ocean data

    Directory of Open Access Journals (Sweden)

    Anders Omstedt

    2012-04-01

    Full Text Available Eastern Mediterranean water and heat balances wereanalysed over 52 years. The modelling uses a process-orientedapproach resolving the one-dimensional equations of momentum,heat and salt conservation; turbulence is modelled using a two-equation model. The results indicate that calculated temperature and salinity follow the reanalysed data well. The water balance in the Eastern Mediterranean basin was controlled by the difference between inflows and outflows through the Sicily Channel and by net precipitation. The freshwater component displayed a negative trend over the study period, indicating increasing salinity in the basin.The heat balance was controlled by heat loss from the water surface, solar radiation into the sea and heat flow through the Sicily Channel. Both solar radiation and net heat loss displayed increasing trends, probably due to decreased total cloud cover. In addition, the heat balance indicated a net import of approximately 9 W m-2 of heat to the Eastern Mediterranean Basin from the Western Basin.

  17. Estimation of sensible and latent heat flux from natural sparse vegetation surfaces using surface renewal

    Science.gov (United States)

    Zapata, N.; Martínez-Cob, A.

    2001-12-01

    This paper reports a study undertaken to evaluate the feasibility of the surface renewal method to accurately estimate long-term evaporation from the playa and margins of an endorreic salty lagoon (Gallocanta lagoon, Spain) under semiarid conditions. High-frequency temperature readings were taken for two time lags ( r) and three measurement heights ( z) in order to get surface renewal sensible heat flux ( HSR) values. These values were compared against eddy covariance sensible heat flux ( HEC) values for a calibration period (25-30 July 2000). Error analysis statistics (index of agreement, IA; root mean square error, RMSE; and systematic mean square error, MSEs) showed that the agreement between HSR and HEC improved as measurement height decreased and time lag increased. Calibration factors α were obtained for all analyzed cases. The best results were obtained for the z=0.9 m ( r=0.75 s) case for which α=1.0 was observed. In this case, uncertainty was about 10% in terms of relative error ( RE). Latent heat flux values were obtained by solving the energy balance equation for both the surface renewal ( LESR) and the eddy covariance ( LEEC) methods, using HSR and HEC, respectively, and measurements of net radiation and soil heat flux. For the calibration period, error analysis statistics for LESR were quite similar to those for HSR, although errors were mostly at random. LESR uncertainty was less than 9%. Calibration factors were applied for a validation data subset (30 July-4 August 2000) for which meteorological conditions were somewhat different (higher temperatures and wind speed and lower solar and net radiation). Error analysis statistics for both HSR and LESR were quite good for all cases showing the goodness of the calibration factors. Nevertheless, the results obtained for the z=0.9 m ( r=0.75 s) case were still the best ones.

  18. Heat balance model for a human body in the form of wet bulb globe temperature indices.

    Science.gov (United States)

    Sakoi, Tomonori; Mochida, Tohru; Kurazumi, Yoshihito; Kuwabara, Kohei; Horiba, Yosuke; Sawada, Shin-Ichi

    2018-01-01

    The purpose of this study is to expand the empirically derived wet bulb globe temperature (WBGT) index to a rational thermal index based on the heat balance for a human body. We derive the heat balance model in the same form as the WBGT for a human engaged in moderate intensity work with a metabolic heat production of 174W/m 2 while wearing typical vapor-permeable clothing under shady and sunny conditions. Two important relationships are revealed based on this derivation: (1) the natural wet bulb and black globe temperature coefficients in the WBGT coincide with the heat balance equation for a human body with a fixed skin wettedness of approximately 0.45 at a fixed skin temperature; and (2) the WBGT can be interpreted as the environmental potential to increase skin temperature rather than the heat storage rate of a human body. We propose an adjustment factor calculation method that supports the application of WBGT for humans dressed in various clothing types and working under various air velocity conditions. Concurrently, we note difficulties in adjusting the WBGT by using a single factor for humans wearing vapor-impermeable protective clothing. The WBGT for shady conditions does not need adjustment depending on the positive radiant field (i.e., when a radiant heat source exists), whereas that for the sunny condition requires adjustments because it underestimates heat stress, which may result in insufficient human protection measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Automated Hybrid Microwave Heating for Lunar Surface Solidification, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project addresses the need for a system that will provide automated lunar surface stabilization via hybrid microwave heating. Surface stabilization is...

  20. MHTGR steam generator on-line heat balance, instrumentation and function

    International Nuclear Information System (INIS)

    Klapka, R.E.; Howard, W.W.; Etzel, K.T.; Basol, M.; Karim, N.U.

    1991-09-01

    Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints

  1. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  2. Ion track membranes providing heat pipe surfaces with capillary structures

    International Nuclear Information System (INIS)

    Akapiev, G.N.; Dmitriev, S.N.; Erler, B.; Shirkova, V.V.; Schulz, A.; Pietsch, H.

    2003-01-01

    The microgalvanic method for metal filling of etched ion tracks in organic foils is of particular interest for the fabrication of microsized structures. Microstructures like copper whiskers with a high aspect ratio produced in ion track membranes are suitable for the generation of high-performance heat transfer surfaces. A surface with good heat transfer characteristics is defined as a surface on which a small temperature difference causes a large heat transfer from the surface material to the liquid. It is well-known that a porous surface layer transfers to an evaporating liquid a given quantity of heat at a smaller temperature difference than does a usual smooth surface. Copper whiskers with high aspect ratio and a density 10 5 per cm 2 form such a porous structure, which produces strong capillary forces and therefore a maximum of heat transfer coefficients

  3. Electron Heat Flux in Pressure Balance Structures at Ulysses

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  4. Heat transfer enhancement with condensation by surface rotation

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Khrolenok, V V [A.V. Luikov Heat and Mass Transfer Inst., Minsk (Belarus)

    1993-11-01

    Process intensification relies on many unit operations on enhanced heat transfer. One technique for the enhancement of condensation heat transfer is the use of surface rotation. This is particularly effective in reducing the condensate film thickness. The formulae and relationships given in this paper are concerned with rotating discs and tubes, and can be used for developing advanced heat exchanger concepts. (Author)

  5. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  6. Blowdown heat transfer surface in RELAP4/MOD6

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    New heat transfer correlations for both PWR and BWR blowdowns have been implemented in the RELAP4/MOD6 program. The concept of a multidimensional surface is introduced with the heat flux from a given heat transfer correlation or correlations depicted as a mathematical surface that is dependent upon quality, wall superheat, mass flow and pressure. The heat transfer logic has been modularized to facilitate replacing boiling curves for future correlation data comparisons and investigations. To determine the validity of the blowdown surface, comparison has been performed using data from the Semiscale experimental facility. (author)

  7. Heat Pumps in Private Residences used for Grid Balancing by Demand Response Methods

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.; Andersen, Palle

    2012-01-01

    Increased production of renewable energy as wind energy will give a fluctuating production which requires flexible energy storages. Heat capacity in single-family houses with electrical heating using heat pumps represents a storage which can be used to balance the electricity supply. It is assumed....... The minimization results in a power consumption schedule and a temperature schedule for each house. A number of control structures are described aiming to obtain this optimum by communicating references to either house temperature or heat pump power or by offering the consumer an hour by hour price. By simulation...... the schemes are compared by there ability to time shift consumption and to avoid consumer discomfort. Additionally the necessary information exchange for the schemes is discussed. Comparisons indicate that it is possible to use heat pump heated private houses to move power consumption within a time interval...

  8. Calibration of the heat balance model for prediction of car climate

    Science.gov (United States)

    Pokorný, Jan; Fišer, Jan; Jícha, Miroslav

    2012-04-01

    In the paper, the authors refer to development a heat balance model to predict car climate and power heat load. Model is developed in Modelica language using Dymola as interpreter. It is a dynamical system, which describes a heat exchange between car cabin and ambient. Inside a car cabin, there is considered heat exchange between air zone, interior and air-conditioning system. It is considered 1D heat transfer with a heat accumulation and a relative movement Sun respect to the car cabin, whilst car is moving. Measurements of the real operating conditions of gave us data for model calibration. The model was calibrated for Škoda Felicia parking-summer scenarios.

  9. Calibration of the heat balance model for prediction of car climate

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available In the paper, the authors refer to development a heat balance model to predict car climate and power heat load. Model is developed in Modelica language using Dymola as interpreter. It is a dynamical system, which describes a heat exchange between car cabin and ambient. Inside a car cabin, there is considered heat exchange between air zone, interior and air-conditioning system. It is considered 1D heat transfer with a heat accumulation and a relative movement Sun respect to the car cabin, whilst car is moving. Measurements of the real operating conditions of gave us data for model calibration. The model was calibrated for Škoda Felicia parking-summer scenarios.

  10. Balance and exposure to an elevated sloped surface.

    Science.gov (United States)

    Wade, Chip; Davis, Jerry; Weimar, Wendi H

    2014-01-01

    Fall injuries and fatalities exceed 50 billion dollars annually. One half of fatal falls are from pitched roof settings. Falls from elevation in an occupational setting have been documented to be a significant issue in today's workforce. The purpose of this study was to investigate the influence of exposure to inclined surfaces on flat surface balance at varying heights above the ground. Thirty participants, 10 male college students (inexperienced), 10 female college students (inexperienced) and 10 male roofers (experienced) between age 19 and 50 years participated in this study. Participants walked for 20 min on an elevated roof segment (9-14 feet above ground level) and a ground level roof segment (0-5 feet above ground level) on separate days. Results indicated a significant difference for all groups in sway velocity over time at both levels (elevated and ground) and from eyes open to eyes closed conditions at both levels (prisk of injury from falls. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  12. Some observations on boiling heat transfer with surface oscillation

    International Nuclear Information System (INIS)

    Miyashita, H.

    1992-01-01

    The effects of surface oscillation on pool boiling heat transfer are experimentally studied. Experiments were performed in saturated ethanol and distilled water, covering the range from nucleate to film boiling except in the transition region. Two different geometries were employed as the heating surface with the same wetting area, stainless steel pipe and molybdenum ribbon. The results confirm earlier work on the effect of surface oscillation especially in lower heat flux region of nucleate boiling. Interesting boiling behavior during surface oscillation is observed, which was not referred to in previous work. (2 figures) (Author)

  13. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  14. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  15. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  16. The human heat balance in the city of Novi Sad (Serbia

    Directory of Open Access Journals (Sweden)

    Krajić Aleksandar

    2012-01-01

    Full Text Available This analysis is based on the human heat balance according to the bioclimatic man-environment heat exchange model created by Krzysztof Błażejczyk. The final result of the human heat balance model points to biothermal weather situations for the outdoor recreational needs. In this analysis, middles daily meteorological data (of climatological station of Novi Sad were used for two extreme months, January and July. In this work, it is analyzed two periods, the first is for 1992-2010. and the second is for year 2010. The aim is to show how weather can be evaluated for recreational needs which the health resource of Novi Sad and to point out the shortcomings when it comes to multi-year analysis. The objective of this article has been to present a bioclimatic analysis of city Novi Sad and how weather variables come together in order to give a climate meaning on human organism.

  17. A Bayesian approach to estimate sensible and latent heat over vegetated land surface

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-06-01

    Full Text Available Sensible and latent heat fluxes are often calculated from bulk transfer equations combined with the energy balance. For spatial estimates of these fluxes, a combination of remotely sensed and standard meteorological data from weather stations is used. The success of this approach depends on the accuracy of the input data and on the accuracy of two variables in particular: aerodynamic and surface conductance. This paper presents a Bayesian approach to improve estimates of sensible and latent heat fluxes by using a priori estimates of aerodynamic and surface conductance alongside remote measurements of surface temperature. The method is validated for time series of half-hourly measurements in a fully grown maize field, a vineyard and a forest. It is shown that the Bayesian approach yields more accurate estimates of sensible and latent heat flux than traditional methods.

  18. Flow and heat transfer regimes during quenching of hot surfaces

    International Nuclear Information System (INIS)

    Barnea, Y.; Elias, E.

    1993-05-01

    Reflooding experiments have been performed to study flow and heat transfer regimes in a heated annular vertical channel under supercooled inlet conditions. A gamma densitometer was employed to determine the void fraction as a function of the distance from the quench front. Surface heat fluxes were determined by fast measurements of the temperature spatial distribution. Two quench front is shown to lie in the transition boiling region which spreads into the dry and wet segments of the heated surface. (authors) 5 refs, 3 figs

  19. Method of relative comparison of the thermohydraulic efficiency of heat exchange intensification in channels of heat-exchange surfaces

    International Nuclear Information System (INIS)

    Dubrovskij, E.V.; Vasil'ev, V.Ya.

    2002-01-01

    One introduces a technique to compare relatively thermohydraulic efficiency of heat transfer intensification in channels of heat exchange surfaces of any design types. It is shown that one should compare thermohydraulic efficiency of heat exchange intensification as to the thermal power of heat exchangers and pressure losses in channels with turbulators and in polished channels of heat exchange surfaces on the basis of dimensions of heat exchangers, their heat exchange surfaces and at similar (as to Re numbers) modes of coolant flow [ru

  20. Experimental investigation of pool boiling heat transfer and critical heat flux on a downward facing surface

    International Nuclear Information System (INIS)

    Gocmanac, M.; Luxat, J.C.

    2012-01-01

    A separate effects experimental study of heat transfer and Critical Heat Flux (CHF) on a downward facing plate in subcooled water pool boiling is described. Two geometries of downwards facing surfaces are studied. The first is termed the 'confined' study in which bubble motion is restricted to the heated surface. The second is termed the 'unconfined' study where individual bubbles are free to move along the heated surface and vent in any direction. The method used in the confined study is novel and involves the placement of a lip surrounding the heated surface. The CHF as a function of angle of inclination of the surface is presented and is in good agreement with other experimental data from somewhat different test geometries. (author)

  1. Delay of turbulent by surface heating in water

    International Nuclear Information System (INIS)

    Arakeri, V.H.

    1980-01-01

    Boundary layer flow visualization studies in water on a 1.5 cal tangent ogive body with surface heating are reported. Existing laminar boundary layer separation was observed to be eliminated with sufficient surface heating. In addition, transition location was observed to be significantly delayed. With surface temperature difference of about 27 0 C no disturbances in the boundary layer could be detected up to (X/D) = 2.5 as compared to observed transition at about (X/D) = 1.32 under slightly heated conditions. Present observations are found to be in agreement with the theoretical computations of Wazzan et al. in a qualitative sense. (orig.)

  2. Calibration of a surface mass balance model for global-scale applications

    NARCIS (Netherlands)

    Giesen, R. H.; Oerlemans, J.

    2012-01-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a

  3. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  4. Climate forcing and response to idealized changes in surface latent and sensible heat

    International Nuclear Information System (INIS)

    Ban-Weiss, George A; Cao Long; Pongratz, Julia; Caldeira, Ken; Bala, Govindasamy

    2011-01-01

    Land use and land cover changes affect the partitioning of latent and sensible heat, which impacts the broader climate system. Increased latent heat flux to the atmosphere has a local cooling influence known as 'evaporative cooling', but this energy will be released back to the atmosphere wherever the water condenses. However, the extent to which local evaporative cooling provides a global cooling influence has not been well characterized. Here, we perform a highly idealized set of climate model simulations aimed at understanding the effects that changes in the balance between surface sensible and latent heating have on the global climate system. We find that globally adding a uniform 1 W m -2 source of latent heat flux along with a uniform 1 W m -2 sink of sensible heat leads to a decrease in global mean surface air temperature of 0.54 ± 0.04 K. This occurs largely as a consequence of planetary albedo increases associated with an increase in low elevation cloudiness caused by increased evaporation. Thus, our model results indicate that, on average, when latent heating replaces sensible heating, global, and not merely local, surface temperatures decrease.

  5. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  6. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere. The model results indicate that both the high and low clouds are persistent throughout the summer months in both years. Because of large cloud water, low clouds significantly reduce the solar radiation flux reaching the surface, which nevertheless still dominate the surface energy balance, accounting for more than 50% of the surface heating. The low clouds also contribute significantly the downward longwave radiation to the surface with values strongly dependent on the cloud base temperature. The presence of low clouds effectively decreases the temperature and moisture gradients near surface, resulting in a substantial decrease in the sensible and latent heat fluxes from surface, which partially compensate the decrease of the net radiative cooling of the surface. For example, in the two days, May 8 and July 11 of 1988, the total cloud cover of 80% is simulated, but the respective low cloud cover (water was 63% (114 gm-2 and 22% (21 gm-2. As a result, the downward solar radiation is smaller by 161 Wm-2 in May 8. On the other hand, the cloud temperature was _ lower, yielding 56 Wm-2 smaller downward longwave radiation. The near surface temperature and gradient is more than _ smaller (and moisture gradient, leading to 21 and 81 Wm-2 smaller sensible heat and latent heat fluxes. It is also demonstrated that the model is capable to reproduce the intraseasonal variation of shortwave CRF, and catches the relationship between total cloud cover and SW CRF. The model results show the dominance of high cloud on the regional mean longwave CRF and low cloud on the intra

  7. Water-tunnel studies of heat balance in swimming mako sharks.

    Science.gov (United States)

    Bernal, D; Sepulveda, C; Graham, J B

    2001-12-01

    The mako shark (Isurus oxyrinchus) has specialized vascular networks (retia mirabilia) forming counter-current heat exchangers that allow metabolic heat retention in certain regions of the body, including the aerobic, locomotor red muscle and the viscera. Red muscle, white muscle and stomach temperatures were measured in juvenile (5-13.6 kg) makos swimming steadily in a water tunnel and exposed to stepwise square-wave changes in ambient temperature (T(a)) to estimate the rates of heat transfer and to determine their capacity for the activity-independent control of heat balance. The rates of heat gain of red muscle during warming were significantly higher than the rates of heat loss during cooling, and neither the magnitude of the change in T(a) nor the direction of change in T(a) had a significant effect on red muscle latency time. Our findings for mako red muscle are similar to those recorded for tunas and suggest modulation of retial heat-exchange efficiency as the underlying mechanism controlling heat balance. However, the red muscle temperatures measured in swimming makos (0.3-3 degrees C above T(a)) are cooler than those measured previously in larger decked makos. Also, the finding of non-stable stomach temperatures contrasts with the predicted independence from T(a) recorded in telemetry studies of mako and white sharks. Our studies on live makos provide new evidence that, in addition to the unique convergent morphological properties between makos and tunas, there is a strong functional similarity in the mechanisms used to regulate heat transfer.

  8. A comprehensive review of milk fouling on heated surfaces.

    Science.gov (United States)

    Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A

    2015-01-01

    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.

  9. Magnetic surface compression heating in the heliotron device

    International Nuclear Information System (INIS)

    Uo, K.; Motojima, O.

    1982-01-01

    The slow adiabatic compression of the plasma in the heliotron device is examined. It has a prominent characteristic that the plasma equilibrium always exists at each stage of the compression. The heating efficiency is calculated. We show the possible access to fusion. A large amount of the initial investment for the heating system (NBI or RF) is reduced by using the magnetic surface compression heating. (author)

  10. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    International Nuclear Information System (INIS)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Li, Xiaopeng; Svendsen, Svend

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy consumption reduction of this approach were verified by means of simulation and a field test. By moving the system from centrally planned heat delivery to demand-driven heat delivery, excess heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO_2, 0.1 kg SO_2, and 0.03 kg NO_x per heating square meter for a typical case in Harbin. - Highlights: • Two real cases reflect the temperature and flow control situation of heating systems in China. • Pre-set radiator valves with automatic balancing valves create dynamic hydraulic balance. • IDA-ICE simulation shows 17% heat saving and 48% pump electricity saving. • This approach can improve the comfort level of multi-storey/high-rise residential buildings. • This approach can reduce excess heat supply and bring out positive environmental impacts.

  11. Influence of Ear Surface Area on Heat Tolerance of Composite ...

    African Journals Online (AJOL)

    Relative importance of ear surface area on heat tolerance of composite rabbit population was evaluated. The study was conducted during the dry and rainy seasons, climatic data were recorded to obtain categorical heat stress index. Physiological parameters, growth performance, ear length and ear width of the rabbits ...

  12. DESIGN AND CALCULATION OF AERODROMECOAING WITH HEATED SURFACE LAYERS

    Directory of Open Access Journals (Sweden)

    Vadim G. Piskunov

    2009-04-01

    Full Text Available  The developed constructions with heated by surface layers for aerodromes and auto roads when developed composition of electroconductive concrete reinforced with chemical electrical conductive fibres being used was researched. The experimentally obtained characteristics of ended conductive concrete reinforced with fibers were presented. Calculation by developed heated construction of shell was made.

  13. Influences of deforestation on radiation and heat balances in tropical peat swamp forest in Thailand

    International Nuclear Information System (INIS)

    Suzuki, S.; Ishida, T.; Nagano, T.; Matsukawa, S.

    1997-01-01

    The difference of radiation and heat balances between a natural peat swamp forest and a deforested secondary forest has been investigated in Narathiwat Province, Thailand. Micrometeorological measurements were conducted continuously on observation towers 38 m and 4 m in heights in the primary forest and the secondary forest respectively. Results show that the deforestation of peat swamp forest leads to an increase in the sensible heat flux in the secondary forest. The yearly average ratio of the sensible heat flux to the net radiation was 20.9% in the peat swamp forest, and 33.2% in the secondary forest from Aug. 1995 to Jul. 1996. A ratio more than 40% was observed only in the dry season in the secondary forest. The change in sensible heat flux seemed to be influenced by the change in ground water levels. (author)

  14. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the a......A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance...... with the actual heat demand. This results in 15-30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance...... that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO2, 0.1 kg SO2, and 0...

  15. Surfaces for high heat dissipation with no Leidenfrost limit

    Science.gov (United States)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  16. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in g...

  17. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    NARCIS (Netherlands)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker; Ahlstrøm, Andreas P.; Abermann, Jakob; Andersen, Morten L.; Andersen, Signe B.; Bjørk, Anders A.; Box, Jason E.; Braithwaite, Roger J.; Bøggild, Carl E.; Citterio, Michele; Clement, Poul; Colgan, William; Fausto, Robert S.; Gleie, Karin; Gubler, Stefanie; Hasholt, Bent; Hynek, Bernhard; Knudsen, Niels T.; Larsen, Signe H.; Mernild, Sebastian H.; Oerlemans, Johannes; Oerter, Hans; Olesen, Ole B.; Smeets, C. J P Paul; Steffen, Konrad; Stober, Manfred; Sugiyama, Shin; Van As, Dirk; Van Den Broeke, Michiel R.; Van De Wal, Roderik S W

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in

  18. Characteristic evaluations of BWR uprate method based on heat balance shift concept

    International Nuclear Information System (INIS)

    Kitou, Kazuaki; Aoyama, Motoo; Shiina, Kouji; Sasaki, Hiroshi; Yoshikawa, Kazuhiro

    2007-01-01

    Reactor power uprate of nuclear power plants is an efficient plant operating method. Most BWR plants need the exchange of high pressure turbines when plant thermal power increases over 5% because main steam flow rate exceeds the limitation of inlet steam flow rate of a high pressure turbine. Therefore, the new power uprate method named heat balance shift power uprate method has been developed. This method decreases feedwater temperature with increasing plant thermal power not to increase main steam flower rate. This study clarified that the heat balance shift method could increase plant electric power up to 2.8% compared with conventional power uprate method without the exchange of a high pressure turbine. (author)

  19. Computerized heat balance models to predict performance of operating nuclear power plants

    International Nuclear Information System (INIS)

    Breeding, C.L.; Carter, J.C.; Schaefer, R.C.

    1983-01-01

    The use of computerized heat balance models has greatly enhanced the decision making ability of TVA's Division of Nuclear Power. These models are utilized to predict the effects of various operating modes and to analyze changes in plant performance resulting from turbine cycle equipment modifications with greater speed and accuracy than was possible before. Computer models have been successfully used to optimize plant output by predicting the effects of abnormal condenser circulating water conditions. They were utilized to predict the degradation in performance resulting from installation of a baffle plate assembly to replace damaged low-pressure blading, thereby providing timely information allowing an optimal economic judgement as to when to replace the blading. Future use will be for routine performance test analysis. This paper presents the benefits of utility use of computerized heat balance models

  20. Development of a Pattern Recognition Methodology for Determining Operationally Optimal Heat Balance Instrumentation Calibration Schedules

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Beran; John Christenson; Dragos Nica; Kenny Gross

    2002-12-15

    The goal of the project is to enable plant operators to detect with high sensitivity and reliability the onset of decalibration drifts in all of the instrumentation used as input to the reactor heat balance calculations. To achieve this objective, the collaborators developed and implemented at DBNPS an extension of the Multivariate State Estimation Technique (MSET) pattern recognition methodology pioneered by ANAL. The extension was implemented during the second phase of the project and fully achieved the project goal.

  1. Practical Considerations for Thermal Stresses Induced by Surface Heating

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2003-01-01

    Rapid surface heating can induce large stresses in solids. A relatively simple model, assuming full constraint in two dimensions and no constraint in the third dimension, can adequately model stresses in a wide variety of situations. This paper derives this simple model, and supports it with criteria for its validity. Phenomena that are considered include non-zero penetration depths for the heat deposition, spatial non-uniformity in the surface heating, and elastic waves. Models for each of these cases, using simplified geometries, are used to develop quantitative limits for their applicability

  2. Pulse*Star Inertial Confinement Fusion Reactor: heat transfer loop and balance of plant considerations

    International Nuclear Information System (INIS)

    McDowell, M.W.; Murray, K.A.

    1984-01-01

    A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li 17 Pb 83 coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m 3 /s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented

  3. Future projections of the Greenland ice sheet energy balance driving the surface melt

    Directory of Open Access Journals (Sweden)

    B. Franco

    2013-01-01

    Full Text Available In this study, simulations at 25 km resolution are performed over the Greenland ice sheet (GrIS throughout the 20th and 21st centuries, using the regional climate model MAR forced by four RCP scenarios from three CMIP5 global circulation models (GCMs, in order to investigate the projected changes of the surface energy balance (SEB components driving the surface melt. Analysis of 2000–2100 melt anomalies compared to melt results over 1980–1999 reveals an exponential relationship of the GrIS surface melt rate simulated by MAR to the near-surface air temperature (TAS anomalies, mainly due to the surface albedo positive feedback associated with the extension of bare ice areas in summer. On the GrIS margins, the future melt anomalies are preferentially driven by stronger sensible heat fluxes, induced by enhanced warm air advection over the ice sheet. Over the central dry snow zone, the surface albedo positive feedback induced by the increase in summer melt exceeds the negative feedback of heavier snowfall for TAS anomalies higher than 4 °C. In addition to the incoming longwave flux increase associated with the atmosphere warming, GCM-forced MAR simulations project an increase of the cloud cover decreasing the ratio of the incoming shortwave versus longwave radiation and dampening the albedo feedback. However, it should be noted that this trend in the cloud cover is contrary to that simulated by ERA-Interim–forced MAR for recent climate conditions, where the observed melt increase since the 1990s seems mainly to be a consequence of more anticyclonic atmospheric conditions. Finally, no significant change is projected in the length of the melt season, which highlights the importance of solar radiation absorbed by the ice sheet surface in the melt SEB.

  4. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  5. Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs.

    Science.gov (United States)

    Jørgensen, Lisa B; Overgaard, Johannes; MacMillan, Heath A

    2017-08-01

    Acute exposure of ectotherms to critically high temperatures causes injury and death, and this mortality has been associated with a number of physiological perturbations including impaired oxygen transport, loss of ion and water homeostasis, and neuronal failure. It is difficult to discern which of these factors, if any, is the proximate cause of heat injury because, for example, loss of ion homeostasis can impair neuromuscular function (including cardiac function), and conversely impaired oxygen transport reduces ATP supply and can thus reduce ion transport capacity. In this study we investigated if heat stress causes a loss of ion homeostasis in marine crabs and examined if such loss is related to heart failure. We held crabs (Carcinus maenas) at temperatures just below their critical thermal maximum and measured extracellular (hemolymph) and intracellular (muscle) ion concentrations over time. Analysis of Arrhenius plots for heart rates during heating ramps revealed a breakpoint temperature below which heart rate increased with temperature, and above which heart rate declined until complete cardiac failure. As hypothesised, heat stress reduced the Nernst equilibrium potentials of both K + and Na + , likely causing a depolarization of the membrane potential. To examine whether this loss of ion balance was likely to cause disruption of neuromuscular function, we exposed crabs to the same temperatures, but this time measured ion concentrations at the individual-specific times of complete paralysis (from which the crabs never recovered), and at the time of cardiac failure. Loss of ion balance was observed only after both paralysis and complete heart failure had occurred; indicating that the loss of neuromuscular function is not caused by a loss of ion homeostasis. Instead we suggest that the observed loss of ion balance may be linked to tissue damage related to heat death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Direct evaluation of transient surface temperatures and heat fluxes

    International Nuclear Information System (INIS)

    Axford, R.A.

    1975-08-01

    Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations

  7. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  8. Film Levitation of Droplet Impact on Heated Nanotube Surfaces

    Science.gov (United States)

    Duan, Fei; Tong, Wei; Qiu, Lu

    2017-11-01

    Contact boiling of an impacting droplet impacting on a heated surface can be observed when the surface temperature is able to activate the nucleation and growth of vapor bubbles, the phenomena are related to nature and industrial application. The dynamic boiling patterns us is investigated when a single falling water droplet impacts on a heated titanium (Ti) surface covered with titanium oxide (TiO2) nanotubes. In the experiments, the droplets were generated from a flat-tipped needle connected to a syringe mounted on a syringe pump. The droplet diameter and velocity before impacting on the heated surface are measured by a high-speed camera with the Weber number is varied from 45 to 220. The dynamic wetting length, spreading diameter, levitation distance, and the associated parameter are measured. Interesting film levitation on titanium (Ti) surface has been revealed. The comparison of the phase diagrams on the nanotube surface and bare Ti surface suggests that the dynamic Leidenfrost point of the surface with the TiO2 nanotubes has been significantly delayed as compared to that on a bare Ti surface. The delay is inferred to result from the increase in the surface wettability and the capillary effect by the nanoscale tube structure. The further relation is discussed.

  9. Wind Turbines and Heat Pumps. Balancing wind power fluctuations using flexible demand

    International Nuclear Information System (INIS)

    Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Derszi, Z.; Kok, J.K.

    2007-01-01

    In order to overcome portfolio imbalance for traders of variable power from wind we have built an 'Imbalance Reduction System' (IRS) and performed a real-world field test with it, in which imbalance is minimized within a real-time electricity market portfolio, consisting of wind power and industrial and residential consumers and producers (Combined Heat and Power for district heating; residential heat pumps; industrial cold store; emergency generators). IRS uses the PowerMatcher concept, a coordination system for supply and demand of electricity in a which multi-agent system is combined with microeconomic principles. IRS appears to offer opportunities for embedding less predictable generators such as wind power more smoothly in the portfolio. We describe the context and operation of the Imbalance Reduction System and discuss a number of results from the performed field test. Also we introduce a business model for the balance responsible party, based on the e3-value method

  10. A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes.

    Science.gov (United States)

    Barbagallo, Salvatore; Consoli, Simona; Russo, Alfonso

    2009-01-01

    Daily evapotranspiration fluxes over the semi-arid Catania Plain area (Eastern Sicily, Italy) were evaluated using remotely sensed data from Landsat Thematic Mapper TM5 images. A one-source parameterization of the surface sensible heat flux exchange using satellite surface temperature has been used. The transfer of sensible and latent heat is described by aerodynamic resistance and surface resistance. Required model inputs are brightness, temperature, fractional vegetation cover or leaf area index, albedo, crop height, roughness lengths, net radiation, air temperature, air humidity and wind speed. The aerodynamic resistance (r(ah)) is formulated on the basis of the Monin-Obukhov surface layer similarity theory and the surface resistance (r(s)) is evaluated from the energy balance equation. The instantaneous surface flux values were converted into evaporative fraction (EF) over the heterogeneous land surface to derive daily evapotranspiration values. Remote sensing-based assessments of crop water stress (CWSI) were also made in order to identify local irrigation requirements. Evapotranspiration data and crop coefficient values obtained from the approach were compared with: (i) data from the semi-empirical approach "K(c) reflectance-based", which integrates satellite data in the visible and NIR regions of the electromagnetic spectrum with ground-based measurements and (ii) surface energy flux measurements collected from a micrometeorological tower located in the experiment area. The expected variability associated with ET flux measurements suggests that the approach-derived surface fluxes were in acceptable agreement with the observations.

  11. The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland

    International Nuclear Information System (INIS)

    Panos, Evangelos; Kannan, Ramachandran

    2016-01-01

    The Swiss Energy Strategy targets to reduce per capita energy consumption, to decrease the share of fossil energy and to replace nuclear electricity generation by gains in efficiency and renewable energy sources. In view of the above objectives, we evaluated the prospects of biomass in stationary applications and grid balancing from an energy system perspective. We quantify a number of “what-if” scenarios using a cost-optimisation bottom-up model, with detailed representation of biomass production and use pathways, electricity and heat sectors, and grid ancillary services markets. The scenario analysis shows that domestic biomass can contribute 5–7% in electricity and 14–21% in heat production by 2050, depending on natural gas prices and climate policy intensity. Pooling of biogenic driven cogeneration plants can provide about 22–44% of the total secondary control power in 2050. Generally, biogenic technologies complement other assets in heat, electricity and ancillary services markets such as heat pumps, new renewable sources and hydropower. - Highlights: • Development and application of the Swiss TIMES electricity and heat system model. • Bioenergy supplies 5–7% of electricity and 14–21% of heat by 2050. • Biogenic gas driven CHP can provide 22–44% of secondary control power in 2050.

  12. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Science.gov (United States)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  13. Analysis of meteorological data and the surface energy balance of Keqicar Glacier, Tien Shan, China

    Science.gov (United States)

    Zhang, Y.; Liu, S.; Fujita, K.; Han, H.; Li, J.

    2009-04-01

    weather station on the glacier measured an average temperature of 2.6 °C (at 2m height above surface). The lapse rate of air temperature is close to the standard free atmospheric lapse rate (0.6 °C per 100m), which shows the cold effect of glacier is not significant. The local mountain-valley winds is significant, the speed of which is 2.3 m s-1 (at 2m height). Glacier is dominated by the convectional precipitation, 75% of which occurs in day time. The ablation stakes indicate a specific mass balance of -2.5 m w.e. between 1 July and 13 September. The specific mass balance calculated from the surface energy balance, -2.6 m w.e., is in close correspondence to this. The thermal processes on the debris layer are quite different from those on bare ice or snow. The main physical characteristics of the debris layer are the thermal conductivity and albedo that control heat conduction to the ice-debris interface. Net radiation is the main melt energy whether the debris layer is taken into consideration or not, which is lager between July and the middle of August, and then decreases. This is coincides with the glacier ablation. On the debris-covered area, the sensible- and latent-heat fluxes contribute 19.6% of the melt energy, higher than that on the debris-free ice (4.1%). Hence, due to the existing debris layer, the ablation shows a significant spatial distribution.

  14. Heat Flow In Cylindrical Bodies During Laser Surface Transformation Hardening

    Science.gov (United States)

    Sandven, Ole A.

    1980-01-01

    A mathematical model for the transient heat flow in cylindrical specimens is presented. The model predicts the temperature distribution in the vicinity of a moving ring-shaped laser spot around the periphery of the outer surface of a cylinder, or the inner surface of a hollow cylinder. It can be used to predict the depth of case in laser surface transformation hardening. The validity of the model is tested against experimental results obtained on SAE 4140 steel.

  15. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  16. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  17. Modelling the water and heat balances of the Mediterranean Sea using a two-basin model and available meteorological, hydrological, and ocean data

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2015-04-01

    Full Text Available This paper presents a two-basin model of the water and heat balances of the Western and Eastern Mediterranean sub-basins (WMB and EMB, respectively over the 1958–2010 period using available meteorological and hydrological data. The results indicate that the simulated temperature and salinity in both studied Mediterranean sub-basins closely follow the reanalysed data. In addition, simulated surface water in the EMB had a higher mean temperature (by approximately 1.6°C and was more saline (by approximately 0.87 g kg−1 than in the WMB over the studied period. The net evaporation over the EMB (1.52 mm day−1 was approximately 1.7 times greater than over the WMB (0.88 mm day−1. The water balance of the Mediterranean Sea was controlled by net inflow through the Gibraltar Strait and Sicily Channel, the net evaporation rate and freshwater input. The heat balance simulations indicated that the heat loss from the water body was nearly balanced by the solar radiation to the water body, resulting in a net export (import of approximately 13 (11 W m−2 of heat from the WMB (to the EMB.

  18. Investigation into the heat transfer performance of helically ribbed surfaces

    International Nuclear Information System (INIS)

    Firth, R.J.

    1981-12-01

    The first part of an investigation into flow and heat transfer in annular channels and seven pin clusters is described. One of the main aims of the project is to improve cluster heat transfer prediction codes for helically ribbed surfaces. A study is made of the heat transfer and flow characteristics of a helically ribbed pin in an annular channel. It is shown that the swirling flow, which is induced by the helical ribs, gives rise to substantially enhanced diffusivity levels. This phenomenon had not been taken into account by previous analysis techniques. The methods for analysing heat transfer and pressure drop data from annular channels which were originally developed for non-swirling flow are generalised to accommodate swirling flow. The new methods are shown to be consistent with empirical data. Roughness parameter data is presented for helically ribbed surfaces with an axial rib pitch into height ratio of about 7. (author)

  19. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa

    CSIR Research Space (South Africa)

    Majozi, Nobuhle P

    2017-07-01

    Full Text Available available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD...

  20. Surface heat loads on the ITER divertor vertical targets

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R.A.; Corre, Y.; Dejarnac, Renaud; Firdaouss, M.; Kočan, M.; Komm, Michael; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046025. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : ITER * divertor * ELM heat load * inter-ELM heat load * tungsten Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a

  1. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    Science.gov (United States)

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (T c ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (P a ) of 2.57 kPa followed by incremental steps in P a of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (P crit ) at which an upward inflection in T c occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The T c , mean skin temperature (T sk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDF mean ), mean local sweat rate (forearm and thigh; LSR mean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDF mean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL

  2. Heat transport and surface heat transfer with helium in rotating channels

    International Nuclear Information System (INIS)

    Schnapper, C.

    1978-06-01

    Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de

  3. Development of silicon growth techniques from melt with surface heating

    Science.gov (United States)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  4. Monitoring the latent and sensible heat fluxes in vineyard by applying the energy balance model METRIC

    Directory of Open Access Journals (Sweden)

    J. González-Piqueras

    2015-06-01

    Full Text Available The monitoring of the energy fluxes over vineyard applying the one source energy balance model METRIC (Allen et al., 2007b are shown in this work. This model is considered operaive because it uses an internalized calibration method derived from the selection of two extreme pixels in the scene, from the minimum ET values such as the bare soil to a maximum that corresponds to full cover active vegetation. The model provides the maps of net radiation (Rn, soil heat flux (G, sensible heat (H, latent heat (LE, evapotranspiration (ET and crop coefficient (Kc. The flux values have been validated with a flux tower installed in the plot, providing a RMSE for instantaneous fluxes of 43 W m2, 33 W m2, 55 W m2 y 40 W m2 on Rn, G, H and LE. In relative terms are 8%, 29%, 21% and 20% respectively. The RMSE at daily scale for the ET is 0.58 mm day-1, with a value in the crop coefficient for the mid stage of 0.42±0.08. These results allow considering the model adequate for crop monitoring and irrigation purposes in vineyard. The values obtained have been compared to other studies over vineyard and with alternative energy balance models showing similar results.

  5. Surface N Balances in Agricultural Crop production systems in China for the period 1980-2015

    NARCIS (Netherlands)

    Sun, B.; Shen, R.P.; Bouwman, A.F.

    2008-01-01

    Surface nitrogen (N) balances for China's crop production systems were estimated using statistical data collected from 1980 to 2004 at the national and provincial scale and from 1994 to 1999 at the county level. There was a surplus N balance throughout these periods, but the surplus was nearly

  6. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  7. Stem heat balance method to estimate transpiration of young orange and mango plants

    OpenAIRE

    Vellame,Lucas M.; Coelho Filho,Maurício A.; Paz,Vital P. S.; Coelho,Eugênio F.

    2010-01-01

    The present study had as its main objective the evaluation of the heat balance method in young orange and mango plants under protected environment. The work was carried out at Embrapa Cassava and Tropical Fruits, Cruz das Almas, BA. Later on, estimates of sap flow were conducted for two mango plants cultivated in pots of 15 and 50 L installed on weighting platforms of 45 and 140 kg; sap flow was determined in three orange plants, two of which were also installed on weighing platforms. The val...

  8. The heat source of Ruapehu crater lake; deductions from the energy and mass balances

    Science.gov (United States)

    Hurst, A. W.; Bibby, H. M.; Scott, B. J.; McGuinness, M. J.

    1991-05-01

    Regular observations of temperature, outflow rates and water chemistry of Crater Lake, Mt. Ruapehu, New Zealand have been made for the last 25 years. These data have been used to derive a model of the dynamics of the lake, and determine the input of energy, mass, and chloride from the volcano to the Crater Lake. The recent, relatively quiescent state of the volcano, when virtually no heat has been input to the lake, has also enabled an assessment to be made of the surface heat loss characteristics, which play an important role in the model of the lake. The modelling suggests that since about 1982 the ratio of the volcanic heat to mass added to the base of the lake is about 6 MJ/kg, which is not compatible with heating of the lake by magmatic steam alone. Thus, only about 50% of the heating has been by magmatic steam. It is suggested that heat could be transferred from a magmatic source to the region below the lake by a heat-pipe mechanism, commonly associated with geothermal systems. The simultaneous upward movement of vapour phase, and downward movement of liquid phase from condensed vapour allows efficient heat transfer without overall mass transfer. The permeability necessary to supply the required heat is of the order of 10 darcy, and is consistent with a rubble filled vent. For at least the last five years, there has been a characteristic pattern in the Crater Lake temperature record, with alternate heating and cooling phases. The heating phase generally lasts for one or two months, while the cooling phase lasts for six months to a year. A possible explanation for this cyclic behaviour is the presence of a layer of liquid sulphur under Crater Lake, acting as a partial barrier between the heat-pipe and the lake. The unusual variations of the viscosity of liquid sulphur with temperature will mean that at temperatures greater than 160°C, the layer of sulphur becomes highly viscous and would block any upwards steam flow and hence stop the heat input to Crater

  9. Understanding the Role of Wind in Reducing the Surface Mass Balance Estimates over East Antarctica

    Science.gov (United States)

    Das, I.; Scambos, T. A.; Koenig, L.; Creyts, T. T.; Bell, R. E.; van den Broeke, M. R.; Lenaerts, J.; Paden, J. D.

    2014-12-01

    Accurate quantification of surface snow-accumulation over Antarctica is important for mass balance estimates and climate studies based on ice core records. An improved estimate of surface mass balance must include the significant role near-surface wind plays in the sublimation and redistribution of snow across Antarctica. We have developed an empirical model based on airborne radar and lidar observations, and modeled surface mass balance and wind fields to produce a continent-wide prediction of wind-scour zones over Antarctica. These zones have zero to negative surface mass balance, are located over locally steep ice sheet areas (>0.002) and controlled by bedrock topography. The near-surface winds accelerate over these zones, eroding and sublimating the surface snow. This scouring results in numerous localized regions (≤ 200 km2) with reduced surface accumulation. Each year, tens of gigatons of snow on the Antarctic ice sheet are ablated by persistent near-surface katabatic winds over these wind-scour zones. Large uncertainties remain in the surface mass balance estimates over East Antarctica as climate models do not adequately represent the small-scale physical processes that lead to mass loss through sublimation or redistribution over the wind-scour zones. In this study, we integrate Operation IceBridge's snow radar over the Recovery Ice Stream with a series of ice core dielectric and depth-density profiles for improved surface mass balance estimates that reflect the mass loss over the wind-scour zones. Accurate surface mass balance estimates from snow radars require spatially variable depth-density profiles. Using an ensemble of firn cores, MODIS-derived surface snow grain size, modeled accumulation rates and surface temperatures from RACMO2, we assemble spatially variable depth-density profiles and use our mapping of snow density variations to estimate layer mass and net accumulation rates from snow radar layer data. Our study improves the quantification of

  10. Surface energy balance and turbulence measurements on Warszawa Icefield, King George Island, West Antarctica

    Science.gov (United States)

    Falk, U.; Sala, H.; Braun, M.

    2012-12-01

    The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat of glaciers, break-up and disintegration of ice shelves. The South Shetland Islands are located on the northern tip of the Antarctic Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield over 1.5 years from November 2010 to 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier ice temperatures. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for one and a half years. Repeat measurements of snow accumulation and surface lowering along transects on the glacier and at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare ice areas during summer within the source area of the ground measurements. In combination with long-term time series of weather data, these data give indication of the sensitivity of the ice cap to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Carlini station, King George Island/Isla 25 de Mayo) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute of Marine and Polar Research (Germany).

  11. Effects of meteorological models on the solution of the surface energy balance and soil temperature variations in bare soils

    Science.gov (United States)

    Saito, Hirotaka; Šimůnek, Jiri

    2009-07-01

    SummaryA complete evaluation of the soil thermal regime can be obtained by evaluating the movement of liquid water, water vapor, and thermal energy in the subsurface. Such an evaluation requires the simultaneous solution of the system of equations for the surface water and energy balance, and subsurface heat transport and water flow. When only daily climatic data is available, one needs not only to estimate diurnal cycles of climatic data, but to calculate the continuous values of various components in the energy balance equation, using different parameterization methods. The objective of this study is to quantify the impact of the choice of different estimation and parameterization methods, referred together to as meteorological models in this paper, on soil temperature predictions in bare soils. A variety of widely accepted meteorological models were tested on the dataset collected at a proposed low-level radioactive-waste disposal site in the Chihuahua Desert in West Texas. As the soil surface was kept bare during the study, no vegetation effects were evaluated. A coupled liquid water, water vapor, and heat transport model, implemented in the HYDRUS-1D program, was used to simulate diurnal and seasonal soil temperature changes in the engineered cover installed at the site. The modified version of HYDRUS provides a flexible means for using various types of information and different models to evaluate surface mass and energy balance. Different meteorological models were compared in terms of their prediction errors for soil temperatures at seven observation depths. The results obtained indicate that although many available meteorological models can be used to solve the energy balance equation at the soil-atmosphere interface in coupled water, vapor, and heat transport models, their impact on overall simulation results varies. For example, using daily average climatic data led to greater prediction errors, while relatively simple meteorological models may

  12. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  13. Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning

    Science.gov (United States)

    The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variab...

  14. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  15. Experimental determinations of the performances of heat transfer surfaces

    International Nuclear Information System (INIS)

    Pirovano, Alain; Viannay, Stephane; Mazeas, C.Y.

    1974-01-01

    With the help of flow schemes and of assumptions on the heat transfer, it is possible, in some cases, to predict the thermal and aerodynamical performances of a new heat transfer surface with moderate accuracy. These estimates, valid for an approximate classification of a new surface among known surfaces, are not accurate enough to be taken as a basis for the design of heat exchangers. In the present state of knowledge, the performances of a new heat transfer surface can only be determined accurately with experimental measurements. Bertin and Co have at their disposal two air test rigs especially designed for this purpose. The first one, more directly concerned with the measurements on tube bundles with fluid flow perpendicular to the generatrices of the tubes, is a semi-closed loop equipped with a high-efficiency ejector which amplifies the air flow rate supplied by an external source and thus allows high values of Reynolds number to be reached. The second one is adapted to other types of surfaces: tubes with external flow parallel to the generatrices, tubes with sophisticated cross section and with internal flow, compact surfaces with finned plates, etc. Both test rigs, the relevant equipment, the methods of data acquisition and of test results analysis are described in this paper. During the 5 past years, 60 configurations were tested. It was possible to compare some of the test results with the results of measurements performed later, on entire heat exchangers working with numbers of tubes, fluids, and temperature levels different from those prevailing during the tests on the small scale mock-up; the agreement is quite good [fr

  16. HEAT-INDUCED CHANGES IN ALDOSTERONE LEVEL AND MINERAL BALANCE IN EGYPTIAN BUFFALO CALVES

    International Nuclear Information System (INIS)

    NESSIM, M.Z.; KAMAL, T.H.

    2010-01-01

    Eight male buffalo calves (13 months old) were used in the present study. The animals were maintained in metabolic cages inside a climatic chamber for 2 weeks under mild climate at 21 0 C and 73% RH for 6 hours daily as an adjustment period followed by 7 days at the same climatic conditions as a control period then followed by a heat exposure period for 7 days at 35-42 0 C and 40-50 % RH for 6 hours daily. The animals were fed individually on concentrates and wheat straw. Plasma aldosterone was estimated on the first day after 6 hours of each mild and hot exposure periods. Sodium, potassium, calcium, phosphorus and magnesium balances were estimated on the last three days of control and heat exposure periods. Rectal temperature and respiration rate were recorded daily during both periods. The rectal temperature was raised (P 0 C by the end of 6 hours heat exposure period. The respiration rate was increased (P<0.01) at the end of 6 hours of heat exposure from 25 to 110.81 breaths/minute. Aldosterone was increased (P<0.05) from 5.79 to 37.11 pg/ml whereas sodium, potassium, calcium, phosphorus and magnesium were decreased (P<0.01) by 19.16 %, 40.70%, 46.05 %, 35.69 % and 48.99%, respectively.

  17. Heat balance in agricultural biogas installations and the factors to be taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Poch, M

    1955-09-01

    The installations described are those which agricultural wastes, e.g. stable manure, are digested by fermentation to yield combustible gas (e.g., 58% CH/sub 4/) and humus. Two kinds of fermentation are discussed, mesophil (M) with a working temp. of 30/sup 0/ and thermophil (T) with a working temp. of 50/sup 0/. Construction of the containers based on the desired output is discussed and the method of calculation of the thickness of insulating material is illustrated. Parameters for the calculations of heat balance are drawn from published data on actual installations, largely municipal disposal plants, some in the U.S. Of several possible methods, it is preferred to heat the fermenters by injecting low-pressure steam obtained by burning some of the gas. The efficiency of such a heating device is expected to be 80%. Heat losses included bringing new charges of stable manure or other wastes up to operating temp., make-up for radiation losses, and power requirements for chopping, pumping, and the like. These are calculated to use roughly /sup 1///sub 3/ of the CH/sub 4/ produced. The sample computation gave 66.85% theoretical recovery of the thermal energy of the CH/sub 4/ produced in the M process and 68.67% in the T.

  18. Surface heat loads during major disruptions in INTOR

    International Nuclear Information System (INIS)

    Mioduszewski, P.

    1981-01-01

    The thermal energy contained in the INTOR plasma is assumed to be about 200 MJ. In a major plasma disruption this energy is dumped into parts of the first wall in a time short compared to the energy confinement time. To estimate the surface heat load due to this energy dump, two major parameters are not sufficiently well known at present: the disruption time and the affected first wall surface area. To get a certain idea of the heat loads to be expected, we have employed the model of conserved flux tubes which are successively scraped-off at the first wall. The results reveal that even for a homogeneous deposition in the toroidal direction the heat load is too high for some parts of the first wall. Since, however, the presumptions are very uncertain to date, experiments will have to be set up to study the energy deposition during disruptions. (author)

  19. Prediction of incipient flow boiling from a uniformly heated surface

    International Nuclear Information System (INIS)

    Yin, S.T.; Abdelmessih, A.H.

    1977-01-01

    This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation

  20. Interactions between bubble formation and heating surface in nucleate boiling

    International Nuclear Information System (INIS)

    Luke, Andrea

    2009-01-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  1. Interactions between bubble formation and heating surface in nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Luke, Andrea [Leibniz University, Hannover (Denmark). Inst. of Thermodynamics], e-mail: ift@ift.uni-hannover.de

    2009-07-01

    The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size. (author)

  2. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    Science.gov (United States)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  3. Deposition of heated whey proteins on a chromium oxide surface.

    NARCIS (Netherlands)

    Jeurnink, Th.; Verheul, M.; Cohen Stuart, M.A.; Kruif, de C.G.

    1996-01-01

    Whey protein solutions were given different heat treatments after which their deposition on a chromium oxide surface (the outer layer of stainless steel) was measured by reflectometry. The deposition was studied under controlled flow conditions by using a stagnation point flow configuration. The

  4. Effects of nonuniform surface heat flux and uniform volumetric heating on blanket design for fusion reactors

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1988-05-01

    An analytical solution for the temperature profile and film temperature drop for fully-developed, laminar flow in a circular tube is provided. The surface heat flux varies circcimferentally but is constant along the axis of the tube. The volulmetric heat generation is uniform in the fluid. The fully developed laminar velocity profile is approximated by a power velocity profile to represent the flattening effect of a perpendicular magnetic field when the coolant is electrivally conductive. The presence of volumetric heat generation in the fluid adds another component to the film temperature drop to that due to the surface heat flux. The reduction of the boundary layer thickness by a perpendicular magnetic field reduces both of these two film temperature drops. A strong perpendicular magnetic field can reduce the film termperatiure drop by a factor of two if the fluid is electrically conducting. The effect of perpendicualr magnetic field )or the flatness of the velocity profile) is less pronounced on teh film termperature drop due to nonuniform surfacae heat flux than on that due to uniform surface heat flux. An example is provided to show the relative effects on these two film temperd

  5. Boiling heat transfer in a flat slot between heating surface and perforated plate

    International Nuclear Information System (INIS)

    Kirichenko, Yu.A.; Rusanov, K.V.; Tyurina, E.G.

    1987-01-01

    The results are presented of the experimental study of heat transfer and crisis at nitrogen boiling in a flat gap between the horizontal heating surface and perforated plate. The gap width is 1.0 to 5.6 mm, diameter of holes is 1.0 to 2.0 mm, their spacing being 3.0 to 12.0 mm. The geometrical parameters dependence of the heat transfer coefficient and crisis characteristics is invesigated, the experimental data are compared with the results reported by other authors and calculations by some well-known formulas. 12 refs.; 3 figs.; 4 tabs

  6. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    Science.gov (United States)

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    Science.gov (United States)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  8. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  9. Effect of carbon nanofiber surface morphology on convective heat transfer from cylindrical surface: Synthesis, characterization and heat transfer measurement

    NARCIS (Netherlands)

    Taha, T.J.; Mojet, Barbara; Lefferts, Leonardus; van der Meer, Theodorus H.

    2016-01-01

    In this work, heat transfer surface modification is made by layers of carbon nanofiber (CNF) on a 50 μm nickel wire using Thermal chemical vapor deposition process (TCVD). Three different CNF layer morphologies are made, at 500 °C, 600 °C and 700 °C, to investigate the influence of morphology on

  10. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  11. Improvement of Reactor Fuel Element Heat Transfer by Surface Roughness

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Larsson, A.E.

    1967-04-01

    In heat exchangers with a limited surface temperature such as reactor fuel elements, rough heat transfer surfaces may give lower pumping power than smooth. To obtain data for choice of the most advantageous roughness for the superheater elements in the Marviken reactor, measurements were made of heat transfer and pressure drop in an annular channel with a smooth or rough test rod in a smooth adiabatic shroud. 24 different roughness geometries were tested. The results were transformed to rod cluster geometry by the method of W B Hall, and correlated by the friction and heat transfer similarity laws as suggested by D F Dipprey and R H Sabersky with RMS errors of 12.5 % in the friction factor and 8.1 % in the Stanton number. The relation between the Stanton number and the friction factor could be described by a relation of the type suggested by W Nunner, with a mean error of 3.1 % and an RMS error of 11.6 %. Application of the results to fuel element calculations is discussed, and the great gains in economy which can be obtained with rough surfaces are demonstrated by two examples

  12. Improvement of Reactor Fuel Element Heat Transfer by Surface Roughness

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Larsson, A E

    1967-04-15

    In heat exchangers with a limited surface temperature such as reactor fuel elements, rough heat transfer surfaces may give lower pumping power than smooth. To obtain data for choice of the most advantageous roughness for the superheater elements in the Marviken reactor, measurements were made of heat transfer and pressure drop in an annular channel with a smooth or rough test rod in a smooth adiabatic shroud. 24 different roughness geometries were tested. The results were transformed to rod cluster geometry by the method of W B Hall, and correlated by the friction and heat transfer similarity laws as suggested by D F Dipprey and R H Sabersky with RMS errors of 12.5 % in the friction factor and 8.1 % in the Stanton number. The relation between the Stanton number and the friction factor could be described by a relation of the type suggested by W Nunner, with a mean error of 3.1 % and an RMS error of 11.6 %. Application of the results to fuel element calculations is discussed, and the great gains in economy which can be obtained with rough surfaces are demonstrated by two examples.

  13. Pulse Star Inertial Confinement Fusion Reactor: Heat transfer loop and balance-of-plant considerations

    International Nuclear Information System (INIS)

    McDowell, M.W.; Blink, J.A.; Curlander, K.A.

    1983-01-01

    A conceptual heat transfer loop and balance-of-plant design for the Pulse Star Inertial Confinement Fusion Reactor has been investigated and the results are presented. The Pulse Star reaction vessel, a perforated steel bell jar about11 m in diameter, is immersed in Li 17 Pb 83 coolant, which flows through the perforations and forms a 1.5-m-thick plenum of droplets around a 8-m-diameter inner chamber. The bell jar and associated pumps, piping, and steam generators are contained within a 17-m-diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops, each with a flow rate of 5.5 m 3 /s, are necessary to transfer 3300 MWt of power. Liquid metal is pumped to the top of the pool, where it flows downward through eight vertical steam generators. Double-walled tubes are used in the steam generators to assure tritium containment without intermediate heat transfer loops. Each pump is a mixed flow type and has a required NPSH of 3.4 m, a speed of 278 rpm, and an impeller diameter of 1.2 m. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. The design minimizes the total cost (heat exchanger area plus pumping) for the plant lifetime. The power required for the pumps is 36 MWe. Each resulting steam generator is 12 m high and 1.6 m in diameter, with 2360 tubes. The steam generators and pumps fit easily in the pool between the reactor chamber and the pool wall

  14. Heating of roads. Heat consumption and heat output as a function of climate, construction, demands on surface conditions and principle of heat supply. Uppvaermning av vaegar

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, R

    1977-01-01

    In this work analytical formulas for calculation of temperatures in a heated roadbed are given. The heat flux from a heated surface has been studied. The methods for snowclearence on different types of roads have been investigated. The construction work has been studied. The analytical formulas have been evaluated by comparison between calculated temperatures and temperatures measured in field and laboratory. The heat transfer coefficients in those formulas have been developed empirically by tests in laboratory and field. Surfaces with different types of traffic are divided into three classes according to the demands for snow removal. The construction work has been divided into cost elements. This has given a basis for calculating the economic effects of alternative designs. By this work has been developed a method useful on one hand for calculation of the optimum principle of regulation of the supply of heat and on the other hand for the design of the heat installations in the road.

  15. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  16. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  17. Pre evaluation for heat balance of prototype sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Han, Ji Woong; Kim, De Hee; Yoon, Jung; Kim, Eui Kwang; Lee, Tae Ho

    2012-01-01

    Under the long term advanced SFR R and D plan, the design of prototype reactor has been carried out toward the construction of the prototype SFR plant by 2028. The R and D efforts in fluid system design will be focused on developing a prototype design of primary heat transport system(PHTS), intermediate heat transport system (IHTS), decay heat removal system(DHRS), steam generation system(SGS), and related auxiliary system design for a prototype reactor as shown in Fig. 1. In order to make progress system design, top tier requirements for prototype reactor related to design parameters of NSSS and BOP should be decided at first. The top tier requirement includes general design basis, capacity and characteristics of reactor, various requirements related to safety, performance, securities, economics, site, and etc.. Extensive discussion has been done within Korea Atomic Energy Research Institute(KAERI) for the decision of top tier requirements of the prototype reactor. The core outlet temperature, which should be described as top tier requirements, is one of the critical parameter for system design. The higher core exit temperature could contribute to increase the plant efficiency. However, it could also contribute to decrease the design margin for structure and safety. Therefore various operating strategies based on different core outlet temperatures should be examined and evaluated. For the prototype reactor two core outlet temperatures are taken into accounted. The lower temperature is for the operation condition and the higher temperature is for the system design and licensing process of the prototype reactor. In order to evaluate the operability of prototype reactor designed based on higher temperature, the heat balance calculations have been performed at different core outlet temperature conditions. The electrical power of prototype reactor was assumed to be 100MWe and reference operating conditions were decided based on existing available data. The

  18. Associations between heat exposure, vigilance, and balance performance in summer tree fruit harvesters.

    Science.gov (United States)

    Spector, June T; Krenz, Jennifer; Calkins, Miriam; Ryan, Dawn; Carmona, Jose; Pan, Mengjie; Zemke, Anna; Sampson, Paul D

    2018-02-01

    We sought to evaluate potential mediators of the relationship between heat exposure and traumatic injuries in outdoor agricultural workers. Linear mixed models were used to estimate associations between maximum work-shift Wet Bulb Globe Temperature (WBGT max ) and post-shift vigilance (reaction time) and postural sway (total path length) in a cross-sectional sample of 46 Washington State tree fruit harvesters in August-September 2015. The mean (SD) WBGT max was 27.4 (3.2)°C in August and 21.2 (2.0)°C in September. The mean pre-work-shift participant urine specific gravity indicated minimal dehydration. Twenty-four percent of participants exhibited possible excessive sleepiness. There was no association between WBGT max and post-shift reaction time or total path length. Heat exposure was not associated with impaired vigilance or balance in this study, in which the overall mean (SD) WBGT max was 25.9 (4.2)°C. However, the study identified opportunities to ensure adequate pre-work-shift hydration and to optimize sleep and work-shift timing in order to reduce occupational injury and heat-related illness risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    International Nuclear Information System (INIS)

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  20. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR - Part 2 -

    International Nuclear Information System (INIS)

    Lee, Sang Il; Yoo, Yeon Jae; Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan

    2015-01-01

    In the paper, reverse engineering was performed on SCMHR proposed by NGNP to reconstruct it into PEPSE. This model was used to analyze sensitivity of key variables. The paper also presented a concept design of thermal cycle, where heat of nuclear reactor is partially used for hydrogen production and remaining heat is used to generate power through IHX. This study introduces the results of concept designs on thermal cycle constructed using methods that are somewhat different from the previous results. As for the first method, efficiency under main steam condition proposed by NGNP was analyzed using ultra supercritical steam cycle, which exhibits highest efficiency among commercial technologies available. Another method was to prepare heat balance using supercritical CO 2 cycle, which has recently been commercialized in small scale and is undergoing R and D efforts for scale-up. As a part of concept design for high temperature gas reactor, this paper attempts different types of electricity generation cycle design and compares their advantages and disadvantages. A reference model was developed to change original design of NGNP. Sensitivity analysis can be performed according to changing performance of facility and external conditions. A Rankine cycle model operated under SC or USC condition was created by adding to a previous study to carry out key sensitivity analysis. Data for future design will be prepared through supplementary study, and the ultimate objective is to make contribution to optimal design of high temperature gas reactor

  1. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR - Part 2 -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Company Ltd., Seouul (Korea, Republic of); Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In the paper, reverse engineering was performed on SCMHR proposed by NGNP to reconstruct it into PEPSE. This model was used to analyze sensitivity of key variables. The paper also presented a concept design of thermal cycle, where heat of nuclear reactor is partially used for hydrogen production and remaining heat is used to generate power through IHX. This study introduces the results of concept designs on thermal cycle constructed using methods that are somewhat different from the previous results. As for the first method, efficiency under main steam condition proposed by NGNP was analyzed using ultra supercritical steam cycle, which exhibits highest efficiency among commercial technologies available. Another method was to prepare heat balance using supercritical CO{sub 2} cycle, which has recently been commercialized in small scale and is undergoing R and D efforts for scale-up. As a part of concept design for high temperature gas reactor, this paper attempts different types of electricity generation cycle design and compares their advantages and disadvantages. A reference model was developed to change original design of NGNP. Sensitivity analysis can be performed according to changing performance of facility and external conditions. A Rankine cycle model operated under SC or USC condition was created by adding to a previous study to carry out key sensitivity analysis. Data for future design will be prepared through supplementary study, and the ultimate objective is to make contribution to optimal design of high temperature gas reactor.

  2. Comparison of tropical and subtropical glacier surface energy balance in Africa and South America

    Science.gov (United States)

    Nicholson, L.; Prinz, R.; Kinnard, C.; Mölg, T.; Winkler, M.; Kaser, G.

    2010-05-01

    Tropical glaciers exist only at high altitude, and meteorological and surface energy balance studies of these glaciers can tell us much about the conditions and changes occurring in the mid troposphere. Understanding the surface energy balance and resultant mass balance regime of tropical glaciers is prerequisite to predicting glacier evolution, and future meltwater contributions to local hydrological resources, in response to future climate scenarios. Tropical glacier mass balance variability is strongly linked to precipitation and, via this, to multi-annual climate oscillations such as ENSO and IOZM, so it is useful to understand what role these differing regional influences play in comparison to the similarities imposed by the overarching tropical climate conditions and seasonality. New surface energy balance and mass balance data is available from Lewis glacier (Kenya, 0°09' S; 37°18' E), and here we use an energy and mass balance model to determine the surface energy flux characteristics at this site through a wet and dry season. Results are compared with those from Kersten glacier (Tanzania, 3°04' S; 37°21' E) to understand how conditions at these two glaciers compare and thus what coherent and contrasting climatic information glaciological records from these two sites can be expected to deliver. Meteorological data available from glacier stations on Antizana (Ecuador, 0°25' S; 78°09' W), Artesonraju (Peru, 8°28' S; 77°38' W) Zongo (Bolivia, 16°39' S; 67°47' W) and Guanaco (Chile, 29°20' S; 70°00' W) glaciers in South America offer the opportunity to examine how the surface fluxes and seasonal variability of the energy balance compares to those of the African glaciers. We include the extra-tropical Chilean example for comparison with the similarly high altitude, cold ice of Kersten glacier.

  3. Experimental study on fouling in the heat exchangers of surface water heat pumps

    International Nuclear Information System (INIS)

    Bai, Xuelian; Luo, Te; Cheng, Kehui; Chai, Feng

    2014-01-01

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  4. Free surface deformation and heat transfer by thermocapillary convection

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard

    2016-04-01

    Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.

  5. Studies on boiling heat transfer on a hemispherical downward heating surface supposing IVR-AM

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Matsumoto, Hiroyuki; Matsumoto, Tadayoshi; Kataoka, Isao

    2006-01-01

    The scale-down experiments supposing the IVR-AM were made on the pool boiling heat transfer from hemispherical downward facing heating surface. The boiling phenomena were realized by flooding the heated hemispherical vessel into the sub-cooled water or saturated water under the atmospheric pressure. The hemispherical vessel supposing the scale-down pressure vessel was made of SUS304 stainless steel. Molten lead, which was preheated up to about 500 degrees Celsius, was put into the vessel and used as the heat source. The vessel was cooled down by flooding into the water to realize the quenching process. The direct observation by using the digital video camera was performed and made clear the special characteristics of boiling phenomena such as the film boiling, the transition boiling and the nucleate boiling taking place in order during the cooling process. The measurement for the wall superheat and heat flux by using thermocouples was also carried out to make clear the boiling heat transfer characteristics during the cooling process. Fifteen thermocouples are inserted in the wall of the hemispherical bowl to measure the temperature distributions and heat flux in the hemispherical bowl. (author)

  6. Measuring the surface-heating of medical ultrasonic probes

    International Nuclear Information System (INIS)

    Kollmann, Chr; Vacariu, G; Fialka-Moser, V; Bergmann, H

    2004-01-01

    Due to converting losses the probe's surface itself is heated up, especially when emitting into air. Possible temperature increases in an ensemble of 15 different diagnostic and therapeutic ultrasound probes from 7 manufacturers in the frequency range between 0.05-7.5 MHz have been examined. Surface temperatures were detected by means of a calibrated IR-thermographic camera using a scheme of various power and pulse settings, as well as different imaging modalitites as used in clinical routine. Depending on the setup and the output power, the absolute surface temperatures of some of the probes emitting in air can be beyond 43 deg. C within 5-7 min.; a maximum surface temperature of 84 deg. C has been detected. Continuous mode or high pulse repetition frequencies on the therapeutic system side, small focused Doppler modes on the diagnostic system side combined with increased emitted acoustic intensities result in high surface temperatures. Within a worst case scenario a potential risk of negative skin changes (heat damage) or non-optimal therapeutic effects seems to be possible if a therapeutic system is used very often and if its emission continues unintentionally. In general the user should be aware that low emission intensities of e.g. 50 mW cm -2 could already produce hot surfaces

  7. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  8. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  9. Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements.

    Science.gov (United States)

    Heusinger, Jannik; Weber, Stephan

    2017-01-15

    Green roofs are discussed as a promising type of green infrastructure to lower heat stress in cities. In order to enhance evaporative cooling, green roofs should ideally have similar Bowen ratio (β=sensible heat flux/latent heat flux) characteristics such as rural sites, especially during summer periods with high air temperatures. We use the eddy-covariance (EC) method to quantify the energy balance of an 8600m 2 extensive, non-irrigated green roof at the Berlin Brandenburg Airport, Germany over a full annual cycle. To understand the influence of water availability on green roof-atmosphere energy exchange, we studied dry and wet periods and looked into functional relationships between leaf area, volumetric water content (VWC) of the substrate, shortwave radiation and β. The surface energy balance was dominated by turbulent heat fluxes in comparison to conductive substrate heat fluxes. The Bowen ratio was slightly below unity on average but highly variable due to ambient meteorology and substrate water availability, i.e. β increased to 2 in the summer season. During dry periods mean daytime β was 3, which is comparable to typical values of urban instead of rural sites. In contrast, mean daytime β was 0.3 during wet periods. Following a summer wet period the green roof maximum daily evapotranspiration (ET) was 3.3mm, which is a threefold increase with respect to the mean summer ET. A multiple regression model indicated that the substrate VWC at the present site has to be >0.11m 3 m -3 during summer high insolation periods (>500Wm -2 ) in order to maintain favourable green roof energy partitioning, i.e. mid-day βurban green roofs can be significantly optimised by using sustainable irrigation approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A study of the rates of heat transfer and bubble site density for nucleate boiling on an inclined heating surface

    International Nuclear Information System (INIS)

    Bonamy, S.E.; Symons, J.G.

    1974-08-01

    Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)

  11. SEMIC: an efficient surface energy and mass balance model applied to the Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    M. Krapp

    2017-07-01

    Full Text Available We present SEMIC, a Surface Energy and Mass balance model of Intermediate Complexity for snow- and ice-covered surfaces such as the Greenland ice sheet. SEMIC is fast enough for glacial cycle applications, making it a suitable replacement for simpler methods such as the positive degree day (PDD method often used in ice sheet modelling. Our model explicitly calculates the main processes involved in the surface energy and mass balance, while maintaining a simple interface and requiring minimal data input to drive it. In this novel approach, we parameterise diurnal temperature variations in order to more realistically capture the daily thaw–freeze cycles that characterise the ice sheet mass balance. We show how to derive optimal model parameters for SEMIC specifically to reproduce surface characteristics and day-to-day variations similar to the regional climate model MAR (Modèle Atmosphérique Régional, version 2 and its incorporated multilayer snowpack model SISVAT (Soil Ice Snow Vegetation Atmosphere Transfer. A validation test shows that SEMIC simulates future changes in surface temperature and surface mass balance in good agreement with the more sophisticated multilayer snowpack model SISVAT included in MAR. With this paper, we present a physically based surface model to the ice sheet modelling community that is general enough to be used with in situ observations, climate model, or reanalysis data, and that is at the same time computationally fast enough for long-term integrations, such as glacial cycles or future climate change scenarios.

  12. Experimental studies of surface modified oscillating heat pipes

    Science.gov (United States)

    Leu, Tzong-Shyng; Wu, Cheng-Han

    2017-11-01

    Oscillating heat pipe (OHP) is a two-phase heat transfer device which has the characteristics of simple construction, high heat flux capability and no need of wicking structures for liquid transport. There are many studies in finding the ways how to improve the system performance OHP. In this paper, studies of the effects of contact angle ( θ c ) on the inner wall of OHP system have been conducted first. Glass OHP systems with unmodified ( θ c = 26.74°), superhydrophobic ( θ c = 156.2°), superhydrophilic ( θ c evaporator region and superhydrophobic within condensation region) surfaces, are studied. The research results indicated that thermal resistance of these four OHP systems can be significantly affected by different surface modification approaches. Although superhydrophobic OHP system can still work, the thermal resistance ( R th ) is the highest one of the four OHP systems, R th = 0.36 °C/W at 200 W. Unmodified pure glass and superhydrophilic OHP systems have similar performance. Thermal resistances are 0.28 and 0.27 °C/W at 200 W respectively. The hybrid OHP achieves the lowest thermal resistance, R th = 0.23 °C/W at 200 W in this study. The exact mechanism and effects of contact angle on OHP systems are investigated with the help of flow visualization. By comparing the flow visualization results of OHP systems before and after surface modification, one tries to find the mechanism how the surface modified inner wall surface affects the OHP system performance. In additional to the reason that the superhydrophobic dropwise condensation surface inside the hybrid OHP system, hybrid OHP system shows more stable and energetic circulation flow. It is found that instead of stratified flow, vapor slug flows are identified within the evaporator section of the hybrid OHP system that can effectively generate higher pressure force for two phase interfacial flow. This effect is attributed to be the main mechanism for better performance of the hybrid OHP system.

  13. Evaluation of scale formation in waterwall heated surfaces

    Directory of Open Access Journals (Sweden)

    Taylasheva Tatiana

    2017-01-01

    Full Text Available This paper presents the possibility of forecasting assessments of the speed and the time of formation of depositions in the evaporator-tube elements of double-drum boilers. The values of thermal flow in the wall region of tank screens of boiler furnace are obtained, besides the velocity values of scaling metal corrosion products are obtained. Conclusions about the ability of forecasting unnominal situations and emergency risks dependent with damage to the screen surface heating pipes are made.

  14. Surface spin tunneling and heat dissipation in magnetic nanoparticles

    Science.gov (United States)

    Palakkal, Jasnamol P.; Obula Reddy, Chinna; Paulose, Ajeesh P.; Sankar, Cheriyedath Raj

    2018-03-01

    Quantum superparamagnetic state is observed in ultra-fine magnetic particles, which is often experimentally identified by a significant hike in magnetization towards low temperatures much below the superparamagnetic blocking temperature. Here, we report experimentally observed surface spin relaxation at low temperatures in hydrated magnesium ferrite nanoparticles of size range of about 5 nm. We observed time dependent oscillatory magnetization of the sample below 2.5 K, which is attributed to surface spin tunneling. Interestingly, we observed heat dissipation during the process by using an external thermometer.

  15. Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach

    Directory of Open Access Journals (Sweden)

    E. Bauer

    2017-07-01

    Full Text Available Glacial cycles of the late Quaternary are controlled by the asymmetrically varying mass balance of continental ice sheets in the Northern Hemisphere. Surface mass balance is governed by processes of ablation and accumulation. Here two ablation schemes, the positive-degree-day (PDD method and the surface energy balance (SEB approach, are compared in transient simulations of the last glacial cycle with the Earth system model of intermediate complexity CLIMBER-2. The standard version of the CLIMBER-2 model incorporates the SEB approach and simulates ice volume variations in reasonable agreement with paleoclimate reconstructions during the entire last glacial cycle. Using results from the standard CLIMBER-2 model version, we simulated ablation with the PDD method in offline mode by applying different combinations of three empirical parameters of the PDD scheme. We found that none of the parameter combinations allow us to simulate a surface mass balance of the American and European ice sheets that is similar to that obtained with the standard SEB method. The use of constant values for the empirical PDD parameters led either to too much ablation during the first phase of the last glacial cycle or too little ablation during the final phase. We then substituted the standard SEB scheme in CLIMBER-2 with the PDD scheme and performed a suite of fully interactive (online simulations of the last glacial cycle with different combinations of PDD parameters. The results of these simulations confirmed the results of the offline simulations: no combination of PDD parameters realistically simulates the evolution of the ice sheets during the entire glacial cycle. The use of constant parameter values in the online simulations leads either to a buildup of too much ice volume at the end of glacial cycle or too little ice volume at the beginning. Even when the model correctly simulates global ice volume at the last glacial maximum (21 ka, it is unable to simulate

  16. STYLE, Steam Cycle Heat Balance for Turbine Blade Design in Marine Operation

    International Nuclear Information System (INIS)

    Love, J.B.; Dines, W.R.

    1970-01-01

    1 - Nature of physical problem solved: The programme carries out iterative steam cycle heat balance calculations for a wide variety of steam cycles including single reheat, live steam reheat and multistage moisture separation. Facilities are also available for including the steam-consuming auxiliaries associated with a marine installation. Though no attempt is made to carry out a detailed turbine blading design the programme is capable of automatically varying the blading efficiency from stage to stage according to local steam volume flow rate, dryness fraction and shaft speed. 2 - Method of solution: 3 - Restrictions on the complexity of the problem: Steam pressures to lie within range 0.2 to 5,000 lb/square inch abs steam temperatures to lie within range 50 to 1600 degrees F. Not more than 40 points per turbine expansion line; Not more than 10 expansion lines; Not more than 15 feed heaters. UNIVAC 1108 version received from FIAT Energia Nucleare, Torino, Italy

  17. Balance-of-plant options for the Heat-Pipe Power System

    International Nuclear Information System (INIS)

    Berte, M.; Capell, B.

    1997-09-01

    The Heat-Pipe Power System (HPS) is a near-term, low-cost space fission power system with the potential for utilizing various option for balance-of-plant options. The following options have been studied: a low-power thermoelectric design (14-kWe output), a small Brayton cycle system (60--75 kWe), and a large Brayton cycle system (250 kWe). These systems were analyzed on a preliminary basis, including mass, volume, and structure calculations. These analyses have shown that the HPS system can provide power outputs from 10--250 kWe with specific powers of ∼ 14 W/kg for a 14-kWe model to ∼ 100 W/kg for a 250-kWe model. The system designs considered in this study utilize a common component base to permit easy expansion and development

  18. Heat balance in main lakes of central Italy; Bilancio termico dei principali laghi dell`Italia Centrale

    Energy Technology Data Exchange (ETDEWEB)

    Monte, L.; Baldini, E.; Battella, C.; Fratarcangeli, S.; Pompei, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-07-01

    A thermodynamic model for predicting the thermal stratification of water of deep lakes and the components of the heat balance of lacustrine systems was developed in the frame of the researches on predictive limnology. The model has been applied to Bracciano, Bolsena and Trasimeno lakes. The validation of the temperature results demonstrated the reliability of the model and, as consequence, of the thermal balances of the lakes. The calculated yearly evaporation is about 800 mm.

  19. A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations

    Science.gov (United States)

    Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.

    2005-01-01

    Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.

  20. Thermal power calibrations of the IPR-R1 TRIGA reactor by the calorimetric and the heat balance methods

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Souza, Rose Mary Gomes do Prado

    2009-01-01

    Since the first nuclear reactor was built, a number of methodological variations have been evolved for the calibration of the reactor thermal power. Power monitoring of reactors is done by means of neutronic instruments, but its calibration is always done by thermal procedures. The purpose of this paper is to present the results of the thermal power calibration carried out on March 5th, 2009 in the IPR-R1 TRIGA reactor. It was used two procedures: the calorimetric and heat balance methods. The calorimetric procedure was done with the reactor operating at a constant power, with primary cooling system switched off. The rate of temperature rise of the water was recorded. The reactor power is calculate as a function of the temperature-rise rate and the system heat capacity constant. The heat balance procedure consists in the steady-state energy balance of the primary cooling loop of the reactor. For this balance, the inlet and outlet temperatures and the water flow in the primary cooling loop were measured. The heat transferred through the primary loop was added to the heat leakage from the reactor pool. The calorimetric method calibration presented a large uncertainty. The main source of error was the determination of the heat content of the system, due to a large uncertainty in the volume of the water in the system and a lack of homogenization of the water temperature. The heat balance calibration in the primary loop is the standard procedure for calibrating the power of the IPR-R1 TRIGA nuclear reactor. (author))

  1. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  2. Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica

    Science.gov (United States)

    Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.

    2013-01-01

    Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.

  3. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  4. Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR

    Directory of Open Access Journals (Sweden)

    X. Fettweis

    2007-10-01

    Full Text Available Results from a 28-year simulation (1979–2006 over the Greenland ice sheet (GrIS reveal an increase of solid precipitation (+0.4±2.5 km3 yr−2 and run-off (+7.9±3.3 km3 yr−2 of surface meltwater. The net effect of these competing factors is a significant Surface Mass Balance (SMB loss of −7.2±5.1 km3 yr−2. The contribution of changes in the net water vapour flux (+0.02±0.09 km3 yr−2 and rainfall (+0.2±0.2 km3 yr−2 to the SMB variability is negligible. The meltwater supply has increased because the GrIS surface has been warming up +2.4°C since 1979. Sensible heat flux, latent heat flux and net solar radiation have not varied significantly over the last three decades. However, the simulated downward infrared flux has increased by 9.3 W m−2 since 1979. The natural climate variability (e.g. the North Atlantic Oscillation does not explain these changes. The recent global warming, due to the greenhouse gas concentration increase induced by human activities, could be a cause of these changes. The doubling of surface meltwater flux into the ocean over the period 1979–2006 suggests that the overall ice sheet mass balance has been increasingly negative, given the likely meltwater-induced acceleration of outlet glaciers. This study suggests that increased melting overshadows over an increased accumulation in a warming scenario and that the GrIS is likely to keep losing mass in the future. An enduring GrIS melting will probably affect in the future an certain effect on the stability of the thermohaline circulation and the global sea level rise.

  5. Atmospheric river impacts on Greenland Ice Sheet surface melt and mass balance

    Science.gov (United States)

    Mattingly, K.; Mote, T. L.

    2017-12-01

    Mass loss from the Greenland Ice Sheet (GrIS) has accelerated during the early part of the 21st Century. Several episodes of widespread GrIS melt in recent years have coincided with intense poleward moisture transport by atmospheric rivers (ARs), suggesting that variability in the frequency and intensity of these events may be an important driver of the surface mass balance (SMB) of the GrIS. ARs may contribute to GrIS surface melt through the greenhouse effect of water vapor, the radiative effects of clouds, condensational latent heating within poleward-advected air masses, and the energy provided by liquid precipitation. However, ARs may also provide significant positive contributions to GrIS SMB through enhanced snow accumulation. Prior research on the role of ARs in Arctic climate has consisted of case studies of ARs associated with major GrIS melt events or examined the effects of poleward moisture flux on Arctic sea ice. In this study, a long-term (1979-2016) record of intense moisture transport events affecting Greenland is compiled using a conventional AR identification algorithm as well as a self-organizing map (SOM) classification applied to integrated water vapor transport (IVT) data from several atmospheric reanalysis datasets. An analysis of AR effects on GrIS melt and SMB is then performed with GrIS surface melt data from passive microwave satellite observations and the Modèle Atmosphérique Régional (MAR) regional climate model. Results show that meltwater production is above normal during and after AR impact days throughout the GrIS during all seasons, with surface melt enhanced most by strong (> 85th percentile IVT) and extreme (> 95th percentile IVT) ARs. This relationship holds at the seasonal scale, as the total amount of water vapor transported to the GrIS by ARs is significantly greater during above-normal melt seasons. ARs exert a more complex influence on SMB. Normal (< 85th percentile IVT) ARs generally do not have a substantial impact on

  6. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  7. Simulation of Forest Evapotranspiration Using Time-Series Parameterization of the Surface Energy Balance System (SEBS over the Qilian Mountains

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2015-11-01

    Full Text Available We propose a long-term parameterization scheme for two critical parameters, zero-plane displacement height (d and aerodynamic roughness length (z0m, that we further use in the Surface Energy Balance System (SEBS. A sensitivity analysis of SEBS indicated that these two parameters largely impact the estimated sensible heat and latent heat fluxes. First, we calibrated regression relationships between measured forest vertical parameters (Lorey’s height and the frontal area index (FAI and forest aboveground biomass (AGB. Next, we derived the interannual Lorey’s height and FAI values from our calibrated regression models and corresponding forest AGB dynamics that were converted from interannual carbon fluxes, as simulated from two incorporated ecological models and a 2009 forest basis map These dynamic forest vertical parameters, combined with refined eight-day Global LAnd Surface Satellite (GLASS LAI products, were applied to estimate the eight-day d, z0m, and, thus, the heat roughness length (z0h. The obtained d, z0m and z0h were then used as forcing for the SEBS model in order to simulate long-term forest evapotranspiration (ET from 2000 to 2012 within the Qilian Mountains (QMs. As compared with MODIS, MOD16 products at the eddy covariance (EC site, ET estimates from the SEBS agreed much better with EC measurements (R2 = 0.80 and RMSE = 0.21 mm·day−1.

  8. Enhancing the Simplified Surface Energy Balance (SSEB) Approach for Estimating Landscape ET: Validation with the METRIC model

    Science.gov (United States)

    Senay, Gabriel B.; Budde, Michael E.; Verdin, James P.

    2011-01-01

    Evapotranspiration (ET) can be derived from satellite data using surface energy balance principles. METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration) is one of the most widely used models available in the literature to estimate ET from satellite imagery. The Simplified Surface Energy Balance (SSEB) model is much easier and less expensive to implement. The main purpose of this research was to present an enhanced version of the Simplified Surface Energy Balance (SSEB) model and to evaluate its performance using the established METRIC model. In this study, SSEB and METRIC ET fractions were compared using 7 Landsat images acquired for south central Idaho during the 2003 growing season. The enhanced SSEB model compared well with the METRIC model output exhibiting an r2 improvement from 0.83 to 0.90 in less complex topography (elevation less than 2000 m) and with an improvement of r2 from 0.27 to 0.38 in more complex (mountain) areas with elevation greater than 2000 m. Independent evaluation showed that both models exhibited higher variation in complex topographic regions, although more with SSEB than with METRIC. The higher ET fraction variation in the complex mountainous regions highlighted the difficulty of capturing the radiation and heat transfer physics on steep slopes having variable aspect with the simple index model, and the need to conduct more research. However, the temporal consistency of the results suggests that the SSEB model can be used on a wide range of elevation (more successfully up 2000 m) to detect anomalies in space and time for water resources management and monitoring such as for drought early warning systems in data scarce regions. SSEB has a potential for operational agro-hydrologic applications to estimate ET with inputs of surface temperature, NDVI, DEM and reference ET.

  9. Fundamental research on supercooling phenomenon on heat transfer surface

    International Nuclear Information System (INIS)

    Saito, A.; Okawa, S.; Koganezawa, S.

    1991-01-01

    In relation to the problem of supercooling for ice storage devices, experiments on freezing a relatively large volume of supercooled water is carried out. In the experiment, an experimental method to determine a probability of freezing a large volume of supercooled water with a uniform temperature distribution is introduced. It is accomplished by dividing the water into many smaller droplets. In a statistical analysis, a method to improve an accuracy in a case of having a limited number of experiments is introduced, and the probability of freezing is calculated for each degree of supercooling. The average freezing temperature for the experiment is placed just at the extended region of the other researchers results worked on small droplets. By relating the value with the probability of freezing on various kinds of heat transfer surfaces, the probability of freezing which is independent of the surface is calculated. In this paper it is confirmed to be negligible compared with the one on the surface

  10. The validation of ocean surface heat fluxes in AMIP

    International Nuclear Information System (INIS)

    Gleckler, P.J.; Randall, D.A.

    1993-09-01

    Recent intercomparisons of Atmospheric General Circulation Models (AGCMS) constrained with sea-surface temperatures have shown that while there are substantial differences among various models (with each other and available observations), overall the differences between them have been decreasing. The primary goal of AMIP is to enable a systematic intercomparison and validation of state-of-the- art AGCMs by supporting in-depth diagnosis of and interpretation of the model results. Official AMIP simulations are 10 years long, using monthly mean Sea-Surface Temperatures (SSTs) and sea ice conditions which are representative of the 1979--1988 decade. Some model properties are also dictated by the design of AMIP such as the solar constant, the atmospheric CO 2 concentration, and the approximate horizontal resolution. In this paper, some of the preliminary results of AMIP Subproject No. 5 will be summarized. The focus will be on the intercomparison and validation of ocean surface heat fluxes of the AMIP simulations available thus far

  11. Surface urban heat island across 419 global big cities.

    Science.gov (United States)

    Peng, Shushi; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Ottle, Catherine; Bréon, François-Marie; Nan, Huijuan; Zhou, Liming; Myneni, Ranga B

    2012-01-17

    Urban heat island is among the most evident aspects of human impacts on the earth system. Here we assess the diurnal and seasonal variation of surface urban heat island intensity (SUHII) defined as the surface temperature difference between urban area and suburban area measured from the MODIS. Differences in SUHII are analyzed across 419 global big cities, and we assess several potential biophysical and socio-economic driving factors. Across the big cities, we show that the average annual daytime SUHII (1.5 ± 1.2 °C) is higher than the annual nighttime SUHII (1.1 ± 0.5 °C) (P < 0.001). But no correlation is found between daytime and nighttime SUHII across big cities (P = 0.84), suggesting different driving mechanisms between day and night. The distribution of nighttime SUHII correlates positively with the difference in albedo and nighttime light between urban area and suburban area, while the distribution of daytime SUHII correlates negatively across cities with the difference of vegetation cover and activity between urban and suburban areas. Our results emphasize the key role of vegetation feedbacks in attenuating SUHII of big cities during the day, in particular during the growing season, further highlighting that increasing urban vegetation cover could be one effective way to mitigate the urban heat island effect.

  12. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  13. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    Science.gov (United States)

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  14. [Inventory of regional surface nutrient balance and policy recommendations in China].

    Science.gov (United States)

    Chen, Min-Peng; Chen, Ji-Ning

    2007-06-01

    By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.

  15. Quantifying the resolution level where the GRACE satellites can separate Greenland's glacial mass balance from surface mass balance

    Science.gov (United States)

    Bonin, J. A.; Chambers, D. P.

    2015-09-01

    Mass change over Greenland can be caused by either changes in the glacial dynamic mass balance (DMB) or the surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate cumulative SMB from DMB with GRACE, using a least squares inversion technique with knowledge of the location of the glaciers. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from DMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 10 at a resolution of 90 × 90 would provide the accuracy needed for the interannual cumulative SMB and DMB to be accurately separated.

  16. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa

    Science.gov (United States)

    Majozi, Nobuhle P.; Mannaerts, Chris M.; Ramoelo, Abel; Mathieu, Renaud; Nickless, Alecia; Verhoef, Wouter

    2017-07-01

    Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches. In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation. After filtering years with low-quality data (2004-2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity. The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in

  17. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  18. Ground surface temperature and continental heat gain: uncertainties from underground

    International Nuclear Information System (INIS)

    Beltrami, Hugo; Matharoo, Gurpreet S; Smerdon, Jason E

    2015-01-01

    Temperature changes at the Earth's surface propagate and are recorded underground as perturbations to the equilibrium thermal regime associated with the heat flow from the Earth's interior. Borehole climatology is concerned with the analysis and interpretation of these downward propagating subsurface temperature anomalies in terms of surface climate. Proper determination of the steady-state geothermal regime is therefore crucial because it is the reference against which climate-induced subsurface temperature anomalies are estimated. Here, we examine the effects of data noise on the determination of the steady-state geothermal regime of the subsurface and the subsequent impact on estimates of ground surface temperature (GST) history and heat gain. We carry out a series of Monte Carlo experiments using 1000 Gaussian noise realizations and depth sections of 100 and 200 m as for steady-state estimates depth intervals, as well as a range of data sampling intervals from 10 m to 0.02 m. Results indicate that typical uncertainties for 50 year averages are on the order of ±0.02 K for the most recent 100 year period. These uncertainties grow with decreasing sampling intervals, reaching about ±0.1 K for a 10 m sampling interval under identical conditions and target period. Uncertainties increase for progressively older periods, reaching ±0.3 K at 500 years before present for a 10 m sampling interval. The uncertainties in reconstructed GST histories for the Northern Hemisphere for the most recent 50 year period can reach a maximum of ±0.5 K in some areas. We suggest that continuous logging should be the preferred approach when measuring geothermal data for climate reconstructions, and that for those using the International Heat Flow Commission database for borehole climatology, the steady-state thermal conditions should be estimated from boreholes as deep as possible and using a large fitting depth range (∼100 m). (letter)

  19. Higher surface mass balance of the Greenland ice sheet revealed by high - resolution climate modeling

    NARCIS (Netherlands)

    Ettema, Janneke; van den Broeke, Michiel R.; van Meijgaard, Erik; van de Berg, Willem Jan; Bamber, Jonathan L.; Box, Jason E.; Bales, Roger C.

    2009-01-01

    High‐resolution (∼11 km) regional climate modeling shows total annual precipitation on the Greenland ice sheet for 1958–2007 to be up to 24% and surface mass balance up to 63% higher than previously thought. The largest differences occur in coastal southeast Greenland, where the much higher

  20. Daily cycle of the surface energy balance in Antarctica and the influence of clouds

    NARCIS (Netherlands)

    van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Reijmer, C.H.|info:eu-repo/dai/nl/229345956; van As, D.; Boot, W.

    2006-01-01

    We present the summertime daily cycle of the Antarctic surface energy balance (SEB) and its sensitivity to cloud cover. We use data of automatic weather stations (AWS) located in four major Antarctic climate zones: the coastal ice shelf, the coastal and interior katabatic wind zone and the interior

  1. A high performance GPU implementation of Surface Energy Balance System (SEBS) based on CUDA-C

    NARCIS (Netherlands)

    Abouali, Mohammad; Timmermans, J.; Castillo, Jose E.; Su, Zhongbo

    2013-01-01

    This paper introduces a new implementation of the Surface Energy Balance System (SEBS) algorithm harnessing the many cores available on Graphics Processing Units (GPUs). This new implementation uses Compute Unified Device Architecture C (CUDA-C) programming model and is designed to be executed on a

  2. The pattern of anthropogenic signal emergence in Greenland Ice Sheet surface mass balance

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.H.

    2014-01-01

    Surface mass balance (SMB) trends influence observed Greenland Ice Sheet (GrIS) mass loss, but the component of these trends related to anthropogenic forcing is unclear. Here we study the simulated spatial pattern of emergence of an anthropogenically derived GrIS SMB signal between 1850 and 2100

  3. Future climate warming increases Greenland ice sheet surface mass balance variability

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.; Price, S.

    2014-01-01

    The integrated surface mass balance (SMB) of the Greenland ice sheet (GrIS) has large interannual variability. Long-term future changes to this variability will affect GrIS dynamics, freshwater fluxes, regional oceanography, and detection of changes in ice volume trends. Here we analyze a simulated

  4. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    NARCIS (Netherlands)

    Rae, J.G.L.; Aðalgeirsdóttir, G.; Edwards, T.L.; Fettweis, X.; Gregory, J.M.; Hewitt, H.T.; Lowe, J.A.; Lucas-Picher, P.; Mottram, R.H.; Payne, A.J.; Ridley, J.K.; Shannon, S.R.; van de Berg, W.J.; van de Wal, R.S.W.; van den Broeke, M.R.

    2012-01-01

    Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution

  5. Surface energy balance of seasonal snow cover for snow-melt ...

    Indian Academy of Sciences (India)

    This study describes time series analysis of snow-melt, radiation data and energy balance for a seasonal snow cover at Dhundi field station of SASE, which lies in Pir Panjal range of the. N–W Himalaya, for a winter season from 13 January to 12 April 2005. The analysis shows that mean snow surface temperature remains ...

  6. Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements

    OpenAIRE

    Azam, M. F.; Wagnon, P.; Vincent, C.; Ramanathan, AL.; Favier, V.; Mandal, A.; Pottakkal, J. G.

    2014-01-01

    Some recent studies revealed that Himalayan glaciers were shrinking at an accelerated rate since the beginning of the 21st century. However, the climatic causes for this shrinkage remain unclear given that surface energy balance studies are almost nonexistent in this region. In this study, a point-scale surface energy balance analysis was performed using in situ meteorological data from the ablation zone of Chhota Shigri Glacier over two separate periods (August 2012 to February 2013 and July...

  7. Change of water environment in the inner bay in consideration of heat balance

    International Nuclear Information System (INIS)

    Wada, Akira; Miyaike, Katsuto

    1983-01-01

    The study on the effect of warm water discharged from large capacity thermal and nuclear power stations on the local climate around the power stations is necessary for promoting the development of power resources in harmony with natural environment. In this study, Mikawa Bay was selected as the object of research, and the simulation analysis of water temperature was carried out by the water column model, based on the result of analysis of the local weather and sea observation data. Thus, the amount of heat exchange between the atmosphere and sea water in natural sea area was grasped, and how the change in the amount of heat exchange when the thermal load due to warm water discharge was imposed is ranked in natural sea environment was examined. The variation of surface water temperature in Mikawa Bay tended to be large in summer and small in winter. It was clarified that the factor controlling the water temperature in the bay was the variation of climatic factors. In the sea area where the effect of open sea water was relatively small, the variation of water temperature was able to be expressed by the water column model. The change in the amount of heat exchange in the range of warm water diffusion with 2 deg C temperature rise was determined. (Kato, I.)

  8. Effect of preexercise soup ingestion on water intake and fluid balance during exercise in the heat.

    Science.gov (United States)

    Johannsen, Neil M; Sullivan, Zebblin M; Warnke, Nicole R; Smiley-Oyen, Ann L; King, Douglas S; Sharp, Rick L

    2013-06-01

    To determine whether chicken noodle soup before exercise increases ad libitum water intake, fluid balance, and physical and cognitive performance compared with water. Nine trained men (age 25 ± 3 yr, VO2peak 54.2 ± 5.1 ml · kg-1 · min-1; M ± SD) performed cycle exercise in the heat (wet bulb globe temperature = 25.9 ± 0.4 °C) for 90 min at 50% VO2peak, 45 min after ingesting 355 ml of either commercially available bottled water (WATER) or chicken noodle soup (SOUP). The same bottled water was allowed ad libitum throughout both trials. Participants then completed a time trial to finish a given amount of work (10 min at 90% VO2peak; n = 8). Cognitive performance was evaluated by the Stroop color-word task before, every 30 min during, and immediately after the time trial. Ad libitum water intake throughout steady-state exercise was greater in SOUP than with WATER (1,435 ± 593 vs. 1,163 ± 427 g, respectively; p SOUP than in WATER (87.7% ± 7.6% vs. 74.9% ± 21.7%, respectively; p = .09), possibly due to a change in free water clearance (-0.32 ± 1.22 vs. 0.51 ± 1.06 ml/min, respectively; p = .07). Fluid balance tended to be improved with SOUP (-106 ± 603 vs. -478 ± 594 g, p = .05). Likewise, change in plasma volume tended to be reduced in SOUP compared with WATER (p = .06). Only mild dehydration was achieved (SOUP throughout the entire trial (treatment effect; p = .04). SOUP before exercise increased ad libitum water intake and may alter kidney function.

  9. Vacuum boilers developed heating surfaces technic and economic efficiency evaluation

    Science.gov (United States)

    Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.

    2018-01-01

    The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.

  10. Hybrid fuzzy logic control of laser surface heat treatments

    International Nuclear Information System (INIS)

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  11. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-01-01

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives

  12. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  13. Droplet Impact on a Heated Surface under a Depressurized Environment

    Science.gov (United States)

    Hatakenaka, Ryuta; Tagawa, Yoshiyuki

    2016-11-01

    Behavior of a water droplet of the diameter 1-3mm impacting on a heated surface under depressurized environment (100kPa -1kPa) has been studied. A syringe pump for droplet generation and a heated plate are set into a transparent acrylic vacuum chamber. The internal pressure of the chamber is automatically controlled at a target pressure with a rotary pump, a pressure transducer, and an electrical valve. A silicon wafer of the thickness 0.28 mm is mounted on the heater plate, whose temperature is directly measured by attaching a thermocouple on the backside. The droplet behavior is captured using a high-speed camera in a direction perpendicular to droplet velocity. Some unique behaviors of droplet are observed by decreasing the environmental pressure, which are considered to be due to two basic elements: Enhancement of evaporation due to the lowered saturation temperature, and shortage of pneumatic spring effect between the droplet and heated wall due to the lowered pressure of the air.

  14. Recent trends (2003-2013) of land surface heat fluxes on the southern side of the central Himalayas, Nepal

    Science.gov (United States)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2015-12-01

    Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.

  15. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  16. Estimation of surface absorptivity in laser surface heating process with experimental data

    International Nuclear Information System (INIS)

    Chen, H-T; Wu, X-Y

    2006-01-01

    This study applies a hybrid technique of the Laplace transform and finite-difference methods in conjunction with the least-squares method and experimental temperature data inside the test material to predict the unknown surface temperature, heat flux and absorptivity for various surface conditions in the laser surface heating process. In this study, the functional form of the surface temperature is unknown a priori and is assumed to be a function of time before performing the inverse calculation. In addition, the whole time domain is divided into several analysis sub-time intervals and then these unknown estimates on each analysis interval can be predicted. In order to show the accuracy of the present inverse method, comparisons are made among the present estimates, direct results and previous results, showing that the present estimates agree with the direct results for the simulated problem. However, the present estimates of the surface absorptivity deviate slightly from previous estimated results under the assumption of constant thermal properties. The effect of the surface conditions on the surface absorptivity and temperature is not negligible

  17. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  18. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    OpenAIRE

    Angelen, J. H.; Lenaerts, J. T. M.; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.; Broeke, M. R.; Meijgaard, E.; Smeets, C. J. P. P.

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6%) at the K-transect (west Greenland) for the period 2004–2009 is...

  19. Radiant heat evaluation of concrete: a study of the erosion of concrete due to surface heating

    International Nuclear Information System (INIS)

    Chu, T.Y.

    1978-01-01

    Experiments were carried out to investigate the erosion of concrete under high surface heat flux in connection with the core-melt/concrete interaction studies. The dominate erosion mechanism was found to be melting at the surface accompanied by chemical decomposition of the concrete beneath the melt-solid interface. The erosion process reaches a steady state after an initial transient. The steady state is characterized by an essentially constant erosion rate at the surface and a nonvarying (with respect to the moving melt interface) temperature distribution within the concrete. For the range of incident heat flux 64 W/cm 2 to 118 W/cm 2 , the corresponding steady state erosion rate varies from approximately 8 cm/hr to 23 cm/hr. A simple ablation/melting model is proposed for the erosion process. The model was found to be able to correlate all temperature responses at various depths from all tests at large times and for temperatures above approximately 250 0 C

  20. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    Science.gov (United States)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with

  1. Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation

    International Nuclear Information System (INIS)

    Durgun, O.; Sahin, Z.

    2009-01-01

    The main purpose of the presented study is to evaluate energy balance theoretically in direct injection (DI) diesel engines at different conditions. To analyze energy balance, a zero-dimensional multi-zone thermodynamic model has been developed and used. In this thermodynamic model, zero-dimensional intake and exhaust approximations given by Durgun, zero-dimensional compression and expansion model given by Heywood and quasi-dimensional phenomenological combustion model developed by Shahed and then improved Ottikkutti have been used and developed with new approximations and assumptions. By using the developed model, complete diesel engine cycle, engine performance parameters and exhaust emissions can be determined easily. Also, by using this model energy balance can be analyzed for neat diesel fuel and for light fuel fumigation easily. In the presented study, heat balance has been investigated theoretically for three different engines and various numerical applications have been conducted. In the numerical applications two different turbocharged DI diesel engines and a naturally aspirated DI diesel engine have been used. From these numerical applications, it is determined that, what portion of available fuel energy is converted to useful work, what amount of fuel energy is lost by exhaust gases or lost by heat transfer. In addition, heat balance has been analyzed for gasoline fumigation and some numerical results have been given. Brake effective power and brake specific fuel consumption increase and brake effective efficiency decreases for gasoline fumigation for turbocharged diesel engines used in numerical applications. Combustion duration increases with increasing fumigation ratio and thus heat transfer to the walls increases. Because exhaust temperature increases, exhaust losses also increases for fumigation case

  2. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    Science.gov (United States)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  3. Simultaneous heat and mass transfer to air from a compact heat exchanger with water spray precooling and surface deluge cooling

    International Nuclear Information System (INIS)

    Zhang, Feini; Bock, Jessica; Jacobi, Anthony M.; Wu, Hailing

    2014-01-01

    Various methods are available to enhance heat exchanger performance with evaporative cooling. In this study, evaporative mist precooling, deluge cooling, and combined cooling schemes are examined experimentally and compared to model predictions. A flexible model of a compact, finned-tube heat exchanger with a wetted surface is developed by applying the governing conservation and rate equations and invoking the heat and mass transfer analogy. The model is applicable for dry, partially wet, or fully wet surface conditions and capable of predicting local heat/mass transfer, wetness condition, and pressure drop of the heat exchanger. Experimental data are obtained from wind tunnel experiments using a louver-fin flat-tube heat exchanger with single-phase tube-side flow. Total capacity, pressure drop, and water drainage behavior under various water usage rates and air face velocities are analyzed and compared to data for dry-surface conditions. A heat exchanger partitioning method for evaporative cooling is introduced to study partially wet surface conditions, as part of a consistent and general method for interpreting wet-surface performance data. The heat exchanger is partitioned into dry and wet portions by introducing a wet surface factor. For the wet part, the enthalpy potential method is used to determine the air-side sensible heat transfer coefficient. Thermal and hydraulic performance is compared to empirical correlations. Total capacity predictions from the model agree with the experimental results with an average deviation of 12.6%. The model is also exercised for four water augmentation schemes; results support operating under a combined mist precooling and deluge cooling scheme. -- Highlights: • A new spray-cooled heat exchanger model is presented and is validated with data. • Heat duty is shown to be asymptotic with spray flow rate. • Meaningful heat transfer coefficients for partially wet conditions are obtained. • Colburn j wet is lower than j dry

  4. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  5. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  6. Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2017-01-01

    to a lack of pressure and flow control. This study investigated using pre-set radiator valves combined with differential pressure (DP) controllers to achieve hydraulic balance in building distribution systems, and consequently save energy and reduce the emissions. We considered a multi-storey building......Hydraulic unbalance is a common problem in Chinese district heating (DH) systems. Hydraulic unbalance has resulted in poor flow distribution among heating branches and overheating of apartments. Studies show that nearly 30% of the total heat supply is being wasted in Chinese DH systems due...... modelled in the IDA-ICE software, along with a self-developed mathematical hydraulic model to simulate its heat performance and hydraulic performance with various control scenarios. In contrast to the situation with no pressure or flow control, this solution achieves the required flow distribution...

  7. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon

  8. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013

    OpenAIRE

    Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-01-01

    Abstract Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE?derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by ...

  9. Heat shock proteins on the human sperm surface.

    Science.gov (United States)

    Naaby-Hansen, Soren; Herr, John C

    2010-01-01

    The sperm plasma membrane is known to be critical to fertilization and to be highly regionalized into domains of head, mid- and principal pieces. However, the molecular composition of the sperm plasma membrane and its alterations during genital tract passage, capacitation and the acrosome reaction remains to be fully dissected. A two-dimensional gel-based proteomic study previously identified 98 human sperm proteins which were accessible for surface labelling with both biotin and radioiodine. In this report twelve dually labelled protein spots were excised from stained gels or PDVF membranes and analysed by mass spectrometry (MS) and Edman degradation. Seven members from four different heat shock protein (HSP) families were identified including HYOU1 (ORP150), HSPC1 (HSP86), HSPA5 (Bip), HSPD1 (HSP60), and several isoforms of the two testis-specific HSP70 chaperones HSPA2 and HSPA1L. An antiserum raised against the testis-specific HSPA2 chaperone reacted with three 65kDa HSPA2 isoforms and three high molecular weight surface proteins (78-79kDa, 84kDa and 90-93kDa). These proteins, together with seven 65kDa HSP70 forms, reacted with human anti-sperm IgG antibodies that blocked in vitro fertilization in humans. Three of these surface biotinylated human sperm antigens were immunoprecipitated with a rabbit antiserum raised against a linear peptide epitope in Chlamydia trachomatis HSP70. The results indicate diverse HSP chaperones are accessible for surface labelling on human sperm. Some of these share epitopes with C. trachomatis HSP70, suggesting an association between genital tract infection, immunity to HSP70 and reproductive failure. 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  11. Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks

    International Nuclear Information System (INIS)

    Ventola, L; Scaltrito, L; Ferrero, S; Chiavazzo, E; Asinari, P; Maccioni, G

    2014-01-01

    The aim of this work is to improve heat transfer performances of flush mounted heat sinks used in electronic cooling. To do this we patterned 1.23 cm 2 heat sinks surfaces by microstructured roughnesses built by laser etching manufacturing technique, and experimentally measured the convective heat transfer enhancements due to different patterns. Each roughness differs from the others with regards to the number and the size of the micro-fins (e.g. the micro- fin length ranges from 200 to 1100 μm). Experimental tests were carried out in forced air cooling regime. In particular fully turbulent flows (heating edge based Reynolds number ranging from 3000 to 17000) were explored. Convective heat transfer coefficient of the best micro-structured heat sink is found to be roughly two times compared to the smooth heat sinks one. In addition, surface area roughly doubles with regard to smooth heat sinks, due to the presence of micro-fins. Consequently, patterned heat sinks thermal transmittance [W/K] is found to be roughly four times the smooth heat sinks one. We hope this work may open the way for huge boost in the technology of electronic cooling by innovative manufacturing techniques.

  12. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  13. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA to estimate actual evapotranspiration over heterogeneous terrain

    Directory of Open Access Journals (Sweden)

    Z. Q. Gao

    2011-01-01

    Full Text Available Evapotranspiration (ET may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial coverage in the study areas. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at different temporal and spatial scales under heterogeneous terrain with varying elevations, slopes and aspects. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA. With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM, and the vegetation cover derived from satellite images, the SEBTA can account for the dynamic impacts of heterogeneous terrain and changing land cover with some varying kinetic parameters (i.e., roughness and zero-plane displacement. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.

  14. Application of Laser Pulse Heating to Simulate Thermomechanical Damage at Gun Bore Surfaces

    National Research Council Canada - National Science Library

    Cote, Paul

    2003-01-01

    Laser pulse heating experiments were performed to provide insights into the thermomechanical damage effects that occur at the surface of coated and uncoated gun steel under cyclic rapid heating and cooling...

  15. Structural dynamics of fore-crisis area on a heat emission surface of a fuel element's

    International Nuclear Information System (INIS)

    Sharaevskij, I.G.; Fialko, N.M.; Sharaevskaya, E.I.

    2011-01-01

    The known theoretical and experimental data regarding the nature of dry spots evolution are reviewed and the idea regarding the mechanism of heat emission from the heated surface in fore-crisis area are defined more precisely.

  16. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    Science.gov (United States)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  17. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  18. On the Heat Transfer through a Solid Slab Heated Uniformly and Continuously on One of Its Surfaces

    Science.gov (United States)

    Marin, E.; Lara-Bernal, A.; Calderon, A.; Delgado-Vasallo, O.

    2011-01-01

    Some peculiarities of the heat transfer through a sample that is heated by the superficial absorption of light energy under continuous uniform illumination are discussed. We explain, using a different approach to that presented in a recent article published in this journal (Salazar "et al" 2010 "Eur. J. Phys." 31 1053-9), that the front surface of…

  19. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface

  20. Development of surface wettability characteristics for enhancing pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kim, Moo Hwan; Jo, Hang Jin

    2010-05-01

    For several centuries, many boiling experiments have been conducted. Based on literature survey, the characteristic of heating surface in boiling condition played as an important role which mainly influenced to boiling performance. Among many surface factor, the fact that wettability effect is significant to not only the enhancement of critical heat flux(CHF) but also the nucleate boiling heat transfer is also supported by other kinds of boiling experiments. In this regard, the excellent boiling performance (a high CHF and heat transfer performance) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. To find the optimized boiling condition, we design the special heaters to examine how two materials, which have different wettability (e.g. hydrophilic and hydrophobic), affect the boiling phenomena. The special heaters have hydrophobic dots on hydrophilic surface. The contact angle of hydrophobic surface is 120 .deg. to water at the room temperature. The contact angle of hydrophilic surface is 60 .deg. at same conditions. To conduct the experiment with new surface condition, we developed new fabrication method and design the pool boiling experimental apparatus. Through this facility, we can the higher CHF on pattern surface than that on hydrophobic surface, and the higher boiling heat transfer performance on pattern surface than that on hydrophilic surface. Based on this experimental results, we concluded that we proposed new heating surface condition and surface fabrication method to realize the best boiling condition by modified heating surface condition

  1. Energy balance of droplets impinging onto a wall heated above the Leidenfrost temperature

    International Nuclear Information System (INIS)

    Dunand, P.; Castanet, G.; Gradeck, M.; Maillet, D.; Lemoine, F.

    2013-01-01

    Highlights: • Measurement techniques are combined to characterize the heat lost due to liquid vaporization. • The wall heat flux is estimated by infrared thermography associated with inverse heat conduction. • The liquid heating is characterized by the two-color Laser-Induced Fluorescence thermometry. • Results reveal how the heat fluxes vary with the droplet sizes and the Weber number. -- Abstract: This work is an experimental study aiming at characterizing the heat transfers induced by the impingement of water droplets (diameter 80–180 μm) on a thin nickel plate heated by electromagnetic induction. The temperature of the rear face of the nickel sample is measured by means of an infrared camera and the heat removed from the wall due to the presence of the droplets is estimated using a semi-analytical inverse heat conduction model. In parallel, the temperature of the droplets is measured using the two-color Laser-Induced Fluorescence thermometry (2cLIF) which has been extended to imagery for the purpose of these experiments. The measurements of the variation in the droplet temperature occurring during an impact allow determining the sensible heat removed by the liquid. Measurements are performed at wall conditions well above the Leidenfrost temperature. Different values of the Weber numbers corresponding to the bouncing and splashing regimes are tested. Comparisons between the heat flux removed from the wall and the sensible heat gained by the liquid allows estimating the heat flux related to liquid evaporation. Results reveal that the respective level of the droplet sensible heat and the heat lost due to liquid vaporization can vary significantly with the droplet sizes and the Weber number

  2. Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating

    Science.gov (United States)

    Merrick, R. A.; Hutchings, J. K.

    2015-12-01

    The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.

  3. Analysis of heat transfer on extended surfaces of fuel elements in cooling channels by boundary elements method; Analiza prenosa toplote na orebrenjih gorivnih elementov hladilnih kanalov z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Namestnik, B; Skerget, L; Beadar, D [tehniska fakulteta, Maribor (Yugoslavia)

    1989-07-01

    The paper presents numerical method for evaluating heat transfer on two-dimensional ribbed surfaces. Governing elliptic partial differential equation is transformed to boundary integral equation, and solved by the boundary element method. Efficiency of fins is calculated from boundary heat flux balance. Several test cases have shown usefulness of the presented method. (author)

  4. Reducing urban heat island effects to improve urban comfort and balance energy consumption in Bucharest (Romania)

    Science.gov (United States)

    Constantinescu, Dan; Ochinciuc, Cristina Victoria; Cheval, Sorin; Comşa, Ionuţ; Sîrodoev, Igor; Andone, Radu; Caracaş, Gabriela; Crăciun, Cerasella; Dumitrescu, Alexandru; Georgescu, Mihaela; Ianoş, Ioan; Merciu, Cristina; Moraru, Dan; Opriş, Ana; Paraschiv, Mirela; Raeţchi, Sonia; Saghin, Irina; Schvab, Andrei; Tătui-Văidianu, Nataşa

    2017-04-01

    In the recent decades, extreme temperature events and derived hazards are frequent and trigger noteworthy impacts in Romania, especially over the large urban areas. The cities produce significant disturbances of many elements of the regional climate, and generates adverse effects such as Urban Heat Islands (UHI). This presentation condenses the outputs of an ongoing research project (REDBHI) developed through (2013-2017) focused on developing a methodology for monitoring and forecasting indoor climate and energy challenges related to the intensity of UHI of Bucharest (Romania), based on relevant urban climate zones (UCZs). Multi-criteria correlations between the UHI and architectural, urban and landscape variables were determined, and the vulnerability of buildings expressed in the form of transfer function between indoor micro-climate and outdoor urban environment. The vulnerability of civil buildings was determined in relation with the potential for amplifying the thermal hazards intensity through the anthropogenic influence. The project REDBHI aims at developing innovative and original products, with direct applicability, which can be used in any urban settlement and have market potential with regards to energy design and consulting. The concrete innovative outcomes consist of a) localization of the Bucharest UCZs according to the UHI intensity, identifying reference buildings and sub-zones according to urban anthropic factors and landscape pattern; b) typology of representative buildings with regards to energy consumption and CO2 emitted as a result of building exploitation; c) 3D modelling of the reference buildings and of the thermal/energy reaction to severe climatic conditions d) empirical validation of the dynamic thermal/energy analysis; d) development of an pilot virtual studio capable to simulate climate alerts, analyse scenarios and suggest measures to mitigate the UHI effects, and disseminate the outcomes for educational purposes; e) compendium of

  5. Past and future sea-level change from the surface mass balance of glaciers

    Directory of Open Access Journals (Sweden)

    B. Marzeion

    2012-11-01

    Full Text Available We present estimates of sea-level change caused by the global surface mass balance of glaciers, based on the reconstruction and projection of the surface mass balance of all the individual glaciers of the world, excluding the ice sheets in Greenland and Antarctica. The model is validated using a leave-one-glacier-out cross-validation scheme against 3997 observed surface mass balances of 255 glaciers, and against 756 geodetically observed, temporally integrated volume and surface area changes of 341 glaciers. When forced with observed monthly precipitation and temperature data, the glaciers of the world are reconstructed to have lost mass corresponding to 114 ± 5 mm sea-level equivalent (SLE between 1902 and 2009. Using projected temperature and precipitation anomalies from 15 coupled general circulation models from the Coupled Model Intercomparison Project phase 5 (CMIP5 ensemble, they are projected to lose an additional 148 ± 35 mm SLE (scenario RCP26, 166 ± 42 mm SLE (scenario RCP45, 175 ± 40 mm SLE (scenario RCP60, or 217 ± 47 mm SLE (scenario RCP85 during the 21st century. Based on the extended RCP scenarios, glaciers are projected to approach a new equilibrium towards the end of the 23rd century, after having lost either 248 ± 66 mm SLE (scenario RCP26, 313 ± 50 mm SLE (scenario RCP45, or 424 ± 46 mm SLE (scenario RCP85. Up until approximately 2100, ensemble uncertainty within each scenario is the biggest source of uncertainty for the future glacier mass loss; after that, the difference between the scenarios takes over as the biggest source of uncertainty. Ice mass loss rates are projected to peak 2040 ∼ 2050 (RCP26, 2050 ∼ 2060 (RCP45, 2070 ∼ 2090 (RCP60, or 2070 ∼ 2100 (RCP85.

  6. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  7. The role of clouds in the surface energy balance over the Amazon forest

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.; Humphries, E.J. Jr.

    1998-01-01

    Deforestation in the Amazon region will initially impact the energy balance at the land surface through changes in land cover and surface hydrology. However, continuation of this human activity will eventually lead to atmospheric feedbacks, including changes in cloudiness which may play an important role in the final equilibrium of solar and terrestrial radiation at the surface. In this study, the different components of surface radiation over an undisturbed forest in the Amazon region are computed using data from the Amazon region micrometerological experiment (ARME). Several measures of cloudiness are defined: two estimated from the terrestrial radiation measurements, and one from the solar radiation measurements. The sensitivity of the surface fluxes of solar and terrestrial radiation to natural variability in cloudiness is investigated to infer the potential role of the cloudiness feedback in the surface energy balance. The results of this analysis indicate that a 1% decrease in cloudiness would increase net solar radiation by ca. 1.6 W/m 2 . However, the overall magnitude of this feedback, due to total deforestation of the Amazon forest, is likely to be of the same order as the magnitude of the decrease in net solar radiation due to the observed increase in surface albedo following deforestation. Hence, the total change in net solar radiation is likely to have a negligible magnitude. In contrast to this conclusion, we find that terrestrial radiation is likely to be more strongly affected; reduced cloudiness will decrease net terrestrial radiation; a 1% decrease in cloudiness induces a reduction in net terrestrial radiation of ca. 0.7 W/m 2 ; this process augments the similar effects of the predicted warming and drying in the boundary layer. Due to the cloudiness feedback, the most significant effect of large-scale deforestation on the surface energy balance is likely to be in the modification of the terrestrial radiation field rather than the classical albedo

  8. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... heat load is only present for a short time of the total engine cycle, it is a severe thermal load on the piston surface. At the same time, cooling of the piston crown is generally more complicated than cooling of the other components of the combustion chamber. This can occasionally cause problems...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...

  9. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  10. Mass balance and surface movement of the Greenland Ice Sheet at Summit, Central Greenland

    DEFF Research Database (Denmark)

    Hvidberg, C.S.; Keller, K.; Gundestrup, N.S.

    1997-01-01

    During the GRIP deep drilling in Central Greenland, the ice sheet topography and surface movement at Summit has been mapped with GPS. Measurements of the surface velocity are presented for a strain net consisting of 13 poles at distances of 25-60 km from the GRIP site. Some results are: The GRIP...... site is located approximately 2 km NW of the topographic summit; the surface velocity at the GISP 2 site is 1.7 m/yr in the W direction. The present mass balance at Summit is calculated to be -0.03+/-0.04 m/yr, i.e. close to steady state. This result is the best now available for Summit. A small...... thinning rate might be a transient response of the Greenland Ice Sheet due to the temperature increase at the Wisconsin-Holocene transition....

  11. Enhanced pool boiling critical heat flux induced by capillary wicking effect of a Cr-sputtered superhydrophilic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hong Hyun; Seo, Gwang Hyeok; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    In light of boiling heat transfer, the smooth surface potentially reduces active nucleation of bubbles and rewetting of dry spots near the critical heat flux (CHF). This kind of process is highly likely to deteriorate the CHF. Thus, it is essential to produce appropriate microstructures on the surface for the enhancement of the CHF. In this study, to investigate the microstructural effect of thin film-fabricated surfaces on the pool boiling CHF, we controlled the surface roughness in a narrow range of 0.1-0.25 μm and its morphologies, in the form of micro-scratches using PVD sputtering technique. Specifically for DC magnetron sputtering, pure chromium (Cr) was selected as a target material owing to its high oxidation resistance. In order to analyze the CHF trend with changes in roughness, we introduced existing capillary wicking-based models because superhydrophilic characteristics of microstructures are highly related to the capillary wicking behaviors in micro-flow channels. After Cr sputtering under given conditions, the Cr-sputtered surfaces showed superhydrophilic characteristics and its capability became more enhanced with an increase of surface roughness. Judging from spreading behavior of a liquid droplet, the presence of micro-wicking channels, coupled with Cr nanostructures, effectively enhanced the advancing rate of drop base diameter. The CHF exhibited an increasing trend with increasing surface roughness. However, the enhancement ratio agreed poorly with the predictions of the roughness factor-based models, all of which originated from a conventional static force balance.

  12. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  13. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  14. Should Ballet Dancers Vary Postures and Underfoot Surfaces When Practicing Postural Balance?

    Science.gov (United States)

    Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren

    2018-01-01

    Postural balance (PB) is an important component skill for professional dancers. However, the effects of different types of postures and different underfoot surfaces on PB have not adequately been addressed. The main aim of this study was to investigate the effect of different conditions of footwear, surfaces, and standing positions on static and dynamic PB ability of young ballet dancers. A total of 36 male and female young professional ballet dancers (aged 14-19 years) completed static and dynamic balance testing, measured by head and lumbar accelerometers, while standing on one leg in the turnout position, under six different conditions: (1) "relaxed" posture; (2) "ballet" posture; (3) barefoot; (4) ballet shoes with textured insoles; (5) barefoot on a textured mat; and (6) barefoot on a spiky mat. A condition effect was found for static and dynamic PB. Static PB was reduced when dancers stood in the ballet posture compared with standing in the relaxed posture and when standing on a textured mat and on a spiky mat (p ballet shoes with textured insoles and when standing on a spiky mat compared with all other conditions (p ballet aligned position, including dance practice on different types of floors and on different types of textured/spiky materials may result in skill transfer to practice on normal floor surfaces, and both static and dynamic PB exercises should be assessed and generalized into practical dance routines.

  15. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data

    Science.gov (United States)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2018-01-01

    Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.

  16. 30 CFR 817.57 - Hydrologic balance: Surface activities in or adjacent to perennial or intermittent streams.

    Science.gov (United States)

    2010-07-01

    ... PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.57 Hydrologic balance: Surface... by roads, railroads, conveyors, pipelines, utilities, or similar facilities. You must comply with all...

  17. Surface water management: a user's guide to calculate a water balance using the CREAMS model

    International Nuclear Information System (INIS)

    Lane, L.J.

    1984-11-01

    The hydrologic component of the CREAMS model is described and discussed in terms of calculating a surface water balance for shallow land burial systems used for waste disposal. Parameter estimates and estimation procedures are presented in detail in the form of a user's guide. Use of the model is illustrated with three examples based on analysis of data from Los Alamos, New Mexico and Rock Valley, Nevada. Use of the model in design of trench caps for shallow land burial systems is illustrated with the example applications at Los Alamos

  18. Greenland ice sheet surface mass-balance modeling in a 131-Yr perspective, 1950-2080

    DEFF Research Database (Denmark)

    Mernild, Sebastian H.; Liston, Glen E.; Hiemstra, Christopher A.

    2010-01-01

    to simulate variations in theGrISmelt extent, surfacewater balance components, changes inSMB, and freshwater influx to the ocean. The simulations are based on the Intergovernmental Panel on Climate Change scenario A1B modeled by the HIRHAM4 regional climate model (RCM) using boundary conditions from the ECHAM...... and correct RCM output data before they were used as input for SnowModel. Satellite observations and independent SMB studies were used to validate the SnowModel output and confirmthemodel's robustness. The authors simulated an ~90% increase in end-of-summer surface melt extent (0.483 × 106 km2) from 1950...

  19. Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping

    Energy Technology Data Exchange (ETDEWEB)

    Sifain, Andrew E. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States); Wang, Linjun [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Prezhdo, Oleg V. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States); Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062 (United States)

    2016-06-07

    Surface hopping is the most popular method for nonadiabatic molecular dynamics. Many have reported that it does not rigorously attain detailed balance at thermal equilibrium, but does so approximately. We show that convergence to the Boltzmann populations is significantly improved when the nuclear velocity is reversed after a classically forbidden hop. The proposed prescription significantly reduces the total number of classically forbidden hops encountered along a trajectory, suggesting that some randomization in nuclear velocity is needed when classically forbidden hops constitute a large fraction of attempted hops. Our results are verified computationally using two- and three-level quantum subsystems, coupled to a classical bath undergoing Langevin dynamics.

  20. A 30-year record of surface mass balance (1966-95) and motion and surface altitude (1975-95) at Wolverine Glacier, Alaska

    Science.gov (United States)

    Mayo, Lawrence R.; Trabant, Dennis C.; March, Rod S.

    2004-01-01

    Scientific measurements at Wolverine Glacier, on the Kenai Peninsula in south-central Alaska, began in April 1966. At three long-term sites in the research basin, the measurements included snow depth, snow density, heights of the glacier surface and stratigraphic summer surfaces on stakes, and identification of the surface materials. Calculations of the mass balance of the surface strata-snow, new firn, superimposed ice, and old firn and ice mass at each site were based on these measurements. Calculations of fixed-date annual mass balances for each hydrologic year (October 1 to September 30), as well as net balances and the dates of minimum net balance measured between time-transgressive summer surfaces on the glacier, were made on the basis of the strata balances augmented by air temperature and precipitation recorded in the basin. From 1966 through 1995, the average annual balance at site A (590 meters altitude) was -4.06 meters water equivalent; at site B (1,070 meters altitude), was -0.90 meters water equivalent; and at site C (1,290 meters altitude), was +1.45 meters water equivalent. Geodetic determination of displacements of the mass balance stake, and glacier surface altitudes was added to the data set in 1975 to detect the glacier motion responses to variable climate and mass balance conditions. The average surface speed from 1975 to 1996 was 50.0 meters per year at site A, 83.7 meters per year at site B, and 37.2 meters per year at site C. The average surface altitudes were 594 meters at site A, 1,069 meters at site B, and 1,293 meters at site C; the glacier surface altitudes rose and fell over a range of 19.4 meters at site A, 14.1 meters at site B, and 13.2 meters at site C.

  1. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA.

    Science.gov (United States)

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.

    2014-12-01

    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  2. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  3. An Analysis of Saturated Film Boiling Heat Transfer from a Vertical Slab with Horizontal Bottom Surface

    OpenAIRE

    茂地, 徹; 山田, たかし

    1997-01-01

    The film boiling heat transfer from a vertical slab with horizontal bottom surface to saturated liquids was analyzed theoretically. Bromley's solution for the vertical surface was modified to accommodate the continuity of the vapor mass flow rate around the lower corner of the vertical slab. The thickness of the vapor film covering the vertical surface of the slab was increased owing to the inflow of vapor generated under the horizontal bottom surface and resulted in a decrease in the heat tr...

  4. 21st century changes in the surface mass balance of the Greenland ice sheet simulated with the global model CESM

    Science.gov (United States)

    Vizcaíno, M.; Lipscomb, W. H.; Van den Broeke, M.

    2012-04-01

    We present here the first projections of 21st century surface mass balance change of the Greenland ice sheet simulated with the Community Earth System Model (CESM). CESM is a fully-coupled, global climate model developed at many research centers and universities, primarily in the U.S. The model calculates the surface mass balance in the land component (the Community Land Model, CLM), at the same resolution as the atmosphere (1 degree), with an energy-balance scheme. The snow physics included in CLM for non-glaciated surfaces (SNiCAR model, Flanner and Zender, 2005) are used over the ice sheet. The surface mass balance is calculated for 10 elevation classes, and then downscaled to the grid of the ice sheet model (5 km in this case) via vertical linear interpolation between elevation classes combined with horizontal bilinear interpolation. The ice sheet topography is fixed at present-day values for the simulations presented here. The use of elevation classes reduces computational costs while giving results that reproduce well the mass balance gradients at the steep margins of the ice sheet. The simulated present-day surface mass balance agrees well with results from regional models. We focus on the regional model RACMO (Ettema et al. 2009) to compare the results on 20th-century surface mass balance evolution and two-dimensional patterns. The surface mass balance of the ice sheet under RCP8.5. forcing becomes negative in the last decades of the 21st century. The equilibrium line becomes ~500 m higher on average. Accumulation changes are positive in the accumulation zone. We examine changes in refreezing, accumulation, albedo, surface fluxes, and the timing of the melt season.

  5. Analysis of heat balance on innovative-simplified nuclear power plant using multi-stage steam injectors

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Michitsugu

    2006-01-01

    The total space and weight of the feedwater heaters in a nuclear power plant (NPP) can be reduced by replacing low-pressure feedwater heaters with high-efficiency steam injectors (SIs). The SI works as a direct heat exchanger between feedwater from condensers and steam extracted from turbines. It can attain pressures higher than the supplied steam pressure. The maintenance cost is lower than that of the current feedwater heater because of its simplified system without movable parts. In this paper, we explain the observed mechanisms of the SI experimentally and the analysis of the computational fluid dynamics (CFD). We then describe mainly the analysis of the heat balance and plant efficiency of the innovative-simplified NPP, which adapted to the boiling water reactor (BWR) with the high-efficiency SI. The plant efficiencies of this innovative-simplified BWR with SI are compared with those of a 1 100 MWe-class BWR. The SI model is adopted in the heat balance simulator as a simplified model. The results show that the plant efficiencies of the innovate-simplified BWR with SI are almost equal to those of the original BWR. They show that the plant efficiency would be slightly higher if the low-pressure steam, which is extracted from the low-pressure turbine, is used because the first-stage of the SI uses very low pressure. (author)

  6. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH

  7. Characterisation of a grooved heat pipe with an anodised surface

    Science.gov (United States)

    Solomon, A. Brusly; Ram Kumar, A. M.; Ramachandran, K.; Pillai, B. C.; Senthil Kumar, C.; Sharifpur, Mohsen; Meyer, Josua P.

    2017-03-01

    A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°-90°, 25-250 W and 10-70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m2. The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.

  8. MRD-CI potential surfaces using balanced basis sets. IV. The H2 molecule and the H3 surface

    International Nuclear Information System (INIS)

    Wright, J.S.; Kruus, E.

    1986-01-01

    The utility of midbond functions in molecular calculations was tested in two cases where the correct results are known: the H 2 potential curve and the collinear H 3 potential surface. For H 2 , a variety of basis sets both with and without bond functions was compared to the exact nonrelativistic potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. It was found that optimally balanced basis sets at two levels of quality were the double zeta single polarization plus sp bond function basis (BF1) and the triple zeta double polarization plus two sets of sp bond function basis (BF2). These gave bond dissociation energies D/sub e/ = 4.7341 and 4.7368 eV, respectively (expt. 4.7477 eV). Four basis sets were tested for basis set superposition errors, which were found to be small relative to basis set incompleteness and therefore did not affect any conclusions regarding basis set balance. Basis sets BF1 and BF2 were used to construct potential surfaces for collinear H 3 , along with the corresponding basis sets DZ*P and TZ*PP which contain no bond functions. Barrier heights of 12.52, 10.37, 10.06, and 9.96 kcal/mol were obtained for basis sets DZ*P, TZ*PP, BF1, and BF2, respectively, compared to an estimated limiting value of 9.60 kcal/mol. Difference maps, force constants, and relative rms deviations show that the bond functions improve the surface shape as well as the barrier height

  9. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  10. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    NARCIS (Netherlands)

    Duan, Z.; Bastiaanssen, W.G.M.

    2017-01-01

    The heat storage changes (Qt) can be a significant component of the energy balance in lakes, and it is important to account for Qt for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Qt has been often neglected in

  11. An Experimental Study on the Pool Boiling Heat Transfer on a Square Surface

    International Nuclear Information System (INIS)

    Kim, Jae Kwang

    2000-02-01

    An experimental study was carried out to identify the various regimes of natural convective boiling and to determine the Critical Heat Flux (CHF) on a square surface. The basic knowledge on the boiling heat transfer and CHF on the square surface is necessary for various engineering problems, such as the design of compact heat exchangers, cooling of CPU chips, and design of the external cooling mechanism for the reactor during the severe accidents in the nuclear power plants. The heater block made of copper with cartridge heaters in it is submerged in a water tank with windows for visualization. The heater surface has dimension of 70mm x 70mm and the maximum heat flux capacity is about 1.8MW/m 2 . The boiling heat transfer coefficient for the various flow regimes up to CHF has been measured for upward facing surface, vertical surface, and nearly horizontal downward facing surfaces. The temperatures of the heater block are measured by the thermocouples imbedded in the heater block. As the heat flux increases from 100kW/m 2 to 1.0MW/m 2 , the heat-transfer regime changes from the nucleate boiling to the CHF. Near 1.0MW/m 2 , the heat transfer regime suddenly changed from nucleate boiling to film boiling and it resulted in a rapid heat up of the heater block. The various boiling patterns on the vertical surface, upward facing surface, and downward facing surface are observed by a high speed video camera whose frame rate is 1000fps. An explosive vapor generation on the heated surface, whose size and frequency are characterized by the heat flux and inclination angle, is observed

  12. Calculation of Thermal Mode of Flat Irradiated Ceramic Mass Sample’ while Evaporating Moisture from Heated-up Surface

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2004-01-01

    Full Text Available The solution of a differential heat conduction equation is given in view of cooling effect of moisture evaporation from a heated surface. In this case heating heat flow is diminishing in time exponentially. The most typical nomographic temperature and temperature gradient charts of heated surface and mean temperature of a plate are presented in the paper.

  13. Light-induced heterogeneous reactions of NO2 on indoor surfaces: How they affect the balance of nitrous acid

    Science.gov (United States)

    Gomez Alvarez, E.; Soergel, M.; Bassil, S.; Zetzsch, C.; Gligorovski, S.; Wortham, H.

    2011-12-01

    Nitrous acid (HONO) is an important indoor pollutant. The adverse health effects due to the formation of nitrosamines are well known. HONO acts as a nitrosating agent after wall reactions of HONO with nicotine [Sleiman et al., 2010]. Indoor air can be surprisingly rich in HONO (homes with fireplaces, stoves, gas heating and cooking) and also surfaces are abundant. High HONO concentrations have been measured in indoor environments, from the direct emissions and heterogeneous reactions of NO2 in darkness. However, the measured HONO concentrations do not correspond to the HONO levels determined by the models [Carslaw, 2007]. We have tested in a flow tube reactor on-line coupled to a NOx analyzer and a sensitive Long Path Absorption Photometry instrument, the behaviour of various indoor surfaces towards NO2 under simulated solar light irradiation (λ= 300-700 nm). Our study has allowed us to obtain a deeper knowledge on the mechanisms of heterogeneous formation of HONO, quantifying the dependence of HONO formation on behalf of NO2 concentration and relative humidity and the enhancement of HONO formation in the presence of light. Pyrex, acidic detergent, alkaline detergent, paint and lacquer were tested on behalf of their heterogeneous reactivity towards NO2 in the absence and in presence of light. The results obtained demonstrated that indoor surfaces are photo-chemically active under atmospherically relevant conditions. The strongly alkaline surfaces (such as certain types of detergent) show a strong long-term uptake capacity. However, other surfaces such as detergents with a more acidic character released HONO. In some cases such as paint and varnish, a strong HONO release with light was detected, which was significantly higher than that obtained over clean glass surfaces. Certain organics present on their composition could exert a photo-sensitizing effect that may explain their increased reactivity. Unfortunately, the final balance points towards an important net

  14. Setup of Design Concept for the Secondary System of the Sodium Cooled Fast Reactor and Development of Computational Code for the heat balance setup

    International Nuclear Information System (INIS)

    Kim, E. K.; Seong, S. H.; Kim, S. O.; Eoh, J. H.; Han, J. W.; Cha, J. E.

    2010-12-01

    KAERI developed KALIMER-600 on it own way and now is designing the 600MWe actual sized plant for SFR. Nowadays, it is emphasizing the necessity of the evaluation for NSSS design as a part of the verification for SFR design validity. In other words, it means that should be precede the setup of the heat balance and preliminary design for SFR BOP. Turbine composition was configurated to refer SAMCHEON-PO fossil plant which have similar steam condition. The heat balance of SFR BOP was deduced to based on the NSSS boundary condition of the 600MWe actual sized plant. The algorithm of the heat balance calculation program was developed to refer preliminary heat balance data. and then, the setup of the heat balance for SFR BOP was evaluated. In the performance analysis for the preliminary heat balance of the SFR BOP, it was demonstrated that turbine characteristics are similar to reference plant, such as the SAMCHEON-PO fossil plant and the PFBR of the India

  15. The FLUFF code for calculating finned surface heat transfer -description and user's guide

    International Nuclear Information System (INIS)

    Fry, C.J.

    1985-08-01

    FLUFF is a computer code for calculating heat transfer from finned surfaces by convection and radiation. It can also represent heat transfer by radiation to a partially emitting and absorbing medium within the fin cavity. The FLUFF code is useful not only for studying the behaviour of finned surfaces but also for deriving heat fluxes which can be applied as boundary conditions to other heat transfer codes. In this way models of bodies with finned surfaces may be greatly simplified since the fins need not be explicitly represented. (author)

  16. Radionuclide deposits on heat transfer surfaces in a circumt with dissociating N2O4 coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.; Komissarov, F.D.

    1984-01-01

    Radionuclides deposits on heat transfer surfaces of a circuit with dissociating coolant are studied. The areas of preferential deposition of 54 Mn, 51 Cr, 134 Cs and their distribution along the heating and cooling surfaces are determined. The comparison of the obtained data on the nuclide and chemical compositions of the deposits in the areas of N 2 O 4 coolant heating and cooling shows that 54 Mn, 51 Cr, 134 Cs deposit preferentially on heat transfer surfaces in the area of the coolant heating. Fixed and movable deposits consists of the structural material oxides. The quantity of radionuclides in the deposits on the surfaces of heat transfer tubes in the area of cooling decreases with the coolant temperature drop

  17. An eddy covariance system to characterize the atmospheric surface layer and turbulent latent heat fluxes over a debris-covered Himalayan glacier.

    Science.gov (United States)

    Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael

    2017-04-01

    Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.

  18. Turbulence modeling and surface heat transfer in a stagnation flow region

    Science.gov (United States)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  19. Selecting the induction heating for normalization of deposited surfaces of cylindrical parts

    Directory of Open Access Journals (Sweden)

    Олена Валеріївна Бережна

    2017-07-01

    Full Text Available The machine parts recovered by electric contact surfacing with metal strip are characterized by high loading of the surface layer, which has a significant impact on their performance. Therefore, the improvement of the operational stability of fast-wearing machine parts through the use of combined treatment technologies is required. Not all the work-piece but just the worn zones are subjected to recovery with electric contact surfacing; the tape thickness and depth of the heat affected zone being not more than a few millimeters. Therefore, the most optimal in this case is the use of a local surface heating method of high frequency currents. This method has economical benefits because there is no need to heat the entire work-piece. The induction heating mode at a constant power density has been proposed and analytically investigated. The ratios that make it possible to determine the main heating parameters ensuring calculation of the inductor for the normalization of the reconstructed surface of cylindrical parts have been given. These parameters are: specific power, frequency and warm-up time. The proposed induction heating mode is intermediate between the quenching and cross-cutting heating and makes it possible to simultaneously obtain the required temperatures at the surface and at the predetermined depth of the heated layer of cylindrical parts with the normalization of their surfaces restored with electric contact surfacing

  20. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amber; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  1. Evaluating Greenland glacial isostatic adjustment corrections using GRACE, altimetry and surface mass balance data

    International Nuclear Information System (INIS)

    Sutterley, Tyler C; Velicogna, Isabella; Csatho, Beata; Rezvan-Behbahani, Soroush; Babonis, Greg; Van den Broeke, Michiel

    2014-01-01

    Glacial isostatic adjustment (GIA) represents a source of uncertainty for ice sheet mass balance estimates from the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity measurements. We evaluate Greenland GIA corrections from Simpson et al (2009 Quat. Sci. Rev. 28 1631–57), A et al (2013 Geophys. J. Int. 192 557–72) and Wu et al (2010 Nature Geosci. 3 642–6) by comparing the spatial patterns of GRACE-derived ice mass trends calculated using the three corrections with volume changes from ICESat (Ice, Cloud, and land Elevation Satellite) and OIB (Operation IceBridge) altimetry missions, and surface mass balance products from the Regional Atmospheric Climate Model (RACMO). During the period September 2003–August 2011, GRACE ice mass changes obtained using the Simpson et al (2009 Quat. Sci. Rev. 28 1631–57) and A et al (2013 Geophys. J. Int. 192 557–72) GIA corrections yield similar spatial patterns and amplitudes, and are consistent with altimetry observations and surface mass balance data. The two GRACE estimates agree within 2% on average over the entire ice sheet, and better than 15% in four subdivisions of Greenland. The third GRACE estimate corrected using the (Wu et al 2010 Nature Geosci. 3 642–6)) GIA shows similar spatial patterns, but produces an average ice mass loss for the entire ice sheet that is 64 − 67 Gt yr −1 smaller. In the Northeast the recovered ice mass change is 46–49 Gt yr −1 (245–270%) more positive than that deduced from the other two corrections. By comparing the spatial and temporal variability of the GRACE estimates with trends of volume changes from altimetry and surface mass balance from RACMO, we show that the Wu et al (2010 Nature Geosci. 3 642–6) correction leads to a large mass increase in the Northeast that is inconsistent with independent observations. (paper)

  2. A METHOD OF DETERMINING THE ABILITY OF THE ARRESTER TO ABSORB ENERGY WITHOUT BREAKING THE HEAT BALANCE

    Directory of Open Access Journals (Sweden)

    S.Yu. Shevchenko

    2015-08-01

    Full Text Available Purpose.The aim of this study is to obtain a method for determining the capacity surge arrester nonlinear absorb energy without breaking the heat balance in modes of long-term application of operating voltage, which allows for analysis of their work in terms of violations as electricity. Methodology. For values of the energy passing through the arrester must be able to determine the current value for the voltage value in the area of leakage current-voltage characteristics. We have carried out calculations of the energy passing everywhere arrester for certain periods of time based on the current-voltage characteristics obtained experimentally. Analysis of the experimental current-voltage characteristics of resistors and literature led to the important conclusion that the dielectric properties of the ceramic varistor affect the value of active power losses in the arrester only when the active component of the leakage current is very small. This is confirmed by the characteristics of different classes of varistor voltage. This property of varistors and surge arresters shows the need to consider how the dielectric and conductive properties of the varistor ceramics in the analysis of work in the area of the arrester leakage current-voltage characteristic. These results demonstrate the need to clarify the mathematical model and the method for determining the energy dissipates in the area of the arrester leakage current CVC with their account. Results. The study, an improved mathematical model for calculating energy affects surge arrester during its working life. The study obtained the method, of evaluation capacity surge arrester, maintains heat balance throughout working life. Based on experimentally obtained current-voltage characteristic of the varistors is defined voltage at which surge arrester starts conducting active current. This allowed to receive specified mathematical model for calculating energy affects surge arrester and develop a method

  3. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  4. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  5. Scaling of Calcium Carbonate at Heated Surfaces in a Continuous System

    OpenAIRE

    Nergaard, Margrethe

    2011-01-01

    Scaling is the precipitation of a mineral layer on a surface. Sparingly soluble salts with inverse solubility, which calcium carbonate exhibits, will prefer precipitation at heated surfaces, making heat exchangers a target for scale formation. A continuous setup was used to study scale formation, the nature of the scale formed and scaling rate. An internally heated U-shaped tube was inserted into a continuously stirred tank, giving the same conditions for all scaling points. The experimental ...

  6. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  7. Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013

    Science.gov (United States)

    Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.

    2015-12-01

    Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.

  8. Application of the heat-balance and refined integral methods to the Korteweg-de Vries equation

    Directory of Open Access Journals (Sweden)

    Myers Timothy G.

    2009-01-01

    Full Text Available In this paper we consider approximate travelling wave solutions to the Korteweg-de Vries equation. The heat-balance integral method is first applied to the problem, using two different quartic approximating functions, and then the refined integral method is investigated. We examine two types of solution, chosen by matching the wave speed to that of the exact solution and by imposing the same area. The first set of solutions is generally better with an error that is fixed in time. The second set of solutions has an error that grows with time. This is shown to be due to slight discrepancies in the wave speed.

  9. An analytic model of pool boiling critical heat flux on an immerged downward facing curved surface

    International Nuclear Information System (INIS)

    He, Hui; Pan, Liang-ming; Wu, Yao; Chen, De-qi

    2015-01-01

    Highlights: • Thin liquid film and supplement of liquid contribute to the CHF. • CHF increases from the bottom to the upper of the lowerhead. • Evaporation of thin liquid film is dominant nearby bottom region. • The subcooling has significant effects on the CHF. - Abstract: In this paper, an analytical model of the critical heat flux (CHF) on the downward facing curved surface for pool boiling has been proposed, which hypothesizes that the CHF on the downward facing curved is composed of two parts, i.e. the evaporation of the thin liquid film underneath the elongated bubble adhering to the lower head outer surface and the depletion of supplement of liquid due to the relative motion of vapor bubbles along with the downward facing curved. The former adopts the Kelvin–Helmholtz instability analysis of vapor–liquid interface of the vapor jets which penetrating in the thin liquid film. When the heat flux closing to the CHF point, the vapor–liquid interface becomes highly distorted, which block liquid to feed the thin liquid film and the thin liquid film will dry out gradually. While the latter considers that the vapor bubbles move along with the downward facing curved surface, and the liquid in two-phase boundary layer enter the liquid film that will be exhausted when the CHF occurs. Based on the aforementioned mechanism and the energy balance between the thin liquid film evaporation and water feeding, and taking the subcooling of the bulk water into account, the mathematic model about the downward facing curved surface CHF has been proposed. The CHF of the downward facing curved surface for pool boiling increases along with the downward facing orientation except in the vicinity of bottom center region, because in this region the vapor bubble almost stagnates and the evaporation of the thin liquid film is dominant. In addition, the subcooling has significant effect on the CHF. Comparing the result of this model with the published experimental results show

  10. Comprehensive study of flow and heat transfer at the surface of circular cooling fin

    Science.gov (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  11. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  12. The theoretical and experimental evaluation of the heat balance in perfused tissue

    NARCIS (Netherlands)

    Crezee, J.; Mooibroek, J.; Lagendijk, J. J.; van Leeuwen, G. M.

    1994-01-01

    Accurate treatment planning is necessary for the successful application of hyperthermia in the clinic. The validity of four different bioheat models or combinations of models is evaluated: the conventional bioheat transfer equation, the limited effective conductivity model, a mixed heat

  13. Internal thermotopography and shifts in general thermal balance in man under special heat transfer conditions

    Science.gov (United States)

    Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.

    1974-01-01

    Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.

  14. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    Science.gov (United States)

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  16. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    Science.gov (United States)

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  17. Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS

    Science.gov (United States)

    Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur

    2018-05-01

    Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the

  18. Thermal-hydraulic performance of the finned surface of a compact heat exchanger

    International Nuclear Information System (INIS)

    Errasti Cabrera, Michel

    2015-01-01

    In this work the thermal-hydraulic behavior of the finned surface of a compact heat exchanger is obtained in tube-fin configuration corrugated (wavy). Through numerical simulation are determined average values ​​of intensification of heat transfer and pressure loss in the inter-channel finned. The objective is to characterize the surface to use as a reference, to make comparisons with other heat exchange surfaces enhanced using traditional techniques combined with more current, such as vortex generators. The study is conducted in laminar flow, with Reynolds numbers below 1000. In the working model compact exchanger tubes and corrugated fins (wavy) heat is described, and the results of the coefficient of overall heat transfer and the pressure drop are explained from the local characteristics of the velocity field and temperature inside the heat exchanger. (Full text)

  19. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    International Nuclear Information System (INIS)

    Hong, Soon-Joon; Choo, Yeon-Jun; Ha, Sang-Jun

    2016-01-01

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect

  20. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon-Joon; Choo, Yeon-Jun [FNC Tech., Yongin (Korea, Republic of); Ha, Sang-Jun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect.

  1. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    Science.gov (United States)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  2. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Company Ltd., Seoul (Korea, Republic of); Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    A gas cooled reactor has the advantage of being able to create a higher temperature coolant than a water cooled reactor. We can take advantage of supplying electricity as well as process heat. Recently, taking the export opportunity of a commercial nuclear power plants in UAE, Middle East area where politically stable and resource-rich seems promising for further nuclear business. Even if construction cost is more expensive than water cooled reactors, a high temperature gas cooled reactor is an attractive option from the viewpoint of safety. It can reduce the domestic use of fossil fuels and secure power and water, which is the most important part of people's daily life. All- Electrical Mode (AEM) operates only for the purpose of electricity generation. Rated Cogeneration Mode (RCM) uses approximately 60% of the total flow as process heat. We use a part flow exiting the high pressure turbine of end portion to the process heat, and the flow channel to a heat exchanger and a deaerator is changed at this time. Turbine Bypass Mode (TBM) will be used to supply the process heat by blocking all flow to the turbines.

  3. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR

    International Nuclear Information System (INIS)

    Lee, Sang Il; Yoo, Yeon Jae; Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan

    2015-01-01

    A gas cooled reactor has the advantage of being able to create a higher temperature coolant than a water cooled reactor. We can take advantage of supplying electricity as well as process heat. Recently, taking the export opportunity of a commercial nuclear power plants in UAE, Middle East area where politically stable and resource-rich seems promising for further nuclear business. Even if construction cost is more expensive than water cooled reactors, a high temperature gas cooled reactor is an attractive option from the viewpoint of safety. It can reduce the domestic use of fossil fuels and secure power and water, which is the most important part of people's daily life. All- Electrical Mode (AEM) operates only for the purpose of electricity generation. Rated Cogeneration Mode (RCM) uses approximately 60% of the total flow as process heat. We use a part flow exiting the high pressure turbine of end portion to the process heat, and the flow channel to a heat exchanger and a deaerator is changed at this time. Turbine Bypass Mode (TBM) will be used to supply the process heat by blocking all flow to the turbines

  4. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Directory of Open Access Journals (Sweden)

    Jandačka J.

    2013-04-01

    Full Text Available Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe. Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  5. The structural design of the experimental equipment for unconventional heating water using heat transfer surfaces located in the heat source

    Science.gov (United States)

    Kaduchová, K.; Lenhard, R.; Gavlas, S.; Jandačka, J.

    2013-04-01

    Flue gas temperature at throat of most industrially produced fireplaces is around 250 to 350 °C. It's quite interesting thermal potential, which can be even before sucking up the chimney back utilize. One of the potential uses of this device to heat the hot water. Article refers to the structural design of such a device, which works with the transfer of heat through a substance changes phase from liquid to steam in a sealed tube (heat pipe). Benefits of heat pipes is their light weight, the thermal effect of a rapid and low maintenance costs.

  6. Thermal response to heat fluxes of the W7-AS divertor surface submitted to surface modification under high temperature treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, D., E-mail: dieter.hildebrandt@ipp.mpg.d [Euratom Association, Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald (Germany); Duebner, A. [Euratom Association, Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald (Germany); Greuner, H.; Wiltner, A. [Teilinstitut Garching, Boltzmannstr. 2, 85748 Garching (Germany)

    2009-06-15

    Some target tiles of the W7-AS divertor has been investigated with respect to their thermal behaviour at the surface during power loading with well-defined heat fluxes in the Gladis facility. The primary aim was to examine uncertainties in the determination of heat fluxes derived from IR-thermography during operation of W7-AS. It is found that the derived heat flux profiles are strongly influenced by the local distribution of plasma-deposited contamination analyzed by AES and SIMS. With the observed actual surface conditions characterized by redeposited contamination equivalent up to about 1 mum thickness, the heat fluxes were partially overestimated up to a factor of 4 during operation of W7-AS. This uncertainty is observed to be significantly reduced after heat treatment at temperatures beyond 700 deg. C attained at power flux densities of 10.5 MW/m{sup 2} and durations longer than 5 s.

  7. Thermal response to heat fluxes of the W7-AS divertor surface submitted to surface modification under high temperature treatment

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Duebner, A.; Greuner, H.; Wiltner, A.

    2009-01-01

    Some target tiles of the W7-AS divertor has been investigated with respect to their thermal behaviour at the surface during power loading with well-defined heat fluxes in the Gladis facility. The primary aim was to examine uncertainties in the determination of heat fluxes derived from IR-thermography during operation of W7-AS. It is found that the derived heat flux profiles are strongly influenced by the local distribution of plasma-deposited contamination analyzed by AES and SIMS. With the observed actual surface conditions characterized by redeposited contamination equivalent up to about 1 μm thickness, the heat fluxes were partially overestimated up to a factor of 4 during operation of W7-AS. This uncertainty is observed to be significantly reduced after heat treatment at temperatures beyond 700 deg. C attained at power flux densities of 10.5 MW/m 2 and durations longer than 5 s.

  8. The impacts of urban surface characteristics on radiation balance and meteorological variables in the boundary layer around Beijing in summertime

    Science.gov (United States)

    Liu, Ruiting; Han, Zhiwei; Wu, Jian; Hu, Yonghong; Li, Jiawei

    2017-11-01

    In this study, some key geometric and thermal parameters derived from recent field and satellite observations in Beijing were collected and incorporated into WRF-UCM (Weather Research and Forecasting) model instead of previous default ones. A series of sensitivity model simulations were conducted to investigate the influences of these parameters on radiation balance, meteorological variables, turbulence kinetic energy (TKE), as well as planetary boundary layer height (PBLH) in regions around Beijing in summer 2014. Model validation demonstrated that the updated parameters represented urban surface characteristics more realistically and the simulations of meteorological variables were evidently improved to be closer to observations than the default parameters. The increase in building height tended to increase and slightly decrease surface air temperature at 2 m (T2) at night and around noon, respectively, and to reduce wind speed at 10 m (WS10) through a day. The increase in road width led to significant decreases in T2 and WS10 through the whole day, with the maximum changes in early morning and in evening, respectively. Both lower surface albedo and inclusion of anthropogenic heat (AH) resulted in increases in T2 and WS10 over the day, with stronger influence from AH. The vertical extension of the impact of urban surface parameters was mainly confined within 300 m at night and reached as high as 1600 m during daytime. The increase in building height tended to increase TKE and PBLH and the TKE increase was larger at night than during daytime due to enhancements of both mechanical and buoyant productions. The increase in road width generally reduced TKE and PBLH except for a few hours in the afternoon. The lower surface albedo and the presence of AH consistently resulted in increases of TKE and PBLH through both day and night. The increase in building height induced a slight divergence by day and a notable convergence at night, whereas the increase in road width

  9. The electrohydraulic balance of the solar heat storage with autonomous power supply

    Directory of Open Access Journals (Sweden)

    M. K. Marahtanov

    2014-01-01

    Full Text Available The introduction of the paper emphasizes an increasingly important role of alternative power sources nowadays. At the same time, a solar collector (suntrap is one of the most frequent techniques to use the solar energy. It is an absorber that picks up solar radiation and heats a heat carrier circulating in the close loop. Then the heat is transferred to the heat accumulator that is integrated in the hot-tap water system (HWS.The paper presents a prospective circuit of the solar collector. It differs from the traditional one because, in addition to absorbing panel, it uses photoconverters to generate electric power for the circulating pump. The advantage of this system is that for operation such a solar energy converter has no need in external power sources, i.e. it is autonomous. The need to calculate the essential thermo-physical parameters that ensure no-break system operation was stated as a main objective of the work.The suggested circuit has a photocell panel to convert solar radiation into dc voltage of 12 V. In case of a lack of the solar energy an accumulator battery can be used for feeding. To ensure the no-break supply of power an adaptor is offered.To calculate a density distribution of solar radiation a sine law is offered depending on the time of day and geographical locality. This dependence was used to obtain the expressions for calculating the water temperature in boiler over daytime.Further, the calculations have been done for the operating conditions under which an efficient heat exchange will be provided with the minimum consumption of electric power for the heat carrier circulation in the first loop. For this purpose, a pump power was calculated depending on consumption and hydraulic losses of head in the pipeline. As a minimum required consumption the value has been chosen at which a laminar flow regime changes to the turbulent one because of the most efficient heat exchange being both in collector and in heat accumulator

  10. IRAS observations of dust heating and energy balance in the Rho Ophiuchi dark cloud

    Science.gov (United States)

    Greene, Thomas P.; Young, Erick T.

    1989-01-01

    The equilibrium process dust emission in the Rho Ophiuchi dark cloud is studied. The luminosity of the cloud is found to closely match the luminosity of the clouds's known embedded and external radiation sources. There is no evidence for a large population of undetected low-luminosity sources within the cloud and unknown external heating is also only a minor source of energy. Most of the cloud's luminosity is emitted in the mid-to-far-IR. Dust temperature maps indicate that the dust is not hot enough to heat the gas to observed temperatures. A simple cloud model with a radiation field composed of flux HD 147889, S1, and Sco OB2 associations predicts the observed IRAS 60 to 100 micron in-band flux ratios for a mean cloud density n(H2) = 1400. Flattened 12 and 25 micron observations show much extended emission in these bands, suggesting stochastic heating of very small grains or large molecules.

  11. Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes

    NARCIS (Netherlands)

    Vizcaino, M.; Lipscomb, W.H.; Sacks, W.J.; van den Broeke, M.R.

    2014-01-01

    This study presents the first twenty-first-century projections of surface mass balance (SMB) changes for the Greenland Ice Sheet (GIS) with the Community Earth System Model (CESM), which includes a new ice sheet component. For glaciated surfaces, CESM includes a sophisticated calculation of energy

  12. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960-2014

    NARCIS (Netherlands)

    Kuipers Munneke, P.; Ligtenberg, S. R M; Noël, B. P Y; Howat, I. M.; Box, J. E.; Mosley-Thompson, E.; McConnell, J. R.; Steffen, K.; Harper, J. T.; Das, S. B.; Van Den Broeke, M. R.

    2015-01-01

    Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes

  13. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  14. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  15. An inverse hyperbolic heat conduction problem in estimating surface heat flux by the conjugate gradient method

    International Nuclear Information System (INIS)

    Huang, C.-H.; Wu, H.-H.

    2006-01-01

    In the present study an inverse hyperbolic heat conduction problem is solved by the conjugate gradient method (CGM) in estimating the unknown boundary heat flux based on the boundary temperature measurements. Results obtained in this inverse problem will be justified based on the numerical experiments where three different heat flux distributions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the boundary heat flux. Moreover, the drawbacks of the previous study for this similar inverse problem, such as (1) the inverse solution has phase error and (2) the inverse solution is sensitive to measurement error, can be avoided in the present algorithm. Finally, it is concluded that accurate boundary heat flux can be estimated in this study

  16. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  17. Thermoregulation of water foraging honeybees--balancing of endothermic activity with radiative heat gain and functional requirements.

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd

    2010-12-01

    Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (T(a)) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (T(th)) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of T(a) (3-30 °C). At warmer conditions (T(a)=30-39 °C) T(th) increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of T(body)-T(a) of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a T(a) of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase T(th) by about 1-3 °C to improve force production of flight muscles. At higher T(a) they exhibited cooling efforts to get rid of excess heat. A high T(th) also allowed regulation of the head temperature high enough to guarantee proper function of the bees' suction pump even at low T(a). This shortened the foraging stays and this way reduced energetic costs. With decreasing T(a) bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    Science.gov (United States)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  19. CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient

    International Nuclear Information System (INIS)

    Mihálka, Peter; Matiašovský, Peter

    2016-01-01

    The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity of an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.

  20. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-08-01

    Full Text Available Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i modify a DGVM for simulating land surface water balances; (ii evaluate the modified model in simulating actual evapotranspiration (ET, soil moisture, and surface runoff at regional or watershed scales; and (iii gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ DGVM. To evaluate the model we ran LH using historical (1981–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52. The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15% with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt

  1. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  2. Inter-comparison of energy balance and hydrological models for land surface energy flux estimation over a whole river catchment

    DEFF Research Database (Denmark)

    Guzinski, R.; Nieto, H.; Stisen, S.

    2015-01-01

    Evapotranspiration (ET) is the main link between the natural water cycle and the land surface energy budget. Therefore water-balance and energy-balance approaches are two of the main methodologies for modelling this process. The water-balance approach is usually implemented as a complex....... The temporal patterns produced by the remote sensing and hydrological models are quite highly correlated (r ≈ 0.8). This indicates potential benefits to the hydrological modelling community of integrating spatial information derived through remote sensing methodology (contained in the ET maps...

  3. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    International Nuclear Information System (INIS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-01-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies. (letter)

  4. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    Science.gov (United States)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model

  5. Heat flux estimates of power balance on Proto-MPEX with IR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Showers, M., E-mail: mshower1@vols.utk.edu [Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Biewer, T. M.; Caughman, J. B. O.; Goulding, R. H.; Rapp, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Donovan, D. C. [Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-11-15

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX’s performance may be identified, increasing its PMI research capabilities.

  6. Heat flux estimates of power balance on Proto-MPEX with IR imaging

    International Nuclear Information System (INIS)

    Showers, M.; Biewer, T. M.; Caughman, J. B. O.; Goulding, R. H.; Rapp, J.; Donovan, D. C.

    2016-01-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX’s performance may be identified, increasing its PMI research capabilities.

  7. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  8. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  9. Experimental study of water droplets on over-heated nano/microstructured zirconium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seol Ha [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Ahn, Ho Seon [Division of Mechanical System Engineering, Incheon National University, 406-772 (Korea, Republic of); Kim, Joonwon [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2014-10-15

    Highlights: • Heat transfer performance of a droplet on a modified zirconium surface is evaluated. • Modified (nano/micro-) surfaces enhanced heat transfer rate and Leidenfrost point. • A highly wettable condition of the modified surface contributes the enhancement. • Nano-scaled modification indicates the higher performance of droplet cooling. • Investigation via visualization of the droplet support the heat transfer experimental data. - Abstract: In this study, we observed the behavior of water droplets near the Leidenfrost point (LFP) on zirconium alloy surfaces with anodizing treatment and investigated the droplet cooling performance. The anodized zirconium surface, which consists of bundles of nanotubes (∼10–100 nm) or micro-mountain-like structures, improved the wetting characteristics of the surface. A deionized water droplet (6 μL) was dropped onto test surfaces heated to temperatures ranging from 250 °C to the LFP. The droplet dynamics were investigated through high-speed visualization, and the cooling performance was discussed in terms of the droplet evaporation time. The modified surface provided vigorous, intensive nucleate boiling in comparison with a clean, bare surface. Additionally, we observed that the structured surface had a delayed LFP due to the high wetting condition induced by strong capillary wicking forces on the structured surface.

  10. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  11. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    Science.gov (United States)

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  12. Re-assessment of recent (2008–2013 surface mass balance over Dome Argus, Antarctica

    Directory of Open Access Journals (Sweden)

    Minghu Ding

    2016-04-01

    Full Text Available At Dome Argus, East Antarctica, the surface mass balance (SMB from 2008 to 2013 was evaluated using 49 stakes installed across a 30×30 km area. Spatial analysis showed that at least 12 and 20 stakes are needed to obtain reliable estimates of SMB at local scales (a few hundred square metres and regional scales (tens of square kilometres, respectively. The estimated annual mean SMB was 22.9±5.9 kg m−2 yr−1, including a net loss by sublimation of −2.22±0.02 kg m−2 yr−1 and a mass gain by deposition of 1.37±0.01 kg m−2 yr−1. Therefore, ca. 14.3% of precipitation was modified after deposition, which should be considered when interpreting snow or ice core records produced by future drilling projects. The surface snow density and SMB in the western portion of Dome Argus are higher than in other areas, and these differences are likely related to the katabatic wind, which is strengthened by topography in this sector. A new digital elevation model (DEM of Dome Argus was generated, confirming that both peaks of the dome can be considered as the summit of the East Antarctic Ice Sheet. Findings from this study should be valuable for validating SMB estimates obtained from regional climate models and DEMs established using remote-sensing data.

  13. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  14. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  15. Multi-sensor remote sensing parameterization of heat fluxes over heterogeneous land surfaces

    NARCIS (Netherlands)

    Faivre, R.D.

    2014-01-01

    The parameterization of heat transfer by remote sensing, and based on SEBS scheme for turbulent heat fluxes retrieval, already proved to be very convenient for estimating evapotranspiration (ET) over homogeneous land surfaces. However, the use of such a method over heterogeneous landscapes (e.g.

  16. Heat transfer and vascular cambium necrosis in the boles of trees during surface fires

    Science.gov (United States)

    M. B. Dickinson

    2002-01-01

    Heat-transfer and cell-survival models are used to link surface fire behavior with vascular cambium necrosis from heating by flames. Vascular cambium cell survival was predicted with a numerical model based on the kinetics of protein denaturation and parameterized with data from the literature. Cell survival was predicted for vascular cambium temperature regimes...

  17. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency heat...

  18. Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions

    International Nuclear Information System (INIS)

    Herz, A.; Malayeri, M.R.; Mueller-Steinhagen, H.

    2008-01-01

    The deterioration of heat transfer performance due to fouling is the prime cause for higher energy consumption and inefficiency in many industrial heat exchangers such as those in power plants, refineries, food and dairy industries. Fouling is also a very complex process in which many geometrical, physical and operating parameters are involved with poorly understood interaction. Among them, the surface roughness is an important surface characteristic that would greatly influence crystallisation fouling mechanisms and hence deposition morphology and stickability to the surface. In this work, the effect of the surface roughness of AISI 304 BA stainless steel surfaces on fouling of an aqueous solution with inverse solubility behaviour has been investigated under convective heat transfer. Several experiments have been performed on roughened surfaces ranging from 0.18 to 1.55 μm for different bulk concentrations and heat fluxes. The EDTA titration method was used to measure the concentration of the calcium sulphate salt in order to maintain it at constant value during each fouling run. Experimental results show that the heat transfer coefficient of very rough surfaces (1.55 μm) decreases more rapidly than that of 0.54 μm. Several facts contribute to this behaviour notably (1) increased of primary heterogeneous nucleation rate on the surfaces; (2) reduction of local shear stress in the valleys and (3) reduced removal rate of the crystals from the surfaces where the roughness elements protrude out of the viscous sub-layer. The results also show linear and proportional variation of the fouling rate and heat flux within the range of operating conditions. In addition, the deposition process in terms of fouling rate could only be affected at lower surface contact angles. Such results would particularly be of interest for new surface treatment technologies which aim at altering the surface texture

  19. Analytical study of condensation heat transfer on titanium tube with super-hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Dae Yun; Park, Hyun Gyu; Lee, Kwon Yeong [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    There are many nuclear or fossil power plants which occupy more than 85% among entire power plants in the world. These plants release heat through condenser into nature. The condenser is an important component for cooling the working fluid after the turbine. Its performance is related with material and size of its tubes. To have good performance or to reduce condenser size, it is important to increase condensation heat transfer coefficient on condenser tubes. Ma et al. executed heat transfer experiment in dropwise condensation with non-condensable gas, and studied how the amount of air and pressure difference affect condensation heat transfer coefficient. The more non-condensable gas existed, the condensation heat transfer coefficient was decreased. Shen et al. studied condensation heat transfer at horizontal bundle tubes. Several variables such as coolant velocity, saturated pressure, and surface conditions were studied. As a result, surface modified brass tube and stainless tube showed higher condensation heat transfer coefficient as much as 1.3 and 1.4 times comparing with their bare tubes, in 70 kPa vacuum condition respectively. Rausch et al. studied dropwise condensation on ion-implanted titanium surface. Experimental study is performed to evaluate the performance of surface modified titanium tube in vacuum state. SAM coating is used to make super-hydrophobic surface of titanium tube. Preliminary analysis were performed considering filmwise and dropwise condensations, respectively. Experiment facility is almost prepared and the test result will be shown soon.

  20. Turbulence Control Through Selective Surface Heating Using Microwave Radiation

    Science.gov (United States)

    2013-05-01

    3 Model Size 3 Mod el Vibrator Array Fig.3.5. New optimized experimental chamber in MRTI – the full electrodynamic analogue of new wind...before the model burnout that enable only a limited number of test runs. The main drawback of the MW heating resultd from the non-uniformity of energy... burnout occurred in a certain point, organic substances in model burnt out and were blown away but some of them consisting mainly of carbon

  1. Experimental and Theoretical Analysis of Headlight Surface Temperature in an Infrared Heated Stress Relieving Oven

    Directory of Open Access Journals (Sweden)

    Mustafa MUTLU

    2016-04-01

    Full Text Available In this study, the IR heated stress relieve oven was experimentally and theoretically examined. In experimental measurements, temperature was measured on headlight surface, placed in IR oven at various conveyor speeds and various distances between IR lamps and headlight surface. In theoretical study, a mathematical model was developed for the headlights surface temperature by using heat transfer theory. The results obtained by the mathematical model and the measurement showed very good agreement with a 6.5 % average error. It is shown that mathematical models can be used to estimate the surface temperatures when the oven is operated under different conditions.

  2. Heat balance calculation and feasibility analysis for initial startup of Fuqing nuclear turbine unit with non-nuclear steam

    International Nuclear Information System (INIS)

    He Liu; Xiao Bo; Song Yumeng

    2014-01-01

    Non-nuclear steam run up compared with nuclear steam run up, can verify the design, manufacture, installation quality of the unit, at the same time shorten the follow-up duration of the entire group ready to start debugging time. In this paper, starting from the first law of thermodynamics, Analyzed Heat balance Calculation and Feasibility analysis for Initial startup of Fuqing nuclear Turbine unit with Non-nuclear steam, By the above calculation, to the system requirements and device status on the basis of technical specifications, confirmed the feasibility of Non-nuclear steam running up in theory. After the implementation of the Non-nuclear turn of Fuqing unit, confirmed the results fit with the actual process. In summary, the Initial startup of Fuqing turbine unit with Non-nuclear steam is feasible. (authors)

  3. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Leatherbacks swimming in silico: modeling and verifying their momentum and heat balance using computational fluid dynamics.

    Science.gov (United States)

    Dudley, Peter N; Bonazza, Riccardo; Jones, T Todd; Wyneken, Jeanette; Porter, Warren P

    2014-01-01

    As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal's niche through analyzing the animal's physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades.

  5. Leatherbacks swimming in silico: modeling and verifying their momentum and heat balance using computational fluid dynamics.

    Directory of Open Access Journals (Sweden)

    Peter N Dudley

    Full Text Available As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal's niche through analyzing the animal's physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades.

  6. Rough wall skin friction measurements using a high resolution surface balance

    International Nuclear Information System (INIS)

    Krogstad, Per-Age; Efros, Vladislav

    2010-01-01

    This paper describes the design of a floating element friction balance which is based upon a commercially available micro force balance. The balance has a perfectly linear calibration function and was successfully applied to rough wall flows in a channel and a diffusor. Extrapolation of the turbulent shear stress measured by two component LDA to the wall matched very well the shear stress measured using the friction balance. Also, the wall shear stress obtained from the balance in the fully developed channel flow agreed with the stress that could be derived from the pressure gradient to within 3%.

  7. Heat transfer effect of an extended surface in downward-facing subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul R., E-mail: khan@vis.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Erkan, Nejdet, E-mail: erkan@vis.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan); Okamoto, Koji, E-mail: okamoto@n.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki, 319-1188 (Japan)

    2015-12-15

    Highlights: • Compare downward-facing flow boiling results from bare and extended surfaces. • Upstream and downstream temperatures were measured on the extended surface. • Downstream temperatures exceed upstream temperatures for all flow rates. • Bubble accumulation occurs downstream on extended surface. • Extended surface heat transfer lower than bare surface as flow rate reduced. - Abstract: New BWR containment designs are considering cavity flooding as an accident management strategy. Unlike the PWR, the BWR has many Control Rod Guide Tube (CRGT) penetrations in the lower head. During a severe accident scenario with core melt in the lower plenum along with cavity flooding, the penetrations may affect the heat transfer on the ex-vessel surface and disrupt fluid flow during the boiling process. A small-scale experiment was performed to investigate the issues existing in downward-facing boiling phenomenon with an extended surface. The results were compared with a bare (flat) surface. The mass flux of 244 kg/m{sup 2} s, 215 kg/m{sup 2} s, and 177 kg/m{sup 2} s were applied in this study. CHF conditions were observed only for the 177 kg/m{sup 2} s case. The boiling curves for both types of surfaces and all flow rates were obtained. The boiling curves for the highest flow rate showed lower surface temperatures for the extended surface experiments when compared to the bare surface. The downstream location on the extended surface yielded the highest surface temperatures as the flow rate was reduced. The bubble accumulation and low velocity in the wake produced by flow around the extended surface was believed to have caused the elevated temperatures in the downstream location. Although an extended surface may enhance the overall heat transfer, a reduction in the local heat transfer was observed in the current experiments.

  8. Assessing modeled Greenland surface mass balance in the GISS Model E2 and its sensitivity to surface albedo

    Science.gov (United States)

    Alexander, Patrick; LeGrande, Allegra N.; Koenig, Lora S.; Tedesco, Marco; Moustafa, Samiah E.; Ivanoff, Alvaro; Fischer, Robert P.; Fettweis, Xavier

    2016-04-01

    The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) plays an important role in global sea level change. Regional Climate Models (RCMs) such as the Modèle Atmosphérique Régionale (MAR) have been employed at high spatial resolution with relatively complex physics to simulate ice sheet SMB. Global climate models (GCMs) incorporate less sophisticated physical schemes and provide outputs at a lower spatial resolution, but have the advantage of modeling the interaction between different components of the earth's oceans, climate, and land surface at a global scale. Improving the ability of GCMs to represent ice sheet SMB is important for making predictions of future changes in global sea level. With the ultimate goal of improving SMB simulated by the Goddard Institute for Space Studies (GISS) Model E2 GCM, we compare simulated GrIS SMB against the outputs of the MAR model and radar-derived estimates of snow accumulation. In order to reproduce present-day climate variability in the Model E2 simulation, winds are constrained to match the reanalysis datasets used to force MAR at the lateral boundaries. We conduct a preliminary assessment of the sensitivity of the simulated Model E2 SMB to surface albedo, a parameter that is known to strongly influence SMB. Model E2 albedo is set to a fixed value of 0.8 over the entire ice sheet in the initial configuration of the model (control case). We adjust this fixed value in an ensemble of simulations over a range of 0.4 to 0.8 (roughly the range of observed summer GrIS albedo values) to examine the sensitivity of ice-sheet-wide SMB to albedo. We prescribe albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 v6 to examine the impact of a more realistic spatial and temporal variations in albedo. An age-dependent snow albedo parameterization is applied, and its impact on SMB relative to observations and the RCM is assessed.

  9. The role of a convective surface in models of the radiative heat transfer in nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com; Al-Mazroui, W.A.; Al-Hatmi, F.S.; Al-Lawatia, M.A.; Eltayeb, I.A.

    2014-08-15

    Highlights: • The role of a convective surface in modelling with nanofluids is investigated over a wedge. • Surface convection significantly controls the rate of heat transfer in nanofluid. • Increased volume fraction of nanoparticles to the base-fluid may not always increase the rate of heat transfer. • Effect of nanoparticles solid volume fraction depends on the types of constitutive materials. • Higher heat transfer in nanofluids is found in a moving wedge rather than in a static wedge. - Abstract: Nanotechnology becomes the core of the 21st century. Nanofluids are important class of fluids which help advancing nanotechnology in various ways. Convection in nanofluids plays a key role in enhancing the rate of heat transfer either for heating or cooling nanodevices. In this paper, we investigate theoretically the role of a convective surface on the heat transfer characteristics of water-based nanofluids over a static or moving wedge in the presence of thermal radiation. Three different types of nanoparticles, namely copper Cu, alumina Al{sub 2}O{sub 3} and titanium dioxide TiO{sub 2} are considered in preparation of nanofluids. The governing nonlinear partial differential equations are made dimensionless with the similarity transformations. Numerical simulations are carried out through the very robust computer algebra software MAPLE 13 to investigate the effects of various pertinent parameters on the flow field. The obtained results presented graphically as well as in tabular form and discussed from physical and engineering points of view. The results show that the rate of heat transfer in a nanofluid in the presence of thermal radiation significantly depends on the surface convection parameter. If the hot fluid side surface convection resistance is lower than the cold fluid side surface convection resistance, then increased volume fraction of the nanoparticles to the base fluid may reduces the heat transfer rate rather than increases from the surface of

  10. Water dynamics in mango (Mangifera indica L.) fruit during the young and mature fruit seasons as measured by the stem heat balance method

    International Nuclear Information System (INIS)

    Higuchi, H.; Sakuratani, T.

    2006-01-01

    Water flows in the stem and peduncle of mango fruit were monitored, and the surface transpiration from the fruit was measured during the fruit-growing season. The stem heat balance method was used on the peduncle to monitor the inward water flow during the nighttime, and the reverse water flow from the fruit during the daytime when the stem transpiration water flow increased. This diurnal fluctuation pattern in the water flow was more evident in mature fruit than in young fruit. In mature fruit, the daily water loss due to the reverse flow was estimated to be 3% of the fruit weight. The reverse flow water loss and transpired water loss were compensated for by nocturnal inward water flow, through the peduncle, of 30 g over 15 h. These results were well supported by measurements of fruit dimensions, which indicated a circadian rhythm of contraction and expansion. The reverse flow amounted to 80% of the water loss from the daytime contraction of the fruit, a much greater proportion than the fruit surface transpiration

  11. Actual evapotranspiration modeling using the operational Simplified Surface Energy Balance (SSEBop) approach

    Science.gov (United States)

    Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.

    2013-01-01

    Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0

  12. Particle balance studies in TEXTOR during experiments of pellet injection, helium injection, and ICR-heating

    International Nuclear Information System (INIS)

    Banno, T.; Finken, K.H.; Gray, D.S.; Winter, J.

    1995-01-01

    Analysis based on the particle conservation law has been carried out to observe the global fuelling process in tokamak discharges. The response of the net recycling flux from the first wall is investigated in the tokamak TEXTOR, using calibrated signals of the gas feed rate, the neutral gas pressure in the vessel, the total amount of electrons, and the particle removal rates by the ALT-II belt-pump limiter and by a main pump unit. Net absorption (pumping) of hydrogen by the wall is observed for almost all tokamak discharges since a new wall conditioning technique called siliconisation is employed. The net absorption or fuelling depending on the discharge condition influenced by injection of pellets, by helium gas injection combined with neutral beam injection, and by rf heating can be interpreted in terms of the particle-induced desorption effect with depth profile taken into consideration. ((orig.))

  13. Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system

    Science.gov (United States)

    Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul

    2018-05-01

    In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.

  14. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  15. Turbulent circulation above the surface heat source in a stably stratified environment

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-09-01

    The results of the numerical modeling of turbulent structure of the penetrating convection above the urban heat island with a small aspect ratio in a stably stratified medium at rest are presented. The gradient diffusion representations for turbulent momentum and heat fluxes are used, which depend on three parameters — the turbulence kinetic energy, the velocity of its spectral expenditure, and the dispersion of temperature fluctuations. These parameters are found from the closed differential equations of balance in the RANS approach of turbulence description. The distributions of averaged velocity and temperature fields as well as turbulent characteristics agree well with measurement data.

  16. Power cycle heat balance software for personal computer (PC)2TM

    International Nuclear Information System (INIS)

    Bockh, P. von; Rodriguez, H.

    1996-01-01

    This paper describes the PC-based power cycle balance of plant software (PC)trademark (Power Cycle on Personal Computer). It is designed to assist nuclear, fossil, and industrial power plants so that steam cycles can be simulated, analyzed and optimized. First, the cycle model is developed on the screen. The elements of the power cycle are taken from a tool box containing all components of a modern power cycle. The elements are connected by using a mouse. The next step is the input of the design values of the components or data taken from performance tests. This entire input sequence is guided by the program. Based on the input data, the physical behavior of each component is simulated according to established physical rules. Part load operation or other off-design conditions can be calculated. The program is designed for use by power plant engineers and power engineering firms to optimize new power cycles, perform problem-solving analyses, optimize component retrofit, and train power plant engineers and operators. It also can be used by universities to educate engineering students

  17. Multi-objective synthesis of work and heat exchange networks: Optimal balance between economic and environmental performance

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Jiménez, Laureano; Caballero, José A.

    2017-01-01

    Highlights: • New multi-objective optimization model for the simultaneous WHEN synthesis. • A multistage superstructure allows power and thermal integration of process streams. • Simultaneous minimization of environmental impacts and total annualized cost. • Alternative set of Pareto solutions is presented to support decision-makers. - Abstract: Sustainable and efficient energy use is crucial for lessening carbon dioxide emissions in industrial plants. This paper introduces a new multi-objective optimization model for the synthesis of work and heat exchange networks (WHENs), aiming to obtain the optimal balance between economic and environmental performance. The proposed multistage superstructure allows power and thermal integration of process gaseous streams, through the simultaneous minimization of total annualized cost (TAC) and environmental impacts (EI). The latter objective is determined by environmental indicators that follow the life cycle assessment (LCA) principles. The WHEN superstructure is optimized as a multi-objective mixed-integer nonlinear programming (moMINLP) model and solved with the GAMS software. Results show a decrease of ∼79% in the heat transfer area and ∼32% in the capital cost between the solutions found for single problem optimizations. These results represent a diminution of ∼23.5% in the TAC, while EI is increased in ∼99.2%. As these solutions can be impractical for economic or environmental reasons, we present a set of alternative Pareto-optimal solutions to support decision-makers towards the implementation of more environment-friendly and cost-effective WHENs.

  18. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering

    International Nuclear Information System (INIS)

    Huang Xianai; Kocaefe, Duygu; Kocaefe, Yasar; Boluk, Yaman; Krause, Cornélia

    2013-01-01

    Highlights: ► Investigate detailed structural changes of heat-treated wood due to weathering. ► Identify connection between physical structural changes and chemical degradation. ► Study effect of heat treatment conditions on weathering degradation process. - Abstract: Effect of artificial weathering on the surface structural changes of birch (Betule papyrifera) wood, heat-treated to different temperatures, was studied using the fluorescence microscopy and the scanning electron microscopy (SEM). Changes in the chemical structure of wood components were analyzed by FTIR in order to understand the mechanism of degradation taking place due to heat treatment and artificial weathering. The results are compared with those of the untreated (kiln-dried) birch. The SEM analysis results show that the effect of weathering on the cell wall of the untreated birch surface is more than that of heat-treated samples. The FTIR spectroscopy results indicate that lignin is the most sensitive component of heat-treated birch to the weathering degradation process. Elimination of the amorphous and highly crystallised cellulose is observed for both heat-treated and untreated wood during weathering. It is also observed that heat treatment increases the lignin and crystallised cellulose contents, which to some extent protects heat-treated birch against degradation due to weathering.

  19. Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn compaction modelling

    DEFF Research Database (Denmark)

    Sørensen, L. S.; Simonsen, Sebastian Bjerregaard; Nielsen, K.

    2010-01-01

    ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat...... in estimating the mass balance of the Greenland ice sheet. We find firn dynamics and surface densities to be important factors in deriving the mass loss from remote sensing altimetry. The volume change derived from ICESat data is corrected for firn compaction, vertical bedrock movement and an intercampaign...... boundary conditions. We find an annual mass loss of the Greenland ice sheet of 210 ± 21 Gt yr-1 in the period from October 2003 to March 2008. This result is in good agreement with other studies of the Greenland ice sheet mass balance, based on different remote sensing techniques....

  20. Heat transfer from the roughened surface of gas cooled fast breeder reactor fuel element

    International Nuclear Information System (INIS)

    Tang, I.M.

    1979-01-01

    The temperature distributions and the augmentation of heat transfer performance by artificial roughening of a gas cooled fast breeder reactor (GCFR) fuel rod cladding are studied. Numerical solutions are based on the axisymmetric assumption for a two-dimensional model for one rib pitch of axial distance. The local and axial clad temperature distributions are obtained for both the rectangular and ramp rib roughened surface geometries. The transformation of experimentally measured convective heat transfer coefficients, in terms of Stanton number, into GCFR values is studied. In addition, the heat transfer performance of a GCFR fuel rod cladding roughened surface design is evaluated. Approximate analytical solution for correlating an average Stanton number is also obtained and satisfactorily compared with the corresponding numerical result for a GCFR design. The analytical correlation is useful in assessing roughened surface heat transfer performance in scoping studies and conceptual design

  1. Response of concrete exposed to a high heat flux on one surface

    International Nuclear Information System (INIS)

    Muir, J.F.

    1977-11-01

    Experiments were performed to investigate the response of concrete to severe thermal environments such as might be encountered during the interaction of molten reactor core materials with the containment substructure following a hypothetical fuel melt accident. The dominant mechanism for erosion of both limestone and basaltic concrete appears to be melting of the cementitious material in the matrix. The erosion proceeded in a quiescent manner with negligible spallation. The erosion rate increased with heat flux, becoming as large as approximately 70 cm/hr for a net surface heat flux of roughly 190 W/cm 2 . Analyses reveal the surface temperature to be the single most significant parameter affecting the net surface heat flux, through its importance to emitted radiation; and that the greatest fraction of the net energy transmitted to the concrete goes into sensible heat

  2. A study on the effects of heated surface wettability on nucleation characteristics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Kajihara, Tomoyuki; Kaiho, Kazuhiro; Okawa, Tomio

    2014-01-01

    Subcooled flow boiling plays an important role in boiling water reactors because it influences the heat transfer performance from fuel rods, two-phase flow stabilities, and neutron moderation characteristics. In the present study, flow visualization of water subcooled flow boiling in a vertical heated channel was carried out to investigate the mechanisms of void fraction development. The two surfaces of distinctly different contact angles were used as the heated surface to investigate the effect of the surface wettability. It was observed that with an increase in the wall heat flux, more nucleation sites were activated and larger bubbles were produced at low-frequency. It was considered that formation of these large bubbles primarily contributed to the void fraction development. (author)

  3. Properties of the surface snow in Princess Elizabeth Land, East Antarctica - climate and non-climate dependent variability of the surface mass balance and stable water isotopic composition

    Science.gov (United States)

    Vladimirova, D.; Ekaykin, A.; Lipenkov, V.; Popov, S. V.; Petit, J. R.; Masson-Delmotte, V.

    2017-12-01

    Glaciological and meteorological observations conducted during the past four decades in Princess Elizabeth Land, East Antarctica, are compiled. The database is used to investigate spatial patterns of surface snow isotopic composition and surface mass balance, including detailed information near subglacial lake Vostok. We show diverse relationships between snow isotopic composition and surface temperature. In the most inland part (elevation 3200-3400 m a.s.l.), surface snow isotopic composition varies independently from surface temperature, and is closely related to the distance to the open water source (with a slope of 0.98±0.17 ‰ per 100 km). Surface mass balance values are higher along the ice sheet slope, and relatively evenly distributed inland. The minimum values of snow isotopic composition and surface mass balance are identified in an area XX km southwestward from Vostok station. The spatial distribution of deuterium excess delineates regions influenced by the Indian Ocean and Pacific Ocean air masses, with Vostok area being situated close to their boundary. Anomalously high deuterium excess values are observed near Dome A, suggesting high kinetic fractionation for its moisture source, or specifically high post-deposition artifacts. The dataset is available for further studies such as the assessment of skills of general circulation or regional atmospheric models, and the search for the oldest ice.

  4. Strategies for Balance maintenance in Different Support Surfaces - Mechanisms, Trainability and Transfer to Single-Leg Landing Performance

    DEFF Research Database (Denmark)

    Silva, Priscila de Brito

    2016-01-01

    that postural control strategies are affected by surface stability and optimized with training, but also that the adaptations to training are transferred to movement strategies of sports gestures not involved in the training. This thesis offers a new perspective on how balance training provides protective...

  5. Surface energy balance in the ablation zone of Langfjordjøkelen, an arctic, maritime glacier in northern Norway

    NARCIS (Netherlands)

    Giesen, Rianne H.; Andreassen, Liss M.; Oerlemans, Johannes; van den Broeke, Michiel R.

    2014-01-01

    Glaciers in northern and southern Norway are subject to different daily and seasonal cycles of incoming solar radiation, which is presumably reflected in the importance of net solar radiation in their surface energy balance. We present a 3 year continuous record from an automatic weather station in

  6. Radiation balance at the surface in the city of São Paulo, Brazil: diurnal and seasonal variations

    NARCIS (Netherlands)

    Ferreira, M.J.; Oliveira, de A.P.; Soares, J.; Codato, G.; Wilde Barbaro, E.; Escobedo, J.F.

    2012-01-01

    The main goal of this work is to describe the diurnal and seasonal variations of the radiation balance components at the surface in the city of São Paulo based on observations carried out during 2004. Monthly average hourly values indicate that the amplitudes of the diurnal cycles of net radiation

  7. Estimating Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR

    NARCIS (Netherlands)

    Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallee, H

    2012-01-01

    We report future projections of Surface Mass Balance (SMB) over the Greenland ice sheet (GrIS) obtained with the regional climate model MAR, forced by the outputs of three CMIP5 General Circulation Models (GCMs) when considering two different warming scenarios (RCP 4.5 and RCP 8.5). The GCMs

  8. Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2012-11-01

    Full Text Available Four high-resolution regional climate models (RCMs have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB, and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs. This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2, with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.

  9. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  10. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  11. Heat-resisting alloys for hard surfacing and sealing pad welding

    Directory of Open Access Journals (Sweden)

    R.O. Wielgosz

    2010-07-01

    Full Text Available The paper deals with heat-resisting alloys used to harden surfaces of elements operating in increased temperatures. It also deals with alloysused to seal cooperating surfaces of elements operating in the conditions of increased temperatures and aggressive utilities. Application methods and properties of thus obtained layers have been presented and adhesion of layers with matrix material has been assessed.

  12. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    Science.gov (United States)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  13. Estimating the ice thickness of mountain glaciers with an inverse approach using surface topography and mass-balance

    International Nuclear Information System (INIS)

    Michel, Laurent; Picasso, Marco; Farinotti, Daniel; Bauder, Andreas; Funk, Martin; Blatter, Heinz

    2013-01-01

    We present a numerical method to estimate the ice thickness distribution within a two-dimensional, non-sliding mountain glacier, given a transient surface geometry and a mass-balance distribution, which are relatively easy to obtain for a large number of glaciers. The inverse approach is based on the shallow ice approximation (SIA) of ice flow and requires neither filtering of the surface topography with a lower slope limit nor approximation of constant basal shear stress. We first address this problem for a steady-state surface geometry. Next, we use an apparent surface mass-balance description that makes the transient evolution quasi-stationary. Then, we employ a more elaborated fixed-point method in which the bedrock solution is iteratively obtained by adding the difference between the computed and known surface geometries at the end of the considered time interval. In a sensitivity study, we show that the procedure is much more susceptible to small perturbations in surface geometry than mass-balance. Finally, we present preliminary results for bed elevations in three space dimensions. (paper)

  14. Effects of heat flux on dropwise condensation on a superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung Won; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of); Kim, Dong Hyun [KAERI, Daejeon (Korea, Republic of); Jo, Hang Jin [University of Wisconsin-Madison, Wisconsin (United States); Kim, Moo Hwan [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The condensation heat transfer efficiencies of superhydrophobic surfaces that have ∼160.deg. contact angle under atmospheric conditions were investigated experimentally. The departing diameter and the contact angle hysteresis of droplets were measured by capturing front and tilted side views of condensation phenomena with a high speed camera and an endoscope, respectively. Condensation behaviors on the surface were observed at the micro-scale using an Environmental scanning electron microscope (ESEM). Apparently-spherical droplets formed at very low heat flux q' ∼20 kW/m{sup 2} but hemispherical droplets formed at high q' ∼ 440 kW/m{sup 2} . At high q', heat transfer coefficients were lower on the superhydrophobic surface than on a hydrophobic surface although the superhydrophobic surface is water repellent so droplets roll off. The results of contact angle hysteresis and ESEM image revealed that the reduced heat transfer of the surface can be attributed to the large size of departing droplets caused by adhesive condensed droplets at nucleation sites. The results suggest that the effect of q' or degree of sub-cooling of a condensation wall determine the droplet shape, which is closely related to removal rates of condensates and finally to the heat transfer coefficient.

  15. Surface development of a brazing alloy during heat treatment-a comparison between UHV and APXPS

    Science.gov (United States)

    Rullik, L.; Johansson, N.; Bertram, F.; Evertsson, J.; Stenqvist, T.; Lundgren, E.

    2018-01-01

    In an attempt to bridge the pressure gap, APXPS was used to follow the surface development of an aluminum brazing sheet during heating in an ambient oxygen-pressure mimicking the environment of an industrial brazing furnace. The studied aluminum alloy brazing sheet is a composite material consisting of two aluminum alloy standards whose surface is covered with a native aluminum oxide film. To emphasize the necessity of studies of this system in ambient sample environments it is compared to measurements in UHV. Changes in thickness and composition of the surface oxide were followed after heating to 300 °C, 400 °C, and 500 °C. The two sets presented in this paper show that the surface development strongly depends on the environment the sample is heated in.

  16. Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process

    Directory of Open Access Journals (Sweden)

    Sina Lohrasbi

    2016-09-01

    Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.

  17. Inverse determination of convective heat transfer between an impinging jet and a continuously moving flat surface

    International Nuclear Information System (INIS)

    Mobtil, Mohammed; Bougeard, Daniel; Solliec, Camille

    2014-01-01

    Highlights: • A new method for convective heat flux determination on a moving wall is proposed. • An inverse technique is used for retrieving the heat flux from IR measurements. • Heat flux distribution determination in the slot jet impingement area is performed. • The accuracy of the method is examined using CFD Based simulated experiments. • The inversion quality is tested according to several parameters of the experiments. - Abstract: In this study an inverse method is developed to determine the heat flux distribution on a moving plane wall. The method uses a thin layer of material (the measurement medium) glued on the conveyor belt. The heat flux distribution on the moving wall is then determined by an inverse method based on the temperature measurement by infrared thermography on the upper surface of the measurement medium. A finite element based inverse algorithm of a steady state heat conduction advection in the Eulerian frame is performed. The algorithm entails the use of the Tikhonov regularization method, along with the L-curve method to select an optimal regularization parameter. Both the direct solution of moving boundary problem and the inverse design formulation are presented. The accuracy of the inverse method is examined by simulating the exact and noisy data with four different values of the surface-to-jet velocity ratio, and two different materials (PVC and Aluminum) for the measurement medium. The results show a greater sensitivity to the convective heat flux allowing a better estimation of heat flux distribution for the PVC layer. An alternative underdetermined inverse scheme is also studied. This configuration allows a different extend between the retrieval heat flux surface and the measurement temperature surface

  18. Water balance versus land surface model in the simulation of Rhine river discharges

    NARCIS (Netherlands)

    Hurkmans, R.T.W.L.; Moel, de H.; Aerts, J.C.J.H.; Troch, P.A.

    2008-01-01

    Accurate streamflow simulations in large river basins are crucial to predict timing and magnitude of floods and droughts and to assess the hydrological impacts of climate change. Water balance models have been used frequently for these purposes. Compared to water balance models, however, land

  19. A MASS BALANCE OF SURFACE WATER GENOTOXICITY IN PROVIDENCE RIVER (RHODE ISLAND USA)

    Science.gov (United States)

    White and Rasmussen (Mutation Res. 410:223-236) used a mass balance approach to demonstrate that over 85% of the total genotoxic loading to the St. Lawrence River at Montreal is non-industrial. To validate the mass balance approach and investigate the sources of genotoxins in sur...

  20. A population balance approach considering heat and mass transfer-Experiments and CFD simulations

    International Nuclear Information System (INIS)

    Krepper, Eckhard; Beyer, Matthias; Lucas, Dirk; Schmidtke, Martin

    2011-01-01

    in the simulations. For a better quantitative reproduction, reliable models for the heat transfer at high Reynolds number as well as for bubble breakup and coalescence are needed.

  1. Heat transfer control in a plane magnetic fluid layer with a free surface

    International Nuclear Information System (INIS)

    Bashtovoi, V.G.; Pogirnitskaya, S.G.; Reks, A.G.

    1993-01-01

    The heat transfer mechanisms that are specific to a magnetic liquid have been already investigated extensively. The high sensitivity of the free magnetic liquid surface to the external magnetic field introduces a new feature into the heat transfer process. In the present work, the authors have investigated the possibility of controlling the heat transfer through the phenomenon of magnetic liquid surface instability in a uniform magnetic field. The conditions for heat transfer through a chamber, partially filled with a magnetic liquid, are governed by the characteristics of the free liquid surface and by its stability and development in the supercritical magnetic fields. The authors consider a model two-dimensional problem of heat transfer through a two-layer medium consisting of horizontally situated immiscible layers of magnetic and nonmagnetic liquids with given thermal conductivities. In the absence of an external magnetic field, the interface of the liquids represents a plane surface. In fields which exceed the critical magnitude, the interface is deformed along the wave. As the field intensity is increased, the amplitude of interface distortion becomes larger. The two-dimensional shape of the free magnetic liquid surface may be realized experimentally using two plane layers of magnetic and nonmagnetic liquids in a uniform magnetic field tangent to the interface of the component layers. 7 refs., 9 figs

  2. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    Science.gov (United States)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  3. Development of micro-engineered textured tungsten surfaces for high heat flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharafat, Shahram, E-mail: shahrams@ucla.edu [University of California Los Angeles, CA (United States); Aoyama, Aaron [University of California Los Angeles, CA (United States); Williams, Brian, E-mail: brian.williams@ultramet.com [Ultramet Inc., Pacoima, CA (United States); Ghoniem, Nasr [University of California Los Angeles, CA (United States)

    2013-11-15

    Surface micro-engineering can enhance the thermo-mechanical performance of plasma facing components (PFCs). For example, castellation of a surface can reduce thermal stress due to high heat loads and thus provide higher thermo-mechanical resilience. Recently, fabrication of a variety of micro-sized refractory dendrites with reproducible geometric characteristics (e.g., density, length, height, and aspect ratio) has been demonstrated. In contrast to flat surfaces exposed to high heat loads, dendrites deform independently to minimize near-surface thermal stress, which results in improved thermo-mechanical performance. Thus, the use of dendrites offers a unique micro-engineering approach to enhance the performance of PFC structures. A brief overview of W, Re, and Mo dendritic structures is given along with micrographs that show dendrite-coated surfaces. The thermal responses of representative dendrite structures are analyzed as a function of aspect ratios and dendrite geometry. The heat-management capability of needle-like dendrites exposed to a surface energy of up to 1 MJ/m{sup 2} is analyzed and compared to a flat surface. It is concluded that dendrite structures can significantly reduce thermal stress in the substrate when compared to flat surfaces. Implications of dendritic surfaces on sputter erosion rates are also discussed briefly.

  4. Satellite-based Calibration of Heat Flux at the Ocean Surface

    Science.gov (United States)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  5. Initial heats of H{sub 2}S adsorption on activated carbons: Effect of surface features

    Energy Technology Data Exchange (ETDEWEB)

    Bagreev, A.; Adib, F.; Bandosz, T.J.

    1999-11-15

    The sorption of hydrogen sulfide was studied on activated carbons of various origins by means of inverse gas chromatography at infinite dilution. The conditions of the experiment were dry and anaerobic. Prior to the experiments the surface of some carbon samples was oxidized using either nitric acid or ammonium persulfate. Then the structural parameters of carbons were evaluated from the sorption of nitrogen. From the IGC experiments at various temperatures, heats of adsorption were calculated. The results showed that the heat of H{sub 2}S adsorption under dry anaerobic conditions does not depend on surface chemistry. The dependence of the heat of adsorption on the characteristic energy of nitrogen adsorption calculated from the Dubinin-Raduskevich equation was found. This correlation can be used to predict the heat of H{sub 2}S adsorption based on the results obtained from nitrogen adsorption.

  6. Fungistatic activity of heat-treated flaxseed determined by response surface methodology.

    Science.gov (United States)

    Xu, Y; Hall, C; Wolf-Hall, C

    2008-08-01

    The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicilliumn chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P<0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P<0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 degrees C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.

  7. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    International Nuclear Information System (INIS)

    Shimazaki, Yoichi

    2003-01-01

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level

  8. Prediction of turbulent heat transfer with surface blowing using a non-linear algebraic heat flux model

    International Nuclear Information System (INIS)

    Bataille, F.; Younis, B.A.; Bellettre, J.; Lallemand, A.

    2003-01-01

    The paper reports on the prediction of the effects of blowing on the evolution of the thermal and velocity fields in a flat-plate turbulent boundary layer developing over a porous surface. Closure of the time-averaged equations governing the transport of momentum and thermal energy is achieved using a complete Reynolds-stress transport model for the turbulent stresses and a non-linear, algebraic and explicit model for the turbulent heat fluxes. The latter model accounts explicitly for the dependence of the turbulent heat fluxes on the gradients of mean velocity. Results are reported for the case of a heated boundary layer which is first developed into equilibrium over a smooth impervious wall before encountering a porous section through which cooler fluid is continuously injected. Comparisons are made with LDA measurements for an injection rate of 1%. The reduction of the wall shear stress with increase in injection rate is obtained in the calculations, and the computed rates of heat transfer between the hot flow and the wall are found to agree well with the published data

  9. Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq Using the Surface Energy Balance Algorithm for Land (SEBAL and Water Balance

    Directory of Open Access Journals (Sweden)

    Hussein Jassas

    2015-04-01

    Full Text Available Increasing dependence on groundwater requires a detailed determination of the different outputs and inputs of a basin for better water management. Determination of spatial and temporal actual evapotranspiration (ETa, in this regard, is of vital importance as there is significant water loss from drainage basins. This research paper uses the Surface Energy Balance Algorithm for Land (SEBAL, as well as the water balance, to estimate the spatial and temporal ETa in the Al-Khazir Gomal Basin, Northern Iraq. To compensate for the shortage in rainfall, and to irrigate summer crops, farmers in this basin have been depending, to a large extent, on groundwater extracted from the underlying unconfined aquifer, which is considered the major source for both domestic and agricultural uses in this basin. Rainfed farming of wheat and barley is one of the most important activities in the basin in the winter season, while in the summer season, agricultural activity is limited to small rice fields and narrow strips of vegetable cultivation along the Al-Khazir River. The Landsat Thematic Mapper images (TM5 acquired on 21 November 2006, 9 March 2007, 5 May 2007, 21 July 2007, and 23 September 2007 were used, along with a digital elevation model (DEM and ground-based meteorological data, measured within the area of interest. Estimation of seasonal ETa from periods between satellite overpasses was computed using the evaporative fraction (Ʌ. The water balance approach was utilized, using meteorological data and river hydrograph analysis, to estimate the ETa as the only missing input in the predefined water balance equation. The results of the two applied methods were comparable. SEBAL results were compared with the land use land cover (LULC map. The river showed the highest ETa, as evaporation from the free-water surface. Rice fields, irrigated in the summer season, have a high ETa in the images, as these fields are immersed in water during June, July and August

  10. Frost behavior of a fin surface with temperature variation along heat exchanger fins

    International Nuclear Information System (INIS)

    Kim, Jung Soo; Kim, Min Soo; Lee, Kwan Soo; Kim, Ook Joong

    2007-01-01

    This paper presents a mathematical model for predicting the frost behavior formed on heat exchanger fins, considering fin heat conduction under frosting condition. The model is composed of air-side, the frost layer, and fin region, and they are coupled to the frost layer. The frost behavior is more accurately predicted with fin heat conduction considered (Case A) than with a constant fin surface temperature assumed (Case B). The results indicate that the frost thickness and heat transfer rate for Case B are over-predicted in most regions of the fin, as compared to those for Case A. Also, for Case A, the maximum frost thickness varies little with the fin length variations, and the extension of the fin length over 30 mm contributes insignificantly to heat transfer

  11. Spatial Manipulation of Heat Flow by Surface Boundaries at the Nanoscale

    Science.gov (United States)

    Malhotra, Abhinav; Maldovan, Martin

    The precise manipulation of phonon transport properties is central to controlling thermal transport in semiconductor nanostructures. The physical understanding, prediction, and control of thermal phonon heat spectra and thermal conductivity accumulation functions - which establish the proportion of heat transported by phonons with different frequencies and mean-free-paths - has attracted significant attention in recent years. In this talk, we advance the possibilities of manipulating heat by spatially modulating thermal transport in nanostructures. We show that phonon scattering at interfaces impacts the most preferred physical pathway used by heat energy flow in thermal transport in nanostructures. The role of introducing boundaries with different surface conditions on resultant thermal flux is presented and methodologies to enhance these spatial modulations are discussed. This talk aims to advance the fundamental understanding on the nature of heat transport at nanoscale with potential applications in multiple research areas ranging from energy materials to optoelectronics.

  12. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    International Nuclear Information System (INIS)

    Piasecka, Magdalena; Strąk, Kinga; Grabas, Bogusław; Maciejewska, Beata

    2016-01-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining. (paper)

  13. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  14. Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization

    International Nuclear Information System (INIS)

    Moita, A.S.; Moreira, A.L.N.

    2007-01-01

    This paper addresses an experimental study aimed at characterizing the mechanisms of disintegration which occur when individual water and fuel droplets impact onto heated surfaces. The experiments consider the use of a simplified flow configuration and make use of high-speed visualization together with image processing techniques to characterize the morphology of the impact and to quantify the outcome of secondary atomization in terms of droplet size and number. The results evidence that surface topography, wettability and liquid properties combine in a complex way to alter the wetting behaviour of droplets at impact at different surface temperatures. The relative importance of the dynamic vapor pressure associated with the rate of vaporization and surface roughness increases with surface temperature and becomes dominant at the film boiling regime. The analysis is aimed at giving a phenomenological description of droplet disintegration within the various heat transfer regimes

  15. Flow boiling heat transfer on nanowire-coated surfaces with highly wetting liquid

    International Nuclear Information System (INIS)

    Shin, Sangwoo; Choi, Geehong; Kim, Beom Seok; Cho, Hyung Hee

    2014-01-01

    Owing to the recent advances in nanotechnology, one significant progress in energy technology is increased cooling ability. It has recently been shown that nanowires can improve pool boiling heat transfer due to the unique features such as enhanced wetting and enlarged nucleation sites. Applying such nanowires on a flow boiling, which is another major class of boiling phenomenon that is associated with forced convection, is yet immature and scarce despite its importance in various applications such as liquid cooling of energy, electronics and refrigeration systems. Here, we investigate flow boiling heat transfer on surfaces that are coated with SiNWs (silicon nanowires). Also, we use highly-wetting dielectric liquid, FC-72, as a working fluid. An interesting wetting behavior is observed where the presence of SiNWs reduces wetting and wicking that in turn leads to significant decrease of CHF (critical heat flux) compared to the plain surface, which opposes the current consensus. Also, the effects of nanowire length and Reynolds number on the boiling heat transfer are shown to be highly nonmonotonic. We attempt to explain such an unusual behavior on the basis of wetting, nucleation and forced convection, and we show that such factors are highly coupled in a way that lead to unusual behavior. - Highlights: • Observation of suppressed wettability in the presence of surface roughness (nanowires). • Significant reduction of critical heat flux in the presence of nanowires. • Nonmonotonic behavior of heat transfer coefficient vs. nanowire length and Reynolds number

  16. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  17. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  18. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  19. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs

  20. Heat Transfer and Pressure Drop with Rough Surfaces, a Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1964-05-15

    This literature survey deals with changes in heat transfer coefficient and friction factor with varying nature and degree of roughness. Experimental data cover mainly the turbulent flow region for both air and water as flow mediums. Semiempirical analysis about changes in heat transfer coefficient due to roughness has been included. An example of how to use these data to design a heat exchanger surface is also cited. The extreme case of large fins has not been considered. Available literature between 1933 - 1963 has been covered.

  1. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. A review of surface heat-flow data of the northern Middle Atlas (Morocco)

    Science.gov (United States)

    Chiozzi, Paolo; Barkaoui, Alae-Eddine; Rimi, Abdelkrim; Verdoya, Massimo; Zarhloule, Yassine

    2017-12-01

    We revised thermal data available from water and oil wells in the northern sector of the Middle Atlas region. To avoid biased estimation of surface heat flow caused by advection likely occurring in shallow aquifers, temperature measurements in water boreholes were carefully inspected and selected. The heat flow in the oil wells was inferred by taking into account the porosity variation with depth, the temperature effect on thermal conductivity of the matrix and the pore fluid, together with the contribution of the radiogenic heat production. Moreover, the possible bias in heat flow caused by convection occurring in confined carbonate aquifers was evaluated. The results of heat flow slightly modify the picture reported in previous investigations. The heat flow value over the investigated region is rather uniform (about 80 mW m-2) and is similar in oil wells and in water boreholes. Geothermal calculations indicate that such a surface heat flow is compatible with a ∼70 km thick thermal lithosphere and normal thermal conditions in the asthenospheric mantle.

  3. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    International Nuclear Information System (INIS)

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-01-01

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase φ, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0 degree and 350 degree. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system

  4. Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces

    Science.gov (United States)

    Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.

    2016-07-01

    The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.

  5. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data

    Directory of Open Access Journals (Sweden)

    C. Corbari

    2010-10-01

    Full Text Available Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST for a distributed hydrological water balance model (FEST-EWB using LST from AHS (airborne hyperspectral scanner, with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model.

    Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity.

    Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process.

    The study site is the agricultural area of Barrax (Spain that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.

  6. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  7. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  8. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  9. Oscillations and chaos on the free surface of a heated fluid

    Energy Technology Data Exchange (ETDEWEB)

    Arecchi, F T; Ciliberto, S; Rubio, M A

    1984-04-01

    We report the observation of oscillatory and chaotic instabilites on a fluid layer with a free surface, heated from below. The system is driven in a bidimensional state by a spatial modulation of the heat flux on the free surface. For increasing temperature gradients the system yields oscillations periodic in time, initially at a frequency of 8 mHz, then with a second frequency lower by a ratio 30 and eventually with an aperiodic behaviour corresponding to the onset of turbulent regime. The oscillatory regions are localized in space.

  10. The effects of one period of exercise walking program on textured surface on balance in Multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Asadi Ghaleni M

    2015-04-01

    Full Text Available Abstract Background: Multiple sclerosis (MS is a chronic progressive disease of the central nervous system with signs and symptoms such as fatigue and balance that are disable. The purpose of this study was to assess the effect of training which instructions focus of attention on postural sway of multiple sclerosis patients. Materials and Methods: The present quasi-experimental study used a pretest-posttest design. The subjects with the age of 27-42, expanded disability status scale 1-4 and were purposefully and voluntarily selected and randomly allocated to the experimental and control groups. Training program for groups was carried out in 3 weeks, five sessions per week, and each session lasted about one hour. Berg Balance Scale was used to measure balance. The data was analyzed by using analysis of independent and dependent sample t-test at a significance level of p≤0.05. Results: The results showed that significant improvements observed in balance (p≤0/05. Also significant differences observed between post hoc scores in the experimental and control groups (p≥0/05. Conclusion: According to research findings, the exercise walking program on textured surface resulted in considerable improvements in balance in multiple sclerosis. Also, the respective specialists can use these exercies as a complementary treatment along with the drug therapy for patiens with multiple sclerosis.

  11. Subcooled flow boiling heat transfer from microporous surfaces in a small channel

    International Nuclear Information System (INIS)

    Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong

    2011-01-01

    The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)

  12. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  13. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod surface temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1993-03-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. A comparison between numerical calculations using commercial thermal analysis software packages and experimental data simulating a horizontally oriented spent fuel rod array was performed. Twelve cases were analyzed using air and helium for the fill gas, with three different heat dissipation levels. The numerically predicted temperatures are higher than the experimental data for all levels of heat dissipation with air as the fill gas. The temperature differences are 4 degree C and 23 degree C for the low heat dissipation and high heat dissipation, respectively. The temperature predictions using helium as a fill gas are lower for the low and medium heat dissipation levels, but higher at the high heat dissipation. The temperature differences are 1 degree C and 6 degree C for the low and medium heat dissipation, respectively. For the high heat dissipation level, the temperature predictions are 16 degree C higher than the experimental data. Differences between the predicted and experimental temperatures can be attributed to several factors. These factors include experimental uncertainty in the temperature and heat dissipation measurements, actual convection effects not included in the model, and axial heat flow in the experimental data. This work demonstrates that horizontally oriented spent fuel rod surface temperature predictions can be made using existing commercial software packages. This work also shows that end effects will be increasingly important as the amount of dissipated heat increases

  14. Abnormal high surface heat flow caused by the Emeishan mantle plume

    Science.gov (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  15. The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing

    International Nuclear Information System (INIS)

    Jamshidinia, Mahdi; Kovacevic, Radovan

    2015-01-01

    The influence of heat accumulation on surface roughness during powder-bed additive manufacturing was investigated. A series of Ti-6Al-4V thin plates were produced by using an identical heat input by electron beam melting® (EBM). Spacing distances of 5 mm, 10 mm, and 20 mm were used. The surface roughness of as-built thin plates was measured using a two-axis profilometer. A numerical model was developed to study the influence of spacing distance on heat accumulation. An inverse relationship between the spacing distance and surface roughness was revealed. The experimental and numerical results showed that the surface quality of buildups could be controlled not only by process parameters, but also by the arrangement of components in the buildup chamber. At a constant spacing distance, an increase in the number of powder layers resulted in the accumulation of more heat between the thin plates. An increase in the spacing distance resulted in an upward translation of the Bearing Area Curve (BAC) toward shallower depths, with a reduced core roughness depth (R k ) and peak height (R pk ). A logarithmic regression equation was established from the experimental data. This equation could be used to predict the surface roughness of parts fabricated by EBM® in the studied range of spacing distances. (paper)

  16. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  17. Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation

    International Nuclear Information System (INIS)

    Forster, M.; Augustin, W.; Bohnet, M.

    1999-01-01

    The accumulation of unwanted crystalline deposits (fouling) reduces the efficiency of heat exchangers considerably. In order to decrease the cost of fouling two strategies have been developed. The first fouling mitigation strategy is based on the modification of energy-and-geometry-related characteristics of the heat transfer surface to realize an increased duration of the induction period. By means of a drop-shape-analysis measurement device the interaction at the interface crystal/heat transfer surface is determined. The deployment of the fracture energy model and the interfacial defect model relates wetting characteristics to the adhesion phenomenon. Hence, a first estimation of the optimal choice of surface material is realized. Furthermore, the influence of surface topography on interfacial interactions has been analyzed. The second fouling mitigation strategy is based on the adjustment of the hydrodynamic flow conditions using a pulsation technique. Here, single strokes of higher velocity are superimposed on the stationary flow. These strokes shift the equilibrium of forces to an improved removal process. Fouling experiments have proved that pulsation is a powerful tool to mitigate the built-up of fouling layers on heat transfer surfaces. (author)

  18. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion

    International Nuclear Information System (INIS)

    Dai Zhishuang; Zhang Baoyan; Shi Fenghui; Li Min; Zhang Zuoguang; Gu Yizhuo

    2011-01-01

    Carbon fiber surface properties are likely to change during the molding process of carbon fiber reinforced matrix composite, and these changes could affect the infiltration and adhesion between carbon fiber and resin. T300B fiber was heat treated referring to the curing process of high-performance carbon fiber reinforced epoxy matrix composites. By means of X-ray photoelectron spectroscopy (XPS), activated carbon atoms can be detected, which are defined as the carbon atoms conjunction with oxygen and nitrogen. Surface chemistry analysis shows that the content of activated carbon atoms on treated carbon fiber surface, especially those connect with the hydroxyl decreases with the increasing heat treatment temperature. Inverse gas chromatography (IGC) analysis reveals that the dispersive surface energy γ S d increases and the polar surface energy γ S sp decreases as the heat treatment temperature increases to 200. Contact angle between carbon fiber and epoxy E51 resin, which is studied by dynamic contact angle test (DCAT) increases with the increasing heat treatment temperature, indicating the worse wettability comparing with the untreated fiber. Moreover, micro-droplet test shows that the interfacial shear strength (IFSS) of the treated carbon fiber/epoxy is lower than that of the untreated T300B fiber which is attributed to the decrement of the content of reactive functional groups including hydrogen group and epoxy group.

  19. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    International Nuclear Information System (INIS)

    Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

  20. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  1. Heat transfer and forces on concave surfaces in free molecule flow.

    Science.gov (United States)

    Fan, C.

    1971-01-01

    A Monte Carlo modeling technique is described for mathematically simulating free molecular flows over a concave spherical surface and a concave cylindrical surface of finite length. The half-angle of the surfaces may vary from 0 to 90 degrees, and the incident flow may have an arbitrary speed ratio and an arbitrary angle of attack. Partial diffuse reflection and imperfect energy accommodation for molecules colliding with the surfaces are also considered. Results of heat transfer, drag and lift coefficients are presented for a variety of flow conditions. The present Monte Carlo results are shown to be in very good agreement with certain available theoretical solutions.

  2. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 2: Antarctica (1979-2016)

    Science.gov (United States)

    Melchior van Wessem, Jan; van de Berg, Willem Jan; Noël, Brice P. Y.; van Meijgaard, Erik; Amory, Charles; Birnbaum, Gerit; Jakobs, Constantijn L.; Krüger, Konstantin; Lenaerts, Jan T. M.; Lhermitte, Stef; Ligtenberg, Stefan R. M.; Medley, Brooke; Reijmer, Carleen H.; van Tricht, Kristof; Trusel, Luke D.; van Ulft, Lambertus H.; Wouters, Bert; Wuite, Jan; van den Broeke, Michiel R.

    2018-04-01

    We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution ( ˜ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.

  3. Surface hardening of titanium alloys with melting depth controlled by heat sink

    Science.gov (United States)

    Oden, Laurance L.; Turner, Paul C.

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  4. Observationally constrained surface mass balance of Larsen C ice shelf, Antarctica

    Directory of Open Access Journals (Sweden)

    P. Kuipers Munneke

    2017-11-01

    Full Text Available The surface mass balance (SMB of the Larsen C ice shelf (LCIS, Antarctica, is poorly constrained due to a dearth of in situ observations. Combining several geophysical techniques, we reconstruct spatial and temporal patterns of SMB over the LCIS. Continuous time series of snow height (2.5–6 years at five locations allow for multi-year estimates of seasonal and annual SMB over the LCIS. There is high interannual variability in SMB as well as spatial variability: in the north, SMB is 0.40 ± 0.06 to 0.41 ± 0.04 m w.e. year−1, while farther south, SMB is up to 0.50 ± 0.05 m w.e. year−1. This difference between north and south is corroborated by winter snow accumulation derived from an airborne radar survey from 2009, which showed an average snow thickness of 0.34 m w.e. north of 66° S, and 0.40 m w.e. south of 68° S. Analysis of ground-penetrating radar from several field campaigns allows for a longer-term perspective of spatial variations in SMB: a particularly strong and coherent reflection horizon below 25–44 m of water-equivalent ice and firn is observed in radargrams collected across the shelf. We propose that this horizon was formed synchronously across the ice shelf. Combining snow height observations, ground and airborne radar, and SMB output from a regional climate model yields a gridded estimate of SMB over the LCIS. It confirms that SMB increases from north to south, overprinted by a gradient of increasing SMB to the west, modulated in the west by föhn-induced sublimation. Previous observations show a strong decrease in firn air content toward the west, which we attribute to spatial patterns of melt, refreezing, and densification rather than SMB.

  5. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  6. Urban surface temperature behaviour and heat island effect in a tropical planned city

    Science.gov (United States)

    Ahmed, Adeb Qaid; Ossen, Dilshan Remaz; Jamei, Elmira; Manaf, Norhashima Abd; Said, Ismail; Ahmad, Mohd Hamdan

    2015-02-01

    Putrajaya is a model city planned with concepts of a "city in the garden" and an "intelligent city" in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.

  7. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface

    International Nuclear Information System (INIS)

    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.

    2009-01-01

    In the present work, the effect of the use of a nanofluid in a miniature plate heat exchanger (PHE) with modulated surface has been studied both experimentally and numerically. First, the thermophysical properties (i.e., thermal conductivity, heat capacity, viscosity, density and surface tension) of a typical nanofluid (CuO in water, 4% v/v) were systematically measured. The effect of surface modulation on heat transfer augmentation and friction losses was then investigated by simulating the existing miniature PHE as well as a notional similar PHE with flat plate using a CFD code. Finally, the effect of the nanofluid on the PHE performance was studied and compared to that of a conventional cooling fluid (i.e., water). The results suggest that, for a given heat duty, the nanofluid volumetric flow rate required is lower than that of water causing lower pressure drop. As a result, smaller equipment and less pumping power are required. In conclusion, the use of the nanofluids seems to be a promising solution towards designing efficient heat exchanging systems, especially when the total volume of the equipment is the main issue. The only drawbacks so far are the high price and the possible instability of the nanoparticle suspensions.

  8. CONVECTIVE HEAT EXCHANGE ON THE LATERAL SURFACE OF A RELATIVELY LONG CYCLONE CHAMBER

    Directory of Open Access Journals (Sweden)

    E. N. Saburov

    2016-01-01

    Full Text Available The high-turbulent swirling flows of heat carrier that are created by a cyclone chamber are used in industry. They make it possible to intensify processes of heat and mass exchange. The results of an experimental study of convective heat transfer on the lateral surface of the active volume of a relatively long cyclone chamber considerably exceeding the length of the chambers that were used in previously performed studies are presented and analyzed in the article. Air supply in the swirler of the chamber was performed tangentially from diametrically opposite sides of the two input channels. The gas outlet was implemented from the opposite end. The heat transfer by convection to the swirling air flow was studied by the method of changing the state of aggregation of a heating agent – condensation of slightly superheated steam. Collecting condensate from the working section was made through a water seal for maintaining a constant pressure calorimeter. The amount of heat transferred during experiment was determined by weight of the collected condensate. The specific features of influence of geometrical characteristics of cyclone chamber on intensity of heat exchange are considered. In the experiments we varied the relative diameter of the outlet port of the chamber dвых and the relative area of the input channels fвх. Segmental construction of the chamber made it possible to move a calorimeter on its length. The local heat transfer coefficient was determined for various values of the dimensionless longitudinal coordinate z coinciding with the axis of the chamber, and counted from the back end of the swirler. The estimated equations of heat transfer obtained during the research are presented and recommended for use in practice of engineering. The considered problem is of an interest from the point of view of further research of aerodynamics and of convective heat transfer in a highly swirling flow cyclone devices, in order to improve the

  9. HEAT TREATMENTS OF HIGH TEMPERATURE DRIED NORWAY SPRUCE BOARDS: SACCHARIDES AND FURFURALS IN SAPWOOD SURFACES

    Directory of Open Access Journals (Sweden)

    Olov Karlsson,

    2012-02-01

    Full Text Available Carbohydrates that migrate to wood surfaces in sapwood during drying might influence properties such as mould susceptibility and colour. Sugars on the surface of Norway spruce boards during various heat treatments were studied. Samples (350mmx125mmx25mm were double-stacked, facing sapwood-side outwards, and dried at 110oC to a target moisture content (MC of 40%. Dried sub-samples (80 mm x 125 mm x 25 mm were stacked in a similar way and further heated at 110oC and at 130oC for 12, 24, and 36 hours, respectively. Glucose, fructose, and sucrose as well as 5-hydroxymethylfurfural (HMF and furfural in the sapwood surface layer of treated wood were analysed using HPLC (RI- and UV-detectors. Carbohydrates degraded to a lower extent at 110oC than at 130oC. Furfural and to a larger extent HMF increased with treatment period and temperature. Heat treatment led to a decrease in lightness and hue of the sapwood surface of sub-samples, while chroma increased somewhat. Furthermore, considerably faster degradation (within a few minutes of the carbohydrates on the surface of the dried spruce boards was observed when single sub-samples were conductively hot pressed at 200oC. Treatment period and initial MC influenced the presence of the carbohydrates in wood surface as well as colour change (Eab of the hot pressed sub-samples.

  10. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    International Nuclear Information System (INIS)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2016-01-01

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  11. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  12. Description os surface quadrupole oscillations of heateU spherical nuclei in the Brownian movement approximation

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1982-01-01

    Description of collective phenomena in heated nuclei within the framework of the Brownian approximation may be conditionally divided into two parts: 1) solution of the problem for some realization of a random force, 2) averaging in a set of all the possible realizations. Results of the present work are setted the first part of the problem in the case of surface quadrupole oscillations of spherical heated nuclei. Quadrupole surface oscillations of heated spherical nuclei are considered in the Brownian motion approximation. The integrals of motion are constructed taking into account the energy and angular momentum conservations for the nucleus in the process of relaxation of the collective excitations. Wave functions are obtained for states having definite values of the integrals of motion in the phonon representation. It is noted that the description scheme developed is easily used with respect to other multipolarity oscillations

  13. Thermoluminescence and cathodoluminescence studies of calcite and MgO: surface defects and heat treatment

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Brown, L.M.

    1988-01-01

    Some of the problems which preclude accurate thermoluminescence (TL) dating of geologically formed calcite stem from different sample pre-treatment procedures, such as grinding, drilling or pre-heating. It has long been known that grinding can introduce spurious TL in calcite, but there have been wide differences of opinion as to the magnitude of the influence and its importance. Therefore, various grinding and acid-washing procedures have been suggested to avoid spurious thermoluminescence. Various models have been developed to explain the mechanism. We have studied the changes in thermoluminescence (TL) and cathodoluminescence (CL) properties as well as in the spectral composition of the glow from calcite and MgO due to surface defects and heat treatment. It is found that both laboratory heat treatment and surface indents give rise to changes in TL efficiency. (author)

  14. Blowdown heat transfer surface in RELAP4/MOD6 and data comparisons

    International Nuclear Information System (INIS)

    Nelson, R.A.; Sullivan, L.H.

    1978-01-01

    RELAP4 is a thermal hydraulic analysis tool written to analyze transients in light water reactors (LWR). To date, most of the applications for RELAP4 have been to analyze postulated LOCA transients in LWR and the response of experimental systems to loss-of-coolant experiments. An important part of these analyses is the prediction of the fuel rod or heater surface temperature which involves the calculation of surface heat transfer coefficients. The paper describes the outcome of a significant blowdown heat transfer development effort which is incorporated in RELAP4/MOD6 (the current version of the code available to the United States public from the Argonne Code Center). The primary emphasis in the MOD6 development was on a PWR reflood capability. The best-estimate blowdown heat transfer correlation and logic were added to provide improved blowdown predictive capability

  15. Analysis of surface roughness effects on heat transfer in micro-conduits

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.; Kleinstreuer, C. [North Carolina State University, Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering

    2005-06-01

    Modern heat rejection systems, such as micro-heat sinks, are attractive because of their potential for high performance at small size and low weight. However, the impact of microscale effects on heat transfer have to be considered and quantitatively analyzed in order to gain physical insight and accurate Nusselt number data. The relative surface roughness (SR) was selected as a key microscale parameter, represented by a porous medium layer (PML) model. Assuming steady laminar fully developed liquid flow in microchannels and microtubes, the SR effects in terms of PML thermal conductivity ratio and Darcy number on the dimensionless temperature profile and Nusselt number were analyzed. In summary, the PML characteristics, especially the SR-number and conductivity ratio k{sub m}/k{sub f}, greatly affect the heat transfer performance where the Nusselt number can be either higher or lower than the conventional value. The PML influence is less pronounced in microtubes than in parallel-plate microchannels. (author)

  16. Nucleate pool-boiling heat transfer - I. Review of parametric effects of boiling surface

    International Nuclear Information System (INIS)

    Pioro, I.L.; Rohsenow, W.; Doerffer, S.S.

    2004-01-01

    The objective of this paper is to assess the state-of-the-art of heat transfer in nucleate pool-boiling. Therefore, the paper consists of two parts: part I reviews and examines the effects of major boiling surface parameters affecting nucleate-boiling heat transfer, and part II reviews and examines the existing prediction methods to calculate the nucleate pool-boiling heat transfer coefficient (HTC). A literature review of the parametric trends points out that the major parameters affecting the HTC under nucleate pool-boiling conditions are heat flux, saturation pressure, and thermophysical properties of a working fluid. Therefore, these effects on the HTC under nucleate pool-boiling conditions have been the most investigated and are quite well established. On the other hand, the effects of surface characteristics such as thermophysical properties of the material, dimensions, thickness, surface finish, microstructure, etc., still cannot be quantified, and further investigations are needed. Particular attention has to be paid to the characteristics of boiling surfaces. (author)

  17. Description of surface quadrupole oscillations of heated spherical nuclei in the Brownian-motion approximation

    International Nuclear Information System (INIS)

    Svin'in, I.R.

    1982-01-01

    The Brownian motion of a quadrupole quantum oscillator is considered as a model of surface quadrupole oscillations of heated spherical nuclei. The integrals of the motion related to energy and angular momentum conservation are constructed and the wave functions are obtained for states with definite values of these integrals of the motion in the phonon representation

  18. Experimental investigation of nucleate boiling on heated surfaces under subcooled conditions

    International Nuclear Information System (INIS)

    Schneider, C.; Hampel, R.; Traichel, A.; Hurtado, A.; Meissner, S.; Koch, E.

    2011-01-01

    In case of an accident at pressurized water reactors (PWR), critical boiling conditions can appear at the transition from bubble- to film boiling. During full power operation, heat transfer phenomena of sub cooled nucleate boiling occur on the surface of the fuel rods. To investigate the microscopic processes in nucleate boiling, a test facility with optical measuring methods was constructed. This allows analyzing the effects on a single bubble system at different parameters. For the generation of nucleate boiling, an optically transparent, electrically conductive coating was applied as a heating surface on a borosilicate substrate. The so-called ITO (Indium-Tin-Oxide) coating with a sheet resistance of 20 ohms enables an electrical heating at an optical transparent surface. These properties are prerequisites for the study of microscopic phenomena in the bubble formation with optical coherence tomography (OCT). OCT, generally used in medical diagnostics, is an imaging modality providing cross sectional and volumetric high resolution images. To make sure that the bubble formation takes place at a specific site, artificial nucleation sites in form of micro cavity will be inserted into the surface. Furthermore a small test facility was constructed to dedicate the wall temperature of a heated metal foil during subcooled boiling in non degassed water, which is the content of this paper. (author)

  19. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface

    International Nuclear Information System (INIS)

    Mukhopadhyay, Swati

    2011-01-01

    Highlights: ► Unsteady boundary layer flow and heat transfer over a non-isothermal stretching sheet in a magnetic field are studied. ► Fluid velocity and temperature decrease for increasing unsteadiness parameter. ► Fluid velocity decreases but temperature increases with the increasing values of the Hartman number. ► The sheet temperature in respect of distance and time has analogous effects on the heat transfer. - Abstract: An analysis is made for the unsteady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching surface having a variable and general form of surface temperature which removes the restrictions of the particular forms of prescribed surface temperature. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the unsteadiness parameter, magnetic parameter, the temperature exponent parameters. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. It is found that the fluid velocity and temperature decrease for increasing unsteadiness parameter. Fluid velocity decreases with the increasing values of the Hartman number resulting an increase in the temperature field in steady as well in unsteady case. It is observed that the variation of the sheet temperature in respect of distance and time has analogous effects both on the free surface temperature and on the heat transfer rate (Nusselt number) at the sheet.

  20. DNS of Turbulent Flow and Heat Transfer in a Channel with Surface Mounted Cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  1. DNS of turbulent flow and heat transfer in a channel with surface mounted cubes

    NARCIS (Netherlands)

    Verstappen, R.W.C.P.; Velde, R.M. van der; Veldman, A.E.P.

    2000-01-01

    The turbulent flow and heat transfer in a channel with surface mounted cubical obstacles forms a generic example of a problem that occurs in many engineering applications, for instance in the design of cooling devices. We have performed a numerical simulation of it without using any turbulence

  2. Effect of surface roughness on heat transfer from horizontal immersed tubes in a fluidized bed

    International Nuclear Information System (INIS)

    Grewal, N.S.; Saxena, S.C.

    1979-01-01

    Experimental results of the total heat transfer coefficient between 12.7 mm dia copper tubes with four different rough surfaces and glass beads of three different sizes as taken in a 0.305 m x 0.305 m square fluidized bed as a function of fluidizing velocity are reported. The comparison of results for the rough and technically smooth tubes suggests that the heat transfer coefficient strongly depends on the ratio of pitch (P/sub f/) to the average particle diameter (d/sub p/), where P/sub f/ is the distance between the two corresponding points on consecutive threads or knurls. By the proper choice of (P/sub f//d/sub p/) ratio, the maximum total heat transfer coefficient for V-thread tubes (h/sub w/fb) can be increased by as much as 40 percent over the value for a smooth tube with the same outside diameter. However, for values of (P/sub f//d/sub p/) less than 0.95, the maximum heat transfer coefficient for the V-thread rough tubes is smaller than the smooth tube having the same outside diameter. The qualitative variation of the heat transfer coefficient for rough tubes with (P/sub f//d) is explained on the basis of the combined effect of contact geometry between the solid particles and the heat transfer surface, and the solids renewal rate at the surface. The present findings are critically compared with somewhat similar investigations from the literature on the heat transfer from horizontal or vertical rough tubes and tubes with small fins

  3. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India

    Science.gov (United States)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.

    2016-05-01

    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  4. A transient analysis of decomposition and erosion of concrete exposed to a surface heat flux

    International Nuclear Information System (INIS)

    Kilic, A.N.

    1994-01-01

    A simple approximation for predicting the concrete erosion rate and depth is derived based on the heat balance integral method for conduction with the time-dependent boundary conditions. The problem is considered a four-region model including separate, moving heat sinks at the boundaries due to endothermic decomposition reactions. Polynomial temperature profiles are assumed, and the results are compared with previous experimental data and other analytical solutions. Since the technique provides an approximate temperature distribution on the average, it does not give the real temperature evaluation but provides a simple prediction of the erosion rates and the depth of defaulted concrete in terms of the parameters that are important during the physical phenomena. Because of its simplicity and reliability, the model might be useful for the larger molten core/concrete interaction codes and aerosol generation models

  5. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils

    Science.gov (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo

    2014-05-01

    .g. in mofettes and diffuse degassing areas). The occurrence of thermal anomalies at the surface often reveals that a process of steam condensation is occurring below the ground and that CO2 fluxes are being released on the surface. A thermal map of steam heated grounds therefore highlights boundaries of underground steam advection and also the more suitable sites for geochemical monitoring. Pirogips has been assembled for the quick acquisition of surface parameters related to the exhaling activity of volcanic systems. It has been formerly tested in a controlled environment, after in the well known fumaroles areas of Vulcano island, and then in the volcanic system El Machin (Colombia) for the field survey preliminary to the installation of new monitoring stations. The preliminary test and the first field experiences confirmed that pirogips acquires the surface temperatures quickly and with good detail. The combination of sensors supplies the advantage of in situ methods (i.e. accuracy of the direct measurement by thermocouple) and those of ground-based remote sensing techniques (i.e. quickness of measurement process), at the same time reducing the main disadvantages of each method. A home-made data-logger combines the acquired parameters and returns a data-string allowing an easy visualization of acquired data on geo-referenced maps. The string of data returns the position of acquisition (lat, long, WGS84), surface temperature (either derived by the pyrometer and by thermocouple), ambient temperature, barometric pressure and air moisture. -References -Diliberto I.S., Gurrieri S., Valenza M. (2002) Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984-1994 Bulletin of Volcanology vol 64: 219-228. -Diliberto I.S., (2013) Time series analysis of high temperature fumaroles monitored on the island of Vulcano (Aeolian Archipelago, italy). Journal of Volcanology and Geothermal Research

  6. Hydrodynamics and Heat Transfer in Flow over Rectangular Ribs on the Initially Smooth Surface

    Directory of Open Access Journals (Sweden)

    V. N. Afanasiev

    2017-01-01

    Full Text Available An efficiency of the heat exchange equipment and reducing their weight and size parameters can be considerably improved by using the optimal methods of heat transfer enhancement, which include a two-dimensional roughness, i.e. ribs, backward-facing steps, cavities, etc. deposited on the heat transfer surface. Their shape, sizes and positional relationship have a significant impact on the structure of the boundary layer and its exchange processes.As known, the most affordable and effective method of controlled influence on the structure of turbulent flow is to create a separation zone or other organized vortex structure in it. In order to successfully use the separation zone, it is necessary to know the mechanism of their interaction with the main turbulent flow and the mechanism of the process in separation zone itself. Heat transfer enhancement is provided mainly due to roughness impact on hydrodynamics of turbulent flow, if the rib height h does not exceed the thickness of the viscous sublayer, since heat transfer enhancement arises from breaking and destruction of viscous sublayer produced by the roughness ribs and emerging vortex zones – sources of turbulence. Usually, the height of ribs y+ ≈ 50, and the distance between them along the streamlined surface is 10-20 times greater. The coefficient of friction also increases, but if the height of ribs is sufficiently small and most of them are in the sublayer, the increase of the friction factor will not exceed the increase of the heat transfer coefficient.The paper presents results of experimental investigation of hydrodynamics and heat transfer in the separation zone before and after a rib and in the area of two rectangular ribs with the height of y+ £ 60. The ribs are placed on the flat plate and heated according to the law of qw = const. The structure of turbulent boundary layer from the standpoint of the universal logarithmic law of velocity distribution has been experimentally

  7. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    Energy Technology Data Exchange (ETDEWEB)

    Spitler, J. D.; Culling, J. R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  8. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    Science.gov (United States)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  9. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    Science.gov (United States)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to r