WorldWideScience

Sample records for surface glycoprotein gp

  1. Involvement of Leishmania donovani major surface glycoprotein ...

    Indian Academy of Sciences (India)

    The major surface glycoprotein gp63 of the kinetoplastid protozoal parasite Leishmania is implicated as a ligand mediating uptake of the parasite into, and survival within, the host macrophage. By expressing gp63 antisense RNA from an episomal vector in L. donovani promastigotes, gp63-deficient transfectants were ...

  2. The major surface glycoprotein (gp63) from Leishmania major and Leishmania donovani cleaves CD4 molecules on human T cells

    DEFF Research Database (Denmark)

    Hey, A S; Theander, T G; Hviid, L

    1994-01-01

    The effect of Leishmania major and L. donovani surface protease gp63 on surface markers on human T cells was studied using fluorescence-activated flow cytometry. Purified gp63 (63,000 m.w. glycoprotein) at concentrations above 10 micrograms/ml completely inhibited binding of six different anti-CD4......-expression of CD4, reaching 50% of the initial level after 72 h of incubation in medium. Preincubation of cells with live promastigotes showed an inhibitory effect on CD4 comparable to that seen with purified gp63. The binding of Abs directed against other surface markers present on human T-cells--CD2, CD3, CD5......, CD8, CD11A, CD25, CD45RO, CD45RA, CD58, TCR-alpha, TCR-gamma, and HLA DQ--was not inhibited by gp63. These data suggest that gp63, both in its purified form and in the form anchored to the parasite membrane, cleaves CD4 on human T cells. The cleavage of CD4 by the protease might play a role...

  3. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    Science.gov (United States)

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  4. N-terminal substitutions in HIV-1 gp41 reduce the expression of non-trimeric envelope glycoproteins on the virus

    International Nuclear Information System (INIS)

    Dey, Antu K.; David, Kathryn B.; Ray, Neelanjana; Ketas, Thomas J.; Klasse, Per J.; Doms, Robert W.; Moore, John P.

    2008-01-01

    The native, functional HIV-1 envelope glycoprotein (Env) complex is a trimer of two non-covalently associated subunits: the gp120 surface glycoprotein and the gp41 transmembrane glycoprotein. However, various non-functional forms of Env are present on virus particles and HIV-1-infected cells, some of which probably arise as the native complex decays. The aberrant forms include gp120-gp41 monomers and oligomers, as well as gp41 subunits from which gp120 has dissociated. The presence of non-functional Env creates binding sites for antibodies that do not recognize native Env complexes and that are, therefore, non-neutralizing. Non-native Env forms (monomers, dimers, tetramers and aggregates) can also arise when soluble gp140 proteins, lacking the cytoplasmic and transmembrane domains of gp41, are expressed for vaccine studies. We recently identified five amino acids in the gp41 N-terminal region (I535, Q543, S553, K567 and R588) that promote gp140 trimerization. We have now studied their influence on the function and antigenic properties of JR-FL Env expressed on the surfaces of pseudoviruses and Env-transfected cells. The 5 substitutions in gp41 reduce the expression of non-trimeric gp160s, without affecting trimer levels. Pseudovirions bearing the mutant Env are fully infectious with similar kinetics of Env-mediated fusion. Various non-neutralizing antibodies bind less strongly to the Env mutant, but neutralizing antibody binding is unaffected. Hence the gp41 substitutions do not adversely affect Env structure, supporting their use for making new Env-based vaccines. The mutant Env might also help in studies intended to correlate antibody binding to virus neutralization. Of note is that the 5 residues are much more frequent, individually or collectively, in viruses from subtypes other than B

  5. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S

    2011-02-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Yellow fever 17D-vectored vaccines expressing Lassa virus GP1 and GP2 glycoproteins provide protection against fatal disease in guinea pigs

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J.; Bredenbeek, Peter J.; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S.; Lukashevich, Igor S.

    2010-01-01

    Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV GP1 and GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and –GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF and LASV GP proteins in infected cells. YF17D/LASV-GP1&GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1&GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. PMID:21145373

  7. Strategies for induction of catalytic antibodies toward HIV-1 glycoprotein gp120 in autoimmune prone mice.

    Science.gov (United States)

    Durova, Oxana M; Vorobiev, Ivan I; Smirnov, Ivan V; Reshetnyak, Andrew V; Telegin, Georgy B; Shamborant, Olga G; Orlova, Nadezda A; Genkin, Dmitry D; Bacon, Andrew; Ponomarenko, Natalia A; Friboulet, Alain; Gabibov, Alexander G

    2009-11-01

    Tremendous efforts to produce an efficient vaccine for HIV infection have been unsuccessful. The ability of HIV to utilize sophisticated mechanisms to escape killing by host immune system rises dramatic problems in the development of antiviral therapeutics. The HIV infection proceeds by interaction of coat viral glycoprotein gp120 trimer with CD4(+) receptor of the lymphocyte. Thus this surface antigen may be regarded as a favorable target for immunotherapy. In the present study, we have developed three different strategies to produce gp120-specific response in autoimmune prone mice (SJL strain) as potential tools for production "catalytic vaccine". Therefore (i) reactive immunization by peptidylphosphonate, structural part of the coat glycoprotein, (ii) immunization by engineered fused epitopes of gp120 and encephalogenic peptide, a part of myelin basic protein, and (iii) combined vaccination by DNA and corresponding gp120 fragments incorporated into liposomes were investigated. In the first two cases monoclonal antibodies and their recombinant fragments with amidolytic and gp120-specific proteolytic activities were characterized. In the last case, catalytic antibodies with virus neutralizing activity proved in cell line models were harvested.

  8. Release of Glycoprotein (GP1 from the Tegumental Surface of Taenia solium by Phospholipase C from Clostridium perfringens Suggests a Novel Protein-Anchor to Membranes

    Directory of Open Access Journals (Sweden)

    Abraham Landa

    2010-01-01

    Full Text Available In order to explore how molecules are linked to the membrane surface in larval Taenia solium, whole cysticerci were incubated in the presence of phospholipase C from Clostridium perfringens (PLC. Released material was collected and analyzed in polyacrylamide gels with sodium dodecyl sulfate. Two major bands with apparent molecular weights of 180 and 43 kDa were observed. Western blot of released material and localization assays in cysticerci tissue sections using antibodies against five known surface glycoproteins of T. solium cysticerci indicated that only one, previously called GP1, was released. Similar localization studies using the lectins wheat-germ-agglutinin and Concanavalin A showed that N-acetyl-D-glucosamine, N-acetylneuraminic, sialic acid, αmethyl-D-mannoside, D-manose/glucose, and N-acetyl-D-glucosamine residues are abundantly present on the surface. On the other hand, we find that treatment with PLC releases molecules from the surface; they do not reveal Cross Reacting Determinant (CRD, suggesting a novel anchor to the membrane for the glycoprotein GP1.

  9. An alternative conformation of the gp41 heptad repeat 1 region coiled coil exists in the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor

    International Nuclear Information System (INIS)

    Mische, Claudia C.; Yuan Wen; Strack, Bettina; Craig, Stewart; Farzan, Michael; Sodroski, Joseph

    2005-01-01

    The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate

  10. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway

    NARCIS (Netherlands)

    Leito, Jelani T. D.; Ligtenberg, Antoon J. M.; van Houdt, Michel; van den Berg, Timo K.; Wouters, Diana

    2011-01-01

    Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor

  11. Structures of Ebola virus GP and sGP in complex with therapeutic antibodies.

    Science.gov (United States)

    Pallesen, Jesper; Murin, Charles D; de Val, Natalia; Cottrell, Christopher A; Hastie, Kathryn M; Turner, Hannah L; Fusco, Marnie L; Flyak, Andrew I; Zeitlin, Larry; Crowe, James E; Andersen, Kristian G; Saphire, Erica Ollmann; Ward, Andrew B

    2016-08-08

    The Ebola virus (EBOV) GP gene encodes two glycoproteins. The major product is a soluble, dimeric glycoprotein (sGP) that is secreted abundantly. Despite the abundance of sGP during infection, little is known regarding its structure or functional role. A minor product, resulting from transcriptional editing, is the transmembrane-anchored, trimeric viral surface glycoprotein (GP). GP mediates attachment to and entry into host cells, and is the intended target of antibody therapeutics. Because large portions of sequence are shared between GP and sGP, it has been hypothesized that sGP may potentially subvert the immune response or may contribute to pathogenicity. In this study, we present cryo-electron microscopy structures of GP and sGP in complex with GP-specific and GP/sGP cross-reactive antibodies undergoing human clinical trials. The structure of the sGP dimer presented here, in complex with both an sGP-specific antibody and a GP/sGP cross-reactive antibody, permits us to unambiguously assign the oligomeric arrangement of sGP and compare its structure and epitope presentation to those of GP. We also provide biophysical evaluation of naturally occurring GP/sGP mutations that fall within the footprints identified by our high-resolution structures. Taken together, our data provide a detailed and more complete picture of the accessible Ebolavirus glycoprotein landscape and a structural basis to evaluate patient and vaccine antibody responses towards differently structured products of the GP gene.

  12. Human platelet glycoprotein Ia. One component is only expressed on the surface of activated platelets and may be a granule constituent

    International Nuclear Information System (INIS)

    Bienz, D.; Clemetson, K.J.

    1989-01-01

    Glycoprotein Ia (GP Ia) is a relatively minor component of human blood platelets thought to be a receptor involved in collagen-induced platelet activation. However, some difficulties exist with the definition of this glycoprotein. The expression of GP Ia on resting (prostacyclin analogue-treated) and thrombin-activated platelets was compared by surface labeling with 125 I-lactoperoxidase. Intact platelets or platelets solubilized in sodium dodecyl sulfate were labeled with periodate/[ 3 H]NaBH 4 . Analysis on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed that GP Ia is very poorly labeled in resting platelets. After activation a new spot (GP Ia*) appears with the same relative molecular mass as GP Ia under reducing conditions. GP Ia and Ia* can be clearly separated by two-dimensional nonreduced/reduced gel electrophoresis. Therefore, two glycoproteins which have been termed GP Ia exist in platelets with similar molecular weight and pI under reducing conditions. One of these (GP Ia*) is only surface-labeled when platelets are activated, indicating that it is only exposed on the surface of activated platelets. Supernatant from activated platelets contains this glycoprotein as well as other granule components. This glycoprotein is missing in platelets from two patients with collagen-response defects

  13. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    International Nuclear Information System (INIS)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-01-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [γ- 32 P]ATP. The same glycoprotein was phosphorylated when [ 32 P]GTP was substituted for [ 32 P]ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein

  14. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    Energy Technology Data Exchange (ETDEWEB)

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B. (Neuropharmacology Laboratory, National Institute on Drug Abuse, Baltimore, MD (USA))

    1991-05-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-(1-14C) glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection.

  15. Reduction of cerebral glucose utilization by the HIV envelope glycoprotein Gp-120

    International Nuclear Information System (INIS)

    Kimes, A.S.; London, E.D.; Szabo, G.; Raymon, L.; Tabakoff, B.

    1991-01-01

    Gp-120 is a glycoprotein constituent of the human immunodeficiency virus (HIV) envelope. The effects of gp-120 on cerebral glucose utilization in rats were studied by the quantitative 2-deoxy-D-[1-14C] glucose method. Intracerebroventricular injection of gp-120 significantly reduced glucose utilization in the lateral habenula and the suprachiasmatic nucleus and decreased the global cerebral metabolic rate for glucose. The findings suggest that gp-120 and closely related peptides can alter neuronal function, thereby contributing to the sequelae of HIV infection

  16. Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein.

    Science.gov (United States)

    Favier, Anne-Laure; Gout, Evelyne; Reynard, Olivier; Ferraris, Olivier; Kleman, Jean-Philippe; Volchkov, Viktor; Peyrefitte, Christophe; Thielens, Nicole M

    2016-06-01

    Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the

  17. Determining the Structure of an Unliganded and Fully Glycosylated SIV gp120 Envelope Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bing; Vogan, Erik M.; Gong, Haiyun; Skehel, John J.; Wiley, Don C.; Harrison, Stephen C. (Harvard-Med); (NIMR)

    2010-07-13

    HIV/SIV envelope glycoproteins mediate the first steps in viral infection. They are trimers of a membrane-anchored polypeptide chain, cleaved into two fragments known as gp120 and gp41. The structure of HIV gp120 bound with receptor (CD4) has been known for some time. We have now determined the structure of a fully glycosylated SIV gp120 envelope glycoprotein in an unliganded conformation by X-ray crystallography at 4.0 {angstrom} resolution. We describe here our experimental and computational approaches, which may be relevant to other resolution-limited crystallographic problems. Key issues were attention to details of beam geometry mandated by small, weakly diffracting crystals, and choice of strategies for phase improvement, starting with two isomorphous derivatives and including multicrystal averaging. We validated the structure by analyzing composite omit maps, averaged among three distinct crystal lattices, and by calculating model-based, SeMet anomalous difference maps. There are at least four ordered sugars on many of the thirteen oligosaccharides.

  18. Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain α-Helical Bundle†

    Science.gov (United States)

    Harrison, Joseph S.; Koellhoffer, Jayne F.; Chandran, Kartik; Lai, Jonathan R.

    2012-01-01

    Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV is required for fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔGunf H2O, of 33.4 ± 2.5 kcal/mol and melting temperature, Tm, of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH with higher stability under lower pH conditions (Tm values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. Based on these results, we hypothesize that pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism to control conformational preferences such that the six-helix bundle ‘post-fusion’ state is preferred under conditions of appropriately matured endosomes. PMID:22369502

  19. Serological responses in chimpanzees inoculated with human immunodeficiency virus glycoprotein (gp120) subunit vaccine

    International Nuclear Information System (INIS)

    Arthur, L.O.; Pyle, S.W.; Nara, P.L.

    1987-01-01

    The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4 + and T8 + cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4 + cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo

  20. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Directory of Open Access Journals (Sweden)

    Beuy Joob

    2014-12-01

    Full Text Available The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  1. A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120

    International Nuclear Information System (INIS)

    Beddows, Simon; Franti, Michael; Dey, Antu K.; Kirschner, Marc; Iyer, Sai Prasad N.; Fisch, Danielle C.; Ketas, Thomas; Yuste, Eloisa; Desrosiers, Ronald C.; Klasse, Per Johan; Maddon, Paul J.; Olson, William C.; Moore, John P.

    2007-01-01

    The human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein (Env) complex, a homotrimer containing gp120 surface glycoprotein and gp41 transmembrane glycoprotein subunits, mediates the binding and fusion of the virus with susceptible target cells. The Env complex is the target for neutralizing antibodies (NAbs) and is the basis for vaccines intended to induce NAbs. Early generation vaccines based on monomeric gp120 subunits did not confer protection from infection; one alternative approach is therefore to make and evaluate soluble forms of the trimeric Env complex. We have directly compared the immunogenicity in rabbits of two forms of soluble trimeric Env and monomeric gp120 based on the sequence of HIV-1 JR-FL . Both protein-only and DNA-prime, protein-boost immunization formats were evaluated, DNA-priming having little or no influence on the outcome. One form of trimeric Env was made by disrupting the gp120-gp41 cleavage site by mutagenesis (gp140 UNC ), the other contains an intramolecular disulfide bond to stabilize the cleaved gp120 and gp41 moieties (SOSIP.R6 gp140). Among the three immunogens, SOSIP.R6 gp140 most frequently elicited neutralizing antibodies against the homologous, neutralization-resistant strain, HIV-1 JR-FL . All three proteins induced NAbs against more sensitive strains, but the breadth of activity against heterologous primary isolates was limited. When antibodies able to neutralize HIV-1 JR-FL were detected, antigen depletion studies showed they were not directed at the V3 region but were targeted at other, undefined gp120 and also non-gp120 epitopes

  2. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... residues. The mammalian C-type lectin bovine conglutinin was examined for its ability to interact with recombinant gp160 (rgp160) produced in vaccinia virus-infected BHK21 cells. Specific binding of conglutinin to rgp160 was demonstrated by ELISA. The interaction of bovine conglutinin with rgp160...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  3. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  4. The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.

    Science.gov (United States)

    Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D

    1999-01-01

    Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

  5. Validating glycoprotein non-metastatic melanoma B (gpNMB, osteoactivin), a new biomarker of Gaucher disease.

    Science.gov (United States)

    Murugesan, Vagishwari; Liu, Jun; Yang, Ruhua; Lin, Haiquin; Lischuk, Andrew; Pastores, Gregory; Zhang, Xiaokui; Chuang, Wei-Lien; Mistry, Pramod K

    2018-02-01

    In the spleens of Gaucher disease mice and patients, there is a striking elevation of expression of glycoprotein non-Metastatic Melanoma B (gpNMB). We conducted a study in a large cohort of patients with Gaucher disease to assess the utility of serum levels of soluble fragment of gpNMB as a biomarker of disease activity. There was >15-fold elevation of gpNMB in sera of untreated patients with Gaucher disease. gpNMB levels correlated with overall disease severity as well as the severity of individual organ compartments: liver, spleen, bone and hematological disease. Imiglucerase enzyme replacement therapy resulted in significant reduction of gpNMB. Serum levels of gpNMB were highly correlated with accumulation of bioactive lipid substrate of Gaucher disease, glucosylsphingosine as well as established biomarkers, chitotriosidase and chemokine, CCL18. Our results suggest utility of gpNMB as a biomarker of Gaucher disease to monitor individual patients and cohorts of patients for disease progression or response to therapy. Investigation of gpNMB in Gaucher disease pathophysiology is likely to illuminate our understanding disease mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  7. Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries

    Directory of Open Access Journals (Sweden)

    Johansson Ingegerd

    2007-06-01

    Full Text Available Abstract Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries, harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19 or low (n = 19 caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively. The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37 and saliva adhesion of S. mutans Ingbritt (VIP = 1.47. The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries

  8. Induction of a protein-targeted catalytic response in autoimmune prone mice: antibody-mediated cleavage of HIV-1 glycoprotein GP120.

    Science.gov (United States)

    Ponomarenko, Natalia A; Vorobiev, Ivan I; Alexandrova, Elena S; Reshetnyak, Andrew V; Telegin, Georgy B; Khaidukov, Sergey V; Avalle, Bérangère; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    We have induced a polyclonal IgG that degrades the HIV-1 surface antigen, glycoprotein gp120, by taking advantage of the susceptibility of SJL mice to a peptide-induced autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). Specific pathogen-free SJL mice were immunized with structural fragments of gp120, fused in-frame with encephalitogenic peptide MBP(85-101). It has resulted in a pronounced disease-associated immune response against antigens. A dramatic increase of gp120 degradation level by purified polyclonal IgG from immunized versus nonimmunized mice has been demonstrated by a newly developed fluorescence-based assay. This activity was inhibited by anti-mouse immunoglobulin antibodies as well as by Ser- and His-reactive covalent inhibitors. A dominant proteolysis site in recombinant gp120 incubated with purified polyclonal IgG from immunized mice was shown by SDS-PAGE. The SELDI-based mass spectrometry revealed that these antibodies exhibited significant specificity toward the Pro484-Leu485 peptide bond. The sequence surrounding this site is present in nearly half of the HIV-I variants. This novel strategy can be generalized for creating a catalytic vaccine against viral pathogens.

  9. A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics

    DEFF Research Database (Denmark)

    Saaby, Lasse; Brodin, Birger

    2017-01-01

    Transport proteins expressed in the different barriers of the human body can have great implications on absorption, distribution, and excretion of drug compounds. Inhibition or saturation of a transporter can potentially alter these absorbtion, distribution, metabolism and elimination properties...... and thereby also the pharmacokinetic profile and bioavailability of drug compounds. P-glycoprotein (P-gp, ABCB1) is an efflux transporter which is present in most of the barriers of the body, including the small intestine, the blood-brain barrier, the liver, and the kidney. In all these tissues, P-gp may...... mediate efflux of drug compounds and may also be a potential site for drug-drug interactions. Consequently, there is a need to be able to predict the saturation and inhibition of P-gp and other transporters in vivo. For this purpose, Michaelis-Menten steady-state analysis has been applied to estimate...

  10. Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function

    International Nuclear Information System (INIS)

    Garg, Himanshu; Joshi, Anjali; Tompkins, Wayne A.

    2004-01-01

    Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model. Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function

  11. Membrane topology analysis of HIV-1 envelope glycoprotein gp41

    Directory of Open Access Journals (Sweden)

    Xiao Dan

    2010-11-01

    Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.

  12. Investigation of the function of the putative self-association site of Epstein-Barr virus (EBV) glycoprotein 42 (gp42)

    International Nuclear Information System (INIS)

    Rowe, Cynthia L.; Matsuura, Hisae; Jardetzky, Theodore S.; Longnecker, Richard

    2011-01-01

    The Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a type II membrane protein essential for entry into B cells but inhibits entry into epithelial cells. X-ray crystallography suggests that gp42 may form dimers when bound to human leukocyte antigen (HLA) class II receptor (Mullen et al., 2002) or multimerize when not bound to HLA class II (Kirschner et al., 2009). We investigated this self-association of gp42 using several different approaches. We generated soluble mutants of gp42 containing mutations within the self-association site and found that these mutants have a defect in fusion. The gp42 mutants bound to gH/gL and HLA class II, but were unable to bind wild-type gp42 or a cleavage mutant of gp42. Using purified gp42, gH/gL, and HLA, we found these proteins associate 1:1:1 by gel filtration suggesting that gp42 dimerization or multimerization does not occur or is a transient event undetectable by our methods.

  13. A Critical View on In Vitro Analysis of P-glycoprotein (P-gp) Transport Kinetics.

    Science.gov (United States)

    Saaby, Lasse; Brodin, Birger

    2017-09-01

    Transport proteins expressed in the different barriers of the human body can have great implications on absorption, distribution, and excretion of drug compounds. Inhibition or saturation of a transporter can potentially alter these absorbtion, distribution, metabolism and elimination properties and thereby also the pharmacokinetic profile and bioavailability of drug compounds. P-glycoprotein (P-gp, ABCB1) is an efflux transporter which is present in most of the barriers of the body, including the small intestine, the blood-brain barrier, the liver, and the kidney. In all these tissues, P-gp may mediate efflux of drug compounds and may also be a potential site for drug-drug interactions. Consequently, there is a need to be able to predict the saturation and inhibition of P-gp and other transporters in vivo. For this purpose, Michaelis-Menten steady-state analysis has been applied to estimate kinetic parameters, such as K m and V max , for carrier-mediated transport, whereas half-maximal inhibitor concentration (IC 50 ) and the disassociation constant for an inhibitor/P-gp complex (K i ) have been determined to estimate P-gp inhibition. This review addresses in vitro methods commonly used to study P-gp transport kinetics and aims at providing a critical evaluation of the application of steady-state Michaelis-Menten analysis of kinetic parameters for substrate/P-gp interactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. The C-terminal tail of the gp41 transmembrane envelope glycoprotein of HIV-1 clades A, B, C, and D may exist in two conformations: an analysis of sequence, structure, and function

    International Nuclear Information System (INIS)

    Hollier, Mark J.; Dimmock, Nigel J.

    2005-01-01

    In addition to the major ectodomain, the gp41 transmembrane glycoprotein of HIV-1 is now known to have a minor ectodomain that is part of the long C-terminal tail. Both ectodomains are highly antigenic, carry neutralizing and non-neutralizing epitopes, and are involved in virus-mediated fusion activity. However, data have so far been biologically based, and derived solely from T cell line-adapted (TCLA), B clade viruses. Here we have carried out sequence and theoretically based structural analyses of 357 gp41 C-terminal sequences of mainly primary isolates of HIV-1 clades A, B, C, and D. Data show that all these viruses have the potential to form a tail loop structure (the minor ectodomain) supported by three, β-sheet, membrane-spanning domains (MSDs). This means that the first (N-terminal) tyrosine-based sorting signal of the gp41 tail is situated outside the cell membrane and is non-functional, and that gp41 that reaches the cell surface may be recycled back into the cytoplasm through the activity of the second tyrosine-sorting signal. However, we suggest that only a minority of cell-associated gp41 molecules - those destined for incorporation into virions - has 3 MSDs and the minor ectodomain. Most intracellular gp41 has the conventional single MSD, no minor ectodomain, a functional first tyrosine-based sorting signal, and in line with current thinking is degraded intracellularly. The gp41 structural diversity suggested here can be viewed as an evolutionary strategy to minimize HIV-1 envelope glycoprotein expression on the cell surface, and hence possible cytotoxicity and immune attack on the infected cell

  15. iP-gp , a novel cell line with tight barrier function and expression of human P-glycoprotein (ABCB1) for drug screening

    DEFF Research Database (Denmark)

    Brodin, Birger; Ozgür, Burak; Saaby, Lasse

    that new API's are evaluated with respect to P-gp interactions.  Aim : The aim of the present work was to validate the suitability of the newly developed iP-gp cell line for investigating P-gp interactions with human P-gp. Methods: IPEC-J2 MDR1 (iP-gp) cells were cultured on permeable supports for 17......Background : The efflux transporter P-glycoprotein (P-gp, product of the MDR1/ABCB1 gene) hinders uptake of drug compounds to the brain, limits intestinal uptake, is a cause of resistance to chemoterapeutics and a potential "site" for drug-drug interaction. Regulatory agencies therefore recommend.......04 +/- 0.01 µM in transport experiments including digoxin and rhodamine 123, respectively. Summary/Conclusion : The iP-gp cell line may become a useful screening tool for interactions between drug compounds and human P-gp....

  16. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility.

    Science.gov (United States)

    Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D

    2010-01-19

    The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.

  17. N-terminal sequence of human leukocyte glycoprotein Mo1: conservation across species and homology to platelet IIb/IIIa.

    Science.gov (United States)

    Pierce, M W; Remold-O'Donnell, E; Todd, R F; Arnaout, M A

    1986-12-12

    Mo1 and gp160-gp93 are two surface membrane glycoprotein heterodimers present on granulocytes and monocytes derived from humans and guinea pigs, respectively. We purified both antigens and found that their alpha subunits had identical N-termini which were significantly homologous to the alpha subunit of the human adhesion platelet glycoprotein IIb/IIIa.

  18. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    International Nuclear Information System (INIS)

    Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu; Denda-Nagai, Kaori; Takada, Ayato; Irimura, Tatsuro

    2011-01-01

    Highlights: → Ebola virus infection is mediated by binding to and fusion with the target cells. → Structural feature of the viral glycoprotein determines the infectivity. → Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. → GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. → There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  19. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Katsuaki [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Matsuno, Keita; Igarashi, Manabu [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Denda-Nagai, Kaori [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Takada, Ayato [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Irimura, Tatsuro, E-mail: irimura@mol.f.u-tokyo.ac.jp [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  20. [Research progress on ebola virus glycoprotein].

    Science.gov (United States)

    Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa

    2013-03-01

    Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.

  1. The role of membrane microdomains in transmembrane signaling through the epithelial glycoprotein Gp140/CDCP1

    Science.gov (United States)

    Alvares, Stacy M.; Dunn, Clarence A.; Brown, Tod A.; Wayner, Elizabeth E.; Carter, William G.

    2008-01-01

    Cell adhesion to the extracellular matrix (ECM) via integrin adhesion receptors initiates signaling cascades leading to changes in cell behavior. While integrin clustering is necessary to initiate cell attachment to the matrix, additional membrane components are necessary to mediate the transmembrane signals and the cell adhesion response that alter downstream cell behavior. Many of these signaling components reside in glycosphingolipid-rich and cholesterol-rich membrane domains such as Tetraspanin Enriched Microdomains (TEMs)/Glycosynapse 3 and Detergent-Resistant Microdomains (DRMs), also known as lipid rafts. In the following article, we will review examples of how components in these membrane microdomains modulate integrin adhesion after initial attachment to the ECM. Additionally, we will present data on a novel adhesion-responsive transmembrane glycoprotein Gp140/CUB Domain Containing Protein 1, which clusters in epithelial cell-cell contacts. Gp140 can then be phosphorylated by Src Family Kinases at tyrosine 734 in response to outside-in signals- possibly through interactions involving the extracellular CUB domains. Data presented here suggests that outside-in signals through Gp140 in cell-cell contacts assemble membrane clusters that associate with membrane microdomains to recruit and activate SFKs. Active SFKs then mediate phosphorylation of Gp140, SFK and PKCδ with Gp140 acting as a transmembrane scaffold for these kinases. We propose that the clustering of Gp140 and signaling components in membrane microdomains in cell-cell contacts contributes to changes in cell behavior. PMID:18269919

  2. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    Science.gov (United States)

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  3. The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies.

    Science.gov (United States)

    Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan

    2016-12-15

    The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The

  4. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells.

    Science.gov (United States)

    Xuan, X; Maeda, K; Mikami, T; Otsuka, H

    1996-12-01

    The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.

  5. Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity.

    Science.gov (United States)

    Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E

    2015-10-01

    The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious

  6. Platelet Glycoprotein Ib-IX and Malignancy

    Science.gov (United States)

    2010-09-01

    provide a unique microenvironment supporting the accumulation of more platelets and the elaboration of a fibrin - rich network produced by coagulation...process and can initiate the formation of a platelet - rich thrombus by tethering the platelet to a thrombogenic surface. Several ligands binding to GP Ib... Platelet Glycoprotein Ib-IX and Malignancy PRINCIPAL INVESTIGATOR: Jerry Ware, Ph.D

  7. Development of Classification Models for Identifying “True” P-glycoprotein (P-gp Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    Directory of Open Access Journals (Sweden)

    Anna Maria Bianucci

    2012-06-01

    Full Text Available P-glycoprotein (P-gp is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.

  8. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    International Nuclear Information System (INIS)

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Yang Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV

  9. The peanut lectin-binding glycoproteins of human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Morrison, A.I.; Keeble, S.; Watt, F.M.

    1988-01-01

    The peanut lectin (PNA) is known to bind more strongly to keratinocytes that are undergoing terminal differentiation than to proliferating keratinocytes. In order to investigate the significance of this change in cell-surface carbohydrate authors have identified the PNA-binding glycoproteins of cultured human keratinocytes and antibodies against them. Two heavily glycosylated bands of 110 and 250 kDa were resolved by PAGE of [ 14 C]galactose- or [ 14 C]mannose- and [ 14 C]glucosamine-labeled cell extracts eluted with galactose from PNA affinity columns. The higher molecular weight band was also detected on PNA blots of unlabeled cell extracts transferred to nitrocellulose. Both bands were sensitive to pronase digestion, but only the 250-kDa band was digested with trypsin. A rabbit antiserum that we prepared (anti-PNA-gp) immunoprecipitated both bands from cell extracts. In contrast to PNA, anti-PNA-gp bound equally to proliferating and terminally differentiating cells, indicating that some epitope(s) of the PNA-binding glycoproteins is present on the cell surface prior to terminal differentiation. When keratinocytes grown as a monolayer in low-calcium medium were switched to medium containing 2 mM calcium ions in order to induce desmosome formation and stratification, there was a dramatic redistribution of the PNA-binding glycoproteins, which became concentrated at the boundaries between cells. This may suggest a role for the glycoproteins in cell-cell interactions during stratification

  10. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    International Nuclear Information System (INIS)

    Halaban, R.; Moellmann, G.

    1990-01-01

    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B lt /B lt ) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B lt mutation renders the protein susceptible to rapid proteolytic degradation

  11. Humoral immune response to hypervariable region 1 of the putative envelope glycoprotein (gp70) of hepatitis C virus.

    OpenAIRE

    Kato, N; Sekiya, H; Ootsuyama, Y; Nakazawa, T; Hijikata, M; Ohkoshi, S; Shimotohno, K

    1993-01-01

    We recently found that alterations of amino acids in hypervariable region 1 (HVR1) of the putative envelope glycoprotein (gp70) of hepatitis C virus (HCV) occurred sequentially in the chronic phase of hepatitis at intervals of several months. This finding suggests that mutations in HVR1 are involved in the mechanism of persistent chronic HCV infection involving escape from the immunosurveillance system. To explore this possibility, we examined the humoral immune response to HVR1 with our assa...

  12. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  13. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers.

    Science.gov (United States)

    Blattner, Claudia; Lee, Jeong Hyun; Sliepen, Kwinten; Derking, Ronald; Falkowska, Emilia; de la Peña, Alba Torrents; Cupo, Albert; Julien, Jean-Philippe; van Gils, Marit; Lee, Peter S; Peng, Wenjie; Paulson, James C; Poignard, Pascal; Burton, Dennis R; Moore, John P; Sanders, Rogier W; Wilson, Ian A; Ward, Andrew B

    2014-05-15

    All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism

    Directory of Open Access Journals (Sweden)

    Nathan H. Vande Burgt

    2015-10-01

    Full Text Available Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP, to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism.

  15. Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study.

    Science.gov (United States)

    Trapani, Adriana; Palazzo, Claudio; Contino, Marialessandra; Perrone, Maria Grazia; Cioffi, Nicola; Ditaranto, Nicoletta; Colabufo, Nicola Antonio; Conese, Massimo; Trapani, Giuseppe; Puglisi, Giovanni

    2014-03-10

    The aim of the present work was to compare the mucoadhesive and efflux pump P-glycoprotein (P-gp) interacting properties of chitosan (CS)- and glycolchitosan (GCS)-based thiomers and corresponding unmodified parent polymers. For this purpose, the glycol chitosan-N-acetyl-cysteine (GCS-NAC) and glycol chitosan-glutathione (GCS-GSH) thiomers were prepared under simple and mild conditions. Their mucoadhesive characteristics were studied by turbidimetric and zeta potential measurements. The P-gp interacting properties were evaluated measuring the effects of thiolated- and unmodified-polymers on the bidirectional transport (BA/AB) of rhodamine-123 across Caco-2 cells as well as in the calcein-AM and ATPase activity assays. Although all the thiomers and unmodified polymers showed optimal-excellent mucoadhesive properties, the best mucoadhesive performances have been obtained by CS and CS-based thiomers. Moreover, it was found that the pretreatment of Caco-2 cell monolayer with GCS-NAC or GCS restores Rho-123 cell entrance by inhibiting P-gp activity. Hence, GCS-NAC and GCS may constitute new biomaterials useful for improving the bioavailability of P-gp substrates.

  16. Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2018-01-01

    Full Text Available The effects of temperature, agitation and aeration on glycoprotein GP-1 production by Streptomyces kanasenisi ZX01 in bench-scale fermentors were systematically investigated. The maximum final GP-1 production was achieved at an agitation speed of 200 rpm, aeration rate of 2.0 vvm and temperature of 30 °C. By using a dynamic gassing out method, the effects of agitation and aeration on volumetric oxygen transfer coefficient (kLa were also studied. The values of volumetric oxygen transfer coefficient in the logarithmic phase increased with increase of agitation speed (from 14.53 to 32.82 h−1 and aeration rate (from 13.21 to 22.43 h−1. In addition, a successful scale-up from bench-scale to pilot-scale was performed based on volumetric oxygen transfer coefficient, resulting in final GP-1 production of 3.92, 4.03, 3.82 and 4.20 mg/L in 5 L, 15 L, 70 L and 500 L fermentors, respectively. These results indicated that constant volumetric oxygen transfer coefficient was appropriate for the scale-up of batch fermentation of glycoprotein GP-1 by Streptomyces kanasenisi ZX01, and this scale-up strategy successfully achieved 100-fold scale-up from bench-scale to pilot-scale fermentor.

  17. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1.

    Science.gov (United States)

    Lennemann, Nicholas J; Rhein, Bethany A; Ndungo, Esther; Chandran, Kartik; Qiu, Xiangguo; Maury, Wendy

    2014-01-28

    Ebola virus (EBOV) entry requires the virion surface-associated glycoprotein (GP) that is composed of a trimer of heterodimers (GP1/GP2). The GP1 subunit contains two heavily glycosylated domains, the glycan cap and the mucin-like domain (MLD). The glycan cap contains only N-linked glycans, whereas the MLD contains both N- and O-linked glycans. Site-directed mutagenesis was performed on EBOV GP1 to systematically disrupt N-linked glycan sites to gain an understanding of their role in GP structure and function. All 15 N-glycosylation sites of EBOV GP1 could be removed without compromising the expression of GP. The loss of these 15 glycosylation sites significantly enhanced pseudovirion transduction in Vero cells, which correlated with an increase in protease sensitivity. Interestingly, exposing the receptor-binding domain (RBD) by removing the glycan shield did not allow interaction with the endosomal receptor, NPC1, indicating that the glycan cap/MLD domains mask RBD residues required for binding. The effects of the loss of GP1 N-linked glycans on Ca(2+)-dependent (C-type) lectin (CLEC)-dependent transduction were complex, and the effect was unique for each of the CLECs tested. Surprisingly, EBOV entry into murine peritoneal macrophages was independent of GP1 N-glycans, suggesting that CLEC-GP1 N-glycan interactions are not required for entry into this important primary cell. Finally, the removal of all GP1 N-glycans outside the MLD enhanced antiserum and antibody sensitivity. In total, our results provide evidence that the conserved N-linked glycans on the EBOV GP1 core protect GP from antibody neutralization despite the negative impact the glycans have on viral entry efficiency. Filovirus outbreaks occur sporadically throughout central Africa, causing high fatality rates among the general public and health care workers. These unpredictable hemorrhagic fever outbreaks are caused by multiple species of Ebola viruses, as well as Marburg virus. While filovirus

  18. Serotonin transporter protein (SERT) and P-glycoprotein (P-gp) binding activity of montanine and coccinine from three species of Haemanthus L. (Amaryllidaceae)

    DEFF Research Database (Denmark)

    Stafford, Gary Ivan; Birer, C.; Brodin, Birger

    2013-01-01

    The alkaloid rich extracts from an acid/base extraction of bulb material of Haemanthus coccineus L., H. montanus Baker and H. sanguineus Jacq. revealed that two montanine type Amaryllidaceae alkaloids, montanine (1) and coccinine (2) were the major alkaloid constituents. Together these two...... to the relative proportions of coccinine and montanine in the extracts and thus are likely to be due to more potent unidentified minor constituents. Both alkaloids exhibited low binding affinity to P-glycoprotein (P-gp) as demonstrated by low inhibition of calcein-AM efflux in the MDCK-MDR1 cell line....... This indicates that P-gp efflux will not be limiting for blood-brain-barrier passage of the alkaloids....

  19. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions

    International Nuclear Information System (INIS)

    Kunz, Stefan; Edelmann, Kurt H.; Torre, Juan-Carlos de la; Gorney, Robert; Oldstone, Michael B.A.

    2003-01-01

    The glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) serves as virus attachment protein to its receptor on host cells and is a key determinant for cell tropism, pathogenesis, and epidemiology of the virus. The GP of LCMV is posttranslationally cleaved by the subtilase SKI-1/S1P into two subunits, the peripheral GP1, which is implicated in receptor binding, and the transmembrane GP2 that is structurally similar to the fusion active membrane proximal portions of the glycoproteins of other enveloped viruses. The present study shows that cleavage by SKI-1/S1P is not required for cell surface expression of LCMVGP on infected cells but is essential for its incorporation into virions and for the production of infectious virus particles. In absence of SKI-1/S1P cleavage, cell-to-cell propagation of the virus was markedly reduced. Further, proteolytic processing of LCMVGP depends on the presence of a cluster of basic amino acids at the C-terminus of the cytoplasmic domain of GP2, a structural motif that is conserved in Old World arenaviruses. The effect of the truncation of the cytoplasmic tail on cleavage suggests a structural interdependence between the cytoplasmic domain and the ectodomains of LCMVGP

  20. Differential effect on TCR:CD3 stimulation of a 90-kD glycoprotein (gp90/Mac-2BP), a member of the scavenger receptor cysteine-rich domain protein family

    DEFF Research Database (Denmark)

    Silvestri, B; Calderazzo, F; Coppola, V

    1998-01-01

    We studied the effects of a 90-kD glycoprotein (gp90/Mac-2BP) belonging to the scavenger receptor family, present in normal serum and at increased levels in inflammatory disease and cancer patients, on some T cell function parameters. Whereas the lymphocyte proliferative response to non-specific ......We studied the effects of a 90-kD glycoprotein (gp90/Mac-2BP) belonging to the scavenger receptor family, present in normal serum and at increased levels in inflammatory disease and cancer patients, on some T cell function parameters. Whereas the lymphocyte proliferative response to non......-specific mitogens such as phytohaemagglutinin (PHA) and concanavalin A (Con A), but not pokeweed mitogen (PWM), was strongly reduced, probably due to the lectin-binding properties of gp90/Mac-2BP, the response to T cell receptor (TCR) agonists such as superantigens and allogeneic cells was potentiated. When...... lymphocytes were stimulated with different anti-TCR:CD3 MoAbs, both in soluble and solid-phase form, gp90/Mac-2BP was able to down-regulate the proliferative response to anti-CD3 MoAb, whereas the response to anti-TCR alphabeta MoAb was enhanced. A similar differential effect was observed when a MoAb against...

  1. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    ), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...... carbohydrate structures expressed by the viral envelope glycoprotein gp120, indicating that glycans of the viral envelope are possible targets for immunotherapy or vaccine development or both....

  2. Use of λgt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    International Nuclear Information System (INIS)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.

    1986-01-01

    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector λgt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the λgt11 vector, the cloned proteins were expressed in Escherichia coli as β-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of [ 14 C]glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX; gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved

  3. Proteomics computational analyses suggest that baculovirus GP64 superfamily proteins are class III penetrenes

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2008-02-01

    Full Text Available Abstract Background Members of the Baculoviridae encode two types of proteins that mediate virus:cell membrane fusion and penetration into the host cell. Alignments of primary amino acid sequences indicate that baculovirus fusion proteins of group I nucleopolyhedroviruses (NPV form the GP64 superfamily. The structure of these viral penetrenes has not been determined. The GP64 superfamily includes the glycoprotein (GP encoded by members of the Thogotovirus genus of the Orthomyxoviridae. The entry proteins of other baculoviruses, group II NPV and granuloviruses, are class I penetrenes. Results Class III penetrenes encoded by members of the Rhabdoviridae and Herpesviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Similar sequences and structural/functional motifs that characterize class III penetrenes are located collinearly in GP64 of group I baculoviruses and related glycoproteins encoded by thogotoviruses. Structural models based on a prototypic class III penetrene, vesicular stomatitis virus glycoprotein (VSV G, were established for Thogoto virus (THOV GP and Autographa california multiple NPV (AcMNPV GP64 demonstrating feasible cysteine linkages. Glycosylation sites in THOV GP and AcMNPV GP64 appear in similar model locations to the two glycosylation sites of VSV G. Conclusion These results suggest that proteins in the GP64 superfamily are class III penetrenes.

  4. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition

    International Nuclear Information System (INIS)

    Koch, Markus; Pancera, Marie; Kwong, Peter D.; Kolchinsky, Peter; Grundner, Christoph; Wang Liping; Hendrickson, Wayne A.; Sodroski, Joseph; Wyatt, Richard

    2003-01-01

    The human immunodeficiency virus (HIV-1) exterior envelope glycoprotein, gp120, mediates receptor binding and is the major target for neutralizing antibodies. Primary HIV-1 isolates are characteristically more resistant to broadly neutralizing antibodies, although the structural basis for this resistance remains obscure. Most broadly neutralizing antibodies are directed against functionally conserved gp120 regions involved in binding to either the primary virus receptor, CD4, or the viral coreceptor molecules that normally function as chemokine receptors. These antibodies are known as CD4 binding site (CD4BS) and CD4-induced (CD4i) antibodies, respectively. Inspection of the gp120 crystal structure reveals that although the receptor-binding regions lack glycosylation, sugar moieties lie proximal to both receptor-binding sites on gp120 and thus in proximity to both the CD4BS and the CD4i epitopes. In this study, guided by the X-ray crystal structure of gp120, we deleted four N-linked glycosylation sites that flank the receptor-binding regions. We examined the effects of selected changes on the sensitivity of two prototypic HIV-1 primary isolates to neutralization by antibodies. Surprisingly, removal of a single N-linked glycosylation site at the base of the gp120 third variable region (V3 loop) increased the sensitivity of the primary viruses to neutralization by CD4BS antibodies. Envelope glycoprotein oligomers on the cell surface derived from the V3 glycan-deficient virus were better recognized by a CD4BS antibody and a V3 loop antibody than were the wild-type glycoproteins. Absence of all four glycosylation sites rendered a primary isolate sensitive to CD4i antibody-mediated neutralization. Thus, carbohydrates that flank receptor-binding regions on gp120 protect primary HIV-1 isolates from antibody-mediated neutralization

  5. Nerve growth factor-inducible large external (NILE) glycoprotein: studies of a central and peripheral neuronal marker.

    Science.gov (United States)

    Salton, S R; Richter-Landsberg, C; Greene, L A; Shelanski, M L

    1983-03-01

    The PC12 clone of pheochromocytoma cells undergoes neuronal differentiation in the presence of nerve growth factor (NGF). Concomitant with this is a significant induction in the incorporation of radiolabeled fucose or glucosamine into a 230,000-dalton cell surface glycoprotein named the NGF-Inducible Large External, or NILE, glycoprotein (GP) (McGuire, J. C., L. A. Greene, and A. V. Furano (1978) Cell 15: 357-365). In the current studies NILE GP was purified from PC12 cells using wheat germ agglutinin-agarose affinity chromatography and SDS-polyacrylamide gel electrophoresis (PAGE). Polyclonal antisera were raised against purified NILE GP and were found to selectively immunoprecipitate a single 230,000-dalton protein from detergent extracts of PC12 cells metabolically labeled with either [3H]fucose, [3H]glucosamine, or [35S]methionine. These antisera stained the surfaces of PC12 cells by indirect immunofluorescence and were cytotoxic to PC12 cells in the presence of complement. Limited treatment of PC12 cells with either trypsin or pronase produced a fucosylated 90,000-dalton immunoreactive fragment of NILE GP which remained in the membrane. Using quantitative immunoelectrophoresis, the action of NGF on NILE GP was represent an increase in the amount of protein, rather than a selective increase in carbohydrate incorporation. Immunofluorescent staining of primary cell cultures and tissue whole mounts revealed that immunologically cross-reactive NILE GP appears to be expressed on the cell surfaces (somas and neurites) of most if not all peripheral and central neurons examined. Immunoprecipitation of radiolabeled cultures showed that the cross-reactive material had an apparent molecular weight by SDS-PAGE of 225,000 to 230,000 in the peripheral nervous system and 200,000 to 210,000 in the central nervous system. NILE-cross-reactive material was also found to a small extent on Schwann cell surfaces, but not at all on a variety of other cell types. These results suggest

  6. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: Herb–drug interactions mediated via P-gp

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue, E-mail: lixue@imm.ac.cn; Hu, Jinping, E-mail: hujp@imm.ac.cn; Wang, Baolian, E-mail: wangbaolian@imm.ac.cn; Sheng, Li, E-mail: shengli@imm.ac.cn; Liu, Zhihao, E-mail: liuzhihao@imm.ac.cn; Yang, Shuang, E-mail: yangsh@imm.ac.cn; Li, Yan, E-mail: yanli@imm.ac.cn

    2014-03-01

    Modulation of drug transporters via herbal medicines which have been widely used in combination with conventional prescription drugs may result in herb–drug interactions in clinical practice. The present study was designed to investigate the inhibitory effects of 50 major herbal constituents on P-glycoprotein (P-gp) in vitro and in vivo as well as related inhibitory mechanisms. Among these herbal medicines, four constituents, including emodin, 18β-glycyrrhetic acid (18β-GA), dehydroandrographolide (DAG), and 20(S)-ginsenoside F{sub 1} [20(S)-GF{sub 1}] exhibited significant inhibition (> 50%) on P-gp in MDR1-MDCKII and Caco-2 cells. Emodin was the strongest inhibitor of P-gp (IC{sub 50} = 9.42 μM), followed by 18β-GA (IC{sub 50} = 21.78 μM), 20(S)-GF{sub 1} (IC{sub 50} = 76.08 μM) and DAG (IC{sub 50} = 77.80 μM). P-gp ATPase activity, which was used to evaluate the affinity of substrates to P-gp, was stimulated by emodin and DAG with K{sub m} and V{sub max} values of 48.61, 29.09 μM and 71.29, 38.45 nmol/min/mg protein, respectively. However, 18β-GA and 20(S)-GF{sub 1} exhibited significant inhibition on both basal and verapamil-stimulated P-gp ATPase activities at high concentration. Molecular docking analysis (CDOCKER) further elucidated the mechanism for structure–inhibition relationships of herbal constituents with P-gp. When digoxin was co-administered to male SD rats with emodin or 18β-GA, the AUC{sub 0−t} and Cmax of digoxin were increased by approximately 51% and 58%, respectively. Furthermore, 18β-GA, DAG, 20(S)-GF{sub 1} and Rh{sub 1} at 10 μM significantly inhibited CYP3A4/5 activity, while emodin activated the metabolism of midazolam in human liver microsomes. In conclusion, four herbal constituents demonstrated inhibition of P-gp to specific extents in vitro and in vivo. Taken together, our findings provided the basis for the reliable assessment of the potential risks of herb–drug interactions in humans. - Highlights: • Emodin, 18

  7. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: Herb–drug interactions mediated via P-gp

    International Nuclear Information System (INIS)

    Li, Xue; Hu, Jinping; Wang, Baolian; Sheng, Li; Liu, Zhihao; Yang, Shuang; Li, Yan

    2014-01-01

    Modulation of drug transporters via herbal medicines which have been widely used in combination with conventional prescription drugs may result in herb–drug interactions in clinical practice. The present study was designed to investigate the inhibitory effects of 50 major herbal constituents on P-glycoprotein (P-gp) in vitro and in vivo as well as related inhibitory mechanisms. Among these herbal medicines, four constituents, including emodin, 18β-glycyrrhetic acid (18β-GA), dehydroandrographolide (DAG), and 20(S)-ginsenoside F 1 [20(S)-GF 1 ] exhibited significant inhibition (> 50%) on P-gp in MDR1-MDCKII and Caco-2 cells. Emodin was the strongest inhibitor of P-gp (IC 50 = 9.42 μM), followed by 18β-GA (IC 50 = 21.78 μM), 20(S)-GF 1 (IC 50 = 76.08 μM) and DAG (IC 50 = 77.80 μM). P-gp ATPase activity, which was used to evaluate the affinity of substrates to P-gp, was stimulated by emodin and DAG with K m and V max values of 48.61, 29.09 μM and 71.29, 38.45 nmol/min/mg protein, respectively. However, 18β-GA and 20(S)-GF 1 exhibited significant inhibition on both basal and verapamil-stimulated P-gp ATPase activities at high concentration. Molecular docking analysis (CDOCKER) further elucidated the mechanism for structure–inhibition relationships of herbal constituents with P-gp. When digoxin was co-administered to male SD rats with emodin or 18β-GA, the AUC 0−t and Cmax of digoxin were increased by approximately 51% and 58%, respectively. Furthermore, 18β-GA, DAG, 20(S)-GF 1 and Rh 1 at 10 μM significantly inhibited CYP3A4/5 activity, while emodin activated the metabolism of midazolam in human liver microsomes. In conclusion, four herbal constituents demonstrated inhibition of P-gp to specific extents in vitro and in vivo. Taken together, our findings provided the basis for the reliable assessment of the potential risks of herb–drug interactions in humans. - Highlights: • Emodin, 18β-GA, DAG, and 20(S)-GF 1 significantly inhibited P-gp in vitro

  8. Ninety-five- and 25-kDa fragments of the human immunodeficiency virus envelope glycoprotein gp120 bind to the CD4 receptor

    International Nuclear Information System (INIS)

    Nygren, A.; Bergman, T.; Matthews, T.; Joernvall, H.; Wigzell, H.

    1988-01-01

    Iodine-125-labeled gp120 (120-kDa envelope glycoprotein) from the BH10 isolate of human immunodeficiency virus is cleaved to a limited extend with the glutamate-specific protease from Staphylococcus aureus. After disulfide bond reduction, fragments with approximate molecular masses of 95, 60, 50, and 25 kDa are produced. Tests for binding to CD4-positive cells show that only two fragments, the 95- and 25- kDa peptides, are observed in cleavage products that retain the selective binding capacity of gp120. Radiosequence analysis of the fragments after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and electroblotting demonstrates that the 95-kDa fragment lacks the N-terminal region of gp120 and starts at position 143 of the mature envelope protein. The 50-kDa fragment starts at the same position. The 25-kDa binding fragment was similarly deduced to be generated as a small fragment from a cleavage site in the C-terminal part of gp120. The identifications of these fragments demonstrate that radiosequence analysis utilizing 125 I-labeled tyrosine residues can function as a useful and reliable method for small-scale determination of cleavage sites in proteins. Combined, the data suggest domain-like subdivisions of gp120, define at least two intervening segments especially sensitive to proteolytic cleavage, and demonstrate the presence of a functional region for receptor binding in the C-terminal part of the molecule

  9. Homologous and heterologous antibody responses of mice immunized with purified feline herpesvirus type 1 and canine herpesvirus glycoproteins.

    Science.gov (United States)

    Limcumpao, J A; Horimoto, T; Xuan, X N; Tohya, Y; Azetaka, M; Takahashi, E; Mikami, T

    1991-06-01

    The three glycoproteins each of feline herpesvirus type 1 (FHV-1) and canine herpesvirus (CHV) were purified by affinity chromatography using glycoprotein-specific monoclonal antibodies and used individually or in combination in immunizing mice to determine their relative immunogenicity. All the glycoproteins induced detectable virus neutralizing antibodies to the homologous virus but FHV-1 gp143/108 and its cross-reacting counterpart, CHV gp145/112, elicited the highest titers not only to the homologous virus but to the heterologous virus as well. The production of ELISA antibodies after glycoprotein immunization was variable, while hemagglutination-inhibiting antibodies were produced by only 1 out of 10 FHV-1 gp60-inoculated mice. In general, the antibody titers induced by CHV glycoproteins were lower than those by FHV-1 glycoproteins. These results indicate that these glycoproteins may be useful as subunit vaccines against FHV-1 and CHV infections.

  10. Primary structure of and immunoglobulin E response to the repeat subunit of gp15/400 from human lymphatic filarial parasites

    NARCIS (Netherlands)

    Paxton, W. A.; Yazdanbakhsh, M.; Kurniawan, A.; Partono, F.; Maizels, R. M.; Selkirk, M. E.

    1993-01-01

    We have isolated and sequenced clones encoding the repeated subunit of the surface-associated glycoprotein gp15/400 from the two nematode species predominantly responsible for lymphatic filariasis in humans: Brugia malayi and Wuchereria bancrofti. The amino acid sequence of the 15-kDa subunit,

  11. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  12. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    International Nuclear Information System (INIS)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.

    1987-01-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120

  13. BoHV-4-based vector delivering Ebola virus surface glycoprotein

    Directory of Open Access Journals (Sweden)

    Alfonso Rosamilia

    2016-11-01

    Full Text Available Abstract Background Ebola virus (EBOV is a Category A pathogen that is a member of Filoviridae family that causes hemorrhagic fever in humans and non-human primates. Unpredictable and devastating outbreaks of disease have recently occurred in Africa and current immunoprophylaxis and therapies are limited. The main limitation of working with pathogens like EBOV is the need for costly containment. To potentiate further and wider opportunity for EBOV prophylactics and therapies development, innovative approaches are necessary. Methods In the present study, an antigen delivery platform based on a recombinant bovine herpesvirus 4 (BoHV-4, delivering a synthetic EBOV glycoprotein (GP gene sequence, BoHV-4-syEBOVgD106ΔTK, was generated. Results EBOV GP was abundantly expressed by BoHV-4-syEBOVgD106ΔTK transduced cells without decreasing viral replication. BoHV-4-syEBOVgD106ΔTK immunized goats produced high titers of anti-EBOV GP antibodies and conferred a long lasting (up to 6 months, detectable antibody response. Furthermore, no evidence of BoHV-4-syEBOVgD106ΔTK viremia and secondary localization was detected in any of the immunized animals. Conclusions The BoHV-4-based vector approach described here, represents: an alternative antigen delivery system for vaccination and a proof of principle study for anti-EBOV antibodies generation in goats for potential immunotherapy applications.

  14. Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II recepter HLA-DR1

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, M.; Haan, K.M.; Longnecker, R.; Jardetzky, T.

    2010-03-08

    Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes long-term latent infections, and is associated with a variety of human tumors. The EBV gp42 glycoprotein binds MHC class II molecules, playing a critical role in infection of B lymphocytes. EBV gp42 belongs to the C-type lectin superfamily, with homology to NK receptors of the immune system. We report the crystal structure of gp42 bound to the human MHC class II molecule HLA-DR1. The gp42 binds HLA-DR1 using a surface site that is distinct from the canonical lectin and NK receptor ligand binding sites. At the canonical ligand binding site, gp42 forms a large hydrophobic groove, which could interact with other ligands necessary for EBV entry, providing a mechanism for coupling MHC recognition and membrane fusion.

  15. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  16. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    Science.gov (United States)

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  17. Role for the disulfide-bonded region of human immunodeficiency virus type 1 gp41 in receptor-triggered activation of membrane fusion function

    International Nuclear Information System (INIS)

    Bellamy-McIntyre, Anna K.; Baer, Severine; Ludlow, Louise; Drummer, Heidi E.; Poumbourios, Pantelis

    2010-01-01

    The conserved disulfide-bonded region (DSR) of the human immunodeficiency virus type 1 (HIV-1) fusion glycoprotein, gp41, mediates association with the receptor-binding glycoprotein, gp120. Interactions between gp120, CD4 and chemokine receptors activate the fusion activity of gp41. The introduction of W596L and W610F mutations to the DSR of HIV-1 QH1549.13 blocked viral entry and hemifusion without affecting gp120-gp41 association. The fusion defect correlated with inhibition of CD4-triggered gp41 pre-hairpin formation, consistent with the DSR mutations having decoupled receptor-induced conformational changes in gp120 from gp41 activation. Our data implicate the DSR in sensing conformational changes in the gp120-gp41 complex that lead to fusion activation.

  18. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  19. Irradiation of rat brain reduces P-glycoprotein expression and function

    NARCIS (Netherlands)

    Bart, J.; Nagengast, W. B.; Coppes, R. P.; Wegman, T. D.; van der Graaf, W. T. A.; Groen, H. J. M.; Vaalburg, W.; de Vries, E. G. E.; Hendrikse, N. H.

    2007-01-01

    The blood - brain barrier ( BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P- glycoprotein ( P- gp), expressed on brain capillary endothelial cells, is part of the BBB. P- gp expression on capillary endothelium decreases 5 days after brain

  20. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Suchita

    2011-01-01

    Full Text Available Abstract The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1. However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER, Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP, it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.

  1. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects.

    Science.gov (United States)

    Branco, Luis M; Grove, Jessica N; Moses, Lina M; Goba, Augustine; Fullah, Mohammed; Momoh, Mambu; Schoepp, Randal J; Bausch, Daniel G; Garry, Robert F

    2010-11-09

    Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1, 2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90 percent fatality rates [3 - 5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole

  2. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Zachary A. Bornholdt

    2016-02-01

    Full Text Available The filovirus surface glycoprotein (GP mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics.

  3. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  4. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yijun [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan (China); Pattnaik, Asit K. [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States); Song, Cheng [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Li, Gang, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing (China)

    2012-03-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  5. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    International Nuclear Information System (INIS)

    Du, Yijun; Pattnaik, Asit K.; Song, Cheng; Yoo, Dongwan; Li, Gang

    2012-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  6. Binding kinetics of aptamers to gp120 derived from HIV-1 subtype C

    CSIR Research Space (South Africa)

    Millroy, L

    2011-02-01

    Full Text Available aptamers with specific and strong affinity to the HIV-1 envelope glycoprotein gp120 and act as novel HIV-1 entry inhibitor drugs or as targeted drug delivery systems to HIV-1 infected cells. Prior to any downstream applications, novel gp120 aptamers need...

  7. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives

    Directory of Open Access Journals (Sweden)

    Vanessa Lopes-Rodrigues

    2016-11-01

    Full Text Available Multidrug resistance (MDR presents a serious challenge to the efficiency of cancer treatment, and may be associated with the overexpression of drug efflux pumps. P-glycoprotein (P-gp is a drug efflux pump often found overexpressed in cases of acquired MDR. Nevertheless, there are no P-gp inhibitors being used in the current clinical practice, due to toxicity problems, drug interactions, or pharmacokinetic issues. Therefore, it is important to identify novel inhibitors of P-gp activity or expression. Curcumin is a secondary metabolite isolated from the turmeric of Curcuma longa L. which has been associated with several biological activities, particularly P-gp modulatory activity (by inhibiting both P-gp function and expression. However, curcumin shows extensive metabolism and instability, which has justified the recent and intensive search for analogs of curcumin that maintain the P-gp modulatory activity but have enhanced stability. This review summarizes and compares the effects of curcumin and several curcumin analogs on P-glycoprotein function and expression, emphasizing the potential of these molecules for the possible development of safe and effective inhibitors of P-gp to overcome MDR in human cancer.

  8. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang; Abu Samra, Dina Bashir Kamil; Merzaban, Jasmeen; Khashab, Niveen M.

    2013-01-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug

  9. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects

    Directory of Open Access Journals (Sweden)

    Momoh Mambu

    2010-11-01

    Full Text Available Abstract Background Lassa hemorrhagic fever (LHF is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV GP1 (sGP1 in vitro resulting from the expression of the glycoprotein complex (GPC gene 12. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV, a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates 345. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH Lassa Fever Ward (LFW, in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. Results It is reasonable to expect that a narrow window exists for

  10. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Directory of Open Access Journals (Sweden)

    Anna Maisa

    2009-06-01

    Full Text Available Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication.We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor.Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  11. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  12. Specific assay measuring binding of /sup 125/I-Gp 120 from HIV to T4/sup +//CD4/sup +/ cells

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, K.; Nygren, A.; Ramstedt, U.; Gidlund, M.; Wigzell, H.; Arthur, L.O.; Robey, W.G.; Morein, B.

    1987-02-26

    The HIV (HTLV-III) envelope glycoprotein, Gp120, was isolated from virus-infected tissue culture cells using affinity chromatography. A radioimmunoassay was developed to determine the degree of iodinated Gp120 to target CD4/sup +/ (T4/sup +/) cells. /sup 125/I-Gp120 could be shown to selectively bind to CD4/sup +/ cells only. The Gp120 remained bound to these cells after repeated washes. Monoclonal anti-CD4 antibodies block the binding of Gp120 to CD4/sup +/ cells. Monoclonal antibodies to other cell surface components do not interfere with /sup 125/I-Gp120 binding. All IgG antibodies from HIV seropositive donors tested block /sup 125/I-GP120 binding, though with variable titers. The authors believe that this assay provides further proof for the use of CD4 (T4) as a component of the receptor for HIV. It represents a safe, objective and sensitive method for the analysis of Gp120-CD4 interactions, as well as the potential of antibodies to interfere with this binding. (Auth.). 24 refs.; 2 figs.; 8 tabs.

  13. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D

    2003-01-01

    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... but rather, in serial, i.e., a drug that is pumped from the cytoplasmic phase has to pass the preemptive route upon leaving the cell. Our results are consistent with the Sauna-Ambudkar two-step model for pumping by P-gp. We suggest that the vinblastine/cyclosporin A/XR9576-binding site accepts daunorubicin...

  14. Comparative Glycoprofiling of HIV gp120 Immunogens by Capillary Electrophoresis and MALDI Mass Spectrometry

    Science.gov (United States)

    Guttman, Miklós; Váradi, Csaba; Lee, Kelly K.; Guttman, András

    2015-01-01

    The Human Immunodeficiency Virus (HIV) envelope glycoprotein (Env) is the primary antigenic feature on the surface of the virus and is of key importance in HIV vaccinology. Vaccine trials with the gp120 subunit of Env are ongoing with the recent RV144 trial showing moderate efficacy. gp120 is densely covered with N-linked glycans that are thought to help evade the host's humoral immune response. To assess how the global glycosylation patterns vary between gp120 constructs, the glycan profiles of several gp120s were examined by capillary electrophoresis with laser induced fluorescence detection and MALDI-MS. The glycosylation profiles were found to be similar for chronic vs. transmitter/founder isolates and only varied moderately between gp120s from different clades. This study revealed that the addition of specific tags, such as the gD tag used in the RV144 trial, had significant effects on the overall glycosylation patterns. Such effects are likely to influence the immunogenicity of various Env immunogens and should be considered for future vaccine strategies, emphasizing the importance of the glycosylation analysis approach described in this paper. PMID:25809283

  15. Mechanical circulatory support is associated with loss of platelet receptors glycoprotein Ibα and glycoprotein VI.

    Science.gov (United States)

    Lukito, P; Wong, A; Jing, J; Arthur, J F; Marasco, S F; Murphy, D A; Bergin, P J; Shaw, J A; Collecutt, M; Andrews, R K; Gardiner, E E; Davis, A K

    2016-11-01

    Essentials Relationship of acquired von Willebrand disease (VWD) and platelet dysfunction is explored. Patients with ventricular assist devices and on extracorporeal membrane oxygenation are investigated. Acquired VWD and platelet receptor shedding is demonstrated in the majority of patients. Loss of platelet adhesion receptors glycoprotein (GP) Ibα and GPVI may increase bleeding risk. Background Ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) are associated with bleeding that is not fully explained by anticoagulant or antiplatelet use. Exposure of platelets to elevated shear in vitro leads to increased shedding. Objectives To investigate whether loss of platelet receptors occurs in vivo, and the relationship with acquired von Willebrand syndrome (AVWS). Methods Platelet counts, coagulation tests and von Willebrand factor (VWF) analyses were performed on samples from 21 continuous flow VAD (CF-VAD), 20 ECMO, 12 heart failure and seven aortic stenosis patients. Levels of platelet receptors were measured by flow cytometry or ELISA. Results The loss of high molecular weight VWF multimers was observed in 18 of 19 CF-VAD and 14 of 20 ECMO patients, consistent with AVWS. Platelet receptor shedding was demonstrated by elevated soluble glycoprotein (GP) VI levels in plasma and significantly reduced surface GPIbα and GPVI levels in CF-VAD and ECMO patients as compared with healthy donors. Platelet receptor levels were also significantly reduced in heart failure patients. Conclusions These data link AVWS and increased platelet receptor shedding in patients with CF-VADs or ECMO for the first time. Loss of the platelet surface receptors GPIbα and GPVI in heart failure, CF-VAD and ECMO patients may contribute to ablated platelet adhesion/activation, and limit thrombus formation under high/pathologic shear conditions. © 2016 International Society on Thrombosis and Haemostasis.

  16. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    Directory of Open Access Journals (Sweden)

    Meron Mengistu

    2015-03-01

    Full Text Available The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step

  17. Synthesis and Preclinical Evaluation of Novel PET Probes for P-Glycoprotein Function and Expression

    NARCIS (Netherlands)

    van Waarde, Aren; Ramakrishnan, Nisha K.; Rybczynska, Anna A.; Elsinga, Philip H.; Berardi, Francesco; de Jong, Johan R.; Kwizera, Chantal; Perrone, Roberto; Cantore, Mariangela; Sijbesma, Jurgen W. A.; Dierckx, Rudi A.; Colabufo, Nicola A.

    2009-01-01

    P-glycoprotein (P-gp) is an ATP-dependent efflux pump protecting the body against xenobiotics. A P-gp substrate (7) and an inhibitor (6) were labeled with (11)C, resulting in potential tracers of P-gp function and expression. Methods: 6 and 7 were labeled using (11)CH(3)I. (11)C-verapamil was

  18. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    International Nuclear Information System (INIS)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-01-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans

  19. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells.

    Science.gov (United States)

    Bebawy, M; Combes, V; Lee, E; Jaiswal, R; Gong, J; Bonhoure, A; Grau, G E R

    2009-09-01

    Multidrug resistance (MDR), a significant impediment to the successful treatment of cancer clinically, has been attributed to the overexpression of P-glycoprotein (P-gp), a plasma membrane multidrug efflux transporter. P-gp maintains sublethal intracellular drug concentrations by virtue of its drug efflux capacity. The cellular regulation of P-gp expression is currently known to occur at either pre- or post-transcriptional levels. In this study, we identify a 'non-genetic' mechanism whereby microparticles (MPs) serve as vectors in the acquisition and spread of MDR. MPs isolated from drug-resistant cancer cells (VLB(100)) were co-cultured with drug sensitive cells (CCRF-CEM) over a 4 h period to allow for MP binding and P-gp transfer. Presence of P-gp on MPs was established using flow cytometry (FCM) and western blotting. Whole-cell drug accumulation assays using rhodamine 123 and daunorubicin (DNR) were carried out to validate the transfer of functional P-gp after co-culture. We establish that MPs shed in vitro from drug-resistant cancer cells incorporate cell surface P-gp from their donor cells, effectively bind to drug-sensitive recipient cells and transfer functional P-gp to the latter. These findings serve to substantially advance our understanding of the molecular basis for the emergence of MDR in cancer clinically and lead to new treatment strategies which target and inhibit MP mediated transfer of P-gp during the course of treatment.

  20. Structural Basis for Species Selectivity in the HIV-1 gp120-CD4 Interaction: Restoring Affinity to gp120 in Murine CD4 Mimetic Peptides

    Directory of Open Access Journals (Sweden)

    Kristin Kassler

    2011-01-01

    Full Text Available The first step of HIV-1 infection involves interaction between the viral glycoprotein gp120 and the human cellular receptor CD4. Inhibition of the gp120-CD4 interaction represents an attractive strategy to block HIV-1 infection. In an attempt to explore the known lack of affinity of murine CD4 to gp120, we have investigated peptides presenting the putative gp120-binding site of murine CD4 (mCD4. Molecular modeling indicates that mCD4 protein cannot bind gp120 due to steric clashes, while the larger conformational flexibility of mCD4 peptides allows an interaction. This finding is confirmed by experimental binding assays, which also evidenced specificity of the peptide-gp120 interaction. Molecular dynamics simulations indicate that the mCD4-peptide stably interacts with gp120 via an intermolecular β-sheet, while an important salt-bridge formed by a C-terminal lysine is lost. Fixation of the C-terminus by introducing a disulfide bridge between the N- and C-termini of the peptide significantly enhanced the affinity to gp120.

  1. P-glycoprotein activity and biological response

    International Nuclear Information System (INIS)

    Vaalburg, W.; Hendrikse, N.H.; Elsinga, P.H.; Bart, J.; Waarde, A. van

    2005-01-01

    P-glycoprotein (P-gp) is a transmembrane drug efflux pump encoded by the MDR-1 gene in humans. Most likely P-gp protects organs against endogenous and exogenous toxins by extruding toxic compounds such as chemotherapeutics and other drugs. Many drugs are substrates for P-gp. Since P-gp is also expressed in the blood-brain barrier, P-gp substrates reach lower concentrations in the brain than in P-gp-negative tissues. Failure of response to chemotherapy of malignancies can be due to intrinsic or acquired drug resistance. Many tumors are multidrug resistant (MDR); resistant to several structurally unrelated chemotherapeutic agents. Several mechanisms are involved in MDR of which P-gp is studied most extensively. P-gp extrudes drugs out of tumor cells resulting in decreased intracellular drug concentrations, leading to the MDR phenotype. Furthermore, the MDR-1 gene exhibits several single nucleotide polymorphisms, some of which result in different transport capabilities. P-gp functionality and the effect of P-gp modulation on the pharmacokinetics of novel and established drugs can be studied in vivo by positron emission tomography (PET) using carbon-11 and fluorine-18-labeled P-gp substrates and modulators. PET may demonstrate the consequences of genetic differences on tissue pharmacokinetics. Inhibitors such as calcium-channel blockers (verapamil), cyclosporin A, ONT-093, and XR9576 can modulate the P-gp functionality. With PET the effect of P-gp modulation on the bioavailability of drugs can be investigated in humans in vivo. PET also allows the measurement of the efficacy of newly developed P-gp modulators

  2. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia : A PET study with [C-11]verapamil as a probe for P-glycoprotein function

    NARCIS (Netherlands)

    de Klerk, Onno L.; Willemsen, Antoon T. M.; Bosker, Fokko J.; Bartels, Anna L.; Hendrikse, N. Harry; den Boer, Johan A.; Dierckx, Rudy A.

    2010-01-01

    P-glycoprotein (P-gp), a major efflux pump in the blood-brain barrier (BBB) has a profound effect on entry of drugs, peptides and other substances into the central nervous system (CNS). The brain's permeability can be negatively influenced by modulation of the transport function of P-gp.

  3. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier

    NARCIS (Netherlands)

    Hendrikse, NH; de Vries, EGE; Eriks-Fluks, L; van der Graaf, WTA; Hospers, GAP; Willemsen, ATM; Vaalburg, W; Franssen, EJF

    1999-01-01

    Drug resistance is a major cause of chemotherapy failure in cancer treatment, One reason is the overexpression of the drug efflux pump P-glycoprotein (P-gp), involved in multidrug resistance (MDR), In vivo pharmacokinetic analysis of P-gp transport might identify the capacity of modulation by P-gp

  4. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    DEFF Research Database (Denmark)

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    monolayers with a permeability of 5.7 × 10−5 cm sec−1 compared to an apical to basolateral permeability of 1.3 × 10−5 cm sec-1. The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6–1.6. The presence of telmisartan......Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake...... of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1...

  5. Molecular determinants of the V3 loop of human immunodeficiency virus type 1 glycoprotein gp120 responsible for controlling cell tropism.

    Science.gov (United States)

    Chavda, S C; Griffin, P; Han-Liu, Z; Keys, B; Vekony, M A; Cann, A J

    1994-11-01

    We and others have identified the major determinant of cell tropism in human immunodeficiency virus type 1 (HIV-1) as the V3 loop of glycoprotein gp120. We have conducted a detailed study of two molecularly cloned isolates of HIV-1, HIVJR-CSF and HIVNL4-3, that differ in their tropism for immortalized CD4+ cell lines, by constructing a series of site-directed mutations within the V3 loop of HIVJR-CSF based on the sequence of HIVNL4-3. The phenotypes of these mutants fall into two classes, those which are viable and those which are not. A spontaneous mutant with significantly altered growth properties was also recovered and found to have an additional single amino acid change in the V3 loop sequence. The carboxy-terminal beta-strand part of the V3 loop is the major determinant of cell tropism. However, the results presented here indicate that the functional role of the V3 loop sequences can only be interpreted properly in the context of the original gp120 backbone from which they were derived. These findings show that over-simplistic interpretation of sequence data derived from unknown mixtures of HIV variants in infected persons may be highly misleading.

  6. Characterization and endocytic internalization of Epith-2 cell surface glycoprotein during the epithelial-to-mesenchymal transition in sea urchin embryos

    Directory of Open Access Journals (Sweden)

    Norio eWakayama

    2013-08-01

    Full Text Available The epithelial cells of the sea urchin Hemicentrotus pulcherrimus embryo express an Epith-2, uncharacterized glycoprotein, on the lateral surface. Here, we describe internalization of Epith-2 during mesenchyme formation through the epithelial-to-mesenchymal transition (EMT. Epith-2 was first expressed on the entire egg surface soon after fertilization and on the blastomeres until the 4-cell stage, but was localized to the lateral surface of epithelial cells at and after the 16-cell stage throughout the later developmental period. However, primary (PMC and secondary mesenchyme cells (SMC that ingress by EMT lost Epith-2 from their cell surface by endocytosis during dissociation from the epithelium, which was associated with the appearance of cytoplasmic Epith-2 dots. The cytoplasmic Epith-2 retained a similar relative molecular mass to that of the cell surface immediately after ingression through the early period of the spreading to single cells. Then, Epith-2 was completely lost from the cytoplasm. Tyrosine residues of Epith-2 were phosphorylated. The endocytic retraction of Epith-2 was inhibited by herbimycin A (HA, a protein tyrosine kinase (PTK inhibitor, and suramin, a growth factor receptor (GFR inhibitor, suggesting the involvement of the GFR/PTK (GP signaling pathway. These two GP inhibitors also inhibited PMC and SMC spreading to individual cells after ingression, but the dissociation of PMC and SMC from the epithelium was not inhibited. In suramin-treated embryos, dissociated mesenchyme cells migrated partially by retaining their epithelial morphology. In HA-treated embryos, no mesenchyme cells migrated. Thus, the EMT occurs in relation to internalization of Epith-2 from presumptive PMC and SMC.

  7. Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism

    Directory of Open Access Journals (Sweden)

    Kerstin Gnirß

    2014-04-01

    Full Text Available The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.

  8. Glycoprotein Ibalpha signalling in platelet apoptosis and clearance

    NARCIS (Netherlands)

    van der Wal, E.

    2010-01-01

    Storage of platelets at low temperature reduces bacterial growth and might better preserve the haemostatic function of platelets than current procedures. Incubation at 0C is known to expose ?-N-acetyl-D-glucosamine-residues on glycoprotein (GP)Ibalpha inducing receptor-clustering and platelet

  9. cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol.

    Science.gov (United States)

    Grandori, R; Popolo, L; Vai, M; Alberghina, L

    1990-08-25

    The glycoprotein gp115 (Mr = 115,000, pI 4.8-5) is localized in the plasma membrane of Saccharomyces cerevisiae cells and maximally expressed during G1 phase. To gain insight on the mechanism regulating its synthesis, we have examined various conditions of cell proliferation arrest. We used pulse-labeling experiments with [35S]methionine and two-dimensional gel electrophoresis analysis, which allow the detection of the well characterized 100-kDa precursor of gp115 (p100). In the cAMP-requiring mutant cyr1, p100 synthesis is active during exponential growth, shut off by cAMP removal, and induced when growth is restored by cAMP readdition. The inhibition of p100 synthesis also occurs in TS1 mutant cells (ras1ras2-ts1) shifted from 24 to 37 degrees C. During nitrogen starvation of rca1 cells, a mutant permeable to cAMP, p100 synthesis is also inhibited. cAMP complements the effect of ammonium deprivation, promoting p100 synthesis, even when added to cells which have already entered G0. Experiments with the bcy1 and cyr1bcy1 mutants have indicated the involvement of the cAMP-dependent protein kinases in the control of p100 synthesis. Moreover, the synthesis of p100 was unaffected in A364A cells, terminally arrested at START B by alpha-factor. These results indicate that the switch operating on p100 synthesis is localized in early G1 (START A) and is one of the multiple events controlled by the cAMP pathway.

  10. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate

    DEFF Research Database (Denmark)

    Visciano, Maria Luisa; Tagliamonte, Maria; Stewart-Jones, Guillaume

    2013-01-01

    Trimeric soluble forms of HIV gp140 envelope glycoproteins represent one of the closest molecular structures compared to native spikes present on intact virus particles. Trimeric soluble gp140 have been generated by several groups and such molecules have been shown to induce antibodies with neutr...

  11. Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2+ Human Pancreatic Progenitors

    Directory of Open Access Journals (Sweden)

    Jacqueline Ameri

    2017-04-01

    Full Text Available Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling β cell manufacturing. Comparative gene expression analysis revealed glycoprotein 2 (GP2 as a specific cell surface marker for isolating pancreatic endoderm cells (PECs from differentiated hESCs and human fetal pancreas. Isolated GP2+ PECs efficiently differentiated into glucose responsive insulin-producing cells in vitro. We found that in vitro PEC proliferation declines due to enhanced expression of the cyclin-dependent kinase (CDK inhibitors CDKN1A and CDKN2A. However, we identified a time window when reducing CDKN1A or CDKN2A expression increased proliferation and yield of GP2+ PECs. Altogether, our results contribute tools and concepts toward the isolation and use of PECs as a source for the safe production of hPSC-derived β cells.

  12. High Epstein-Barr Virus Load and Genomic Diversity Are Associated with Generation of gp350-Specific Neutralizing Antibodies following Acute Infectious Mononucleosis.

    Science.gov (United States)

    Weiss, Eric R; Alter, Galit; Ogembo, Javier Gordon; Henderson, Jennifer L; Tabak, Barbara; Bakiş, Yasin; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Luzuriaga, Katherine

    2017-01-01

    The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a

  13. (11) C- and (18) F-Labeled Radioligands for P-Glycoprotein Imaging by Positron Emission Tomography.

    NARCIS (Netherlands)

    Cantore, Mariangela; Benadiba, Marcel; Elsinga, Philippus; Kwizera, Chantal; Dierckx, Rudi; Colabufo, Nicola A.; Luurtsema, Geert

    2016-01-01

    P-Glycoprotein (P-gp) is an efflux transporter widely expressed at the human blood-brain barrier. It is involved in xenobiotics efflux and in onset and progression of neurodegenerative disorders. For these reasons, there is great interest in the assessment of P-gp expression and function by

  14. P-glycoprotein-deficient mice have proximal tubule dysfunction but are protected against ischemic renal injury

    NARCIS (Netherlands)

    Huls, M.; Kramers, C.; Levtchenko, E.N.; Wilmer, M.J.G.; Dijkman, H.B.P.M.; Kluijtmans, L.A.J.; Hoorn, J.W.A. van der; Russel, F.G.M.; Masereeuw, R.

    2007-01-01

    The multidrug resistance gene 1 product, P-glycoprotein (P-gp), is expressed in several excretory organs, including the apical membrane of proximal tubules. After inducing acute renal failure, P-gp expression is upregulated and this might be a protective function by pumping out toxicants and harmful

  15. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Agnihothram, Sudhakar S.; Romanowski, Victor; Nunberg, Jack H.

    2005-01-01

    The G2 fusion subunit of the Junin virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins, four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell-cell fusion. Taken together, our results indicate that α-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever

  16. Construction and Characterization of a Humanized Anti-Epstein-Barr Virus gp350 Antibody with Neutralizing Activity in Cell Culture

    Directory of Open Access Journals (Sweden)

    Jerome E. Tanner

    2018-04-01

    Full Text Available Acute Epstein-Barr virus (EBV infection in immunosuppressed transplant patients can give rise to a malignant B-cell proliferation known as post-transplant lymphoproliferative disease (PTLD. The EBV major virion surface glycoprotein (gp350 is a principal target of naturally occurring neutralizing antibodies and is viewed as the best target to prevent acute infection and PTLD in at-risk transplant recipients. We have constructed a humanized (hu version of the murine anti-gp350 neutralizing monoclonal antibody 72a1. The hu72a1 IgG1 antibody displayed no significant anti-mouse activity, recognized both gp350 and its splice variant gp220 as well as a gp350 peptide that was shown to constitute the principal EBV gp350 neutralizing epitope when tested in immunoassays. Hu72a1 antibody blocked in vitro EBV infection of B cells at a level which equaled that of a mouse-human chimeric 72a1 antibody construct. This work provides a further structural and immunological understanding of the 72a1 antibody interaction with EBV gp350, and constitutes a launch point for future anti-EBV therapeutic antibodies designed to block EBV infection and prevent PTLD while eliminating the deleterious antigenic murine features of the original 72a1 antibody.

  17. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway

    International Nuclear Information System (INIS)

    Mulherkar, Nirupama; Raaben, Matthijs; Torre, Juan Carlos de la; Whelan, Sean P.; Chandran, Kartik

    2011-01-01

    Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the large GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.

  18. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.

    Science.gov (United States)

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  19. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  20. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood-brain barrier

    DEFF Research Database (Denmark)

    Gomes, Maria João; Kennedy, Patrick J; Martins, Susana

    2017-01-01

    AIM: Explore the use of transferrin-receptor peptide-functionalized nanoparticles (NPs) targeting blood-brain barrier (BBB) as siRNA carriers to silence P-glycoprotein (P-gp). MATERIALS & METHODS: Permeability experiments were assessed through a developed BBB cell-based model; P-gp mRNA expression...

  1. Overview of P-glycoprotein inhibitors: a rational outlook

    Directory of Open Access Journals (Sweden)

    Kale Mohana Raghava Srivalli

    2012-09-01

    Full Text Available P-glycoprotein (P-gp, a transmembrane permeability glycoprotein, is a member of ATP binding cassette (ABC super family that functions specifically as a carrier mediated primary active efflux transporter. It is widely distributed throughout the body and has a diverse range of substrates. Several vital therapeutic agents are substrates to P-gp and their bioavailability is lowered or a resistance is induced because of the protein efflux. Hence P-gp inhibitors were explored for overcoming multidrug resistance and poor bioavailability problems of the therapeutic P-gp substrates. The sensitivity of drug moieties to P-gp and vice versa can be established by various experimental models in silico, in vitro and in vivo. Ever since the discovery of P-gp, the research plethora identified several chemical structures as P-gp inhibitors. The aim of this review was to emphasize on the discovery and development of newer, inert, non-toxic, and more efficient, specifically targeting P-gp inhibitors, like those among the natural herb extracts, pharmaceutical excipients and formulations, and other rational drug moieties. The applications of cellular and molecular biology knowledge, in silico designed structural databases, molecular modeling studies and quantitative structure-activity relationship (QSAR analyses in the development of novel rational P-gp inhibitors have also been mentioned.Glicoproteína-p (P-gp, uma glicoproteína de transmembrana permeável, é um membro da superfamília (ABC de cassete de gene de ligação de ATP que funciona especificamente como um carreador mediado pelo transportador de efluxo ativo primário. É amplamente distribuído por todo o corpo e apresenta uma gama diversificada de substratos. Diversos agentes terapêuticos vitais são substratos para P-gp e sua biodisponibilidade é reduzida ou a resistência é induzida devido ao efluxo de proteínas. Portanto, os inibidores da P-gp foram explorados para a superação da resistência a

  2. Adult T-cell leukemia-associated antigen (ATLA): detection of a glycoprotein in cell- and virus-free supernatant.

    Science.gov (United States)

    Yamamoto, N; Schneider, J; Hinuma, Y; Hunsmann, G

    1982-01-01

    A glycoprotein of an apparent molecular mass of 46,000, gp 46, was enriched by affinity chromatography from the virus- and cell-free culture medium of adult T-cell leukemia virus (ATLV) infected cells. gp 46 was specifically precipitated with sera from patients with adult T-cell leukemia associated antigen (ATLA). Thus, gp 46 is a novel component of the ATLA antigen complex.

  3. Mechanism of Binding to Ebola Virus Glycoprotein by the ZMapp, ZMAb, and MB-003 Cocktail Antibodies

    OpenAIRE

    Davidson, Edgar; Bryan, Christopher; Fong, Rachel H.; Barnes, Trevor; Pfaff, Jennifer M.; Mabila, Manu; Rucker, Joseph B.; Doranz, Benjamin J.

    2015-01-01

    Cocktails of monoclonal antibodies (MAbs) that target the surface glycoprotein (GP) of Ebola virus (EBOV) are effective in nonhuman primate models and have been used under emergency compassionate-treatment protocols in human patients. However, the amino acids that form the detailed binding epitopes for the MAbs in the ZMapp, ZMAb, and the related MB-003 cocktails have yet to be identified. Other binding properties that define how each MAb functionally interacts with GP—such as affinity, epito...

  4. Glycoprotein Ibα clustering in platelet storage and function

    NARCIS (Netherlands)

    Gitz, E.

    2013-01-01

    Platelets are anucleated, discoid-shaped cells that play an essential role in the formation of a hemostatic plug to prevent blood loss from injured vessels. Initial platelet arrest at the damaged arterial vessel wall is mediated through the interaction between the platelet receptor glycoprotein (GP)

  5. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen

    1991-01-01

    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 kb......, respectively, hybridizing specifically with the β2gpI cDNA. Upon isoelectric focusing, recombinant β2gpI obtained from expression of β2gpI cDNA in baby hamster kidney cells showed the same pattern of bands as β2gpI isolated from plasma, and at least 5 polypeptides were visible...

  6. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  7. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.

    Science.gov (United States)

    Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E

    2014-01-01

    The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.

  8. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  9. Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F Proteins from Group II NPVs are functionally analogous to AcMNPV GP64

    NARCIS (Netherlands)

    Lung, O.; Westenberg, M.; Vlak, J.M.; Zuidema, D.; Blissard, G.W.

    2002-01-01

    GP64, the major envelope glycoprotein of budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), is involved in viral attachment, mediates membrane fusion during virus entry, and is required for efficient virion budding. Thus, GP64 is essential for viral

  10. Multiple Drug Transport Pathways through Human P-Glycoprotein.

    Science.gov (United States)

    McCormick, James W; Vogel, Pia D; Wise, John G

    2015-07-21

    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  11. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    Science.gov (United States)

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-02-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  12. A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    Science.gov (United States)

    Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.

    2011-01-01

    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594

  13. Flow cytometry protocol to evaluate ionizing radiation effects on P-glycoprotein activity

    International Nuclear Information System (INIS)

    Santos, Neyliane Goncalves dos; Amaral, Ademir; Cavalcanti, Mariana Brayner . E-mail; Neves, Maria Amelia Batista; Machado, Cintia Gonsalves de Faria

    2008-01-01

    The aim of this work was to establish a protocol to evaluate ionizing radiation effects on P-glycoprotein (P-gp) activity. For this, human peripheral blood samples were irradiated in vitro with different doses and P-gp activity was analyzed for CD4 and CD8 T lymphocytes through rhodamine123-efflux assay by flow cytometry. By simultaneous employment of percentage and mean fluorescence index parameters, subject-by-subject analysis pointed out changes in P-gp activity for some individuals and irradiated samples. Based on this work, the proposed protocol was considered adequate for evaluating P-gp activity on cells after radioactive stress. Besides, this research suggests that P-gp activity could be an important factor to define patient-specific protocols in combined chemo- and radiotherapy, particularly when radiation exposure precedes chemical treatment. (author)

  14. Flow cytometry protocol to evaluate ionizing radiation effects on P-glycoprotein activity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Neyliane Goncalves dos; Amaral, Ademir; Cavalcanti, Mariana Brayner [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail; neylisantos@yahoo.com.br; Neves, Maria Amelia Batista; Machado, Cintia Gonsalves de Faria [Fundacao de Hematologia e Hemoterapia de Pernambuco, Recife, PE (Brazil). Unidade de Laboratorios Especializados. Lab. de Imunofenotipagem

    2008-12-15

    The aim of this work was to establish a protocol to evaluate ionizing radiation effects on P-glycoprotein (P-gp) activity. For this, human peripheral blood samples were irradiated in vitro with different doses and P-gp activity was analyzed for CD4 and CD8 T lymphocytes through rhodamine123-efflux assay by flow cytometry. By simultaneous employment of percentage and mean fluorescence index parameters, subject-by-subject analysis pointed out changes in P-gp activity for some individuals and irradiated samples. Based on this work, the proposed protocol was considered adequate for evaluating P-gp activity on cells after radioactive stress. Besides, this research suggests that P-gp activity could be an important factor to define patient-specific protocols in combined chemo- and radiotherapy, particularly when radiation exposure precedes chemical treatment. (author)

  15. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus this a...

  16. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1

    NARCIS (Netherlands)

    Sanders, Rogier W.; Vesanen, Mika; Schuelke, Norbert; Master, Aditi; Schiffner, Linnea; Kalyanaraman, Roopa; Paluch, Maciej; Berkhout, Ben; Maddon, Paul J.; Olson, William C.; Lu, Min; Moore, John P.

    2002-01-01

    The envelope glycoprotein (Env) complex of human immunodeficiency virus type I has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41

  17. P-gp and MRP1 Expression in Parathyroid Tumors Related to Histology, Weight and Tc-99m-Sestamibi Imaging Results

    NARCIS (Netherlands)

    Jorna, F. H.; Hollema, H.; Hendrikse, H. N.; Bart, J.; Brouwers, A. H.; Plukker, J. T. M.

    Objective: P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) are membrane efflux pumps that may have a role in the kinetics of Tc-99m-sestamibi (MIBI) in parathyroid tumors. P-gp and MRP1 expression in parathyroid tumors was studied and related to histology, weight and pre- and

  18. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function.

    Science.gov (United States)

    Wang, Bin; Wang, Yujie; Frabutt, Dylan A; Zhang, Xihe; Yao, Xiaoyu; Hu, Dan; Zhang, Zhuo; Liu, Chaonan; Zheng, Shimin; Xiang, Shi-Hua; Zheng, Yong-Hui

    2017-04-07

    The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP 1 and the fusion-mediating GP 2 subunits and incorporated into virions to initiate infection. GP 1 and GP 2 form heterodimers that have 15 or two N -glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N -glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP 1 NGSs are not critical, the two GP 2 NGSs, Asn 563 and Asn 618 , are essential for GP function. Further analysis uncovered that Asn 563 and Asn 618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn 563 and Asn 618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L.

    1989-01-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  20. Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion

    International Nuclear Information System (INIS)

    Garg, Himanshu; Fuller, Frederick J.; Tompkins, Wayne A.F.

    2004-01-01

    Feline immunodeficiency virus (FIV) shares remarkable homology to primate lentiviruses, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). The process of lentiviral env glycoprotein-mediated fusion of membranes is essential for viral entry and syncytia formation. A detailed understanding of this phenomenon has helped identify new targets for antiviral drug development. Using a model based on syncytia formation between FIV env-expressing cells and a feline CD4+ T cell line we have studied the mechanism of FIV env-mediated fusion. Using this model we show that FIV env-mediated fusion mechanism and kinetics are similar to HIV env. Syncytia formation could be blocked by CXCR4 antagonist AMD3100, establishing the importance of this receptor in FIV gp120 binding. Interestingly, CXCR4 alone was not sufficient to allow fusion by a primary isolate of FIV, as env glycoprotein from FIV-NCSU 1 failed to induce syncytia in several feline cell lines expressing CXCR4. Syncytia formation could be inhibited at a post-CXCR4 binding step by synthetic peptide T1971, which inhibits interaction of heptad repeat regions of gp41 and formation of the hairpin structure. Finally, using site-directed mutagenesis, we also show that a conserved tryptophan-rich region in the membrane proximal ectodomain of gp41 is critical for fusion, possibly at steps post hairpin structure formation

  1. Prediction of exposed domains of envelope glycoprotein in Indian HIV-1 isolates and experimental confirmation of their immunogenicity in humans

    Directory of Open Access Journals (Sweden)

    Mohabatkar H.

    2004-01-01

    Full Text Available We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB. Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET (subtype C were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.

  2. Design of Fusion Proteins for Efficient and Soluble Production of Immunogenic Ebola Virus Glycoprotein in Escherichia coli.

    Science.gov (United States)

    Ji, Yang; Lu, Yuan; Yan, Yishu; Liu, Xinxin; Su, Nan; Zhang, Chong; Bi, Shengli; Xing, Xin-Hui

    2018-03-03

    The Ebola hemorrhagic fever caused by Ebola virus is an extremely dangerous disease, and effective therapeutic agents are still lacking. Platforms for the efficient production of vaccines are crucial to ensure quick response against an Ebola virus outbreak. Ebola virus glycoprotein (EbolaGP) on the virion surface is responsible for membrane binding and virus entry, thus becoming the key target for vaccine development. However, heterologous expression of this protein still faces engineering challenges such as low production levels and insoluble aggregation. Here, the authors design and compare various fusion strategies, attaching great importance to the solubility-enhancing effect, and tag removal process. It is found that a C-terminal intein-based tag greatly enhances the solubility of EbolaGP and allows one-step chromatographic purification of the untagged EbolaGP through thiol-catalyzed self-cleavage. The purified untagged EbolaGP alone or with Freund's adjuvant are highly immunogenic, as confirmed in a mouse model. Consequently, the present study puts forward a new strategy for the efficient and soluble expression of untagged immunogenic EbolaGP. The intein-based protein fusion approach may be of importance for the large-scale production of Ebola virus subunit vaccine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. P-glycoprotein Inhibition Increases the Brain Distribution and Antidepressant-Like Activity of Escitalopram in Rodents

    OpenAIRE

    O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2013-01-01

    Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported subst...

  4. Relationship between recurrent spontaneous abortion and anti-β2-glycoprotein I antibody

    International Nuclear Information System (INIS)

    Liu Jingzhu; Hu Jing; Zhang Shiping; Zhang Shuang; Lin Li; Fan Jing

    2008-01-01

    Objective: To explore the relationship between recurrent spontaneous abortion (RSA) and anti-β 2 - glycoprotein I (anti-β 2 -GP I) antibody. Methods: The levels of anti-β 2 -GP I antibody in serum from 81 RSA patients and 39 normal women were detected by ELISA. Results: The positive rate of anti-β 2 -GP I in RSA patients (42.0%) was obviously higher than that in normal women (7.7 %) (P 2 -GP I IgG in statistics between RSA patients (40.8%) and normal women (7.7%) (P 2 -GP I IgM in statistics between RSA patients and normal women (P>0.05). There was no difference of the positive rate of anti-β 2 -GP I in statistics between early and late, as well as between 2 times and more than 2 times abortions of RSA (P>0.05). Conclusion: The anti-β 2 -GP I antibody is related to RSA, and it may be regarded as a immunological assistant diagnostic index for RSA. (authors)

  5. Leishmania major surface protease Gp63 interferes with the function of human monocytes and neutrophils in vitro

    DEFF Research Database (Denmark)

    Sørensen, A L; Hey, A S; Kharazmi, A

    1994-01-01

    In the present study the effect of Leishmania major surface protease Gp63 on the chemotaxis and oxidative burst response of human peripheral blood monocytes and neutrophils was investigated. It was shown that prior incubation of cells with Gp63 inhibited chemotaxis of neutrophils but not monocytes...... towards the chemotactic peptide f-met-leu-phe. On the other hand, chemotaxis of both neutrophils and monocytes towards zymosan-activated serum containing C5a was inhibited by Gp63. Monocyte and neutrophil chemiluminescence response to opsonized zymosan was reduced by preincubation of the cells with Gp63...... in a concentration-dependent manner. Notably, monocytes were inhibited to a much greater degree than neutrophils by a given concentration of Gp63, and they were also inhibited at much lower concentrations of the protease. The inhibitory effect of Gp63 on chemotaxis and chemiluminescence was completely abolished...

  6. HIV-1 gp41 Fusion Intermediate: A Target for HIV Therapeutics

    Directory of Open Access Journals (Sweden)

    Chungen Pan

    2010-02-01

    Full Text Available Human immunodeficiency virus (HIV-1 infection is initiated by the binding of gp120 envelope glyco-protein to its cell receptor (CD4 and a coreceptor (CXCR4 or CCR5, followed by a series of conformational changes in the gp41 transmembrane subunit. These changes include insertion of fusion peptide into the target cell membrane and association of C-heptad repeat (CHR peptide with the N-heptad repeat (NHR trimer, a pre-hairpin fusion intermediate. A stable six-helix bundle core is then formed, bringing the viral envelope and target cell membrane into close proximity for fusion. Peptides derived from the CHR region, such as T20 and C34, inhibit HIV-1 fusion by interacting with the gp41 fusion intermediate. A number of anti-HIV-1 peptides and small molecule compounds targeting the gp41 NHR-trimer have been identified. By combining HIV fusion/entry inhibitors targeting different sites in the gp41 fusion intermediate, a potent synergistic effect takes place, resulting in a potential new therapeutic strategy for the HIV infection/AIDS. Here, we present an overview of the current development of anti-HIV drugs, particularly those targeting the gp41 fusion intermediate.

  7. Structural and functional analysis of bovine herpesvirus 1 minor glycoproteins

    NARCIS (Netherlands)

    Baranowski, E.; Keil, G.; Lyaku, J.; Rijsewijk, F.A.M.; Oirschot, van J.T.; Pastoret, P.P.; Thiry, E.

    1996-01-01

    This paper focuses on the structure and functions of bovine herpesvirus 1 minor glycoproteins gH, gE, gG and gp42. It reviews the progress which has been made in their identification and characterization, in the study of their temporal expression and processing in infected cells, and finally in the

  8. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines

    Directory of Open Access Journals (Sweden)

    Valeria Feinshtein

    2013-09-01

    Full Text Available Objectives. Marijuana is the most commonly used illicit drug during pregnancy. Due to high lipophilicity, cannabinoids can easily penetrate physiological barriers like the human placenta and jeopardize the developing fetus. We evaluated the impact of cannabidiol (CBD, a major non-psychoactive cannabinoid, on P-glycoprotein (P-gp and Breast Cancer Resistance Protein (BCRP expression, and P-gp function in a placental model, BeWo and Jar choriocarcinoma cell lines (using P-gp induced MCF7 cells (MCF7/P-gp for comparison. Study design. Following the establishment of the basal expression of these transporters in the membrane fraction of all three cell lines, P-gp and BCRP protein and mRNA levels were determined following chronic (24–72 h exposure to CBD, by Western Blot and qPCR. CBD impact on P-gp efflux function was examined by uptake of specific P-gp fluorescent substrates (calcein-AM, DiOC2(3 and rhodamine123(rh123. Cyclosporine A (CsA served as a positive control. Results. Chronic exposure to CBD resulted in significant changes in the protein and mRNA levels of both transporters. While P-gp was down-regulated, BCRP levels were up-regulated in the choriocarcinoma cell lines. CBD had a remarkably different influence on P-gp and BCRP expression in MCF7/P-gp cells, demonstrating that these are cell type specific effects. P-gp dependent efflux (of calcein, DiOC2(3 and rh123 was inhibited upon short-term exposure to CBD. Conclusions. Our study shows that CBD might alter P-gp and BCRP expression in the human placenta, and inhibit P-gp efflux function. We conclude that marijuana use during pregnancy may reduce placental protective functions and change its morphological and physiological characteristics.

  9. Multiple Drug Transport Pathways through human P-Glycoprotein(†)

    Science.gov (United States)

    McCormick, James W.; Vogel, Pia D.; Wise, John G.

    2015-01-01

    P-glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11 to 12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methyl-pyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar is presented that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp. PMID:26125482

  10. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    International Nuclear Information System (INIS)

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  11. Treatment strategy based on targeting P-glycoprotein on peripheral lymphocytes in patients with systemic autoimmune disease.

    Science.gov (United States)

    Tsujimura, Shizuyo; Tanaka, Yoshiya

    2012-02-01

    Although corticosteroids, immunosuppressants and disease-modifying antirheumatic drugs (DMARDs) are widely used in the treatment of various systemic autoimmune diseases such as systemic lupus erythematosus (SLE), we often experience patients with systemic autoimmune diseases who are resistant to these treatments. P-glycoprotein (P-gp) of membrane transporters, a product of the multiple drug resistance (MDR)-1 gene, is known to play a pivotal role in the acquisition of drug resistance to chemotherapy in malignancy. However, the relevance of MDR-1 and P-gp to resting and activated lymphocytes, which are the major target in the treatment of systemic autoimmune diseases, remains unclear. Studies from our laboratories found surface expression of P-gp on peripheral lymphocytes in patients with SLE and a significant correlation between the expression level and disease activity. Such expression is induced not only by genotoxic stresses but also by various stimuli including cytokines, resulting in active efflux of drugs from the cytoplasm of lymphocytes, resulting in drug-resistance and high disease activity. However, the use of both P-gp antagonists (e.g., cyclosporine) and inhibition of P-gp synthesis with intensive immunosuppressive therapy successfully reduces the efflux of corticosteroids from lymphocytes in vitro, suggesting that P-gp antagonists and P-gp synthesis inhibitors could be used to overcome drug-resistance in vivo and improve outcome. In conclusion, lymphocytes activated by various stimuli in patients with highly active disease apparently acquire MDR-1-mediated multidrug resistance against corticosteroids and probably some DMARDs, which are substrates of P-gp. Inhibition/reduction of P-gp could overcome such drug resistance. The expression of P-gp on lymphocytes is a promising marker of drug resistance and a suitable target to combat drug resistance in patients with active systemic autoimmune diseases.

  12. Mechanisms of P-Glycoprotein Modulation by Semen Strychni Combined with Radix Paeoniae Alba

    Directory of Open Access Journals (Sweden)

    Li-Li Liu

    2017-01-01

    Full Text Available Semen Strychni has been extensively used as a Chinese herb, but its therapeutic window is narrowed by the strong toxicity of the compound, which limits its effectiveness. Radix Paeoniae Alba has been reported to reduce the toxic effects and increase the therapeutic effects of Semen Strychni, but the underlying mechanism remains unknown. This research aimed to explore the mechanism through which P-glycoprotein (P-gp is modulated by Semen Strychni combined with Radix Paeoniae Alba in vitro. An MTT assay was used to study cytotoxicity in an MDCK-MDR1 cell model. Rh123 efflux and accumulation were measured to assess P-gp function. The expression levels of MDR1 mRNA and P-gp protein in MDCK-MDR1 cells were investigated. A P-gp ATPase activity assay kit was applied to detect the effect on P-gp ATPase activity. Semen Strychni combined with Radix Paeoniae Alba could induce P-gp-mediated drug transport by inhibiting brucine and strychnine transport in MDCK-MDR1 cells, enhancing the P-gp efflux function, upregulating the P-gp expression and MDR1 mRNA levels, and stimulating P-gp ATPase activity.

  13. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    2013-01-01

    Full Text Available Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction.

  14. Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML)

    International Nuclear Information System (INIS)

    Tang, Ruoping; Faussat, Anne-Marie; Perrot, Jean-Yves; Marjanovic, Zora; Cohen, Simy; Storme, Thomas; Morjani, Hamid; Legrand, Ollivier; Marie, Jean-Pierre

    2008-01-01

    Chemotherapeutic drug efflux via the P-glycoprotein (P-gp) transporter encoded by the MDR1/ABCB1 gene is a significant cause of drug resistance in numerous malignancies, including acute leukemias, especially in older patients with acute myeloid leukemia (AML). Therefore, the P-gp modulators that block P-gp-mediated drug efflux have been developed, and used in combination with standard chemotherapy. In this paper, the capacity of zosuquidar, a specific P-gp modulator, to reverse chemoresistance was examined in both leukemia cell lines and primary AML blasts. The transporter protein expressions were analyzed by flow cytometry using their specific antibodies. The protein functionalities were assessed by the uptake of their fluorescence substrates in presence or absence their specific modulators. The drug cytotoxicity was evaluated by MTT test. Zosuquidar completely or partially restored drug sensitivity in all P-gp-expressing leukemia cell lines tested and enhanced the cytotoxicity of anthracyclines (daunorubicin, idarubicin, mitoxantrone) and gemtuzumab ozogamicin (Mylotarg) in primary AML blasts with active P-gp. In addition, P-gp inhibition by zosuquidar was found to be more potent than cyclosporine A in cells with highly active P-gp. These in vitro studies suggest that zosuquidar may be an effective adjunct to cytotoxic chemotherapy for AML patients whose blasts express P-gp, especially for older patients

  15. The Role of Conserved N-Linked Glycans on Ebola Virus Glycoprotein 2.

    Science.gov (United States)

    Lennemann, Nicholas J; Walkner, Madeline; Berkebile, Abigail R; Patel, Neil; Maury, Wendy

    2015-10-01

    N-linked glycosylation is a common posttranslational modification found on viral glycoproteins (GPs) and involved in promoting expression, cellular attachment, protection from proteases, and antibody evasion. The GP subunit GP2 of filoviruses contains 2 completely conserved N-linked glycosylation sites (NGSs) at N563 and N618, suggesting that they have been maintained through selective pressures. We assessed mutants lacking these glycans for expression and function to understand the role of these sites during Ebola virus entry. Elimination of either GP2 glycan individually had a modest effect on GP expression and no impact on antibody neutralization of vesicular stomatitis virus pseudotyped with Ebola virus GP. However, loss of the N563 glycan enhanced entry by 2-fold and eliminated GP detection by a well-characterized monoclonal antibody KZ52. Loss of both sites dramatically decreased GP expression and abolished entry. Surprisingly, a GP that retained a single NGS at N563, eliminating the remaining 16 NGSs from GP1 and GP2, had detectable expression, a modest increase in entry, and pronounced sensitivity to antibody neutralization. Our findings support the importance of the GP2 glycans in GP expression/structure, transduction efficiency, and antibody neutralization, particularly when N-linked glycans are also removed from GP1. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  17. Human platelet glycoprotein IX: An adhesive prototype of leucine-rich glycoproteins with flank-center-flank structures

    International Nuclear Information System (INIS)

    Hickey, M.J.; Williams, S.A.; Roth, G.J.

    1989-01-01

    The glycoprotein (GP) Ib-IX complex on the surface of human platelets functions as the von Willebrand factor receptor and mediates von Willebrand factor-dependent platelet adhesion to blood vessels. GPIX is a relatively small (M r , 17,000) protein that may provide for membrane insertion and orientation of the larger component of the complex. GPIb (M r , 165,000). Using antibody screening, the authors cloned a cDNA encoding GPIX from a human erythroleukemia cell cDNA library constructed in phage λgt11. Lacking a 5' untranslated region and start codon, the cDNA sequence includes 604 nucleotides, beginning with 495 bases at the 5' end coding for 165 amino acids, followed by a stop codon and 106 noncoding bases at the 3' end. By Northern blot analysis, the GPIX cDNA hybridizes with a single 1.0-kilobase species of platelet poly(A) + RNA. Translation of the cDNA sequence gives a predicted protein sequence beginning with a truncated putative signal sequence of 5 amino acids followed by a sequence of 17 amino acids matching that determined directly by Edman degradation of intact GPIX. GPIX contains a leucine-rich glycoprotein (LRG) sequence of 24 amino acids similar to conserved LRG sequences in GPIb and other proteins from humans, Drosophila, and yeast. The role of the flank-LRG center-flank structure in the evolution and function of the LRG proteins remains to be defined

  18. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding

    International Nuclear Information System (INIS)

    Roche, Julien; Louis, John M.; Aniana, Annie; Ghirlando, Rodolfo; Bax, Ad

    2015-01-01

    The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6HB trimer and the membrane affinity of gp41’s ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41’s transmembrane helix to prevent complete dissociation of the trimer during the course of fusion

  19. Complete dissociation of the HIV-1 gp41 ectodomain and membrane proximal regions upon phospholipid binding

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Julien; Louis, John M.; Aniana, Annie [National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Chemical Physics (United States); Ghirlando, Rodolfo [National Institutes of Health, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Bax, Ad, E-mail: bax@nih.gov [National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Chemical Physics (United States)

    2015-04-15

    The envelope glycoprotein gp41 mediates the process of membrane fusion that enables entry of the HIV-1 virus into the host cell. Strong lipid affinity of the ectodomain suggests that its heptad repeat regions play an active role in destabilizing membranes by directly binding to the lipid bilayers and thereby lowering the free-energy barrier for membrane fusion. In such a model, immediately following the shedding of gp120, the N-heptad and C-heptad helices dissociate and melt into the host cell and viral membranes, respectively, pulling the destabilized membranes into juxtaposition, ready for fusion. Post-fusion, reaching the final 6-helix bundle (6HB) conformation then involves competition between intermolecular interactions needed for formation of the symmetric 6HB trimer and the membrane affinity of gp41’s ectodomain, including its membrane-proximal regions. Our solution NMR study of the structural and dynamic properties of three constructs containing the ectodomain of gp41 with and without its membrane-proximal regions suggests that these segments do not form inter-helical interactions until the very late steps of the fusion process. Interactions between the polar termini of the heptad regions, which are not associating with the lipid surface, therefore may constitute the main driving force initiating formation of the final post-fusion states. The absence of significant intermolecular ectodomain interactions in the presence of dodecyl phosphocholine highlights the importance of trimerization of gp41’s transmembrane helix to prevent complete dissociation of the trimer during the course of fusion.

  20. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang

    2013-02-01

    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  1. Tumor p-glycoprotein correlates with efficacy of PF-3758309 in in vitro and in vivo models of colorectal cancer.

    OpenAIRE

    Erica Lynn Bradshaw-Pierce; Erica Lynn Bradshaw-Pierce; Todd M Pitts; Aik-Choon eTan; Kelly eMcPhillips; Mark eWest; Daniel L Gustafson; Charles eHalsey; Leslie eNguyen; Nathan V Lee; Julie LC Kan; Brion William Murray; S. Gail eEckhardt

    2013-01-01

    P-glycoprotein (P-gp), a member of the ATP-binding cassette transporter family, is overexpressed in a number of different cancers and some studies show that P-gp overexpression can be correlated to poor prognosis or therapeutic resistance. Here we sought to elucidate if PF-3758309 (PF-309), a novel p-21 activated kinase inhibitor, efficacy was influenced by tumor P-gp. Based on in vitro proliferation data, a panel of colorectal cancer cell lines were ranked as sensitive or resistant and ABCB...

  2. P-glycoprotein expression and DNA topoisomerase I and II activity in benign tumors of the ovary and in malignant tumors of the ovary, before and after platinum/cyclophosphamide chemotherapy

    NARCIS (Netherlands)

    van der Zee, A G; Hollema, H; de Jong, S; Boonstra, H; Gouw, A; Willemse, P H; Zijlstra, J G; de Vries, E G; de Jong, Steven

    1991-01-01

    P-glycoprotein (P-gp) expression and DNA topoisomerase (Topo) II are important variables in multidrug resistant tumor cell lines. The aim of this study was to evaluate P-gp expression and Topo I and II activity in benign and malignant epithelial ovarian tumors. P-gp expression was analyzed

  3. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Luis Mario Rodríguez-Martínez

    Full Text Available Current Ebola virus (EBOV detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV proteins. In particular, several monoclonal antibodies (mAbs have been described that bind the capsid glycoprotein (GP of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV.We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude and they are easily and economically produced in bacterial cultures.Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.

  4. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    Science.gov (United States)

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  5. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Energy Technology Data Exchange (ETDEWEB)

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  6. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, Lindsey M. [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Irvin, Susan C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Kennedy, Steven C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Guo, Feng [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Goldstein, Harris; Herold, Betsy C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Snapp, Erik L., E-mail: erik-lee.snapp@einstein.yu.edu [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States)

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  7. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    International Nuclear Information System (INIS)

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2015-01-01

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells

  8. Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells

    International Nuclear Information System (INIS)

    Bergman, Ira; Whitaker-Dowling, Patricia; Gao Yanhua; Griffin, Judith A.; Watkins, Simon C.

    2003-01-01

    Vesicular stomatitis virus (VSV) is a candidate for development for cancer therapy. It is an oncolytic virus that is safe in humans. Recombinant virus can be made directly from plasmid components. We attempted to create a virus that targeted specifically to breast cancer cells. Nonreplicating and replicating pseudotype VSV were created whose only surface glycoprotein (gp) was a Sindbis gp, called Sindbis-ZZ, modified to severely reduce its native binding function and to contain the Fc-binding domain of Staphylococcus aureus protein A. When titered on Her2/neu overexpressing SKBR3 human breast cancer cells, pseudotype VSV coated with Sindbis-ZZ had 5 /ml. This work demonstrates the ability to easily create, directly from plasmid components, an oncolytic replicating VSV with a restricted host cell range

  9. Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5)

    Science.gov (United States)

    Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.

    2013-06-01

    In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.

  10. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  11. The Ebola Virus Glycoprotein Contributes to but Is Not Sufficient for Virulence In Vivo

    Science.gov (United States)

    Groseth, Allison; Marzi, Andrea; Hoenen, Thomas; Herwig, Astrid; Gardner, Don; Becker, Stephan; Ebihara, Hideki; Feldmann, Heinz

    2012-01-01

    Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV) has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP) as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV), this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV) and REBOV (rREBOV), as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP). All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence. PMID:22876185

  12. The Ebola virus glycoprotein contributes to but is not sufficient for virulence in vivo.

    Directory of Open Access Journals (Sweden)

    Allison Groseth

    Full Text Available Among the Ebola viruses most species cause severe hemorrhagic fever in humans; however, Reston ebolavirus (REBOV has not been associated with human disease despite numerous documented infections. While the molecular basis for this difference remains unclear, in vitro evidence has suggested a role for the glycoprotein (GP as a major filovirus pathogenicity factor, but direct evidence for such a role in the context of virus infection has been notably lacking. In order to assess the role of GP in EBOV virulence, we have developed a novel reverse genetics system for REBOV, which we report here. Together with a previously published full-length clone for Zaire ebolavirus (ZEBOV, this provides a unique possibility to directly investigate the role of an entire filovirus protein in pathogenesis. To this end we have generated recombinant ZEBOV (rZEBOV and REBOV (rREBOV, as well as chimeric viruses in which the glycoproteins from these two virus species have been exchanged (rZEBOV-RGP and rREBOV-ZGP. All of these viruses could be rescued and the chimeras replicated with kinetics similar to their parent virus in tissue culture, indicating that the exchange of GP in these chimeric viruses is well tolerated. However, in a mouse model of infection rZEBOV-RGP demonstrated markedly decreased lethality and prolonged time to death when compared to rZEBOV, confirming that GP does indeed contribute to the full expression of virulence by ZEBOV. In contrast, rREBOV-ZGP did not show any signs of virulence, and was in fact slightly attenuated compared to rREBOV, demonstrating that GP alone is not sufficient to confer a lethal phenotype or exacerbate disease in this model. Thus, while these findings provide direct evidence that GP contributes to filovirus virulence in vivo, they also clearly indicate that other factors are needed for the acquisition of full virulence.

  13. Variability in P-Glycoprotein Inhibitory Potency (IC50) Using Various in Vitro Experimental Systems: Implications for Universal Digoxin Drug- Drug Interaction Risk Assessment Decision Criterias

    NARCIS (Netherlands)

    Bentz, J.; O'Connor, M.P.; Bednarczyk, D.; Coleman, J.; Lee, C.; Palm, J.; Pak, Y.A.; Perloff, E.S.; Reyner, E.; Balimane, P.; Brännström, M.; Chu, X.; Funk, C.; Guo, A.; Hanna, I.; Herédi-Szabó, K.; Hillgren, K.; Li, L.; Hollnack-Pusch, E.; Jamei, M.; Lin, X.; Mason, A.K.; Neuhoff, S.; Patel, A.; Podila, L.; Plise, E.; Rajaraman, G.; Salphati, L.; Sands, E.; Taub, M.E.; Taur, J.-S.; Weitz, D.; Wortelboer, H.M.; Xia, C.Q.; Xiao, G.; Yabut, J.; Yamagata, T.; Zhang, L.; Ellens, H.

    2013-01-01

    A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC 50 determinations. Each laboratory followed its in-house protocol to determine in vitro

  14. Tumor P-Glycoprotein Correlates with Efficacy of PF-3758309 in in vitro and in vivo Models of Colorectal Cancer

    OpenAIRE

    Bradshaw-Pierce, Erica Lynn; Pitts, Todd M.; Tan, Aik-Choon; McPhillips, Kelly; West, Mark; Gustafson, Daniel L.; Halsey, Charles; Nguyen, Leslie; Lee, Nathan V.; Kan, Julie L. C.; Murray, Brion William; Eckhardt, S. Gail

    2013-01-01

    P-glycoprotein (P-gp), a member of the ATP-binding cassette transporter family, is overexpressed in a number of different cancers and some studies show that P-gp overexpression can be correlated to poor prognosis or therapeutic resistance. Here we sought to elucidate if PF-3758309 (PF-309), a novel p-21 activated kinase inhibitor, efficacy was influenced by tumor P-gp. Based on in vitro proliferation data, a panel of colorectal cancer cell lines were ranked as sensitive or resistant and ABCB1...

  15. Synthesis and characterization of macromolecular rhodamine tethers and their interactions with P-glycoprotein.

    Science.gov (United States)

    Crawford, Lindsey; Putnam, David

    2014-08-20

    Rhodamine dyes are well-known P-glycoprotein (P-gp) substrates that have played an important role in the detection of inhibitors and other substrates of P-gp, as well as in the understanding of P-gp function. Macromolecular conjugates of rhodamines could prove useful as tethers for further probing of P-gp structure and function. Two macromolecular derivatives of rhodamine, methoxypolyethylene glycol-rhodamine6G and methoxypolyethylene glycol-rhodamine123, were synthesized through the 2'-position of rhodamine6G and rhodamine123, thoroughly characterized, and then evaluated by inhibition with verapamil for their ability to interact with P-gp and to act as efflux substrates. To put the results into context, the P-gp interactions of the new conjugates were compared to the commercially available methoxypolyethylene glycol-rhodamineB. FACS analysis confirmed that macromolecular tethers of rhodamine6G, rhodamine123, and rhodamineB were accumulated in P-gp expressing cells 5.2 ± 0.3%, 26.2 ± 4%, and 64.2 ± 6%, respectively, compared to a sensitive cell line that does not overexpress P-gp. Along with confocal imaging, the efflux analysis confirmed that the macromolecular rhodamine tethers remain P-gp substrates. These results open potential avenues for new ways to probe the function of P-gp both in vitro and in vivo.

  16. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2007-12-01

    Full Text Available Abstract Background CCR5-restricted (R5 human immunodeficiency virus type 1 (HIV-1 variants cause CD4+ T-cell loss in the majority of individuals who progress to AIDS, but mechanisms underlying the pathogenicity of R5 strains are poorly understood. To better understand envelope glycoprotein (Env determinants contributing to pathogenicity of R5 viruses, we characterized 37 full-length R5 Envs from cross-sectional and longitudinal R5 viruses isolated from blood of patients with asymptomatic infection or AIDS, referred to as pre-AIDS (PA and AIDS (A R5 Envs, respectively. Results Compared to PA-R5 Envs, A-R5 Envs had enhanced fusogenicity in quantitative cell-cell fusion assays, and reduced sensitivity to inhibition by the fusion inhibitor T-20. Sequence analysis identified the presence of Asn 362 (N362, a potential N-linked glycosylation site immediately N-terminal to CD4-binding site (CD4bs residues in the C3 region of gp120, more frequently in A-R5 Envs than PA-R5 Envs. N362 was associated with enhanced fusogenicity, faster entry kinetics, and increased sensitivity of Env-pseudotyped reporter viruses to neutralization by the CD4bs-directed Env mAb IgG1b12. Mutagenesis studies showed N362 contributes to enhanced fusogenicity of most A-R5 Envs. Molecular models indicate N362 is located adjacent to the CD4 binding loop of gp120, and suggest N362 may enhance fusogenicity by promoting greater exposure of the CD4bs and/or stabilizing the CD4-bound Env structure. Conclusion Enhanced fusogenicity is a phenotype of the A-R5 Envs studied, which was associated with the presence of N362, enhanced HIV-1 entry kinetics and increased CD4bs exposure in gp120. N362 contributes to fusogenicity of R5 Envs in a strain dependent manner. Our studies suggest enhanced fusogenicity of A-R5 Envs may contribute to CD4+ T-cell loss in subjects who progress to AIDS whilst harbouring R5 HIV-1 variants. N362 may contribute to this effect in some individuals.

  17. Differential effects of the enantiomers of tamsulosin and tolterodine on P-glycoprotein and cytochrome P450 3A4.

    Science.gov (United States)

    Doricakova, Aneta; Theile, Dirk; Weiss, Johanna; Vrzal, Radim

    2017-01-01

    The pregnane X receptor (PXR) is a transcription factor regulating P-glycoprotein (P-gp; ABCB1)-mediated transport and cytochrome P450 3A4 (CYP3A4)-mediated metabolism of xenobiotics thereby affecting the pharmacokinetics of many drugs and potentially modulating clinical efficacy. Thus, pharmacokinetic drug-drug interactions can arise from PXR activation. Here, we examined whether the selective α1-adrenoreceptor blocker tamsulosin or the antagonist of muscarinic receptors tolterodine affect PXR-mediated regulation of CYP3A4 and of P-gp at the messenger RNA (mRNA) and protein level in an enantiomer-specific way. In addition, the effect of tamsulosin and tolterodine on P-gp activity was evaluated. We used quantitative real-time PCR, gene reporter assay, western blotting, rhodamine efflux assay, and calcein assay for determination of expression, activity, and inhibition of P-glycoprotein. The studied compounds significantly and concentration-dependently increased PXR activity in the ABCB1-driven luciferase-based reporter gene assay. We observed much stronger induction of ABCB1 mRNA by S-tamsulosin as compared to the R or racemic form. R or racemic form of tolterodine and R-tamsulosin concentration-dependently increased P-gp protein expression; the latter also enhanced P-gp efflux function in a rhodamine-based efflux assay. R-tamsulosin and all forms of tolderodine slightly inhibited P-gp. The effect on CYP3A4 expression followed the same pattern but was much weaker. Taken together, tamsulosin and tolterodine are demonstrated to interfere with P-gp and CYP3A4 regulation in an enantiomer-specific way.

  18. Menadione serves as a substrate for P-glycoprotein: implication in chemosensitizing activity.

    Science.gov (United States)

    Oh, Seok-Jeong; Han, Hyo-Kyung; Kang, Keon-Wook; Lee, Young-Joo; Lee, Moo-Yeol

    2013-04-01

    Based on its chemosensitizing effect, we questioned whether menadione is an inhibitor or a substrate of P-glycoprotein (P-gp). To test this hypothesis, we assessed the effect of menadione on P-gp activity and examined the P-gp-dependency of cellular accumulation and cytotoxicity of menadione as well. Treatment with menadione resulted in the concentration-dependent increase of rhodamine 123 (Rh123) accumulation in P-gp-overexpressing MDCKII/MDR1 and NCI/ADR-RES cells, suggesting that menadione inhibits Rh123 extrusion by P-gp. Compared with MDCKII or MCF-7, intracellular distribution of [(3)H]-menadione was significantly lower in MDCKII/MDR1 or NCI/ADR-RES cells, which could be restored by the P-gp inhibitors, verapamil and quinidine. Consistent with these results, MDCKII/MDR1 or NCI/ADR-RES cells were more resistant to the cytotoxicity of menadione than MDCKII or MCF-7 cells, respectively. Such resistance was abolished by the combined treatment of verapamil and quinidine in NCI/ADR-RES cells. Our study identified menadione as a substrate of P-gp, which presumably, acts as the mechanism for the chemosensitizing effect. Menadione may be a promising chemotherapeutic enhancer by its ability of circumventing drug resistance, in addition to its own anti-cancer activity.

  19. HIV-gp120 and physical dependence to buprenorphine.

    Science.gov (United States)

    Palma, J; Abood, M E; Benamar, K

    2015-05-01

    Opioids are among the most effective and commonly used analgesics in clinical practice for severe pain. However, the use of opioid medications is clinically limited by several adverse properties including dependence. While opioid dependence is a complex health condition, the treatment of HIV-infected individuals with opioid dependence presents additional challenges. The goal of this study was to examine the physical dependence to buprenorphine in the context of HIV. Young adult male rats (Sprague-Dawley) were pretreated with HIV-1 envelope glycoprotein 120 (gp120) injected into the periaqueductal gray area (PAG) and we examined the impact on physical dependence to opioid. It was found that the physical dependence to methadone occurred earlier than that to buprenorphine, and that gp120 did not enhance or precipitate the buprenorphine withdrawal. The results suggest that buprenorphine could be the better therapeutic option to manage opioid dependence in HIV. Copyright © 2015. Published by Elsevier Ireland Ltd.

  20. A new strategy for full-length Ebola virus glycoprotein expression in E.coli.

    Science.gov (United States)

    Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming

    2016-12-01

    Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.

  1. The Effects of IGF-1 on Trk Expressing DRG Neurons with HIV-gp120- Induced Neurotoxicity.

    Science.gov (United States)

    Li, Hao; Liu, Zhen; Chi, Heng; Bi, Yanwen; Song, Lijun; Liu, Huaxiang

    2016-01-01

    HIV envelope glycoprotein gp120 is the main protein that causes HIVassociated sensory neuropathy. However, the underlying mechanisms of gp120-induced neurotoxicity are still unclear. There are lack effective treatments for relieving HIV-related neuropathic symptoms caused by gp120-induced neurotoxicity. In the present study, tyrosine kinase receptor (Trk)A, TrkB, and TrkC expression in primary cultured dorsal root ganglion (DRG) neurons with gp120-induced neurotoxicity was investigated. The effects of IGF-1 on distinct Trk-positive DRG neurons with gp120-induced neurotoxicity were also determined. The results showed that gp120 not only dose-dependently induced DRG neuronal apoptosis and inhibited neuronal survival and neurite outgrowth, but also decreased distinct Trk expression levels. IGF-1 rescued DRG neurons from apoptosis and improved neuronal survival of gp120 neurotoxic DRG neurons in vitro. IGF-1 also improved TrkA and TrkB, but not TrkC, expression in gp120 neurotoxic conditions. The effects of IGF-1 could be blocked by preincubation with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These results suggested that gp120 may have a wide range of neurotoxicity on different subpopulations of DRG neurons, while IGF-1 might only relieve some subpopulations of DRG neurons with gp120-induced neurotoxicity. These data provide novel information of mechanisms of gp120 neurotoxicity on primary sensory neurons and the potential therapeutic effects of IGF-1 on gp120-induced neurotoxicity.

  2. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Melancon, Jeffrey M.; Chouljenko, Vladimir N.; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2005-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. To delineate functional domains of the SARS-CoV S glycoprotein, single point mutations, cluster-to-lysine and cluster-to-alanine mutations, as well as carboxyl-terminal truncations were investigated in transient expression experiments. Mutagenesis of either the coiled-coil domain of the S glycoprotein amino terminal heptad repeat, the predicted fusion peptide, or an adjacent but distinct region, severely compromised S-mediated cell-to-cell fusion, while intracellular transport and cell-surface expression were not adversely affected. Surprisingly, a carboxyl-terminal truncation of 17 amino acids substantially increased S glycoprotein-mediated cell-to-cell fusion suggesting that the terminal 17 amino acids regulated the S fusogenic properties. In contrast, truncation of 26 or 39 amino acids eliminating either one or both of the two endodomain cysteine-rich motifs, respectively, inhibited cell fusion in comparison to the wild-type S. The 17 and 26 amino-acid deletions did not adversely affect S cell-surface expression, while the 39 amino-acid truncation inhibited S cell-surface expression suggesting that the membrane proximal cysteine-rich motif plays an essential role in S cell-surface expression. Mutagenesis of the acidic amino-acid cluster in the carboxyl terminus of the S glycoprotein as well as modification of a predicted phosphorylation site within the acidic cluster revealed that this amino-acid motif may play a functional role in the retention of S at cell surfaces. This genetic analysis reveals that the SARS-CoV S glycoprotein contains extracellular domains that regulate cell fusion as well as distinct endodomains that function in intracellular transport, cell-surface expression, and cell fusion

  3. Emodin reverses leukemia multidrug resistance by competitive inhibition and downregulation of P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Hongping Min

    Full Text Available Development of multidrug resistance (MDR is a continuous clinical challenge partially due to the overexpression of P-glycoprotein (P-gp for chronic myelogenous leukemia (CML patients. Herein, we evaluated the inhibitory potency of emodin, a natural anthraquinone derivative isolated from Rheum palmatum L, on P-gp in P-gp positive K562/ADM cells. Competition experiments combined with molecular docking analysis were utilized to investigate the binding modes between emodin and binding sites of P-gp. Emodin reversed adriamycin resistance in K562/ADM cells accompanied with the decrease of P-gp protein expression, further increasing the uptake of rhodamine123 in both K562/ADM and Caco-2 cells, indicating the inhibition of P-gp efflux function. Moreover, when incubated with emodin under different conditions where P-gp was inhibited, K562/ADM cells displayed increasing intracellular uptake of emodin, suggesting that emodin may be the potential substrate of P-gp. Importantly, rhodamine 123 could increase the Kintrinsic (Ki value of emodin linearly, whereas, verapamil could not, implying that emodin competitively bound to the R site of P-gp and noncompetition existed between emodin and verapamil at the M site, in a good accordance with the results of molecular docking that emodin bound to the R site of P-gp with higher affinity. Based on our results, we suggest that emodin might be used to modulate P-gp function and expression.

  4. A Phase I Trial of Epstein-Barr Virus Gp350 Vaccine for Children With Chronic Kidney Disease Awaiting Transplantation

    NARCIS (Netherlands)

    Rees, L.; Tizard, E.J.; Morgan, A.J.; Cubitt, W.D.; Finerty, S.; Oyewole-Eletu, T.A.; Owen, K.; Royed, C.; Stevens, S.J.C.; Shroff, R.C.; Tanday, M.K.; Wilson, A.; Middeldorp, J.M.; Amlot, P.L.; Steven, N.M.

    2009-01-01

    Background. Vaccination against Epstein-Barr virus (EBV), inducing an antibody response to the envelope glycoprotein gp350, might protect EBV-negative children with chronic kidney disease from lymphoproliferative disease after transplantation. Methods. A phase I trial recruited children with chronic

  5. Inhibitory Effects of Neochamaejasmin B on P-Glycoprotein in MDCK-hMDR1 Cells and Molecular Docking of NCB Binding in P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Lanying Pan

    2015-02-01

    Full Text Available Stellera chamaejasme L. (Thymelaeaceae is widely distributed in Mongolia, Tibet and the northern parts of China. Its roots are commonly used as “Langdu”, which is embodied in the Pharmacopoeia of the P.R. China (2010 as a toxic Traditional Chinese Medicine. It is claimed to have antivirus, antitumor and antibacterial properties in China and other Asian countries. Studies were carried out to characterize the inhibition of neochamaejasmin B (NCB on P-glycoprotein (P-gp, ABCB1, MDR1. Rhodamine-123 (R-123 transport and accumulation studies were performed in MDCK-hMDR1 cells. ABCB1 (MDR1 mRNA gene expression and P-gp protein expression were analyzed. Binding selectivity studies based on molecular docking were explored. R-123 transport and accumulation studies in MDCK-hMDR1 cells indicated that NCB inhibited the P-gp-mediated efflux in a concentration-dependent manner. RT-PCR and Western blot demonstrated that the P-gp expression was suppressed by NCB. To investigate the inhibition type of NCB on P-gp, Ki and Ki’ values were determined by double-reciprocal plots in R-123 accumulation studies. Since Ki was greater than Ki’, the inhibition of NCB on P-gp was likely a mixed type of competitive and non-competitive inhibition. The results were confirmed by molecular docking in our current work. The docking data indicated that NCB had higher affinity to P-gp than to Lig1 ((S-5,7-dihydroxy-2-(4-hydroxyphenylchroman-4-one.

  6. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure.

    Directory of Open Access Journals (Sweden)

    Lijun Chao

    Full Text Available The HIV-1 envelope glycoprotein (Env gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462-521 of the human POB1 (the partner of RalBP1, designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR of gp41, and to the six-helix bundle (6-HB formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.

  7. Esters of the Marine-Derived Triterpene Sipholenol A Reverse P-GP-Mediated Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2015-04-01

    Full Text Available Our previous studies showed that several sipholane triterpenes, sipholenol A, sipholenone E, sipholenol L and siphonellinol D, have potent reversal effect for multidrug resistance (MDR in cancer cells that overexpressed P-glycoprotein (P-gp/ABCB1. Through comparison of cytotoxicity towards sensitive and multi-drug resistant cell lines, we identified that the semisynthetic esters sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate potently reversed P-gp-mediated MDR but had no effect on MRP1/ABCC1 and BCRP/ABCG2-mediated MDR. The results from [3H]-paclitaxel accumulation and efflux studies suggested that these two triterpenoids were able to increase the intracellular accumulation of paclitaxel by inhibiting its active efflux. In addition, western blot analysis revealed that these two compounds did not alter the expression levels of P-gp when treated up to 72 h. These sipholenol derivatives also stimulated the ATPase activity of P-gp membranes, which suggested that they might be substrates of P-gp. Moreover, in silico molecular docking studies revealed the virtual binding modes of these two compounds into human homology model of P-gp. In conclusion, sipholenol A-4-O-acetate and sipholenol A-4-O-isonicotinate efficiently inhibit the P-gp and may represent potential reversal agents for the treatment of multidrug resistant cancers.

  8. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Nunberg, Jack H.

    2007-01-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although position - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease

  9. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy?

    Science.gov (United States)

    Callaghan, Richard; Luk, Frederick; Bebawy, Mary

    2014-04-01

    P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.

  10. Rifampicin-dependent antibodies bind a similar or identical epitope to glycoprotein IX-specific quinine-dependent antibodies

    NARCIS (Netherlands)

    Burgess, Janette K.; Lopez, Jose A.; Gaudry, Leonie E.; Chong, Beng H.

    2000-01-01

    The drug-dependent antibody of a patient with rifampicin-induced thrombocytopenia was characterized using the antigen-capture enzyme-linked immunosorbent assay (MAIPA assay), flow cytometry, and immunoprecipitation. The antibody was found to bind glycoprotein (GP) Ib-IX but not GPIIb-IIIa because

  11. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia

    NARCIS (Netherlands)

    de Vries, EGE; van Putten, WLJ; Verdonck, LF; Ossenkoppele, GJ; Verhoef, GEG; Vellenga, E

    Despite treatment with intensive chemotherapy, a considerable number of patients with acute myeloid leukemia (AML) die from their disease due to the occurrence of resistance. Overexpression of the transporter proteins P-glycoprotein (P-gp) and multidrug resistance protein (MRP) 1 has been identified

  12. Glycoprotein 130 receptor signaling mediates α-cell dysfunction in a rodent model of type 2 diabetes

    DEFF Research Database (Denmark)

    Chow, Samuel Z; Speck, Madeleine; Yoganathan, Piriya

    2014-01-01

    Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated...

  13. Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge.

    Directory of Open Access Journals (Sweden)

    Junji Sashihara

    2011-10-01

    Full Text Available Epstein-Barr virus (EBV is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350 or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]. No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a soluble rhesus LCV gp350, (b virus-like replicon particles (VRPs expressing rhesus LCV gp350, (c VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with

  14. Efficacy of Intravenous Cyclophosphamide Pulse Therapy for P-Glycoprotein-expressing B Cell-associated Active True Renal Lupus Vasculitis in Lupus Nephritis

    Science.gov (United States)

    Kawabe, Akio; Tsujimura, Shizuyo; Saito, Kazuyoshi; Tanaka, Yoshiya

    2017-01-01

    True renal lupus vasculitis (TRLV), a vascular lesion usually associated with proliferative lupus nephritis (LN), is resistant to conventional treatments. The expression of P-glycoprotein (P-gp) on activated lymphocytes causes drug resistance. We herein report a patient with TRLV, minimal change LN, overexpression of P-gp on peripheral B cells, and accumulation of P-gp+ B cells at the site of TRLV. High-dose corticosteroids combined with intravenous cyclophosphamide pulse therapy resulted in clinical remission and the long-term normal renal function. PMID:28626187

  15. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis.

    Science.gov (United States)

    Tsujimura, Shizuyo; Saito, Kazuyoshi; Nakayamada, Shingo; Tanaka, Yoshiya

    2010-04-01

    P-glycoprotein (P-gp) on activated lymphocytes is an adenosine triphosphate (ATP)-binding cassette transporter that causes drug resistance by exclusion of intracellular drugs in patients with active rheumatoid arthritis (RA). However, infliximab with methotrexate (MTX) can overcome P-gp-mediated drug resistance. We encounter patients who cannot continue infliximab or MTX. Here we tested how etanercept affected P-gp-mediated drug resistance in such intractable RA patients. Peripheral lymphocytes of 11 RA patients (3 switched from infliximab and 8 who could not be treated with MTX) were analyzed for P-gp expression by flow cytometry and for drug exclusion using radioisotope-labeled dexamethasone. Activated lymphocytes of RA patients overexpressed P-gp and coexpressed CD69. Incubation of these lymphocytes with dexamethasone in vitro reduced intracellular dexamethasone levels. Two-week etanercept therapy significantly reduced P-gp expression and eliminated such P-gp- and CD69-high-expressing subgroup. The reduction in P-gp resulted in recovery of intracellular dexamethasone levels in lymphocytes and improvement of disease activity, thus allowing tapering of corticosteroids. None of the patients experienced any severe adverse effects. Etanercept is useful for overcoming P-gp-mediated treatment resistance in intractable RA patients who have to discontinue infliximab or are intolerant to MTX.

  16. Inhibitory Effects of Daiokanzoto (Da-Huang-Gan-Cao-Tang on P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Yuka Watanabe

    2012-01-01

    Full Text Available We have studied the effects of various Kampo medicines on P-glycoprotein (P-gp, a drug transporter, in vitro. The present study focused on Daiokanzoto (Da-Huang-Gan-Cao-Tang, which shows the most potent inhibitory effects on P-gp among the 50 Kampo medicines studied, and investigated the P-gp inhibitory effects of Daiokanzoto herbal ingredients (rhubarb and licorice root and their components by an ATPase assay using human P-gp membrane. Both rhubarb and licorice root significantly inhibited ATPase activity, and the effects of rhubarb were more potent than those of licorice root. The content of rhubarb in Daiokanzoto is double that in licorice root, and the inhibition patterns of Daiokanzoto and rhubarb involve both competitive and noncompetitive inhibition, suggesting that the inhibitory effects of Daiokanzoto are mainly due to rhubarb. Concerning the components of rhubarb, concentration-dependent inhibitory effects were observed for (−-catechin gallate, (−-epicatechin gallate, and (−-epigallocatechin gallate. In conclusion, rhubarb may cause changes in the drug dispositions of P-gp substrates through the inhibition of P-gp. It appears that attention should be given to the interactions between these drugs and Kampo medicines containing rhubarb as an herbal ingredient.

  17. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  18. Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; Ligtenberg, Antoon; White, Mitchell R.

    2006-01-01

    We previously found that scavenger receptor cysteine-rich gp-340 (glycoprotein-340), isolated from lung or saliva, directly inhibits human IAVs (influenza A viruses). We now show that salivary gp-340 has broad antiviral activity against human, equine and porcine IAV strains. Although lung...

  19. P-glycoprotein Inhibition Increases the Brain Distribution and Antidepressant-Like Activity of Escitalopram in Rodents

    Science.gov (United States)

    O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2013-01-01

    Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood–brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression. PMID:23670590

  20. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility

    DEFF Research Database (Denmark)

    Hansen, Jan Erik; Lund, Ole; Tolstrup, Niels

    1998-01-01

    -glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predicition of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O...... structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. charged residues were disfavoured at postition -1 and +3......-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based...

  1. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate.

    Science.gov (United States)

    Visciano, Maria Luisa; Tagliamonte, Maria; Stewart-Jones, Guillaume; Heyndrickx, Leo; Vanham, Guido; Jansson, Marianne; Fomsgaard, Anders; Grevstad, Berit; Ramaswamy, Meghna; Buonaguro, Franco M; Tornesello, Maria Lina; Biswas, Priscilla; Scarlatti, Gabriella; Buonaguro, Luigi

    2013-07-08

    Trimeric soluble forms of HIV gp140 envelope glycoproteins represent one of the closest molecular structures compared to native spikes present on intact virus particles. Trimeric soluble gp140 have been generated by several groups and such molecules have been shown to induce antibodies with neutralizing activity against homologous and heterologous viruses. In the present study, we generated a recombinant trimeric soluble gp140, derived from a previously identified Ugandan A-clade HIV field isolate (gp14094UG018). Antibodies elicited in immunized rabbits show a broad binding pattern to HIV envelopes of different clades. An epitope mapping analysis reveals that, on average, the binding is mostly focused on the C1, C2, V3, V5 and C5 regions. Immune sera show neutralization activity to Tier 1 isolates of different clades, demonstrating cross clade neutralizing activity which needs to be further broadened by possible structural modifications of the clade A gp14094UG018. Our results provide a rationale for the design and evaluation of immunogens and the clade A gp14094UG018 shows promising characteristics for potential involvement in an effective HIV vaccine with broad activity.

  2. Mapping of linear antibody epitopes of the glycoprotein of VHSV, a salmonid rhabdovirus

    DEFF Research Database (Denmark)

    Fernandez-Alonso, M.; Lorenzo, G.; Perez, L.

    1998-01-01

    antibodies (MAbs), only 2 non-neutralizing MAbs, I10 (aa 139-153) and IP1H3 (aa 399-413), could be mapped to specific peptides in the pepscan of the gpG. Mapping of these MAbs was confirmed by immunoblotting with recombinant proteins and/or other synthetic peptides covering those sequences. None......Antibody Linear epitopes of the glycoprotein G (gpG) of the viral haemorrhagic septicaemia virus (VHSV), a rhabdovirus of salmonids, were mapped by pepscan using overlapping 15-mer peptides covering the entire gpG sequence and ELISA with polyclonal and monoclonal murine and polyclonal trout...... antibodies. Among the regions recognized in the pepscan by the polyclonal antibodies (PAbs) were the previously identified phosphatidylserine binding heptad-repeats (Estepa & Coll 1996; Virology 216:60-70) and leucocyte stimulating peptides (Lorenzo et al. 1995; Virology 212:348-355). Among 17 monoclonal...

  3. A Novel Fiber Optic Surface Plasmon Resonance Biosensors with Special Boronic Acid Derivative to Detect Glycoprotein

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2017-10-01

    Full Text Available We proposed and demonstrated a novel tilted fiber Bragg grating (TFBG-based surface plasmon resonance (SPR label-free biosensor via a special boronic acid derivative to detect glycoprotein with high sensitivity and selectivity. TFBG, as an effective sensing element for optical sensing in near-infrared wavelengths, possess the unique capability of easily exciting the SPR effect on fiber surface which coated with a nano-scale metal layer. SPR properties can be accurately detected by measuring the variation of transmitted spectra at optical communication wavelengths. In our experiment, a 10° TFBG coated with a 50 nm gold film was manufactured to stimulate SPR on a sensor surface. To detect glycoprotein selectively, the sensor was immobilized using designed phenylboronic acid as the recognition molecule, which can covalently bond with 1,2- or 1,3-diols to form five- or six-membered cyclic complexes for attaching diol-containing biomolecules and proteins. The phenylboronic acid was synthetized with long alkyl groups offering more flexible space, which was able to improve the capability of binding glycoprotein. The proposed TFBG-SPR sensors exhibit good selectivity and repeatability with a protein concentration sensitivity up to 2.867 dB/ (mg/mL and a limit of detection (LOD of 15.56 nM.

  4. Flow cytometric analysis of platelet cyclooxygenase-1 and -2 and surface glycoproteins in patients with immune thrombocytopenia and healthy individuals.

    Science.gov (United States)

    Rubak, Peter; Kristensen, Steen D; Hvas, Anne-Mette

    2017-06-01

    Immature platelets may contain more platelet enzymes such as cyclooxygenase (COX)-1 and COX-2 than mature platelets. Patients with immune thrombocytopenia (ITP) have a higher fraction of immature platelets and can therefore be utilized as a biological model for investigating COX-1 and COX-2 platelet expression. The aims were to develop flow cytometric assays for platelet COX-1 and COX-2 and to investigate the COX-1 and COX-2 platelet expression, platelet turnover, and platelet glycoproteins in ITP patients (n = 10) compared with healthy individuals (n = 30). Platelet count and platelet turnover parameters (mean platelet volume (MPV), immature platelet fraction (IPF), and immature platelet count (IPC)) were measured by flow cytometry (Sysmex XE-5000). Platelet COX-1, COX-2, and the glycoproteins (GP)IIb, IX, Ib, Ia, and IIIa were all analyzed by flow cytometry (Navios) and expressed as median fluorescence intensity. COX analyses were performed in both whole blood and platelet rich plasma (PRP), whereas platelet glycoproteins were analyzed in whole blood only. ITP patients had significantly lower platelet count (55 × 10 9 /L) than healthy individuals (240 × 10 9 /L, p platelet count and IPC (both p-values Platelet COX-1 expression was higher in ITP patients than healthy individuals using whole blood (p COX-1 platelet turnover and COX-1 expression (all p-values platelet turnover and COX-1 and COX-2 expressions (all p-values platelet turnover in ITP patients (all p-values 0.14, rho = 0.11-0.28). In conclusion, ITP patients expressed higher COX-1 and platelet glycoprotein levels than healthy individuals. COX-1 and platelet glycoproteins demonstrated positive correlations with platelet turnover in ITP patients. In healthy individuals, COX-1 and COX-2 expression correlated positively with platelet turnover. PRP was more sensitive compared with whole blood as regards determination of COX. Therefore, PRP is the recommended matrix for investigating COX-1 and COX-2 in

  5. The process behind the expression of mdr-1/P-gp and mrp/MRP in human leukemia/lymphoma.

    Science.gov (United States)

    Hirose, Masao

    2009-04-01

    There is a controversy over the link between phenotypes of multidrug resistance (MDR) and clinical outcome in leukemia/lymphoma patients. This may be because the process behind the induction and loss of expression of genotypes and phenotypes by which MDR develops and the role of MDR in fresh cells of human leukemia/lymphoma are not clearly defined. P-glycoprotein (P-gp) increased and decreased along with mdr-1 expression in three cell lines out of five vincristine (VCR)-resistant cell lines. MRP appeared with increased mrp expression in the other two cell lines. After the drug was removed from the culture system, mdr-1/P-gp changed in parallel with the level of VCR resistance, although mrp and MRP did not. It was concluded that P-gp is directly derived from mdr-1 and that mdr-1/P-gp supports the VCR-resistance but mrp/MRP is not directly linked to the VCR-resistance. These results should contribute to a better understanding of MDR phenomenon in cancer.

  6. The co-delivery of a low-dose P-glycoprotein inhibitor with doxorubicin sterically stabilized liposomes against breast cancer with low P-glycoprotein expression

    Directory of Open Access Journals (Sweden)

    Gao W

    2014-07-01

    Full Text Available Wei Gao,1 Zhiqiang Lin,1 Meiwan Chen,2 Xiucong Yang,1 Zheng Cui,1 Xiaofei Zhang,1 Lan Yuan,3 Qiang Zhang11State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 3Medical and Healthy Analytical Center, Peking University, Beijing, People's Republic of China Introduction: P-glycoprotein (P-gp inhibitors are usually used to treat tumors that overexpress P-gps. However, most common types of breast cancers, such as Luminal A, are low-P-gp expressing, at least during the initial phases of treatment. Therefore, it would be interesting to know if P-gp inhibitors are still useful in treating low-P-gp-expressing tumors. Methods: In the study reported here, the human breast-cancer cell line MCF-7, chosen as a model of Luminal A, was found to be low-P-gp expressing. We designed a novel doxorubicin (DOX sterically stabilized liposome system co-loaded with the low-dose P-gp inhibitor cyclosporine A (CsA (DOX/CsA/SSL. Results: The co-delivery system showed good size uniformity, high encapsulation efficiency, and a desirable release profile. The cell-uptake and cytotoxicity studies demonstrated that CsA could significantly enhance the intracellular accumulation and toxicity of free DOX and the liposomal DOX in MCF-7 cells. The confocal microscopy and in vivo imaging study confirmed the intracellular and in vivo targeting effect of DOX/CsA/SSL, respectively. Finally, the in vivo study proved that DOX/CsA/SSL could achieve significantly better antitumor effect against MCF-7 tumor than controls, without inducing obvious systemic toxicity. Conclusion: This study demonstrated that the co-delivery of a low-dose P-gp inhibitor and liposomal DOX could improve the therapy of low-P-gp-expressing cancer, which is of significance in clinical tumor therapy. Keywords: liposomes, low-P-gp

  7. Characterisation of different forms of the accessory gp3 canine coronavirus type I protein identified in cats.

    Science.gov (United States)

    d'Orengiani, Anne-Laure Pham-Hung d'Alexandry; Duarte, Lidia; Pavio, Nicole; Le Poder, Sophie

    2015-04-16

    ORF3 is a supplemental open reading frame coding for an accessory glycoprotein gp3 of unknown function, only present in genotype I canine strain (CCoV-I) and some atypical feline FCoV strains. In these latter hosts, the ORF3 gene systematically displays one or two identical deletions leading to the synthesis of truncated proteins gp3-Δ1 and gp3-Δ2. As deletions in CoV accessory proteins have already been involved in tissue or host switch, studies of these different gp3 proteins were conducted in canine and feline cell. All proteins oligomerise through covalent bonds, are N-glycosylated and are maintained in the ER in non-infected but also in CCoV-II infected cells, without any specific retention signal. However, deletions influence their level of expression. In canine cells, all proteins are expressed with similar level whereas in feline cells, the expression of gp3-Δ1 is higher than the two other forms of gp3. None of the gp3 proteins modulate the viral replication cycle of heterologous genotype II CCoV in canine cell line, leading to the conclusion that the gp3 proteins are probably advantageous only for CCoV-I and atypical FCoV strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles.

    Science.gov (United States)

    Singh, Manu Smriti; Lamprecht, Alf

    2016-01-01

    Several pharmaceutical excipients are known for their ability to interact with cell membrane lipids and reverse the phenomenon of multidrug resistance (MDR) in cancer. Interestingly, many excipients act as stabilizers and are key ingredients in a variety of nano-formulations. In this study, representatives of ionic and non-ionic excipients were used as surface active agents in nanoparticle (NP) formulations to utilize their MDR reversing potential. In-vitro assays were performed to elucidate particle-cell interaction and accumulation of P-glycoprotein (P-gp) substrates-rhodamine-123 and calcein AM, in highly drug resistant glioma cell lines. Chemosensitization achieved using NPs and their equivalent dose of free excipients was assessed with the co-administered anti-cancer drug doxorubicin. Among the excipients used, non-ionic surfactant, Cremophor® EL, and cationic surfactant, cetyltrimethylammonuium bromide (CTAB), demonstrated highest P-gp modulatory activity in both free solution form (up to 7-fold lower IC50) and as a formulation (up to 4.7-fold lower IC50) as compared to doxorubicin treatment alone. Solutol® HS15 and Tween® 80 exhibited considerable chemosensitization as free solution but not when incorporated into a formulation. Sodium dodecyl sulphate (SDS)-based nanocarriers resulted in slightly improved cytotoxicity. Overall, the results highlight and envisage the usage of excipient in nano-formulations in a bid to improve chemosensitization of drug resistant cancer cells towards anti-cancer drugs.

  9. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity.

    Science.gov (United States)

    Silva, Renata; Palmeira, Andreia; Carmo, Helena; Barbosa, Daniel José; Gameiro, Mariline; Gomes, Ana; Paiva, Ana Mafalda; Sousa, Emília; Pinto, Madalena; Bastos, Maria de Lourdes; Remião, Fernando

    2015-10-01

    The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation.

  10. Mechanistic kinetic modeling generates system-independent P-glycoprotein mediated transport elementary rate constants for inhibition and, in combination with 3D SIM microscopy, elucidates the importance of microvilli morphology on P-glycoprotein mediated efflux activity.

    Science.gov (United States)

    Ellens, Harma; Meng, Zhou; Le Marchand, Sylvain J; Bentz, Joe

    2018-06-01

    In vitro transporter kinetics are typically analyzed by steady-state Michaelis-Menten approximations. However, no clear evidence exists that these approximations, applied to multiple transporters in biological membranes, yield system-independent mechanistic parameters needed for reliable in vivo hypothesis generation and testing. Areas covered: The classical mass action model has been developed for P-glycoprotein (P-gp) mediated transport across confluent polarized cell monolayers. Numerical integration of the mass action equations for transport using a stable global optimization program yields fitted elementary rate constants that are system-independent. The efflux active P-gp was defined by the rate at which P-gp delivers drugs to the apical chamber, since as much as 90% of drugs effluxed by P-gp partition back into nearby microvilli prior to reaching the apical chamber. The efflux active P-gp concentration was 10-fold smaller than the total expressed P-gp for Caco-2 cells, due to their microvilli membrane morphology. The mechanistic insights from this analysis are readily extrapolated to P-gp mediated transport in vivo. Expert opinion: In vitro system-independent elementary rate constants for transporters are essential for the generation and validation of robust mechanistic PBPK models. Our modeling approach and programs have broad application potential. They can be used for any drug transporter with minor adaptations.

  11. Prediction and identification of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins

    Directory of Open Access Journals (Sweden)

    Wu Shipo

    2012-06-01

    Full Text Available Abstract Background Ebola viruses (EBOVs cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs. Results Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV, GPCAGDFAF and LYDRLASTV (Zaire EBOV could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma. Conclusion Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.

  12. Identification of continuous human B-cell epitopes in the VP35, VP40, nucleoprotein and glycoprotein of Ebola virus.

    Directory of Open Access Journals (Sweden)

    Pierre Becquart

    Full Text Available Ebola virus (EBOV is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP, Nucleoprotein (NP, and matrix Viral Protein (VP40 and VP35. For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms and the late memory phase (7-12 years post-infection. We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects. We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.

  13. Identification of continuous human B-cell epitopes in the VP35, VP40, nucleoprotein and glycoprotein of Ebola virus.

    Science.gov (United States)

    Becquart, Pierre; Mahlakõiv, Tanel; Nkoghe, Dieudonné; Leroy, Eric M

    2014-01-01

    Ebola virus (EBOV) is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG) responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP), Nucleoprotein (NP), and matrix Viral Protein (VP)40 and VP35). For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms) and the late memory phase (7-12 years post-infection). We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects). We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.

  14. Increased Circulating Level of the Survival Factor GP88 (Progranulin in the Serum of Breast Cancer Patients When Compared to Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Katherine Rak Tkaczuk

    2011-01-01

    Full Text Available Introduction GP88 (PC-Cell Derived Growth Factor, progranulin is a glycoprotein overexpressed in breast tumors and involved in their proliferation and survival. Since GP88 is secreted, an exploratory study was established to compare serum GP88 level between breast cancer patients (BC and healthy volunteers (HV. Methods An IRB approved prospective study enrolled 189 stage 1–4 BC patients and 18 HV. GP88 serum concentration was determined by immunoassay. Results Serum GP88 level was 28.7+ 5.8 ng/ml in HV and increased to 40.7+ 16.0 ng/ml ( P = 0.007 for stage 1-3 and 45.3 +23.3 ng/ml ( P = 0.0007 for stage 4 BC patients. There was no correlation between the GP88 level and BC characteristics such as age, race, tumor grade, ER, PR and HER-2 expression. Conclusion These data suggest that serial testing of serum GP88 levels may have value as a circulating biomarker for detection, monitoring and follow up of BC.

  15. Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-resistant Human Breast Cancer Cells

    International Nuclear Information System (INIS)

    Zhang, Hai-chang; Zhang, Fei; Wu, Bing; Han, Jing-hua; Ji, Wei; Zhou, Yan; Niu, Rui-fang

    2012-01-01

    To explore the interaction of Anxa2 with P-Glycoprotein (P-gp) in the migration and invasion of the multidrug-resistant (MDR) human breast cancer cell line MCF-7/ADR. A pair of short hairpin RNA (shRNA) targeting P-gp was transfected into MCF-7/ADR cells, and monoclonal cell strains were screened. The expression of P-gp was detected by Western blot. Transwell chambers were used to observe the cell migration capacity and invasion ability. The interaction between P-gp and Anxa2 was examined by immunoprecipitation and immunofluorescence confocal microscopy analyses. P-gp expression was significantly knocked down, and there were notable decreasing trends in the migration and invasion capability of MDR breast cancer cells (P<0.05). There was a close interaction between Anxa2 and P-gp. MCF-7/ADR is an MDR human breast cancer cell line with high migration and invasion abilities. The knockdown of P-gp notably impaired the migration and invasion abilities of the tumor cells. The interaction of Anxa2 with P-pg may play an important role in the enhanced invasiveness of MDR human breast cancer cells

  16. Enhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood-brain barrier

    NARCIS (Netherlands)

    Doze, P; Van Waarde, A; Elsinga, P H; Hendrikse, N H; Vaalburg, W

    Low cerebral uptake of some therapeutic drugs can be enhanced by modulation of P-glycoprotein (P-gp), an ATP-driven drug efflux pump at the blood-brain barrier (BBB). We investigated the possibility of increasing cerebral uptake of the beta-adrenergic ligands S-1'-[(18)F]-fluorocarazolol (FCAR) and

  17. Human CNS cultures exposed to HIV-1 gp120 reproduce dendritic injuries of HIV-1-associated dementia

    Directory of Open Access Journals (Sweden)

    Hammond Robert R

    2004-05-01

    Full Text Available Abstract HIV-1-associated dementia remains a common subacute to chronic central nervous system degeneration in adult and pediatric HIV-1 infected populations. A number of viral and host factors have been implicated including the HIV-1 120 kDa envelope glycoprotein (gp120. In human post-mortem studies using confocal scanning laser microscopy for microtubule-associated protein 2 and synaptophysin, neuronal dendritic pathology correlated with dementia. In the present study, primary human CNS cultures exposed to HIV-1 gp120 at 4 weeks in vitro suffered gliosis and dendritic damage analogous to that described in association with HIV-1-associated dementia.

  18. HIV-1 gp120 and drugs of abuse: interactions in the central nervous system.

    Science.gov (United States)

    Silverstein, Peter S; Shah, Ankit; Weemhoff, James; Kumar, Santosh; Singh, D P; Kumar, Anil

    2012-07-01

    HIV-1 infection is a global public health problem with more than 34 million people living with HIV infection. Although great strides have been made in treating this epidemic with therapeutic agents, the increase in patient life span has been coincident with an increase in the prevalence of HIV-associated neurocognitive disorders (HAND). HAND is thought to result from the neurotoxic effects of viral proteins that are shed from HIV-infected microglial cells. One of the primary neurotoxins responsible for this effect is the HIV-1 glycoprotein gp120. Exposure of neurons to gp120 has been demonstrated to cause apoptosis in neurons, as well as numerous indirect effects such as an increase in inflammatory cytokines, an increase in oxidative stress, and an increase in permeability of the blood-brain barrier. In many patients, the use of drugs of abuse (DOA) exacerbates the neurotoxic effects of gp120. Cocaine, methamphetamine and morphine are three DOAs that are commonly used by those infected with HIV-1. All three of these DOAs have been demonstrated to increase oxidative stress in the CNS as well as to increase permeability of the blood-brain barrier. Numerous model systems have demonstrated that these DOAs have the capability of exacerbating the neurotoxic effects of gp120. This review will summarize the neurotoxic effects of gp120, the deleterious effects of cocaine, methamphetamine and morphine on the CNS, and the combined effects of gp120 in the context of these drugs.

  19. In vitro and in vivo evaluations of the P-glycoprotein-mediated efflux of dibenzoylhydrazines

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ken-ichi, E-mail: Miyata.Kenichi@otsuka.jp [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0182 (Japan); Nakagawa, Yoshiaki; Kimura, Yasuhisa [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Ueda, Kazumitsu [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502 (Japan); Akamatsu, Miki, E-mail: akamatsu@kais.kyoto-u.ac.jp [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan)

    2016-05-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter family. It actively transports a wide variety of compounds out of cells to protect humans from xenobiotics. Thus, determining whether chemicals are substrates and/or inhibitors of P-gp is important in risk assessments of pharmacokinetic interactions among chemicals because P-gp-mediated transport processes play a significant role in their absorption and disposition. We previously reported that dibenzoylhydrazines (DBHs) such as tebufenozide and methoxyfenozide (agrochemicals) stimulated P-gp ATPase activity. However, it currently remains unclear whether these derivatives are transport substrates of P-gp and inhibit transport of other chemicals by P-gp. In the present study, in order to evaluate the interactions of DBHs with other chemicals in humans, we determined whether DBHs are P-gp transport substrates using both the in vitro bidirectional transport assay and the in vivo study of rats. In the in vivo study, we investigated the influence of P-gp inhibitors on the brain to plasma ratio of methoxyfenozide in rats. We also examined the inhibitory effects of DBHs on quinidine (a P-gp substrate) transport by P-gp in order to ascertain whether these derivatives are inhibitors of P-gp. Based on the results, DBHs were concluded to be weak P-gp transport substrates and moderate P-gp inhibitors. However, the risk of DBHs caused by interaction with other chemicals including drugs was considered to be low by considering the DBHs' potential as the substrates and inhibitors of P-gp as well as their plasma concentrations as long as DBHs are properly used. - Highlights: • Transport of DBHs by P-gp was not detected in in vitro bidirectional transport assay. • DBHs were weak P-gp transport substrates based on in vivo studies in rats. • The in vivo studies are useful methods for evaluating P-gp transport substrates. • DBHs inhibit quinidine transport by P-gp in in vitro bidirectional transport

  20. An Electrically Tight In Vitro Blood-Brain Barrier Model Displays Net Brain-to-Blood Efflux of Substrates for the ABC Transporters, P-gp, Bcrp and Mrp-1

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Hersom, Maria; Kuhlmann, Louise Borella

    2014-01-01

    Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp's/Abcc's) are expressed in the blood-brain barrier (BBB). The aim of this study was to investigate......, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp's and etoposide via P-gp and Mrp's. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one...... isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport....

  1. Study of β2-Glycoprotein I Polymorphisms in Patients With Chronic Renal Failure as a Predisposing Factor for the Development of Anti-β2-Glycoprotein I Auto-Antibodies.

    Science.gov (United States)

    Serrano, M; Cabrera-Marante, O; Martínez-Flores, J A; Morales, P; Pérez, D; Mora, S; García, F; González, E; Paz-Artal, E; Morales, J M; Serrano, A

    2016-11-01

    Immunoglobulin (Ig)A anti-β 2 -glycoprotein I (aB2GP1) antibodies are associated with thrombotic events, cardiovascular morbidity, and death in dialysis patients. About 30% of patients with chronic renal disease are positive for IgA aB2GP1; however, the origin of these antibodies is unknown. It has been speculated that dialysis membranes, age, or etiology of renal base disease are possible precipitating factors, although these factors do not appear to be the source of antibodies. B2GP1 is a protein of 326 amino acids grouped into five domains. Eight polymorphisms have been described; the most important are Val/Leu 247 , which appears to predispose aB2GP1 antibody production in patients with anti-phospholipid syndrome, and Trp/Ser 316 , which appears to have protective antibody production of aB2GP1. DNA samples from 92 patients with renal failure on hemodialysis were randomly collected with a 1:1 ratio for the positivity for IgA aB2GP1. Forty-six samples were positive for IgA aB2GP1 (group 1) and 46 negative for IgA aB2GP1 (group 2). All samples were anonymized to study polymorphism Val/Leu 247 and polymorphism Trp/Ser 316 . No significant differences were observed between those who were positive or negative for IgA aB2GP1 in patients with renal failure treated with hemodialysis and the polymorphism located in codons 247 and 316. The two groups of patients have the same prevalence in polymorphisms 247 and 316, and therefore there appears not to be a genetic predisposition in our population. New trigger factors must be studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard; Jardetzky, Theodore S.; (NWU); (Stanford-MED)

    2009-05-26

    Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLA complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.

  3. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm.

    Directory of Open Access Journals (Sweden)

    Deep Agnani

    Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the

  4. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinghe; Kang, Byong H.; Pancera, Marie; Lee, Jeong Hyun; Tong, Tommy; Feng, Yu; Imamichi, Hiromi; Georgiev, Ivelin S.; Chuang, Gwo-Yu; Druz, Aliaksandr; Doria-Rose, Nicole A.; Laub, Leo; Sliepen, Kwinten; van Gils, Marit J.; de la Peña, Alba Torrents; Derking, Ronald; Klasse, Per-Johan; Migueles, Stephen A.; Bailer, Robert T.; Alam, Munir; Pugach, Pavel; Haynes, Barton F.; Wyatt, Richard T.; Sanders, Rogier W.; Binley, James M.; Ward, Andrew B.; Mascola, John R.; Kwong, Peter D.; Connors, Mark [NIH

    2015-10-15

    The isolation of human monoclonal antibodies is providing important insights into the specificities that underlie broad neutralization of HIV-1 (reviewed in ref. 1). Here we report a broad and extremely potent HIV-specific monoclonal antibody, termed 35O22, which binds a novel HIV-1 envelope glycoprotein (Env) epitope. 35O22 neutralized 62% of 181 pseudoviruses with a half-maximum inhibitory concentration (IC50) <50 μg ml-1. The median IC50 of neutralized viruses was 0.033 μg ml-1, among the most potent thus far described. 35O22 did not bind monomeric forms of Env tested, but did bind the trimeric BG505 SOSIP.664. Mutagenesis and a reconstruction by negative-stain electron microscopy of the Fab in complex with trimer revealed that it bound to a conserved epitope, which stretched across gp120 and gp41. The specificity of 35O22 represents a novel site of vulnerability on HIV Env, which serum analysis indicates to be commonly elicited by natural infection. Binding to this new site of vulnerability may thus be an important complement to current monoclonal-antibody-based approaches to immunotherapies, prophylaxis and vaccine design.

  5. Pancreatic-specific autoantibodies to glycoprotein 2 mirror disease location and behaviour in younger patients with Crohn’s disease

    Directory of Open Access Journals (Sweden)

    Bogdanos Dimitrios P

    2012-08-01

    Full Text Available Abstract Background Glycoprotein 2 (GP2 was discovered as the major autoantigen of Crohn’s disease (CD-specific pancreatic autoantibodies (PAB. We investigated anti-GP2 IgA and IgG antibodies as novel serological parameters in CD and assessed their association with distinct disease phenotypes. Methods Anti-GP2 and anti-Saccharomyces cerevisiae (ASCA IgA and IgG were detected by ELISA employing recombinant human GP2 and phosphopeptidomannan, respectively and PAB by indirect immunofluorescence (IIF in 271 sera, 169 with CD and 102 with ulcerative colitis (UC. As healthy controls 160 adult blood donors and 65 children were included. Results Anti-GP2 IgG and/or IgA were more prevalent in CD (51/169, 30.2% than in UC (9/102, 8.9% patients and in controls (9/225, 4% (p  Conclusions Anti-GP2 IgG and IgA, constituting novel CD specific autoantibodies, appear to be associated with distinct disease phenotypes identifying patients at a younger age, with ileocolonic location, and stricturing behaviour with perianal disease.

  6. In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains.

    Science.gov (United States)

    Brewer, Frances K; Follit, Courtney A; Vogel, Pia D; Wise, John G

    2014-12-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp− were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  8. Cloning, expression and preliminary crystallographic analysis of the equine infectious anaemia virus (EIAV) gp45 ectodomain

    International Nuclear Information System (INIS)

    Sun, Pei-Long; Lv, Shu-Xia; Zhou, Jian-Hua; Liu, Xin-Qi

    2011-01-01

    The equine infectious anaemia virus gp45 ectodomain was cloned, expressed and crystallized. Preliminary crystallographic analysis showed that the protein belonged to space group P6 3 and contained one molecule per asymmetric unit. Like human immunodeficiency virus (HIV), equine infectious anaemia virus (EIAV) belongs to the lentivirus genus. The first successful lentiviral vaccine was developed for EIAV. Thus, EIAV may serve as a valuable model for HIV vaccine research. EIAV glycoprotein 45 (gp45) plays a similar role to gp41 in HIV by mediating virus–host membrane fusion. The gp45 ectodomain was constructed according to the structure of HIV gp41, with removal of the disulfide-bond loop region. The protein was expressed in Escherichia coli and crystallized following purification. However, most of the crystals grew as aggregates and could not be used for data collection. By extensively screening hundreds of crystals, a 2.7 Å resolution data set was collected from a single crystal. The crystal belonged to space group P6 3 , with unit-cell parameters a = b = 46.84, c = 101.61 Å, α = β = 90, γ = 120°. Molecular replacement was performed using the coordinates of various lengths of HIV gp41 as search models. A long bent helix was identified and a well defined electron-density map around the long helix was obtained. This primary model provided the starting point for further refinement

  9. Genetic signatures in the envelope glycoproteins of HIV-1 that associate with broadly neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    S Gnanakaran

    Full Text Available A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an

  10. Molecular insight into conformational transmission of human P-glycoprotein

    International Nuclear Information System (INIS)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2013-01-01

    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp

  11. ATP-binding cassette transporters P-glycoprotein and breast cancer related protein are reduced in capillary cerebral amyloid angiopathy

    NARCIS (Netherlands)

    Carrano, A.; Snkhchyan, H.; Kooij, G.; van der Pol, S.; van Horssen, J.; Veerhuis, R.; Hoozemans, J.J.M.; Rozemuller, A.J.M.; de Vries, H.E.

    2014-01-01

    Alzheimer's disease (AD) is the most common form of dementia and marked by deposition of amyloid-β (Aβ) within the brain. Alterations of Aβ transporters at the neurovasculature may play a role in the disease process. We investigated the expression of ABC transporters P-glycoprotein (P-gp) and breast

  12. Nonsense mutation in the glycoprotein Ibα coding sequence associated with Bernard-Soulier syndrome

    International Nuclear Information System (INIS)

    Ware, J.; Russell, S.R.; Vicente, V.; Scharf, R.E.; Tomer, A.; McMillian, R.; Ruggeri, Z.M.

    1990-01-01

    Three distinct gene products, the α and β chains of glycoprotein (GP) Ib and GP IX, constitute the platelet membrane GP Ib-IX complex, a receptor for von Willebrand factor and thrombin involved in platelet adhesion and aggregation. Defective function of the GP Ib-IX complex is the hallmark of a rare congenital bleeding disorder of still undefined pathogenesis, the Bernard-Soulier syndrome. The authors have analyzed the molecular basis of the disease in one patient in whom immunoblotting of solubilized platelets demonstrated absence of normal GP Ibα but presence of a smaller immunoreactive species. The truncated polypeptide was also present, along with normal protein, in platelets from the patient's mother and two of his four children. Genetic characterization identified a nucleotide transition changing the Trp-343 codon (TGG) to a nonsense codon (TGA). Such a mutation explains the origin of the smaller GP Ibα, which by lacking half of the sequence on the carboxyl-terminal side, including the transmembrane domain, cannot be properly inserted in the platelet membrane. Both normal and mutant codons were found in the patient, suggesting that he is a compound heterozygote with a still unidentified defect in the other GP Ibα allele. Nonsense mutation and truncated GP Ibα polypeptide were found to cosegregate in four individuals through three generations and were associated with either Bernard-Soulier syndrome or carrier state phenotype. The molecular abnormality demonstrated in this family provides evidence that defective synthesis of GP Ibα alters the membrane expression of the GP Ib-IX complex and may be responsible for Bernard-Soulier syndrome

  13. Definition of novel GP6 polymorphisms and major difference in haplotype frequencies between populations by a combination of in-depth exon resequencing and genotyping with tag single nucleotide polymorphisms.

    Science.gov (United States)

    Watkins, N A; O'Connor, M N; Rankin, A; Jennings, N; Wilson, E; Harmer, I J; Davies, L; Smethurst, P A; Dudbridge, F; Farndale, R W; Ouwehand, W H

    2006-06-01

    Common genetic variants of cell surface receptors contribute to differences in functional responses and disease susceptibility. We have previously shown that single nucleotide polymorphisms (SNPs) in platelet glycoprotein VI (GP6) determine the extent of response to agonist. In addition, SNPs in the GP6 gene have been proposed as risk factors for coronary artery disease. To completely characterize genetic variation in the GP6 gene we generated a high-resolution SNP map by sequencing the promoter, exons and consensus splice sequences in 94 non-related Caucasoids. In addition, we sequenced DNA encoding the ligand-binding domains of GP6 from non-human primates to determine the level of evolutionary conservation. Eighteen SNPs were identified, six of which encoded amino acid substitutions in the mature form of the protein. The single non-synonymous SNP identified in the exons encoding the ligand-binding domains, encoding for a 103Leu > Val substitution, resulted in reduced ligand binding. Two common protein isoforms were confirmed in Caucasoid with frequencies of 0.82 and 0.15. Variation at the GP6 locus was characterized further by determining SNP frequency in over 2000 individuals from different ethnic backgrounds. The SNPs were polymorphic in all populations studied although significant differences in allele frequencies were observed. Twelve additional GP6 protein isoforms were identified from the genotyping results and, despite extensive variation in GP6, the sequence of the ligand-binding domains is conserved. Sequences from non-human primates confirmed this observation. These data provide valuable information for the optimal selection of genetic variants for use in future association studies.

  14. Alphavirus Replicon DNA Vectors Expressing Ebola GP and VP40 Antigens Induce Humoral and Cellular Immune Responses in Mice

    Directory of Open Access Journals (Sweden)

    Shoufeng Ren

    2018-01-01

    Full Text Available Ebola virus (EBOV causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP is the major protective antigen of EBOV, and can generate virus-like particles (VLPs by co-expression with matrix protein (VP40. In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV replicon vector DREP to express EBOV GP and matrix viral protein (VP40. EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40. Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention.

  15. P-glycoprotein interactions of novel psychoactive substances - stimulation of ATP consumption and transport across Caco-2 monolayers.

    Science.gov (United States)

    Meyer, Markus R; Wagmann, Lea; Schneider-Daum, Nicole; Loretz, Brigitta; de Souza Carvalho, Cristiane; Lehr, Claus-Michael; Maurer, Hans H

    2015-04-01

    In contrast to drugs for therapeutic use, there are only few data available concerning interactions between P-glycoprotein (P-gp) and drugs of abuse (DOA). In this work, interactions between structurally diverse DOA and P-gp were investigated using different strategies. First, the effect on the P-gp ATPase activity was studied by monitoring of ATP consumption after addition to recombinant, human P-gp. Second, DOA showing an increased ATP consumption were further characterized regarding their transport across filter grown Caco-2- monolayers. Analyses were performed by luminescence and liquid chromatography-mass spectrometry, respectively. Among the nine DOA initially screened, benzedrone, diclofensine, glaucine, JWH-200, MDBC, WIN-55,212-2 showed an increase of ATP consumption in the ATPase stimulation assay. In Caco-2 transport studies, Glaucine, JWH-200, mitragynine, WIN-55,212-2 could moreover be identified as non-transported substrates, but inhibitors of P-gp activity. Thus, drug-drug or drug-food interactions should be very likely for these compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression.

    Science.gov (United States)

    Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui

    2016-05-24

    Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.

  17. Surface (glyco-)proteins: primary structure and crystallization under microgravity conditions

    Science.gov (United States)

    Claus, H.; Akca, E.; Schultz, N.; Karbach, G.; Schlott, B.; Debaerdemaeker, T.; De Clercq, J.-P.; König, H.

    2001-08-01

    The Archaea comprise microorganisms that live under environmental extremes, like high temperature, low pH value or high salt concentration. Their cells are often covered by a single layer of (glyco)protein subunits (S-layer) in hexagonal arrangement. In order to get further hints about the molecular mechanisms of protein stabilization we compared the primary and secondary structures of archaeal S-layer (glyco)proteins. We found an increase of charged amino acids in the S-layer proteins of the extreme thermophilic species compared to their mesophilic counterparts. Our data and those of other authors suggest that ionic interactions, e.g., salt bridges seem to be played a major role in protein stabilization at high temperatures. Despite the differences in the growth optima and the predominance of some amino acids the primary structures of S-layers revealed also a significant degree of identity between phylogenetically related archaea. These obervations indicate that protein sequences of S-layers have been conserved during the evolution from extremely thermophilic to mesophilic life. To support these findings the three-dimensional structure of the S-layer proteins has to be elucidated. Recently, we described the first successful crystallization of an extreme thermophilic surface(glyco)protein under microgravity conditions.

  18. HIV-1 integrase inhibitors are substrates for the multidrug transporter MDR1-P-glycoprotein

    Directory of Open Access Journals (Sweden)

    Cara Andrea

    2007-03-01

    Full Text Available Abstract Background The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN (IN inhibitors, IINs has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp thereby reducing their intracellular accumulation. To address the effect of IINs on drug transport, nine quinolonyl diketo acid (DKA derivatives active on the HIV-1 IN strand transfer (ST step and with EC50 ranging from 1.83 to >50 μm in cell-based assays were tested for their in vitro interaction with P-gp in the CEM-MDR cell system. IINs were investigated for the inhibition and induction of the P-gp function and expression as well as for multidrug resistance (MDR reversing ability. Results The HIV-1 IINs act as genuine P-gp substrates by inhibiting doxorubicin efflux and inducing P-gp functional conformation changes as evaluated by the modulation of UIC2 mAb epitope. Further, IINs chemosensitize MDR cells to vinblastine and induce P-gp expression in drug sensitive revertants of CEM-MDR cells. Conclusion To our knowledge, this is the first demonstration that HIV-1 IINs are P-gp substrates. This biological property may influence the absorption, distribution and elimination of these novels anti HIV-1 compounds.

  19. A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry.

    Science.gov (United States)

    Hoffmann, Markus; Crone, Lisa; Dietzel, Erik; Paijo, Jennifer; González-Hernández, Mariana; Nehlmeier, Inga; Kalinke, Ulrich; Becker, Stephan; Pöhlmann, Stefan

    2017-05-01

    The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells. IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells

  20. Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available A specific response of human serum neutralizing antibodies (nAb to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120 of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.

  1. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  2. ABCB1 (P-glycoprotein) reduces bacterial attachment to human gastrointestinal LS174T epithelial cells.

    Science.gov (United States)

    Crowe, Andrew; Bebawy, Mary

    2012-08-15

    The aim of this project was to show elevated P-glycoprotein (P-gp) expression decreasing bacterial association with LS174T human gastrointestinal cells, and that this effect could be reversed upon blocking functional P-gp efflux. Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Lactobacillus acidophilus and numerous strains of Escherichia coli, from commensal to enteropathogenic and enterohaemorrhagic strains (O157:H7) were fluorescently labelled and incubated on LS174T cultures either with or without P-gp amplification using rifampicin. PSC-833 was used as a potent functional P-gp blocking agent. Staphylococcus and Pseudomonas displayed the greatest association with the LS174T cells. Surprisingly, lactobacilli retained more fluorescence than enteropathogenic-E. coli in this system. Irrespective of attachment differences between the bacterial species, the increase in P-gp protein expression decreased bacterial fluorescence by 25-30%. This included the GFP-labelled E. coli, and enterohaemorrhagic E. coli (O157:H7). Blocking P-gp function through the co-administration of PSC-833 increased the amount of bacteria associated with P-gp expressing LS174T cells back to control levels. As most bacteria were affected to the same degree, irrespective of pathogenicity, it is unlikely that P-gp has a direct influence on adhesion of bacteria, and instead P-gp may be playing an indirect role by secreting a bank of endogenous factors or changing the local environment to one less suited to bacterial growth in general. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  3. MAC-1 Glycoprotein Family mediates adherence of neutrophils to endothelial cells stimulated by leukotriene B/sub 4/ and platelet activating factor

    Energy Technology Data Exchange (ETDEWEB)

    Tonnesen, M.G.; Anderson, D.C.; Springer, T.A.; Knedler, A.; Avdi, N.; Henson, P.M.

    1986-03-01

    The process of neutrophil (N) adhesion to and migration through endothelium (EC), an early event in the induction of the acute inflammatory response, has been attributed to the generation of extravascular chemoattractant peptides and lipids. Although both leukotriene B/sub 4/ (LTB/sub 4/) and platelet activating factor (PAF) enhance N adherence to EC, the mechanisms involved in this interaction are still not completely understood. Since the MAC-1 Glycoprotein (GP) Family has recently been shown to be required for a variety of adherence-dependent functions of stimulated N, the authors questioned whether these adherence-associated GP might be involved in N adherence to EC stimulated by LTB/sub 4/ or PAF. Using a microtiter adherence assay with /sup 111/In labeled N, they assessed the ability of N from patients with MAC-1, LFA-1 Deficiency to adhere to monolayers of human omental microvascular or umbilical vein EC as well as to serum-coated plastic. Patient N exhibited markedly diminished adherence in response to LTB/sub 4/ or PAF compared to normal controls. LTB/sub 4/ and PAF enhanced expression of the MAC-1 GP Family on the surface of normal N as determined by flow cytofluorimetry using a monoclonal antibody (TS1/18) to the GP common beta subunit. In addition TS1/18 (20 ..mu..g/ml) completely inhibited N adherence stimulated by either LTB/sub 4/ (10/sup -8/M) or PAF(10/sup -11/M). Thus, the MAC-1 GP Family appears to be important in chemotactic factor regulation of N adherence to EC.

  4. Platelet Glycoprotein IIb/IIIa Receptor Inhibition in Non-ST-Elevation Acute Coronary Syndromes : Early Benefit During Medical Treatment Only, With Additional Protection During Percutaneous Coronary Intervention

    NARCIS (Netherlands)

    K.M. Akkerhuis (Martijn); P. Théroux (Pierre); R.M. Califf (Robert); E.J. Topol (Eric); M.L. Simoons (Maarten); H. Boersma (Eric)

    1999-01-01

    textabstractBACKGROUND: Glycoprotein (GP) IIb/IIIa receptor blockers prevent life-threatening cardiac complications in patients with acute coronary syndromes without ST-segment elevation and protect against thrombotic complications associated with percutaneous coronary

  5. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    International Nuclear Information System (INIS)

    Hoetzel, Isidro; Cheevers, William P.

    2005-01-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains of CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain β-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding

  6. Relevance of P-glycoprotein on CXCR4+ B cells to organ manifestation in highly active rheumatoid arthritis.

    Science.gov (United States)

    Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Kawabe, Akio; Tanaka, Yoshiya

    2018-03-01

    In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4 + B cells to clinical manifestations in refractory RA. CD19 + B cells were analyzed using flow cytometry and immunohistochemistry. P-gp was highly expressed especially on CXCR4 + CD19 + B cells in RA. The proportion of P-gp-expressing CXCR4 + B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp + CXCR4 + CD19 + B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp + CXCR4 + CD19 + B cells. Adalimumab reduced P-gp + CXCR4 + CD19 + B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. Expansion of P-gp + CXCR4 + B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.

  7. Multiple Linear Regression Analysis Indicates Association of P-Glycoprotein Substrate or Inhibitor Character with Bitterness Intensity, Measured with a Sensor.

    Science.gov (United States)

    Yano, Kentaro; Mita, Suzune; Morimoto, Kaori; Haraguchi, Tamami; Arakawa, Hiroshi; Yoshida, Miyako; Yamashita, Fumiyoshi; Uchida, Takahiro; Ogihara, Takuo

    2015-09-01

    P-glycoprotein (P-gp) regulates absorption of many drugs in the gastrointestinal tract and their accumulation in tumor tissues, but the basis of substrate recognition by P-gp remains unclear. Bitter-tasting phenylthiocarbamide, which stimulates taste receptor 2 member 38 (T2R38), increases P-gp activity and is a substrate of P-gp. This led us to hypothesize that bitterness intensity might be a predictor of P-gp-inhibitor/substrate status. Here, we measured the bitterness intensity of a panel of P-gp substrates and nonsubstrates with various taste sensors, and used multiple linear regression analysis to examine the relationship between P-gp-inhibitor/substrate status and various physical properties, including intensity of bitter taste measured with the taste sensor. We calculated the first principal component analysis score (PC1) as the representative value of bitterness, as all taste sensor's outputs shared significant correlation. The P-gp substrates showed remarkably greater mean bitterness intensity than non-P-gp substrates. We found that Km value of P-gp substrates were correlated with molecular weight, log P, and PC1 value, and the coefficient of determination (R(2) ) of the linear regression equation was 0.63. This relationship might be useful as an aid to predict P-gp substrate status at an early stage of drug discovery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Determination of the minimal fusion peptide of bovine leukemia virus gp30

    International Nuclear Information System (INIS)

    Lorin, Aurelien; Lins, Laurence; Stroobant, Vincent; Brasseur, Robert; Charloteaux, Benoit

    2007-01-01

    In this study, we determined the minimal N-terminal fusion peptide of the gp30 of the bovine leukemia virus on the basis of the tilted peptide theory. We first used molecular modelling to predict that the gp30 minimal fusion peptide corresponds to the 15 first residues. Liposome lipid-mixing and leakage assays confirmed that the 15-residue long peptide induces fusion in vitro and that it is the shortest peptide inducing optimal fusion since longer peptides destabilize liposomes to the same extent but not shorter ones. The 15-residue long peptide can thus be considered as the minimal fusion peptide. The effect of mutations reported in the literature was also investigated. Interestingly, mutations related to glycoproteins unable to induce syncytia in cell-cell fusion assays correspond to peptides predicted as non-tilted. The relationship between obliquity and fusogenicity was also confirmed in vitro for one tilted and one non-tilted mutant peptide

  9. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  10. Mitochondrial expression and activity of P-glycoprotein under oxidative stress in outer blood-retinal barrier

    Directory of Open Access Journals (Sweden)

    Yue-Hong Zhang

    2017-07-01

    Full Text Available AIM: To investigate the role of oxidative stress in regulating the functional expression of P-glycoprotein (P-gp in mitochondria of D407 cells. METHODS: D407 cells were exposed to different ranges of concentrations of H2O2. The mitochondrial location of P-gp in the cells subjected to oxidative stress was detected by confocal analysis. Expression of P-gp in isolated mitochondria was assessed by Western blot. The pump activity of P-gp was evaluated by performing the efflux study on isolated mitochondria with Rhodamine 123 (Rho-123 alone and in the presence of P-gp inhibitor (Tariquidar using flow cytometry analysis. The cells were pretreated with 10 mmol/L N-acetylcysteine (NAC for 30min before exposing to H2O2, and analyzed the mitochondrial extracts by Western blot and flow cytometry. RESULTS: P-gp was co-localized in the mitochondria by confocal laser scanning microscopy, and it was also detected in the mitochondria of D407 cells using Western blot. Exposure to increasing concentrations of H2O2 led to gradually increased expression and location of P-gp in the mitochondria of cells. Rho-123 efflux assay showed higher uptake of Rho-123 on isolated mitochondria in the presence of Tariquidar both in normal and oxidative stress state. H2O2 up-regulated P-gp in D407 cells, which could be reversed by NAC treatment. CONCLUSION: H2O2 could up-regulate the functional expression of P-gp in mitochondria of D407 cells, while antioxidants might suppress oxidative-stress-induced over-expression of functional P-gp. It is indicative that limiting the mitochondrial P-gp transport in retinal pigment epithelium cells would be to improve the effect of mitochondria-targeted antioxidant therapy in age-related macular degeneration-like retinopathy.

  11. Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies

    NARCIS (Netherlands)

    Chung, Nancy P. Y.; Matthews, Katie; Kim, Helen J.; Ketas, Thomas J.; Golabek, Michael; de Los Reyes, Kevin; Korzun, Jacob; Yasmeen, Anila; Sanders, Rogier W.; Klasse, Per Johan; Wilson, Ian A.; Ward, Andrew B.; Marozsan, Andre J.; Moore, John P.; Cupo, Albert

    2014-01-01

    Recombinant soluble, cleaved HIV-1 envelope glycoprotein SOSIP.664 gp140 trimers based on the subtype A BG505 sequence are being studied structurally and tested as immunogens in animals. For these trimers to become a vaccine candidate for human trials, they would need to be made in appropriate

  12. Dimerization of glycoprotein Ibα is not sufficient to induce platelet clearance.

    Science.gov (United States)

    Liang, X; Syed, A K; Russell, S R; Ware, J; Li, R

    2016-02-01

    ESSENTIALS: Many anti-glycoprotein (GP)Ibα antibodies induce platelet clearance in a dimer-dependent manner. Characterization of monoclonal antibodies that bind the mechanosensitive domain (MSD) of GPIbα. An anti-MSD antibody binds two copies of GPIbα in platelets but does not induce platelet clearance. The prevailing clustering model of GPIbα signaling is incorrect or needs revision. The mechanism of platelet clearance is not clear. Many antibodies binding the membrane-distal ligand-binding domain of glycoprotein (GP)Ibα induce rapid clearance of platelets and acute thrombocytopenia, which requires the bifurcated antibody structure. It was thought that binding of these antibodies induced lateral dimerization or clustering of GPIbα in the plasma membrane, which leads to downstream signaling and platelet clearance. However, many antibodies targeting GPIbβ and GPIX, which are associated with GPIbα in the GPIb-IX complex, do not induce platelet clearance, which is in contradiction to the clustering model. To test whether dimerization or clustering of GPIbα is sufficient to transmit the signal that leads to platelet clearance. We have recently raised several mAbs targeting the mechanosensitive domain (MSD) of GPIbα. Binding of these anti-MSD antibodies was characterized with biochemical methods. Their ability to stimulate platelets and induce platelet clearance in mice was assessed. Infusion of anti-MSD antibodies does not cause thrombocytopenia in mice. These antibodies show no detectable effects on platelet activation and aggregation in vitro. Further biochemical investigation showed that the anti-MSD antibody 3D1 binds two copies of GPIbα on the platelet surface. Therefore, lateral dimerization of GPIbα induced by antibody binding is not sufficient to initiate GPIb-IX signaling and induce platelet clearance. Our results suggest that a factor other than or in addition to clustering of GPIbα is required to induce platelet clearance. © 2015 International

  13. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Polfliet, Machteld M J; Vloet, Rianka P M

    2007-01-01

    Erythropoiesis occurs in erythroblastic islands, where developing erythroblasts closely interact with macrophages. The adhesion molecules that govern macrophage-erythroblast contact have only been partially defined. Our previous work has implicated the rat ED2 antigen, which is highly expressed...... on the surface of macrophages in erythroblastic islands, in erythroblast binding. In particular, the monoclonal antibody ED2 was found to inhibit erythroblast binding to bone marrow macrophages. Here, we identify the ED2 antigen as the rat CD163 surface glycoprotein, a member of the group B scavenger receptor...... that it enhanced erythroid proliferation and/or survival, but did not affect differentiation. These findings identify CD163 on macrophages as an adhesion receptor for erythroblasts in erythroblastic islands, and suggest a regulatory role for CD163 during erythropoiesis....

  14. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua.

    Science.gov (United States)

    Zuo, Y-Y; Huang, J-L; Wang, J; Feng, Y; Han, T-T; Wu, Y-D; Yang, Y-H

    2018-02-01

    P-glycoprotein [P-gp or the ATP-binding cassette transporter B1 (ABCB1)] is an important participant in multidrug resistance of cancer cells, yet the precise function of this arthropod transporter is unknown. The aim of this study was to determine the importance of P-gp for susceptibility to insecticides in the beet armyworm (Spodoptera exigua) using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) gene-editing technology. We cloned an open reading frame (ORF) encoding the S. exigua P-gp protein (SeP-gp) predicted to display structural characteristics common to P-gp and other insect ABCB1 transporters. A knockout line with a frame shift deletion of four nucleotides in the SeP-gp ORF was established using the CRISPR/Cas9 gene-editing system to test its potential role in determining susceptibility to chemical insecticides or insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). Results from comparative bioassays demonstrate that knockout of SeP-gp significantly increases susceptibility of S. exigua by around threefold to abamectin and emamectin benzoate (EB), but not to spinosad, chlorfenapyr, beta-cypermethrin, carbosulfan indoxacarb, chlorpyrifos, phoxim, diafenthiuron, chlorfluazuron, chlorantraniliprole or two Bt toxins (Cry1Ca and Cry1Fa). Our data support an important role for SeP-gp in susceptibility of S. exigua to abamectin and EB and imply that overexpression of SeP-gp may contribute to abamectin and EB resistance in S. exigua. © 2017 The Royal Entomological Society.

  15. Upregulations of Clcn3 and P-Gp Provoked by Lens Osmotic Expansion in Rat Galactosemic Cataract

    Directory of Open Access Journals (Sweden)

    Lixia Ji

    2017-01-01

    Full Text Available Objective. Lens osmotic expansion, provoked by overactivated aldose reductase (AR, is the most essential event of sugar cataract. Chloride channel 3 (Clcn3 is a volume-sensitive channel, mainly participating in the regulation of cell fundamental volume, and P-glycoprotein (P-gp acts as its modulator. We aim to study whether P-gp and Clcn3 are involved in lens osmotic expansion of galactosemic cataract. Methods and Results. In vitro, lens epithelial cells (LECs were primarily cultured in gradient galactose medium (10–60 mM, more and more vacuoles appeared in LEC cytoplasm, and mRNA and protein levels of AR, P-gp, and Clcn3 were synchronously upregulated along with the increase of galactose concentration. In vivo, we focused on the early stage of rat galactosemic cataract, amount of vacuoles arose from equatorial area and scattered to the whole anterior capsule of lenses from the 3rd day to the 9th day, and mRNA and protein levels of P-gp and Clcn3 reached the peak around the 9th or 12th day. Conclusion. Galactosemia caused the osmotic stress in lenses; it also markedly leads to the upregulations of AR, P-gp, and Clcn3 in LECs, together resulting in obvious osmotic expansion in vitro and in vivo.

  16. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge

    Science.gov (United States)

    Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo

    2016-01-01

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105−106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support

  17. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.

    Science.gov (United States)

    Konduru, Krishnamurthy; Shurtleff, Amy C; Bradfute, Steven B; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo

    2016-01-01

    Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105-106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support

  18. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.

    Directory of Open Access Journals (Sweden)

    Krishnamurthy Konduru

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105-106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data

  19. Optimization of irinotecan chronotherapy with P-glycoprotein inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Filipski, Elisabeth; Berland, Elodie [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Ozturk, Narin [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Istanbul University Faculty of Pharmacy, Department of Pharmacology, Beyazit TR-34116, Istanbul (Turkey); Guettier, Catherine [Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif F-94807 (France); Horst, Gijsbertus T.J. van der [Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam (Netherlands); Lévi, Francis [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif F-94807 (France); and others

    2014-02-01

    The relevance of P-glycoprotein (P-gp) for irinotecan chronopharmacology was investigated in female B6D2F{sub 1} mice. A three-fold 24 h change in the mRNA expression of Abcb1b was demonstrated in ileum mucosa, with a maximum at Zeitgeber Time (ZT) 15 (p < 0.001). No rhythm was found for abcb1a in ileum mucosa, or for Abcb1a/b in Glasgow osteosarcoma (GOS), a mouse tumor cell line moderately sensitive to irinotecan. Non-tumor-bearing mice received irinotecan (50 mg/kg/day i.v. × 4 days) as a single agent or combined with P-gp inhibitor PSC833 (6.25 mg/kg/day i.p. × 4 days) at ZT3 or ZT15, respectively corresponding to the worst or the best irinotecan tolerability. Endpoints involved survival, body weight change and hematologic toxicity. Antitumor efficacy was studied in GOS-bearing mice receiving irinotecan (25, 30 or 40 mg/kg/day × 4 days) and +/− PSC833 at ZT3 or ZT15, with survival, body weight change, and tumor growth inhibition as endpoints. Non-tumor bearing mice lost an average of 17% or 9% of their body weight according to irinotecan administration at ZT3 or ZT15 respectively (p < 0.001). Dosing at ZT15 rather than ZT3 reduced mean leucopenia (9% vs 53%; p < 0.001). PSC833 aggravated irinotecan lethal toxicity from 4 to ∼ 60%. In tumor-bearing mice, body weight loss was ∼ halved in the mice on irinotecan or irinotecan–PSC833 combination at ZT15 as compared to ZT3 (p < 0.001). PSC833–irinotecan at ZT15 increased tumor inhibition by ∼ 40% as compared to irinotecan only at ZT15. In conclusion, P-gp was an important determinant of the circadian balance between toxicity and efficacy of irinotecan. - Highlights: • Irinotecan chronotolerance and chronoefficacy change as drug was applied with PSC833. • P-glycoprotein is an important player of the toxicity and efficacy of irinotecan. • Timing should be considered if chemotherapy is performed with a MDR1 inhibitor.

  20. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats

    OpenAIRE

    Chung-Ping Yu; Ching-Ya Huang; Shiuan-Pey Lin; Yu-Chi Hou

    2018-01-01

    Coptidis Rhizoma (CR), the rhizome of Coptis chinensis FRANCH, is a popular Chinese herb. CR contains plenty of isoquinoline alkaloids such as berberine, coptisine and palmatine. Cyclosporine (CSP), an important immunosuppressant with narrow therapeutic window, is employed as a probe substrate of P-glycoprotein (P-gp) and CYP3A4 in order to investigate the in vivo modulation effect of CR on P-gp and CYP3A4. Three groups of rats were orally administered CSP without and with single dose or repe...

  1. P-gp expression levels in the erythrocytes of brown trout: a new tool for aquatic sentinel biomarker development.

    Science.gov (United States)

    Valton, Emeline; Wawrzyniak, Ivan; Amblard, Christian; Combourieu, Bruno; Bayle, Marie-Laure; Desmolles, François; Kwiatkowski, Fabrice; Penault-Llorca, Frédérique; Bamdad, Mahchid

    2017-09-01

    P-glycoprotein (P-gp) is a ubiquitous membrane detoxification pump involved in cellular defence against xenobiotics. Blood is a hub for the trade and transport of physiological molecules and xenobiotics. Our recent studies have highlighted the expression of a 140-kDa P-gp in brown trout erythrocytes in primary cell culture and its dose-dependent response to Benzo[a]pyrene pollutant. The purpose of this study was focused on using P-gp expression in brown trout erythrocytes as a biomarker for detecting the degree of river pollution. abcb1 gene and P-gp expression level were analysed by reverse transcriptase-PCR and Western blot, in the erythrocytes of brown trouts. The latter were collected in upstream and downstream of four rivers in which 17 polycyclic aromatic hydrocarbons and 348 varieties of pesticides micro-residues were analysed by liquid chromatography and mass spectrometry. The abcb1 gene and the 140-kDa P-gp were not expressed in trout erythrocytes from uncontaminated river. In contrast, they are clearly expressed in contaminated rivers, in correlation with the river pollution degree and the nature of the pollutants. This biological tool may offer considerable advantages since it provides an effective response to the increasing need for an early biomarker.

  2. Anti-coagulation effect of Fc fragment against anti-β2-GP1 antibodies in mouse models with APS.

    Science.gov (United States)

    Xie, Weidong; Zhang, Yaou; Bu, Cunya; Sun, Shijing; Hu, Shaoliang; Cai, Guoping

    2011-01-01

    Anti-beta (2)-glycoprotein I (anti-β2-GP1) is one of the important pathogenesis factors responsible for thrombosis formation in patients with antiphospholipid syndrome (APS). Administration of intravenous immunoglobulin (IVIg) is a common method used to inhibit the abnormal antibody levels and decrease the mortality of APS in emergency situations. We hypothesize that the Fc fragment of IgG is the molecular structure responsible for these effects. The present study investigates the beneficial effects of both recombinant and natural human Fc fragments of heterogeneous IgG against human anti-β2-GP1 antibodies in mouse models with APS. Results showed that both recombinant and natural human Fc fragments moderately but significantly decreased the levels of serum anti-β2-GP1 antibodies and had anti-coagulation effects in human β2-GP1-immunized mice. Furthermore, both recombinant and natural human Fc fragments inhibited thrombosis formation and decreased mortality in mouse models infused intravenously with human anti-β2GP1 antibodies from patients with APS. Findings suggest that the Fc fragment might be one of the active structural units of heterogeneous IgG. Thus, recombinant human Fc fragment administration may be a useful treatment for individuals with APS. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Formation of high-order oligomers is required for functional bioactivity of an African bat henipavirus surface glycoprotein.

    Science.gov (United States)

    Behner, Laura; Zimmermann, Louisa; Ringel, Marc; Weis, Michael; Maisner, Andrea

    2018-05-01

    Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic henipaviruses originating from fruit bats in Australia and Asia that can cause severe infections in livestock and humans. In recent years, also African bat henipaviruses were identified at the nucleic acid level. To assess their potential to replicate in non-bat species, several studies were performed to characterize the two surface glycoproteins required for virus entry and spread by cell-cell fusion. It has been shown that surface expression and fusion-helper function of the receptor-binding G protein of Kumasi virus (KV), the prototypic Ghanaian bat henipavirus, is reduced compared to other non-African henipavirus G proteins. Immunostainings and pulse-chase analysis revealed a delayed export of KV G from the ER. As defects in oligomerization of viral glycoproteins can be responsible for limited surface transport thereby restricting the bioactivity, we analyzed the oligomerization pattern of KV G. In contrast to HeV and NiV whose G proteins are known to be expressed at a dimer-tetramer ratio of 1:1, KV G almost exclusively formed stable tetramers or higher oligomers. KV G also showed less stringent requirements for defined stalk cysteines to form dimers and tetramers. Interestingly, any changes in the oligomeric forms negatively affected the fusion-helper activity although surface expression and receptor binding was unchanged. This clearly indicates that the formation of mostly higher oligomeric KV G forms is not a deficiency responsible for ER retention, but is rather a basic structural feature essential for the bioactivity of this African bat henipavirus glycoprotein. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evaluation of P-glycoprotein expression in pain relevant tissues: understanding translation of efflux from preclinical species to human

    Directory of Open Access Journals (Sweden)

    Renu Singh Dhanikula

    2016-10-01

    Full Text Available Various efflux transporters, such as P-glycoprotein (P-gp are now widely accepted to have profound influence on the disposition of substrates. Nevertheless, there is paucity of information about their expression and functionality in the pain relevant tissues (such as brain, spinal cord and dorsal root ganglia (DRG across various species. Therefore, our attempts were directed at evaluating P-gp expression in these tissues to understand its effect on the central nervous system (CNS disposition. As a means of characterizing the normal tissue distribution of P-gp, immunohistochemistry was performed with two antibodies (C219 and H241 directed against different epitopes of MDR1 gene. Notable expression of P-gp was detected in the DRG of Sprague Dawley rat, Beagle Dog, Cynomolgous monkey as well as human. The expression of P-gp was observed in the CNS tissues with evident species differences, the expression of P-gp in human brain and spinal cord was lower than in rats and dogs but relatively comparable to that in monkeys. However, no species related differences were seen in the expression at the DRG level. Double-labelling using an antibody against a marker of endothelial cells confirmed that P-gp was exclusively localized in capillary endothelial cells. This study highlights the cross species similarities and differences in the expression of P-gp and thus serves as a vital step in understanding the translation of exposure of P-gp substrates to human.

  5. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qianlong [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Blissard, Gary W. [Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, United State (United States); Liu, Tong-Xian [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Li, Zhaofei, E-mail: zhaofeili73@outlook.com [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China)

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  6. The complexity of roles of P-glycoprotein in refractory epilepsy: Pharmacoresistance, epileptogenesis, SUDEP and relapsing marker after surgical treatment

    Directory of Open Access Journals (Sweden)

    Alberto Lazarowski

    2015-07-01

    Full Text Available As described initially from clinical and experimental studies, P-glycoprotein (P-gp plays a central role in the pharmacoresistance of epilepsy, acting by efflux of AEDs mainly at blood brain barrier (BBB level. However, repetitive seizures can produce both brain and heart P-gp overexpression. Because P-gp activity induces membrane depolarization, its neuronal expression could be acting in the intrinsic mechanism of epileptogenesis, and its heart expression, can be a high risk factor of death, after severe-continuo convulsive stresses as in  fatal status epilepticus or in SUDEP. Additionally, because P-gp is also a stem cell marker, we suggests that its constitutive overexpression in dysplastic neurons from brain epileptogenic areas observed in patients with refractory epilepsies, should be addressed as a risk factor of seizures relapse after surgical treatment. Here we discuss these concepts, based on our own clinical and experimental experiences, and reviewing the current literature on these subjects.

  7. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120

    International Nuclear Information System (INIS)

    Wang Zhuying; Pekarskaya, Olga; Bencheikh, Meryem; Chao Wei; Gelbard, Harris A.; Ghorpade, Anuja; Rothstein, Jeffrey D.; Volsky, David J.

    2003-01-01

    L-Glutamate is the major excitatory neurotransmitter in the brain. Astrocytes maintain low levels of synaptic glutamate by high-affinity uptake and defects in this function may lead to neuronal cell death by excitotoxicity. We tested the effects of HIV-1 and its envelope glycoprotein gp120 upon glutamate uptake and expression of glutamate transporters EAAT1 and EAAT2 in fetal human astrocytes in vitro. Astrocytes isolated from fetal tissues between 16 and 19 weeks of gestation expressed EAAT1 and EAAT2 RNA and proteins as detected by Northern blot analysis and immunoblotting, respectively, and the cells were capable of specific glutamate uptake. Exposure of astrocytes to HIV-1 or gp120 significantly impaired glutamate uptake by the cells, with maximum inhibition within 6 h, followed by gradual decline during 3 days of observation. HIV-1-infected cells showed a 59% reduction in V max for glutamate transport, indicating a reduction in the number of active transporter sites on the cell surface. Impaired glutamate transport after HIV-1 infection or gp120 exposure correlated with a 40-70% decline in steady-state levels of EAAT2 RNA and protein. EAAT1 RNA and protein levels were less affected. Treatment of astrocytes with tumor necrosis factor-α (TNF-α) decreased the expression of both EAAT1 and EAAT2, but neither HIV-1 nor gp120 were found to induce TNF-α production by astrocytes. These findings demonstrate that HIV-1 and gp120 induce transcriptional downmodulation of the EAAT2 transporter gene in human astrocytes and coordinately attenuate glutamate transport by the cells. Reduction of the ability of HIV-1-infected astrocytes to take up glutamate may contribute to the development of neurological disease

  8. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  9. Age-related P-glycoprotein expression in the intestine and affecting the pharmacokinetics of orally administered enrofloxacin in broilers.

    Science.gov (United States)

    Guo, Mengjie; Bughio, Shamsuddin; Sun, Yong; Zhang, Yu; Dong, Lingling; Dai, Xiaohua; Wang, Liping

    2013-01-01

    Bioavailability is the most important factor for the efficacy of any drug and it is determined by P- glycoprotein (P-gp) expression. Confirmation of P-gp expression during ontogeny is needed for understanding the differences in therapeutic efficacy of any drug in juvenile and adult animals. In this study, Abcb1 mRNA levels in the liver and intestine of broilers during ontogeny were analysed by RT qPCR. Cellular distribution of P-gp was detected by immunohistochemstry. Age-related differences of enrofloxacin pharmacokinetics were also studied. It was found that broilers aged 4 week-old expressed significantly (P0.05) age-related difference in the duodenum. Furthermore, the highest and lowest levels of Abcb1 mRNA expression were observed in the jejunum, and duodenum, respectively. P-gp immunoreactivity was detected on the apical surface of the enterocytes and in the bile canalicular membranes of the hepatocytes. Pharmacokinetic analysis revealed that the 8 week-old broilers, when orally administrated enrofloxacin, exhibited significantly higher Cmax (1.97 vs. 0.98 μg • ml(-1), P=0.009), AUC(14.54 vs. 9.35 μg • ml(-1) • h, P=0.005) and Ka (1.38 vs. 0.43 h(-1), P=0.032), as well as lower Tpeak (1.78 vs. 3.28 h, P=0.048) and T1/2 ka (0.6 vs. 1.64 h, P=0.012) than the 4 week-old broilers. The bioavailability of enrofloxacin in 8 week-old broilers was increased by 15.9%, compared with that in 4 week-old birds. Interestingly, combining verapamil, a P-gp modulator, significantly improved pharmacokinetic behaviour of enrofloxacin in all birds. The results indicate juvenile broilers had a higher expression of P-gp in the intestine, affecting the pharmacokinetics and reducing the bioavailability of oral enrofloxacin in broilers. On the basis of our results, it is recommended that alternative dose regimes are necessary for different ages of broilers for effective therapy.

  10. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.

    Science.gov (United States)

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-09-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session.

  11. Multi-drug resistance (MDR1 gene and P-glycoprotein influence on pharmacokinetic and pharmacodymanic of therapeutic drugs

    Directory of Open Access Journals (Sweden)

    Linardi Renata Lehn

    2006-01-01

    Full Text Available (MDR1 gene expressed in tumor cells and also in several normal tissues, such as intestine, liver, kidney, blood-brain barrier, spinal cord, and placenta. P-gp has been identified in mice, rat, bovine, monkey, rodents, and human beings and has been receiving a particular clinical relevance because this protein expression limits brain access and intestinal absorption of many drugs. This protein plays a role as a protective barrier against a wide variety of substrates, avoiding drug entry into the central nervous system. P-glycoprotein also interferes with drug bioavailability and disposition, including absorption, distribution, metabolization, and excretion, influencing pharmacokinetic and pharmacodynamic of drugs. Modulation of P-gp may help the efficacy of treatment of several diseases and can explain some adverse central nervous system effects induced by drugs after intravenous administration and the poor response of oral administration in patients. Alteration in P-gp expression or function has been associated with several diseases susceptibility in humans and animals. Furthermore, additional studies relating MDR1 and P-gp expression has an important clinical implication also in terms of treatment efficacy.

  12. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Dianyuan Zhao

    2016-03-01

    Full Text Available Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP is involved in this process through activating dendritic cells (DCs and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12 and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response.

  13. Functional analysis of P-glycoprotein and multidrug resistance associated protein related multidrug resistance in AML-blasts.

    Science.gov (United States)

    Brügger, D; Herbart, H; Gekeler, V; Seitz, G; Liu, C; Klingebiel, T; Orlikowsky, T; Einsele, H; Denzlinger, C; Bader, P; Niethammer, D; Beck, J F

    1999-05-01

    Despite the high effectiveness of various P-glycoprotein (P-gp) modulating substances in vitro their clinical value e.g. for combination treatment of acute myelogenous leukemias (AML) remains still unclear. This might be explainable by recent findings that other factors than P-gp (e.g. the multidrug resistance associated protein (MRP)) may also be involved in clinical occurring drug resistance. To study P-gp and MRP mediated MDR in AML blasts from patients with relapses at the functional level we measured rhodamine 123 (RHO) efflux in combination with a P-gp specific (SDZ PSC 833) or a MRP specific (MK571) modulator, respectively. Furthermore, direct antineoplastic drug action was monitored by determination of damaged cell fraction of a blast population using flow cytometry. We generally found strongly modulated RHO efflux by SDZ PSC 833 but slight RHO-efflux modulation by MK571 in blasts from relapsed states of AML expressing MDR1 or MRP mRNA at various levels. We could not demonstrate, though, significant PSC 833 or MK571 mediated modulation of the cytotoxic effects of etoposide. The results point to the possibility that combination of etoposide and a modulator might not improve responses to chemotherapy by targeting P-gp or MRP exclusively.

  14. Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.

    Science.gov (United States)

    Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao

    2015-12-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated

  15. Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry.

    Science.gov (United States)

    Wang, Jizhen; Manicassamy, Balaji; Caffrey, Michael; Rong, Lijun

    2011-06-01

    Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.

  16. Different regulation of P-glycoprotein function between Caco-2 and Caki-1 cells by ezrin, radixin and moesin proteins.

    Science.gov (United States)

    Yano, Kentaro; Otsuka, Kyoma; Kato, Yuko; Kawabata, Hideaki; Ohmori, Shinya; Arakawa, Hiroshi; Ogihara, Takuo

    2016-03-01

    P-glycoprotein (P-gp) mediates efflux of many xenobiotics, including therapeutic drugs, from normal and tumour tissues, and its functional localization on the plasma membrane of cells is regulated by scaffold proteins, such as ezrin, radixin and moesin (ERM proteins). We previously reported that radixin is involved in post-translational regulation of P-gp in hepatocellular carcinoma HepG2 cells and mouse small intestine, but not in mouse kidney. Here, we investigated whether the role of ERM proteins in regulation of P-gp transport activity in cancers is the same as that in the corresponding normal tissues, using human colon adenocarcinoma (Caco-2) cells and renal carcinoma (Caki-1) cells. In Caco-2 cells, radixin silencing alone reduced the P-gp-mediated intracellular accumulation of rhodamine123 (Rho123), while the mRNA level of P-gp was unchanged. Thus, it appears that only radixin among the ERMs regulates P-gp activity in Caco-2 cells. On the other hand, none of the ERM proteins influenced P-gp activity in Caki-1 cells. The regulation of P-gp by ERM proteins is different between Caco-2 and Caki-1 cells. Moreover, these regulatory properties are the same as those of the corresponding normal tissues, and suggest that tissue-specific differences in the regulation of P-gp by ERM proteins are retained in cancerous tissues. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  17. Fullerene inhibits benzo(a)pyrene Efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P-glycoprotein expression.

    Science.gov (United States)

    Chen, Qiqing; Hu, Xialin; Wang, Rui; Yuan, Jin; Yin, Daqiang

    2016-05-01

    P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: protection by rSV40 delivery of antioxidant enzymes.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Agrawal, Lokesh; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2009-06-01

    Toxicity of HIV-1 envelope glycoprotein (gp120) for substantia nigra (SN) neurons may contribute to the Parkinsonian manifestations often seen in HIV-1-associated dementia (HAD). We studied the neurotoxicity of gp120 for dopaminergic neurons and potential neuroprotection by antioxidant gene delivery. Rats were injected stereotaxically into their caudate-putamen (CP); CP and (substantia nigra) SN neuron loss was quantified. The area of neuron loss extended several millimeters from the injection site, approximately 35% of the CP area. SN neurons, outside of this area of direct neurotoxicity, were also severely affected. Dopaminergic SN neurons (expressing tyrosine hydroxylase, TH, in the SN and dopamine transporter, DAT, in the CP) were mostly affected: intra-CP gp120 caused approximately 50% DAT+ SN neuron loss. Prior intra-CP gene delivery of Cu/Zn superoxide dismutase (SOD1) or glutathione peroxidase (GPx1) protected SN neurons from intra-CP gp120. Thus, SN dopaminergic neurons are highly sensitive to HIV-1 gp120-induced neurotoxicity, and antioxidant gene delivery, even at a distance, is protective.

  19. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines

    International Nuclear Information System (INIS)

    Ooko, Edna; Alsalim, Tahseen; Saeed, Bahjat; Saeed, Mohamed E.M.; Kadioglu, Onat; Abbo, Hanna S.; Titinchi, Salam J.J.; Efferth, Thomas

    2016-01-01

    Background: Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF–CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Material and methods: Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC 50 values and binding energies. Results: The compounds displayed IC 50 values between 0.7 ± 0.03 and 20.2 ± 0.25 μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from − 9.00 ± 0.10 to − 6.20 ± 0.02 kcal/mol and pKi values from 0.24 ± 0.04 to 29.17 ± 0.88 μM. At the ATP-binding site of P-gp, lowest binding energies ranged from − 9.78 ± 0.17 to − 6.79 ± 0.01 kcal/mol and pKi values from 0.07 ± 0.02 to 0.03 ± 0.03 μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF–CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R = 0.797 and R = 0.794 for training and test sets). Conclusion: Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. - Highlights: • Novel derivatives of curcumin in reversing multidrug

  20. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Ooko, Edna [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Alsalim, Tahseen; Saeed, Bahjat [Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah (Iraq); Saeed, Mohamed E.M.; Kadioglu, Onat [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Abbo, Hanna S. [Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town (South Africa); Titinchi, Salam J.J., E-mail: stitinchi@uwc.ac.za [Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town (South Africa); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2016-08-15

    Background: Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF–CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Material and methods: Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC{sub 50} values and binding energies. Results: The compounds displayed IC{sub 50} values between 0.7 ± 0.03 and 20.2 ± 0.25 μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from − 9.00 ± 0.10 to − 6.20 ± 0.02 kcal/mol and pKi values from 0.24 ± 0.04 to 29.17 ± 0.88 μM. At the ATP-binding site of P-gp, lowest binding energies ranged from − 9.78 ± 0.17 to − 6.79 ± 0.01 kcal/mol and pKi values from 0.07 ± 0.02 to 0.03 ± 0.03 μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF–CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R = 0.797 and R = 0.794 for training and test sets). Conclusion: Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. - Highlights: • Novel derivatives of curcumin in reversing

  1. [Expression and significance of P-gp/mdr1 mRNA, MRP and LRP in non-Hodgkin's lymphoma].

    Science.gov (United States)

    Li, Le; Su, Li-ping; Ma, Li; Zhao, Jin; Zhu, Lei; Zhou, Yong-an

    2009-03-01

    To explore the expression and clinical significance of P-glycoprotein (P-gp)/mdr1mRNA, multidrug resistance-associated protein (MRP) and lung resistance protein (LRP) in newly diagnosed non-Hodgkin's lymphoma. mdr1 mRNA of in 41 patients with non-Hodgkin's lymphoma was assayed by semi-quantitative RT-PCR. The expressions of P-gp, MRP and LRP proteins in lymph node viable blasts were identified by flow cytometry. The results were compared with those obtained from control cases, and the correlation of the changes with clinical outcomes was analyzed. (1) Among the 41 cases, the positive expression of P-gp protein was detected in 8 cases, MRP in 7 cases, LRP in 15 cases, and mdr 1 mRNA in 11 cases. (2) The P-gp and LRP levels in NHL were significantly higher than those in control group, but MRP wasn't. The P-gp over-expression was significantly associated with mdr1mRNA (r = 0.396, P = 0.01). No correlation was showed among the expressions of P-gp, MRP and LRP. (3) Patients with P-gp expression had a poorer outcome of chemotherapy than those with P-gp-negative (P = 0.005). P-gp expression was significantly associated with higher clinical stage (P = 0.046) and elevated serum lactate dehydrogenase level (P = 0.032), but not associated with malignant degree (P = 0.298). MRP had no impact on the outcome of chemotherapy (P = 0.212), and wasn't significantly associated with higher clinical stage (P = 0.369), elevated LDH (P = 0.762) and higher malignant degree (P = 0.451). Patients with LRP expression had a poorer outcome of chemotherapy than those LRP-negative (P = 0.012). LRP expression was significantly associated with higher clinical stage (P = 0.0019), elevated LDH (P = 0.02) and higher malignant degree (P = 0.01). The data of this study indicate that P-gp and LRP expressions but not MRP expression are important in the mechanism of drug resistance associated with a poor clinical outcome in previously untreated NHL.

  2. N-acetylcysteine prevents HIV gp 120-related damage of human cultured astrocytes: correlation with glutamine synthase dysfunction

    Directory of Open Access Journals (Sweden)

    Costa Nicola

    2007-12-01

    Full Text Available Abstract Background HIV envelope gp 120 glycoprotein is released during active HIV infection of brain macrophages thereby generating inflammation and oxidative stress which contribute to the development of the AIDS-Dementia Complex (ADC. Gp120 has also been found capable to generate excitotoxic effect on brain tissue via enhancement of glutamatergic neurotransmission, leading to neuronal and astroglial damage, though the mechanism is still to be better understood. Here we investigated on the effect of N-acetylcysteine (NAC, on gp120-induced damage in human cultured astroglial cells and the possible contribution of gp120-related reacting oxygen species (ROS in the imbalanced activity of glutamine synthase (GS, the enzyme that metabolizes glutamate into glutamine within astroglial cells playing a neuroprotective role in brain disorders. Results Incubation of Lipari human cultured astroglial cells with gp 120 (0.1–10 nM produced a significant reduction of astroglial cell viability and apoptosis as evaluated by TUNEL reaction and flow cytometric analysis (FACS. This effect was accompanied by lipid peroxidation as detected by means of malondialdehyde assay (MDA. In addition, gp 120 reduced both glutamine concentration in astroglial cell supernatants and GS expression as detected by immunocytochemistry and western blotting analysis. Pre-treatment of cells with NAC (0.5–5 mM, dose-dependently antagonised astroglial apoptotic cell death induced by gp 120, an effect accompanied by significant attenuation of MDA accumulation. Furthermore, both effects were closely associated with a significant recovery of glutamine levels in cell supernatants and by GS expression, thus suggesting that overproduction of free radicals might contribute in gp 120-related dysfunction of GS in astroglial cells. Conclusion In conclusion, the present experiments demonstrate that gp 120 is toxic to astroglial cells, an effect accompanied by lipid peroxidation and by altered

  3. Effects of cadmium exposure on expression and activity of P-glycoprotein in eastern oysters, Crassostrea virginica Gmelin

    Energy Technology Data Exchange (ETDEWEB)

    Ivanina, Anna V. [Biology Department, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Sokolova, Inna M. [Biology Department, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)], E-mail: isokolov@uncc.edu

    2008-06-02

    Heavy metal pollution is a worldwide problem, and cadmium (Cd) is one of the most noxious pollutants in aquatic environments. We studied P-glycoprotein (P-gp) expression and function in control and Cd exposed (50 {mu}g L{sup -1} Cd, 30-40 days) oysters Crassostrea virginica as a possible mechanism of cell protection against Cd. Our data show that P-gp is expressed on cell membrane and in mitochondria of oyster gills and hepatopancreas. Inhibitor studies with verapamil, cyclosporine A and JS-2190 suggest that in the gills, mitochondrial P-gp pumps substrates from cytosol into the mitochondria, while cell membrane P-gp pumps substrates from cytosol out of the cell. Cd exposure resulted in a 2-2.5-fold increase in P-gp protein expression in cell membranes and a 3.5-7-fold increase in transport activity measured as the inhibitor-sensitive rhodamine B extrusion rate. In contrast, p-gp mRNA levels were similar in control and Cd-exposed oysters. No difference in P-gp protein expression was observed between mitochondria of control and Cd-exposed oysters but the apparent transport activity was higher in mitochondria from Cd-exposed oysters. Overall, a stronger increase in substrate transport activity in Cd-exposed oysters compared to a relatively weaker change in P-gp protein levels suggests that P-gp activity is post-translationally regulated. Our data show that direct determination of P-gp transport activity may be the best measure of the xenobiotic-resistant phenotype, whereas p-gp mRNA levels are not a good marker due to the likely involvement of multiple post-transcriptional regulatory steps. Cd exposure resulted in a significantly elevated rate of oxygen consumption of isolated oyster gills by 46%. Specific inhibitors of ATPase function of P-gp (cyclosporine A and JS-2190) had no significant effect on tissue oxygen consumption indicating that P-gp contribution to energy budget is negligible and supporting indirect estimates based on the ATP stoichiometry of substrate

  4. Effects of cadmium exposure on expression and activity of P-glycoprotein in eastern oysters, Crassostrea virginica Gmelin

    International Nuclear Information System (INIS)

    Ivanina, Anna V.; Sokolova, Inna M.

    2008-01-01

    Heavy metal pollution is a worldwide problem, and cadmium (Cd) is one of the most noxious pollutants in aquatic environments. We studied P-glycoprotein (P-gp) expression and function in control and Cd exposed (50 μg L -1 Cd, 30-40 days) oysters Crassostrea virginica as a possible mechanism of cell protection against Cd. Our data show that P-gp is expressed on cell membrane and in mitochondria of oyster gills and hepatopancreas. Inhibitor studies with verapamil, cyclosporine A and JS-2190 suggest that in the gills, mitochondrial P-gp pumps substrates from cytosol into the mitochondria, while cell membrane P-gp pumps substrates from cytosol out of the cell. Cd exposure resulted in a 2-2.5-fold increase in P-gp protein expression in cell membranes and a 3.5-7-fold increase in transport activity measured as the inhibitor-sensitive rhodamine B extrusion rate. In contrast, p-gp mRNA levels were similar in control and Cd-exposed oysters. No difference in P-gp protein expression was observed between mitochondria of control and Cd-exposed oysters but the apparent transport activity was higher in mitochondria from Cd-exposed oysters. Overall, a stronger increase in substrate transport activity in Cd-exposed oysters compared to a relatively weaker change in P-gp protein levels suggests that P-gp activity is post-translationally regulated. Our data show that direct determination of P-gp transport activity may be the best measure of the xenobiotic-resistant phenotype, whereas p-gp mRNA levels are not a good marker due to the likely involvement of multiple post-transcriptional regulatory steps. Cd exposure resulted in a significantly elevated rate of oxygen consumption of isolated oyster gills by 46%. Specific inhibitors of ATPase function of P-gp (cyclosporine A and JS-2190) had no significant effect on tissue oxygen consumption indicating that P-gp contribution to energy budget is negligible and supporting indirect estimates based on the ATP stoichiometry of substrate

  5. Prediction of promiscuous p-glycoprotein inhibition using a novel machine learning scheme.

    Directory of Open Access Journals (Sweden)

    Max K Leong

    Full Text Available BACKGROUND: P-glycoprotein (P-gp is an ATP-dependent membrane transporter that plays a pivotal role in eliminating xenobiotics by active extrusion of xenobiotics from the cell. Multidrug resistance (MDR is highly associated with the over-expression of P-gp by cells, resulting in increased efflux of chemotherapeutical agents and reduction of intracellular drug accumulation. It is of clinical importance to develop a P-gp inhibition predictive model in the process of drug discovery and development. METHODOLOGY/PRINCIPAL FINDINGS: An in silico model was derived to predict the inhibition of P-gp using the newly invented pharmacophore ensemble/support vector machine (PhE/SVM scheme based on the data compiled from the literature. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those structurally diverse molecules in the training set (n = 31, r(2 = 0.89, q(2 = 0.86, RMSE = 0.40, s = 0.28, the test set (n = 88, r(2 = 0.87, RMSE = 0.39, s = 0.25 and the outlier set (n = 11, r(2 = 0.96, RMSE = 0.10, s = 0.05. The generated PhE/SVM model also showed high accuracy when subjected to those validation criteria generally adopted to gauge the predictivity of a theoretical model. CONCLUSIONS/SIGNIFICANCE: This accurate, fast and robust PhE/SVM model that can take into account the promiscuous nature of P-gp can be applied to predict the P-gp inhibition of structurally diverse compounds that otherwise cannot be done by any other methods in a high-throughput fashion to facilitate drug discovery and development by designing drug candidates with better metabolism profile.

  6. Triorganotin Derivatives Induce Cell Death Effects on L1210 Leukemia Cells at Submicromolar Concentrations Independently of P-glycoprotein Expression

    Directory of Open Access Journals (Sweden)

    Viera Bohacova

    2018-05-01

    Full Text Available The acceleration of drug efflux activity realized by plasma membrane transporters in neoplastic cells, particularly by P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family, represents a frequently observed molecular cause of multidrug resistance (MDR. This multiple resistance represents a real obstacle in the effective chemotherapy of neoplastic diseases. Therefore, identifying cytotoxic substances that are also effective in P-gp overexpressing cells may be useful for the rational design of substances for the treatment of malignancies with developed MDR. Here, we showed that triorganotin derivatives—tributyltin-chloride (TBT-Cl, tributyltin-bromide (TBT-Br, tributyltin-iodide (TBT-I and tributyltin-isothiocyanate (TBT-NCS or triphenyltin-chloride (TPT-Cl and triphenyltin-isothiocyanate (TPT-NCS—could induce the death of L1210 mice leukemia cells at a submicromolar concentration independently of P-gp overexpression. The median lethal concentration obtained for triorganotin derivatives did not exceed 0.5 µM in the induction of cell death of either P-gp negative or P-gp positive L1210 cells. Apoptosis related to regulatory pathway of Bcl-2 family proteins seems to be the predominant mode of cell death in either P-gp negative or P-gp positive L1210 cells. TBT-Cl and TBT-Br were more efficient with L1210 cells overexpressing P-gp than with their counterpart P-gp negative cells. In contrast, TBT-I and TPT-NCS induced a more pronounced cell death effect on P-gp negative cells than on P-gp positive cells. Triorganotin derivatives did not affect P-gp efflux in native cells measured by calcein retention within the cells. Taken together, we assumed that triorganotin derivatives represent substances suitable for suppressing the viability of P-gp positive malignant cells.

  7. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  8. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats

    Directory of Open Access Journals (Sweden)

    Chung-Ping Yu

    2018-04-01

    Full Text Available Coptidis Rhizoma (CR, the rhizome of Coptis chinensis FRANCH, is a popular Chinese herb. CR contains plenty of isoquinoline alkaloids such as berberine, coptisine and palmatine. Cyclosporine (CSP, an important immunosuppressant with narrow therapeutic window, is employed as a probe substrate of P-glycoprotein (P-gp and CYP3A4 in order to investigate the in vivo modulation effect of CR on P-gp and CYP3A4. Three groups of rats were orally administered CSP without and with single dose or repeated dosing of CR in a parallel design. Blood samples were collected at specific time points and the blood CSP concentration was determined by a specific monoclonal fluorescence polarization immunoassay. The results showed that a single dose (1.0 g/kg and the 7th dose (1.0 g/kg of CR significantly decreased the Cmax of CSP by 56.9% and 70.4%, and reduced the AUC0-540 by 56.4% and 68.7%, respectively. Cell study indicated that CR decoction, berberine, coptisine, palmatine all activated the efflux transport of P-gp. Ex-vivo study showed that the serum metabolites of CR activated CYP 3A4. In conclusion, through using CSP as an in vivo probe substrate, we have verified that oral intake of CR activated the functions of P-gp and CYP3A based on in vivo and in vitro studies. Keywords: Cyclosporine, P-glycoprotein, Cytochrome P450 3A, Herb–drug interactions, Pharmacokinetics

  9. Murine P-glycoprotein deficiency alters intestinal injury repair and blunts lipopolysaccharide-induced radioprotection.

    Science.gov (United States)

    Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G

    2012-09-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.

  10. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages.Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp.HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  11. Comparison of In Vitro Assays in Selecting Radiotracers for In Vivo P-Glycoprotein PET Imaging

    Directory of Open Access Journals (Sweden)

    Renske M. Raaphorst

    2017-09-01

    Full Text Available Positron emission tomography (PET imaging of P-glycoprotein (P-gp in the blood-brain barrier can be important in neurological diseases where P-gp is affected, such as Alzheimer´s disease. Radiotracers used in the imaging studies are present at very small, nanomolar, concentration, whereas in vitro assays where these tracers are characterized, are usually performed at micromolar concentration, causing often discrepant in vivo and in vitro data. We had in vivo rodent PET data of [11C]verapamil, (R-N-[18F]fluoroethylverapamil, (R-O-[18F]fluoroethyl-norverapamil, [18F]MC225 and [18F]MC224 and we included also two new molecules [18F]MC198 and [18F]KE64 in this study. To improve the predictive value of in vitro assays, we labeled all the tracers with tritium and performed bidirectional substrate transport assay in MDCKII-MDR1 cells at three different concentrations (0.01, 1 and 50 µM and also inhibition assay with P-gp inhibitors. As a comparison, we used non-radioactive molecules in transport assay in Caco-2 cells at a concentration of 10 µM and in calcein-AM inhibition assay in MDCKII-MDR1 cells. All the P-gp substrates were transported dose-dependently. At the highest concentration (50 µM, P-gp was saturated in a similar way as after treatment with P-gp inhibitors. Best in vivo correlation was obtained with the bidirectional transport assay at a concentration of 0.01 µM. One micromolar concentration in a transport assay or calcein-AM assay alone is not sufficient for correct in vivo prediction of substrate P-gp PET ligands.

  12. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  13. A mechanistic understanding of allosteric immune escape pathways in the HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Anurag Sethi

    Full Text Available The HIV-1 envelope (Env spike, which consists of a compact, heterodimeric trimer of the glycoproteins gp120 and gp41, is the target of neutralizing antibodies. However, the high mutation rate of HIV-1 and plasticity of Env facilitates viral evasion from neutralizing antibodies through various mechanisms. Mutations that are distant from the antibody binding site can lead to escape, probably by changing the conformation or dynamics of Env; however, these changes are difficult to identify and define mechanistically. Here we describe a network analysis-based approach to identify potential allosteric immune evasion mechanisms using three known HIV-1 Env gp120 protein structures from two different clades, B and C. First, correlation and principal component analyses of molecular dynamics (MD simulations identified a high degree of long-distance coupled motions that exist between functionally distant regions within the intrinsic dynamics of the gp120 core, supporting the presence of long-distance communication in the protein. Then, by integrating MD simulations with network theory, we identified the optimal and suboptimal communication pathways and modules within the gp120 core. The results unveil both strain-dependent and -independent characteristics of the communication pathways in gp120. We show that within the context of three structurally homologous gp120 cores, the optimal pathway for communication is sequence sensitive, i.e. a suboptimal pathway in one strain becomes the optimal pathway in another strain. Yet the identification of conserved elements within these communication pathways, termed inter-modular hotspots, could present a new opportunity for immunogen design, as this could be an additional mechanism that HIV-1 uses to shield vulnerable antibody targets in Env that induce neutralizing antibody breadth.

  14. The Role of Turmerones on Curcumin Transportation and P-Glycoprotein Activities in Intestinal Caco-2 Cells

    Science.gov (United States)

    Yue, Grace G.L.; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K.M.; Hon, Po-Ming; Lee, Mavis Y.H.; Kennelly, Edward J.; Deng, Gary; Yeung, Simon K.; Cassileth, Barrie R.; Fung, Kwok-Pui; Leung, Ping-Chung

    2012-01-01

    Abstract The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases. PMID:22181075

  15. The role of turmerones on curcumin transportation and P-glycoprotein activities in intestinal Caco-2 cells.

    Science.gov (United States)

    Yue, Grace G L; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K M; Hon, Po-Ming; Lee, Mavis Y H; Kennelly, Edward J; Deng, Gary; Yeung, Simon K; Cassileth, Barrie R; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B S

    2012-03-01

    The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases.

  16. Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Catherine Dold

    2016-01-01

    Full Text Available Previously, we described an oncolytic vesicular stomatitis virus variant pseudotyped with the nonneurotropic glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, which was highly effective in glioblastoma. Here, we tested its potency for the treatment of ovarian cancer, a leading cause of death from gynecological malignancies. Effective oncolytic activity of VSV-GP could be demonstrated in ovarian cancer cell lines and xenografts in mice; however, remission was temporary in most mice. Analysis of the innate immune response revealed that ovarian cancer cell lines were able to respond to and produce type I interferon, inducing an antiviral state upon virus infection. This is in stark contrast to published data for other cancer cell lines, which were mostly found to be interferon incompetent. We showed that in vitro this antiviral state could be reverted by combining VSV-GP with the JAK1/2-inhibitor ruxolitinib. In addition, for the first time, we report the in vivo enhancement of oncolytic virus treatment by ruxolitinib, both in subcutaneous as well as in orthotopic xenograft mouse models, without causing significant additional toxicity. In conclusion, VSV-GP has the potential to be a potent and safe oncolytic virus to treat ovarian cancer, especially when combined with an inhibitor of the interferon response.

  17. Inhibitory effects of furanocoumarin derivatives in Kampo extract medicines on P-glycoprotein at the blood-brain barrier.

    Science.gov (United States)

    Iwanaga, Kazunori; Yoneda, Shinji; Hamahata, Yukimi; Miyazaki, Makoto; Shibano, Makio; Taniguchi, Masahiko; Baba, Kimiye; Kakemi, Masawo

    2011-01-01

    Furanocoumarin derivatives, known as components of grapefruit juice, showing inhibitory effects against P-glycoprotein (P-gp) in the intestine are also contained in the plants of rutaceae and umbelliferae families, which are used as components of Kampo extract medicines. In this study, we investigated the inhibitory effects of byakangelicol and rivulobirin A, known as furanocoumarins showing P-gp inhibitory effect using Caco-2 monolayer, against P-gp at the blood-brain barrier (BBB) under both in vitro and in vivo conditions. First we studied the membrane permeability of furanocoumarins to clarify whether they can be absorbed from the intestine. Both furanocoumarins showed high permeability through the Caco-2 monolayer, suggesting that they can easily reach the systemic circulation after oral administration. Then, we evaluated the effect of these furanocoumarins on the uptake of calcein acetoxymethyl ester (calcein-AM), a P-gp substrate, into bovine brain microvascular endothelial cells (BBMEC). Both furanocoumarins significantly increased the uptake amount of calcein-AM into BBMEC by the inhibition of P-gp at the BBB in vitro. Next we also investigated the P-gp inhibitory effect of these furanocoumarins at the rat BBB in vivo using verapamil as a P-gp substrate. Both furanocoumarins increased the B/P ratio of verapamil compared to the control, even under in vivo conditions; however, the extent of the inhibitory effect was much lower than in vitro condition. In conclusion, byakangelicol and rivulobirin A may inhibit P-gp expressed at the BBB even under in vivo conditions. Further studies using Kampo extract medicines under in vivo condition are necessary for safe drug therapy.

  18. Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2009-09-01

    Full Text Available Abstract Background Borna disease virus (BDV is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa. BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results Class III viral fusion proteins (VFP encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G. Conclusion These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes.

  19. β2-glycoprotein-1 autoantibodies from patients with antiphospholipid syndrome are sufficient to potentiate arterial thrombus formation in a mouse model

    Science.gov (United States)

    Arad, Ariela; Proulle, Valerie; Furie, Richard A.; Furie, Barbara C.

    2011-01-01

    Antiphospholipid syndrome is characterized by thrombosis, recurrent fetal loss, and the presence of the lupus anticoagulant, anticardiolipin antibodies, or anti–β2-glycoprotein-1 (anti–β2-GP1) antibodies. Although anti–β2-GP1 antibodies have been documented as a biomarker for diagnosis of antiphospholipid syndrome, their direct role in the pathogenesis of thrombosis is unknown. We have demonstrated using intravital microscopy that anti–β2-GP1 autoantibodies purified from the sera of patients with antiphospholipid syndrome complicated by thrombosis greatly amplify thrombus size after laser-induced vessel wall injury in live mice. Anti–β2-GP1 autoantibodies from 3 patients with antiphospholipid syndrome were affinity-purified using human β2-GP1 bound to agarose. The effects of purified anti–β2-GP1 IgG autoantibodies, of anti–β2-GP1–depleted IgG, and of IgG from normal human sera on thrombus formation were measured in mice after arterial injury in the cremaster muscle. Before injury, purified anti–β2-GP1 IgG autoantibodies, anti–β2-GP1 antibody–depleted IgG, or IgG from normal human sera were infused. Increasing amounts of purified anti–β2-GP1 autoantibodies increased thrombus size in a dose-dependent manner, whereas neither anti–β2-GP1 antibody-depleted IgG nor IgG from normal serum affected thrombus size. These results indicate that anti–β2-GP1 IgG autoantibodies in antiphospholipid syndrome patient sera are not only a marker of antiphospholipid syndrome but are directly involved in the pathogenesis of thrombosis. PMID:21245481

  20. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    Energy Technology Data Exchange (ETDEWEB)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.

  1. Psychosocial factors in GP work: the effects of taking a GP position or leaving GP work.

    Science.gov (United States)

    Heponiemi, Tarja; Kouvonen, Anne; Aalto, Anna-Mari; Elovainio, Marko

    2013-06-01

    We examined the effects of leaving public sector general practitioner (GP) work and of taking a GP position on changes in work-related psychosocial factors, such as time pressure, patient-related stress, distress and work interference with family. In addition, we examined whether changes in time pressure and patient-related stress mediated the association of employment change with changes of distress and work interference with family. Participants were 1705 Finnish physicians (60% women) who responded to surveys in 2006 and 2010. Analyses of covariance were conducted to examine the effect of employment change to outcome changes adjusted for gender, age and response format. Mediational effects were tested following the procedures outlined by Baron and Kenny. Employment change was significantly associated with all the outcomes. Leaving public sector GP work was associated with substantially decreased time pressure, patient-related stress, distress and work interference with family. In contrast, taking a position as a public sector GP was associated with an increase in these factors. Mediation tests suggested that the associations of employment change with distress change and work interference with family change were partially explained by the changes in time pressure and patient-related stress. Our results showed that leaving public sector GP work is associated with favourable outcomes, whereas taking a GP position in the public sector is associated with adverse effects. Primary health-care organizations should pay more attention to the working conditions of their GPs, in particular, to time pressure and patient-related stress.

  2. Effects of sertraline and fluoxetine on p-glycoprotein at barrier sites: in vivo and in vitro approaches.

    Directory of Open Access Journals (Sweden)

    Amita Kapoor

    Full Text Available Retention of substances from systemic circulation in the brain and testes are limited due to high levels of P-glycoprotein (P-gp in the luminal membranes of brain and testes capillary endothelial cells. From a clinical perspective, P-gp rapidly extrudes lipophilic therapeutic agents, which then fail to reach efficacious levels. Recent studies have demonstrated that acute administration of selective serotonin reuptake inhibitors (SSRI can affect P-gp function, in vitro and in vivo. However, little is known concerning the time-course of these effects or the effects of different SSRI in vivo.The P-gp substrate, tritiated digoxin ([(3H] digoxin, was co-administered with fluoxetine or sertraline to determine if either compound increased drug accumulation within the brains and testes of mice due to inhibition of P-gp activity. We undertook parallel studies in endothelial cells derived from brain microvessels to determine the dose-response and time-course of effects.In vitro, sertraline resulted in rapid and potent inhibition of P-gp function in brain endothelial cells, as determined by cellular calcein accumulation. In vivo, a biphasic effect was demonstrated. Brain accumulation of [(3H] digoxin was increased 5 minutes after treatment with sertraline, but by 60 minutes after sertraline treatment, brain accumulation of digoxin was reduced compared to control. By 240 minutes after sertraline treatment brain digoxin accumulation was elevated compared to control. A similar pattern of results was obtained in the testes. There was no significant effect of fluoxetine on P-gp function, in vitro or in vivo.Acute sertraline administration can modulate P-gp activity in the blood-brain barrier and blood-testes barrier. This clearly has implications for the ability of therapeutic agents that are P-gp substrates, to enter the brain when co-administered with SSRI.

  3. P-glycoprotein is expressed and causes resistance to chemotherapy in EBV-positive T-cell lymphoproliferative diseases

    International Nuclear Information System (INIS)

    Yoshimori, Mayumi; Takada, Honami; Imadome, Ken-Ichi; Kurata, Morito; Yamamoto, Kouhei; Koyama, Takatoshi; Shimizu, Norio; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako

    2015-01-01

    Epstein–Barr virus-positive T-cell lymphoproliferative diseases (EBV-T-LPDs) are rare lymphomas with poor prognosis. Although chemotherapeutic strategies such as CHOP have been often selected, they have exhibited only limited efficacy. To clarify the mechanism of chemoresistance, we examined P-glycoprotein (P-gp) expression. P-gp acts as an energy-dependent efflux pump that excretes drugs from the cytoplasm, resulting in low-intracellular drug concentrations and poor sensitivity to chemotherapy. We examined P-gp expression in EBV-positive cells by immunohistochemistry staining in three patients of EBV-T-LPDs and the expression was detected in all patients. We also examined mdr1 mRNA expression by reverse-transcriptase polymerase-chain reaction (RT-PCR) in EBV-positive tumor cells from these patients and additional three patients. The expression was detected in all examined patients. In five EBV-T-LPDs patients, P-gp function was detected by Rhodamine-123 efflux assay in these cells. The efflux was inhibited by treatment with a P-gp inhibitor, cyclosporine A (CsA). We also examined and detected P-gp expression in EBV-positive T-cell lines SNT8 and SNT16 established from EBV-T-LPDs patients, by RT-PCR and western blotting. The function was also detected by Rhodamine-123 efflux in these cell lines. Inhibition and knock down of P-gp by CsA and siRNA, respectively, enhanced etoposide- and doxorubicin-induced cell death in the EBV-positive T-cell lines. Finally, we infected the T-cell line MOLT4 with EBV, and found that mdr1 mRNA expression and Rhodamine 123 efflux were upregulated after infection. These results indicated that enhanced P-gp expression contributed to the chemoresistance of EBV-T-LPDs

  4. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA.

    Science.gov (United States)

    Ngo, T-D; Tran, T-D; Le, M-T; Thai, K-M

    2016-09-01

    The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.

  5. Platelet glycoprotein IIb/IIIa polymorphism HPA-3 b/b is associated with increased risk of ischemic stroke in patients under 60 years of age.

    Science.gov (United States)

    Duan, Hao; Cai, Yan; Sun, Xiaojiang

    2012-01-01

    The role of genetic risk factors in ischemic stroke is unclear. Platelet glycoprotein IIb/IIIa (GpIIb-IIIa) has been implicated in the pathogenesis of ischemic stroke. We sought to evaluate the relationship between the GpIIb/IIIa complex gene polymorphism and ischemic stroke. We investigated the association of the GpIIb/IIIa complex gene polymorphism with stroke risk in 306 patients with acute ischemic stroke and 266 control subjects by determining the GpIIb and GpIIIa genotype from leukocyte DNA by polymerase chain reaction (PCR) followed by FokI and ScrFI digestion, respectively. Compared with controls, more patients presented with coronary heart disease, hypertension, smoking history, and diabetes. In addition, the patients had higher levels of cholesterol and glucose compared with the control subjects. All donors in the GpIIIa (n=572) group expressed the GpIIIa PlA1 (HPA-1 aa) phenotype. There were no significant differences between the HPA-3 genotype (GpIIb) patient distribution (aa=39.9%, ab=41.4%, bb=28.7%) and healthy control subjects (aa=36.1%, ab=35.0%, bb=28.9%) (P=0.580). Among study participants ischemic stroke >2-fold (P=0.008). The GpIIb Ile/Ser843 gene polymorphism is associated with ischemic stroke among young and middle-aged adults (ischemic stroke.

  6. The role of the polymorphic efflux transporter P-glycoprotein on the brain accumulation of d-methylphenidate and d-amphetamine.

    Science.gov (United States)

    Zhu, Hao-Jie; Wang, Jun-Sheng; DeVane, C Lindsay; Williard, Robin L; Donovan, Jennifer L; Middaugh, Lawrence D; Gibson, Brian B; Patrick, Kennerly S; Markowitz, John S

    2006-07-01

    The psychostimulant medications methylphenidate (MPH) and amphetamine (AMP), available in various ratios or enantiopure formulations of their respective active dextrorotary isomers, constitute the majority of agents used in the treatment of attention-deficit/hyperactivity disorder (ADHD). Substantial interindividual variability occurs in their pharmacokinetics and tolerability. Little is known regarding the potential role of drug transporters such as P-glycoprotein (P-gp) in psychostimulant pharmacokinetics and response. Therefore, experiments were carried out in P-gp knockout (KO) mice versus wild-type (WT) mice after intraperitoneal dosing (2.5 mg/kg) of d-MPH or (3.0 mg/kg) of d-AMP. After the administration of each psychostimulant, locomotor activity was assessed at 30-min intervals for 2 h. Total brain-to-plasma drug concentration ratios were determined at 10-, 30-, and 80-min postdosing time-points. The results showed no statistically supported genotypic difference in d-AMP-induced locomotor activity stimulation or in brain-to-plasma ratio of d-AMP. As for d-MPH, the P-gp KO mice had 33% higher brain concentrations (p brain-to-plasma ratios (p brain concentrations, d-MPH-induced locomotor activity increase was attenuated for P-gp compared with that for WT mice. These data indicate that P-gp has no apparent effect on the pharmacokinetics and pharmacodynamics of d-AMP. In addition, d-MPH is a relatively weak P-gp substrate, and its entry into the brain may be limited by P-gp. Furthermore, the mechanism by which d-MPH-induced locomotor activity was attenuated in P-gp KO mice remains to be elucidated.

  7. Global alteration of the drug-binding pocket of human P-glycoprotein (ABCB1) by substitution of fifteen conserved residues reveals a negative correlation between substrate size and transport efficiency.

    Science.gov (United States)

    Vahedi, Shahrooz; Chufan, Eduardo E; Ambudkar, Suresh V

    2017-11-01

    P-glycoprotein (P-gp), an ATP-dependent efflux pump, is linked to the development of multidrug resistance in cancer cells. However, the drug-binding sites and translocation pathways of this transporter are not yet well-characterized. We recently demonstrated the important role of tyrosine residues in regulating P-gp ATP hydrolysis via hydrogen bond formations with high affinity modulators. Since tyrosine is both a hydrogen bond donor and acceptor, and non-covalent interactions are key in drug transport, in this study we investigated the global effect of enrichment of tyrosine residues in the drug-binding pocket on the drug binding and transport function of P-gp. By employing computational analysis, 15 conserved residues in the drug-binding pocket of human P-gp that interact with substrates were identified and then substituted with tyrosine, including 11 phenylalanine (F72, F303, F314, F336, F732, F759, F770, F938, F942, F983, F994), two leucine (L339, L975), one isoleucine (I306), and one methionine (M949). Characterization of the tyrosine-rich P-gp mutant in HeLa cells demonstrated that this major alteration in the drug-binding pocket by introducing fifteen additional tyrosine residues is well tolerated and has no measurable effect on total or cell surface expression of this mutant. Although the tyrosine-enriched mutant P-gp could transport small to moderate size (transport large (>1000 Daltons) substrates such as NBD-cyclosporine A, Bodipy-paclitaxel and Bodipy-vinblastine was significantly decreased. This was further supported by the physico-chemical characterization of seventeen tested substrates, which revealed a negative correlation between drug transport and molecular size for the tyrosine-enriched P-gp mutant. Published by Elsevier Inc.

  8. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    Science.gov (United States)

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  9. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    Directory of Open Access Journals (Sweden)

    Natalia Brzozowska

    2016-05-01

    Full Text Available Cannabidiol (CBD is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp and breast cancer resistance protein (Bcrp mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−, Bcrp knockout (Abcg2−∕−, combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕− and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  10. The study of relationship between scintimammography of breast cancer and the expression of P-glycoprotein and GST-π

    International Nuclear Information System (INIS)

    Cheng Bing; Liu Baoping; Han Xingmin

    2003-01-01

    Objective: To study the relationship of 99 Tc m -MIBI uptake and washout in untreated breast cancer with immunohistochemically determined glutathione-S-transferase π(GST-π) and P-glycoprotein (P-gp) expression. Methods: Thirty-six patients with untreated breast cancer were studied prospectively. 99 Tc m -MIBI scintigraphy and immunohistochemical analyses of P-gp and GST-π expression were used to evaluate the expected tumor tissues after surgical operations. Anterior planar images were acquired 10 and 180 min after intravenous injection of 740 MBq 99 Tc m -MIBI. The tumor-to-normal breast ratio (T/N) and washout index (WI) were calculated. Results: The early T/N ratios were significantly lower in 9 patients with negative P-gp expression when compared with that in 27 patients with positive P-gp expression (main scores were 8.33 vs 21.89 and Z=-3.32, P=0.002). The WI was significantly different between the two groups (t=3.59, P=0.001). On the other hand there was no significant relationship between negative and positive GST-π expression when calculated the early T/N ratio and WI. Significant relationship between GST-π and P-gp expression was found in these patients. Conclusions: The coexpression of P-gp and GST-π is one of the major characteristics of drug resistance in untreated breast cancer. Double-phase scintimammography and WI of 99 Tc m -MIBI can be used as a simple functional test for in vivo imaging of tumoral P-gp expression in patients with untreated breast cancer

  11. A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells.

    Science.gov (United States)

    Lopes-Rodrigues, Vanessa; Oliveira, Ana; Correia-da-Silva, Marta; Pinto, Madalena; Lima, Raquel T; Sousa, Emília; Vasconcelos, M Helena

    2017-01-15

    Cancer multidrug resistance (MDR) is a major limitation to the success of cancer treatment and is highly associated with the overexpression of drug efflux pumps such as P-glycoprotein (P-gp). In order to achieve more effective chemotherapeutic treatments, it is important to develop P-gp inhibitors to block/decrease its activity. Curcumin (1) is a secondary metabolite isolated from the turmeric of Curcuma longa L.. Diverse biological activities have been identified for this compound, particularly, MDR modulation in various cancer cell models. However, curcumin (1) has low chemical stability, which severely limits its application. In order to improve stability and P-gp inhibitory effect, two potential more stable curcumin derivatives were synthesized as building blocks, followed by several curcumin derivatives. These compounds were then analyzed in terms of antitumor and anti-P-gp activity, in two MDR and sensitive tumor lines (from chronic myeloid leukemia and non-small cell lung cancer). We identified from a series of curcumin derivatives a novel curcumin derivative (1,7-bis(3-methoxy-4-(prop-2-yn-1-yloxy)phenyl)hepta-1,6-diene-3,5-dione, 10) with more potent antitumor and anti-P-gp activity than curcumin (1). This compound (10) was shown to promote cell cycle arrest (at the G2/M phase) and induce apoptosis in the MDR chronic myeloid leukemia cell line. Therefore it is a really interesting P-gp inhibitor due to its ability to inhibit both P-gp function and expression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. P-glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-steroidal Anti-inflammatory Drug Diclofenac

    Science.gov (United States)

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M.; Thompson, Brandon J.; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M.; Ronaldson, Patrick T.; Davis, Thomas P.

    2014-01-01

    Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of λ-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction. PMID:24520393

  13. P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac.

    Science.gov (United States)

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M; Thompson, Brandon J; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M; Ronaldson, Patrick T; Davis, Thomas P

    2014-01-01

    Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of λ-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction.

  14. P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac.

    Directory of Open Access Journals (Sweden)

    Lucy Sanchez-Covarrubias

    Full Text Available Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP, induced by subcutaneous plantar injection of λ-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp that is endogenously expressed at the blood-brain barrier (BBB. The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h, as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction.

  15. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies

    DEFF Research Database (Denmark)

    Saaby, Lasse; Helms, Hans Christian Cederberg; Brodin, Birger

    2016-01-01

    The P-glycoprotein (P-gp) efflux pump has been shown to affect drug distribution and absorption in various organs and to cause drug resistance in cancer therapy. The aim of this work was to develop a cell line to serve as a screening system for potential substrates of P-gp. This requires a cell...... line with high paracellular tightness, low expression of nonhuman ABC transporters, and high expression of functional human P-gp (ABCB1). The porcine intestinal epithelial cell line, IPEC-J2, was selected as a transfection host, due to its ability to form extremely high-resistance monolayers (>10,000 Ω......·cm(2)) and its low endogenous expression of ABC-type efflux transporters. The IPEC-J2 cells were transfected with a plasmid that contained the sequence of the human MDR1 gene, which encodes P-gp, followed by a selection of successfully transfected cells with geneticin and puromycin. The resulting cell...

  16. The glycoprotein of measles virus

    International Nuclear Information System (INIS)

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  17. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    International Nuclear Information System (INIS)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-01-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  18. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Tomono, Takumi [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Kajita, Masahiro [Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Yano, Kentaro [Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Ogihara, Takuo, E-mail: togihara@takasaki-u.ac.jp [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan)

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  19. Critical amino acids within the human immunodeficiency virus type 1 envelope glycoprotein V4 N- and C-terminals contribute to virus entry.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The importance of the fourth variable (V4 region of the human immunodeficiency virus 1 (HIV-1 envelope glycoprotein (Env in virus infection has not been well clarified, though the polymorphism of this region has been found to be associated with disease progression to acquired immunodeficiency syndrome (AIDS. In the present work, we focused on the correlation between HIV-1 gp120 V4 region polymorphism and the function of the region on virus entry, and the possible mechanisms for how the V4 region contributes to virus infectivity. Therefore, we analyzed the differences in V4 sequences along with coreceptor usage preference from CCR5 to CXCR4 and examined the importance of the amino acids within the V4 region for CCR5- and CXCR4-tropic virus entry. In addition, we determined the influence of the V4 amino acids on Env expression and gp160 processing intracellularly, as well as the amount of Env on the pseudovirus surface. The results indicated that V4 tended to have a shorter length, fewer potential N-linked glycosylation sites (PNGS, greater evolutionary distance, and a lower negative net charge when HIV-1 isolates switched from a coreceptor usage preference for CCR5 to CXCR4. The N- and C-terminals of the HIV-1 V4 region are highly conserved and critical to maintain virus entry ability, but only the mutation at position 417 in the context of ADA (a R5-tropic HIV-1 strain resulted in the ability to utilize CXCR4. In addition, 390L, 391F, 414I, and 416L are critical to maintain gp160 processing and maturation. It is likely that the hydrophobic properties and the electrostatic surface potential of gp120, rather than the conformational structure, greatly contribute to this V4 functionality. The findings provide information to aid in the understanding of the functions of V4 in HIV-1 entry and offer a potential target to aid in the development of entry inhibitors.

  20. Determination of P-Glycoprotein Expression by Flow Cytometry in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Berkay Saraymen

    2016-03-01

    Full Text Available Objective: Determination the expression of P-glycoprotein is especially problematic for normal tissues because immuno­logical methods are limited in terms of sensitivity. We aimed to determine the expression of P-glycoprotein and CD34 by flow cytometry, and to evaluate the level of expression of P-glycoprotein and CD34 with unresponsive to treatment in pa­tients diagnosed with hematologic malignancy. Methods: Our study included fifty patients diagnosed with acute myeloblastic leukemia and acute lymphoblastic leuke­mia, and twenty healthy controls who were admitted to Erci­yes University Hematology-Oncology Hospital. The suspend­ed cells from bone marrow samples of patients and the pe­ripheral blood samples of healthy people were marked with P-glycoprotein phycoerythrin and CD34 FITC or PerCP Cy 5.5; and then surface expression was measured by means of flow cytometry. Results: In 6 of 30 acute myeloblastic leukemia patients P-glycoprotein and CD34 expression, in 6 of 20 acute lympho­blastic leukemia patients P-glycoprotein, in 5 of them CD34 expression were determined. A significant relation between P-glycoprotein and CD34 expressions in acute myeloblas­tic leukemia and acute lymphoblastic leukemia bone marrow samples was reported. Conclusion: Our data indicate that flow cytometry is more reliable, precise and faster than molecular methods for mea­suring P-glycoprotein expression and suggests the pos­sibility of a significant relationship between P-glycoprotein and CD34 expressions in acute myeloblastic leukemia and acute lymphoblastic leukemia bone marrow samples. The blast cells expressing CD34 on their surface along with P-glycoprotein simultaneously show that multi drug resistance 1 gene is mostly active in immature cells.

  1. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells.

    Science.gov (United States)

    Jumnongprakhon, Pichaya; Sivasinprasasn, Sivanan; Govitrapong, Piyarat; Tocharus, Chainarong; Tocharus, Jiraporn

    2017-06-01

    Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Acute Effects of Viral Exposure on P-Glycoprotein Function in the Mouse Fetal Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Enrrico Bloise

    2017-02-01

    Full Text Available Background/Aims: Viral infection during pregnancy is known to affect the fetal brain. The toll-like receptor (TLR-3 is a pattern recognition receptor activated by viruses known to elicit adverse fetal neurological outcomes. The P-glycoprotein (P-gp efflux transporter protects the developing fetus by limiting the transfer of substrates across both the placenta and the fetal blood-brain barrier (BBB. As such, inhibition of P-gp at these blood-barrier sites may result in increased exposure of the developing fetus to environmental toxins and xenobiotics present in the maternal circulation. We hypothesized that viral exposure during pregnancy would impair P-gp function in the placenta and in the developing BBB. Here we investigated whether the TLR-3 ligand, polyinosinic:polycytidylic acid (PolyI:C, increased accumulation of one P-gp substrate in the fetus and in the developing fetal brain. Methods: Pregnant C57BL/6 mice (GD15.5 were injected (i.p. with PolyI:C (5 mg/kg or 10 mg/kg or vehicle (saline. [3H]digoxin (P-gp substrate was injected (i.v. 3 or 23h post-treatment and animals were euthanized 1h later. Maternal plasma, ‘fetal-units’ (fetal membranes, amniotic fluid and whole fetus, and fetal brains were collected. Results: PolyI:C exposure (4h significantly elevated maternal plasma IL-6 (P<0.001 and increased [3H]digoxin accumulation in the fetal brain (P<0.05. In contrast, 24h after PolyI:C exposure, no effect on IL-6 or fetal brain accumulation of P-gp substrate was observed. Conclusion: Viral infection modeled by PolyI:C causes acute increases in fetal brain accumulation of P-gp substrates and by doing so, may increase fetal brain exposure to xenobiotics and environmental toxins present in the maternal circulation.

  3. Glycoproteins of mouse vaginal epithelium: differential expression related to estrous cyclicity

    DEFF Research Database (Denmark)

    Horvat, B; Multhaupt, H A; Damjanov, I

    1993-01-01

    We used lectin overlay blotting and SDS-PAGE to analyze the estrous cycle-specific expression of mouse vaginal epithelial glycoproteins. Seven lectins chosen for their differential carbohydrate-binding specificity revealed 15 glycoproteins that showed cycle-related expression. Each lectin had...... in proestrus, coincident with the transformation of two superficial layers of vaginal squamous epithelium into mucinous cuboidal cells. Electron microscopic lectin histochemistry revealed the glycoproteins in the mucinous granules of surface cuboidal cells and in the lumen of the vagina. Our results illustrate...... the complexity of glycoconjugate synthesis in mouse vagina and reveal the distinct cycle-specific patterns of individual glycoprotein expression. These cyclic glycoproteins could serve as vaginal biochemical markers for the specific phases of the estrous cycle....

  4. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection.

    Science.gov (United States)

    Iampietro, Mathieu; Younan, Patrick; Nishida, Andrew; Dutta, Mukta; Lubaki, Ndongala Michel; Santos, Rodrigo I; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander

    2017-05-01

    Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and

  5. Interaction of coenzyme Q10 with the intestinal drug transporter P-glycoprotein.

    Science.gov (United States)

    Itagaki, Shirou; Ochiai, Akiko; Kobayashi, Masaki; Sugawara, Mitsuru; Hirano, Takeshi; Iseki, Ken

    2008-08-27

    In clinical trials, patients usually take many kinds of drugs at the same time. Thus, drug-drug interactions can often directly affect the therapeutic safety and efficacy of many drugs. Oral delivery is the most desirable means of drug administration. Changes in the activity of drug transporters may substantially influence the absorption of administered drugs from the intestine. However, there have been a few studies on food-drug interactions involving transporters. It is important to be aware of the potential of food-drug interactions and to act in order to prevent undesirable and harmful clinical consequences. Coenzyme Q10 (CoQ10) is very widely consumed by humans as a food supplement because of its recognition by the public as an important nutrient in supporting human health. Since intestinal efflux transporter P-glycoprotein (P-gp) is one of the major factors in drug-drug interactions, we focused on this transporter. We report here for the first time that CoQ10, which is widely used as a food supplement, affects the transport activity of P-gp.

  6. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.

    Science.gov (United States)

    Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-01-14

    Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Role of P-glycoprotein on CD69+CD4+ cells in the pathogenesis of proliferative lupus nephritis and non-responsiveness to immunosuppressive therapy.

    Science.gov (United States)

    Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Tanaka, Yoshiya

    2017-01-01

    P-glycoprotein (P-gp) expression on activated lymphocytes in systemic lupus erythematosus (SLE) plays a role in active efflux of intracellular drugs, resulting in drug resistance. The role of P-gp-expressing lymphocytes in the pathogenesis of SLE remains unclear. The aim of this study was to determine the importance of P-gp + CD4 + cells in organ manifestations in refractory SLE. The proportion of P-gp + CD4 + cells was determined by flow cytometry in peripheral blood of patients with SLE (n=116) and healthy adults (n=10). Renal biopsy specimens were examined by immunohistochemistry for P-gp expression. CD69 is a marker of CD4 cell activation. The proportion of both P-gp-expressing CD4 + cells and CD69-expressing CD4 + cells in peripheral blood was higher in SLE than control. The proportion of P-gp + CD69 + CD4 + cells correlated with Systemic Lupus Erythematosus Disease Activity Index and was higher in poor responders to corticosteroids. Furthermore, the proportion of P-gp + CD69 + CD4 + cells was significantly higher in proliferative lupus nephritis (LN) with poor response to corticosteroids. The efficacy of immunosuppressive therapy depended on the regulation of the proportion of P-gp + CD69 + CD4 + cells. Marked accumulation of P-gp + CD4 + cells in renal interstitial tissue and high proportion of peripheral P-gp + CD69 + CD4 + cells were noted in patients with proliferative LN. The results showed high proportion of P-gp + CD69 + CD4 + cells in peripheral blood and their accumulation in renal tissue in patients with proliferative LN refractory to CS therapy, suggesting that P-gp expression on activated CD4 + T cells is a potentially useful marker for refractoriness to treatment and a novel target for treatment.

  8. Multiple protein-domain conservation architecture as a non ...

    African Journals Online (AJOL)

    Using two-sets of surface viral glycoproteins of human immunodeficiency virus type I, HIV-1 (gp120) and Ebola virus, EBOV (gp1,2 preprotein) (selected because their CD-architecture has widely been studied, their sequences are available in public databases, and the same are well annotated), the MPDCAs among three ...

  9. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    International Nuclear Information System (INIS)

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.; Affranchino, Jose L.

    2007-01-01

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed into the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions

  10. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    Science.gov (United States)

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tumor p-glycoprotein correlates with efficacy of PF-3758309 in in vitro and in vivo models of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Erica Lynn Bradshaw-Pierce

    2013-03-01

    Full Text Available P-glycoprotein (P-gp, a member of the ATP-binding cassette transporter family, is overexpressed in a number of different cancers and some studies show that P-gp overexpression can be correlated to poor prognosis or therapeutic resistance. Here we sought to elucidate if PF-3758309 (PF-309, a novel p-21 activated kinase inhibitor, efficacy was influenced by tumor P-gp. Based on in vitro proliferation data, a panel of colorectal cancer cell lines were ranked as sensitive or resistant and ABCB1 (P-gp expression was evaluated by microarray for these cell lines. P-gp expression was determined by western blot and activity determined by rhodamine efflux assay. Knock down of P-gp and pharmacologic inhibition of P-gp to restore PF-309 activity was performed in vitro. PF-309 activity was evaluated in vivo in cell line xenograft models and in primary patient derived tumor xenografts (PDTX. Mice were treated with 25 mg/kg PF-309 orally, twice daily. On the last day of treatment, tumor and plasma were collected for PF-309 analysis. Here we show that ABCB1 gene expression correlates with resistance to PF-309 treatment in vitro and the expression and activity of P-gp was verified in a panel of resistant cells. Furthermore, inhibition of P-gp increased the sensitivity of resistant cells, resulting in a 4-100 fold decrease in the IC50s. Eleven cell line xenografts and 12 PDTX models were treated with PF-309. From the cell line xenografts, we found a significant correlation between ABCB1 gene expression profiles and tumor response. We evaluated tumor and plasma concentrations for 8 tumor models (3 cell line xenografts and 5 PDTX models and a significant correlation was found between tumor concentration and response. Additionally, we show that tumor concentration is approximately 4-fold lower in tumors that express P-gp, verified by western blot. Our in vitro and in vivo data strongly suggests that PF-309 efficacy is influenced by the expression of tumor P-gp.

  12. Dual-phase 99mTc-MIBI imaging and the expressions of P-gp, GST-π, and MRP1 in hyperparathyroidism.

    Science.gov (United States)

    Xue, Jianjun; Liu, Yan; Yang, Danrong; Yu, Yan; Geng, Qianqian; Ji, Ting; Yang, Lulu; Wang, Qi; Wang, Yuanbo; Lu, Xueni; Yang, Aimin

    2017-10-01

    The aim of this study was to further elucidate the mechanisms of dual-phase technetium-99m methoxyisobutylisonitrile (Tc-MIBI) parathyroid imaging by exploring the association between early uptake results (EUR), delayed uptake results (DUR), and the retention index (RI) in dual-phase Tc-MIBI parathyroid imaging and P glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and glutathione S-transferase-π (GST-π) expression in hyperparathyroidism (HPT). Preoperative dual-phase (early and delayed) Tc-MIBI imaging was performed on 74 patients undergoing parathyroidectomy for HPT. EUR, DUR, and RI were calculated. P-gp, MRP1, and GST-π expressions were assessed using immunohistochemistry in resected tissue from HPT and control patients. The association between P-gp, MRP1, and GST-π expressions and EUR, DUR, and RI in HPT was evaluated. The positive rate of dual-phase T c-MIBI imaging was 91.89% (68/74) and the false-negative rate was 8.11% (6/74). P-gp and GST-π expressions were higher in tissues resected from control compared with HPT patients (47.37 and 81.5%, P<0.05); there was no difference in MRP1. EUR were associated with P-gp and GST-π expressions, and DUR were associated with MRP1 expression. There was a significant difference in MRP1 expression between RI greater than or equal to 0 and RI less than 0. There was no relationship between the sensitivity of dual-phase Tc-MIBI imaging and P-gp, MRP1, and GST-π expressions in resected parathyroid tissue. The six false-negative HPT cases consisted of three P-gp (-)/MRP1 (-) tissues, three P-gp (-)/GST-π (-) tissues, and four MRP1 (-)/GST-π (-) tissues. As P-gp and GST-π expressions were higher in tissues resected from control compared with HPT patients, Tc-MIBI may wash out faster from normal parathyroid tissue surrounding the lesion compared with the lesion itself, facilitating detection.

  13. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich protein gp-340.

    Science.gov (United States)

    Prakobphol, A; Xu, F; Hoang, V M; Larsson, T; Bergstrom, J; Johansson, I; Frängsmyr, L; Holmskov, U; Leffler, H; Nilsson, C; Borén, T; Wright, J R; Strömberg, N; Fisher, S J

    2000-12-22

    Salivary agglutinin is a high molecular mass component of human saliva that binds Streptococcus mutans, an oral bacterium implicated in dental caries. To study its protein sequence, we isolated the agglutinin from human parotid saliva. After trypsin digestion, a portion was analyzed by matrix-assisted laser/desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), which gave the molecular mass of 14 unique peptides. The remainder of the digest was subjected to high performance liquid chromatography, and the separated peptides were analyzed by MALDI-TOF/post-source decay; the spectra gave the sequences of five peptides. The molecular mass and peptide sequence information showed that salivary agglutinin peptides were identical to sequences in lung (lavage) gp-340, a member of the scavenger receptor cysteine-rich protein family. Immunoblotting with antibodies that specifically recognized either lung gp-340 or the agglutinin confirmed that the salivary agglutinin was gp-340. Immunoblotting with an antibody specific to the sialyl Le(x) carbohydrate epitope detected expression on the salivary but not the lung glycoprotein, possible evidence of different glycoforms. The salivary agglutinin also interacted with Helicobacter pylori, implicated in gastritis and peptic ulcer disease, Streptococcus agalactiae, implicated in neonatal meningitis, and several oral commensal streptococci. These results identify the salivary agglutinin as gp-340 and suggest it binds bacteria that are important determinants of either the oral ecology or systemic diseases.

  14. Microsoft Dynamics GP 2013 implementation

    CERN Document Server

    Yudin, Victoria

    2013-01-01

    A step-by-step guide for planning and carrying out your Microsoft Dynamics GP 2013 implementation. Detailed descriptions and illustrations of setup screens and practical examples and advice are included for the Dynamics GP system and core modules.If you are a new or existing Microsoft Dynamics GP consultant or an end user who wants to implement, install, and set up core modules of Dynamics GP 2013, then this book is for you. A basic understanding of business management systems and either Dynamics GP or a similar application is recommended.

  15. P-glycoprotein recognition of substrates and circumvention through rational drug design.

    Science.gov (United States)

    Raub, Thomas J

    2006-01-01

    It is now well recognized that membrane efflux transporters, especially P-glycoprotein (P-gp; ABCB1), play a role in determining the absorption, distribution, metabolism, excretion, and toxicology behaviors of some drugs and molecules in development. An investment in screening structure-activity relationship (SAR) is warranted in early discovery when exposure and/or target activity in an in vivo efficacy model is not achieved and P-gp efflux is identified as a rate-limiting factor. However, the amount of investment in SAR must be placed into perspective by assessing the risks associated with the intended therapeutic target, the potency and margin of safety of the compound, the intended patient population(s), and the market competition. The task of rationally designing a chemistry strategy for circumventing a limiting P-gp interaction can be daunting. The necessity of retaining biological potency and metabolic stability places restrictions on what can be done, and the factors for P-gp recognition of substrates are complicated and poorly understood. The parameters within the assays that affect overall pump efficiency or net efflux, such as passive diffusion, membrane partitioning, and molecular interaction between pump and substrate, should be understood when interpreting data sets associated with chemistry around a scaffold. No single, functional group alone is often the cause, but one group can accentuate the recognition points existing within a scaffold. This can be likened to a rheostat, rather than an on/off switch, where addition or removal of a key group can increase or decrease the pumping efficiency. The most practical approach to de-emphasize the limiting effects of P-gp on a particular scaffold is to increase passive diffusion. Efflux pumping efficiency may be overcome when passive diffusion is fast enough. Eliminating, or substituting with fewer, groups that solvate in water, or decreasing their hydrogen bonding capacity, and adding halogen groups can

  16. 77 FR 20807 - Northwest Pipeline GP; Notice of Application

    Science.gov (United States)

    2012-04-06

    ... diameter pipelines away from an adjacent surface coal mine west of Kemmerer, Wyoming. Northwest also... directed to Pam Barnes, Manager Certificates and Tariffs, Northwest Pipeline GP, 295 Chipeta Way, Salt Lake...

  17. Sodium butyrate attenuates soybean oil-based lipid emulsion-induced increase in intestinal permeability of lipopolysaccharide by modulation of P-glycoprotein in Caco-2 cells

    International Nuclear Information System (INIS)

    Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian; Cai, Wei

    2017-01-01

    Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaBut was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.

  18. 25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation

    Directory of Open Access Journals (Sweden)

    Punya Shrivastava-Ranjan

    2016-12-01

    Full Text Available Lassa virus (LASV infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC. 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N-glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy.

  19. EMERGE: A Randomized Phase II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Advanced Glycoprotein NMB-Expressing Breast Cancer.

    Science.gov (United States)

    Yardley, Denise A; Weaver, Robert; Melisko, Michelle E; Saleh, Mansoor N; Arena, Francis P; Forero, Andres; Cigler, Tessa; Stopeck, Alison; Citrin, Dennis; Oliff, Ira; Bechhold, Rebecca; Loutfi, Randa; Garcia, Agustin A; Cruickshank, Scott; Crowley, Elizabeth; Green, Jennifer; Hawthorne, Thomas; Yellin, Michael J; Davis, Thomas A; Vahdat, Linda T

    2015-05-10

    Glycoprotein NMB (gpNMB), a negative prognostic marker, is overexpressed in multiple tumor types. Glembatumumab vedotin is a gpNMB-specific monoclonal antibody conjugated to the potent cytotoxin monomethyl auristatin E. This phase II study investigated the activity of glembatumumab vedotin in advanced breast cancer by gpNMB expression. Patients (n = 124) with refractory breast cancer that expressed gpNMB in ≥ 5% of epithelial or stromal cells by central immunohistochemistry were stratified by gpNMB expression (tumor, low stromal intensity, high stromal intensity) and were randomly assigned 2:1 to glembatumumab vedotin (n = 83) or investigator's choice (IC) chemotherapy (n = 41). The study was powered to detect overall objective response rate (ORR) in the glembatumumab vedotin arm between 10% (null) and 22.5% (alternative hypothesis) with preplanned investigation of activity by gpNMB distribution and/or intensity (Stratum 1 to Stratum 3). Glembatumumab vedotin was well tolerated as compared with IC chemotherapy (less hematologic toxicity; more rash, pruritus, neuropathy, and alopecia). ORR was 6% (five of 83) for glembatumumab vedotin versus 7% (three of 41) for IC, without significant intertreatment differences for predefined strata. Secondary end point revealed ORR of 12% (10 of 83) versus 12% (five of 41) overall, and 30% (seven of 23) versus 9% (one of 11) for gpNMB overexpression (≥ 25% of tumor cells). Unplanned analysis showed ORR of 18% (five of 28) versus 0% (0 of 11) in patients with triple-negative breast cancer (TNBC), and 40% (four of 10) versus 0% (zero of six) in gpNMB-overexpressing TNBC. Glembatumumab vedotin is well tolerated in heavily pretreated patients with breast cancer. Although the primary end point in advanced gpNMB-expressing breast cancer was not met for all enrolled patients (median tumor gpNMB expression, 5%), activity may be enhanced in patients with gpNMB-overexpressing tumors and/or TNBC. A pivotal phase II trial (METRIC

  20. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis

    Directory of Open Access Journals (Sweden)

    Carlos A. Alba-Fierro

    2016-01-01

    Full Text Available Cell wall (CW components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60 has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  1. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  2. Ursodeoxycholic acid inhibits overexpression of P-glycoprotein induced by doxorubicin in HepG2 cells.

    Science.gov (United States)

    Komori, Yuki; Arisawa, Sakiko; Takai, Miho; Yokoyama, Kunihiro; Honda, Minako; Hayashi, Kazuhiko; Ishigami, Masatoshi; Katano, Yoshiaki; Goto, Hidemi; Ueyama, Jun; Ishikawa, Tetsuya; Wakusawa, Shinya

    2014-02-05

    The hepatoprotective action of ursodeoxycholic acid (UDCA) was previously suggested to be partially dependent on its antioxidative effect. Doxorubicin (DOX) and reactive oxygen species have also been implicated in the overexpression of P-glycoprotein (P-gp), which is encoded by the MDR1 gene and causes antitumor multidrug resistance. In the present study, we assessed the effects of UDCA on the expression of MDR1 mRNA, P-gp, and intracellular reactive oxygen species levels in DOX-treated HepG2 cells and compared them to those of other bile acids. DOX-induced increases in reactive oxygen species levels and the expression of MDR1 mRNA were inhibited by N-acetylcysteine, an antioxidant, and the DOX-induced increase in reactive oxygen species levels and DOX-induced overexpression of MDR1 mRNA and P-gp were inhibited by UDCA. Cells treated with UDCA showed improved rhodamine 123 uptake, which was decreased in cells treated with DOX alone. Moreover, cells exposed to DOX for 24h combined with UDCA accumulated more DOX than that of cells treated with DOX alone. Thus, UDCA may have inhibited the overexpression of P-gp by suppressing DOX-induced reactive oxygen species production. Chenodeoxycholic acid (CDCA) also exhibited these effects, whereas deoxycholic acid and litocholic acid were ineffective. In conclusion, UDCA and CDCA had an inhibitory effect on the induction of P-gp expression and reactive oxygen species by DOX in HepG2 cells. The administration of UDCA may be beneficial due to its ability to prevent the overexpression of reactive oxygen species and acquisition of multidrug resistance in hepatocellular carcinoma cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. In vivo comparison of various polymeric and low molecular mass inhibitors of intestinal P-glycoprotein.

    Science.gov (United States)

    Föger, Florian; Hoyer, Herbert; Kafedjiiski, Krum; Thaurer, Michael; Bernkop-Schnürch, Andreas

    2006-12-01

    Several polymers have been reported to modulate drug absorption by inhibition of intestinal P-glycoprotein (P-gp). The aim of the present study was to provide a direct in vivo comparison of delivery systems based on Pluronic P85, Myrj 52 and chitosan-4-thiobutylamidine (Ch-TBA) in vivo in rats, using rhodamine-123 (Rho-123) as representative P-gp substrate. Furthermore, the postulated low molecular mass P-gp inhibitors 6-mercaptopurine and reduced glutathione (GSH) were evaluated in vitro and in vivo. In vitro, the permeation enhancing effect of 6-mercaptopurine, GSH, Pluronic P85, Myrj 52, and the combination of Ch-TBA with GSH was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type diffusion chambers. In comparison to buffer only, Rho-123 transport in presence of 100 microm 6-mercaptopurine, 0.5% (w/v) GSH, 0.5% (w/v) Pluronic P85, 0.5% (w/v) Myrj 52 and the combination of 0.5% (w/v) Ch-TBA/ 0.5% (w/v) GSH, was 2.1, 1.6, 1.9, 1.8, 3.0-fold improved, respectively. In vivo in rat, enteric-coated tablets based on Pluronic P85, Myrj 52 or Ch-TBA/GSH increased the area under the plasma concentration time curve (AUC(0-12)) of Rho-123 1.6-fold, 2.4-fold, 4.3-fold, respectively, in comparison to control only. Contrariwise, the low molecular mass excipients 6-mercaptopurine and GSH showed no significant effect in vivo at all. This in vivo study showed that polymeric P-gp inhibitors and especially the delivery system based on thiolated chitosan significantly increased the oral bioavailability of P-gp substrate Rho-123.

  4. Expression of the MDR1 gene and P-glycoprotein in canine mast cell tumor cell lines

    OpenAIRE

    NAKAICHI, Munekazu; TAKESHITA, Yoko; OKUDA, Masaru; NAKAMOTO, Yuya; ITAMOTO, Kazuhito; UNE, Satoshi; SASAKI, Nobuo; KADOSAWA, Tsuyoshi; TAKAHASHI, Tomoko; TAURA, Yasuho

    2007-01-01

    Cellular drug resistance to antineoplastic drugs is often due to the presence of a drug efflux pump that reduces intracellular drug accumulation and chemosensitivity. P-glycoprotein (P-gp), which is encoded by the MDR1 gene, is considered to function as an ATP-driven membrane drug efflux pump and appears to play an important role in tumor cell resistance. In the present report, we assessed the expression of MDR1 by RT-PCR in three canine mast cell tumor cell lines, TiMC, CoMS and LuMC, origin...

  5. Gp96 Peptide Antagonist gp96-II Confers Therapeutic Effects in Murine Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Claudia A. Nold-Petry

    2017-12-01

    Full Text Available BackgroundThe expression of heat shock protein gp96 is strongly correlated with the degree of tissue inflammation in ulcerative colitis and Crohn’s disease, thereby leading us to the hypothesis that inhibition of expression via gp96-II peptide prevents intestinal inflammation.MethodsWe employed daily injections of gp96-II peptide in two murine models of intestinal inflammation, the first resulting from five daily injections of IL-12/IL-18, the second via a single intrarectal application of TNBS (2,4,6-trinitrobenzenesulfonic acid. We also assessed the effectiveness of gp96-II peptide in murine and human primary cell culture.ResultsIn the IL-12/IL-18 model, all gp96-II peptide-treated animals survived until day 5, whereas 80% of placebo-injected animals died. gp96-II peptide reduced IL-12/IL-18-induced plasma IFNγ by 89%, IL-1β by 63%, IL-6 by 43% and tumor necrosis factor (TNF by 70% compared to controls. The clinical assessment Disease Activity Index of intestinal inflammation severity was found to be significantly lower in the gp96-II-treated animals when compared to vehicle-injected mice. gp96-II peptide treatment in the TNBS model limited weight loss to 5% on day 7 compared with prednisolone treatment, whereas placebo-treated animals suffered a 20% weight loss. Histological disease severity was reduced equally by prednisolone (by 40% and gp96-II peptide (35%. Mice treated with either gp96-II peptide or prednisolone exhibited improved endoscopic scores compared with vehicle-treated control mice: vascularity, fibrin, granularity, and translucency scores were reduced by up to 49% by prednisolone and by up to 30% by gp96-II peptide. In vitro, gp96-II peptide reduced TLR2-, TLR4- and IL-12/IL-18-induced cytokine expression in murine splenocytes, with declines in constitutive IL-6 (54%, lipopolysaccharide-induced TNF (48%, IL-6 (81% and in Staphylococcus epidermidis-induced TNF (67% and IL-6 (81%, as well as IL-12/IL-18-induced IFNγ (75%. gp

  6. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    International Nuclear Information System (INIS)

    Arora, Annu; Seth, Kavita; Kalra, Neetu; Shukla, Yogeshwer

    2005-01-01

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10 -3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  7. In vivo evaluation of an oral delivery system for P-gp substrates based on thiolated chitosan.

    Science.gov (United States)

    Föger, Florian; Schmitz, Thierry; Bernkop-Schnürch, Andreas

    2006-08-01

    Recently, thiolated polymers, so called thiomers, have been reported to modulate drug absorption by inhibition of intestinal P-glycoprotein (P-gp). The aim of the present study was to provide a proof-of-principle for a delivery system based on thiolated chitosan in vivo in rats, using rhodamine-123 (Rho-123) as representative P-gp substrate. In vitro, the permeation enhancing effect of unmodified chitosan, chitosan-4 thiobutylamidine (Ch-TBA) and the combination of Ch-TBA with reduced glutathione (GSH) was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type chambers. In comparison to buffer only, Rho-123 transport in presence of 0.5% (w/v) chitosan, 0.5% (w/v) Ch-TBA and the combination of 0.5% (w/v) Ch-TBA/0.5% (w/v) GSH, was 1.8-fold, 2.6-fold, 3.8-fold improved, respectively. Furthermore, enteric-coated tablets based on unmodified chitosan or Ch-TBA/GSH, were investigated in vivo. In rats, the Ch-TBA/GSH tablets increased the area under the plasma concentration time curve (AUC0-12) of Rho-123 by 217% in comparison to buffer control and by 58% in comparison to unmodified chitosan. This in vivo study showed that a delivery system based on thiolated chitosan significantly increased the oral bioavailability of P-gp substrate Rho-123.

  8. P-glycoprotein confers acquired resistance to 17-DMAG in lung cancers with an ALK rearrangement

    International Nuclear Information System (INIS)

    Kim, Hee Joung; Lee, Kye Young; Kim, Young Whan; Choi, Yun Jung; Lee, Jung-Eun; Choi, Chang Min; Baek, In-Jeoung; Rho, Jin Kyung; Lee, Jae Cheol

    2015-01-01

    Because anaplastic lymphoma kinase (ALK) is dependent on Hsp90 for protein stability, Hsp90 inhibitors are effective in controlling growth of lung cancer cells with ALK rearrangement. We investigated the mechanism of acquired resistance to 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), a geldanamycin analogue Hsp90 inhibitor, in H3122 and H2228 non-small cell lung cancer cell lines with ALK rearrangement. Resistant cell lines (H3122/DR-1, H3122/DR-2 and H2228/DR) were established by repeated exposure to increasing concentrations of 17-DMAG. Mechanisms for resistance by either NAD(P)H/quinone oxidoreductase 1 (NQO1), previously known as a factor related to 17-DMAG resistance, or P-glycoprotein (P-gp; ABCB1/MDR1) were queried using RT-PCR, western blot analysis, chemical inhibitors, the MTT cell proliferation/survival assay, and cellular efflux of rhodamine 123. The resistant cells showed no cross-resistance to AUY922 or ALK inhibitors, suggesting that ALK dependency persists in cells with acquired resistance to 17-DMAG. Although expression of NQO1 was decreased in H3122/DR-1 and H3122/DR-2, NQO1 inhibition by dicumarol did not affect the response of parental cells (H2228 and H3122) to 17-DMAG. Interestingly, all resistant cells showed the induction of P-gp at the protein and RNA levels, which was associated with an increased efflux of the P-gp substrate rhodamine 123 (Rho123). Transfection with siRNA directed against P-gp or treatment with verapamil, an inhibitor of P-gp, restored the sensitivity to the drug in all cells with acquired resistance to 17-DMAG. Furthermore, we also observed that the growth-inhibitory effect of 17-DMAG was decreased in A549/PR and H460/PR cells generated to over-express P-gp by long-term exposure to paclitaxel, and these cells recovered their sensitivity to 17-DMAG through the inhibition of P-gp. P-gp over-expression is a possible mechanism of acquired resistance to 17-DMAG in cells with ALK rearrangement. The online

  9. (R)-[11C]Emopamil as a novel tracer for imaging enhanced P-glycoprotein function

    International Nuclear Information System (INIS)

    Toyohara, Jun; Okamoto, Mayumi; Aramaki, Hiroki; Zaitsu, Yuto; Shimizu, Isao; Ishiwata, Kiichi

    2016-01-01

    Introduction: 2-Isopropyl-5-[methyl-(2-phenylethyl)amino]-2-phenylpentanenitrile (emopamil; EMP) is a calcium channel blocker of the phenylalkylamine class, with weak substrate properties for P-glycoprotein (P-gp). A weak substrate for P-gp would be suitable for measuring enhanced P-gp function. This study was performed to synthesise (R)- and (S)-[ 11 C]EMP and characterise their properties as P-gp tracers. Methods: We synthesised (R)- and (S)-[ 11 C]EMP and compared their biodistribution, peripheral metabolism, and effects of the P-gp inhibitor cyclosporine A (CsA, 50 mg/kg). We compared the brain pharmacokinetics of (R)-[ 11 C]EMP and (R)-[ 11 C]verapamil [(R)-[ 11 C]VER] at baseline and CsA pretreatment with small animal positron emission tomography (PET). Results: (R)- and (S)-[ 11 C]EMP were synthesised from (R)- and (S)-noremopamil, respectively, by methylation with [ 11 C]methyl triflate in the presence of NaOH at room temperature. (R)- and (S)-[ 11 C]EMP yields were ~ 30%, with specific activity > 74 GBq/μmol and radiochemical purity > 99%. (R)-[ 11 C]EMP showed significantly greater uptake in the mouse brain than (S)-[ 11 C]EMP. Both showed homogeneous non-stereoselective regional brain distributions. (R)- and (S)-[ 11 C]EMP were rapidly metabolised to hydrophilic metabolites. Unchanged plasma (S)-[ 11 C]EMP level was significantly lower than that of (R)-[ 11 C]EMP 15 minutes post-injection, whilst > 88% of radioactivity in the brain was intact at 15 minutes post-injection and was non-stereoselective. CsA pretreatment increased brain activity ~ 3-fold in mice, but was non-stereoselective. The baseline area-under-the-curve (AUC) of brain radioactivity (0–60 minutes) of (R)-[ 11 C]EMP was 2-fold higher than that of (R)-[ 11 C]VER, but their AUCs after CsA pretreatment were comparable. Conclusions: (R)-[ 11 C]EMP is a novel tracer for imaging P-gp function with higher baseline uptake than (R)-[ 11 C]VER.

  10. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  11. Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with gp160 proteolytic processing.

    Directory of Open Access Journals (Sweden)

    Zhitao Wan

    Full Text Available The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline. Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 µM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 envelope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach.

  12. Activation of erythropoietin receptors by Friend viral gp55 and by erythropoietin and down-modulation by the murine Fv-2r resistance gene

    International Nuclear Information System (INIS)

    Hoatlin, M.E.; Kozak, S.L.; Kabat, D.; Lilly, F.; Chakraborti, A.; Kozak, C.A.

    1990-01-01

    The leukemogenic membrane glycoprotein (gp55) encoded by Friend spleen focus-forming virus appears to bind to erythropoietin receptors (EpoR) to stimulate erythroblastosis. To directly compare the effects of gp55 with erythropoietin (Epo), the authors produced retrovirions that encode either gp55, Epo, or EpoR. After infection with EpoR virus, interleukin 3-dependent DA-3 cells bound 125 I-labeled Epo and grew without interleukin 3 in the presence of Epo. These latter cells, but not parental DA-3 cells, became factor-independent after superinfection either with Epo virus or with Friend spleen focus-forming virus. In addition, Epo virus caused a disease in mice that mimicked Friend erythroleukemia. Although Fv-2 r homozygotes are susceptible to all other retroviral diseases, they are resistant to both Epo viral and Friend viral erythroleukemia. These results indicate that both gp55 and Epo stimulate EpoR and that the Fv-2 gene encodes a protein that controls response to these ligands. However, the Fv-2 protein is not EpoR because the corresponding genes map to opposite ends of mouse chromosome 9. These results have important implications for understanding signal transduction by EpoR and the role of host genetic variation in controlling susceptibility to an oncogenic protein

  13. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain.

    Science.gov (United States)

    Ou, Wu; Delisle, Josie; Jacques, Jerome; Shih, Joanna; Price, Graeme; Kuhn, Jens H; Wang, Vivian; Verthelyi, Daniela; Kaplan, Gerardo; Wilson, Carolyn A

    2012-01-25

    The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2) is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD). We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD) would induce cross-species immunity by making more conserved regions accessible to the immune system. To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs) bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP) that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  14. The hydroxyapatite-binding regions of a rat salivary glycoprotein.

    Science.gov (United States)

    Embery, G; Green, D R

    1989-09-01

    The regions of a salivary sulphated glycoprotein which are involved in its attachment to hydroxyapatite (Biogel HTP) have been characterised. The sulphated glycoprotein, a 35S-labelled preparation from mixed palatal and buccal minor gland secretions of the rat was bound onto hydroxyapatite and the resultant glycoprotein-hydroxyapatite complex was sequentially digested with pronase E and alpha-L-fucosidase, a treatment which released 86.8% +/- 1.7% of the radioactivity of the initially bound glycoprotein. The fragments which remained attached to the hydroxyapatite after enzymic digestion were fractionated on Sephadex G-25 and analysed for carbohydrate and amino acid components. A range of amino acids were detected which could reflect both glycosylated and non-glycosylated-binding regions. Sialic acid, although considered to be involved in the attachment process was not detected in any of the fragments remaining after enzymic digestion, a finding which provides indirect evidence that the enzymically liberated products do not subsequently re-attach to the hydroxyapatite surface. The notable feature of the fractions with average Mr estimated at 1000 or less is the high proportion of N-acetylhexosamine and N-acetylgalactosamine. It is apparent that the hexosamine residues, which normally bear the ester sulphate moieties of sulphated glycoproteins, play an important role in the attachment of sulphated glycoproteins to hydroxyapatite.

  15. Porcine Cysticercosis: Possible Cross-Reactivity of Taenia hydatigena to GP50 Antigen in the Enzyme-Linked Immunoelectrotransfer Blot Assay.

    Science.gov (United States)

    Muro, Claudio; Gomez-Puerta, Luis A; Flecker, Robert H; Gamboa, Ricardo; Barreto, Percy Vilchez; Dorny, Pierre; Tsang, Victor C W; Gilman, Robert H; Gonzalez, Armando E; Garcia, Hector H; O'Neal, Seth E; For The Cysticercosis Working Group In Peru

    2017-12-01

    The lentil lectin glycoprotein enzyme-linked immunoelectrotransfer blot (LLGP EITB, reported sensitivity 99% and specificity 100%) is used as a serologic marker of exposure to Taenia solium in pigs. However, only a limited number of parasites have been evaluated for cross reactivity. Pigs may host other related cestode infections, including Taenia hydatigena, which have not been formally evaluated for cross-reactions. We investigated a corral in Tumbes, Peru, a region where a cysticercosis elimination demonstration project was completed in 2012. In this corral, 14/19 (73.7%) 6-8-week-old piglets were reactive to GP50 on LLGP EITB, and all had circulating Taenia sp. antigens. From eight necropsied piglets; four were infected with T. hydatigena metacestodes whereas none had evidence of T. solium infection. Two resident dogs were subsequently confirmed to have T. hydatigena taeniasis. These results suggest GP50 cross-reactivity in T. hydatigena- infected pigs, although controlled experimental infection is needed to confirm this hypothesis.

  16. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Daniel G. Gerardi

    2014-01-01

    Full Text Available The overexpression of proteins P-glycoprotein (P-gp, multidrug resistance-associated protein (MRP1, mutant p53, and the enzyme glutathione-S-transferase (GSTpi are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in two groups of canine TVT, without history of prior chemotherapy (TVT1, n=9 and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5. The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR or predict the response to chemotherapy in canine TVT.

  17. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport

    DEFF Research Database (Denmark)

    Syvanen, S.; Lindhe, O.; Palner, M.

    2009-01-01

    preclinical data to humans. Compounds found to be P-gp substrates in rodents are likely to also be substrates in higher species, but sufficient blood-brain barrier permeability may be retained in humans to allow the compound to act at intracerebral targets Udgivelsesdato: 2009/3......Species differences occur in the brain concentrations of drugs, but the reasons for these differences are not yet apparent. This study was designed to compare brain uptake of three radiolabeled P-glycoprotein (P-gp) substrates across species using positron emission tomography. Brain concentrations...... and brain-to-plasma ratios were compared; [(11)C]verapamil in rats, guinea pigs, and monkeys; [(11)C](S)-(2-methoxy-5-(5-trifluoromethyltetrazol-1-yl)-phenylmethylamino )-2(S)-phenylpiperidine (GR205171) in rats, guinea pigs, monkeys, and humans; and [(18)F]altanserin in rats, minipigs, and humans...

  18. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Science.gov (United States)

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine.

    Science.gov (United States)

    Yi, Zhihua; Xie, Lihui; Zhou, Congfa; Yuan, Huilong; Ouyang, Shuai; Fang, Zhi; Zhao, Shanhong; Jia, Tianyu; Zou, Lifang; Wang, Shouyu; Xue, Yun; Wu, Bing; Gao, Yun; Li, Guilin; Liu, Shuangmei; Xu, Hong; Xu, Changshui; Zhang, Chunping; Liang, Shangdong

    2018-03-01

    The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y 12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y 12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y 12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca 2+ ] i activated by the P2Y 12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y 12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca 2+ ] i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y 12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y 12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.

  20. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment.

    Science.gov (United States)

    Song, Ehwang; Mechref, Yehia

    2015-01-01

    Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.

  1. Interferon-β induced in female genital epithelium by HIV-1 glycoprotein 120 via Toll-like-receptor 2 pathway acts to protect the mucosal barrier.

    Science.gov (United States)

    Nazli, Aisha; Dizzell, Sara; Zahoor, Muhammad Atif; Ferreira, Victor H; Kafka, Jessica; Woods, Matthew William; Ouellet, Michel; Ashkar, Ali A; Tremblay, Michel J; Bowdish, Dawn Me; Kaushic, Charu

    2018-03-19

    More than 40% of HIV infections occur via female reproductive tract (FRT) through heterosexual transmission. Epithelial cells that line the female genital mucosa are the first line of defense against HIV-1 and other sexually transmitted pathogens. These sentient cells recognize and respond to external stimuli by induction of a range of carefully balanced innate immune responses. Previously, we have shown that in response to HIV-1 gp120, the genital epithelial cells (GECs) from upper reproductive tract induce an inflammatory response that may facilitate HIV-1 translocation and infection. In this study, we report that the endometrial and endocervical GECs simultaneously induce biologically active interferon-β (IFNβ) antiviral responses following exposure to HIV-1 that act to protect the epithelial tight junction barrier. The innate antiviral response was directly induced by HIV-1 envelope glycoprotein gp120 and addition of gp120 neutralizing antibody inhibited IFNβ production. Interferon-β was induced by gp120 in upper GECs through Toll-like receptor 2 signaling and required presence of heparan sulfate on epithelial cell surface. The induction of IFNβ was dependent upon activation of transcription factor IRF3 (interferon regulatory factor 3). The IFNβ was biologically active, had a protective effect on epithelial tight junction barrier and was able to inhibit HIV-1 infection in TZM-bl indicator cells and HIV-1 replication in T cells. This is the first report that recognition of HIV-1 by upper GECs leads to induction of innate antiviral pathways. This could explain the overall low infectivity of HIV-1 in the FRT and could be exploited for HIV-1 prophylaxis.Cellular and Molecular Immunology advance online publication, 19 March 2018; doi:10.1038/cmi.2017.168.

  2. Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases

    Directory of Open Access Journals (Sweden)

    Gregory Ondieki

    2017-01-01

    Full Text Available Herbal remedies are regularly used to complement conventional therapies in the treatment of various illnesses in Africa. This may be because they are relatively cheap and easily accessible and are believed by many to be safe, cause fewer side effects, and are less likely to cause dependency. On the contrary, many herbs have been shown to alter the pharmacokinetics of coadministered allopathic medicines and can either synergize or antagonize therapeutic effects as well as altering the toxicity profiles of these drugs. Current disease burden data point towards epidemiological transitions characterised by increasing urbanization and changing lifestyles, risk factors for chronic diseases like hypertension, diabetes, and cancer which often present as multimorbidities. As a result, we highlight African herb-drug interactions (HDIs modulated via cytochrome P450 enzyme family (CYP and P-glycoprotein (P-gp and the consequences thereof in relation to antihypertensive, antidiabetic, and anticancer drugs. CYPs are enzymes which account for to up to 70% of drug metabolism while P-gp is an efflux pump that extrudes drug substrates out of cells. Consequently, regulation of the relative activity of both CYP and P-gp by African herbs influences the effective drug concentration at the site of action and modifies therapeutic outcomes.

  3. Efficacy of DNA vaccine encoding koi herpesvirus glycoprotein GP-25in common carp juvenile by immersion

    Directory of Open Access Journals (Sweden)

    Soko Nuswantoro

    2013-11-01

    Full Text Available Koi herpesvirus (KHV is a herpesvirus that particularly infects and causes mass mortality to koi and common carp. Therefore, the protection of common carp from KHV infection is urgently needed. In this study, we developed an application of DNA vaccine encoding KHV glycoprotein-25 by immersion method to increase survival of common carp against KHV infection. A total of 400 common carp juveniles at 30-day-old were immersed in 1-L water containing 1.3×108CFU/mL of the killed Escherichia coli cells carrying DNA vaccine. Three frequencies and three duration of fish immersion were tested, namely: 1×30 minutes, 1×60 minutes, 1× 90 minutes, 2×90 minutes and 3×90 minutes by interval of 24 hours. Reversetranscription polymerase chain reaction analysis showed that DNA vaccine was successfully expressed in the vaccinated fish. Fish at twenty eight days post vaccination were challenged by injecting 10-4 mL of KHV per fish. The result showed that vaccination by 1×30 minutes immersion allowed 61% of fish survived, and this was significantly higher (p<0.05 compared to control (without vaccination, but it was similar among vaccination treatments (p>0.05. The relative percent survival of vaccinated fish were also similar among treatments (p>0.05. DNA vaccination has increased fish survival about two fold higher compared to unvaccinated fish control (26.67%. Thus, DNA vaccination was effectively delivered by immersion for 1×30 minutes, and this technique can be useful to level up the resistance of common carp juveniles against KHV infection. Keywords: DNA vaccine, KHV, glycoprotein, immersion, common carp

  4. Epstein-Barr virus-negative aggressive natural killer-cell leukaemia with high P-glycoprotein activity and phosphorylated extracellular signal-regulated protein kinases 1 and 2

    Directory of Open Access Journals (Sweden)

    Sanja Perkovic

    2012-09-01

    Full Text Available Aggressive natural killer-cell leukaemia (ANKL is a rare type of disease with fulminant course and poor outcome. The disease is more prevalent among Asians than in other ethnic groups and shows strong association with Epstein-Barr virus (EBV and P-glycoprotein (P-gp expression associated with multidrug resistance. Here we present a case of a 47 year old Caucasian female with a prior medical history of azathioprine treated ulcerative colitis who developed EBV-negative form of ANKL. The patient presented with hepatosplenomegaly, fever and nausea with peripheral blood and bone marrow infiltration with up to 70% of atypical lymphoid cells positive for cCD3, CD2, CD7, CD56, CD38, CD45, TIA1 and granzyme B, and negative for sCD3, CD4, CD5, CD8, CD34 and CD123 indicative of ANKL. Neoplastic CD56+ NK-cells showed high level of P-glycoprotein expression and activity, but also strong expression of phosphorylated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2 MAP kinase. The patient was treated with an intensive polychemotherapy regimen designed for treatment of acute lymphoblastic leukaemia, but one month after admission developed sepsis, coma and died of cardiorespiratory arrest. We present additional evidence that, except for the immunophenotype, leukaemic NK-cells resemble normal NK-cells in terms of P-gp functional capacity and expression of phosphorylated ERK1/2 signalling molecule. In that sense drugs that block P-glycoprotein activity and activated signalling pathways might represent new means for targeted therapy.

  5. The effect of lycopene on cytochrome P450 isoenzymes and P-glycoprotein by using human liver microsomes and Caco-2 cell monolayer model.

    Science.gov (United States)

    Kong, Lingti; Song, Chunli; Ye, Linhu; Xu, Jian; Guo, Daohua; Shi, Qingping

    2018-01-11

    Lycopene is widely used as a dietary supplement. However, the effects of lycopene on cytochrome P450 (CYP) enzymes or P-glycoprotein (P-gp) are not comprehensive. The present study was performed to investigate the effects of lycopene on the CYP enzymes and P-gp activity. A cocktail method was used to evaluate the activities of CYP3A4, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. Caco-2 cell monolayer model was carried out to assay lycopene on P-gp activity. The results indicated that lycopene had a moderate inhibitory effect on CYP2E1, with IC50 value of 43.65 μM, whereas no inhibitory effects on CYP3A4, CYP2C19, CYP2D6 and CYP2E1, with IC50 values all over 100 μM. In addition, lycopene showed almost no inhibitory effect on rhodamine-123 efflux and uptake (p > .05), indicated no effects on P-gp activity. In conclusion, there should be required attention when lycopene are coadministered with other drugs that are metabolised by CYP2E1.

  6. Exhaustive sampling of docking poses reveals binding hypotheses for propafenone type inhibitors of P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Freya Klepsch

    2011-05-01

    Full Text Available Overexpression of the xenotoxin transporter P-glycoprotein (P-gp represents one major reason for the development of multidrug resistance (MDR, leading to the failure of antibiotic and cancer therapies. Inhibitors of P-gp have thus been advocated as promising candidates for overcoming the problem of MDR. However, due to lack of a high-resolution structure the concrete mode of interaction of both substrates and inhibitors is still not known. Therefore, structure-based design studies have to rely on protein homology models. In order to identify binding hypotheses for propafenone-type P-gp inhibitors, five different propafenone derivatives with known structure-activity relationship (SAR pattern were docked into homology models of the apo and the nucleotide-bound conformation of the transporter. To circumvent the uncertainty of scoring functions, we exhaustively sampled the pose space and analyzed the poses by combining information retrieved from SAR studies with common scaffold clustering. The results suggest propafenone binding at the transmembrane helices 5, 6, 7 and 8 in both models, with the amino acid residue Y307 playing a crucial role. The identified binding site in the non-energized state is overlapping with, but not identical to, known binding areas of cyclic P-gp inhibitors and verapamil. These findings support the idea of several small binding sites forming one large binding cavity. Furthermore, the binding hypotheses for both catalytic states were analyzed and showed only small differences in their protein-ligand interaction fingerprints, which indicates only small movements of the ligand during the catalytic cycle.

  7. The guinea-pig expresses functional CYP2C and P-glycoprotein: further validation of its usefulness in drug biotransformation/transport studies.

    Science.gov (United States)

    Hasibu, Ibrahim; Patoine, Dany; Pilote, Sylvie; Drolet, Benoit; Simard, Chantale

    2015-04-01

    The guinea-pig is an excellent animal model for studying cardiopulmonary physiology/pharmacology. Interestingly, it also possesses a number of drug-metabolizing enzymes found in humans, such as CYP1A, CYP2D and CYP3A. To evaluate the hypothesis that the guinea-pig also expresses a functional CYP2C drug-metabolizing enzyme and the P-glycoprotein (P-gp) drug transporter in various tissues. cDNAs encoding CYP2C and P-gp were obtained from guinea-pig liver or small intestine and sequenced. Western blotting was performed to confirm the expression of CYP2C and P-gp. The functional enzymatic activity of guinea-pig CYP2C was evaluated with microsomal preparations using diclofenac and tolbutamide as specific drug substrates in HPLC analyses. To further study both P-gp and CYP2C functional activities, the guinea-pig ABCB1/MDR1 and CYP2C genes were cloned. The recombinant plasmids were then transfected in HEK293 (human embryonic kidney) cells and either calcein-acetoxymethyl ester (AM) accumulation assays or 14,15-EET/DHET formation experiments were performed to evaluate either P-gp transport activity or CYP2C epoxygenase activity, respectively. The guinea-pig tissue distribution of P-gp was studied by Western blotting. Functional expression of CYP2C was demonstrated in guinea-pig liver microsomal preparations. CYP2C-mediated biotransformation of diclofenac and tolbutamide were shown. Expression of P-gp protein was detected in guinea-pig liver and small intestine. Functional activity of guinea-pig P-gp was demonstrated in ABCB1/MDR1-transfected cells. GP-CYP2C-transfected cells also showed functional epoxygenase activity. The guinea-pig expresses functional CYP2C and P-gp, thus suggesting its usefulness for further validating data obtained with other animal models in drug biotransformation/transport studies. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4

    International Nuclear Information System (INIS)

    Zhao Qian; Ma Liying; Jiang Shibo; Lu Hong; Liu Shuwen; He Yuxian; Strick, Nathan; Neamati, Nouri; Debnath, Asim Kumar

    2005-01-01

    We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors

  9. CRP-ductin, the mouse homologue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative bacteria and interacts with lung surfactant protein D

    DEFF Research Database (Denmark)

    Madsen, Jens; Tornøe, Ida; Nielsen, Ole

    2003-01-01

    CRP-ductin is a protein expressed mainly by mucosal epithelial cells in the mouse. Sequence homologies indicate that CRP-ductin is the mouse homologue of human gp-340, a glycoprotein that agglutinates microorganisms and binds the lung mucosal collectin surfactant protein-D (SP-D). Here we report...... that purified CRP-ductin binds human SP-D in a calcium-dependent manner and that the binding is not inhibited by maltose. The same properties have previously been observed for gp-340 binding of SP-D. CRP-ductin also showed calcium-dependent binding to both gram-positive and -negative bacteria. A polyclonal...... antibody raised against gp-340 reacted specifically with CRP-ductin in Western blots. Immunoreactivity to CRP-ductin was found in the exocrine pancreas, in epithelial cells throughout the gastrointestinal tract and in the parotid ducts. A panel of RNA preparations from mouse tissues was screened for CRP...

  10. Bailout use of platelet glycoprotein IIb-IIIa inhibition during coronary stent implantation: observations from the ESPRIT trial.

    Science.gov (United States)

    Cantor, Warren J; Madan, Mina; O'Shea, J Conor; Chisholm, Robert J; Lui, Henry K; Cohen, David J; Feldman, Robert L; Green, Robert; Hellkamp, Anne S; Kitt, Michael M; Tcheng, James E

    2005-07-01

    Glycoprotein (GP) IIb/IIIa inhibitors are often used as a rescue or bailout therapy to manage complications arising during percutaneous coronary intervention, rather than as prophylactic treatment. We sought to identify the characteristics and outcomes of patients requiring bailout treatment. The ESPRIT trial randomized 2,064 patients to receive eptifibatide or placebo starting immediately before percutaneous coronary intervention (PCI). Bailout therapy was used in 77 patients: 43 (4.2%) randomized to placebo and 34 (3.3%) to eptifibatide (p = 0.3). Bailout therapy for thrombosis was used more often in the placebo group (2.1% versus 1.0%; p = 0.03). Multivariable predictors of bailout included a greater than or equal to 90% stenosis, or visible thrombus on the baseline angiogram, and no aspirin pre-treatment before PCI. However, overall the model predicted bailout poorly (c-index = 0.64). The need for bailout cannot be reliably predicted using baseline characteristics. Patients experiencing complications have poor clinical outcomes despite bailout use of GP IIb/IIIa inhibitors.

  11. Residues in the membrane-spanning domain core modulate conformation and fusogenicity of the HIV-1 envelope glycoprotein

    International Nuclear Information System (INIS)

    Shang Liang; Hunter, Eric

    2010-01-01

    The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusion mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.

  12. Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment.

    Science.gov (United States)

    Karlsson, Louise; Carlsson, Björn; Hiemke, Christoph; Ahlner, Johan; Bengtsson, Finn; Schmitt, Ulrich; Kugelberg, Fredrik C

    2013-11-01

    According to both in vitro and in vivo data P-glycoprotein (P-gp) may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. The therapeutic activity of citalopram resides in the S-enantiomer, whereas the R-enantiomer is practically devoid of serotonin reuptake potency. To date, no in vivo data are available that address whether the enantiomers of citalopram and its metabolites are substrates of P-gp. P-gp knockout (abcb1ab (-/-)) and wild-type (abcb1ab (+/+)) mice underwent acute (single-dose) and chronic (two daily doses for 10 days) treatment with citalopram (10mg/kg) or escitalopram (5mg/kg) Serum and brain samples were collected 1-6h after the first or last i.p. injection for subsequent drug analysis by an enantioselective HPLC method. In brain, 3-fold higher concentrations of S- and R-citalopram, and its metabolites, were found in abcb1ab (-/-) mice than in abcb1ab (+/+) mice after both acute and chronic citalopram treatments. After escitalopram treatment, the S-citalopram brain concentration was 3-5 times higher in the knockout mice than in controls. The results provide novel evidence that the enantiomers of citalopram are substrates of P-gp. Possible clinical and toxicological implications of this finding need to be further elucidated. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  13. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air-liquid interface method for nasal drug transport study.

    Science.gov (United States)

    Cho, Hyun-Jong; Choi, Min-Koo; Lin, Hongxia; Kim, Jung Sun; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2011-03-01

    P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  14. Conformational alterations in the CD4 binding cavity of HIV-1 gp120 influencing gp120-CD4 interactions and fusogenicity of HIV-1 envelopes derived from brain and other tissues

    Directory of Open Access Journals (Sweden)

    Ramsland Paul A

    2011-06-01

    Full Text Available Abstract Background CD4-binding site (CD4bs alterations in gp120 contribute to HIV-1 envelope (Env mediated fusogenicity and the ability of gp120 to utilize low levels of cell-surface CD4. In a recent study, we constructed three-dimensional models of gp120 to illustrate CD4bs conformations associated with enhanced fusogenicity and enhanced CD4-usage of a modestly-sized panel of blood-derived HIV-1 Envs (n = 16. These conformations were characterized by a wider aperture of the CD4bs cavity, as constrained by the inner-most atoms at the gp120 V1V2 stem and the V5 loop. Here, we sought to provide further validation of the utility of these models for understanding mechanisms that influence Env function, by characterizing the structure-function relationships of a larger panel of Envs derived from brain and other tissues (n = 81. Findings Three-dimensional models of gp120 were generated by our recently validated homology modelling protocol. Analysis of predicted CD4bs structures showed correlations between the aperture width of the CD4bs cavity and ability of the Envs to mediate cell-cell fusion, scavenge low-levels of cell-surface CD4, bind directly to soluble CD4, and bind to the Env mAb IgG1b12 whose epitope overlaps the gp120 CD4bs. These structural alterations in the CD4bs cavity were associated with repositioning of the V5 loop. Conclusions Using a large, independent panel of Envs, we can confirm the utility of three-dimensional gp120 structural models for illustrating CD4bs alterations that can affect Env function. Furthermore, we now provide new evidence that these CD4bs alterations augment the ability of gp120 to interact with CD4 by increasing the exposure of the CD4bs.

  15. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.

    Science.gov (United States)

    Chufan, Eduardo E; Kapoor, Khyati; Ambudkar, Suresh V

    2016-02-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp. Published by Elsevier Inc.

  16. Effects of Zuccagnia punctata extracts and their flavonoids on the function and expression of ABCB1/P-glycoprotein multidrug transporter.

    Science.gov (United States)

    Chieli, Elisabetta; Romiti, Nadia; Catiana Zampini, Iris; Garrido, Gabino; Inés Isla, María

    2012-12-18

    Zuccagnia punctata extracts (ZpE) are used in ethnomedicine as antimicrobial and anti-inflammatory drugs. The pharmacological properties of ZpE and their polyphenolic components suggest that they may be used as potential modulators on the P-glycoprotein (P-gp) multidrug transporter. P-gp is well known for its role in the acquired drug resistance by tumors following chemotherapy, causing a low drug bioavailability by extruding them out of the cells. To evaluate the effects of ZpE and three of their phenolic components: 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2',4'-dihydroxychalcone (DHC) on P-gp activity and expression. The effects of natural products on ABCB1/P-gp function and expression were evaluated by R-123 accumulation assay and western blot analysis using HK-2 cells as experimental model. The ABCB1 mRNA content was determined by SQRT-PCR. The accumulation of R-123 in HK-2 cells was significantly increased by ZpE and DHF, and to a lesser extent by DHC, indicating their roles on the efflux transporter activity. However, HF did not show any effect. HK-2 cells maintained in the presence of ZpE or DHF for 72 h, showed an increase in P-gp expression whereas activity was unchanged or decreased. No changes were observed in ABCB1 mRNA content. Furthermore, in these assay conditions, more sensibility of HK-2 cells to the cytotoxic action of cyclosporine A (P-gp substrate) was observed. These results may suggest an impact of Zuccagnia punctata and some of its components on the pharmacokinetics of drugs that are P-gp substrates, as well as a potential role on multidrug resistance modulation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Cyclosporine, a P-glycoprotein modulator, increases [18F]MPPF uptake in rat brain and peripheral tissues: microPET and ex vivo studies

    International Nuclear Information System (INIS)

    Lacan, Goran; Way, Baldwin M.; Plenevaux, Alain; Defraiteur, Caroline; Lemaire, Christian; Aerts, Joel; Luxen, Andre; Rubins, Daniel J.; Cherry, Simon R.; Melega, William P.

    2008-01-01

    Pretreatment with cyclosporine, a P-glycoprotein (P-gp) modulator increases brain uptake of 4-(2'-methoxyphenyl)-1-[2'-(N-2''-pyridinyl)-p-[ 18 F] fluorobenzamido] ethylpiper azine ([ 18 F]MPPF) for binding to hydroxytryptamine 1A (5-HT 1A ) receptors. Those increases were quantified in rat brain with in vivo microPET and ex vivo tissue studies. Each Sprague-Dawley rat (n=4) received a baseline [ 18 F]MPPF microPET scan followed by second scan 2-3 weeks later that included cyclosporine pretreatment (50 mg/kg, i.p.). Maximum a posteriori reconstructed images and volumetric ROIs were used to generate dynamic radioactivity concentration measurements for hippocampus, striatum, and cerebellum, with simplified reference tissue method (SRTM) analysis. Western blots were used to semiquantify P-gp regional distribution in brain. MicroPET studies showed that hippocampus uptake of [ 18 F]MPPF was increased after cyclosporine; ex vivo studies showed similar increases in hippocampus and frontal cortex at 30 min, and for heart and kidney at 2.5 and 5 min, without concomitant increases in [ 18 F]MPPF plasma concentration. P-gp content in cerebellum was twofold higher than in hippocampus or frontal cortex. These studies confirm and extend prior ex vivo results (J. Passchier, et al., Eur J Pharmacol, 2000) that showed [ 18 F]MPPF as a substrate for P-gp. Our microPET results showed that P-gp modulation of [ 18 F]MPPF binding to 5-HT 1A receptors can be imaged in rat hippocampus. The heterogeneous brain distribution of P-gp appeared to invalidate the use of cerebellum as a nonspecific reference region for SRTM modeling. Regional quantitation of P-gp may be necessary for accurate PET assessment of 5-HT 1A receptor density when based on tracer uptake sensitive to P-gp modulation. (orig.)

  18. Platelet glycoprotein IaC807T polymorphisms and ischemic stroke in young Chinese Han population.

    Science.gov (United States)

    Zhang, J; Huang, D; Yang, J; An, H; Ojha, R; DU, C; Liu, R

    2012-11-01

    The objective of this study was to investigate the association between platelet glycoprotein (GP) Ia C807T polymorphisms and ischemic stroke in young Chinese Han Population. We conducted a case-control study in 92 consecutive young (ischemic stroke inpatients and outpatients, 86 elder ischemic stroke control (> 50 years), and 160 age- and sex-matched healthy control. Genotyping of platelet GP Ia C807Tpolymorphisms was performed by polymerase chain reaction followed by sequencing nucleic acid with dideoxy chain-termination method and an ABI PRISM3100 (Perkin-Elmer Co) genetic analyzer. Student's t-test, chi-square test, and logistic regression modeling were used for data significance analyses. Hypertension and smoking were found to be the independent risk factors for ischemic stroke patients (aged ischemic stroke patients (aged > 50 years). There was no significant difference observed in the T allele frequency of GPIa C807T polymorphisms between young stroke patients and corresponding controls. These findings suggest that there is no role of GPIa C807T polymorphisms in the development of young first-ever ischemic stroke in Chinese Han Population.

  19. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    Science.gov (United States)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  20. Computational study of HIV gp120 as a target for polyanionic entry inhibitors: Exploiting the V3 loop region.

    Directory of Open Access Journals (Sweden)

    Louis R Hollingsworth

    Full Text Available Multiple approaches are being utilized to develop therapeutics to treat HIV infection. One approach is designed to inhibit entry of HIV into host cells, with a target being the viral envelope glycoprotein, gp120. Polyanionic compounds have been shown to be effective in inhibiting HIV entry, with a mechanism involving electrostatic interactions with the V3 loop of gp120 being proposed. In this study, we applied computational methods to elucidate molecular interactions between the repeat unit of the precisely alternating polyanion, Poly(4,4'-stilbenedicarboxylate-alt-maleic acid (DCSti-alt-MA and the V3 loop of gp120 from strains of HIV against which these polyanions were previously tested (IIIb, BaL, 92UG037, JR-CSF as well as two strains for which gp120 crystal structures are available (YU2, 2B4C. Homology modeling was used to create models of the gp120 proteins. Using monomers of the gp120 protein, we applied extensive molecular dynamics simulations to obtain dominant morphologies that represent a variety of open-closed states of the V3 loop to examine the interaction of 112 ligands of the repeating units of DCSti-alt-MA docked to the V3 loop and surrounding residues. Using the distance between the V1/V2 and V3 loops of gp120 as a metric, we revealed through MD simulations that gp120 from the lab-adapted strains (BaL and IIIb, which are more susceptible to inhibition by DCSti-alt-MA, clearly transitioned to the closed state in one replicate of each simulation set, whereas none of the replicates from the Tier II strains (92UG037 and JR-CSF did so. Docking repeat unit microspecies to the gp120 protein before and after MD simulation enabled identification of residues that were key for binding. Notably, only a few residues were found to be important for docking both before and after MD simulation as a result of the conformational heterogeneity provided by the simulations. Consideration of the residues that were consistently involved in interactions

  1. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics.

    Science.gov (United States)

    Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore

    2015-05-01

    The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.

  2. Interaction between Ebola Virus Glycoprotein and Host Toll-Like Receptor 4 Leads to Induction of Proinflammatory Cytokines and SOCS1 ▿ †

    OpenAIRE

    Okumura, Atsushi; Pitha, Paula M.; Yoshimura, Akihiko; Harty, Ronald N.

    2009-01-01

    Ebola virus initially targets monocytes and macrophages, which can lead to the release of proinflammatory cytokines and chemokines. These inflammatory cytokines are thought to contribute to the development of circulatory shock seen in fatal Ebola virus infections. Here we report that host Toll-like receptor 4 (TLR4) is a sensor for Ebola virus glycoprotein (GP) on virus-like particles (VLPs) and that resultant TLR4 signaling pathways lead to the production of proinflammatory cytokines and sup...

  3. Association between patients' recommendation of their GP and their evaluation of the GP.

    Science.gov (United States)

    Vedsted, Peter; Heje, Hanne N

    2008-01-01

    Patient priorities and patient evaluations indicate that accessibility should receive more attention to increase quality in general practice. The definition of family medicine emphasizes the patient-centred approach, communication skills, continuity, and clinical skills. We aimed to explore the associations between the 23 items in the Europep questionnaire measuring patient evaluation of general practice and the patients' recommendation of their general practitioner (GP) to friends and to study the relationship of these items with the core competences of family medicine. Cross-sectional study where patients aged 18 years and over attending the practice were included. Patients completed the Danish version of the 23 item Europep questionnaire and an additional item about the degree to which they could recommend their GP to friends. Danish general practice (the DanPEP study). A total of 50 191 patients and 690 GPs were included in the analyses. For each item, associations were calculated between a positive answer and the degree to which the patient could recommend the GP. Analyses were made at patient and GP levels. We found 12 items that covered the 10 most strongly associated items from both analyses: four of six items from the "doctor-patient relationship", two of five items from "medical care", and all items from "information and support" and "organization of services". No items from "accessibility" were among the 12 items. Recommending the GP to others was most strongly associated with the "emphatic", "patient-oriented", "informative and coordinating", and "competent/skilled" GP and to a lesser degree with accessibility to general practice.

  4. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults.

    Science.gov (United States)

    Sokal, Etienne M; Hoppenbrouwers, Karel; Vandermeulen, Corinne; Moutschen, Michel; Léonard, Philippe; Moreels, Andre; Haumont, Michèle; Bollen, Alex; Smets, Françoise; Denis, Martine

    2007-12-15

    To date, there is no commercially available vaccine to prevent infectious mononucleosis, a disease frequently induced by Epstein-Barr virus (EBV) infection in adolescents or adults devoid of preexisting immunity to the virus. A total of 181 EBV-seronegative, healthy, young adult volunteers were randomized in a double-blind fashion to receive either placebo or a recombinant EBV subunit glycoprotein 350 (gp350)/aluminum hydroxide and 3-O-desacyl-4'-monophosphoryl lipid A (AS04) candidate vaccine in a 3-dose regimen. The vaccine had demonstrable efficacy (mean efficacy rate, 78.0% [95% confidence interval {CI}, 1.0%-96.0%]) in preventing the development of infectious mononucleosis induced by EBV infection, but it had no efficacy in preventing asymptomatic EBV infection. One month after receipt of the final dose of gp350 vaccine, 98.7% of subjects showed seroconversion to anti-gp350 antibodies (95% CI, 85.5%-97.9%), and they remained anti-gp350 antibody positive for >18 months. Furthermore, there were no concerns regarding the safety or reactogenicity of the gp350/AS04 vaccine. These data support the clinical feasibility of using an EBV vaccine to prevent infectious mononucleosis. ClinicalTrials.gov identifier: NCT00430534.

  5. The Sperm-surface glycoprotein, SGP, is necessary for fertilization in the frog, Xenopus laevis.

    Science.gov (United States)

    Nagai, Keita; Ishida, Takuya; Hashimoto, Takafumi; Harada, Yuichirou; Ueno, Shuichi; Ueda, Yasushi; Kubo, Hideo; Iwao, Yasuhiro

    2009-06-01

    To identify a molecule involved in sperm-egg plasma membrane binding at fertilization, a monoclonal antibody against a sperm-surface glycoprotein (SGP) was obtained by immunizing mice with a sperm membrane fraction of the frog, Xenopus laevis, followed by screening of the culture supernatants based on their inhibitory activity against fertilization. The fertilization of both jellied and denuded eggs was effectively inhibited by pretreatment of sperm with intact anti-SGP antibody as well as its Fab fragment, indicating that the antibody recognizes a molecule on the sperm's surface that is necessary for fertilization. On Western blots, the anti-SGP antibody recognized large molecules, with molecular masses of 65-150 kDa and minor smaller molecules with masses of 20-28 kDa in the sperm membrane vesicles. SGP was distributed over nearly the entire surface of the sperm, probably as an integral membrane protein in close association with microfilaments. More membrane vesicles containing SGP bound to the surface were found in the animal hemisphere compared with the vegetal hemisphere in unfertilized eggs, but the vesicle-binding was not observed in fertilized eggs. These results indicate that SGP mediates sperm-egg membrane binding and is responsible for the establishment of fertilization in Xenopus.

  6. Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120.

    Science.gov (United States)

    deCamp, Allan C; Rolland, Morgane; Edlefsen, Paul T; Sanders-Buell, Eric; Hall, Breana; Magaret, Craig A; Fiore-Gartland, Andrew J; Juraska, Michal; Carpp, Lindsay N; Karuna, Shelly T; Bose, Meera; LePore, Steven; Miller, Shana; O'Sullivan, Annemarie; Poltavee, Kultida; Bai, Hongjun; Dommaraju, Kalpana; Zhao, Hong; Wong, Kim; Chen, Lennie; Ahmed, Hasan; Goodman, Derrick; Tay, Matthew Z; Gottardo, Raphael; Koup, Richard A; Bailer, Robert; Mascola, John R; Graham, Barney S; Roederer, Mario; O'Connell, Robert J; Michael, Nelson L; Robb, Merlin L; Adams, Elizabeth; D'Souza, Patricia; Kublin, James; Corey, Lawrence; Geraghty, Daniel E; Frahm, Nicole; Tomaras, Georgia D; McElrath, M Juliana; Frenkel, Lisa; Styrchak, Sheila; Tovanabutra, Sodsai; Sobieszczyk, Magdalena E; Hammer, Scott M; Kim, Jerome H; Mullins, James I; Gilbert, Peter B

    2017-01-01

    Although the HVTN 505 DNA/recombinant adenovirus type 5 vector HIV-1 vaccine trial showed no overall efficacy, analysis of breakthrough HIV-1 sequences in participants can help determine whether vaccine-induced immune responses impacted viruses that caused infection. We analyzed 480 HIV-1 genomes sampled from 27 vaccine and 20 placebo recipients and found that intra-host HIV-1 diversity was significantly lower in vaccine recipients (P ≤ 0.04, Q-values ≤ 0.09) in Gag, Pol, Vif and envelope glycoprotein gp120 (Env-gp120). Furthermore, Env-gp120 sequences from vaccine recipients were significantly more distant from the subtype B vaccine insert than sequences from placebo recipients (P = 0.01, Q-value = 0.12). These vaccine effects were associated with signatures mapping to CD4 binding site and CD4-induced monoclonal antibody footprints. These results suggest either (i) no vaccine efficacy to block acquisition of any viral genotype but vaccine-accelerated Env evolution post-acquisition; or (ii) vaccine efficacy against HIV-1s with Env sequences closest to the vaccine insert combined with increased acquisition due to other factors, potentially including the vaccine vector.

  7. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jianfang Chen

    Full Text Available Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α.A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed.The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression.HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer.

  8. Microsoft Dynamics GP 2013 financial management

    CERN Document Server

    Grieve, Ian

    2013-01-01

    A standard tutorial-based approach covering Microsoft Dynamics GP 2013 and its six financial modules. The book is intended to allow users to improve their system use and workflow by introducing new modules to assist in financial management.This book is for you if you're a Dynamics GP partner, or Dynamics GP user, primarily focused on delivering application optimizations. This book assumes that you have a working knowledge of Microsoft Dynamics GP and have an understanding of the requirements of financial management.

  9. Induction of ebolavirus cross-species immunity using retrovirus-like particles bearing the Ebola virus glycoprotein lacking the mucin-like domain

    Directory of Open Access Journals (Sweden)

    Ou Wu

    2012-01-01

    Full Text Available Abstract Background The genus Ebolavirus includes five distinct viruses. Four of these viruses cause hemorrhagic fever in humans. Currently there are no licensed vaccines for any of them; however, several vaccines are under development. Ebola virus envelope glycoprotein (GP1,2 is highly immunogenic, but antibodies frequently arise against its least conserved mucin-like domain (MLD. We hypothesized that immunization with MLD-deleted GP1,2 (GPΔMLD would induce cross-species immunity by making more conserved regions accessible to the immune system. Methods To test this hypothesis, mice were immunized with retrovirus-like particles (retroVLPs bearing Ebola virus GPΔMLD, DNA plasmids (plasmo-retroVLP that can produce such retroVLPs in vivo, or plasmo-retroVLP followed by retroVLPs. Results Cross-species neutralizing antibody and GP1,2-specific cellular immune responses were successfully induced. Conclusion Our findings suggest that GPΔMLD presented through retroVLPs may provide a strategy for development of a vaccine against multiple ebolaviruses. Similar vaccination strategies may be adopted for other viruses whose envelope proteins contain highly variable regions that may mask more conserved domains from the immune system.

  10. On πgp-continuous functions in topological spaces

    International Nuclear Information System (INIS)

    Park, Jin Han; Park, Jin Keun

    2004-01-01

    The concept of πgp-closed sets was introduced by Park [On πgp-closed sets in topological spaces, Indian J. Pure Appl. Math., in press]. The aim of this paper is to consider and characterize πgp-irresolute and πgp-continuous functions via the concept of πgp-closed sets and to relate these concepts to the classes of πGPO-compact spaces and πGP-connected spaces

  11. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    Science.gov (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  12. Targeted Delivery of GP5 Antigen of PRRSV to M Cells Enhances the Antigen-Specific Systemic and Mucosal Immune Responses

    Directory of Open Access Journals (Sweden)

    Luping Du

    2018-01-01

    Full Text Available Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide (PLGA nanoparticles (NPs with Ulex europaeus agglutinin 1 (UEA-1 and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5] or subunit vaccine ORF5-encoded glycoprotein (GP5 from exposure to the gastrointestinal (GI tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05. Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system.

  13. Targeted Delivery of GP5 Antigen of PRRSV to M Cells Enhances the Antigen-Specific Systemic and Mucosal Immune Responses

    Science.gov (United States)

    Du, Luping; Yu, Zhengyu; Pang, Fengjiao; Xu, Xiangwei; Mao, Aihua; Yuan, Wanzhe; He, Kongwang; Li, Bin

    2018-01-01

    Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells) within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with Ulex europaeus agglutinin 1 (UEA-1) and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5)] or subunit vaccine ORF5-encoded glycoprotein (GP5) from exposure to the gastrointestinal (GI) tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05). Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system. PMID:29423381

  14. The belonging of gpMuc, a glycoprotein from Mucuna pruriens seeds, to the Kunitz-type trypsin inhibitor family explains its direct anti-snake venom activity.

    Science.gov (United States)

    Scirè, Andrea; Tanfani, Fabio; Bertoli, Enrico; Furlani, Emiliano; Nadozie, Hope-Onyekwere N; Cerutti, Helena; Cortelazzo, Alessio; Bini, Luca; Guerranti, Roberto

    2011-07-15

    In Nigeria, Mucuna pruriens seeds are locally prescribed as an oral prophylactic for snake bite and it is claimed that when two seeds are swallowed they protect the individual for a year against snake bites. In order to understand the Mucuna pruriens antisnake properties, the proteins from the acqueous extract of seeds were purified by three chromatographic steps: ConA affinity chromatography, tandem anionic-cationic exchange and gel filtration, obtaining a fraction conventionally called gpMucB. This purified fraction was analysed by SDS-PAGE obtaining 3 bands with apparent masses ranging from 20 to 24 kDa, and by MALDI-TOF which showed two main peaks of 21 and 23 kDa and another small peak of 19 kDa. On the other hand, gel filtration analysis of the native protein indicated a molecular mass of about 70 kDa suggesting that in its native form, gpMucB is most likely an oligomeric multiform protein. Infrared spectroscopy of gpMucB indicated that the protein is particularly thermostable both at neutral and acidic pHs and that it is an all beta protein. All data suggest that gpMucB belongs to the Kunitz-type trypsin inhibitor family explaining the direct anti-snake venom activity of Mucuna pruriens seeds. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface.

    Directory of Open Access Journals (Sweden)

    Claudia S Priglinger

    Full Text Available Proliferative vitreoretinopathy (PVR is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers

  16. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    Science.gov (United States)

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and

  17. Dominant-negative effect of hetero-oligomerization on the function of the human immunodeficiency virus type 1 envelope glycoprotein complex

    International Nuclear Information System (INIS)

    Herrera, Carolina; Klasse, Per Johan; Kibler, Christopher W.; Michael, Elizabeth; Moore, John P.; Beddows, Simon

    2006-01-01

    The human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein forms trimers that mediate interactions with the CD4 receptor and a co-receptor on the target cell surface, thereby triggering viral fusion with the cell membrane. Cleavage of Env into its surface, gp120, and transmembrane, gp41, moieties is necessary for activation of its fusogenicity. Here, we produced pseudoviruses with phenotypically mixed wild-type (Wt) and mutant, cleavage-incompetent Env in order to quantify the effects of incorporating uncleaved Env on virion infectivity, antigenicity and neutralization sensitivity. We modeled the relative infectivity of three such phenotypically mixed viral strains, JR-FL, HXBc2 and a derivative of the latter, 3.2P, as a function of the relative amount of Wt Env. The data were fit very closely (R 2 > 0.99) by models which assumed that only Wt homotrimers were functional, with different approximate thresholds of critical numbers of functional trimers per virion for the three strains. We also produced 3.2P pseudoviruses containing both a cleavage-competent Env that is defective for binding the neutralizing monoclonal antibody (NAb) 2G12, and a cleavage-incompetent Env that binds 2G12. The 2G12 NAb was not able to reduce the infectivity of these pseudoviruses detectably. Their neutralization by the CD4-binding site-directed agents CD4-IgG2 and NAb b12 was also unaffected by 2G12 binding to uncleaved Env. These results further strengthen the conclusion that only homotrimers consisting of cleaved Env are functional. They also imply that the function of a trimer is unaffected sterically by the binding of an antibody to an adjacent trimer

  18. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  19. Immunization of rabbits with highly purified, soluble, trimeric human immunodeficiency virus type 1 envelope glycoprotein induces a vigorous B cell response and broadly cross-reactive neutralization.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available Previously we described induction of cross-reactive HIV-1 neutralizing antibody responses in rabbits using a soluble HIV-1 gp140 envelope glycoprotein (Env in an adjuvant containing monophosphoryl lipid A (MPL and QS21 (AS02A. Here, we compared different forms of the same HIV-1 strain R2 Env for antigenic and biophysical characteristics, and in rabbits characterized the extent of B cell induction for specific antibody expression and secretion and neutralizing responses. The forms of this Env that were produced in and purified from stably transformed 293T cells included a primarily dimeric gp140, a trimeric gp140 appended to a GCN4 trimerization domain (gp140-GCN4, gp140-GCN4 with a 15 amino acid flexible linker between the gp120 and gp41 ectodomain (gp140-GCN4-L, also trimeric, and a gp140 with the flexible linker purified from cell culture supernatants as either dimer (gp140-L(D or monomer (gp140-L(M. Multimeric states of the Env proteins were assessed by native gel electrophoresis and analytical ultracentrifugation. The different forms of gp140 bound broadly cross-reactive neutralizing (BCN human monoclonal antibodies (mAbs similarly in ELISA and immunoprecipitation assays. All Envs bound CD4i mAbs in the presence and absence of sCD4, as reported for the R2 Env. Weak neutralization of some strains of HIV-1 was seen after two additional doses in AS02A. Rabbits that were given a seventh dose of gp140-GCN4-L developed BCN responses that were weak to moderate, similar to our previous report. The specificity of these responses did not appear similar to that of any of the known BCN human mAbs. Induction of spleen B cell and plasma cells producing immunoglobulins that bound trimeric gp140-GCN4-L was vigorous, based on ELISpot and flow cytometry analyses. The results demonstrate that highly purified gp140-GCN4-L trimer in adjuvant elicits BCN responses in rabbits accompanied by vigorous B cell induction.

  20. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C M; Nielsen, C

    1989-01-01

    The binding of 13 different lectins to gp120 partially purified from two HIV-1 isolates and one HIV-2 isolate was studied by in situ staining on electrophoretically separated and electroblotted HIV antigens. The lectins concanavalin A, wheat germ agglutinin, Lens culinaris agglutinin, Vicia faba...

  1. Role of Human Breast Cancer Related Protein versus P-Glycoprotein as an Efflux Transporter for Benzylpenicillin: Potential Importance at the Blood-Brain Barrier.

    Directory of Open Access Journals (Sweden)

    Yangfang Li

    Full Text Available While the blood-brain barrier (BBB protects the brain by controlling the access of solutes and toxic substances to brain, it also limits drug entry to treat central nervous system disorders. Many drugs are substrates for ATP-binding cassette (ABC transporters at the BBB that limit their entry into the brain. The role of those transporters in limiting the entry of the widely prescribed therapeutic, benzylpenicillin, has produced conflicting results. This study investigated the possible potential involvement of P-glycoprotein (P-gp and breast cancer resistance protein (BCRP, two ABC transporters, in benzylpenicillin transport at BBB in human using MDCKII cells overexpressing those transporters as well as pharmacological inhibition. MDCKII cells overexpressing human BCRP (MDCKII-BCRP but not those overexpressing human P-gp (MDCKII-MDR cells had reduced [3H]benzylpenicillin uptake. Similarly, inhibiting BCRP increased [3H]benzylpenicillin uptake in MDCKII-BCRP cells, while inhibiting P-gp in MDCKII-MDR cells had no effect on uptake although there was evidence that benzylpenicillin is a substrate for canine P-gp. While inhibiting BCRP affected [3H]benzylpenicillin cell concentrations it did not affect transepithelial flux in MDCKII-BCRP cells. In summary, the results indicate that human BCRP and not human P-gp is involved in benzylpenicillin transport. However, targeting BCRP alone was not sufficient to alter transepithelial flux in MDCKII cells. Whether it would be sufficient to alter blood-to-brain flux at the human BBB remains to be investigated.

  2. Glycoprotein expression by adenomatous polyps of the colon

    Science.gov (United States)

    Roney, Celeste A.; Xie, Jianwu; Xu, Biying; Jabour, Paul; Griffiths, Gary; Summers, Ronald M.

    2008-03-01

    Colon cancer is the second leading cause of cancer related deaths in the United States. Specificity in diagnostic imaging for detecting colorectal adenomas, which have a propensity towards malignancy, is desired. Adenomatous polyp specimens of the colon were obtained from the mouse model of colorectal cancer called adenomatous polyposis coli-multiple intestinal neoplasia (APC Min). Histological evaluation, by the legume protein Ulex europaeus agglutinin I (UEA-1), determined expression of the glycoprotein α-L-fucose. FITC-labelled UEA-1 confirmed overexpression of the glycoprotein by the polyps on fluorescence microscopy in 17/17 cases, of which 13/17 included paraffin-fixed mouse polyp specimens. In addition, FITC-UEA-1 ex vivo multispectral optical imaging of 4/17 colonic specimens displayed over-expression of the glycoprotein by the polyps, as compared to non-neoplastic mucosa. Here, we report the surface expression of α-L-fucosyl terminal residues by neoplastic mucosal cells of APC specimens of the mouse. Glycoprotein expression was validated by the carbohydrate binding protein UEA-1. Future applications of this method are the development of agents used to diagnose cancers by biomedical imaging modalities, including computed tomographic colonography (CTC). UEA-1 targeting to colonic adenomas may provide a new avenue for the diagnosis of colorectal carcinoma by CT imaging.

  3. Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model.

    Science.gov (United States)

    Karlsson, Louise; Hiemke, Christoph; Carlsson, Björn; Josefsson, Martin; Ahlner, Johan; Bengtsson, Finn; Schmitt, Ulrich; Kugelberg, Fredrik C

    2011-05-01

    P-glycoprotein (P-gp) plays an important role in the efflux of drugs from the brain back into the bloodstream and can influence the pharmacokinetics and pharmacodynamics of drug molecules. To our knowledge, no studies have reported pharmacodynamic effects of any antidepressant drug in the P-gp knockout mice model. The aim of this study was to investigate the enantiomeric venlafaxine and metabolite concentrations in serum and brain of abcb1ab⁻/⁻ mice compared to wild-type mice upon chronic dosing, and to assess the effect of venlafaxine treatment on open-field behavior. P-gp knockout and wild-type mice received two daily intraperitoneal injections of venlafaxine (10 mg/kg) over ten consecutive days. Locomotor and rearing activities were assessed on days 7 and 9. After 10 days, drug and metabolite concentrations in brain and serum were determined using an enantioselective LC/MS/MS method. The brain concentrations of venlafaxine and its three demethylated metabolites were two to four times higher in abcb1ab⁻/⁻ mice compared to abcb1ab+/+ mice. The behavioral results indicated an impact on exploration-related behaviors in the open-field as center activity was increased, and rears were decreased by venlafaxine treatment. Our results show that P-gp at the blood-brain barrier plays an important role in limiting brain entry of the enantiomers of venlafaxine and its metabolites after chronic dosing. Taken together, the present pharmacokinetic and pharmacodynamic findings offer the possibility that the expression of P-gp in patients may be a contributing factor for limited treatment response.

  4. Capsaicin pretreatment enhanced the bioavailability of fexofenadine in rats by P-glycoprotein modulation: in vitro, in situ and in vivo evaluation.

    Science.gov (United States)

    Bedada, Satish Kumar; Appani, Ramgopal; Boga, Praveen Kumar

    2017-06-01

    Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats. The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats. The intestinal transport and apparent permeability (P app ) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (K a ), fraction absorbed (F ab ) and effective permeability (P eff ) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (C max ) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats. Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions.

  5. Clinical implications of the detection of antibodies directed against domain 1 of β2-glycoprotein 1 in thrombotic antiphospholipid syndrome.

    Science.gov (United States)

    Montalvão, Silmara; Elídio, Priscila Soares; da Silva Saraiva, Sabrina; de Moraes Mazetto, Bruna; Colella, Marina Pereira; de Paula, Erich Vinícius; Appenzeller, Simone; Annichino-Bizzacchi, Joyce; Orsi, Fernanda Andrade

    2016-12-01

    Antibodies directed against domain 1 of β2 glycoprotein 1 (aβ2GP1-Dm1) have been involved in the immunopathogenesis of antiphospholipid syndrome (APS). However, the clinical relevance of aβ2GP1-Dm1 in thrombotic APS has not yet been fully explored. To determine the frequency of aβ2GP1-Dm1 in a cohort of patients with thrombotic APS, and to evaluate whether testing for aβ2GP1-Dm1 could have a clinical impact upon the risk assessment of the disease. Patients were tested for aβ2GP1-Dm1 antibodies by chemiluminescence (BioFlash/AcuStar®, ES). The presence of aβ2GP1-Dm1 was evaluated in different clinical presentations of the disease. Eight-four patients with a history of venous or arterial thrombosis were included. Forty-five (54%) patients had aβ2GP1 antibodies and 40% of them were positive for aβ2GP1-Dm1. Levels of aβ2GP1-Dm1 were higher in patients with systemic autoimmune disease (AUC=0.665; 95% CI=0.544-0.786; P=0.01), positive antinuclear antibody (AUC=0.654; 95% CI=0.535-0.772; P=0.01), triple antiphospholipid antibody (aPL) positivity (AUC=0.680; 95% CI=0.534-0.825; P=0.02) and positive lupus anticoagulant (AUC=0.639; 95% CI=0.502-0.776; P=0.07). In this cohort, aβ2GP1-Dm1 antibodies were not associated with the site of the first thrombosis (OR=0,62, 95% CI=0.20-1.94, P=0.42), thrombosis recurrence (OR=1.0, 95% CI=0.37-2.71, P=1.0) or pregnancy morbidity (OR=1.5, 95% CI=0.33-7.34, P=0.58). In multivariate analysis, positivity for aβ2GP1-Dm1 antibodies was associated with the diagnosis of systemic autoimmune disease (OR=4.01, 95% CI=1.14-14.2; P=0.03) and triple aPL positivity (OR=3.59, 95% CI=0.87-14.85; P=0.07). In the present cohort of thrombotic-APS patients, aβ2GP1-Dm1 antibodies were related to the diagnosis of systemic autoimmunity and complex serological profile of the disease, as triple aPL positivity and positive antinuclear antibody. Thus, our results suggest that testing for aβ2GP1-Dm1 antibodies may be useful for improving APS risk

  6. Glycoprotein H of herpes simplex virus type 1 requires glycoprotein L for transport to the surfaces of insect cells

    NARCIS (Netherlands)

    Westra, DF; Glazenburg, KL; Harmsen, MC; Tiran, A; Scheffer, AJ; Welling, GW; The, TH; WellingWester, S

    In mammalian cells, formation of heterooligomers consisting of the glycoproteins H and L (gH and gL) of herpes simplex virus type 1 is essential for the cell-to-cell spread of virions and for the penetration of virions into cells. We examined whether formation of gH1/gL1 heterooligomers and cell

  7. Rat macrophages: membrane glycoproteins in differentiation and function

    NARCIS (Netherlands)

    van den Berg, T. K.; Döpp, E. A.; Dijkstra, C. D.

    2001-01-01

    Macrophages (mphi) play a crucial role in the immune system. The rat offers unique advantages for studying the biology of mphi. Firstly, monoclonal antibodies (mAb) against many rat mphi surface glycoproteins have become available. These have not only demonstrated a considerable heterogeneity among

  8. The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells

    International Nuclear Information System (INIS)

    Losfeld, Marie-Estelle; Khoury, Diala El; Mariot, Pascal; Carpentier, Mathieu; Krust, Bernard; Briand, Jean-Paul; Mazurier, Joel; Hovanessian, Ara G.; Legrand, Dominique

    2009-01-01

    Nucleolin is an ubiquitous nucleolar phosphoprotein involved in fundamental aspects of transcription regulation, cell proliferation and growth. It has also been described as a shuttling molecule between nucleus, cytosol and the cell surface. Several studies have demonstrated that surface nucleolin serves as a receptor for various extracellular ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. Previously, we reported that nucleolin in the extranuclear cell compartment is a glycoprotein containing N- and O-glycans. In the present study, we show that glycosylation is an essential requirement for surface nucleolin expression, since it is prevented when cells are cultured in the presence of tunicamycin, an inhibitor of N-glycosylation. Accordingly, surface but not nuclear nucleolin is radioactively labeled upon metabolic labeling of cells with [ 3 H]glucosamine. Besides its well-demonstrated role in the internalization of specific ligands, here we show that ligand binding to surface nucleolin could also induce Ca 2+ entry into cells. Indeed, by flow cytometry, microscopy and patch-clamp experiments, we show that the HB-19 pseudopeptide, which binds specifically surface nucleolin, triggers rapid and intense membrane Ca 2+ fluxes in various types of cells. The use of several drugs then indicated that Store-Operated Ca 2+ Entry (SOCE)-like channels are involved in the generation of these fluxes. Taken together, our findings suggest that binding of an extracellular ligand to surface nucleolin could be involved in the activation of signaling pathways by promoting Ca 2+ entry into cells

  9. Optional part-time and longer GP training modules in GP practices associated with more trainees becoming GPs - a cohort study in Switzerland.

    Science.gov (United States)

    Studerus, Lara; Ahrens, Regina; Häuptle, Christian; Goeldlin, Adrian; Streit, Sven

    2018-01-05

    Switzerland, like many other countries, has a shortage of General Practitioners (GPs). Optional GP training modules in GP practices were offered during the at least 5-year GP training program to increase student and trainee interest in becoming a GP. The training modules had not yet been evaluated. We determined how many Swiss GP trainees became practicing GPs after they completed optional training modules, and if longer modules were associated with higher rates of GP specialization. In this population-based cohort study, we included GP trainees who chose an optional GP training module in GP practice, provided by the Foundation to Promote Training in General Practice (WHM) between 2006 and 2015. GP trainees were invited to complete an online survey to assess the primary outcome (becoming a practicing GP by 2016). Data on non-responders was collected via an internet search. We calculated univariate time-to-event curves to become a practicing GP, stratified by trainee's gender, length, part-time training, and number of years after graduation until training modules were completed. We used a multivariate model to adjust for characteristics of participants, training, and satisfaction with training modules. We assessed primary outcome for 351 (92.1%) of 381 former GP trainees who participated in a WHM program between 2006 and 2015. Of these 218 (57%) were practicing GPs by 2016. When focusing on the trainees who had completed training between 2006 and 2010, the rate of practicing GPs was even 73%. Longer (p = 0.018) and part-time training modules (p = 0.003) were associated with higher rates of being a practicing GP. Most (81%) practicing GPs thought their optional GP training module was (very) important in their choice of specialty. GP trainees who spent more time training in a GP practice, or who trained part-time were more likely to become practicing GPs. Most (80%) rated their training module as (very) important in their choice of career, highlighting that

  10. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    International Nuclear Information System (INIS)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  11. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vaibhav [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Darmani, Nissar A.; Thrush, Gerald R. [Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Shukla, Deepak, E-mail: dshukla@uic.edu [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  12. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  13. Antibody to gp41 MPER alters functional properties of HIV-1 Env without complete neutralization.

    Directory of Open Access Journals (Sweden)

    Arthur S Kim

    2014-07-01

    Full Text Available Human antibody 10E8 targets the conserved membrane proximal external region (MPER of envelope glycoprotein (Env subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design.

  14. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA

    Directory of Open Access Journals (Sweden)

    Menzel Diedrik

    2011-02-01

    Full Text Available Abstract Background Hydroxyproline rich glycoproteins (HRGPs are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis, and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs, mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs, proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM. This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP

  15. GP140/CDCPI in the Development of Prostate Cancer Metastasis

    Science.gov (United States)

    2013-09-01

    localization of Gp140 to the plasma membrane of prostate epithelial cells is decreased or lost in PIN, invasive and metastatic prostate cancers when...Matrigel (BD Biosciences, Franklin Lakes, NJ) at 2000 cells per well. Spheroid structures were extracted and expanded in regu- lar tissue culture, and...cell surface (Figure 2A). Some surface-negative cells express E-cadherin in the cytoplasm. Cells were cultured in Matrigel, and spheroid structures

  16. Overexpression of human virus surface glycoprotein precursors induces cytosolic unfolded protein response in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Sasnauskas Kęstutis

    2011-05-01

    Full Text Available Abstract Background The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN and measles hemagglutinin (MeH in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach. Results Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A and is closely associated with small heat shock proteins (sHsps that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response. Conclusions Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of

  17. Effects of resveratrol on P-glycoprotein and cytochrome P450 3A in vitro and on pharmacokinetics of oral saquinavir in rats

    Directory of Open Access Journals (Sweden)

    Li JP

    2016-11-01

    Full Text Available Jiapeng Li,1,2 Yang Liu,2 Jingru Zhang,1,2 Xiaotong Yu,1,2 Xiaoling Wang,1 Libo Zhao11Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, 2Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China Background: The intestinal cytochrome P450 3A (CYP 3A and P-glycoprotein (P-gp present a barrier to the oral absorption of saquinavir (SQV. Resveratrol (RESV has been indicated to have modulatory effects on P-gp and CYP 3A. Therefore, this study was to investigate the effects of RESV on P-gp and CYP 3A activities in vitro and in vivo on oral SQV pharmacokinetics in rats.Methods: In vitro, intestinal microsomes were used to evaluate RESV effect on CYP 3A-mediated metabolism of SQV; MDR1-expressing Madin–Darby canine kidney (MDCKII-MDR1 cells were employed to assess the impact of RESV on P-gp-mediated efflux of SQV. In vivo effects were studied using 10 rats randomly assigned to receive oral SQV (30 mg/kg with or without RESV (20 mg/kg. Serial blood samples were obtained over the following 24 h. Concentrations of SQV in samples were ascertained using high-performance liquid chromatography-tandem mass spectrometry analysis.Results: RESV (1–100 µM enhanced residual SQV (% of control in a dose-dependent manner after incubation with intestinal microsomes. RESV (1–100 µM reduced the accumulation of SQV in MDCKII-MDR1 cells in a concentration-dependent manner. A double peaking phenomenon was observed in the plasma SQV profiles in rats. The first peak of plasma SQV concentration was increased, but the second peak was reduced by coadministration with RESV. The mean AUC0–∞ of SQV was slightly decreased, with no statistical significance probably due to the high individual variation.Conclusion: RESV can alter the plasma SQV concentration profiles, shorten the Tmax of SQV. RESV might also cause a slight decrease tendency in the

  18. MC225, a Novel Probe for P-glycoprotein PET Imaging at the Blood-brain Barrier: In Vitro Cardiovascular Safety Evaluation.

    Science.gov (United States)

    Fusi, Fabio; Durante, Miriam; Gorelli, Beatrice; Perrone, Maria Grazia; Colabufo, Nicola Antonio; Saponara, Simona

    2017-12-01

    The P-glycoprotein (P-gp) substrate MC225, at concentrations ≤10 nM, is a valuable radiotracer for positron emission tomography imaging of P-gp function in rats and mice. The aim of this study was to evaluate its potential toxic hazard toward the cardiovascular system through an in-depth analysis of its effects on rat aorta rings, on CaV1.2 channel current (ICa1.2) of A7r5 cells and on Langendorff-perfused rat heart. In aortic rings, MC225 relaxed phenylephrine-induced contraction in a concentration-dependent and endothelium-independent manner, with an IC50 value of about 1 μM. At concentrations ≥3 μM, it antagonized the response to cumulative concentrations of K. MC225, 1 and 10 μM, inhibited ICa1.2 by 15% and 31%, respectively, without affecting either current activation or inactivation kinetics. In Langendorff-perfused rat hearts, only 10 μM MC225 significantly decreased left ventricular pressure and increased coronary perfusion pressure while reducing heart rate and prolonging the cardiac cycle length as well as the atrioventricular conduction time (PQ interval) on the electrocardiogram. Lower concentrations of the drug were ineffective. These findings demonstrate that MC225-induced cardiovascular effects took place at concentrations that are at least 2 orders of magnitude higher than those allowing in vivo measurement of P-gp function. Therefore, MC225 represents a promising positron emission tomography tool for in vivo straightforward P-gp quantification.

  19. Effect of PlA1/A2 glycoprotein IIIa gene polymorphism on the long-term outcome after successful coronary stenting

    Directory of Open Access Journals (Sweden)

    Riddell John

    2007-11-01

    Full Text Available Abstract Aim To prospectively determine the role of platelet glycoprotein IIIa (GP IIIa gene PlA1/PlA2 polymorphism on the long-term clinical outcome in patients with coronary artery disease undergoing coronary stenting. Design and setting Prospective observational study in the University Hospital of Caen (France. Patients and methods 1 111 symptomatic consecutive Caucasian patients treated with percutaneous coronary intervention including stent implantation underwent genotyping for GP IIIa PlA1/A2. Main outcome measures Long-term clinical outcome in terms of the rate of major adverse cardiac events (MACE, ie death from any cause, non-fatal Q wave or non Q wave myocardial infarction, and need for coronary revascularisation was obtained and subsequently stratified according to the GP IIIa PlA1/A2 polymorphism. Results Three groups of patients were determined according to the GP IIIa PlA1/A2 polymorphism (71.6% had the A1/A1, 25.8% had the A1/A2 and 2.6% had the A2/A2 genotype. These three groups were comparable for all clinical characteristics including sex ratio, mean age, vascular risk factors, previous coronary events, baseline angiographic exam, indication for the percutaneous coronary intervention and drug therapy. The incidence of MACE was similar in these 3 groups of patients during a mean follow-up period of 654+/-152 days. Independent risk factors for MACE were a left ventricular ejection fraction Conclusion The GP IIIa PlA1/A2 polymorphism does not influence the clinical long-term outcome in patients with symptomatic coronary disease undergoing percutaneous coronary intervention with stent implantation.

  20. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage

    Directory of Open Access Journals (Sweden)

    Kuhn Andreas

    2011-09-01

    Full Text Available Abstract Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.

  1. Tamoxifen reduces P-gp-mediated multidrug resistance via inhibiting the PI3K/Akt signaling pathway in ER-negative human gastric cancer cells.

    Science.gov (United States)

    Mao, Zonglei; Zhou, Jin; Luan, Junwei; Sheng, Weihua; Shen, Xiaochun; Dong, Xiaoqiang

    2014-03-01

    Multidrug resistance (MDR), mediated by overexpression of drug efflux transporters such as P-glycoprotein (P-gp), is a major problem limiting successful chemotherapy of gastric cancer. Tamoxifen (TAM), a triphenylethylene nonsteroidal antiestrogen agent, shows broad-spectrum antitumor properties. Emerging studies demonstrated that TAM could significantly reduce the MDR in a variety of human cancers. Here we investigated the effects and possible underlying mechanisms of action of TAM on the reversion of MDR in ER-negative human gastric cancer cells. Our results demonstrated that in MDR phenotype SGC7901/CDDP gastric cancer cells TAM dramatically lowered the IC50 of CDDP, 5-FU and ADM, increased the intracellular Rhodamine123 accumulation and induced G0/G1 phase arrest, while G2/M phase decreased accordingly. Furthermore, at the molecular level, TAM substantially decreased the expression of P-gp, p-Akt and the Akt-regulated downstream effectors such as p-GSK-3β, p-BAD, Bcl-XL and cyclinD1 proteins without affecting the expression of t-Akt, t-GSK-3β, t-BAD proteins in SGC7901/CDDP cells. Thus, our findings demonstrate that TAM reverses P-gp-mediated gastric cancer cell MDR via inhibiting the PI3K/Akt signaling pathway. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Design and synthesis of an antigenic mimic of the Ebola glycoprotein

    OpenAIRE

    Rutledge, Ryan D.; Huffman, Brian J.; Cliffel, David E.; Wright, David W.

    2008-01-01

    An antigenic mimic of the Ebola glycoprotein was synthesized and tested for its ability to be recognized by an anti-Ebola glycoprotein antibody. Epitope-mapping procedures yielded a suitable epitope that, when presented on the surface of a nanoparticle, forms a structure that is recognized by an antibody specific for the native protein. This mimic-antibody interaction has been quantitated through ELISA and QCM-based methods and yielded an affinity (Kd = 12 × 10−6 M) within two orders of magni...

  3. An unusual dependence of human herpesvirus-8 Glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Science.gov (United States)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpes virus 8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: 1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; 2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, 3) coexpression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis. PMID:19747451

  4. Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[11C]verapamil PET

    International Nuclear Information System (INIS)

    Kuntner, Claudia; Wanek, Thomas; Stundner, Gloria; Bankstahl, Jens P.; Bankstahl, Marion; Loescher, Wolfgang; Stanek, Johann; Mueller, Markus; Karch, Rudolf; Brauner, Rebecca; Meier, Martin; Ding, Xiaoqi; Langer, Oliver

    2010-01-01

    Overactivity of the multidrug efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) is believed to play an important role in resistance to central nervous system drug treatment. (R)-[ 11 C]verapamil (VPM) PET can be used to measure the function of P-gp at the BBB, but low brain uptake of VPM hampers the mapping of regional differences in cerebral P-gp function and expression. The aim of this study was to evaluate the dose-response relationship of two potent P-gp inhibitors and to investigate if increased brain uptake of VPM mediated by P-gp inhibition can be used to assess regional differences in P-gp activity. Two groups of Sprague-Dawley rats (n = 12) underwent single VPM PET scans at 120 min after administration of different doses of the P-gp inhibitors tariquidar and elacridar. In an additional six rats, paired VPM PET scans were performed before and after administration of 3 mg/kg tariquidar. Inhibitor administration resulted in an up to 11-fold increase in VPM brain distribution volumes (DV) with half-maximum effective dose (ED 50 ) values of 3.0 ± 0.2 and 1.2 ± 0.1 mg/kg for tariquidar and elacridar, respectively. In paired PET scans, 3 mg/kg tariquidar resulted in regionally different enhancement of brain activity distribution, with lowest DV in cerebellum and highest DV in thalamus. Our data show that tariquidar and elacridar are able to increase VPM brain distribution in rat brain up to 11-fold over baseline at maximum effective doses, with elacridar being about three times more potent than tariquidar. Regional differences in tariquidar-induced modulation of VPM brain uptake point to regional differences in cerebral P-gp function and expression in rat brain. (orig.)

  5. Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry.

    Directory of Open Access Journals (Sweden)

    Rachid Sougrat

    2007-05-01

    Full Text Available The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV, are heterodimers of a transmembrane glycoprotein (usually gp41, and a surface glycoprotein (gp120, which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.

  6. The RSV F and G glycoproteins interact to form a complex on the surface of infected cells

    International Nuclear Information System (INIS)

    Low, Kit-Wei; Tan, Timothy; Ng, Ken; Tan, Boon-Huan; Sugrue, Richard J.

    2008-01-01

    In this study, the interaction between the respiratory syncytial virus (RSV) fusion (F) protein, attachment (G) protein, and small hydrophobic (SH) proteins was examined. Immunoprecipitation analysis suggested that the F and G proteins exist as a protein complex on the surface of RSV-infected cells, and this conclusion was supported by ultracentrifugation analysis that demonstrated co-migration of surface-expressed F and G proteins. Although our analysis provided evidence for an interaction between the G and SH proteins, no evidence was obtained for a single protein complex involving all three of the virus proteins. These data suggest the existence of multiple virus glycoprotein complexes within the RSV envelope. Although the stimulus that drives RSV-mediated membrane fusion is unknown, the association between the G and F proteins suggest an indirect role for the G protein in this process

  7. Th1-like human T-cell clones recognizing Leishmania gp63 inhibit Leishmania major in human macrophages

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Bendtzen, K

    1994-01-01

    The major surface protease of Leishmania major, gp63, has been suggested as a vaccine candidate for cutaneous leishmaniasis. In this study gp63 was purified from L. major promastigotes. A panel of human T-cell clones recognizing this protein were generated from individuals who had previously had...... resembling Th1 cells. Autologous mononuclear cells and Epstein-Barr virus-transformed B cell lines were equally efficient in presenting the antigen to the T cells. The gp63 reactive T cells induced resistance to infection in cultured human macrophages by L. major. The data confirm that human CD4+ T cells...... recognizing gp63 can take part in the host defence against L. major infections....

  8. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  9. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate......-binding activity and was dependent on glycosylation of gp120. Native dodecameric SP-D bound to HIV gp120 more strongly than native trimeric SP-D. Since one common polymorphic form of SP-D is predominantly expressed as trimers and associated with lower blood levels, these individuals may have less effective innate...

  10. Tacrolimus is a class II low-solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats.

    Science.gov (United States)

    Tamura, Shigeki; Ohike, Atsuo; Ibuki, Rinta; Amidon, Gordon L; Yamashita, Shinji

    2002-03-01

    The objective of this study is to investigate the role of P-glycoprotein (P-gp), a membrane efflux pump associated with multidrug resistance (MDR) and a known substrate for tacrolimus, in determining the regional intestinal permeability of tacrolimus in rats. Thus, isolated segments of rat jejunum, ileum, or colon were perfused with tacrolimus solutions containing polyethoxylated hydrogenated castor oil 60 surfactant, and with or without verapamil, a P-gp substrate used to reverse the MDR phenotype. The results indicated that the intrinsic permeability of tacrolimus in the jejunum, calculated on the basis of the concentration of non-micellized free tacrolimus, was quite high ( approximately 1.4 x 10(-4) cm/s). The apparent permeability (P(app)) in the jejunum was unaffected by the presence of verapamil; however, the P(app) in the ileum and the colon increased significantly in the presence of verapamil and were similar to the values observed in the jejunum. The results suggest that systemic absorption of tacrolimus from the gastrointestinal tract could be significantly affected by P-gp efflux mechanisms. It is also possible that differences in P-gp function at various intestinal sites in a subject or at a given intestinal site in various subjects could lead to large intra- and interindividual variability in bioavailability of tacrolimus following oral administration. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association .

  11. Anti-EBOV GP IgGs Lacking α1-3-Galactose and Neu5Gc Prolong Survival and Decrease Blood Viral Load in EBOV-Infected Guinea Pigs.

    Directory of Open Access Journals (Sweden)

    Olivier Reynard

    Full Text Available Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1-3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV infection. For this purpose, a double knock-out pig lacking α1-3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1-3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection.

  12. Anti-EBOV GP IgGs Lacking α1-3-Galactose and Neu5Gc Prolong Survival and Decrease Blood Viral Load in EBOV-Infected Guinea Pigs

    Science.gov (United States)

    Reynard, Olivier; Jacquot, Frédéric; Evanno, Gwénaëlle; Mai, Hoa Le; Martinet, Bernard; Duvaux, Odile; Bach, Jean-Marie; Conchon, Sophie; Judor, Jean-Paul; Perota, Andrea; Lagutina, Irina; Duchi, Roberto; Lazzari, Giovanna; Le Berre, Ludmilla; Perreault, Hélène; Lheriteau, Elsa; Raoul, Hervé; Volchkov, Viktor; Galli, Cesare; Soulillou, Jean-Paul

    2016-01-01

    Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1–3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV) infection. For this purpose, a double knock-out pig lacking α1–3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1–3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection. PMID:27280712

  13. Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET.

    Science.gov (United States)

    Bankstahl, Jens P; Kuntner, Claudia; Abrahim, Aiman; Karch, Rudolf; Stanek, Johann; Wanek, Thomas; Wadsak, Wolfgang; Kletter, Kurt; Müller, Markus; Löscher, Wolfgang; Langer, Oliver

    2008-08-01

    The multidrug efflux transporter P-glycoprotein (P-gp) is expressed in high concentrations at the blood-brain barrier (BBB) and is believed to be implicated in resistance to central nervous system drugs. We used small-animal PET and (R)-11C-verapamil together with tariquidar, a new-generation P-gp modulator, to study the functional activity of P-gp at the BBB of rats. To enable a comparison with human PET data, we performed kinetic modeling to estimate the rate constants of radiotracer transport across the rat BBB. A group of 7 Wistar Unilever rats underwent paired (R)-11C-verapamil PET scans at an interval of 3 h: 1 baseline scan and 1 scan after intravenous injection of tariquidar (15 mg/kg, n = 5) or vehicle (n = 2). After tariquidar administration, the distribution volume (DV) of (R)-11C-verapamil was 12-fold higher than baseline (3.68 +/- 0.81 vs. 0.30 +/- 0.08; P = 0.0007, paired t test), whereas the DVs were essentially the same when only vehicle was administered. The increase in DV could be attributed mainly to an increased influx rate constant (K1) of (R)-11C-verapamil into the brain, which was about 8-fold higher after tariquidar. A dose-response assessment with tariquidar provided an estimated half-maximum effect dose of 8.4 +/- 9.5 mg/kg. Our data demonstrate that (R)-11C-verapamil PET combined with tariquidar administration is a promising approach to measure P-gp function at the BBB.

  14. Association between platelet glycoprotein Ia C807T gene polymorphism and ischemic stroke: a meta-analysis in a separate ethnic group.

    Science.gov (United States)

    Huang, Xiao-Yun; Fu, Wen-Jin; Mei, Zhi-Zhong; Yu, Ying-Li; Huang, Yi-Hong; Lin, Han; Chen, Jian-Jun; Wang, Ming-Xia; Guan, Shao-Bing; Fang, Hao-Wei

    2017-11-30

    Many studies have been examined the association of platelet glycoprotein (GP) Ia C807T polymorphism with ischemic stroke (IS) susceptibility. However, the results of these studies are inconsistent. To further assess the effects of GP Ia C807T polymorphism on the risk of IS, a meta-analysis was performed in a separate ethnic group. Relevant studies were identified using PubMed and Chinese databases through January 2017. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the associations. Finally, 13 studies contained 2438 IS cases and 2308 controls included. In the total analyses, a significantly elevated risk of IS was associated with all variants of GP Ia C807T in the Chinese population (T vs C: OR = 1.24, 95% CI = 1.09-1.40; TT vs CC: OR = 1.59, 95% CI = 1.17-2.15; TT and CT combined vs CC: OR = 1.32, 95% CI = 1.09-1.59; TT vs CC and CT: OR = 1.35, 95% CI = 1.04-1.76). In the subgroup analyses stratified by ethnicity and geographic areas, it revealed the significant results in Chinese Han and in South China. This meta-analysis provides the evidence that GP Ia C807T polymorphism may contribute to the IS development in the Chinese population, especially in South China, and further studies in other ethic groups are required for definite conclusions.

  15. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  16. (R-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Directory of Open Access Journals (Sweden)

    Lammertsma Adriaan A

    2011-01-01

    Full Text Available Abstract Background Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp expression and functionality at an early stage after induction of status epilepticus by kainate. Methods (R-[11C]verapamil, which is currently the most frequently used positron emission tomography (PET ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control treated rats, at 7 days after treatment. To investigate the effect of P-gp on (R-[11C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. (R-[11C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles as well as by population mixed effects modelling (NONMEM. Results All data analysis approaches indicated only modest differences in brain distribution of (R-[11C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats. Conclusions P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.

  17. (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    International Nuclear Information System (INIS)

    Syvänen, Stina; Luurtsema, Gert; Molthoff, Carla FM; Windhorst, Albert D; Huisman, Marc C; Lammertsma, Adriaan A; Voskuyl, Rob A; Lange, Elizabeth C de

    2011-01-01

    Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate. (R)-[ 11 C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on (R)-[ 11 C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. (R)-[ 11 C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM). All data analysis approaches indicated only modest differences in brain distribution of (R)-[ 11 C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats. P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate

  18. New Perspectives on Ebola Virus Evolution.

    Directory of Open Access Journals (Sweden)

    Celeste J Brown

    Full Text Available Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP because one of its products, the spike glycoprotein (GP1,2, is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1 the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2 the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3 although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.

  19. New Perspectives on Ebola Virus Evolution.

    Science.gov (United States)

    Brown, Celeste J; Quates, Caleb J; Mirabzadeh, Christopher A; Miller, Craig R; Wichman, Holly A; Miura, Tanya A; Ytreberg, F Marty

    2016-01-01

    Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.

  20. Development of glycoprotein capture-based label-free method for the high-throughput screening of differential glycoproteins in hepatocellular carcinoma.

    Science.gov (United States)

    Chen, Rui; Tan, Yexiong; Wang, Min; Wang, Fangjun; Yao, Zhenzhen; Dong, Liwei; Ye, Mingliang; Wang, Hongyang; Zou, Hanfa

    2011-07-01

    A robust, reproducible, and high throughput method was developed for the relative quantitative analysis of glycoprotein abundances in human serum. Instead of quantifying glycoproteins by glycopeptides in conventional quantitative glycoproteomics, glycoproteins were quantified by nonglycosylated peptides derived from the glycoprotein digest, which consists of the capture of glycoproteins in serum samples and the release of nonglycopeptides by trypsin digestion of captured glycoproteins followed by two-dimensional liquid chromatography-tandem MS analysis of released peptides. Protein quantification was achieved by comparing the spectrum counts of identified nonglycosylated peptides of glycoproteins between different samples. This method was demonstrated to have almost the same specificity and sensitivity in glycoproteins quantification as capture at glycopeptides level. The differential abundance of proteins present at as low as nanogram per milliliter levels was quantified with high confidence. The established method was applied to the analysis of human serum samples from healthy people and patients with hepatocellular carcinoma (HCC) to screen differential glycoproteins in HCC. Thirty eight glycoproteins were found with substantial concentration changes between normal and HCC serum samples, including α-fetoprotein, the only clinically used marker for HCC diagnosis. The abundance changes of three glycoproteins, i.e. galectin-3 binding protein, insulin-like growth factor binding protein 3, and thrombospondin 1, which were associated with the development of HCC, were further confirmed by enzyme-linked immunosorbent assay. In conclusion, the developed method was an effective approach to quantitatively analyze glycoproteins in human serum and could be further applied in the biomarker discovery for HCC and other cancers.

  1. Enhanced brain disposition and effects of Δ9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice.

    Directory of Open Access Journals (Sweden)

    Adena S Spiro

    Full Text Available The ABC transporters P-glycoprotein (P-gp, Abcb1 and breast cancer resistance protein (Bcrp, Abcg2 regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9-tetrahydrocannabinol (THC has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT mice. Abcb1a/b (-/-, Abcg2 (-/- and wild-type (WT mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (-/- and Abcg2 (-/- mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (-/- mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis.

  2. Expression of P-gp, MRP, LRP, GST-π and TopoIIα and intrinsic resistance in human lung cancer cell lines.

    Science.gov (United States)

    Wang, Jiarui; Zhang, Jinhui; Zhang, Lichuan; Zhao, Long; Fan, Sufang; Yang, Zhonghai; Gao, Fei; Kong, Ying; Xiao, Gary Guishan; Wang, Qi

    2011-11-01

    This study aimed to determine the relationship between the endogenous levels of P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione-s-transferase-π (GST‑π) and topoisomerase IIα (TopoIIα) and intrinsic drug resistance in four human lung cancer cell lines, SK-MES-1, SPCA-1, NCI-H-460 and NCI-H-446, of different histological types. The expression of P-gp, MRP, LRP, GST-π and TopoIIα was measured by immunofluorescence, Western blotting and RT-PCR. Drug resistance to cisplatin, doxorubicin and VP-16 was determined using MTT assays. The correlation between expression of the resistance-related proteins and their roles in the resistance to drugs in these cancer cell lines was analyzed. We found that the endogenous levels of P-gp, MRP, LRP, GST-π and TopoIIα in the four cell lines varied. The level of GST-π in the SK-MES-1 cells was the highest, whereas the level of P-gp in the SPCA-1 cells was the lowest. The chemoresistance to cisplatin, doxorubicin and VP-16 in the four cell lines was different. The SPCA-1 cell line was most resistance to cisplatin; SK-MES-1 was most resistance to VP-16; whereas SK-MES-1 was most sensitive to doxorubicin. There was a positive correlation between GST-π expression and resistance to cisplatin, between TopoIIα expression and resistance to VP-16; and a negative correlation was noted between TopoIIα expression and resistance to doxorubicin. In summary, the endogenous expression of P-gp, MRP, LRP, GST-π and TopoIIα was different in the four human lung cancer cell lines of different histological types, and this variance may be associated with the variation in chemosensitivity to cisplatin, doxorubicin and VP-16. Among the related proteins, GST-π may be useful for the prediction of the intrinsic resistance to cisplatin, whereas TopoIIα may be useful to predict resistance to doxorubicin and VP-16 in human lung cancer cell lines.

  3. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats.

    Science.gov (United States)

    Yu, Chung-Ping; Huang, Ching-Ya; Lin, Shiuan-Pey; Hou, Yu-Chi

    2018-04-01

    Coptidis Rhizoma (CR), the rhizome of Coptis chinensis FRANCH, is a popular Chinese herb. CR contains plenty of isoquinoline alkaloids such as berberine, coptisine and palmatine. Cyclosporine (CSP), an important immunosuppressant with narrow therapeutic window, is employed as a probe substrate of P-glycoprotein (P-gp) and CYP3A4 in order to investigate the in vivo modulation effect of CR on P-gp and CYP3A4. Three groups of rats were orally administered CSP without and with single dose or repeated dosing of CR in a parallel design. Blood samples were collected at specific time points and the blood CSP concentration was determined by a specific monoclonal fluorescence polarization immunoassay. The results showed that a single dose (1.0 g/kg) and the 7th dose (1.0 g/kg) of CR significantly decreased the C max of CSP by 56.9% and 70.4%, and reduced the AUC 0-540 by 56.4% and 68.7%, respectively. Cell study indicated that CR decoction, berberine, coptisine, palmatine all activated the efflux transport of P-gp. Ex-vivo study showed that the serum metabolites of CR activated CYP 3A4. In conclusion, through using CSP as an in vivo probe substrate, we have verified that oral intake of CR activated the functions of P-gp and CYP3A based on in vivo and in vitro studies. Copyright © 2017. Published by Elsevier B.V.

  4. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor α-subunits and platelet glycoprotein IIb

    International Nuclear Information System (INIS)

    Fitzgerald, L.A.; Poncz, M.; Steiner, B.; Rall, S.C. Jr.; Bennett, J.S.; Phillips, D.R.

    1987-01-01

    The fibronectin receptor (FnR), the vitronectin receptor (VnR), and the platelet membrane glycoprotein (GP) IIb-IIIa complex are members of a family of cell adhesion receptors, which consist of noncovalently associated α- and β-subunits. The present study was designed to compare the cDNA-derived protein sequences of the α-subunits of human FnR, VnR, and platelet GP IIb. cDNA clones for the α-subunit of the FnR (FnR/sub α/) were obtained from a human umbilical vein endothelial (HUVE) cell library by using an oligonucleotide probe designed from a peptide sequence of platelet GP IIb. cDNA clones for platelet GP IIb were isolated from a cDNA expression library of human erythroleukemia cells by using antibodies. cDNA clones of the VnR α-subunit (VnR/sub α/) were obtained from the HUVE cell library by using an oligonucleotide probe from the partial cDNA sequence for the VnR/sub α/. Translation of these sequences showed that the FNR/sub α/, the VnR/sub α/, and GP IIb are composed of disulfide-linked large (858-871 amino acids) and small (137-158 amino acids) chains that are posttranslationally processed from a single mRNA. A single hydrophobic segment located near the carboxyl terminus of each small chain appears to be a transmembrane domain. The large chains appear to be entirely extracellular, and each contains four repeated putative Ca 2+ -binding domains of about 30 amino acids that have sequence similarities to other Ca 2+ -binding proteins. The identity among the protein sequences of the three receptor α-subunits ranges from 36.1% to 44.5%, with the Ca 2+ -binding domains having the greatest homology. These proteins apparently evolved by a process of gene duplication

  5. (R)-[{sup 11}C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Energy Technology Data Exchange (ETDEWEB)

    Syvänen, Stina [Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Luurtsema, Gert [Department of Nuclear Medicine & Molecular Imaging, Groningen University Medical Center, P.O. Box 30.001 9700 RB Groningen (Netherlands); Molthoff, Carla FM; Windhorst, Albert D; Huisman, Marc C; Lammertsma, Adriaan A [Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam (Netherlands); Voskuyl, Rob A [Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Epilepsy Institute of The Netherlands Foundation (SEIN), P.O. Box 21, 2100 AA, Heemstede (Netherlands); Lange, Elizabeth C de [Division of Pharmacology, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)

    2011-01-03

    Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate. (R)-[{sup 11}C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on (R)-[{sup 11}C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. (R)-[{sup 11}C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM). All data analysis approaches indicated only modest differences in brain distribution of (R)-[{sup 11}C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats. P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.

  6. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind

    2015-01-01

    transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1....../Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes...

  7. Sea lice population and sex differences in P-glycoprotein expression and emamectin benzoate resistance on salmon farms in the Bay of Fundy, New Brunswick, Canada.

    Science.gov (United States)

    Igboeli, Okechukwu O; Burka, John F; Fast, Mark D

    2014-06-01

    Parasitic sea lice are a major challenge for salmon aquaculture. This is especially due to the recent development of resistance to emamectin benzoate (EMB) in the parasite. We investigated: (1) whether EMB treatment success in Grand Manan, Bay of Fundy, NB, Canada can be explained through EMB bioassay and P-glycoprotein (P-gp) mRNA expression studies; (2) if other populations of sea lice not under EMB selective pressure possess similar EMB sensitivity as Grand Manan sea lice populations; and (3) the heritability of EMB resistance in Lepeophtheirus salmonis. EMB bioassay results indicated population, species, sex and temporal differences in EMB EC50 values. RT-qPCR analyses revealed population and sex differences in P-gp mRNA levels, correlating with the bioassay results. Laboratory-reared sea lice maintained their EMB sensitivity status up to the F3 generation. Caligus elongatus, collected from Grand Manan showed more than twofold lower EMB EC50 values compared with L. salmonis collected from the same site. Concurrent exposure to EMB and verapamil yielded no increase in C. elongatus sensitivity to the parasiticide. Sea lice bioassay and P-gp mRNA studies can be used to track EMB resistance and sex differences in EMB sensitivity and P-gp mRNA levels exist in the parasite. © 2013 Society of Chemical Industry.

  8. Cell wall O-glycoproteins and N-glycoproteins: biosynthesis and some functional aspects.

    Directory of Open Access Journals (Sweden)

    Eric eNguema-Ona

    2014-10-01

    Full Text Available Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensin, the O-glycan chains of arabinogalactan proteins are highly heterogeneous consisting mostly of (i a short oligo-arabinoside chain of three to four residues, and (ii a larger -1,3-linked galactan backbone with -1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core 1,2-xylose, core 1,3-fucose residues and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins only extensin and arabinogalactan proteins are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.

  9. Effects of hepatic ischemia-reperfusion injury on the P-glycoprotein activity at the liver canalicular membrane and blood-brain barrier determined by in vivo administration of rhodamine 123 in rats.

    Science.gov (United States)

    Miah, Mohammad K; Shaik, Imam H; Bickel, Ulrich; Mehvar, Reza

    2014-04-01

    To investigate the effects of normothermic hepatic ischemia-reperfusion (IR) injury on the activity of P-glycoprotein (P-gp) in the liver and at the blood-brain barrier (BBB) of rats using rhodamine 123 (RH-123) as an in vivo marker. Rats were subjected to 90 min of partial ischemia or sham surgery, followed by 12 or 24 h of reperfusion. Following intravenous injection, the concentrations of RH-123 in blood, bile, brain, and liver were used for pharmacokinetic calculations. The protein levels of P-gp and some other transporters in the liver and brain were also determined by Western blot analysis. P-gp protein levels at the liver canalicular membrane were increased by twofold after 24 h of reperfusion. However, the biliary excretion of RH-123 was reduced in these rats by 26%, presumably due to IR-induced reductions in the liver uptake of the marker and hepatic ATP concentrations. At the BBB, a 24% overexpression of P-gp in the 24-h IR animals was associated with a 30% decrease in the apparent brain uptake clearance of RH-123. The pharmacokinetics or brain distribution of RH-123 was not affected by the 12-h IR injury. Hepatic IR injury may alter the peripheral pharmacokinetics and brain distribution of drugs that are transported by P-gp and possibly other transporters.

  10. Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones

    International Nuclear Information System (INIS)

    Meulen, Jan ter; Badusche, Marlis; Satoguina, Judith; Strecker, Thomas; Lenz, Oliver; Loeliger, Cornelius; Sakho, Mohamed; Koulemou, Kekoura; Koivogui, Lamine; Hoerauf, Achim

    2004-01-01

    Data from human studies and animal experiments indicate a dominant role of T-cells over antibodies in controlling acute Lassa virus infection and providing immunity to reinfection. Knowledge of the epitopes recognized by T-cells may therefore be crucial to the development of a recombinant Lassa virus vaccine. In order to study human T-cell reactivity to the most conserved structural protein of Lassa virus, the glycoprotein 2 (GP2), seven GP2-specific CD4+ T-cell clones (TCCs) were generated from the lymphocytes of a Lassa antibody positive individual. All TCC displayed high specific proliferation, showed DR-restriction, and produced IFN-γ upon stimulation with recombinant GP2. The epitope of four of the clones was localized to a short stretch of 13 amino acids located in the N-terminal part of GP2 (aa 289-301, numbering according to sequence of GPC). This epitope is conserved in all strains of Lassa virus and lymphocytic choriomeningitis virus (LCMV), shows >90% similarity in all New World arenaviruses of clade B, and overlaps with the proposed fusion domain of GP2. Peptides with conservative aa exchanges, as they naturally occur in the epitope 289-301 of the Old World arenavirus Mopeia and some New World arenaviruses, continued to effectively stimulate the Lassa-GP2-specific T-cell clones tested. The finding of a human T-helper cell epitope, which is highly conserved between Old and New World arenaviruses, is of importance for the design of arenavirus vaccines

  11. Deep sequencing of the Trypanosoma cruzi GP63 surface proteases reveals diversity and diversifying selection among chronic and congenital Chagas disease patients.

    Science.gov (United States)

    Llewellyn, Martin S; Messenger, Louisa A; Luquetti, Alejandro O; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B N; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A

    2015-04-01

    Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target--ND5--was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I gene family suggests a link between genetic diversity within this gene

  12. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    International Nuclear Information System (INIS)

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-01-01

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  13. P-glycoprotein mediated efflux limits the transport of the novel anti-Parkinson's disease candidate drug FLZ across the physiological and PD pathological in vitro BBB models.

    Directory of Open Access Journals (Sweden)

    Qian Liu

    Full Text Available FLZ, a novel anti-Parkinson's disease (PD candidate drug, has shown poor blood-brain barrier (BBB penetration based on the pharmacokinetic study using rat brain. P-glycoprotein (P-gp and breast cancer resistance protein (BCRP are two important transporters obstructing substrates entry into the CNS as well as in relation to PD neuropathology. However, it is unclear whether P-gp and BCRP are involved in low BBB permeability of FLZ and what the differences of FLZ brain penetration are between normal and Parkinson's conditions. For this purpose, in vitro BBB models mimicking physiological and PD pathological-related BBB properties were constructed by C6 astroglial cells co-cultured with primary normal or PD rat cerebral microvessel endothelial cells (rCMECs and in vitro permeability experiments of FLZ were carried out. High transepithelial electrical resistance (TEER and low permeability for sodium fluorescein (NaF confirmed the BBB functionality of the two models. Significantly greater expressions of P-gp and BCRP were detected in PD rCMECs associated with the lower in vitro BBB permeability of FLZ in pathological BBB model compared with physiological model. In transport studies only P-gp blocker effectively inhibited the efflux of FLZ, which was consistent with the in vivo permeability data. This result was also confirmed by ATPase assays, suggesting FLZ is a substrate for P-gp but not BCRP. The present study first established in vitro BBB models reproducing PD-related changes of BBB functions in vivo and demonstrated that poor brain penetration of FLZ and low BBB permeability were due to the P-gp transport.

  14. Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein.

    Science.gov (United States)

    Murphy, R Elliot; Samal, Alexandra B; Vlach, Jiri; Saad, Jamil S

    2017-11-07

    The cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane. We show that the N-terminal 45 residues are unstructured and not associated with the membrane. However, the C-terminal 105 residues form three membrane-bound amphipathic α helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation-π interactions. This work fills a major gap by providing the structure of the last segment of HIV-1 Env, which will provide insights into the mechanisms of Gag-mediated Env incorporation as well as the overall Env mobility and conformation on the virion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterization of the disassembly and reassembly of the HBV glycoprotein surface antigen, a pliable nanoparticle vaccine platform

    International Nuclear Information System (INIS)

    Gallagher, John R.; Torian, Udana; McCraw, Dustin M.; Harris, Audray K.

    2017-01-01

    While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.

  16. Characterization of the disassembly and reassembly of the HBV glycoprotein surface antigen, a pliable nanoparticle vaccine platform

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, John R.; Torian, Udana; McCraw, Dustin M.; Harris, Audray K., E-mail: harrisau@mail.nih.gov

    2017-02-15

    While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.

  17. The Cytoplasmic Tail Domain of Epstein-Barr Virus gH Regulates Membrane Fusion Activity through Altering gH Binding to gp42 and Epithelial Cell Attachment

    Directory of Open Access Journals (Sweden)

    Jia Chen

    2016-11-01

    Full Text Available Epstein-Barr virus (EBV is associated with infectious mononucleosis and a variety of cancers as well as lymphoproliferative disorders in immunocompromised patients. EBV mediates viral entry into epithelial and B cells using fusion machinery composed of four glycoproteins: gB, the gH/gL complex, and gp42. gB and gH/gL are required for both epithelial and B cell fusion. The specific role of gH/gL in fusion has been the most elusive among the required herpesvirus entry glycoproteins. Previous mutational studies have focused on the ectodomain of EBV gH and not on the gH cytoplasmic tail domain (CTD. In this study, we chose to examine the function of the gH CTD by making serial gH truncation mutants as well as amino acid substitution mutants to determine the importance of the gH CTD in epithelial and B cell fusion. Truncation of 8 amino acids (aa 698 to 706 of the gH CTD resulted in diminished fusion activity using a virus-free syncytium formation assay and fusion assay. The importance of the amino acid composition of the gH CTD was also investigated by amino acid substitutions that altered the hydrophobicity or hydrophilicity of the CTD. These mutations also resulted in diminished fusion activity. Interestingly, some of the gH CTD truncation mutants and hydrophilic tail substitution mutants lost the ability to bind to gp42 and epithelial cells. In summary, our studies indicate that the gH CTD is an important functional domain.

  18. CGP lil-gp 2.1;1.02 User's Manual

    Science.gov (United States)

    Janikow, Cezary Z.; DeWeese, Scott W.

    1997-01-01

    This document describes extensions provided to lil-gp facilitating dealing with constraints. This document deals specifically with lil-gp 1.02, and the resulting extension is referred to as CGP lil-gp 2.1; 1.02 (the first version is for the extension, the second for the utilized lil-gp version). Unless explicitly needed to avoid confusion, version numbers are omitted.

  19. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infectio...

  20. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    Directory of Open Access Journals (Sweden)

    Ruben M Markosyan

    2016-01-01

    Full Text Available Ebola virus (EBOV is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

  1. Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.

    Science.gov (United States)

    Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H

    1997-01-01

    The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant gB, gC and gD were confirmed by a panel of MAbs specific for each glycoprotein produced in CHV-infected cells. Immunization of mice with these recombinants produced high titers of neutralizing antibodies against CHV. These results suggest that recombinant vaccinia viruses expressing CHV gB, gC and gD may be useful to develop a vaccine to control CHV infection.

  2. Prognostic implications of the nuclear localization of Y-box-binding protein-1 and CXCR4 expression in ovarian cancer: their correlation with activated Akt, LRP/MVP and P-glycoprotein expression.

    Science.gov (United States)

    Oda, Yoshinao; Ohishi, Yoshihiro; Basaki, Yuji; Kobayashi, Hiroaki; Hirakawa, Toshio; Wake, Norio; Ono, Mayumi; Nishio, Kazuto; Kuwano, Michihiko; Tsuneyoshi, Masazumi

    2007-07-01

    The nuclear localization of Y-box-binding protein-1 (YB-1) is known to be a poor prognostic factor in several human malignancies, including ovarian carcinoma. Following on from our basic study dealing with microarray analyses of YB-1-associated gene expression in ovarian cancer cells, we examined whether nuclear localization of YB-1 is associated with the expression of CXCR4, a vault protein named lung resistance-related vault protein (LRP/MVP), phosphorylated Akt (p-Akt) or P-glycoprotein (P-gp) in human ovarian carcinoma. Fifty-three surgically resected ovarian carcinomas treated with paclitaxel and carboplatin were examined immunohistochemically for nuclear YB-1 expression and intrinsic expression of p-Akt, P-gp, LRP/MVP and CXCR4. Nuclear expression of YB-1 demonstrated significant correlation with p-Akt, P-gp and LRP expression, but no relationship with CXCR4 expression. By multivariate analysis, only YB-1 nuclear expression and CXCR4 expression were independent prognostic factors with regard to overall survival. These results indicate that YB-1 nuclear expression and CXCR4 expression are important prognostic factors in ovarian carcinoma.

  3. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  4. The Consequence of Drug-Drug Interactions Influencing the Interplay between P-Glycoprotein and Cytochrome P450 3a: An Ex Vivo Study with Rat Precision-Cut Intestinal Slices.

    Science.gov (United States)

    Li, Ming; de Graaf, Inge A M; Siissalo, Sanna; de Jager, Marina H; van Dam, Annie; Groothuis, Geny M M

    2016-05-01

    P-glycoprotein (P-gp) and cytochrome P450 3A (CYP3A) are differentially expressed along the intestine and work coordinately to reduce the intracellular concentration of xenobiotics and the absorption of orally taken drugs. Drug-drug interactions (DDIs) based on P-gp/CYP3A interplay are of clinical importance and require preclinical investigation. We investigated the P-gp/Cyp3a interplay and related DDIs with different P-gp inhibitors in the various regions of the rat intestine ex vivo using precision-cut intestinal slices (PCIS) with quinidine (Qi), a dual substrate of P-gp and Cyp3a, as the probe. The results showed that P-gp efflux was the main factor limiting the intracellular Qi content at concentrations below 5µM, whereas both efflux and metabolism were saturated at [Qi] > 50µM. The selective P-gp inhibitors CP100356 [N-(3,4-dimethoxyphenethyl)-4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2[1H]-yl)-6,7-dimethoxyquinazolin-2-amine] and PSC833 [valspodar, 6-[(2S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]-7-l-valine-cyclosporin A] enhanced the Qi accumulation in slices in line with the different P-gp expression in the intestinal regions and, as a result, also enhanced metabolism in the jejunum and ileum. Dual inhibitors of both P-gp and Cyp3a (verapamil and ketoconazole) increased the concentration of Qi in the jejunum and ileum, but less 3-hydroxy-quinidine was produced due to inhibition of Cyp3a. The results indicate that the P-gp/Cyp3a interplay depends on the concentration of the drug and on the intestinal region under study. Furthermore, due to the P-gp/Cyp3a interplay, DDIs can lead to remarkable changes in the intracellular concentration of both the parent drug and the metabolite, which varies among the intestinal regions and depends on the selectivity of the inhibitors, with potentially important implications for disposition and toxicity of drugs and their metabolites. Copyright © 2016 by The American Society for Pharmacology and Experimental

  5. Potential pharmacokinetic effect of rifampicin on enrofloxacin in broilers: Roles of P-glycoprotein and BCRP induction by rifampicin.

    Science.gov (United States)

    Guo, Mengjie; Dai, Xiaohua; Hu, Dongmin; Zhang, Yu; Sun, Yong; Ren, Weilong; Wang, Liping

    2016-09-01

    P-glycoprotein ( P-GP: , encoding gene Abcb1) and Breast Cancer Resistance Protein ( BCRP: , encoding gene Abcg2) are transport proteins that play a major role in modulating the bioavailability of oral drugs in humans and rodents. It has been shown that rifampicin is the typical inducer of P-gp in rodents by activating the nuclear receptor. However, its effect on Abcb1, Abcg2, CYP3A, and chicken xenobiotic-sensing orphan nuclear receptor ( CXR: ) mRNA expression in broilers is poorly understood. This study explored the effect of rifampicin on mRNA expression of Abcb1, Abcg2, CYP3A37, CXR as well as its effect on the pharmacokinetics of enrofloxacin in broilers. The mRNA levels of Abcb1, Abcg2, CYP3A37, and CXR were significantly increased in the liver (except Abcg2), kidney, jejunum, and ileum (P 0.05) after treated with rifampicin. Further analysis revealed that the variation tendencies of Abcb1, Abcg2, and CYP3A37 expression levels were significantly correlated with CXR mRNA expression levels in liver, kidney, jejunum, and ileum. Coadministration of rifampicin significantly changed the pharmacokinetic behavior of enrofloxacin orally administered by showing clearly lower AUC0-∞, AUC0-t, and Cmax as well as longer Tmax. The bioavailability of orally administered enrofloxacin was decreased from 72.5% to 24.8% by rifampicin. However, rifampicin did not significantly change the pharmacokinetics of enrofloxacin following intravenous administration. Our study shows that rifampicin up-regulated the small intestinal level of P-gp and BCRP and suggests that P-gp and BCRP are key factors that affected pharmacokinetic behavior of orally administered enrofloxacin by limiting its absorption from the intestine in broilers. © 2016 Poultry Science Association Inc.

  6. Pharmacokinetic compatibility of ginsenosides and Schisandra Lignans in Shengmai-san: from the perspective of p-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Yan Liang

    Full Text Available Phytochemical-mediated alterations in P-glycoprotein (P-gp activity may result in herb-drug interactions by altering drug pharmacokinetics. Shengmai-san, a traditional Chinese herbal medicine composed by Panax Ginseng, Ophiopogon Japonicus, and Schisandra Chinensis, is routinely being used for treating various coronary heart diseases. In our previous studies, Schisandra Lignans Extract (SLE was proved as a strong P-gp inhibitor, and herein, the compatibility of Shengmai-san was studied by investigating the influence of SLE on the pharmacokinetics of the ginsenosides from the perspective of P-gp.Pharmacokinetic experiments were firstly performed based on in vitro uptake, efflux and transport experiments in Caco-2, LLC-PK1 wild-type and MDR1-overexpressing L-MDR1 cells. During the whole experiment, digoxin, a classical P-gp substrate, was used as a positive control drug to verify the cells used are the valid models. Meanwhile, the effects of SLE on the pharmacokinetics of ginsenosides were further investigated in rats after single-dose and multi-dose of SLE.The efflux ratios of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 were found more than 3.5 in L-MDR1 cells and can be decreased significantly by verapamil (a classical P-gp inhibitor. Contrarily, the efflux ratios of other ginsenosides (Rh1, F1, Re, and Rg1 were lower than 2.0 and not affected by verapamil. Then, the effects of SLE on the uptake and transport of ginsenosides were investigated, and SLE was found can significantly enhance the uptake and inhibit the efflux ratio of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 in Caco-2 and L-MDR1 cells. Besides, In vivo experiments showed that single-dose and multi-dose of SLE at 500 mg/kg could increase the area under the plasma concentration time curve of Rb2, Rc and Rd significantly without affecting terminal elimination half-time. In conclusion, SLE could enhance the exposure of ginsenosides Rb2, Rc, Rg2, Rg3, Rd and Rb1 significantly.

  7. Evaluation of first-pass cytochrome P4503A (CYP3A) and P-glycoprotein activities using alfentanil and fexofenadine in combination.

    Science.gov (United States)

    Kharasch, Evan D; Walker, Alysa; Hoffer, Christine; Sheffels, Pamela

    2005-01-01

    Cytochrome P4503A (CYP3A) and P-glycoprotein (P-gp) are major determinants of oral bioavailability. Development of in vivo probe(s), for both CYP3A and P-gp, which could be administered in combination, is a current goal. Nevertheless, there is considerable overlap in CYP3A and P-gp substrate selectivities; there are few discrete probes. Alfentanil is a selective CYP3A probe but not a P-gp substrate. Fexofenadine is a P-gp probe but not a CYP3A substrate. This investigation tested the hypothesis that alfentanil and fexofenadine could be administered in combination to probe first-pass CYP3A and P-gp activities in humans. Two 3-way crossover studies were conducted in healthy volunteers. In the first protocol, subjects received oral alfentanil alone, fexofenadine alone, or fexofenadine 1 hour after alfentanil. In the second protocol, subjects abstained from citrus and apple products for 5 days and received fexofenadine alone, fexofenadine 1 hour after alfentanil, or alfentanil 4 hours after fexofenadine. An assay using solid-phase extraction and electrospray liquid chromatography/mass spectrometry was developed for the simultaneous quantification of plasma alfentanil and fexofenadine. In both protocols, alfentanil plasma concentrations and area under the concentration versus time curve (AUC) were unaffected by fexofenadine or meal composition. Fexofenadine given 1 hour after alfentanil and followed 1 hour later by a meal containing orange or apple juice had a somewhat lower AUC compared with fexofenadine alone (geometric mean ratio with and without the interacting drug = 0.73, 90% confidence interval [CI] = 0.59-1.04). Fexofenadine given 1 hour after alfentanil and followed 2 hours later by a meal not containing citrus or apple products had an AUC that was unchanged compared with fexofenadine alone (ratio = 0.91, 90% CI = 0.70-1.35). These results show that alfentanil disposition was not affected by fexofenadine. A dosing regimen was identified in which fexofenadine

  8. A hybrid monolithic column based on boronate-functionalized graphene oxide nanosheets for online specific enrichment of glycoproteins.

    Science.gov (United States)

    Zhou, Chanyuan; Chen, Xiaoman; Du, Zhuo; Li, Gongke; Xiao, Xiaohua; Cai, Zongwei

    2017-05-19

    A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m 2 /g to 169.4m 2 /g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dimers of beta 2-glycoprotein I mimic the in vitro effects of beta 2-glycoprotein I-anti-beta 2-glycoprotein I antibody complexes

    NARCIS (Netherlands)

    Lutters, B. C.; Meijers, J. C.; Derksen, R. H.; Arnout, J.; de Groot, P. G.

    2001-01-01

    Anti-beta(2)-glycoprotein I antibodies are thought to cause lupus anticoagulant activity by forming bivalent complexes with beta(2)-glycoprotein I (beta(2)GPI). To test this hypothesis, chimeric fusion proteins were constructed of the dimerization domain (apple 4) of factor XI and beta(2)GPI. Both a

  10. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2007-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3 H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion

  11. Surface properties, crystallinity and optical properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    Energy Technology Data Exchange (ETDEWEB)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70 mA.cm{sup −2}) at room temperature. Anodised titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO{sub 2}.

  12. E. coli infection modulates the pharmacokinetics of oral enrofloxacin by targeting P-glycoprotein in small intestine and CYP450 3A in liver and kidney of broilers.

    Science.gov (United States)

    Guo, Mengjie; Sun, Yong; Zhang, Yu; Bughio, Shamsuddin; Dai, Xiaohua; Ren, Weilong; Wang, Liping

    2014-01-01

    P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (Penrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL(-1), P = 0.000) and AUC0-12h (4.37 vs 8.88 µg mL(-1) h, P = 0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040), T1/2a(2.66 vs 1.64 h(-1), P = 0.050) and V/F (26.7 vs 5.2 L, P = 0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers.

  13. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  14. Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape

    Energy Technology Data Exchange (ETDEWEB)

    Wibmer, Constantinos Kurt; Gorman, Jason; Ozorowski, Gabriel; Bhiman, Jinal N.; Sheward, Daniel J.; Elliott, Debra H.; Rouelle, Julie; Smira, Ashley; Joyce, M. Gordon; Ndabambi, Nonkululeko; Druz, Aliaksandr; Asokan, Mangai; Burton, Dennis R.; Connors, Mark; Abdool Karim, Salim S.; Mascola, John R.; Robinson, James E.; Ward, Andrew B.; Williamson, Carolyn; Kwong, Peter D.; Morris, Lynn; Moore, Penny L.; Desrosiers, Ronald C.

    2017-01-11

    A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing

  15. Identification by Mass Spectrometry and Immune Response Analysis of Guinea Pig Cytomegalovirus (GPCMV Pentameric Complex Proteins GP129, 131 and 133

    Directory of Open Access Journals (Sweden)

    Josephine S. Gnanandarajah

    2014-02-01

    Full Text Available Development of a vaccine against congenital infection with human cytomegalovirus (HCMV is a major public health priority. A potential vaccine target receiving considerable recent attention is the pentameric complex (PC of HCMV proteins consisting of gL, gH, UL128, UL130, and UL131, since some antibodies against these target proteins are capable of potently neutralizing virus at epithelial and endothelial cell surfaces. Recently, homologous proteins have been described for guinea pig cytomegalovirus (GPCMV, consisting of gH, gL, and the GPCMV proteins GP129, GP131, and GP133. To investigate these proteins as potential vaccine targets, expression of GP129-GP133 transcripts was confirmed by reverse-transcriptase PCR. Mass spectrometry combined with western blot assays demonstrated the presence of GP129, GP131, and GP133 proteins in virus particles. Recombinant proteins corresponding to these PC proteins were generated in baculovirus, and as GST fusion proteins. Recombinant proteins were noted to be immunoreactive with convalescent sera from infected animals, suggesting that these proteins are recognized in the humoral immune response to GPCMV infection. These analyses support the study of PC-based recombinant vaccines in the GPCMV congenital infection model.

  16. The salivary scavenger and agglutinin (SALSA binds MBL and regulates the lectin pathway of complement in solution and on surfaces

    Directory of Open Access Journals (Sweden)

    Martin eParnov Reichhardt

    2012-07-01

    Full Text Available The scavenger receptor cysteine-rich (SRCR protein SALSA, also known as gp340, salivary agglutinin (SAG and deleted in malignant brain tumor 1 (DMBT1, is a 340 kDa glycoprotein expressed on mucosal surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes and endogenous ligands, such as complement factor C1q, surfactant proteins D and A (SP-D and SP-A and IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the identification of mannan binding lectin (MBL as a new binding partner. We observed that surface-associated SALSA activates complement via binding of MBL. On the other hand, soluble SALSA was found to inhibit C. albicans-induced complement activation. Thus, SALSA has a dual complement regulatory function. It activates the lectin pathway when bound to a surface and inhibits it when free in the fluid-phase. These activities are mediated via a direct interaction with MBL.

  17. Complementary effects of thienopyridine pretreatment and platelet glycoprotein IIb/IIIa integrin blockade with eptifibatide in coronary stent intervention; results from the ESPRIT trial.

    Science.gov (United States)

    Dery, Jean-Pierre; Campbell, Mark E; Mathias, Jasmine; Pieper, Karen S; Harrington, Robert A; Madan, Mina; Gibson, C Michael; Tolleson, Thaddeus R; O'Shea, J Conor; Tcheng, James E

    2007-07-01

    This analysis sought to investigate the complementary effect of thienopyridine pretreatment and platelet glycoprotein (GP) IIb/IIIa integrin blockade in coronary stent intervention. Definitive evidence supporting combined antiplatelet therapy consisting of thienopyridine pretreatment and GP IIb/IIIa receptor blockade in patients undergoing percutaneous coronary intervention (PCI) with stent implantation is limited. We retrospectively analyzed clinical outcomes by thienopyridine use in the 2,040 patients randomized to eptifibatide or placebo who underwent PCI in the ESPRIT trial. A total of 901 patients received a loading dose of thienopyridine before PCI (group 1), 123 received thienopyridine pretreatment without a loading dose (group 2), and 1,016 were not treated with thienopyridine before PCI (group 3). The composite incidence of death or myocardial infarction at 30 days was significantly lower in group 1 than in groups 2 and 3 combined (OR, 0.71 [95%CI, 0.52-0.99]; P = 0.0417). A similar trend was seen for the composite of death, myocardial infarction, or urgent target vessel revascularization (unadjusted OR, 0.77 [0.57-1.05]; P = 0.1025). After adjusting for baseline characteristics, these differences were no longer significant. No interactions were identified with eptifibatide assignment for any of the group comparisons. Pretreatment with a loading dose of thienopyridine lowers the rate of ischemic complications regardless of treatment with a GP IIb/IIIa inhibitor. Conversely, the efficacy of eptifibatide is maintained whether or not a loading dose of a thienopyridine is administered. Optimal outcomes are achieved in patients receiving thienopyridine pretreatment along with platelet GP IIb/IIIa inhibitor therapy. (c) 2007 Wiley-Liss, Inc.

  18. Studies on carbohydrate moieties of the glycoprotein, peptide ...

    Indian Academy of Sciences (India)

    tribpo

    Electrophoretically homogeneous type 1 (GP-C1 and GP-C2), type 2 (GP-C3a and. GP-C3b,) and ... Present address: Reproduction Research Laboratory, Clinical Research Institute of Montreal, 110,. Pine Avenue ... glucosamine was determined by the method of Reissig et al. (1955) .... qualitative results were obtained.

  19. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    Science.gov (United States)

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  20. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2016-04-01

    P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Differences in cell morphometry, cell wall topography and gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates.

    Directory of Open Access Journals (Sweden)

    Rafaela A Castro

    Full Text Available Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes.

  2. In silico analysis of HIV-1 Env-gp120 reveals structural bases for viral adaptation in growth-restrictive cells

    Directory of Open Access Journals (Sweden)

    Masaru eYokoyama

    2016-02-01

    Full Text Available Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1 envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness.

  3. Antigenic properties of a transport-competent influenza HA/HIV Env chimeric protein

    International Nuclear Information System (INIS)

    Ye Ling; Sun Yuliang; Lin Jianguo; Bu Zhigao; Wu Qingyang; Jiang, Shibo; Steinhauer, David A.; Compans, Richard W.; Yang Chinglai

    2006-01-01

    The transmembrane subunit (gp41) of the HIV Env glycoprotein contains conserved neutralizing epitopes which are not well-exposed in wild-type HIV Env proteins. To enhance the exposure of these epitopes, a chimeric protein, HA/gp41, in which the gp41 of HIV-1 89.6 envelope protein was fused to the C-terminus of the HA1 subunit of the influenza HA protein, was constructed. Characterization of protein expression showed that the HA/gp41 chimeric proteins were expressed on cell surfaces and formed trimeric oligomers, as found in the HIV Env as well as influenza HA proteins. In addition, the HA/gp41 chimeric protein expressed on the cell surface can also be cleaved into 2 subunits by trypsin treatment, similar to the influenza HA. Moreover, the HA/gp41 chimeric protein was found to maintain a pre-fusion conformation. Interestingly, the HA/gp41 chimeric proteins on cell surfaces exhibited increased reactivity to monoclonal antibodies against the HIV Env gp41 subunit compared with the HIV-1 envelope protein, including the two broadly neutralizing monoclonal antibodies 2F5 and 4E10. Immunization of mice with a DNA vaccine expressing the HA/gp41 chimeric protein induced antibodies against the HIV gp41 protein and these antibodies exhibit neutralizing activity against infection by an HIV SF162 pseudovirus. These results demonstrate that the construction of such chimeric proteins can provide enhanced exposure of conserved epitopes in the HIV Env gp41 and may represent a novel vaccine design strategy for inducing broadly neutralizing antibodies against HIV

  4. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Directory of Open Access Journals (Sweden)

    Mattias N E Forsell

    2008-10-01

    Full Text Available The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3. Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4 rabbits with envelope glycoprotein (Env trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  5. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Science.gov (United States)

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  6. Podoplanin - a small glycoprotein with many faces

    OpenAIRE

    Ugorski, Maciej; Dziegiel, Piotr; Suchanski, Jaroslaw

    2016-01-01

    Podoplanin is a small membrane glycoprotein with a large number of O-glycoside chains and therefore it belongs to mucin-type proteins. It can be found on the surface of many types of normal cells originating from various germ layers. It is present primarily on the endothelium of lymphatic vessels, type I pneumocytes and glomerular podocytes. Increased levels of podoplanin or its neo-expression have been found in numerous types of human carcinomas, but it is especially common in squamous cell ...

  7. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies.

    Science.gov (United States)

    Sundaram, Roshni; Lynch, Marcus P; Rawale, Sharad V; Sun, Yiping; Kazanji, Mirdad; Kaumaya, Pravin T P

    2004-06-04

    Peptide vaccines able to induce high affinity and protective neutralizing antibodies must rely in part on the design of antigenic epitopes that mimic the three-dimensional structure of the corresponding region in the native protein. We describe the design, structural characterization, immunogenicity, and neutralizing potential of antibodies elicited by conformational peptides derived from the human T-cell leukemia virus type 1 (HTLV-1) gp21 envelope glycoprotein spanning residues 347-374. We used a novel template design and a unique synthetic approach to construct two peptides (WCCR2T and CCR2T) that would each assemble into a triple helical coiled coil conformation mimicking the gp21 crystal structure. The peptide B-cell epitopes were grafted onto the epsilon side chains of three lysyl residues on a template backbone construct consisting of the sequence acetyl-XGKGKGKGCONH2 (where X represents the tetanus toxoid promiscuous T cell epitope (TT) sequence 580-599). Leucine substitutions were introduced at the a and d positions of the CCR2T sequence to maximize helical character and stability as shown by circular dichroism and guanidinium hydrochloride studies. Serum from an HTLV-1-infected patient was able to recognize the selected epitopes by enzyme-linked immunosorbent assay (ELISA). Mice immunized with the wild-type sequence (WCCR2T) and the mutant sequence (CCR2T) elicited high antibody titers that were capable of recognizing the native protein as shown by flow cytometry and whole virus ELISA. Sera and purified antibodies from immunized mice were able to reduce the formation of syncytia induced by the envelope glycoprotein of HTLV-1, suggesting that antibodies directed against the coiled coil region of gp21 are capable of disrupting cell-cell fusion. Our results indicate that these peptides represent potential candidates for use in a peptide vaccine against HTLV-1.

  8. Ontogeny of pulmonary alveolar epithelial markers of differentiation.

    Science.gov (United States)

    Joyce-Brady, M F; Brody, J S

    1990-02-01

    We studied differentiation of the pulmonary epithelium in the periphery of fetal rat lung in vivo and in vitro by comparing the ontogeny of cell-surface glycoconjugates with that of surfactant phospholipids. Apical surface binding of the lectin Maclura pomifera agglutinin (MPA) and expression of a 200-kDa MPA-binding glycoprotein (MPA-gp200) was evident at 20 days gestation in type 2 cells, but did not correlate with ultrastructural features of type 2 cell differentiation. Epithelial cells isolated from peripheral lung of 18-day gestation fetal rats displayed hormone-sensitive surfactant synthesis prior to the hormone-insensitive expression of MPA-gp200. Expression of MPA-gp200 occurred in association with the appearance of many new apical surface proteins suggesting a hormone-independent process of polar membrane differentiation. Thus membrane and secretory differentiation are discordant and can be dissociated. In vivo binding of Ricinus communis 1 agglutinin (RCA1), an apical marker of the differentiated alveolar type 1 cell occurred in undifferentiated peripheral lung epithelial cells as early as 18 days gestation, disappeared from differentiating type 2 cells and appeared in differentiated type 1 cells. Both undifferentiated fetal epithelial cells at 18 days gestation and fully differentiated type 1 cells express multiple glycoproteins with terminal beta-linked galactose residues which bind RCA1. Some of these RCA1-binding glycoproteins appear to be similar. These observations suggest that alveolar epithelial type 1 cells may derive directly from undifferentiated peripheral lung epithelial cells as well as from fully differentiated type 2 cells. In addition, terminal differentiation of fetal lung peripheral epithelium into type 1 and type 2 cells may involve repression as well as induction of differentiation-related genes.

  9. Evaluation of two Taenia solium cysticercal antigenic preparations (vesicular fluid and a glycoprotein fraction with affinity for lentil lectin for the immunodiagnosis of neurocysticercosis by enzyme-linked immunosorbent assay (ELISA

    Directory of Open Access Journals (Sweden)

    Lisandra Akemi Suzuki

    2011-06-01

    Full Text Available OBJECTIVE: To evaluate the performance of two antigenic preparations (vesicular fluid - VF and a glycoprotein fraction, LLa-Gp fraction, purified from a whole parasite extract by lentil lectin affinity chromatography from Taenia solium cysticerci for the immunodiagnosis of neurocysticercosis. METHOD: Fifty-six cerebrospinal fluid (CSF samples (22 from patients with neurocysticercosis and 34 from patients with other neurological disorders and 57 serum samples (22 from patients with neurocysticercosis, 18 from patients with other infections and 17 from presumably healthy persons were assayed for anticysticercal IgG antibodies with an enzyme-linked immunosorbent assay (ELISA. RESULTS: The VF ELISA showed 100% sensitivity and specificity in CSF and serum samples, whereas the sensitivity and specificity of the LLa-Gp ELISA were, respectively, 90.9% and 97.1%, with the CSF samples and 95.5% and 100% with serum samples. There was no significant difference in the sensitivity and specificity of the two antigenic preparations used to screen CSF and serum samples. CONCLUSION: Considering the complexity and high cost of obtaining the LLa-Gp fraction, VF could be more suitable for screening specific antibodies by ELISA in CSF and serum samples from patients with neurocysticercosis.

  10. Baculovirus display of fusion protein of Peste des petits ruminants virus and hemagglutination protein of Rinderpest virus and immunogenicity of the displayed proteins in mouse model

    International Nuclear Information System (INIS)

    Masmudur Rahman, Md.; Shaila, M.S.; Gopinathan, Karumathil P.

    2003-01-01

    Recombinant Bombyx mori nucleopolyhedroviruses (BmNPV) displaying the immunodominant ectodomains of fusion glycoprotein (F) of Peste des petitis ruminants virus (PPRV) and the hemagglutinin protein (H) of Rinderpest virus (RPV), on the budded virions as well as the surface of the infected host cells have been constructed. The F and H protein sequences were inserted in-frame within the amino-terminal region of BmNPV envelope glycoprotein GP64 expressing under the strong viral polyhedrin (polh) promoter. We improved the recombinant virus selection in BmNPV by incorporating the green fluorescent protein gene (gfp) as selection marker under a separate promoter within the transfer cassette harboring the desired genes. Following infection of the insect larvae or the host-derived BmN cells with these recombinant BmNPVs, the expressed GP64 fusion proteins were displayed on the host cell surface and the budded virions. The antigenic epitopes of the recombinant proteins were properly displayed and the recombinant virus particles induced immune response in mice against PPRV or RPV

  11. Statins Suppress Ebola Virus Infectivity by Interfering with Glycoprotein Processing.

    Science.gov (United States)

    Shrivastava-Ranjan, Punya; Flint, Mike; Bergeron, Éric; McElroy, Anita K; Chatterjee, Payel; Albariño, César G; Nichol, Stuart T; Spiropoulou, Christina F

    2018-05-01

    Ebola virus (EBOV) infection is a major public health concern due to high fatality rates and limited effective treatments. Statins, widely used cholesterol-lowering drugs, have pleiotropic mechanisms of action and were suggested as potential adjunct therapy for Ebola virus disease (EVD) during the 2013-2016 outbreak in West Africa. Here, we evaluated the antiviral effects of statin (lovastatin) on EBOV infection in vitro Statin treatment decreased infectious EBOV production in primary human monocyte-derived macrophages and in the hepatic cell line Huh7. Statin treatment did not interfere with viral entry, but the viral particles released from treated cells showed reduced infectivity due to inhibition of viral glycoprotein processing, as evidenced by decreased ratios of the mature glycoprotein form to precursor form. Statin-induced inhibition of infectious virus production and glycoprotein processing was reversed by exogenous mevalonate, the rate-limiting product of the cholesterol biosynthesis pathway, but not by low-density lipoprotein. Finally, statin-treated cells produced EBOV particles devoid of the surface glycoproteins required for virus infectivity. Our findings demonstrate that statin treatment inhibits EBOV infection and suggest that the efficacy of statin treatment should be evaluated in appropriate animal models of EVD. IMPORTANCE Treatments targeting Ebola virus disease (EVD) are experimental, expensive, and scarce. Statins are inexpensive generic drugs that have been used for many years for the treatment of hypercholesterolemia and have a favorable safety profile. Here, we show the antiviral effects of statins on infectious Ebola virus (EBOV) production. Our study reveals a novel molecular mechanism in which statin regulates EBOV particle infectivity by preventing glycoprotein processing and incorporation into virus particles. Additionally, statins have anti-inflammatory and immunomodulatory effects. Since inflammation and dysregulation of the immune

  12. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  13. Direct interaction of the mouse cytomegalovirus m152/gp40 immunoevasin with RAE-1 isoforms.

    Science.gov (United States)

    Zhi, Li; Mans, Janet; Paskow, Michael J; Brown, Patrick H; Schuck, Peter; Jonjić, Stipan; Natarajan, Kannan; Margulies, David H

    2010-03-23

    Cytomegaloviruses (CMVs) are ubiquitous species-specific viruses that establish acute, persistent, and latent infections. Both human and mouse CMVs encode proteins that inhibit the activation of natural killer (NK) cells by downregulating cellular ligands for the NK cell activating receptor, NKG2D. The MCMV glycoprotein m152/gp40 downregulates the surface expression of RAE-1 to prevent NK cell control in vivo. So far, it is unclear if there is a direct interaction between m152 and RAE-1 and, if so, if m152 interacts differentially with the five identified RAE-1 isoforms, which are expressed as two groups in MCMV-susceptible or -resistant mouse strains. To address these questions, we expressed and purified the extracellular domains of RAE-1 and m152 and performed size exclusion chromatography binding assays as well as analytical ultracentrifugation and isothermal titration calorimetry to characterize these interactions quantitatively. We further evaluated the role of full-length and naturally glycosylated m152 and RAE-1 in cotransfected HEK293T cells. Our results confirmed that m152 binds RAE-1 directly, relatively tightly (K(d) RAE-1 isoforms, corresponding to the susceptibility to downregulation by m152. A PLWY motif found in RAE-1beta, although contributing to its affinity for m152, does not influence the affinity of RAE-1gamma or RAE-1delta, suggesting that other differences contribute to the RAE-1-m152 interaction. Molecular modeling of the different RAE-1 isoforms suggests a potential site for the m152 interaction.

  14. Modeling of the Ebola Virus Delta Peptide Reveals a Potential Lytic Sequence Motif

    Directory of Open Access Journals (Sweden)

    William R. Gallaher

    2015-01-01

    Full Text Available Filoviruses, such as Ebola and Marburg viruses, cause severe outbreaks of human infection, including the extensive epidemic of Ebola virus disease (EVD in West Africa in 2014. In the course of examining mutations in the glycoprotein gene associated with 2014 Ebola virus (EBOV sequences, a differential level of conservation was noted between the soluble form of glycoprotein (sGP and the full length glycoprotein (GP, which are both encoded by the GP gene via RNA editing. In the region of the proteins encoded after the RNA editing site sGP was more conserved than the overlapping region of GP when compared to a distant outlier species, Tai Forest ebolavirus. Half of the amino acids comprising the “delta peptide”, a 40 amino acid carboxy-terminal fragment of sGP, were identical between otherwise widely divergent species. A lysine-rich amphipathic peptide motif was noted at the carboxyl terminus of delta peptide with high structural relatedness to the cytolytic peptide of the non-structural protein 4 (NSP4 of rotavirus. EBOV delta peptide is a candidate viroporin, a cationic pore-forming peptide, and may contribute to EBOV pathogenesis.

  15. Identification of proteins specific for human herpesvirus 6-infected human T cells

    International Nuclear Information System (INIS)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-01-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from [ 35 S]methionine- and [ 3 H]glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 [ 35 S]methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpesviruses reacted with fewer HHV-6-infected cell proteins, and only a 135,000-M r polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105k and gp82k, gp116k, gp64k, and gp54k, and gp102k

  16. Identification of proteins specific for human herpesvirus 6-infected human T cells

    International Nuclear Information System (INIS)

    Balachandran, N.; Amelse, R.E.; Zhou, W.W.; Chang, C.K.

    1989-01-01

    Proteins specific for human herpesvirus 6 (HHV-6)-infected human T cells (HSB-2) were examined by using polyclonal rabbit antibodies and monoclonal antibodies against HHV-6-infected cells and human sera. More than 20 proteins and six glycoproteins specific for HHV-6-infected cells were identified from [ 35 S]methionine- and [ 3 H]glucosamine-labeled total-cell extracts. Polyclonal rabbit antibodies immunoprecipitated 33 [ 35 S]methionine-labeled HHV-6-specific polypeptides with approximate molecular weights ranging from 180,000 to 31,000. In immunoprecipitation and Western immunoblot reactions, a patient's serum also recognized more than 30 HHV-6-specific proteins and seven glycoproteins. In contrast, sera from individuals with high-titered antibodies against other human herpes viruses reacted with few HHV-6-infected cell proteins, and only a 135,000-M/sub r/ polypeptide was prominent. Monoclonal antibodies to HHV-6-infected cells reacted with single and multiple polypeptides specific for virus-infected cells and immunoprecipitated three distinct sets of glycoproteins, which were designated gp105K and gp92k, gp116k, gp64k, and gp54k, and gp102k

  17. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo

    International Nuclear Information System (INIS)

    Bošnjak, Ivana; Borra, Marco; Iamunno, Franco; Benvenuto, Giovanna; Ujević, Ivana; Bušelić, Ivana; Roje-Busatto, Romana; Mladineo, Ivona

    2014-01-01

    Highlights: • Effects of BPA on embryonic development of Paracentrotus lividus were determined. • Transport assay, intracellular BPA measurements and gene expression surveys were made. • Multidrug efflux transporter P-gp/ABCB1 is involved in BPA elimination. • Endocrine disruption is inferred by orphan steroid hormone receptor (shr2) upregulation. • BPA delayed mitosis, inducing aberrant karyokinesis and dysfunctional microfilaments. - Abstract: Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100 nM and 4 μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation

  18. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo

    Energy Technology Data Exchange (ETDEWEB)

    Bošnjak, Ivana [Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb (Croatia); Borra, Marco [Molecular Biology Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli (Italy); Iamunno, Franco; Benvenuto, Giovanna [Electron Microscopy Service, Stazione Zoologica Anton Dohrn, Villa Comunale 80121, Napoli (Italy); Ujević, Ivana [Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split (Croatia); Bušelić, Ivana [Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split (Croatia); Roje-Busatto, Romana [Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split (Croatia); Mladineo, Ivona, E-mail: mladineo@izor.hr [Laboratory for Aquaculture, Institute of Oceanography and Fisheries, Setaliste Ivana Mestrovica 63, 21000 Split (Croatia); Assemble Marine Laboratory, Stazione Zoological Anton Dohrn, Villa Comunale, Naples (Italy)

    2014-11-15

    Highlights: • Effects of BPA on embryonic development of Paracentrotus lividus were determined. • Transport assay, intracellular BPA measurements and gene expression surveys were made. • Multidrug efflux transporter P-gp/ABCB1 is involved in BPA elimination. • Endocrine disruption is inferred by orphan steroid hormone receptor (shr2) upregulation. • BPA delayed mitosis, inducing aberrant karyokinesis and dysfunctional microfilaments. - Abstract: Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100 nM and 4 μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation.

  19. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  20. Immunostimulation of Salmo salar L., and its effect on Lepeophtheirus salmonis (Krøyer) P-glycoprotein mRNA expression following subsequent emamectin benzoate exposure.

    Science.gov (United States)

    Igboeli, O O; Purcell, S L; Wotton, H; Poley, J; Burka, J F; Fast, M D

    2013-03-01

    Control of sea lice, Lepeophtheirus salmonis, on farmed Atlantic salmon, Salmo salar, relies heavily on chemotherapeutants. However, reduced efficacy of many treatments and need for integrated sea lice management plans require innovative strategies. Resistance to emamectin benzoate (EMB), a major sea lice parasiticide, has been linked with P-glycoprotein (P-gp) expression. We hypothesized that host immunostimulation would complement EMB treatment outcome. Lepeophtheirus salmonis-infected Atlantic salmon were fed immunostimulatory or control feeds. Sea lice were collected for 24-h EMB bioassays 1 and 2 weeks prior to commencement of EMB treatment of the fish. Two weeks after cessation of immunostimulant-treated feed, EMB was administered at 150 μg kg(-1) fish biomass for 7 days. The bioassay revealed stage, gender and immunostimulant-related differences in EMB EC(50) . Sea lice attached to salmon with a history of immunostimulation exhibited significantly greater survival than those on control feeds, despite similar levels of EMB in host tissues. Lepeophtheirus salmonis from salmon with a history of immunostimulation also exhibited higher P-gp mRNA expression as well as greater survivability compared to controls. Administration of immunostimulants prior to EMB treatment caused increased expression of P-gp mRNA which could have consequently caused decreased efficacy of the parasiticide. © 2013 Blackwell Publishing Ltd.