WorldWideScience

Sample records for surface geologic studies

  1. Study on geological environment in the Tono area. An approach to surface-based investigation

    International Nuclear Information System (INIS)

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  2. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  3. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitations, and, where available, case history applications in crystalline rock. Available information indicates that individual techniques provide reliable information on characteristics at the surface, but have limited success in projections to depths greater that approximately 100 m. A combination of integrated techniques combines with data from a limited number of boreholes would significantly improve the reliability and confidence of early characterization studies to provide qualitative rock body characteristics for region-to-area and area-to-site selection evaluations. 458 refs., 32 figs., 14 tabs

  4. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    2015-12-21

    suspected. Published by Elsevier Inc.1. Introduction Several features about the surface geology on the moons of Mars remain poorly understood. The grooves on...Deimos may have an effect on Phobos’ geology ; we shall attempt to estimate the magnitude of that effect in Section 4. For impacts with Mars, Phobos or...global surface geology , particularly in the 100+ Ma since the last Voltaire-sized impact. Therefore we believe it unlikely that the red veneer of

  5. Titan's methane cycle and its effect on surface geology

    Science.gov (United States)

    Lopes, R. M.; Peckyno, R. S.; Le Gall, A. A.; Wye, L.; Stofan, E. R.; Radebaugh, J.; Hayes, A. G.; Aharonson, O.; Wall, S. D.; Janssen, M. A.; Cassini RADAR Team

    2010-12-01

    Titan’s surface geology reflects surface-atmospheric interaction in ways similar to Earth’s. The methane cycle on Titan is a major contributor to the formation of surface features such as lakes, seas, rivers, and dunes. We used data from Cassini RADAR to map the distribution and relative ages of terrains that allow us to determine the geological processes that have shaped Titan’s surface. These SAR swaths (up to Titan flyby T64) cover about ~45% percent of the surface, at a spatial resolution ranging from 350 m to about >2 km. The data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution and significance of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth. In this paper, we update the geologic unit map that used flybys up to T30 (Lopes et al., 2010, Icarus, 205, 540-558), representing ~20% of the surface. We find that the overall correlations found previously still hold given more than double the areal coverage. In terms of global areal distribution, both dunes and mountainous terrains (including Xanadu) cover more area (respectively 9.2% and 14.6% of the observed area) than other identified geologic units. In terms of latitudinal distribution, dunes and hummocky, mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes filled with liquid are found at high latitudes only (above 60 degrees). Impact structures are mostly located at low latitudes, with no confidently identified craters above 60 degrees latitude, possibly indicating that more resurfacing has occurred at higher latitudes. Putative cryovolcanic features, consisting mostly of flows, are not ubiquitous and are mostly located in the areas surrounding Xanadu. We examine temporal relationships between

  6. The use of desk studies, remote sensing and surface geological and geophysical techniques in site investigations

    International Nuclear Information System (INIS)

    Mather, J.D.

    1984-02-01

    The geoscientific investigations required to characterise a site for the underground disposal of radioactive wastes involve a wide range of techniques and expertise. Individual national investigations need to be planned with the specific geological environment and waste form in mind. However, in any investigation there should be a planned sequence of operations leading through desk studies and surface investigations to the more expensive and sophisticated sub-surface investigations involving borehole drilling and the construction of in situ test facilities. Desk studies are an important and largely underestimated component of site investigations. Most developed countries have archives of topographical, geological and environmental data within government agencies, universities, research institutes and learned societies. Industry is another valuable source but here confidentiality can be a problem. However, in developing countries and in some regions of developed countries the amount of basic data, which needs to be collected over many decades, will not be as extensive. In such regions remote sensing offers a rapid method of examining large areas regardless of land access, vegetation or geological setting, rapidly and at relatively low cost. It can also be used to examine features, such as discontinuity patterns, over relatively small areas in support of intensive ground investigations. Examples will be given of how remote sensing has materially contributed to site characterisation in a number of countries, particularly those such as Sweden, Canada and the United Kingdom where the major effort has concentrated on crystalline rocks. The main role of desk studies and surface investigations is to provide basic data for the planning and execution of more detailed subsurface investigations. However, such studies act as a valuable screening mechanism and if they are carried out correctly can enable adverse characteristics of a site to be identified at an early stage before

  7. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  8. Construction of the Geological Model around KURT area based on the surface investigations

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Koh, Yong Kwon; Kim, Kyung Su; Choi, Jong Won

    2009-01-01

    To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geological elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  9. Geologic studies of the Columbia Plateau: a status report

    International Nuclear Information System (INIS)

    Myers, C.W.; Price, S.M.

    1979-10-01

    The results of recent geologic studies of the Columbia Plateau, with emphasis on work completed under the Basalt Waste Isolation Project, Rockwell Hanford Operations, are summarized in this report. Geologic studies were performed mostly during the period from 1977 to 1979. The major objective of these studies was to examine the feasibility of using deep underground tunnels mined into Columbia River basalt beneath the Hanford Site for final storage of nuclear waste. The results are presented in four chapters: Introduction; Regional Geology; Pasco Basin Geology; and Seismicity and Tectonics. Results from surface mapping and remote sensing studies in the Washington State portion of the Columbia Plateau are presented in the Regional Geology chapter. Results from surface mapping, borehole studies, and geophysical surveys in the Pasco Basin are presented in the Pasco Basin Geology chapter. Results that relate to the tectonic stability of the Pasco Basin and Columbia Plateau and discussion of findings from earthquake monitoring in the region for the past ten years are summarized in the Seismicity and Tectonics chapter. A volume of Appendices is included. This volume contains a description of study tasks, a description of the methodology used in geophysical surveys the geophysical survey results, a summary of earthquake records in eastern Washington, a description of tectonic provinces, and a preliminary description of the regional tectonic setting of the Columbia Plateau

  10. A study on site characterization of the deep geological environment around KURT

    International Nuclear Information System (INIS)

    Park, Kw; Kim, Gy; Koh, Yk; Kim, Ks; Choi, Jw

    2009-01-01

    KURT (KAERI Underground Research Tunnel) is a small scale research tunnel which was constructed from 2005 to 2006 at Korea Atomic Energy Research Institute (KAERI). To understand the deep geological environment around KURT area, the surface geological surveys such as lineaments analysis and geophysical survey and borehole investigation were performed. For this study, a 3 dimensional geological model has been constructed using the surface and borehole geological data. The regional lineaments were determined using a topographical map and the surface geophysical survey data were collected for the geological model. In addition, statistical methods were applied to fracture data from borehole televiewer loggings to identify fracture zones in boreholes. For a hydro geological modeling, fixed interval hydraulic tests were carried out for all boreholes. The results of the hydraulic tests were analyzed and classified by the fracture zone data of geological model. At result, the hydrogeological elements were decided and the properties of each element were assessed around the KURT area

  11. Surface Exposure Geochronology Using Cosmogenic Nuclides: Applications in Antarctic Glacial Geology

    Science.gov (United States)

    1994-02-01

    in rocks, are particularly promising for directly dating 1 geological surfaces . In 1934, Grosse et al. first suggested that cosmic rays produce rare...and muons produced by cosmic ray irteractions in the atmosphere and in rocks, and spallation by I neutrons produced in muon capture reactions (Kurz...stable isotopes are useful for surface 3 exposure studies because they can act as integrators of cosmic ray exposure on long time scales, potentially up

  12. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  13. Safety aspects of geological studies around nuclear installations sites

    International Nuclear Information System (INIS)

    Faure, J.

    1988-01-01

    The experience of geological studies of about forty french nuclear sites allows to set out the objectives, the phases and the geographic extensions of workings to be realized for confirming a site. The data to be collected for the safety analysis are specified; they concern the local and regional geology, the geotechnical characteristics and the essential elements for evaluating the hazards related to the soil liquefaction, the surface fracturing and in some cases the volcanic risks. It is necessary to follow up the geology during the installation construction and life. 8 refs. (F.M.)

  14. Quantitative roughness characterization of geological surfaces and implications for radar signature analysis

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    1999-01-01

    Stochastic surface models are useful for analyzing in situ roughness profiles and synthetic aperture radar (SAR) images of geological terrain. In this paper, two different surface models are discussed: surfaces with a stationary random roughness (conventional model) and surfaces with a power...

  15. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  16. Near-surface monitoring strategies for geologic carbon dioxide storage verification

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Lewicki, Jennifer L.; Hepple, Robert P.

    2003-10-31

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment

  17. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  18. Geology - Background complementary studies. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Skagius, Kristina [Kemakta Konsult AB, Stockholm (Sweden)] (eds.)

    2007-09-15

    During Forsmark model stage 2.2, seven complementary geophysical and geological studies were initiated by the geological modelling team, in direct connection with and as a background support to the deterministic modelling of deformation zones. One of these studies involved a field control on the character of two low magnetic lineaments with NNE and NE trends inside the target volume. The interpretation of these lineaments formed one of the late deliveries to SKB that took place after the data freeze for model stage 2.2 and during the initial stage of the modelling work. Six studies involved a revised processing and analysis of reflection seismic, refraction seismic and selected oriented borehole radar data, all of which had been presented earlier in connection with the site investigation programme. A prime aim of all these studies was to provide a better understanding of the geological significance of indirect geophysical data to the geological modelling team. Such essential interpretative work was lacking in the material acquired in connection with the site investigation programme. The results of these background complementary studies are published together in this report. The titles and authors of the seven background complementary studies are presented below. Summaries of the results of each study, with a focus on the implications for the geological modelling of deformation zones, are presented in the master geological report, SKB-R--07-45. The sections in the master report, where reference is made to each background complementary study and where the summaries are placed, are also provided. The individual reports are listed in the order that they are referred to in the master geological report and as they appear in this report. 1. Scan line fracture mapping and magnetic susceptibility measurements across two low magnetic lineaments with NNE and NE trend, Forsmark. Jesper Petersson, Ulf B. Andersson and Johan Berglund. 2. Integrated interpretation of surface and

  19. Geology - Background complementary studies. Forsmark modelling stage 2.2

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Skagius, Kristina

    2007-09-01

    During Forsmark model stage 2.2, seven complementary geophysical and geological studies were initiated by the geological modelling team, in direct connection with and as a background support to the deterministic modelling of deformation zones. One of these studies involved a field control on the character of two low magnetic lineaments with NNE and NE trends inside the target volume. The interpretation of these lineaments formed one of the late deliveries to SKB that took place after the data freeze for model stage 2.2 and during the initial stage of the modelling work. Six studies involved a revised processing and analysis of reflection seismic, refraction seismic and selected oriented borehole radar data, all of which had been presented earlier in connection with the site investigation programme. A prime aim of all these studies was to provide a better understanding of the geological significance of indirect geophysical data to the geological modelling team. Such essential interpretative work was lacking in the material acquired in connection with the site investigation programme. The results of these background complementary studies are published together in this report. The titles and authors of the seven background complementary studies are presented below. Summaries of the results of each study, with a focus on the implications for the geological modelling of deformation zones, are presented in the master geological report, SKB-R--07-45. The sections in the master report, where reference is made to each background complementary study and where the summaries are placed, are also provided. The individual reports are listed in the order that they are referred to in the master geological report and as they appear in this report. 1. Scan line fracture mapping and magnetic susceptibility measurements across two low magnetic lineaments with NNE and NE trend, Forsmark. Jesper Petersson, Ulf B. Andersson and Johan Berglund. 2. Integrated interpretation of surface and

  20. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  1. The 3D geological model of the 1963 Vajont rockslide, reconstructed with implicit surface methods

    Science.gov (United States)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Taller, Claudio

    2015-04-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and of its particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all the relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along

  2. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  3. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    Directory of Open Access Journals (Sweden)

    P. Sahu

    2009-07-01

    Full Text Available This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW – a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also

  4. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    Science.gov (United States)

    Sikdar, P. K.; Sahu, P.

    2009-07-01

    This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW) - a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also present in groundwater of various depths. Therefore

  5. Data Qualification Report: Precipitation and Surface Geology Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    C. Wilson

    2000-01-01

    The unqualified data addressed in this qualification report have been cited in an Analysis Model Report (AMR) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high-level radioactive waste. The unqualified data include precipitation volumes and surface geology maps The precipitation data consist of daily precipitation volumes measured at Yucca Mountain. The surface geology data include identification of the types and surface expressions of geologic units and associated structural features such as faults. These data were directly used in AMR U0010, Simulation of Net Infiltration for Modern and Potential Future Climates, ANL-NBS-HS-000032 (Hevesi et al. 2000), to estimate net infiltration into Yucca Mountain. This report evaluates the unqualified data within the context of supporting studies of this type for the Yucca Mountain Site Characterization Project (YMP). The purpose of this report is to identify data that can be cited as qualified for use in technical products to support the YMP Site Recommendation and that may also be used to support the License Application. The qualified data may either be retained in the original Data Tracking Number (DTN) or placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this report. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 02, Managing Technical Product Inputs, it has been determined that the unqualified precipitation and surface geology data are not used in the direct calculation of Principal Factors for postclosure safety or disruptive events. References to tables, figures, and sections from Hevesi et al. (2000) are based on Rev. 00 of that document

  6. Yet Another Lunar Surface Geologic Exploration Architecture Concept (What, Again?): A Senior Field Geologist's Integrated View

    Science.gov (United States)

    Eppler, D. B.

    2015-01-01

    Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.

  7. Verification study on technology for preliminary investigation for HLW geological disposal. Part 2. Verification of surface geophysical prospecting through establishing site descriptive models

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Goto, Keiichiro; Yoshimura, Kimitaka; Muramoto, Shigenori

    2012-01-01

    The Yokosuka demonstration and validation project using Yokosuka CRIEPI site has been conducted since FY 2006 as a cooperative research between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project are to examine and to refine the basic methodology of the investigation and assessment of properties of geological environment in the stage of Preliminary Investigation for HLW geological disposal. Within Preliminary Investigation technologies, surface geophysical prospecting is an important means of obtaining information from deep geological environment for planning borehole surveys. In FY 2010, both seismic prospecting (seismic reflection and vertical seismic profiling methods) for obtaining information about geological structure and electromagnetic prospecting (magneto-telluric and time domain electromagnetic methods) for obtaining information about resistivity structure reflecting the distribution of salt water/fresh water boundary to a depth of over several hundred meters were conducted in the Yokosuka CRIEPI site. Through these surveys, the contribution of geophysical prospecting methods in the surface survey stage to improving the reliability of site descriptive models was confirmed. (author)

  8. Study on synthesis of geological environment at Horonobe area. A technical review

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-03-01

    The objective of the Horonobe Under Ground Research Project includes enhancing reliability of disposal techniques and safety assessment methods which are based on data on deep underground geological environment obtained by surface explorations and models for geological environment developed using those data. In this study, through development of conceptual models of geological environment based on those data, the flows from data collection to modeling, which have been conducted independently for each geological environment of geology/geological structure, hydrogeology, geochemistry of groundwater and rock mechanics, were synthesized, and a systematic approach including processes from investigation of geological environment to its modeling was established, which is expected to ensure objectivity and traceability of the design and safety assessment of a disposal system. This study is also a part of a program that includes an iterative process in which geological models would be developed and revised repeatedly through the Horonobe Under Ground Research Project and development of geological environment investigation techniques. The results of the study are summarized as follows: (1) Models based on current knowledge were developed; conceptual geology/geological structural model, conceptual hydrogeological model, conceptual geochemical model of groundwater, and conceptual rock mechanical model, (2) Information of data flow and interpretation in the modeling process were synthesized into an data flow which includes knowledge on historical geology and palaeogeology in addition to four models shown above in terms of safety assessment, and (3) Based on modeling processes and syntheses of data flow shown above, tasks that should be considered were organized and suggestions of investigation program were provided for the next phase. (author)

  9. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  10. Study on geological environment model using geostatistics method

    International Nuclear Information System (INIS)

    Honda, Makoto; Suzuki, Makoto; Sakurai, Hideyuki; Iwasa, Kengo; Matsui, Hiroya

    2005-03-01

    The purpose of this study is to develop the geostatistical procedure for modeling geological environments and to evaluate the quantitative relationship between the amount of information and the reliability of the model using the data sets obtained in the surface-based investigation phase (Phase 1) of the Horonobe Underground Research Laboratory Project. This study lasts for three years from FY2004 to FY2006 and this report includes the research in FY2005 as the second year of three-year study. In FY2005 research, the hydrogeological model was built as well as FY2004 research using the data obtained from the deep boreholes (HDB-6, 7 and 8) and the ground magnetotelluric (AMT) survey which were executed in FY2004 in addition to the data sets used in the first year of study. Above all, the relationship between the amount of information and the reliability of the model was demonstrated through a comparison of the models at each step which corresponds to the investigation stage in each FY. Furthermore, the statistical test was applied for detecting the difference of basic statistics of various data due to geological features with a view to taking the geological information into the modeling procedures. (author)

  11. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  12. Advances in planetary geology

    International Nuclear Information System (INIS)

    1987-06-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed

  13. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  14. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  15. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    Science.gov (United States)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively

  16. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  17. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  18. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. Annexes

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The general report and the present annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful

  19. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. General report

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The present report and its annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful discussion

  20. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  1. Geologic mapping of near-surface sediments in the northern Mississippi Embayment, McCracken County, KY

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Joshua L [JL Sexton and Son; Fryar, Alan E [Dept of Earth and Geoligical Sciences, Univ of KY,; Greb, s F [Univ of KY, KY Geological Survey

    2006-04-01

    POSTER: The Jackson Purchase region of western Kentucky consists of Coastal Plain sediments near the northern margin of the Mississippi Embayment. Within this region is the Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility operated by the US Department of Energy. At PGDP, a Superfund site, soil and groundwater studies have provided subsurface lithologic data from hundreds of monitoring wells and borings. Despite preliminary efforts by various contractors, these data have not been utilized to develop detailed stratigraphic correlations of sedimentary units across the study area. In addition, sedimentary exposures along streams in the vicinityof PGDP have not been systematically described beyond the relatively simple geologic quadrangle maps published by the US Geological Survey in 1966-67. This study integrates lithologic logs, other previous site investigation data, and outcrop mapping to provide a compilation of near-surface lithologic and stratigraphic data for the PGDP area. A database of borehole data compiled during this study has been provided to PGDP for future research and archival.

  2. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  3. Subsurface geological modeling using GIS and remote sensing data: a case study from Platanos landslide, Western Greece

    Science.gov (United States)

    Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.

    2014-08-01

    Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.

  4. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-01-01

    The age of nuclear waste - the length of time between its removal from the reactor cores and its emplacement in a repository - is a significant factor in determining the thermal loading of a repository. The surface cooling period as well as the density and sequence of waste emplacement affects both the near-field repository structure and the far-field geologic environment. To investigate these issues, a comprehensive review was made of the available literature pertaining to thermal effects and thermal properties of mined geologic repositories. This included a careful evaluation of the effects of different surface cooling periods of the wastes, which is important for understanding the optimal thermal loading of a repository. The results led to a clearer understanding of the importance of surface cooling in evaluating the overall thermal effects of a radioactive waste repository. The principal findings from these investigations are summarized in this paper

  5. Geological studies in Alaska by the U.S. Geological Survey, 1999

    Science.gov (United States)

    Gough, Larry P.; Wilson, Frederic H.

    2001-01-01

    The collection of nine papers that follow continue the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. The series presents new and sometimes preliminary findings that are of interest to earth scientists in academia, government, and industry; to land and resource managers; and to the general public. Reports presented in Geologic Studies in Alaska cover a broad spectrum of topics from various parts of the State (fig. 1), serving to emphasize the diversity of USGS efforts to meet the Nation's needs for earth-science information in Alaska.

  6. Surface water-quality activities of the U.S. Geological Survey in New England

    Science.gov (United States)

    Huntington, Thomas G.

    2016-03-23

    The U.S. Geological Survey (USGS) collaborates with a variety of Federal, State, local, and tribal partners on scientific projects to provide reliable and impartial water-quality data and interpretation to resource managers, planners, stakeholders, and the general public. The themes related to surface water quality include the following:

  7. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  8. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala)

    International Nuclear Information System (INIS)

    Perez-Estaun, A.; Carbonell, R.; Marti, D.; Flecha, I.; Escuder Viruete, J.

    2002-01-01

    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  9. Evaluating Boy Scout Geology Education, A Pilot Study

    Science.gov (United States)

    Hintz, R. S.; Thomson, B.

    2008-12-01

    This study investigated geology knowledge acquisition by Boy Scouts through use of the Boy Scout Geology Merit Handbook. In this study, boys engaged in hands-on interactive learning following the requirements set forth in the Geology Merit Badge Handbook. The purposes of this study were to determine the amount of geology content knowledge engendered in adolescent males through the use of the Geology Merit Badge Handbook published by the Boy Scouts of America; to determine if single sex, activity oriented, free-choice learning programs can be effective in promoting knowledge development in young males; and to determine if boys participating in the Scouting program believed their participation helped them succeed in school. Members of a local Boy Scout Troop between the ages of 11 and 18 were invited to participate in a Geology Merit Badge program. Boys who did not already possess the badge were allowed to self-select participation. The boys' content knowledge of geology, rocks, and minerals was pre- and post-tested. Boys were interviewed about their school and Scouting experiences; whether they believed their Scouting experiences and work in Merit Badges contributed to their success in school. Contributing educational theories included single-sex education, informal education with free-choice learning, learning styles, hands-on activities, and the social cognitive theory concept of self-efficacy. Boys who completed this study seemed to possess a greater knowledge of geology than they obtained in school. If boys who complete the Boy Scout Geology Merit Badge receive additional geological training, their field experiences and knowledge acquired through this learning experience will be beneficial, and a basis for continued scaffolding of geologic knowledge.

  10. Geologic and radiometric study in the Picacho, Arizpe's Municipality, Sorora (Mexico) area

    International Nuclear Information System (INIS)

    Garcia y Barragan, J.C.

    1975-01-01

    This research work was aimed chiefly at studying the geology and radiometry of the El Picacho area in order to establish its uranium mineralization potential. Another purpose was to ascertain the factors favouring deposition of radioactive material in areas bordering on the Sierra del Manzanal, where the work was carried out. Detailed geological-radiometric surveys were made, both inside the El Picacho mine and at the surface. The geological surveys were carried out by means of compass bearings and stadia, while scintillometers and spectrometers were used for the radiometric studies. The work was supported by a general geological exploration of the central part of the Serra del Manzanal. To ascertain the radiometric anomalies, the distribution of the population of values was determined by statistical methods, the frequency, cumulative frequency and frequency percentage being evaluated for that purpose. The geological survey at the El Picacho mine revealed a group of fractures enclosing the following minerals: torbernite, iriginite and autunite. These fractures are no thicker than 5 cm and tend to wedge out after 3 meters. Primary uraniferous ore is likely to be found in this zone, so surveys based on (a) radon gas emanometry and (b) sediment geochemistry in the Siera del Manzanal are recommended. The basic data relating to this area could be supplemented by mineragraphic and X-ray studies, which would provide a fuller picture of the class of mineralogical species and of the paragenesis of radioactive material presnent in the zone. (author)

  11. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  12. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  13. Martian sub-surface ionising radiation: biosignatures and geology

    Directory of Open Access Journals (Sweden)

    J. M. Ward

    2007-07-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

  14. Modeling study on geological environment at Horonobe URL site

    International Nuclear Information System (INIS)

    Shimo, Michito; Yamamoto, Hajime; Kumamoto, Sou; Fujiwara, Yasushi; Ono, Makoto

    2005-02-01

    The Horonobe underground research project has been operated by Japan Nuclear Cycle Development Institute to study the geological environment of sedimentary rocks in deep underground. The objectives of this study are to develop a geological environment model, which incorporate the current findings and the data obtained through the geological, geophysical, and borehole investigations at Horonobe site, and to predict the hydrological and geochemical impacts caused by the URL shaft excavation to the surrounding area. A three-dimensional geological structure model was constructed, integrating a large-scale model (25km x 15km) and a high-resolution site-scale model (4km x 4km) that have been developed by JNC. The constructed model includes surface topography, geologic formations (such as Yuchi, Koetoi, Wakkanai, and Masuporo Formations), and two major faults (Ohomagari fault and N1 fault). In hydrogeological modeling, water-conductive fractures identified in Wakkanai Formation are modeled stochastically using EHCM (Equivalent Heterogeneous Continuum Model) approach, to represent hydraulic heterogeneity and anisotropy in the fractured rock mass. Numerical code EQUIV FLO (Shimo et al., 1996), which is a 3D unsaturated-saturated groundwater simulator capable of EHCM, was used to simulate the regional groundwater flow. We used the same model and the code to predict the transient hydrological changes caused by the shaft excavations. Geochemical data in the Horonobe site such as water chemistries, mineral compositions of rocks were collected and summarized into digital datasets. M3 (Multivariate, Mixing and Mass-balance) method developed by SKB (Laaksoharju et al., 1999) was used to identify waters of different origins, and to infer the mixing ratio of these end-members to reproduce each sample's chemistry. Thermodynamic code such as RHREEQC, GWB, and EQ3/6 were used to model chemical reactions that explain the present minerals and aqueous concentrations observed in the site

  15. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  16. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  17. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste

  18. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  19. Study on radon geological potential of Beijing city

    International Nuclear Information System (INIS)

    Liu Qingcheng; Wu Xinmin; Liu Yujuan; Yang Yaxin; Zhang Ye

    2009-01-01

    According to elemental geochemistry in Beijing, the uranium content in the area was measured, and distribution of radon concentration was predicted. Based on the uranium-radium equilibrium coefficient, porosity and diffusion coefficient, which were either measured or calculated, the radon geological potential of Beijing city was studied using γ-ray spectroscopy or mass spectroscopy and certain models were used to calculate the relation between radon geological potential and lithology and geological structure. The results showed that radon geological potential of Beijing city could be divided into four zones, tend of every zone coincides with the main structure, and the potential values nearly relate with geological factors. (authors)

  20. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  1. Three-dimensional Subsurface Geological Modeling of the Western Osaka Plane based on Borehole Data

    Science.gov (United States)

    Nonogaki, S.; Masumoto, S.; Nemoto, T.

    2012-12-01

    Three-dimensional (3D) geological model of subsurface structure plays an important role in developing infrastructures. In particular, the 3D geological model in urban area is quite helpful to solve social problems such as underground utilization, environmental preservation, and disaster assessment. Over the past few years, many studies have been made on algorithms for 3D geological modeling. However, most of them have given little attention to objectivity of the model and traceability of modeling procedures. The purpose of this study is to develop an algorithm for constructing a 3D geological model objectively and for maintaining high-traceability of modeling procedures. For the purpose of our work, we proposed a new algorithm for 3D geological modeling using gridded geological boundary surfaces and the "logical model of geologic structure". The geological boundary surface is given by a form of Digital Elevation Model (DEM). The DEM is generated based on geological information such as elevation, strike and dip by using a unique spline-fitting method. The logical model of geological structure is a mathematical model that defines a positional relation between geological boundary surfaces and geological units. The model is objectively given by recurrence formula derived from a sequence of geological events arranged in chronological order. We applied the proposed algorithm into constructing a 3D subsurface geological model of the western Osaka Plane, southwest Japan. The data used for 3D geological modeling is a set of borehole data provided by Osaka City and Kansai Geoinformatics Agency. As a result, we constructed a 3D model consistent with the subjective model reported in other studies. In addition, all information necessary for modeling, such as the used geological information, the parameters of surface fitting, and the logical model, was stored in text files. In conclusion, we can not only construct 3D geological model objectively but also maintain high

  2. Application of Remote Sensing in Geological Mapping, Case Study al Maghrabah Area - Hajjah Region, Yemen

    Science.gov (United States)

    Al-Nahmi, F.; Saddiqi, O.; Hilali, A.; Rhinane, H.; Baidder, L.; El arabi, H.; Khanbari, K.

    2017-11-01

    Remote sensing technology plays an important role today in the geological survey, mapping, analysis and interpretation, which provides a unique opportunity to investigate the geological characteristics of the remote areas of the earth's surface without the need to gain access to an area on the ground. The aim of this study is achievement a geological map of the study area. The data utilizes is Sentinel-2 imagery, the processes used in this study, the OIF Optimum Index Factor is a statistic value that can be used to select the optimum combination of three bands in a satellite image. It's based on the total variance within bands and correlation coefficient between bands, ICA Independent component analysis (3, 4, 6) is a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals, MNF Minimum Noise Fraction (1, 2, 3) is used to determine the inherent dimensionality of image data to segregate noise in the data and to reduce the computational requirements for subsequent processing, Optimum Index Factor is a good method for choosing the best band for lithological mapping. ICA, MNF, also a practical way to extract the structural geology maps. The results in this paper indicate that, the studied area can be divided into four main geological units: Basement rocks (Meta volcanic, Meta sediments), Sedimentary rocks, Intrusive rocks, volcanic rocks. The method used in this study offers great potential for lithological mapping, by using Sentinel-2 imagery, the results were compared with existing geologic maps and were superior and could be used to update the existing maps.

  3. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    Science.gov (United States)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  4. Geologic considerations for the subsurface injection of naturally occurring radioactive materials (NORM): A case study

    International Nuclear Information System (INIS)

    Ladle, G.H.

    1995-01-01

    NORM waste consists of naturally occurring radioactive material associated with oil and gas operations as scale deposited in tubulars, surface piping, pumps, and other producing and processing equipment. NORM also occurs as sludge and produced sands at wellheads, transport vessels and tank bottoms. For disposal, NORM scale and sludge are separated from the tubulars and tank bottoms and ground to less than 100 microns and mixed into a slurry at the surface facility for disposal into a deep well injection interval below the Underground Sources of Drinking Water zone. This paper addresses two primary considerations: (1) subsurface geologic investigations which identify specific geologic horizons that have sufficient porosity and permeability to accept NORM slurries containing high total suspended solids concentrations, and (2) surface facility requirements. Generic and specific information, criteria, and examples are included in the paper to allow the application of the geologic principles to other areas or regions

  5. Preliminary geologic framework developed for a proposed environmental monitoring study of a deep, unconventional Marcellus Shale drill site, Washington County, Pennsylvania

    Science.gov (United States)

    Stamm, Robert G.

    2018-06-08

    BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly

  6. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Science.gov (United States)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  7. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    Science.gov (United States)

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.

  8. Hydrochemical characteristic of surface and groundwater Lisichansk and Almazno-Marevske geological and industrial districts Nnorth-Eastern Donbas

    Directory of Open Access Journals (Sweden)

    Udalov Y.V.

    2014-12-01

    Full Text Available Incorporates a complex of problems accompanying the operation of coal deposits of Donbass. See hydrochemical characteristics of surface and groundwater Lisichansk and Almazno-Maryevskogo geological and industrial areas of the North-Eastern Donbass. Identified the main hydrochemical features of the waste mine waters of the enterprises of the coal industry on the territory of the studies. It is established that the surface waters of the study area exposed to intensive anthropogenic influence. Set content of basic elements-pollutants in surface waters. It is revealed that this pollution is of a complex nature. Identifies key elements contained in the effluent of industrial enterprises. Analyzed that a change of the chemical composition of groundwater has led to increased hardness and mineralization of water in the main water intakes of the research area. Identifies key elements-contaminants in groundwater. It was found that as a result of mine dewatering groundwater level fell over an area of 200km2, far exceeding the area of coal mining. This operational reserves fresh underground waters in the groundwater runoff module 1.2 dm3 / sec. km2 decreased by 200 - 300 m3 / day. Within funnel depression hydraulic connection is created not only a few confined aquifers, but also located near the mine fields. For example, in the area of Stakhanov the Luhansk region in general depression funnel width of about 25 km and a depth of 600-800m were 8 mine ("Central Irmino", "Maximovska" Ilyich, named after I.V. Chesnokov, "Krivoy Rog", 11-RAD "Brjankovsky" and "Dzerzhinsk". The purpose of research is general hydrochemical characteristics and identification of key elements polluting surface and groundwater Lisichanskiy and diamond-Marevskogo geological and industrial areas of the North-East Donbas.

  9. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  10. Geologic environmental study

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ( 1 8O, 2 H, 1 3C, 3 4S, 8 7Sr, 1 5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  11. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  12. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of the 1986 test drilling program. Environmental geology notes

    International Nuclear Information System (INIS)

    Curry, B.B.; Graese, A.M.; Hasek, M.J.; Vaiden, R.C.; Bauer, R.A.

    1988-01-01

    From 1984 through 1986, geologists from the Illinois State Geological Survey (ISGS) conducted a thorough field investigation in northeastern Illinois to determine whether the surface and subsurface geology would be suitable for constructing the U.S. Department of Energy's 20-TeV (trillion electron volt) particle accelerator - the Superconducting Super Collider (SSC). The third and final stage of test drilling in 1986 concentrated on a specific corridor proposed for the racetrack-shaped SSC that would circle deep below the surface of Kane, Kendall, and Du Page Counties. The main objective was to verify that bedrock lying under the region satisified the site criteria for construction of a 10-foot-diameter tunnel to hold the particle accelerator and the superconducting magnets, large chambers to house the laboratories and computers for conducting and recording experiments, and shafts to provide access to the subterranean facilities. Thirteen test holes, ISGS S-18 through S-30, were drilled to depths ranging from 398.2 to 646.6 feet. The field team recovered 5675 feet of bedrock core and 212 samples of glacial drift (sand, clay, gravel) for laboratory analyses and recorded on-site data that establish the thickness, distribution, lithology (composition), and other properties of the rocks lying under the study area

  13. The Mizunami underground research laboratory in Japan - programme for study of the deep geological environment

    International Nuclear Information System (INIS)

    Sakuma, Hideki; Sugihara, Kozo; Koide, Kaoru; Mikake, Shinichiro

    1998-01-01

    This paper is an overview of the PNC's Mizunami Underground Research Laboratory project in Mizunami City, central Japan. The Mizunami Underground Research Laboratory now will succeed the Kamaishi Mine as the main facility for the geoscientific study of the crystalline environment. The site will never be considered as a site for a repository. The surface-based investigations, planned to continue for some 5 years commenced in the autumn 1997. The construction of the facility to the depth of 1000 m is currently planned to: Develop comprehensive investigation techniques for geological environment; Acquire data on the deep geological environment and to; Develop a range of engineering techniques for deep underground application. Besides PNC research, the facility will also be used to promote deeper understanding of earthquakes, to perform experiments under micro-gravity conditions etc. The geology of the site is shortly as follows: The sedimentary overburden some 20 - 100 m in thickness is of age 2 - 20 million years. The basement granite is approx. 70 million years. A reverse fault is crosscutting the site. The identified fault offers interesting possibilities for important research. Part of the work during the surface-based investigations, is to drill and test deep boreholes to a planned depth up to 2000 m. Based on the investigations, predictions will be made what geological environment will be encountered during the Construction Phase. Also the effect of construction will be predicted. Methodology for evaluation of predictions will be established

  14. Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic).

    Science.gov (United States)

    Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta

    2016-12-01

    The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.

  15. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  16. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  17. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  18. Field Investigation of Surface Deformation Induced by the 2016 Meinong Earthquake and its Implications to Regional Geological Structures

    Science.gov (United States)

    Yi, De-Cheng; Chuang, Ray Y.; Lin, Ching-Weei

    2017-04-01

    We demonstrate mapping results of a newly-identified active folding-associated fault in southwestern Taiwan, which was triggered by the distant ML 6.6 Meinong earthquake in 2016. The 14.6-km-deep main shock occurred in Meinong at 3:57 (GMT +08) on February 6th while a series of 21-27 km deep aftershocks were induced after 160 seconds in Guanmiao, where is 25km NW away from the epicenter of the main shock. The focal mechanism of the Meinong main shock shows a westward oblique thrust with the fault plane of 275°/42°/17° (strike/dip/rake) but Guanmiao aftershocks show the N-S striking eastward normal movement. The study area locates at an on-going fold-and-thrust belt close to the deformation front of Taiwan orogeny with high rates of convergence, uplift and erosion. The geology of SW Taiwan is characterized by the 3-km-thick mudstones with high fluid pressure underlying the loose sedimentary rocks forming mud diapirs or mud-core anticlines. The significance of the Meinong earthquake is (1) aftershocks are far away from the main shock, and (2) the surface cracks partially distributed systematically along lineaments observed from InSAR, which has never been recognized as geological structures before. This study aims to establish possible kinematic processes of shallow deformation induced by the Meinong earthquake. We mapped surface cracks around the lineaments by using hand-held GPS and measured surface cracks by the compass and vernier. Among 249 kinematic data measured from 244 observed surface cracks and ruptures, the type of deformation was mostly identified as dilation or lateral translation and only 4 data were compressional deformation. The overall surface displacement moved to the northwest and west, consistent with the regional coseismic movement. The opening of the surface cracks range from 0.5 to 105 mm and 85% of them are less than 10 mm. Preseismic deformed features such as failure of the retaining wall were also observed along the western and eastern

  19. A Study of the Education of Geology

    Science.gov (United States)

    Berglin, R. S.; Baldridge, A. M.; Buxner, S.; Crown, D. A.

    2013-12-01

    An Evaluation and Assessment Method for Workshops in Science Education and Resources While many professional development workshops train teachers with classroom activities for students, Workshops in Science Education and Resources (WISER): Planetary Perspectives is designed to give elementary and middle school teachers the deeper knowledge necessary to be confident teaching the earth and space science content in their classrooms. Two WISER workshops, Deserts of the Solar System and Volcanoes of the Solar System, place an emphasis on participants being able to use learned knowledge to describe or 'tell the story of' a given rock. In order to understand how participants' knowledge and ability to tell the story changes with instruction, we are investigating new ways of probing the understanding of geologic processes. The study will include results from both college level geology students and teachers, focusing on their understanding of geologic processes and the rock cycle. By studying how new students process geologic information, teachers may benefit by learning how to better teach similar information. This project will help to transfer geologic knowledge to new settings and assess education theories for how people learn. Participants in this study include teachers participating in the WISER program in AZ and introductory level college students at St. Mary's College of California. Participants will be videotaped drawing out their thought process on butcher paper as they describe a given rock. When they are done, they will be asked to describe what they have put on the paper and this interview will be recorded. These techniques will be initially performed with students at St. Mary's College of California to understand how to best gather information. An evaluation of their prior knowledge and previous experience will be determined, and a code of their thought process will be recorded. The same students will complete a semester of an introductory college level Physical

  20. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  1. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  2. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  3. Study on the development of geological environmental model. 2

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Saito, Shigeyuki; Ueta, Shinzo; Ohashi, Toyo; Sasaki, Ryouichi; Tomiyama, Shingo

    2003-02-01

    The safety performance assessment was carried out in imaginary geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process from the data production to analysis in the three fields, and to systematize the knowledge base that unifies the information flow hierarchically. The information flow for geological environment model generation process is examined and modified base on the product of the research of 'Study on the development of geological environment model' that was examined in 2002. The work flow diagrams for geological structure and hydrology are modified, and those for geochemical and rock property are examined from the scratch. Furthermore, database design was examined to build geoclinal environment database (knowledgebase) based on the results of the systemisation of the environment model generation technology. The geoclinal environment database was designed and the prototype system is build to contribute databased design. (author)

  4. The Effects of Realistic Geological Heterogeneity on Seismic Modeling: Applications in Shear Wave Generation and Near-Surface Tunnel Detection

    Science.gov (United States)

    Sherman, Christopher Scott

    Naturally occurring geologic heterogeneity is an important, but often overlooked, aspect of seismic wave propagation. This dissertation presents a strategy for modeling the effects of heterogeneity using a combination of geostatistics and Finite Difference simulation. In the first chapter, I discuss my motivations for studying geologic heterogeneity and seis- mic wave propagation. Models based upon fractal statistics are powerful tools in geophysics for modeling heterogeneity. The important features of these fractal models are illustrated using borehole log data from an oil well and geomorphological observations from a site in Death Valley, California. A large part of the computational work presented in this disserta- tion was completed using the Finite Difference Code E3D. I discuss the Python-based user interface for E3D and the computational strategies for working with heterogeneous models developed over the course of this research. The second chapter explores a phenomenon observed for wave propagation in heteroge- neous media - the generation of unexpected shear wave phases in the near-source region. In spite of their popularity amongst seismic researchers, approximate methods for modeling wave propagation in these media, such as the Born and Rytov methods or Radiative Trans- fer Theory, are incapable of explaining these shear waves. This is primarily due to these method's assumptions regarding the coupling of near-source terms with the heterogeneities and mode conversion. To determine the source of these shear waves, I generate a suite of 3D synthetic heterogeneous fractal geologic models and use E3D to simulate the wave propaga- tion for a vertical point force on the surface of the models. I also present a methodology for calculating the effective source radiation patterns from the models. The numerical results show that, due to a combination of mode conversion and coupling with near-source hetero- geneity, shear wave energy on the order of 10% of the

  5. Geologic study of Kettle dome, northeast Washington. Final report

    International Nuclear Information System (INIS)

    1980-10-01

    This geologic study of Kettle dome, northeast Washington, encompasses an area of approximately 800 square miles (2048 sq km). The evaluation of uranium occurrences associated with the igneous and metamorphic rocks of the dome and the determination of the relationship between uranium mineralization and stratigraphic, structural, and metamorphic features of the dome are the principal objectives. Evaluation of the validity of a gneiss dome model is a specific objective. The principal sources of data are detailed geologic mapping, surface radiometric surveys, and chemical analyses of rock samples. Uranium mineralization is directly related to the presence of pegmatite dikes and sills in biotite gneiss and amphibolite. Other characteristics of the uranium occurrences include the associated migmatization and high-grade metamorphism of wallrock adjacent to the pegmatite and the abrupt decrease in uranium mineralization at the pegmatite-gneiss contact. Subtle chemical characteristics found in mineralized pegmatites include: (1) U increase as K 2 O increases, (2) U decreases as Na 2 O increases, and (3) U increases as CaO increases at CaO values above 3.8%. The concentration of uranium occurrences in biotite gneiss and amphibolite units results from the preferential intrusion of pegmitites into these well-foliated rocks. Structural zones of weakness along dome margins permit intrusive and migmatitic activity to affect higher structural levels of the dome complex. As a result, uranium mineralization is localized along dome margins. The uranium occurrences in the Kettle dome area are classified as pegmatitic. Sufficient geologic similarities exist between Kettle dome and the Rossing uranium deposit to propose the existence of economic uranium targets within Kettle dome

  6. Age determination and geological studies

    International Nuclear Information System (INIS)

    Stevens, R.D.; Delabio, R.N.; Lachance, G.R.

    1982-01-01

    Two hundred and eight potassium-argon age determinations carried out on Canadian rocks and minerals are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in brief outline and the constants used in the calculation of ages are listed. Two geological time-scales are reproduced in tabular form for ready reference and an index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference

  7. Coil response inversion for very early time modelling of helicopter-borne time-domain electromagnetic data and mapping of near-surface geological layers

    DEFF Research Database (Denmark)

    Schamper, Cyril Noel Clarence; Auken, Esben; Sørensen, Kurt Ingvard K.I.

    2014-01-01

    Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric cu...... resolution of shallow geological layers in the depth interval 0-20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.......Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric...

  8. POTENTIAL GEOLOGICAL SIGNIFICATIONS OF CRISIUM BASIN REVEALED BY CE-2 CELMS DATA

    Directory of Open Access Journals (Sweden)

    Z. Meng

    2018-04-01

    Full Text Available Mare Crisium is one of the most prominent multi-ring basins on the nearside of the Moon. In this study, the regolith thermophysical features of Mare Crisium are studied with the CELMS data from CE-2 satellite. Several important results are as follows. Firstly, the current geological interpretation only by optical data is not enough, and a new geological perspective is provided. Secondly, the analysis of the low TB anomaly combined with the (FeO+TiO2 abundance and Rock abundance suggests a special unknown material in shallow layer of the Moon surface. At last, a new basaltic volcanism is presented for Crisium Basin. The study hints the potential significance of the CELMS data in understanding the geological units over the Moon surface.

  9. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America

    International Nuclear Information System (INIS)

    Marfia, A.M.; Krishnamurthy, R.V.; Atekwana, E.A.; Panton, W.F.

    2004-01-01

    Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (δ 18 O) and hydrogen (δD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10-40.8%o). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and δ 13 C DIC ranged from -7.4 to -17.4%o. SO 4 2 , Ca 2+ and Mg 2+ in the water samples ranged from 2-163, 2-6593 and 2-90 mg/l, respectively. The DIC and δ 13 C DIC indicate both open and closed system carbonate evolution. Combined δ 13 C DIC and Ca 2+ , Mg 2+ , and SO 4 2- suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO 4 2- content of some water samples indicates regional geologic control on water quality. Similarity in the range of δ 18 O, δD and δ 13 C DIC for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa

  10. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  11. Geological considerations and constraints in planning and executing horizontal well prospects : two case studies from the Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Nwabor, D. [Schlumberger Oilfield Services (Saudi Arabia); Al-Fawwaz, A.; Hassani, S. [Saudi Aramco, Dhahran (Saudi Arabia)

    2006-07-01

    This paper discussed the challenges facing horizontal well drilling with particular reference to the limited success rates of 2 wells that were initially planned and drilled geometrically according to integrated geological and seismic data. The limited success was due partly to drilling to target without considering the key subsurface risks and uncertainties at the execution stages of the wells. Two case studies from these fields were presented in an effort to highlight important geological issues that must be considered when planning and executing horizontal wells. While the wells were being drilled, geological decisions were taken based on seismic data, geological modelling and assessing offset well log responses. The continuous use of real-time data during well drilling contributed to the achievement of the wells' objectives. This approach eliminated all the initial assumptions from seismic data. During the planning stages, many target surfaces such as faults, horizons and unconformities were created from a 3 dimensional grid. Each well was geologically steered in the execution stages by comparing what was seen while drilling with what was initially proposed at the planning stages. As drilling progressed, geological issues such as structural, stratigraphic, reservoir fluid contact and surveying uncertainties were considered. In most instances, the geological objectives of the studied wells were met, thereby improving production, increasing net pay and return on investment. It was concluded that the experience from this work can be applied to oilfields anywhere in the world.

  12. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  13. Radiochemical analyses of surface water from U.S. Geological Survey hydrologic bench-mark stations

    Science.gov (United States)

    Janzer, V.J.; Saindon, L.G.

    1972-01-01

    The U.S. Geological Survey's program for collecting and analyzing surface-water samples for radiochemical constituents at hydrologic bench-mark stations is described. Analytical methods used during the study are described briefly and data obtained from 55 of the network stations in the United States during the period from 1967 to 1971 are given in tabular form.Concentration values are reported for dissolved uranium, radium, gross alpha and gross beta radioactivity. Values are also given for suspended gross alpha radioactivity in terms of natural uranium. Suspended gross beta radioactivity is expressed both as the equilibrium mixture of strontium-90/yttrium-90 and as cesium-137.Other physical parameters reported which describe the samples include the concentrations of dissolved and suspended solids, the water temperature and stream discharge at the time of the sample collection.

  14. The Europa Global Geologic Map

    Science.gov (United States)

    Leonard, E. J.; Patthoff, D. A.; Senske, D. A.; Collins, G. C.

    2018-06-01

    The Europa Global Geologic Map reveals three periods in Europa's surface history as well as an interesting distribution of microchaos. We will discuss the mapping and the interesting implications of our analysis of Europa's surface.

  15. The Great Acceleration and the disappearing surficial geologic record

    Science.gov (United States)

    Rech, Jason A.; Springer, Kathleen; Pigati, Jeffrey S.

    2017-01-01

    The surficial geologic record is the relatively thin veneer of young (Earth’s terrestrial surface (Fig. 1). Once largely ignored as “overburden” by geologists, surficial deposits are now studied to address a wide range of issues related to the sustainability of human societies. Geologists use surficial deposits to determine the frequency and severity of past climatic changes, quantify natural and anthropogenic erosion rates, identify hazards, and calculate recurrence intervals associated with earthquakes, landslides, tsunamis, and volcanic eruptions. Increasingly, however, humans are eradicating the surficial geologic record in many key areas through progressive modification of Earth’s surface.

  16. Overview of the regional geology of the Paradox Basin Study Region

    International Nuclear Information System (INIS)

    1983-03-01

    The Geologic Project Manager for the Paradox Basin Salt Region (PBSR), Woodward-Clyde Consultants, has conducted geologic studies to characterize the region and evaluate selected geologic formations as potential repositories for the storage and disposal of nuclear waste. Evaluations have been made from the standpoint of engineering feasibility, safety, public health, and resource conflicts. The Regulatory Project Manager for the PBSR, Bechtel National, Inc., has performed environmental characterizations to ensure that data on ecological, socioeconomic, and other environmental factors required by the National Environmental Policy Act of 1969 are considered. This report characterizes, at a regional overview level of detail, the Paradox Basin Study Region Geology. Information sources include the published literature, field trip guidebooks, open file data of the US Geological Survey (USGC) and Utah Geologic and Mineral Survey, university theses, Geo-Ref Computer Search, and various unpublished sources of subsurface data such as well logs. Existing information has been synthesized and characterized. No field work was conducted as part of this study. Where possible, attempts were made to evaluate the data. All results of this study are subject to change as more data become available

  17. New results concerning geophysical and geological-engineering data. Case study Telega, Romania

    Science.gov (United States)

    Maftei, Raluca-Mihaela; Rusu, Emil; Cristea, Paul; Manj, Valeriu; Avram, Ovidiu; Tudor, Elena; Porumbescu, Constantina; Ciurean, Roxana

    2010-05-01

    New results concerning geophysical and geological-engineering data. Case study Telega, Romania R.Maftei, E.Rusu, P.Cristea, V.Manj, R.Ciurean, O.Avram, E.Tudor, C.Porumbescu Geological Institute of Romania, Geohazard, Bucharest, Romania (mafteir@yahoo.com) Geophysical tests The geoelectric investigation (October-November 2009) outlines horizontally the sliding area, and vertically the elements of the landslide surface - position, depth, shape, and the bedrock's relief. The quantitative interpretation of the resistivity geoelectrical vertical tests, and the correlation with the geological structure identified 3 sliding surfaces, from which only the upper one (2-6m depth) was known before the stability works. There were localized the rainfall waters circulation and accumulation zones, areas with high sliding risk. Same results were obtained in sliding zones, been localized the principal elements of the landslides, with practical implications in land instability and estimation of the evolution of the destructive phenomena mechanisms. With this study we try to quantify the complex relationship between the natural factors that generate the terrain instability phenomena and the intensity of the socio-economic effects, at a regional and local scale, by correlating the engineering geology information and geophysical data. Recent seismic research program (September 2009) conceived for "La Butoi" landslide, Telega locality, aims to a specific monitoring of the dynamic deformations, more active in the central part of the landslide, with reference to the shallow seismic refraction information obtained in the 2004 - 2005 period. The investigations were performed on a seismic lines network, and two seismic boundaries, in the shallow seismic section, were exhibited. As a result, one can observe the curvature tendency of the first arrivals sin-phase for the end-off shot devices, setting off the velocity increasing regime with depth; relative high variations and irregularities of

  18. Study on the background information for the geological disposal concept

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Murano, Tohru; Hirusawa, Shigenobu; Komoto, Harumi

    2000-03-01

    Japan Nuclear Cycle Development Institute (JNC) has published first R and D report in 1992, in which the fruits of the R and D work were compiled. Since then, JNC, has been promoting the second R and D progress report until before 2000, in which the background information on the geological disposal of high level radioactive waste (HLW) was to be presented as well as the technical basis. Recognizing the importance of the social consensus to the geological disposal, understanding and consensus by the society are essential to the development and realization of the geological disposal of HLW. In this fiscal year, studies were divided into 2 phases, considering the time schedule of the second R and D progress report. 1. Phase 1: Analysis of the background information on the geological disposal concept. Based on the recent informations and the research works of last 2 years, final version of the study was made to contribute to the background informations for the second R and D progress report. (This was published in Nov. 1999 as the intermediate report: JNC TJ 1420 2000-006). 2. Phase 2: Following 2 specific items were selected for the candidate issues which need to be studied, considering the present circumstances around the R and D of geological disposal. (1) Educational materials and strategies related to nuclear energy and nuclear waste. Specific strategies and approaches in the area of nuclear energy and nuclear waste educational outreach and curriculum activities by the nuclear industry, government and other entities in 6 countries were surveyed and summarized. (2) Alternatives to geological disposal of HLW: Past national/international consideration and current status. The alternatives for the disposal of HLW have been discussed in the past and the major waste-producing countries have almost all chosen deep geological disposal as preferred method. Here past histories and recent discussions on the variations to geological disposal were studied. (author)

  19. A quantitative geologic study of heterogeneity

    International Nuclear Information System (INIS)

    Davis, J.M.; Phillips, F.M.

    1990-01-01

    Spatial variation of hydraulic conductivity has been generally recognized as the dominant medium-dependent control on the transport and dispersion of contaminants in ground water. An empirical study focusing on the relationship between patters of sedimentology and patterns of permeability is being conducted at an outcrop of the Pliocene/Pleistocene Sierra Ladrones formation, central New Mexico. Methods of geostatistics and sedimentary basin analysis are employed to study the problem of aquifer heterogeneity. An air permeameter provides a means of obtaining extensive field measurements of air-flow rates through the sediments. These flow rates are subsequently used to characterize the permeability distribution of the outcrop. Both the geologic information and the air-flow rate data provide the basis for analysis of aquifer heterogeneity. Preliminary geologic mapping indicates that the sediments in the study area are the products of an arid fluvial/interfluvial depositional environment. Probability distribution analysis of the air-flow rate data suggests that the permeability of these sediments is log-normally distributed. The air permeability data are used to estimate variograms and correlation lengths in both the horizontal and vertical directions. At the scale of 10's of centimeters, the horizontal variograms exhibit exponential variogram behaviour . When two distinct lithologies are present, the correlation structure appears to be a nested exponential. Variogram analysis of estimated mean permeability at the scale of meters also shows evidence of a nested correlation structure in the horizontal direction and a periodic correlation structure in the vertical direction. Results of this study suggest that there is a direct connection between observable geologic structure and permeability statistics. (Author) (35 refs., 10 figs., 5 tabs.)

  20. Economic geology of the Bingham mining district, Utah, with a section on areal geology, and an introduction on general geology

    Science.gov (United States)

    Boutwell, J.M.; Keith, Arthur; Emmons, S.F.

    1905-01-01

    The field work of which this report represents the final results was first undertaken in the summer of the year 1900. This district had long been selected by the writer as worthy of special economic investigation, as well on account of the importance of its products as because of its geological structure and the peculiar relations of its ore deposits. It was not, however, until the summer mentioned above that the means at the disposal of the Survey, both pecuniary and scientific, justified its undertaking. As originally planned, the areal or surface geology was to have been worked out by Mr. Keith, who had already spent many years in unraveling the complicated geological structure of the Appalachian province, while Mr. Boutwell, who had more recently become attached to the Survey, was to have charge of the underground geology, or a study of the ore deposits, under the immediate supervision of the writer. When the time came for actually taking the field, it was found that the pressure of other work would not permit Mr. Keith to carry out fully the part allotted to him, and in consequence a part of his field work has fallen to Mr. Boutwell. Field work was commenced by the writer and Mr. Boutwell early in July, 1900. Mr. Keith joined the party on August 10, but was obliged to leave for other duties early in September. Mr. Boutwell carried on his field work continuously from July until December, taking up underground work after the snowfall had rendered work on the surface geology impracticable. The geological structure had proved to be unexpectedly intricate and complicated, so that, on the opening of the field season of 1901, it was found necessary to make further study in the light of results already worked out, and Mr. Boutwell spent some weeks in the district in the early summer of 1901. His field work that year, partly in California and partly in Arizona, as assistant to Mr. Waldemar Lindgren, lasted through the summer and winter and well into the spring of 1902

  1. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  2. Significant achievements in the planetary geology program. Final report

    International Nuclear Information System (INIS)

    Head, J.W.

    1978-12-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include the following: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included

  3. Studies by the U.S. Geological Survey in Alaska, 2011

    Science.gov (United States)

    Dumoulin, Julie A.; Dusel-Bacon, Cynthia

    2012-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of "online only" versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  4. Studies by the U.S. Geological Survey in Alaska, 2007

    Science.gov (United States)

    Haeussler, Peter J.; Galloway, John P.

    2009-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  5. Geophysical and geological investigations of subsurface reservoirs : case studies of Spitsbergen, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Baelum, Karoline

    2011-07-01

    The thesis gives a description of the subsurface and outcrop geology at a number of localities on Svalbard through a selection of various geophysical and geological methods. The localities represent a series of geological settings of varying scale, from near surface paleokarst and glacial environments to large scale geological features such as fault zones, grabens and dolerite intrusions. The geophysical and geological methods deployed likewise represent both detailed small scale investigations such as Lidar, radar and geoelectric investigations on and near the surface, and seismic investigations covering larger areas to a depth of several kilometers. The overall aim for all the studies has been to better understand reservoir and cap rock/ice systems in a barren arctic desert characterized by a frozen ground that challenges common geophysical methods. The investigations undertaken in connection with this thesis cover several areas The first part addresses the Billefjorden fault zone (BFZ) with its eastern hanging wall classic rift-basin. This fault zone can be traced for more than 200 km as a lineament that runs almost the entire length of Spitsbergen, from Wijdefjorden in the north to Storfjorden in the south. The seismic data along with surface observations and Lidar scans illustrate the long and complicated history of the BFZ and associated basin, from the initial formation via linkage of reverse faults in the Devonian, through Carboniferous reactivation as a normal fault with adjacent rift-basin in an extensional tectonic regime, to finally Tertiary contraction seen as fault reactivation and basin inversion in connection with the formation of the west-coast fold and thrust-belt. Especially the development of the Carboniferous rift-basin is of interest. An integrated study by seismic and georadar mapping, and Lidar data interpretation combined with outcrop analysis of faults and sedimentary succession, have shed new, detailed information on the good sandstone

  6. Constructing a large-scale 3D Geologic Model for Analysis of the Non-Proliferation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J; Myers, S

    2008-04-09

    We have constructed a regional 3D geologic model of the southern Great Basin, in support of a seismic wave propagation investigation of the 1993 Nonproliferation Experiment (NPE) at the Nevada Test Site (NTS). The model is centered on the NPE and spans longitude -119.5{sup o} to -112.6{sup o} and latitude 34.5{sup o} to 39.8{sup o}; the depth ranges from the topographic surface to 150 km below sea level. The model includes the southern half of Nevada, as well as parts of eastern California, western Utah, and a portion of northwestern Arizona. The upper crust is constrained by both geologic and geophysical studies, while the lower crust and upper mantle are constrained by geophysical studies. The mapped upper crustal geologic units are Quaternary basin fill, Tertiary deposits, pre-Tertiary deposits, intrusive rocks of all ages, and calderas. The lower crust and upper mantle are parameterized with 5 layers, including the Moho. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geology at the NTS. Digital geologic outcrop data were available for both Nevada and Arizona, whereas geologic maps for California and Utah were scanned and hand-digitized. Published gravity data (2km spacing) were used to determine the thickness of the Cenozoic deposits and thus estimate the depth of the basins. The free surface is based on a 10m lateral resolution DEM at the NTS and a 90m lateral resolution DEM elsewhere. Variations in crustal thickness are based on receiver function analysis and a framework compilation of reflection/refraction studies. We used Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. For seismic studies, the geologic units are mapped to specific seismic velocities. The gross geophysical structure of the crust and upper mantle is taken from regional surface

  7. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  8. The geology of the southeastern Baltic Sea: a review

    Science.gov (United States)

    Ūsaitytė, Daiva

    2000-06-01

    The Baltic Sea, particularly its southeastern part, is discussed in the paper. Investigations of regional character as well as specialized studies in the area are reviewed. General historical works are mentioned briefly. Previous surveys since the 1950s are presented by the subject studied. The compilation of geological structure of the SE Baltic Sea bottom and adjacent land of Balticum (Baltic States: Estonia, Latvia, Lithuania) is based on considerable amounts of summarized materials. The crystalline basement, sedimentary cover and Quaternary deposits are characterized in the comprehensive survey of geological structure. From a stratigraphical point of view, geological sequence of the platformal cover is comparatively complete: deposits of all geological systems (from the Archean to Cenozoic) are present in the Baltic Syneclise. Considering geotectonical cycles, the sedimentary cover of the syneclise is subdivided into four structural complexes. The thickness and distribution of Quaternary deposits are closely related to the recent bottom relief of the Baltic Sea that in turn is inherited from the Pre-Quaternary surface. Buried palaeo-valleys are characteristic of the Pre-Quaternary surface in the Baltic region and the Baltic Sea bottom. The Quaternary is characterized by layers of various geneses and by sharp changes of their thicknesses.

  9. Large earthquake rates from geologic, geodetic, and seismological perspectives

    Science.gov (United States)

    Jackson, D. D.

    2017-12-01

    Earthquake rate and recurrence information comes primarily from geology, geodesy, and seismology. Geology gives the longest temporal perspective, but it reveals only surface deformation, relatable to earthquakes only with many assumptions. Geodesy is also limited to surface observations, but it detects evidence of the processes leading to earthquakes, again subject to important assumptions. Seismology reveals actual earthquakes, but its history is too short to capture important properties of very large ones. Unfortunately, the ranges of these observation types barely overlap, so that integrating them into a consistent picture adequate to infer future prospects requires a great deal of trust. Perhaps the most important boundary is the temporal one at the beginning of the instrumental seismic era, about a century ago. We have virtually no seismological or geodetic information on large earthquakes before then, and little geological information after. Virtually all-modern forecasts of large earthquakes assume some form of equivalence between tectonic- and seismic moment rates as functions of location, time, and magnitude threshold. That assumption links geology, geodesy, and seismology, but it invokes a host of other assumptions and incurs very significant uncertainties. Questions include temporal behavior of seismic and tectonic moment rates; shape of the earthquake magnitude distribution; upper magnitude limit; scaling between rupture length, width, and displacement; depth dependence of stress coupling; value of crustal rigidity; and relation between faults at depth and their surface fault traces, to name just a few. In this report I'll estimate the quantitative implications for estimating large earthquake rate. Global studies like the GEAR1 project suggest that surface deformation from geology and geodesy best show the geography of very large, rare earthquakes in the long term, while seismological observations of small earthquakes best forecasts moderate earthquakes

  10. Long-term environmental impacts of geologic repositories

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1983-05-01

    This paper summarizes a study of the long-term environmental impacts of geologic repositories for radioactive wastes. Conceptual repositories in basalt, granite, salt, and tuff were considered. Site-specific hydrological and geochemical parameters were used wherever possible, supplemented with generic parameters when necessary. Radiation doses to future maximally exposed individuals who use the contaminated groundwater and surface water were calculated and compared with a performance criterion of 10 -4 Sv/yr for radiation exposures from probable events. The major contributors to geologic isolation are the absence of groundwater if the repository is in natural salt, the slow dissolution of key radioelements as limited by solubility and by diffusion and convection in groundwater, long water travel times from the waste to the environment, and sorption retardation in the media surrounding the repository. In addition, dilution by surface water can considerably reduce the radiation exposures that result from the small fraction of the waste radioactivity that may ultimately reach the environment. Estimates of environmental impacts are made both for unreprocessed spent fuel and for reprocessing wastes. Accelerated dissolution of waste exposed to groundwater during the period of repository heating is also considered. This study of environmental impacts is a portion of a more comprehensive study of geologic waste disposal carried out by the Waste Isolation System Panel of the US National Research Council

  11. World resources and the development of the earth's surface

    International Nuclear Information System (INIS)

    Sasaki, A.; Ishihara, S.; Seki, Y.

    1985-01-01

    This text is an examination of economic (or ore) geology, and engineering geology. Using case studies of Japan and continental North America, this work presents a geological and geochemical summary of ore-forming processes along with discussions of basic principles and approaches to modern engineering geology. Emphasizes the relationship between fossil fuel resources and the evolution of the Earth's crust. Contents - WORLD RESOURCES. The Geochemistry of Metallogenesis. The Geochemistry of Fossil Fuel Deposit. Global Evolution and the Formation of Mineral Deposits. The Development of Continents and Island Arcs and the Formation of Mineral Deposits. DEVELOPMENT OF THE EARTH'S SURFACE. Development of the Earth's Surface and Engineering Geology. Engineering Geology Methods. Features of the Ground and Bedrock in Japan. Engineering Geology - A Case Study. Geology and the Environment - Case Studies. INDEX. Principal World-Wide Metal Deposits (inside front cover). Principal World-Wide Coal, Petroleum and Uranium Deposits (inside back cover)

  12. Geologic mapping of Kentucky; a history and evaluation of the Kentucky Geological Survey--U.S. Geological Survey Mapping Program, 1960-1978

    Science.gov (United States)

    Cressman, Earle Rupert; Noger, Martin C.

    1981-01-01

    In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs

  13. Mapping urban geology of the city of Girona, Catalonia

    Science.gov (United States)

    Vilà, Miquel; Torrades, Pau; Pi, Roser; Monleon, Ona

    2016-04-01

    lines of the top of the pre-Quaternary basement surface. The most representative complementary maps are the quaternary map, the subsurface bedrock map and the isopach map of thickness of superficial deposits (Quaternary and anthropogenic). The map sheets also include charts and tables of relevant physic-chemical parameters of the geological materials, harmonized downhole lithological columns from selected boreholes, stratigraphic columns, and, photographs and figures illustrating the geology of the mapped area and how urbanization has changed the natural environment. The development of systematic urban geological mapping projects, such as the example of Girona's case, which provides valuable resources to address targeted studies related to urban planning, geoengineering works, soil pollution and other important environmental issues that society should deal with in the future.

  14. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  15. Information collection and analysis of geological characterization and evaluation technology and application to geological characterization study

    International Nuclear Information System (INIS)

    Kawamura, Hideki; Noda, Masaru; Nishikawa, Naohito; Sato, Shoko; Tanaka, Tatsuya

    2003-03-01

    Tono Geoscience Center (TGC) of Japan Nuclear Cycle Development Institute has been conducting the Regional Groundwater Investigation and Mizunami Underground Laboratory (MIU) Project in order to develop investigation technologies and evaluation methods of geological environment. At present, towards the next progress reporting on research and development for geological disposal of HLW in Japan, based on the existing research and development results, the projects which are conducted by TGC are required for promoting smoothly and efficiently with regard to the current Japanese HLW program. According to such situation, for planning of the geological environment investigation and research at TGC and the next progress reporting, this study has investigated and summarizes overseas environmental impact assessments for final disposal, overseas site characterization and site selection, and overseas research plan of underground research laboratories. Based on the results of investigation, some technologies which have possibility to be applied to the MIU Project have been studied. Also overseas quality assurance programs have been investigated, and examples of the application of their concepts to MIU project have been considered. (author)

  16. An appraisal of the geologic structure beneath the Ikogosi warm spring in south-western Nigeria using integrated surface geophysical methods

    Directory of Open Access Journals (Sweden)

    J.S Ojo

    2011-06-01

    Full Text Available An integrated surface geophysical investigation involving resistivity and magnetic methods was carried out in the immediate vicinity of the Ikogosi warm spring situated in south-western Nigeria with a view to delineating its subsurface geological sequence and evaluating the structural setting beneath the warmspring. Total field magnetic measurements and vertical electrical sounding (VES data were acquired along five N-S traverses. Magnetic and VES data interpretation
    involved inverse modelling. The inverse magnetic models delineated fractured quartzite/faulted areas within fresh massive quartzite at varying depths and beneath all traverses. The geoelectrical sections developed from VESinterpretation results also delineated a subsurface sequence consisting of a topsoil/weathered layer, fresh quartzite, fractured/faulted quartzite and fresh quartzite bedrock. It was deduced that the fractured/faulted quartzite may have acted as conduit for the
    movement of warm groundwater from profound depths to the surface while the spring outlet was located on a geological interface  (lineament.

  17. Nevada Test Site flood inundation study: Part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for USDOE, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Blanton, J.O. III.

    1992-01-01

    The Geological Survey (GS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. The Bureau of Reclamation was selected by the GS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates and associated inundation maps are necessary for successful waste repository design and construction. The standard step method for backwater computations, incorporating the Bernouli energy equation and the results of the PMF study were chosen as the basis for defining the areal extent of flooding

  18. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 10. Repository preconceptual design studies: granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 10 ''Repository Preconceptual Design Studies: Granite,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in granite. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/11, ''Drawings for Repository Preconceptual Design Studies: Granite.''

  19. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 8. Repository preconceptual design studies: salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 8 ''Repository Preconceptual Design Studies: Salt,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/9, ''Drawings for Repository Preconceptual Design Studies: Salt.''

  20. Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Dumoulin, Julie A.; Galloway, John

    2010-01-01

    The collection of papers that follow continues the series of U.S. Geological Survey (USGS) investigative reports in Alaska under the broad umbrella of the geologic sciences. This series represents new and sometimes-preliminary findings that are of interest to Earth scientists in academia, government, and industry; to land and resource managers; and to the general public. The reports presented in Studies by the U.S. Geological Survey in Alaska cover a broad spectrum of topics from various parts of the State, serving to emphasize the diversity of USGS efforts to meet the Nation's needs for Earth-science information in Alaska. This professional paper is one of a series of 'online only' versions of Studies by the U.S. Geological Survey in Alaska, reflecting the current trend toward disseminating research results on the World Wide Web with rapid posting of completed reports.

  1. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  2. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  3. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  4. Oskarshamn site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Wahlgren, Carl-Henric

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark and Laxemar-Simpevarp (this guide) areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at eight representative outcrops or outcrop areas at the ground surface in the site investigation area at Laxemar-Simpevarp and at one locality north of this area, i.e. at a total of nine localities

  5. Forsmark site investigation. Bedrock geology - overview and excursion guide

    International Nuclear Information System (INIS)

    Stephens, Michael B.

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  6. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  7. The First Global Geological Map of Mercury

    Science.gov (United States)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  8. Remote methods in geological studies. Distantsionnyye metody v geologicheskikh issldovaniyakh

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The article cover the use of aerial and space photographic, scanner, radar and thermal photographs in geomorphological and geological study of platform and folded regions, specialized processing of lineaments of a photo image, predicting the quality of images of linear objects, photogrammetry of scanner images and questions of photogrametric processing of aerial photographic materials. The collection is designed for a broad circle of specialists using materials of remote photographs in geological studies and investgation of natural resources.

  9. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    International Nuclear Information System (INIS)

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome

  10. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

  11. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  12. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  13. Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China

    International Nuclear Information System (INIS)

    Wang, Tianye; Wang, Huaiyuan; Zhang, Fengjun; Xu, Tianfu

    2013-01-01

    Highlights: • We determined the feasibilities of geologic CO 2 sequestration in China. • We determined the formation of gibbsite suggested CO 2 can be captured by rocks. • We suggested the mechanisms of CO 2 –water–rock interactions. • We found the corrosion and dissolution of the rock increased as temperature rose. -- Abstract: The main purpose of this study focused on the feasibility of geologic CO 2 sequestration within the actual geological conditions of the first Carbon Capture and Storage (CCS) project in China. This study investigated CO 2 –water–rock interactions under simulated hydrothermal conditions via physicochemical analyses and scanning electron microscopy (SEM). Mass loss measurement and SEM showed that corrosion of feldspars, silica, and clay minerals increased with increasing temperature. Corrosion of sandstone samples in the CO 2 -containing fluid showed a positive correlation with temperature. During reaction at 70 °C, 85 °C, and 100 °C, gibbsite (an intermediate mineral product) formed on the sample surface. This demonstrated mineral capture of CO 2 and supported the feasibility of geologic CO 2 sequestration. Chemical analyses suggested a dissolution–reprecipitation mechanism underlying the CO 2 –water–rock interactions. The results of this study suggested that mineral dissolution, new mineral precipitation, and carbonic acid formation-dissociation are closely interrelated in CO 2 –water–rock interactions

  14. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  15. A Geology Sampling System for Small Bodies

    Science.gov (United States)

    Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  16. A Geology Sampling System for Microgravity Bodies

    Science.gov (United States)

    Hood, Anthony; Naids, Adam

    2016-01-01

    Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.

  17. CHUVARDINSKY’S ANTIGLACIAL (GENERALIZED GEOLOGICAL CONCEPTION

    Directory of Open Access Journals (Sweden)

    P. K. Skufyin

    2016-12-01

    Full Text Available Based on the analytical study of V. G. Chuvardinsky’s monographs on the revision of the generally accepted glacial theory, the authors of the review concluded that there was convincing evidence of a fault-tectonic origin of ‘ice-exaration’ relief of the Baltic Shield. Developed by Chuvardinsky, a radically new methodology of boulder prospecting of ore deposits not only refuted the old glacial theory, but also led to the discovery of copper-nickel deposits, a new apatite alkaline massif, promising manifestation of copper-nickel ore, platinum group metals, native gold, chromite and other mineral resources. A thorough drilling of ice sheets in Greenland and Antarctica for the international project determined the absence of boulder material over the entire thickness of the ice, only pulverulent and fine particles (mainly volcanic ash were found in the ice. Bottom ice layers are immobilised, their function is preservation of the geological surface. V. G. Chuvardinsky far outstripped western and Russian scientists in the field of Earth Sciences. His field studies on the Baltic Shield not only refuted the mighty glacial theory, but also created and substantiated a new geological concept instead. Professor V. Z. Negrutsa was quite right when he wrote in his review on Chuvardinsky’s work (journal Geomorfologiya, 2003, no. 1, ‘Evidence of Chuvardinsky about tectonic origin of geological and geomorphological features traditionally associated with the Quaternary glaciation is so obvious and reproducible both by field observations and by geological modeling that is presented irrefutable and undeniable in its essence’. In general, assessing the scientific significance of V. G. Chuvardinsky’s works, it can be stated that his work would have done honour to research institutes of geological and geographical orientation according to the level of study of the geological material and the value of his field studies. His books present the material for

  18. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques

  19. Geological Study of Monica Pintado mine. Florida town

    International Nuclear Information System (INIS)

    Medina, E.; Carrion, R.

    1988-01-01

    This work is about the geological study carried in Monica Pintado mine in Florida town by photointepretation - scale 1.20.000. In the area were found rocks granites, deep metamorfites and black granite

  20. Gas geochemistry of natural analogues for the studies of geological CO2 sequestration

    International Nuclear Information System (INIS)

    Voltattorni, N.; Sciarra, A.; Caramanna, G.; Cinti, D.; Pizzino, L.; Quattrocchi, F.

    2009-01-01

    Geological sequestration of anthropogenic CO 2 appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO 2 in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO 2 (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO 2 per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO 2 -dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO 2 degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.

  1. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  2. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  3. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  4. A 3D geological and geomechanical model of the 1963 Vajont landslide

    Science.gov (United States)

    Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Chistolini, Filippo; Battista Crosta, Giovanni; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele

    2014-05-01

    The Vajont rockslide has been the object of several studies because of its catastrophic consequences and particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin

  5. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  6. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  7. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    Science.gov (United States)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  8. Geological research for public outreach and education in Lithuania

    Science.gov (United States)

    Skridlaite, Grazina; Guobyte, Rimante

    2013-04-01

    Successful IYPE activities and implementation of Geoheritage day in Lithuania increased public awareness in geology. A series of projects introducing geology to the general public and youth, supported by EU funds and local communities, were initiated. Researchers from the scientific and applied geology institutions of Lithuania participated in these projects and provided with the geological data. In one case, the Lithuanian Survey of Protected Areas supported the installation of a series of geological exhibitions in several regional and national parks. An animation demonstrating glacial processes was chosen for most of these because the Lithuanian surface is largely covered with sedimentary deposits of the Nemunas (Weichselian) glaciation. Researchers from the Lithuanian Geological Survey used the mapping results to demonstrate real glacial processes for every chosen area. In another case, 3D models showing underground structures of different localities were based on detailed geological maps and profiles obtained for that area. In case of the Sartai regional park, the results of previous geological research projects provided the possibility to create a movie depicting the ca. 2 Ga geological evolution of the region. The movie starts with the accretion of volcanic island arcs on the earlier continental margin at ca. 2 Ga and deciphers later Precambrian tectonic and magmatic events. The reconstruction is based on numerous scientific articles and interpretation of geophysical data. Later Paleozoic activities and following erosion sculptured the surface which was covered with several ice sheets in Quaternary. For educational purpose, a collection of minerals and rocks at the Forestry Institute was used to create an exhibition called "Cycle of geological processes". Forestry scientists and their students are able to study the interactions of geodiversity and biodiversity and to understand ancient and modern geological processes leading to a soil formation. An aging

  9. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  10. Study on retrievability of waste package in geological disposal

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Noda, Masaru

    2002-02-01

    Retrievability of waste packages in geological disposal of high-level radioactive waste has been investigated from a technical aspect in various foreign countries, reflecting a social concern while retrievability is not provided as a technical requirement. This study investigates the concept of reversibility and retrievability in foreign countries and a technical feasibility on retrievability of waste packages in the geological disposal concept shown in the H12 report. The conclusion obtained through this study is as follows: 1. Concept of reversibility and retrievability in foreign countries. Many organizations have reconsidered the retrievability as one option in the geological disposal to improve the reversibility of the stepwise decision-making process and provide the flexibility, even based upon the principle of the geological disposal that retrieval of waste from the repository is not intended. 2. Technical feasibility on the retrievability in disposal concept in the H12 report. It is confirmed to be able to remove the buffer and to retrieve the waste packages by currently available technologies even after the stages following emplacement of the buffer. It must be noted that a large effort and expense would be required for some activities such as the reconstruction of access route if the activities started after a stage of backfilling disposal tunnels. 3. Evaluation of feasibility on the retrievability and extraction of the issues. In the near future, it is necessary to study and confirm the practical workability and economical efficiency for the retrieving method of waste packages proposed in this study, the handling and processing method of removed buffer materials, and the retrieving method of waste packages in the case of degrading the integrity of waste packages or not emplacing the waste packages in the assumed attitude, etc. (author)

  11. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    Science.gov (United States)

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts

  12. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  13. Surficial Geologic Map of the Worcester North-Oxford- Wrentham-Attleboro Nine-Quadrangle Area in South- Central Massachusetts

    Science.gov (United States)

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.

    2008-01-01

    The surficial geologic map layer shows the distribution of nonlithified earth materials at land surface in an area of nine 7.5-minute quadrangles (417 mi2 total) in south-central Massachusetts (fig. 1). Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and in resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, or organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for water resources, construction aggregate resources, earth-surface hazards assessments, and land-use decisions. The mapped distribution of surficial materials that lie between the land surface and the bedrock surface is based on detailed geologic mapping of 7.5-minute topographic quadrangles, produced as part of an earlier (1938-1982) cooperative statewide mapping program between the U.S. Geological Survey and the Massachusetts Department of Public Works (now Massachusetts Highway Department) (Page, 1967; Stone, 1982). Each published geologic map presents a detailed description of local geologic map units, the genesis of the deposits, and age correlations among units. Previously unpublished field compilation maps exist on paper or mylar sheets and these have been digitally rendered for the present map compilation. Regional summaries based on the Massachusetts surficial geologic mapping

  14. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  15. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  16. One perspective on spatial variability in geologic mapping

    Science.gov (United States)

    Markewich, H.W.; Cooper, S.C.

    1991-01-01

    This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.

  17. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  18. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    International Nuclear Information System (INIS)

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments

  19. Geologic Data Package for 2001 Immobilized Low-Activity Waste Performance Assessment

    International Nuclear Information System (INIS)

    SP Reidel; DG Horton

    1999-01-01

    This database is a compilation of existing geologic data from both the existing and new immobilized low-activity waste disposal sites for use in the 2001 Performance Assessment. Data were compiled from both surface and subsurface geologic sources. Large-scale surface geologic maps, previously published, cover the entire 200-East Area and the disposal sites. Subsurface information consists of drilling and geophysical logs from nearby boreholes and stored sediment samples. Numerous published geological reports are available that describe the subsurface geology of the area. Site-specific subsurface data are summarized in tables and profiles in this document. Uncertainty in data is mainly restricted to borehole information. Variations in sampling and drilling techniques present some correlation uncertainties across the sites. A greater degree of uncertainty exists on the new site because of restricted borehole coverage. There is some uncertainty to the location and orientation of elastic dikes across the sites

  20. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  1. Reactive transport at the pore-scale: Geological Labs on Chip studies (GLoCs) for CO2 storage in saline aquifers

    Science.gov (United States)

    Azaroual, M. M.; Lassin, A., Sr.; André, L., Sr.; Devau, N., Sr.; Leroy, P., Sr.

    2017-12-01

    The near well bore of CO2 injection in saline aquifer is the main sensitive part of the targeted carbone storage reservoirs. The recent development of microfluidics tools mimicking porous media of geological reservoirs allowed studying physical, physico-chemical and thermodynamic mechanisms. We used the GLoCs "Geological Labs on Chip" to study dynamic and reactive transport processes at the pore scale induced by the CO2 geological storage. The present work is a first attempt to reproduce, by reactive transport modeling, an experiment of calcium carbonate precipitation during the co-injection of two aqueous solutions in a GLoC device. For that purpose, a new kinetics model, based on the transition-state-theory and on surface complexation modeling, was developed to describe the co-precipitation of amorphous calcium carbonate (ACC) and calcite. ACC precipitates and creates surface complexation sites from which calcite can nucleate and create new surface complexation sites. When the kinetics of calcite precipitation are fast enough, the consumption of matter leads to the dissolution of ACC. The modeling results were first compared to batch experiments (from the literature) and then applied with success to dynamic experiment observations carried out on a GLoC device (from the literature). On the other hand, we evaluated the solubility of CO2 in capillary waters that increases between 5 to 10 folds for reservoir conditions (200 bar and 100°C) compared to the bulk water. The GLoCs tools started to address an excellent and much finer degree of processes control (reactive transport processes, mixing effects, minerals precipitation and dissolution kinetics, etc.) thanks to in situ analysis and characterization techniques, allowing access in real time to relevant properties. Current investigations focus on key parameters influencing the flowing dynamics and trapping mechanisms (relative permeability, capillary conditions, kinetics of dissolution and precipitation of minerals).

  2. Gas geochemistry of natural analogues for the studies of geological CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Voltattorni, N., E-mail: nunzia.voltattorni@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata no 605, 00143 Rome (Italy); Sciarra, A. [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata no 605, 00143 Rome (Italy); Caramanna, G. [Earth Science Dep., University ' La Sapienza' , Piazzale A. Moro no 5, 00185 Rome (Italy); Cinti, D.; Pizzino, L.; Quattrocchi, F. [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata no 605, 00143 Rome (Italy)

    2009-07-15

    Geological sequestration of anthropogenic CO{sub 2} appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO{sub 2} in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO{sub 2} (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO{sub 2} per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO{sub 2}-dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO{sub 2} degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.

  3. Using digital databases to create geologic maps for the 21st century : a GIS model for geologic, environmental, cultural and transportation data from southern Rhode Island

    Science.gov (United States)

    2002-05-01

    Knowledge of surface and subsurface geology is fundamental to the planning and development of new or modified transportation systems. Toward this : end, we have compiled a model GIS database consisting of important geologic, cartographic, environment...

  4. Study of geologic-structural situation around Semipalatinsk test site test - holes using space images automated decoding method

    International Nuclear Information System (INIS)

    Gorbunova, Eh.M.; Ivanchenko, G.N.

    2004-01-01

    Performance of underground nuclear explosions (UNE) leads to irreversible changes in geological environment around the boreholes. In natural environment it was detected inhomogeneity of rock massif condition changes, which depended on characteristics of the underground nuclear explosion, anisotropy of medium and presence of faulting. Application of automated selection and statistic analysis of unstretched lineaments in high resolution space images using special software pack LESSA allows specifying the geologic-structural features of Semipalatinsk Test Site (STS), ranging selected fracture zones, outlining and analyzing post-explosion zone surface deformations. (author)

  5. Geologic mapping of the Amirani-Gish Bar region of Io: Implications for the global geologic mapping of Io

    Science.gov (United States)

    Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Jaeger, W.L.; Schenk, P.M.

    2007-01-01

    We produced the first geologic map of the Amirani-Gish Bar region of Io, the last of four regional maps generated from Galileo mission data. The Amirani-Gish Bar region has five primary types of geologic materials: plains, mountains, patera floors, flows, and diffuse deposits. The flows and patera floors are thought to be compositionally similar, but are subdivided based on interpretations regarding their emplacement environments and mechanisms. Our mapping shows that volcanic activity in the Amirani-Gish Bar region is dominated by the Amirani Eruptive Center (AEC), now recognized to be part of an extensive, combined Amirani-Maui flow field. A mappable flow connects Amirani and Maui, suggesting that Maui is fed from Amirani, such that the post-Voyager designation "Maui Eruptive Center" should be revised. Amirani contains at least four hot spots detected by Galileo, and is the source of widespread bright (sulfur?) flows and active dark (silicate?) flows being emplaced in the Promethean style (slowly emplaced, compound flow fields). The floor of Gish Bar Patera has been partially resurfaced by dark lava flows, although other parts of its floor are bright and appeared unchanged during the Galileo mission. This suggests that the floor did not undergo complete resurfacing as a lava lake as proposed for other ionian paterae. There are several other hot spots in the region that are the sources of both active dark flows (confined within paterae), and SO2- and S2-rich diffuse deposits. Mapped diffuse deposits around fractures on mountains and in the plains appear to serve as the source for gas venting without the release of magma, an association previously unrecognized in this region. The six mountains mapped in this region exhibit various states of degradation. In addition to gaining insight into this region of Io, all four maps are studied to assess the best methodology to use to produce a new global geologic map of Io based on the newly released, combined Galileo

  6. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  7. Synthetic geology - Exploring the "what if?" in geology

    Science.gov (United States)

    Klump, J. F.; Robertson, J.

    2015-12-01

    The spatial and temporal extent of geological phenomena makes experiments in geology difficult to conduct, if not entirely impossible and collection of data is laborious and expensive - so expensive that most of the time we cannot test a hypothesis. The aim, in many cases, is to gather enough data to build a predictive geological model. Even in a mine, where data are abundant, a model remains incomplete because the information at the level of a blasting block is two orders of magnitude larger than the sample from a drill core, and we have to take measurement errors into account. So, what confidence can we have in a model based on sparse data, uncertainties and measurement error? Synthetic geology does not attempt to model the real world in terms of geological processes with all their uncertainties, rather it offers an artificial geological data source with fully known properties. On the basis of this artificial geology, we can simulate geological sampling by established or future technologies to study the resulting dataset. Conducting these experiments in silico removes the constraints of testing in the field or in production, and provides us with a known ground-truth against which the steps in a data analysis and integration workflow can be validated.Real-time simulation of data sources can be used to investigate crucial questions such as the potential information gain from future sensing capabilities, or from new sampling strategies, or the combination of both, and it enables us to test many "what if?" questions, both in geology and in data engineering. What would we be able to see if we could obtain data at higher resolution? How would real-time data analysis change sampling strategies? Does our data infrastructure handle many new real-time data streams? What feature engineering can be deducted for machine learning approaches? By providing a 'data sandbox' able to scale to realistic geological scenarios we hope to start answering some of these questions.

  8. The geology of Piz Pian Grand

    International Nuclear Information System (INIS)

    Huber, M.; Staeuble, J.

    1987-01-01

    Nagra has identified four potential sites for a repository for low- and intermediate-level waste. Exploration work is already underway at Oberbauenstock (UR) and Piz Pian Grand (GR). As part of the investigations in the Piz Pian Grand area, geological surface mapping was carried out between 1984 and 1987. Since the data obtained is still being evaluated, it would be premature to draw any interpretative conclusions at this stage. On the other hand, some of the most significant observations of this work can be summarised here. As a first step, the geological framework in which these investigations are to be seen should be defined. Observations will then be made on the rock content (lithology) and geometric structure (structural geology) of the area. (author) 6 figs

  9. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Isaksson, Hans [GeoVista AB, Luleaa (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-10-15

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  10. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Isaksson, Hans; Hermanson, Jan; Oehman, Johan

    2007-10-01

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities

  11. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1978

    International Nuclear Information System (INIS)

    Dutton, S.P.; Finley, R.J.; Galloway, W.E.; Gustavson, T.C.; Handford, C.R.; Presley, M.W.

    1979-01-01

    Early in 1977 the Bureau of Economic Geology was invited to assemble and evaluate geologic data on several salt-bearing basins within the State of Texas as a contribution to the national nuclear repository program. In response to this request, the Bureau, acting as a technical research unit of the University of Texas at Austin and the State of Texas, initiated a long-term program to assemble and interpret all geologic and hydrologic information necessary for delineation, description, and evaluation of salt-bearing strata in the Panhandle area. The technical program can be subdivided into three broad research tasks, which are addressed by a basin analysis group, a surface studies group, and a basin geohydrology group. The basin analysis group has assembled the regional stratigraphic and structural framework of the total basin fill, initiated evaluation of natural resources, and selected stratigraphic core sites for sampling the salt and associated beds. Two drilling sites have provided nearly 8000 feet (2400 m) of core material for analysis and testing of the various lithologies overlying and interbedded with salt units. Concurrently, the surface studies group has collected ground and remotely-sensed data to describe surficial processes, including carbonate and evaporate solution, geomorphic evolution, and fracture system development. The newly formed basin geohydrology group will evaluate both shallow and deep circulation of fluids within the basins. This paper, a summary report of progress, reviews principal conclusions and illustrates the methodologies used and the types of data and displays generated

  12. Petrophysical Characterization of Arroyal Antiform Geological Formations (Aguilar de Campoo, Palencia) as a Storage and Seal Rocks in the Technology Development Plant for Geological CO2 Storage (Hontomin, Burgos)

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.; Pelayo, M.; Saldana, R.

    2011-01-01

    The geological storage program of Energy City Foundation is focusing its research effort in the Technological Development and Research Plant in Hontomin (Burgos) start off. The present report shows the petrophysical characterization of of the Arroyal antiform geological formations since they are representatives, surface like, of the storage and seal formations that will be found in the CO 2 injection plant in Hontomin. In this petrophysics characterization has taken place the study of matrix porosity, specific surface and density of the storage and seal formations. Mercury intrusion porosimetry, N 2 adsorption and He pycnometry techniques have been used for the characterization. Furthermore, it has carried out a mineralogical analysis of the seal materials by RX diffraction. (Author) 26 refs.

  13. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  14. Description of geological data in SKBs database GEOTAB

    International Nuclear Information System (INIS)

    Stark, T.

    1988-01-01

    Measurements for the characterization of geological, geophysical, hydrogeological and hydrochemical condition have been performed since 1977 in specific site investigation as well as for geoscientific projects. The database comprises four main groups of data volumes. These are: geological data, geophysical data, hydrogeological data, and hydrochemical data. In the database, background information from the investigations and results are stored on-line on the VAX 750, while raw data are either stored on-line or on magnetic tapes. This report deals with geological data and describes the dataflow from the measurements at the sites to the result tables in the database. All of the geological investigations were carried out by the Swedish Geological Survey, and since July 1982 by Swedish Geological Co, SGAB. The geological investigations have been divided into three categories, and each category is stored separately in the database. The are: surface factures, core mapping, and chemical analyses. At SGU/SGAB the geological data were stored on-line on-line on a PRIME 750 mini computer, on microcomputer floppy disks or in filed paper protocols. During 1987 the data files were transferred from SGAB to datafiles on the VAX computer. In the report the data flow of each of the three geological information categories are described separately. (L.E.)

  15. Mapping variation in radon potential both between and within geological units

    International Nuclear Information System (INIS)

    Miles, J C H; Appleton, J D

    2005-01-01

    Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m -3 ) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430 000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock-superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface

  16. The geological controls of geothermal groundwater sources in Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Shaban, Amin [National Council for Scientific Research, Remote Sensing Center, Beirut (Lebanon); Khalaf-Keyrouz, Layla [Notre Dame University-Louaize, Zouk Mosbeh (Lebanon)

    2013-07-01

    Lebanon is a country that is relatively rich in water resources, as compared to its neighboring states in the Middle East. Several water sources are issuing on the surface or subsurface, including nonconventional water sources as the geothermal groundwater. This aspect of water sources exists in Lebanon in several localities, as springs or in deep boreholes. To the present little attention has been given to these resources and their geological setting is still unidentified. The preliminary geological field surveys revealed that they mainly occur in the vicinity of the basalt outcrops. Therefore, understanding their geological controls will help in exploring their origin, and thus giving insights into their economical exploitation. This can be investigated by applying advanced detection techniques, field surveys along with detailed geochemical analysis. This study aims at assessing the geographic distribution of the geothermal water in Lebanon with respect to the different geological settings and controls that govern their hydrogeologic regimes. It will introduce an approach for an integrated water resources management which became of utmost significance for the country.

  17. Study on a monitoring strategy to support decision making for geological repository closure

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Tanabe, Hiromi; Eto, Jiro; Yoshimura, Kimitaka

    2010-01-01

    Japan currently plans to dispose of high-level radioactive wastes (vitrified HLWs) produced from the reprocessing of spent nuclear fuel in deep geological formations, in order to isolate the radioactive wastes from the human environment for tens of thousands of years. Such a geological repository must be designed to ensure operational safety and post-closure safety. Then, following the closure of the geological repository, post-closure safety will be provided by an engineered barrier system (EBS) and a natural barrier system (NBS) without relying on monitoring or institutional control. However, from a technical standpoint, monitoring has been required during backfilling in current studies. Additionally, there has been strong social pressure to continue monitoring during all the phases including post-closure. On the basis of the current situations, a monitoring strategy for geological disposal must be studied to ensure the long term safety of geological disposal. Focusing on decision making for geological repository closure, the authors have created a basic logical structure for the decision making process with the principles for ensuring safety and have developed a monitoring strategy based on the logical structure. The monitoring strategy is founded on three key aspects: the role of monitoring, boundary conditions of monitoring at the time of decision making, and a methodology for monitoring planning. Then, the monitoring strategy becomes a starting point of monitoring planning during site characterization, construction, operation and staged closure, as well as post-closure with institutional control, and of social science studies. (author)

  18. Geological study of Ujungwatu area as support for NPP planning in Muria Central Java

    International Nuclear Information System (INIS)

    Srijono

    1995-01-01

    In accordance with growth of life in Java, the need for electricity is also growing accordingly. Efforts to provide electricity such as planning to build nuclear power plant (NPP) has been in the debate for a while. There are many factors to be considered in this planning, such as its environmental condition. Geological factor is one of the important one to be considered. Surface geological conditions around NPP area at Ujungwatu needed include stratigraphy, geological structure, geomorphology, and environmental geology. Geology in Ujungwatu at radius 5 km is quite interesting. This area is part of Genuk volcano group which is laid at south and Ujungwatu coast at north. Genuk mountain group is divided into mountain slope, mountain back, and mountain skeleton. Coastal area is composed of coast sand. Sand up to broken rock was present along river gullies. Others were volcanic rocks which was composed of lapili tuff, trachite, pyroxene andesite, tuff breccia, tephrite-andesitic tuff breccia, and basaltic tuff breccia. Volcanic structure is well reflected by morphological feature as lineaments and half circular form in mount Genuk. This structure was predominantly in NW-SE direction, and less dominant in NE-SW direction. Ujungwatu, from environmental view, is deserved to be developed because of its underground potency. Iron sand, fluvial tuff, kaolin, mud, riverstone, volcanic rock, tuff and marble were easily found underground. Those could be benefited to the people in the area so that it could change socio-economical condition of the people which in turn electricity is becoming a necessity. Last but not least, Portuguese fort as potential touristic object is also situated at Kartini beach near Ujungwatu. (author). 15 refs, 3 tabs, 5 figs

  19. Improvement of geological subsurface structure models for Kanto area, Japan, based on records of microtremor array and earthquake observations

    Science.gov (United States)

    Wakai, A.; Senna, S.; Jin, K.; Cho, I.; Matsuyama, H.; Fujiwara, H.

    2017-12-01

    To estimate damage caused by strong ground motions from a large earthquake, it is important to accurately evaluate broadband ground-motion characteristics in wide area. For realizing that, it is one of the important issues to model detailed subsurface structure from top surface of seismic bedrock to ground surface.Here, we focus on Kanto area, including Tokyo, where there are thicker sedimentary layers. We, first, have ever collected deep bore-hole data, soil physical properties obtained by some geophysical explorations, geological information and existing models for deep ground from top surface of seismic bedrock to that of engineering bedrock, and have collected a great number of bore-hole data and surficial geological ones for shallow ground from top surface of engineering bedrock to ground surface. Using them, we modeled initial geological subsurface structure for each of deep ground and shallow one. By connecting them appropriately, we constructed initial geological subsurface structure models from top surface of seismic bedrock to ground surface.In this study, we first collected a lot of records obtained by dense microtremor observations and earthquake ones in the whole Kanto area. About microtremor observations, we conducted measurements from large array with the size of hundreds of meters to miniature array with the size of 60 centimeters to cover both of deep ground and shallow one. And then, using ground motion characteristics such as disperse curves and H/V(R/V) spectral ratios obtained from these records, the initial geological subsurface structure models were improved in terms of velocity structure from top surface of seismic bedrock to ground surface in the area.We will report outlines on microtremor array observations, analysis methods and improved subsurface structure models.

  20. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 12. Repository preconceptual design studies: shale

    International Nuclear Information System (INIS)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in shale. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/13, ''Drawings for Repository Preconceptual Design Studies: Shale.''

  1. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 14. Repository preconceptual design studies: basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in basalt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/15, ''Drawings for Repository Preconceptual Design Studies: Basalt.''

  2. Time-windows-based filtering method for near-surface detection of leakage from geologic carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Pan, L.; Lewicki, J.L.; Oldenburg, C.M.; Fischer, M.L.

    2010-02-28

    We use process-based modeling techniques to characterize the temporal features of natural biologically controlled surface CO{sub 2} fluxes and the relationships between the assimilation and respiration fluxes. Based on these analyses, we develop a signal-enhancing technique that combines a novel time-window splitting scheme, a simple median filtering, and an appropriate scaling method to detect potential signals of leakage of CO{sub 2} from geologic carbon sequestration sites from within datasets of net near-surface CO{sub 2} flux measurements. The technique can be directly applied to measured data and does not require subjective gap filling or data-smoothing preprocessing. Preliminary application of the new method to flux measurements from a CO{sub 2} shallow-release experiment appears promising for detecting a leakage signal relative to background variability. The leakage index of ?2 was found to span the range of biological variability for various ecosystems as determined by observing CO{sub 2} flux data at various control sites for a number of years.

  3. Multi- and hyperspectral geologic remote sensing: A review

    Science.gov (United States)

    van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie

    2012-02-01

    Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly

  4. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  5. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  6. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  7. Final Report: Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye [Univ. of Wyoming, Laramie, WY (United States)

    2018-01-17

    The critical component of a risk assessment study in evaluating GCS is an analysis of uncertainty in CO2 modeling. In such analyses, direct numerical simulation of CO2 flow and leakage requires many time-consuming model runs. Alternatively, analytical methods have been developed which allow fast and efficient estimation of CO2 storage and leakage, although restrictive assumptions on formation rock and fluid properties are employed. In this study, an intermediate approach is proposed based on the Design of Experiment and Response Surface methodology, which consists of using a limited number of numerical simulations to estimate a prediction outcome as a combination of the most influential uncertain site properties. The methodology can be implemented within a Monte Carlo framework to efficiently assess parameter and prediction uncertainty while honoring the accuracy of numerical simulations. The choice of the uncertain properties is flexible and can include geologic parameters that influence reservoir heterogeneity, engineering parameters that influence gas trapping and migration, and reactive parameters that influence the extent of fluid/rock reactions. The method was tested and verified on modeling long-term CO2 flow, non-isothermal heat transport, and CO2 dissolution storage by coupling two-phase flow with explicit miscibility calculation using an accurate equation of state that gives rise to convective mixing of formation brine variably saturated with CO2. All simulations were performed using three-dimensional high-resolution models including a target deep saline aquifer, overlying caprock, and a shallow aquifer. To evaluate the uncertainty in representing reservoir permeability, sediment hierarchy of a heterogeneous digital stratigraphy was mapped to create multiple irregularly shape stratigraphic models of decreasing geologic resolutions: heterogeneous (reference), lithofacies, depositional environment, and a (homogeneous) geologic formation. To ensure model

  8. Safety assessment of HLW geological disposal system

    International Nuclear Information System (INIS)

    Naito, Morimasa

    2006-01-01

    In accordance with the Japanese nuclear program, the liquid waste with a high level of radioactivity arising from reprocessing is solidified in a stable glass matrix (vitrification) in stainless steel fabrication containers. The vitrified waste is referred to as high-level radioactive waste (HLW), and is characterized by very high initial radioactivity which, even though it decreases with time, presents a potential long-term risk. It is therefore necessary to thoroughly manage HLW from human and his environment. After vitrification, HLW is stored for a period of 30 to 50 years to allow cooling, and finally disposed of in a stable geological environment at depths greater than 300 m below surface. The deep underground environment, in general, is considered to be stable over geological timescales compared with surface environment. By selecting an appropriate disposal site, therefore, it is considered to be feasible to isolate the waste in the repository from man and his environment until such time as radioactivity levels have decayed to insignificance. The concept of geological disposal in Japan is similar to that in other countries, being based on a multibarrier system which combines the natural geological environment with engineered barriers. It should be noted that geological disposal concept is based on a passive safety system that does not require any institutional control for assuring long term environmental safety. To demonstrate feasibility of safe HLW repository concept in Japan, following technical steps are essential. Selection of a geological environment which is sufficiently stable for disposal (site selection). Design and installation of the engineered barrier system in a stable geological environment (engineering measures). Confirmation of the safety of the constructed geological disposal system (safety assessment). For site selection, particular consideration is given to the long-term stability of the geological environment taking into account the fact

  9. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala); Estudios geologico-estructurales y geofisicos en Mina Ratones (Pluton de Albala)

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Estaun, A; Carbonell, R; Marti, D; Flecha, I [Instituto de Ciencias de la Tierra Jaume Almera. Barcelona (Spain); Escuder Viruete, J [Universidad complutense de Madrid. Madrid (Spain)

    2002-07-01

    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  10. Geological study of the landslide of the Fukenoyu thermal spring area

    Energy Technology Data Exchange (ETDEWEB)

    Okami, K [Dept. of Mining and Civil Engg., Fac of Technology, Iwate Univ.; Murai, S; Karasaki, H

    1975-11-01

    The 1973 landslide at Fukenoyu thermal spring, Hachimantai National Park, Japan, was studied geologically. The subsurface structure of the area was determined to contain faulted basement rock with distinct glide planes and a predominantly clayey mineralogy, including montmorillonite. It was concluded that the landslide was caused by the influx of water from melting snow and unstable geology. Two maps, one cross section, six stratigraphic columns, two charts and one table are provided.

  11. Study on the background information for the R and D of geological disposal

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Hirusawa, Shigenobu; Komoto, Harumi

    2001-02-01

    It is quite important for Japan Nuclear Cycle Development Institute (JNC) to analyze the R and D items after 'H12 report' and also provide their results of R and D activities to general public effectively. Recognizing the importance of the social consensus to the geological disposal, relating background informations were to be picked up. In this fiscal year, following two main topics were selected and studied. 1. Research and analysis on the options for the geological disposal concept. The major nuclear power-generating countries have almost all chosen deep geological disposal as preferred method for HLW disposal. Since 1990's, to make the geological disposal flexible, the alternative concepts for the disposal of HLW have been discussed promoting the social acceptance. In this context, recent optional discussions and international evaluations on the following topics were studied and summarized. (1) Reversibility of waste disposal/Retrievability of waste/Waste monitoring, (2) Long-term storage concept and its effectiveness, (3) Present position and role of international disposal. 2. Research and analysis on some educational materials collected from foreign countries. Although geological disposals is scheduled to start still in future, it is quite important to study the procedures to attract younger generation and get their proper perceptions on the nuclear energy and waste problems. As the supporting analysis to implement strategically the public relational activities for JNC's geological disposal R and D, particular attention was focused on the educational materials obtained in the last year's survey. Representative educational materials were selected and following items were studied and summarized. (1) Basic approach, positioning and characteristics of the educational materials, (2) Detailed analysis of the representatively selected educational materials, (3) Comparison of the analyzed characteristics and study on its feedback to Japanese materials. (author)

  12. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  13. The study of fracture mineralization and relationship with high level radioactive waste of deep geological repository

    International Nuclear Information System (INIS)

    Reyes, Cristina N.

    2003-01-01

    Extensive investigations of the Ordovician, Dinantian and Permo-Triassic rocks of the Sellafield area of northwest England were undertaken by United Kingdom Nirex Ltd. as a possible national site for geological disposal of intermediate and low-level radioactive waste. Very detailed studies of fracture mineralisation at Sellafield were thus put in hand by Nirex Ltd. and the results summarised by the British Geological Survey. Deep (up to 2 km) boreholes were put down with excellent core recovery. It is generally agreed that the most significant pathway for the escape of all but a very few radionuclides is by solution in and advection of groundwater. In this context, rock fracture systems are particularly important because they offer a potentially rapid pathway to the surface and the biosphere. One striking aspect of this work is that the fracture mineralisation seemingly records major and rapid fluctuations in redox conditions -sometimes during apparently continuous precipitation of cements (ferroan and non-ferroan calcites, dolomite). Carbonate cements record variations in Fe 2+ availability. Fe(III) precipitates also as oxide (hematite) and Fe(II) as sulphide (pyrite). This study focuses on these elements and valence states and also on Mn; another element susceptible to redox controls but known to respond differently from Fe. Shallow sub-surface stores or repositories would be more likely to have oxidising or fluctuating redox conditions. The mineralisation sequences documented at Sellafield are potentially promising in this context. Ferroan carbonate cements are sensitive indicators of later movement of oxidising ground waters. (author)

  14. Geology and land use

    Science.gov (United States)

    Brown, R.D.

    1990-01-01

    Geologists' eyes are trained to find and trace such natural landmarks as flood plains, landslide scars, retreating shoreline bluffs, or surface traces of active earthquake faults. more and more often, in developing areas, we find these obvious signs of trouble being erased by urban development. A geological hazard concealed by landscaping or hosing is fully as dangerous as when it is visible.

  15. Study of geological details towards feasibility of uranium project: Indian case studies

    International Nuclear Information System (INIS)

    Sarangi, A.

    2014-01-01

    Appropriate technical evaluation of geological details at early stage of exploration is the key to minimising the lead-time between discovery and production. This has a major influence on economic viability of the deposits. Indian uranium deposits are of medium-tonnage and low-grade occurring in dissimilar geological provinces. Detailed studies of geological characteristics of these deposits are very vital to the proper selection of technology and subsequent successful operation. The method of mining (underground/open pit/in-situ recovery) is influenced by the ore body depth, size, grade, configuration, hostrock and adjoining strata characteristics, hydrological condition etc. The ore processing technology is also subjective to mineralogical characteristics of the ore. In order to draw the flowsheet, determine process parameters and selection of reagents, a comprehensive study on identification of minerals and their probable metallurgical characteristics, general physical relationship between various minerals, mineral liberation size etc is of great significance. The technology for disposal of tailings is also influenced by geological/geo-hydrological characteristics. The key to successful operation of Indian uranium deposits lies in outlining a pre-development strategy as the exploration advances to different stages. This phase called ''exploratory mining'' - which starts with detailed exploration and ends with approval of the project is very critical for early commissioning of the project. The activities during this period include collection of representative drill core samples during exploration, laboratory studies, geo-technical studies and determination of geomechanical properties of ore and waste rock etc. Later, the ore lenses are accessed through limited entry(ies). Developments along the ore body helps in better understanding of the configuration of the lenses. Studies for strata control in case of underground mining are carried out towards deciding the

  16. Detailed Geological Modelling in Urban Areas focused on Structures relevant to the Near Surface Groundwater Flow in the context of Climatic Changes

    Science.gov (United States)

    Bach, T.; Pallesen, T. M.; Jensen, N. P.; Mielby, S.; Sandersen, P.; Kristensen, M.

    2015-12-01

    This case demonstrates a practical example from the city of Odense (DK) where new geological modeling techniques has been developed and used in the software GeoScene3D, to create a detailed voxel model of the anthropogenic layer. The voxel model has been combined with a regional hydrostratigraphic layer model. The case is part of a pilot project partly financed by VTU (Foundation for Development of Technology in the Danish Water Sector) and involves many different datatypes such as borehole information, geophysical data, human related elements (landfill, pipelines, basements, roadbeds etc). In the last few years, there has been increased focus on detailed geological modeling in urban areas. The models serve as important input to hydrological models. This focus is partly due to climate changes as high intensity rainfalls are seen more often than in the past, and water recharge is a topic too. In urban areas, this arises new challenges. There is a need of a high level of detailed geological knowledge for the uppermost zone of the soil, which typically are problematic due to practically limitations, especially when using geological layer models. Furthermore, to accommodate the need of a high detail, all relevant available data has to be used in the modeling process. Human activity has deeply changed the soil layers, e.g. by constructions as roadbeds, buildings with basements, pipelines, landfill etc. These elements can act as barriers or pathways regarding surface near groundwater flow and can attribute to local flooding or mobilization and transport of contaminants etc. A geological voxel model is built by small boxes (a voxel). Each box can contain several parameters, ex. lithology, transmissivity or contaminant concentration. Human related elements can be implemented using tools, which gives the modeler advanced options for making detailed small-scale models. This case demonstrates the workflow and the resulting geological model for the pilot area.

  17. Geologic studies in the Sierra de Pena Blanca, Chihuahua, Mexico

    Science.gov (United States)

    Reyes-Cortes, Ignacio Alfonso

    grade of the rock units; and the possible paths of potential leachate through the geologic media. The last part of the work relates to the natural analog of the Yucca Mountain, the Nopal I orebody, which is compared and found similar in its geologic frame work, in the lithologic units and their weathering, in the stratigraphic relationships with the vitrophyres and tuff horizons, in the climatic dryness, in the regional water table depth and the hydrologic features, in the ignimbritic units mineralogy, and in the radioactive waste fuel compared to the ore mineralogy of the Nopal I. There are mineralogic determinations of the fracture fill material in the orebody and host rock; detailed mapping of the fractures and surface alterations; and gamma ray grid measurements and electromagnetic soundings. All these studies indicate a support criteria to take the Nopal I as a natural analogue of the Yucca Mountain repository. The total evolution of the Nopal I orebody is exposed in the walls and floors of the +00 and +10 levels, which are ready to perform final safety tests in order to compare it with the future Yucca Mountain repository behavior. The Nopal in orebody has been there for several hundred of thousands and may be millions of years in an natural equilibrium with the surrounding environment. (Abstract shortened by UMI.)

  18. The application of structure from motion (SfM) to identify the geological structure and outcrop studies

    Science.gov (United States)

    Saputra, Aditya; Rahardianto, Trias; Gomez, Christopher

    2017-07-01

    Adequate knowledge of geological structure is an essential for most studies in geoscience, mineral exploration, geo-hazard and disaster management. The geological map is still one the datasets the most commonly used to obtain information about the geological structure such as fault, joint, fold, and unconformities, however in rural areas such as Central Java data is still sparse. Recent progress in data acquisition technologies and computing have increased the interest in how to capture the high-resolution geological data effectively and for a relatively low cost. Some methods such as Airborne Laser Scanning (ALS), Terrestrial Laser Scanning (TLS), and Unmanned Aerial Vehicles (UAVs) have been widely used to obtain this information, however, these methods need a significant investment in hardware, software, and time. Resolving some of those issues, the photogrammetric method structure from motion (SfM) is an image-based method, which can provide solutions equivalent to laser technologies for a relatively low-cost with minimal time, specialization and financial investment. Using SfM photogrammetry, it is possible to generate high resolution 3D images rock surfaces and outcrops, in order to improve the geological understanding of Indonesia. In the present contribution, it is shown that the information about fault and joint can be obtained at high-resolution and in a shorter time than with the conventional grid mapping and remotely sensed topographic surveying. The SfM method produces a point-cloud through image matching and computing. This task can be run with open- source or commercial image processing and 3D reconstruction software. As the point cloud has 3D information as well as RGB values, it allows for further analysis such as DEM extraction and image orthorectification processes. The present paper describes some examples of SfM to identify the fault in the outcrops and also highlight the future possibilities in terms of earthquake hazard assessment, based on

  19. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park

    International Nuclear Information System (INIS)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-01-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  20. Engineering geology and environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, E M

    1979-01-01

    A classification is made of the anthropogenic processes in the environment into global, local, universally distributed, zonal, regional, and essentially local processes. Engineering geology is defined as the principal science concerned with the study of the geological medium which in turn involves the study of fossil fuel geology. 22 references.

  1. ROCK-CAD - computer aided geological modelling system

    International Nuclear Information System (INIS)

    Saksa, P.

    1995-12-01

    The study discusses surface and solid modelling methods, their use and interfacing with geodata. Application software named ROCK-CAD suitable for geological bedrock modelling has been developed with support from Teollisuuden Voima Oy (TVO). It has been utilized in the Finnish site characterization programme for spent nuclear fuel waste disposal during the 1980s and 1990s. The system is based on the solid modelling technique. It comprises also rich functionality for the particular geological modelling scheme. The ROCK-CAD system provides, among other things, varying graphical vertical and horizontal intersections and perspective illustrations. The specially developed features are the application of the boundary representation modelling method, parametric object generation language and the discipline approach. The ROCK-CAD system has been utilized in modelling spatial distribution of rock types and fracturing structures in TVO's site characterization. The Olkiluoto site at Eurajoki serves as an example case. The study comprises the description of the modelling process, models and illustration examples. The utilization of bedrock models in site characterization, in tentative repository siting as well as in groundwater flow simulation is depicted. The application software has improved the assessment of the sites studied, given a new basis for the documentation of interpretation and modelling work, substituted hand-drawing and enabled digital transfer to numerical analysis. Finally, aspects of presentation graphics in geological modelling are considered. (84 refs., 30 figs., 11 tabs.)

  2. Study on the background information for the geological disposal concept

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Murano, Tohru; Hirusawa, Shigenobu; Komoto, Harumi

    1999-11-01

    Japan Nuclear Cycle Development Institute (JNC) has published the first R and D progress report in 1992. In which the fruits of the R and D works were compiled. Since then the next step of R and D has been developing progressively in Japan. Now JNC has a plan to make the second R and D progress report until before 2000, in which information on the geological disposal of high level radioactive waste(HLW) will be presented to show the technical reliability and technical basis to contribute for the site selection or the safety-standard developments. Recognizing the importance of the social consensus to the geological disposal of international discussions in 1990's, understanding and consensus by the society are essential to the development and realization of the geological disposal of HLW. For getting social understanding and consensus, it is quite important to present the broad basis background information on the geological disposal of HLW, together with the technical basis and also the international discussion of the issues. In this report, the following studies have been done to help to prepare the background information for the 2nd R and D progress report, based on the recent informations and research and assessment works of last 2 years. These are, (1) As the part of general discussion, characteristics of HLW disposal and several issues to be considered for establishing the measures of the disposal of HLW were identified and analyzed from both practical and logical points of view. Those issues were the concept and image of the long term safety measures, the concept and criteria of geological disposal, and, safety assessment and performance assessment. (2) As the part of specific discussion, questions and concerns frequently raised by the non-specialists were taken up and 10 topics in relation to the geological disposal have been identified based on the discussion. Scientific and technical facts, consensus by the specialists on the issues, and international

  3. Study on high-level waste geological disposal metadata model

    International Nuclear Information System (INIS)

    Ding Xiaobin; Wang Changhong; Zhu Hehua; Li Xiaojun

    2008-01-01

    This paper expatiated the concept of metadata and its researches within china and abroad, then explain why start the study on the metadata model of high-level nuclear waste deep geological disposal project. As reference to GML, the author first set up DML under the framework of digital underground space engineering. Based on DML, a standardized metadata employed in high-level nuclear waste deep geological disposal project is presented. Then, a Metadata Model with the utilization of internet is put forward. With the standardized data and CSW services, this model may solve the problem in the data sharing and exchanging of different data form A metadata editor is build up in order to search and maintain metadata based on this model. (authors)

  4. Final Technical Report. Origins of subsurface microorganisms: Relating laboratory microcosm studies to a geologic time scale; FINAL

    International Nuclear Information System (INIS)

    Kieft, Thomas; Amy, Penny S.; Phillips, Fred M.

    1998-01-01

    This project was conducted as part of the Department of Energy's Deep Subsurface Science Program. It was part of a larger effort to determine the origins of subsurface microorganisms. Two hypotheses have been suggested for the origins of subsurface microorganisms: (1) microorganisms were deposited at the time of (or shortly after) geologic deposition of rocks and sediments (the in situ survival hypothesis), and (2) microorganisms have been transported from surface environments to subsurface rocks and sediments since the time of geologic deposition (transport hypothesis). These two hypotheses are not mutually exclusive. Depending on the geological setting, either one or both of these hypotheses may best explain microbial origins. Our project focused on the in situ survival hypothesis. We tested the hypothesis that microorganisms (individuals populations and communities) can survive long-term sequestration within subsurface sediments. Other objectives were to identify geologic conditions that favor long-term survival, identify physiological traits of microorganisms that favor long-term survival, and determine which groups of microorganisms are most likely to survive long-term sequestration in subsurface sediments. We tested this hypothesis using a combination of pure culture techniques in laboratory microcosms under controlled conditions and field experiments with buried subsurface sediments

  5. Geology and hydrology of the proposed Lyons, Kansas, radioactive waste repository site. Final report

    International Nuclear Information System (INIS)

    1971-03-01

    The five chapters cover: surface geology and ground-water hydrology, status report of 6-month study of subsurface rocks, study of salt sequence, heat transfer, and energy storage and radiation damage effect in rock salt. 64 figures, 9 tables

  6. The Correlation between Radon Emission Concentration and Subsurface Geological Condition

    Science.gov (United States)

    Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi

    2018-03-01

    Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological

  7. Geological site selection studies in Precambrian crystalline rocks in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.

    1988-01-01

    In general geological investigations made since 1977 the Finnish crystalline bedrock has been determined to be suitable for the final disposal of the spent nuclear fuel. Regional investigations have been mainly based on already existing geological studies. Special attention has been paid on the international geological Finland as the Baltic Shield is stiff and stable and situated far outside the zones of volcanic and seismic activity. The present day crustal movements in Finland are related to landuplift process. Movements and possible faults in the bedrock follow fracture zones which devide the bedrock into mosaiclike blocks. As compared to small scale geological maps the bedrock blocks are often indicated as large granite rock formations which are less broken than the surrounding rocks, though the age of granite formations is at least 1500 millions of years. The large bedrock blocks (20-300 km 2 ) are divided to smaller units by different magnitudes of fractures and these smaller bedrock units (5-20 km 2 ) have been selected for further site selection investigations. At the first stage of investigations 327 suitable regional bedrock blocks have been identified on the basis of Landsat-1 winter and summer mosaics of Finland. After two years of investigations 134 investigation areas were selected inside 61 bedrock blocks and classified to four priority classes, the three first of which were redommended for further investigations. Geological criteries used in classification indicated clear differences between the classes one and three, however all classified areas are situated in large rather homogenous bedrock blocks and more exact three dimensional suitability errors may not be observed until deep bore holes have been made

  8. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Holt, R.M.; Powers, D.W.

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab

  9. Microbes in deep geological systems and their possible influence on radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    West, J M; McKinley, I G; Chapman, N A [Institute of Geological Sciences, Harwell (UK). Environmental Protection Unit

    1982-09-01

    Although the fact is often overlooked, proposed nuclear waste repositories in geological formations would exist in an environment quite capable of sustaining microbial life which could considerably affect containment of radionuclides. In this paper a brief review of biological tolerance of extreme environments is presented with particular reference to studies of the microbiology of deep geological formations. The possible influence of such organisms on the integrity of a waste repository and subsequent transport of radionuclides to the surface is discussed.

  10. The part played by applied geology in nuclear power plant site studies

    International Nuclear Information System (INIS)

    Giafferi, J.L.

    1994-01-01

    Site-related geological problems are one of the constraints affecting the environment of nuclear power plants. The natural features (soil and subsoil) at the nuclear power plant site affect numerous factors in the design, construction and operation of the civil engineering structures. The site geological criteria are not solely restricted to the soil as a static support for the structures. Earth tremors in France are of moderate intensity but the likelihood of their occurrence must nevertheless be taken into account for each site. Studies must concern the geological and seismic features of the region as well as the soil and subsoil configurations and composition in the immediate vicinity of the site in order to determine the physical characteristics of the earthquakes so that the safety of the plant can be guaranteed; in many cases, water tables have also to be taken into consideration. Geologic survey techniques are discussed. 13 figs., 7 refs

  11. Astronaut Neil Armstrong studies rock samples during geological field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, studies rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  12. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  13. preliminary geological and radiometric studies of granitoids of zing

    African Journals Online (AJOL)

    DJFLEX

    laboratory of Geology Department, Federal University of. Technology, Yola where they were thin sectioned and petrographically studied using a high magnification polarising microscope. Canada balsam was used as the mounting medium. Radiometric survey was carried out using a McPhar model TC-33A portable gamma ...

  14. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  15. Application of Laser Scanning for Creating Geological Documentation

    Directory of Open Access Journals (Sweden)

    Buczek Michał

    2018-01-01

    Full Text Available A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud in combination with the photographs. The results were compared with the geological cross-section.

  16. Geological and hydrological investigations at Sidi Kreir Site, west of Alexandria, Egypt

    International Nuclear Information System (INIS)

    El-Shazly, E.M.; Shehata, W.M.; Somaida, M.A.

    1978-01-01

    Sidi-Kreir site lies along the Mediterranean Sea coast at km 30 to km 33 westwards from the center of the city of Alexandria. The studied site covers approximately 10 km 2 from the Mediterranean Sea northward to Mallehet (Lake) Maryut southward. This study includes the results of geological investigation of the site both structurally and stratigraphically, and the groundwater conditions, in relation to the erection of a nuclear power station in the site. The surface geology has been mapped using aerial photographs on scale of 1:20,000. Twenty-five drillholes were core-drilled in order to outline the subsurface geology and to observe the groundwater fluctuations. Selected core samples and soil samples were tested geologically in thin sections, physically and mechanically. Water samples were also collected and tested for total dissolved solids and specific weight. Groundwater level fluctuations were observed for a period of one year in 75 wells and drillholes. Furthermore three pumping tests were conducted to estimate the hydraulic properties of the freshwater aquifer. These properties were also calculated using the core samples data

  17. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  18. Integrated geophysical survey for the geological structural and hydrogeothermal study of the North-western Gargano promontory (Southern Italy

    Directory of Open Access Journals (Sweden)

    D. Schiavone

    1996-06-01

    Full Text Available A multimethodological geophysical survey was performed in the north-western part of the Gargano promontory to study the geological structural setting and the underground fluid flow characteristics. The area has a complex tectonics with some magmatic outcrops and shallow low-enthalpy waters. Electrical, seismic reflection, gravimetric and magnetic surveys were carried out to reconstruct the geological structures; and in order to delineate the hydrogeothermal characteristics of the area, the self-potential survey was mainly used. Moreover magnetic and self-potential measurements were also performed in the Lesina lake. The joint three-dimensional interpretation of the geophysical data disclosed a large horst and graben structure covering a large part of the area. In the central part of the horst a large ramified volcanic body was modelled. The models show some intrusions rising from it to or near to the surface. The main structures are well deep-seated in the Crust and along them deep warm fluids rise as the SP data interpretation indicates.

  19. Improving the effectiveness of geological prospecting with neutron activation analysis

    International Nuclear Information System (INIS)

    Fardy, J.J.

    1984-01-01

    Two examples of the use of neutron activation analysis to improve the effectiveness of geological prospecting are examined. The first is application to the direct hydrogeochemical prospecting for gold in surface waters. The second shows how multielement data banks produced by NAA for a geological formation provide a powerful method for the classification of ore bodies and sedimentary materials

  20. Statistical modeling of the long-range-dependent structure of barrier island framework geology and surface geomorphology

    Directory of Open Access Journals (Sweden)

    B. A. Weymer

    2018-06-01

    Full Text Available Shorelines exhibit long-range dependence (LRD and have been shown in some environments to be described in the wave number domain by a power-law characteristic of scale independence. Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale dependence as a result of systematic variations in the underlying framework geology. The LRD of framework geology, which influences island geomorphology and its response to storms and sea level rise, has not been previously examined. Electromagnetic induction (EMI surveys conducted along Padre Island National Seashore (PAIS, Texas, United States, reveal that the EMI apparent conductivity (σa signal and, by inference, the framework geology exhibits LRD at scales of up to 101 to 102 km. Our study demonstrates the utility of describing EMI σa and lidar spatial series by a fractional autoregressive integrated moving average (ARIMA process that specifically models LRD. This method offers a robust and compact way of quantifying the geological variations along a barrier island shoreline using three statistical parameters (p, d, q. We discuss how ARIMA models that use a single parameter d provide a quantitative measure for determining free and forced barrier island evolutionary behavior across different scales. Statistical analyses at regional, intermediate, and local scales suggest that the geologic framework within an area of paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst nearshore, beach, and dune in areas outside this region are scale independent, implying that barrier islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the island to sea level rise.

  1. Statistical modeling of the long-range-dependent structure of barrier island framework geology and surface geomorphology

    Science.gov (United States)

    Weymer, Bradley A.; Wernette, Phillipe; Everett, Mark E.; Houser, Chris

    2018-06-01

    Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to be described in the wave number domain by a power-law characteristic of scale independence. Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale dependence as a result of systematic variations in the underlying framework geology. The LRD of framework geology, which influences island geomorphology and its response to storms and sea level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted along Padre Island National Seashore (PAIS), Texas, United States, reveal that the EMI apparent conductivity (σa) signal and, by inference, the framework geology exhibits LRD at scales of up to 101 to 102 km. Our study demonstrates the utility of describing EMI σa and lidar spatial series by a fractional autoregressive integrated moving average (ARIMA) process that specifically models LRD. This method offers a robust and compact way of quantifying the geological variations along a barrier island shoreline using three statistical parameters (p, d, q). We discuss how ARIMA models that use a single parameter d provide a quantitative measure for determining free and forced barrier island evolutionary behavior across different scales. Statistical analyses at regional, intermediate, and local scales suggest that the geologic framework within an area of paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst nearshore, beach, and dune in areas outside this region are scale independent, implying that barrier islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the island to sea level rise.

  2. Seismic and geologic investigations of the Sandia Livermore Laboratory site

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This report describes results of a seismic and geologic investigation in the vicinity of Sandia Laboratories property and Sandia's Tritium Building at Livermore, California. The investigation was done to define any seismically capable faults in the immediate area and to obtain necessary information to support estimates of future possible or probable ground motions. The work included a variety of geophysical measurements, trenching, seismologic studies, geologic examination, and evaluation of possible ground surface rupture at the site. Ground motions due to the maximum potential earthquake are estimated, and probability of exceedance for various levels of peak ground acceleration is calculated. Descriptions of the various calculations and investigative techniques used and the data obtained are presented. Information obtained from other sources relevant to subsurface geology and faulting is also given. Correlation and evaluation of the various lines of evidence and conclusions regarding the seismic hazard to the Tritium Building are included

  3. A geological reconnaissance study of the Lac du Bonnet batholith

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Kerford, P.S.; Requeima, J.C.; Temple, C.A.

    1980-02-01

    A geological reconnaissance survey was carried out of the Lac du Bonnet batholith, southeastern Manitoba, as part of the concept verification phase of the nuclear fuel waste disposal program for Canada. This report summarizes available geological information, presents the results of field mapping and discusses the geochemical analyses of rock samples. The geological and structural aspects of the batholith are described as well as its regional setting and possible genesis. (auth)

  4. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  5. 2005 dossier: clay. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological processes taking place in an argilite-type geologic disposal facility for high-level and long-lived (HLLL) radioactive wastes. Content: 1 - introduction: goal, input data, time and space scales, long-time forecasting of the phenomenological evolution; 2 - the Meuse/Haute-Marne site, the HLLL wastes and the disposal concepts: impact of the repository architecture; 3 - initial state of the geologic environment prior to the building up of the repository: general framework, geologic formations, tectonics and fractures, surface environment, geologic synthesis; 4 - phenomenological processes: storage-related processes, geodynamics-related processes, time scales of processes and of radionuclides migration, independence and evolution similarities of the repository and of the geologic environment; 5 - heat loads: heat transfers between containers and geologic formations, spatial organization of the thermal load, for C-type wastes and spent fuels, for B-type wastes, synthesis of the repository thermal load; 6 - flows and liquid solution and gas transfers: hydraulic behaviour of surrounding Jurassic formations (Tithonian, Kimmeridgian, Callovian, Oxfordian); 7 - chemical phenomena: chemical evolution of ventilated facilities (alveoles, galleries, boreholes), chemical evolution of B-type waste alveoles and of gallery and borehole sealing after closure, far field chemical evolution of Callovo-Oxfordian argilites and of other surrounding formations; 8 - mechanical evolution of the disposal and of the surrounding geologic environment: creation of an initial excavated damaged zone (EDZ), mechanical evolution of ventilated galleries, alveoles and sealing before and after closure, large-scale mechanical evolution; 9 - geodynamical evolution of the Callovo-Oxfordian and other surrounding formations and of the surface environment: internal

  6. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    Science.gov (United States)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  7. Assessing correlations between geological hazards and health outcomes: Addressing complexity in medical geology.

    Science.gov (United States)

    Wardrop, Nicola Ann; Le Blond, Jennifer Susan

    2015-11-01

    The field of medical geology addresses the relationships between exposure to specific geological characteristics and the development of a range of health problems: for example, long-term exposure to arsenic in drinking water can result in the development of skin conditions and cancers. While these relationships are well characterised for some examples, in others there is a lack of understanding of the specific geological component(s) triggering disease onset, necessitating further research. This paper aims to highlight several important complexities in geological exposures and the development of related diseases that can create difficulties in the linkage of exposure and health outcome data. Several suggested approaches to deal with these complexities are also suggested. Long-term exposure and lengthy latent periods are common characteristics of many diseases related to geological hazards. In combination with long- or short-distance migrations over an individual's life, daily or weekly movement patterns and small-scale spatial heterogeneity in geological characteristics, it becomes problematic to appropriately assign exposure measurements to individuals. The inclusion of supplementary methods, such as questionnaires, movement diaries or Global Positioning System (GPS) trackers can support medical geology studies by providing evidence for the most appropriate exposure measurement locations. The complex and lengthy exposure-response pathways involved, small-distance spatial heterogeneity in environmental components and a range of other issues mean that interdisciplinary approaches to medical geology studies are necessary to provide robust evidence. Copyright © 2015. Published by Elsevier Ltd.

  8. Relationship of engineering geology to conceptual repository design in the Gibson Dome area, Utah

    International Nuclear Information System (INIS)

    Helgerson, R.; Henderson, N.

    1984-01-01

    The Paradox Basin in Southeastern Utah is being investigated as a potential site for development of a high-level nuclear waste repository. Geologic considerations are key areas of concern and influence repository design from a number of aspects: depth to the host rock, thickness of the host rock, and hydrologic conditions surrounding the proposed repository are of primary concern. Surface and subsurface investigations have provided data on these key geologic factors for input to the repository design. A repository design concept, based on the surface and subsurface geologic investigations conducted at Gibson Dome, was synthesized to provide needed information on technical feasibility and cost for repository siting decision purposes. Significant features of the surface and subsurface repository facilities are presented. 5 references, 4 figures

  9. A SKOS-based multilingual thesaurus of geological time scale for interopability of online geological maps

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.

    2011-01-01

    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a

  10. CONTRIBUTION OF SATELLITE ALTIMETRY DATA IN GEOLOGICAL STRUCTURE RESEARCH IN THE SOUTH CHINA SEA

    Directory of Open Access Journals (Sweden)

    T. D. Tran

    2016-06-01

    Full Text Available The study area is bordered on the East China Sea, the Philippine Sea, and the Australian-Indo plate in the Northeast, in the East and in the South, respectively. It is a large area with the diversely complicated conditions of geological structure. In spite of over the past many years of investigation, marine geological structure in many places have remained poorly understood because of a thick seawater layer as well as of the sensitive conflicts among the countries in the region. In recent years, the satellite altimeter technology allows of enhancement the marine investigation in any area. The ocean surface height is measured by a very accurate radar altimeter mounted on a satellite. Then, that surface can be converted into marine gravity anomaly or bathymetry by using the mathematical model. It is the only way to achieve the data with a uniform resolution in acceptable time and cost. The satellite altimetry data and its variants are essential for understanding marine geological structure. They provide a reliable opportunity to geologists and geophysicists for studying the geological features beneath the ocean floor. Also satellite altimeter data is perfect for planning the more detailed shipboard surveys. Especially, it is more meaningful in the remote or sparsely surveyed regions. In this paper, the authors have effectively used the satellite altimetry and shipboard data in combination. Many geological features, such as seafloor spreading ridges, fault systems, volcanic chains as well as distribution of sedimentary basins are revealed through the 2D, 3D model methods of interpretation of satellite-shipboard-derived data and the others. These results are improved by existing boreholes and seismic data in the study area.

  11. Geologic and geochemical studies of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, R.E.; Shimp, N.F.

    1980-06-30

    The Illinois State Geological Survey is conducting geological and geochemical investigations to evaluate the potential of New Albany Group shales as a source of hydrocarbons, particularly natural gas. Geological studies include stratigraphy and structure, mineralogic and petrographic characterization; analyses of physical properties; and development of a computer-based resources evaluation system. Geochemical studies include organic carbon content and trace elements; hydrocarbon content and composition; and adsorption/desorption studies of gas through shales. Separate abstracts have been prepared for each task reported.

  12. Low-level radioactive waste program of the US Geological Survey - in transition

    International Nuclear Information System (INIS)

    Fischer, J.N.

    1983-01-01

    In 1983, the US Geological Survey will publish final reports of geohydrologic investigations at five commercial low-level, radioactive-waste burial sites in the United States. These reports mark the end of the first phase of the US Geological Survey program to improve the understanding of earth-science principles related to the effective disposal of low-level wastes. The second phase, which was initiated in 1981, is being developed to address geohydrologic issues identified as needing greater attention based upon results of the first-phase site studies. Specific program elements include unsaturated-zone hydrology, geochemistry, clay mineralogy, surface geophysical techniques, and model development and testing. The information and expertise developed from these and previous studies will allow the US Geological Survey to provide sound technical assistance to State low-level waste compacts, the Department of Energy, the Nuclear Regulatory Commission, and the Environmental Protection Agency. 11 references

  13. Introductory Geology From the Liberal Arts Approach: A Geology-Sociology Linked Course

    Science.gov (United States)

    Walsh, E. O.; Davis, E.

    2008-12-01

    Geology can be a hard sell to college students, especially to college students attending small, liberal arts institutions in localities that lack exaggerated topography. At these schools, Geology departments that wish to grow must work diligently to attract students to the major; professors must be able to convince a wider audience of students that geology is relevant to their everyday lives. Toward this end, a Physical Geology course was linked with an introductory Sociology course through the common theme of Consumption. The same students took the two courses in sequence, beginning with the Sociology course and ending with Physical Geology; thus, students began by discussing the role of consumption in society and ended by learning about the geological processes and implications of consumption. Students were able to ascertain the importance of geology in their daily lives by connecting Earth processes to specific products they consume, such as cell phones and bottled water. Students were also able to see the connection between seemingly disparate fields of study, which is a major goal of the liberal arts. As a theme, Consumption worked well to grab the attention of students interested in diverse issues, such as environmental science or social justice. A one-hour lecture illustrating the link between sociology and geology was developed for presentation to incoming freshmen and their parents to advertise the course. Initial response has been positive, showing an increase in awareness of geological processes among students with a wide range of interests.

  14. A Improved Seabed Surface Sand Sampling Device

    Science.gov (United States)

    Luo, X.

    2017-12-01

    In marine geology research it is necessary to obtain a suf fcient quantity of seabed surface samples, while also en- suring that the samples are in their original state. Currently,there are a number of seabed surface sampling devices available, but we fnd it is very diffcult to obtain sand samples using these devices, particularly when dealing with fne sand. Machine-controlled seabed surface sampling devices are also available, but generally unable to dive into deeper regions of water. To obtain larger quantities of seabed surface sand samples in their original states, many researchers have tried to improve upon sampling devices,but these efforts have generally produced ambiguous results, in our opinion.To resolve this issue, we have designed an improved andhighly effective seabed surface sand sampling device that incorporates the strengths of a variety of sampling devices. It is capable of diving into deepwater to obtain fne sand samples and is also suited for use in streams, rivers, lakes and seas with varying levels of depth (up to 100 m). This device can be used for geological mapping, underwater prospecting, geological engineering and ecological, environmental studies in both marine and terrestrial waters.

  15. Environmental resources of selected areas of Hawaii: Geological hazards

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  16. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    Science.gov (United States)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  17. The laboratories of geological studies; Les laboratoires d`etudes geologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA`s activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  18. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  19. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  20. Study plan for research on long-term stability of geological environments in FY2009

    International Nuclear Information System (INIS)

    Yasue, Ken-ichi; Hanamuro, Takahiro; Kokubu, Yoko; Ishimaru, Tsuneari; Umeda, Koji

    2009-09-01

    The Japanese islands lie in a region of the Circum-Pacific orogenic belt characterized by active tectonics such as volcanism and earthquakes. The concept of geological disposal of HLW in Japan is based on a multi-barrier system which consists of the engineered barrier in the stable geological environments and the natural barrier. The natural phenomena which potentially affect the geological environments in tectonically active Japan are volcanism, faulting, uplift, denudation, climatic change, and sea-level change. Investigation technologies to evaluate their long-term stability of the geological environments have been developed. In fiscal year 2009, we continue researches to develop technologies for detecting latent geotectonic events in preliminary investigation. With regard to modelling technology, we plan to develop prediction models for evaluating the changes of geological environment (e.g., thermal, hydraulic, mechanical, and geochemical conditions) for long term. In addition to these, the development of dating techniques prerequisite for these studies is also carried out. (author)

  1. Studying the Surfaces of the Icy Galilean Satellites With JIMO

    Science.gov (United States)

    Prockter, L.; Schenk, P.; Pappalardo, R.

    2003-12-01

    The Geology subgroup of the Jupiter Icy Moons Orbiter (JIMO) Science Definition Team (SDT) has been working with colleagues within the planetary science community to determine the key outstanding science goals that could be met by the JIMO mission. Geological studies of the Galilean satellites will benefit from the spacecraft's long orbital periods around each satellite, lasting from one to several months. This mission plan allows us to select the optimal viewing conditions to complete global compositional and morphologic mapping at high resolution, and to target geologic features of key scientific interest at very high resolution. Community input to this planning process suggests two major science objectives, along with corresponding measurements proposed to meet them. Objective 1: Determine the origins of surface features and their implications for geological history and evolution. This encompasses investigations of magmatism (intrusion, extrusion, and diapirism), tectonism (isostatic compensation, and styles of faulting, flexure and folding), impact cratering (morphology and distribution), and gradation (erosion and deposition) processes (impact gardening, sputtering, mass wasting and frosts). Suggested measurements to meet this goal include (1) two dimensional global topographic mapping sufficient to discriminate features at a spatial scale of 10 m, and with better than or equal to 1 m relative vertical accuracy, (2) nested images of selected target areas at a range of resolutions down to the submeter pixel scale, (3) global (albedo) mapping at better than or equal to 10 m/pixel, and (4) multispectral global mapping in at least 3 colors at better than or equal to 100 m/pixel, with some subsets at better than 30 m/pixel. Objective 2. Identify and characterize potential landing sites for future missions. A primary component to the success of future landed missions is full characterization of potential sites in terms of their relative age, geological interest, and

  2. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  3. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  4. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  5. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1989-01-01

    Research into the properties of clays as barrier materials for nuclear waste disposal has led to the realization that they have important transport properties which are relatively insignificant in most other geological materials. Sorption has always been regarded as a purely retarding mechanism, but laboratory experiments over the past decade have indicated that surface diffusion of sorbed cations is a potentially significant transport mechanism in both compacted montmorillonite, and biotite gneiss. The present desk study about these issues was part of the CEC coordinated project Mirage-Second phase, research area Natural analogues

  6. Geological and radiometric study of the anomaly ''San Martin'' municipality of Sierra Mojada, Coahuila

    International Nuclear Information System (INIS)

    Ibarra Mora, P.

    1975-01-01

    When it first became known that there were uranium ores at the mine known as San Martin (72 hectares, Mining Agency, Sabinas, Mexico), exploration work was started with the sinking of two wells at the sites of maximum radiometric intensity. A short while afterwards, however, this work was suspended. In 1974, the work required for evaluation of the locality was begun. Geological and radiometric studies carried out both at the surface and underground pointed to the conclusion that the San Martin anomaly, down to the depth explored (40 metres), is a stockwork-type deposit or a tabular seam of the fissure type. It was concluded that in view of the grades obtained (0.0227%U 3 O 6 ) down to 40 metres, the deposit cannot be considered of econimic importance at the present time. (author)

  7. Results and prospects of development of geologic-process studies during drilling

    International Nuclear Information System (INIS)

    Brodskij, P.A.; Pomerants, L.I.; Luk'yanov, Eh.E.; Chekalin, L.M.; Orlov, L.I.; Shakirov, A.F.

    1987-01-01

    A wide range of researches was conducted to study geological sections of a borehole under drilling. The complex comprises gas and mechanical logging, measurements of slime and some other geophysical investigations including nuclear-physical methods. At present a subsystem for logging with measurement of natural gamma-radiation intensity during drilling is used for this purpose. The ''Zaboj'' subsystem with a well device measuring gamma-radiation intensity and other physical parameters is being developed and is planning for production. Geological cabins equipped with instrumentation for element analysis of slime and core are developed using nuclear-physical methods

  8. Study on systematic integration technology of design and safety assessment for HLW geological disposal. 2. Research document

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Fukui, Hiroshi; Sagawa, Hiroshi; Matsunaga, Kenichi; Ito, Takaya; Kohanawa, Osamu; Kuwayama, Yuki

    2003-02-01

    The present study was carried out relating to basic design of the Geological Disposal Technology Integration System' that will be systematized as knowledge base for design analysis and safety assessment of HLW geological disposal system by integrating organically and hierarchically various technical information in three study field. The key conclusions are summarized as follows: (1) As referring to the current performance assessment report, the technical information for R and D program of HLW geological disposal system was systematized hierarchically based on summarized information in a suitable form between the work flow (work item) and processes/characteristic flow (process item). (2) As the result of the systematized technical information, database structure and system functions necessary for development and construction to the computer system were clarified in order to secure the relation between technical information and data set for assessment of HLW geological disposal system. (3) The control procedure for execution of various analysis code used by design and safety assessment in HLW geological disposal study was arranged possibility in construction of 'Geological Disposal Technology Integration System' after investigating the distributed computing technology. (author)

  9. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  10. Geological Fieldwork: A Study Carried out with Portuguese Secondary School Students

    Science.gov (United States)

    Esteves, Helena; Ferreira, Paulo; Vasconcelos, Clara; Fernandes, Isabel

    2013-01-01

    Recognizing the relevance that fieldwork and field trips have in the teaching of geosciences and related learning processes, this study presents two geological fieldwork studies that were established with Portuguese secondary school students. Both studies were focused on geoscience content knowledge, and attempted to increase environmental…

  11. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  12. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  13. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  14. Study on remote sensing geologic information of uranium metallogeny in western Liaoning-northern Hebei region

    International Nuclear Information System (INIS)

    Yu Baoshan

    1998-01-01

    Based on the study on geologic metallogenic environment, temporal and spatial distribution and deposit features of uranium deposits in western Liaoning-northern Hebei region, summarizing mainly remote sensing information and synthesizing geologic, geophysical and geochemical as well as hydrological data, the author has implemented all-region joint-quadrangle analysis, composite mapping and applications, set up interpretation criteria for circular and arcuate structures of different lithological areas, and then expounded their geologic meaning. Volcanic apparatuses, small close sedimentary basins and magmatic rockbodies closely associated with uranium mineralizations, especially the altitude and types of ore-controlling structures and mineralized alteration zones have been interpreted. 'Heat halo spot' has also been interpreted on the satellite image and its geologic meaning and relation to uranium metallization have been discussed. Finally, remote sensing geologic prospecting model and comprehensive prediction model have been established

  15. Three-dimensional geological modelling of anthropogenic deposits at small urban sites: a case study from Sheepcote Valley, Brighton, UK.

    Science.gov (United States)

    Tame, C; Cundy, A B; Royse, K R; Smith, M; Moles, N R

    2013-11-15

    Improvements in computing speed and capacity and the increasing collection and digitisation of geological data now allow geoscientists to produce meaningful 3D spatial models of the shallow subsurface in many large urban areas, to predict ground conditions and reduce risk and uncertainty in urban planning. It is not yet clear how useful this 3D modelling approach is at smaller urban scales, where poorly characterised anthropogenic deposits (artificial/made ground and fill) form the dominant subsurface material and where the availability of borehole and other geological data is less comprehensive. This is important as it is these smaller urban sites, with complex site history, which frequently form the focus of urban regeneration and redevelopment schemes. This paper examines the extent to which the 3D modelling approach previously utilised at large urban scales can be extended to smaller less well-characterised urban sites, using a historic landfill site in Sheepcote Valley, Brighton, UK as a case study. Two 3D models were generated and compared using GSI3D™ software, one using borehole data only, one combining borehole data with local geological maps and results from a desk study (involving collation of available site data, including ground contour plans). These models clearly delimit the overall subsurface geology at the site, and allow visualisation and modelling of the anthropogenic deposits present. Shallow geophysical data collected from the site partially validate the 3D modelled data, and can improve GSI3D™ outputs where boundaries of anthropogenic deposits may not be clearly defined by surface, contour or borehole data. Attribution of geotechnical and geochemical properties to the 3D model is problematic without intrusive investigations and sampling. However, combining available borehole data, shallow geophysical methods and site histories may allow attribution of generic fill properties, and consequent reduction of urban development risk and

  16. Technical know-how for modeling of geological environment. (1) Overview and groundwater flow modeling

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Takeuchi, Shinji; Maekawa, Keisuke; Osawa, Hideaki; Semba, Takeshi

    2011-01-01

    It is important for site characterization projects to manage the decision-making process with transparency and traceability and to transfer the technical know-how accumulated during the research and development to the implementing phase and to future generations. The modeling for a geological environment is to be used to synthesize investigation results. Evaluation of the impact of uncertainties in the model is important to identify and prioritize key issues for further investigations. Therefore, a plan for site characterization should be made based on the results of the modeling. The aim of this study is to support for the planning of initial surface-based site characterization based on the technical know-how accumulated from the Mizunami Underground Research Laboratory Project and the Horonobe Underground Research Laboratory Project. These projects are broad scientific studies of the deep geological environment that are a basis for research and development for the geological disposal of high-level radioactive wastes. In this study, the work-flow of the groundwater flow modeling, which is one of the geological environment models, and is to be used for setting the area for the geological environment modeling and for groundwater flow characterization, and the related decision-making process using literature data have been summarized. (author)

  17. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.; Rautman, C.A.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of both vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block

  18. Geology of the Harper Quadrangle, Liberia

    Science.gov (United States)

    Brock, M.R.; Chidester, A.H.; Baker, M.G.W.

    1974-01-01

    As part of a program undertaken cooperatively by the Liberian Geological Survey (LGS) and the U. S. Geological Survey (USGS), under the sponsorship of the Government of Liberia and the Agency for International Development, U. S. Department of State, Liberia was mapped by geologic and geophysical methods during the period 1965 to 1972. The resulting geologic and geophysical maps are published in ten folios, each covering one quadrangle (see index map). The first systematic mapping in the Harper quadrangle was by Baker, S. P. Srivastava, and W. E. Stewart (LGS) at a scale of 1:500,000 in the vicinity of Harper in the southeastern, and of Karloke in the northeastern part of the quadrangle in 1960-61. Brock and Chidester carried out systematic mapping of the quadrangle at a scale of 1:250,000 in the period September 1971-May 1972; the geologic map was compiled from field data gathered by project geologists and private companies as indicated in the source diagram, photogeologic maps, interpretation of airborne magnetic and radiometric surveys, field mapping, and ground-based radiometric surveys in which hand-held scintillators were used. R. W. Bromery, C. S. Wotorson, and J. C. Behrendt contributed to the interpretation of geophysical data. Total-intensity aeromagnetic and total-count gamma radiation maps (Behrendt and Wotorson, in press a, b), and unpublished data derived from those maps, including the near-surface and the regional magnetic components and aeromagnetic/radiometric correlations, were used in the interpretation.

  19. Impact, and its implications for geology

    International Nuclear Information System (INIS)

    Marvin, U.B.

    1988-01-01

    The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe

  20. Mined Geologic Disposal System Requirements Document

    International Nuclear Information System (INIS)

    1994-03-01

    This Mined Geologic Disposal System Requirements Document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) (including SNF loaded in multi-purpose canisters (MPCs)) and commercial and defense high-level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The purpose of the MGDS-RD is to define the program-level requirements for the design of the Repository, the Exploratory Studies Facility (ESF), and Surface Based Testing Facilities (SBTF). These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MGDS. The document also presents an overall description of the MGDS, its functions (derived using the functional analysis documented by the Physical System Requirements (PSR) documents as a starting point), its segments as described in Section 3.1.3, and the requirements allocated to the segments. In addition, the program-level interfaces of the MGDS are identified. As such, the MGDS-RD provides the technical baseline for the design of the MGDS

  1. First principles studies of complex oxide surfaces and interfaces

    International Nuclear Information System (INIS)

    Noguera, Claudine; Finocchi, Fabio; Goniakowski, Jacek

    2004-01-01

    Oxides enter our everyday life and exhibit an impressive variety of physical and chemical properties. The understanding of their behaviour, which is often determined by the electronic and atomic structures of their surfaces and interfaces, is a key question in many fields, such as geology, environmental chemistry, catalysis, thermal coatings, microelectronics, and bioengineering. In the last decade, first principles methods, mainly those based on the density functional theory, have been frequently applied to study complex oxide surfaces and interfaces, complementing the experimental observations. In this work, we discuss some of these contributions, with emphasis on several issues that are especially important when dealing with oxides: the local electronic structure at interfaces, and its connection with chemical reactivity; the charge redistribution and the bonding variations, in relation to screening properties; and the possibility of bridging the gap between model and real systems by taking into account the chemical environments and the effect of finite temperatures, and by performing simulations on systems of an adequate (large) size

  2. Potential collapse due to geological structures influence in Seropan Cave, Gunung Kidul, Yogyakarta, Indonesia

    Science.gov (United States)

    Nugroho, B.; Pranantya, P. A.; Witjahjati, R.; Rofinus

    2018-01-01

    This study aims to estimate the potential collapse in the Seropan cave, based on the existing geological structure conditions in the cave. This is very necessary because in the Seropan cave will be built Microhydro installation for power plants. The electricity will be used to raise the underground river water in the cave to a barren soil surface, which can be used for surface irrigation. The method used is analysis the quality of rock mass along the cave. Analysis of rock mass quality using Geomechanical Classification or Rock Mass Rating (RMR), to determine the magnitude of the effect of geological structure on rock mass stability. The research path is divided into several sections and quality analysis is performed on each section. The results show that the influence of geological structure is very large and along the cave where the research there are several places that have the potential to collapse, so need to get serious attention in handling it. Nevertheless, the construction of this Microhydro installation can still be carried out by making a reinforcement on potentially collapsing parts

  3. Surface-water data and statistics from U.S. Geological Survey data-collection networks in New Jersey on the World Wide Web

    Science.gov (United States)

    Reiser, Robert G.; Watson, Kara M.; Chang, Ming; Nieswand, Steven P.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates and maintains a variety of surface-water data-collection networks throughout the State of New Jersey. The networks include streamflow-gaging stations, low-flow sites, crest-stage gages, tide gages, tidal creststage gages, and water-quality sampling sites. Both real-time and historical surface-water data for many of the sites in these networks are available at the USGS, New Jersey District, web site (http://nj.usgs.gov/), and water-quality data are available at the USGS National Water Information System (NWIS) web site (http://waterdata.usgs.gov/nwis/). These data are an important source of information for water managers, engineers, environmentalists, and private citizens.

  4. MIT Project Apophis: Surface Evaulation & Tomography (SET) Mission Study for the April 2029 Earth Encounter

    Science.gov (United States)

    Binzel, R. P.; Earle, A. M.; Vanatta, M.; Miller, D. W.

    2017-12-01

    Nature is providing a once-per-thousand year opportunity to study the geophysical outcome induced on an unprecedentedly large (350 meter) asteroid making an extremely close passage by the Earth (inside the distance of geosynchronous satellites) on Friday April 13, 2029. The aircraft carrier-sized (estimated 20 million metric ton) asteroid is named Apophis. While many previous spacecraft missions have studied asteroids, none has ever had the opportunity to study "live" the outcome of planetary tidal forces on their shapes, spin states, surface geology, and internal structure. Beyond the science interest directly observing this planetary process, the Apophis encounter provides an invaluable opportunity to gain knowledge for any eventuality of a known asteroid found to be on a certain impact trajectory. MIT's Project Apophis [1] is our response to nature's generous opportunity by developing a detailed mission concept for sending a spacecraft to orbit Apophis with the objectives of surveying its surface and interior structure before, during, and after its 2029 near-Earth encounter. The Surface Evaluation & Tomography (SET) mission concept we present is designed toward accomplishing three key science objectives: (1) bulk physical characterization, (2) internal structure, and (3) long-term orbit tracking. For its first mission objective, SET will study Apophis' bulk properties, including: shape, size, mass, volume, bulk density, surface geology, and composition, rotation rate, and spin state. The second mission objective is to characterize Apophis' internal structure before and after the encounter to determine its strength and cohesion - including tidally induced changes. Finally, the third objective studies the process of thermal re-radiation and consequential Yarkovsky drift, whose results will improve orbit predictions for Apophis as well as other potentially hazardous asteroids. [1] https://eapsweb.mit.edu/mit-project-apophis

  5. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

    Science.gov (United States)

    Jedli, Hedi; Jbara, Abdessalem; Hedfi, Hachem; Bouzgarrou, Souhail; Slimi, Khalifa

    2017-04-01

    In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions ( P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2-water-rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

  6. Disribution and interplay of geologic processes on Titan from Cassini radar data

    Science.gov (United States)

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial

  7. Distribution and interplay of geologic processes on Titan from Cassini radar data

    Science.gov (United States)

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the

  8. Preliminary geological suitability assessment for LILW disposal

    International Nuclear Information System (INIS)

    Tomse, P.; Mele, I.

    2001-01-01

    Due to the growing need for a final disposal of LILW, the final solution for the short-lived LILW is the key issue of radioactive waste management in Slovenia at the moment. ARAO - the Slovenian Agency for Radwaste Management - is intensely involved in the re-initiated site selection process for a LILW repository. In this new process we are trying to combine as best as possible the technical, geologically-led and the advocacy-site selection processes. By a combination of technical and volunteer approach to the site selection we wish to guarantee high public involvement and sufficient flexibility of the process to adapt to specific conditions or new circumstances while the project is ongoing. In the technical phase, our tendency is to retain a larger number of potential areas/sites. We also keep open the possibility of choosing the type of repository. The decision between the surface and underground option will be made only once the site has been defined. In accordance with the IAEA recommendations the site selection process is divided into four stages: the conceptual and planning stage, area survey stage, site characterisation stage and site confirmation stage. Last year the area survey stage was started. In the preliminary geological suitability assessment the required natural predisposition of Slovene territory was assessed in order to locate geologically suitable formations. The assessment of natural conditions of the system was based on consideration of the main geological, hydro-geological and seismotectonic conditions. It was performed with ARC/INFO technology. The results are compiled in a map, showing potential areas for underground and surface disposal of LILW in Slovenia. It has been established that there is a potential suitability for both surface and underground disposal on about 10 000 km 2 of the Slovenian territory, which represents almost half of the entire Slovenian territory. These preliminary results are now being carefully re-examined. As an

  9. Geology and uranium mineralization in Sarana sector, Kalan, West Kalimantan based on drilling data

    International Nuclear Information System (INIS)

    Sartapa; I Gde Sukadana

    2011-01-01

    Favourable zone of uranium mineralization in Sarana sector with NE-SW direction are contained in metapelite rock and some in muscovite quartzite. Mineralization of uranium is occurred fill in the fields of parallel fractures with stochasticity by ENE-WSW direction, and moderate to strong inclination to the north. Three points drilling with the depth of 126.6, 174.50, and 150.90 meter has been conducted. This study is aimed to obtain the knowledge of geology, and geometry of sub-surface uranium mineralization. Geologically, research area are consists of metapelite, muscovite quartzite and biotite quartzite with milli metric - centi metric thicknesses. Uranium mineralization are in forms of veins or tabular as uraninite and pitchblende associated with pyrite, chalcopyrite, pyrrhotite, ilmenite and molybdenite. Uranium Mineralization on the surface could be correlated with sub-surface from bore-hole data, with the result that zone of uranium mineralization in lenses or tabular form with sub-vertical dip may be identified. (author)

  10. Typical Applications of Airborne LIDAR Technolagy in Geological Investigation

    Science.gov (United States)

    Zheng, X.; Xiao, C.

    2018-05-01

    The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  11. TYPICAL APPLICATIONS OF AIRBORNE LIDAR TECHNOLAGY IN GEOLOGICAL INVESTIGATION

    Directory of Open Access Journals (Sweden)

    X. Zheng

    2018-05-01

    Full Text Available The technology of airborne light detection and ranging (LiDAR, also referred to as Airborne Laser Scanning, is widely used for high-resolution topographic data acquisition (even under forest cover with sub-meter planimetric and vertical accuracy. This contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology has extensive prospect of applications in geological investigation.

  12. Database system of geological information for geological evaluation base of NPP sites(I)

    International Nuclear Information System (INIS)

    Lim, C. B.; Choi, K. R.; Sim, T. M.; No, M. H.; Lee, H. W.; Kim, T. K.; Lim, Y. S.; Hwang, S. K.

    2002-01-01

    This study aims to provide database system for site suitability analyses of geological information and a processing program for domestic NPP site evaluation. This database system program includes MapObject provided by ESRI and Spread 3.5 OCX, and is coded with Visual Basic language. Major functions of the systematic database program includes vector and raster farmat topographic maps, database design and application, geological symbol plot, the database search for the plotted geological symbol, and so on. The program can also be applied in analyzing not only for lineament trends but also for statistic treatment from geologically site and laboratory information and sources in digital form and algorithm, which is usually used internationally

  13. Residual and Solubility trapping during Geological CO2 storage : Numerical and Experimental studies

    OpenAIRE

    Rasmusson, Maria

    2018-01-01

    Geological storage of carbon dioxide (CO2) in deep saline aquifers mitigates atmospheric release of greenhouse gases. To estimate storage capacity and evaluate storage safety, knowledge of the trapping mechanisms that retain CO2 within geological formations, and the factors affecting these is fundamental. The objective of this thesis is to study residual and solubility trapping mechanisms (the latter enhanced by density-driven convective mixing), specifically in regard to their dependency on ...

  14. Geological, Geochemical 1 and Rb-Sr isotopic studies on tungsten 2 ...

    Indian Academy of Sciences (India)

    37

    Geological, Geochemical and Rb-Sr isotopic studies on tungsten. 1 mineralised ..... From the field relations it is demonstrated that SG (biotite-bearing granitic gneiss) and. 120 ..... cases Ba) and vice-versa for the low concentration. 291.

  15. Geologic Mapping Results for Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.

  16. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden)); Simeonov, Assen (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  17. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Simeonov, Assen; Isaksson, Hans

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  18. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 16. Repository preconceptual design studies: BPNL waste forms in salt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Volume 16, ''Repository Preconceptual Design Studies: BPNL Waste Forms in Salt,'' is one of a 23 volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provide a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This document describes a preconceptual design for a nuclear waste storage facility in salt. The waste forms assumed to arrive at the repository were supplied by Battelle Pacific Northwest Laboratories (BPNL). The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/17, ''Drawings for Repository Preconceptual Design Studies: BPNL Waste Forms in Salt.''

  19. Integrated evaluation of the geology, aerogammaspectrometry and aeromagnetometry of the Sul-Riograndense Shield, southernmost Brazil.

    Science.gov (United States)

    Hartmann, Léo A; Lopes, William R; Savian, Jairo F

    2016-03-01

    An integrated evaluation of geology, aerogammaspectrometry and aeromagnetometry of the Sul-Riogran-dense Shield is permitted by the advanced stage of understanding of the geology and geochronology of the southern Brazilian Shield and a 2010 airborne geophysical survey. Gamma rays are registered from the rocks near the surface and thus describe the distribution of major units in the shield, such as the Pelotas batholith, the juvenile São Gabriel terrane, the granulite-amphibolite facies Taquarembó terrane and the numerous granite intrusions in the foreland. Major structures are also observed, e.g., the Dorsal de Canguçu shear. Magnetic signals register near surface crustal compositions (analytic signal) and total crust composition (total magnetic signal), so their variation as measured indicates either shallow or whole crustal structures. The Caçapava shear is outstanding on the images as is the magnetic low along the N-S central portion of the shield. These integrated observations lead to the deepening of the understanding of the largest and even detailed structures of the Sul-Riograndense Shield, some to be correlated to field geology in future studies. Most significant is the presence of different provinces and their limits depending on the method used for data acquisition - geology, aerogammaspectrometry or aeromagnetometry.

  20. Geostatistics: a common link between medical geography, mathematical geology, and medical geology.

    Science.gov (United States)

    Goovaerts, P

    2014-08-01

    Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.

  1. Topographic attributes as a guide for automated detection or highlighting of geological features

    Science.gov (United States)

    Viseur, Sophie; Le Men, Thibaud; Guglielmi, Yves

    2015-04-01

    . This approach assume that structural or sedimentary features coincide with topographic surface parts. In this work, several topographic attributes are proposed to highlight geological features on outcrops. Among them, differential operators are used but also combined and processed to display particular topographic shapes. Moreover, two kinds of attributes are used: unsupervised and supervised attributes. The supervised attributes integrate an a priori knowledge about the objects to extract (e.g.: a preferential orientation of fracture surfaces, etc.). This strategy may be compared to the one used for seismic interpretation. Indeed, many seismic attributes have been proposed to highlight geological structures hardly observable due to data noise. The same issue exist with topographic data: plants, erosions, etc. generate noise that make interpretation sometimes hard. The proposed approach has been applied on real case studies to show how it could help the interpretation of geological features. The obtained 'topographic attributes' are shown and discussed.

  2. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  3. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  4. Geologic control on the evolution of the inner shelf morphology offshore of the Mississippi barrier islands, northern Gulf of Mexico, USA

    Science.gov (United States)

    Flocks, James G.; Kindinger, Jack G.; Kelso, Kyle W.

    2015-01-01

    Between 2008 and 2013, high-resolution geophysical surveys were conducted around the Mississippi barrier islands and offshore. The sonar surveys included swath and single-beam bathymetry, sidescan, and chirp subbottom data collection. The geophysical data were groundtruthed using vibracore sediment collection. The results provide insight into the evolution of the inner shelf and the relationship between the near surface geologic framework and the morphology of the coastal zone. This study focuses on the buried Pleistocene fluvial deposits and late Holocene shore-oblique sand ridges offshore of Petit Bois Island and Petit Bois Pass. Prior to this study, the physical characteristics, evolution, and interrelationship of the ridges between both the shelf geology and the adjacent barrier island platform had not been evaluated. Numerous studies elsewhere along the coastal margin attribute shoal origin and sand-ridge evolution to hydrodynamic processes in shallow water (<20 m). Here we characterize the correlation between the geologic framework and surface morphology and demonstrate that the underlying stratigraphy must also be considered when developing an evolutionary conceptual model. It is important to understand this near surface, nearshore dynamic in order to understand how the stratigraphy influences the long-term response of the coastal zone to sea-level rise. The study also contributes to a growing body of work characterizing shore-oblique sand ridges which, along with the related geology, are recognized as increasingly important components to a nearshore framework whose origins and evolution must be understood and inventoried to effectively manage the coastal zone.

  5. PICOREF: carbon sequestration in geological reservoirs in France.Map of the unknown ''ground motion''. Final report

    International Nuclear Information System (INIS)

    Rohmer, J.; Lembezat, C.

    2006-01-01

    in the framework of the PICOREF project, ''CO 2 sequestration in geological reservoirs in France'', two main objectives are decided: the characterization of french adapted sites and the redaction of a document to ask for the storage authorization, including a methodology to survey and study the storage site. This report aims to define the unknown ground motion which the impact should present a risk for the surface installations. The project is presented, as the geological context and the proposed methodology. (A.L.B.)

  6. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  7. Geological Study and Regional Development of Mamberamo Raya Disctrict of Papua Province, Indonesia

    Science.gov (United States)

    Tonggiroh, Adi; Asri Jaya, HS; Ria Irfan, Ulva

    2018-02-01

    The goverment of Mamberamo Raya district was established through Act No. 19 of 2007 dated 15 March 2007 as part of the administrative area of Papua Province. The administrative age of this district is relatively young requires hard work of all components in facing development challenges so that necessary strategic steps of vision and mission of regional development to achieve ideal conditions of spatial which as direction of the desired embodiment in the future. Regional development covers all technical aspects including the geological aspect that the area is located on the morphology of the mountains and Mamberamo watershed. Strategic steps require policy as an action to achieve the goal with the elaboration of operational steps to realize the welfare of peoples equally and sustainably according to the potential physiogeography of Mamberamo watershed. The geological aspect as the consideration of technical that this region belongs to the regional tectonic which is divided into the difference of fault in the north there is Yapen fault and in the south is Mamberamo-Gauttier Fault and also a consideration on the stratigraphic structure of various rock types including the dominance of sedimentary rocks. This study examines geological aspects as an element of earth science in spatial planning in Mamberamo district, especially Kasonaweja and Burmeso. The analysis is presented based on field data, in the form of geographical map data of geological structure, geological map, and earthquake data described by cluster pattern indicating regional motion relationship and rock characteristics that make up Mamberamo watershed. It finds land characteristics controlled by geological structures, rock arrangements and landforms in response to landslide, flood and seismic changes.

  8. Three-Dimensional Geological Model of Quaternary Sediments in Walworth County, Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Jodi Lau

    2016-07-01

    Full Text Available A three-dimensional (3D geologic model was developed for Quaternary deposits in southern Walworth County, WI using Petrel, a software package primarily designed for use in the energy industry. The purpose of this research was to better delineate and characterize the shallow glacial deposits, which include multiple shallow sand and gravel aquifers. The 3D model of Walworth County was constructed using datasets such as the U.S. Geological Survey 30 m digital elevation model (DEM of land surface, published maps of the regional surficial geology and bedrock topography, and a database of water-well records. Using 3D visualization and interpretation tools, more than 1400 lithostratigraphic picks were efficiently interpreted amongst 725 well records. The final 3D geologic model consisted of six Quaternary lithostratigraphic units and a bedrock horizon as the model base. The Quaternary units include in stratigraphic order from youngest to oldest: the New Berlin Member of the Holy Hill Formation, the Tiskilwa Member of the Zenda Formation, a Sub-Tiskilwa Sand/Gravel unit, the Walworth Formation, a Sub-Walworth Sand/Gravel unit, and a Pre-Illinoisan unit. Compared to previous studies, the results of this study indicate a more detailed distribution, thickness, and interconnectivity between shallow sand and gravel aquifers and their connectivity to shallow bedrock aquifers. This study can also help understand uncertainty within previous local groundwater-flow modeling studies and improve future studies.

  9. Natural background radioactivity of the earth's surface -- essential information for environmental impact studies

    International Nuclear Information System (INIS)

    Tauchid, M.; Grasty, R.L.

    2002-01-01

    An environmental impact study is basically a study of change. This change is compared to the preexisting conditions that are usually perceived to be the original one or the 'pristine' stage. Unfortunately reliable information on the 'so called' pristine stage is far from adequate. One of the essential parts of this information is a good knowledge of the earth's chemical make up, or its geochemistry. Presently available data on the geochemistry of the earth's surface, including those related to radioactive elements, are incomplete and inconsistent. The main reason why a number of regulations are judged to be too strict and disproportional to the risks that might be caused by some human activities, is the lack of reliable information on the natural global geochemical background on which environmental regulations should be based. The main objective of this paper is to present a view on the need for complete baseline information on the earth's surface environment and in particular its geochemical character. It is only through the availability of complete information, including reliable baseline information on the natural radioactivity, that an appropriate study on the potential effect of the various naturally occurring elements on human health be carried out. Presented here are a number of examples where the natural radioactivity of an entire country has been mapped, or is in progress. Also described are the ways these undertakings were accomplished. There is a general misconception that elevated radioactivity can be found only around uranium mines, nuclear power reactors and similar nuclear installations. As can be seen from some of these maps, the natural background radioactivity of the earth's surface closely reflects the underlying geological formations and their alteration products. In reality, properly regulated and managed facilities, the levels of radioactivity associated with many of these facilities are generally quite low relative to those associated with

  10. Report on decision-making of geological disposal. Discussion based on case study

    International Nuclear Information System (INIS)

    Hiruzawa, Shigenobu

    2004-01-01

    History of geological disposal from 1950 to 2000 in the world and some examples of change of policy in France, Sweden and Canada are explained. On the case study of three countries, investigations of background of the change, site decision process, communication, flexible concept of disposal are stated. Japan decided the high level radioactive waste is disposed in underground (300m deeper) under the Law Concerning the Final Disposal of Special Radioactive Waste in June, 2000. NUMO (Nuclear Waste Management Organization of Japan) was established to manage disposal of radioactive waste in October, 2000. NUMO started to accept application for the site of disposal in the country in December, 2002. The above case study is a good guide to promote geological disposal of radioactive waste. (S.Y.)

  11. Relations between Vegetation and Geologic Framework in Barrier Island

    Science.gov (United States)

    Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.

    2017-12-01

    Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better

  12. Geological map of the Kaiwan Fluctus Quadrangle (V-44), Venus

    Science.gov (United States)

    Bridges, Nathan T.; McGill, George E.

    2002-01-01

    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphereon October 12, 1994. Magellan had the objectives of: (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September of 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  13. Geologic Map of the Mylitta Fluctus Quadrangle (V-61), Venus

    Science.gov (United States)

    Ivanov, Mikhail A.; Head, James W.

    2006-01-01

    INTRODUCTION The Magellan Mission The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included: (1) improving knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology, and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three data sets: (1) synthetic aperture radar (SAR) images of the surface, (2) passive microwave thermal emission observations, and (3) measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging, altimetric, and radiometric mapping of the Venusian surface was done in mission cycles 1, 2, and 3 from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution on the order of 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution, and these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied between about 20? and 45?. High resolution Doppler tracking of the spacecraft took place from September 1992 through October 1994 (mission cycles 4, 5, 6). Approximately 950 orbits of high-resolution gravity observations were obtained between September 1992 and May 1993 while Magellan was in an elliptical orbit with a periapsis near 175 km and an apoapsis near 8,000 km. An additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  14. Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus

    Science.gov (United States)

    Rosenberg, Elizabeth; McGill, George E.

    2001-01-01

    Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75? by 75? harmonic field.

  15. Studies of the suitability of salt domes in east Texas basin for geologic isolation of nuclear wastes

    International Nuclear Information System (INIS)

    Kreitler, C.W.

    1979-01-01

    The suitability of salt domes in the east Texas basin (Tyler basin), Texas, for long-term isolation of nulear wastes is being evaluated. The major issues concern hydrogeologic and tectonic stability of the domes and potential natural resources in the basin. These issues are being approached by integration of dome-specific and regional hydrogeolgic, geologic, geomorphic, and remote-sensing investigations. Hydrogeologic studies are evaluating basinal hydrogeology and ground-water flow around the domes in order to determine the degree to which salt domes may be dissolving, their rates of solution, and the orientation of saline plumes in the fresh-water aquifers. Subsurface geologic studies are being conducted: (1) to determine the size and shape of specific salt domes, the geology of the strata immediately surrounding the domes, and the regional geology of the east Texas basin; (2) to understand the geologic history of dome growth and basin infilling; and (3) to evaluate potential natural resources. Geomorphic and surficial geology studies are determining whether there has been any dome growth or tectonic movement in the basin during the Quaternary. Remote-sensing studies are being conducted to determine: (1) if dome uplift has altered regional lineation patterns in Quaternary sediments; and (2) whether drainage density indicates Quaternary structural movement. On the basis of the screening criteria of Brunton et al (1978), Oakwood and Keechi domes have been chosen as possible candidate domes. Twenty-three domes have been eliminated because of insufficient size, too great a depth to salt, major hydrocarbon production, or previous use (such as liquid propane storage or salt mining or brining). Detailed geologic, hydrogeologic, and geomorphic investigations are now being conducted around Oakwood and Keechi salt domes

  16. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift

  17. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. The African upper mantle and its relationship to tectonics and surface geology

    Science.gov (United States)

    Priestley, Keith; McKenzie, Dan; Debayle, Eric; Pilidou, Sylvana

    2008-12-01

    This paper focuses on the upper-mantle velocity structure of the African continent and its relationship to the surface geology. The distribution of seismographs and earthquakes providing seismograms for this study results in good fundamental and higher mode path coverage by a large number of relatively short propagation paths, allowing us to image the SV-wave speed structure, with a horizontal resolution of several hundred kilometres and a vertical resolution of ~50 km, to a depth of about 400 km. The difference in mantle structure between the Archean and Pan-African terranes is apparent in our African upper-mantle shear wave model. High-velocity (4-7 per cent) roots exist beneath the cratons. Below the West African, Congo and Tanzanian Cratons, these extend to 225-250 km depth, but beneath the Kalahari Craton, the high wave speed root extends to only ~170 km. With the exception of the Damara Belt that separates the Congo and Kalahari Cratons, any high-speed upper-mantle lid below the Pan-African terranes is too thin to be resolved by our long-period surface wave technique. The Damara Belt is underlain by higher wave speeds, similar to those observed beneath the Kalahari Craton. Extremely low SV-wave speeds occur to the bottom of our model beneath the Afar region. The temperature of the African upper mantle is determined from the SV-wave speed model. Large temperature variations occur at 125 km depth with low temperatures beneath west Africa and all of southern Africa and warm mantle beneath the Pan-African terrane of northern Africa. At 175 km depth, cool upper mantle occurs below the West African, Congo, Tanzanian and Kalahari Cratons and anomalously warm mantle occurs below a zone in northcentral Africa and beneath the region surrounding the Red Sea. All of the African volcanic centres are located above regions of warm upper mantle. The temperature profiles were fit to a geotherm to determine the thickness of the African lithosphere. Thick lithosphere exists

  19. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    Science.gov (United States)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage

  20. The application of geological computer modelling systems to the characterisation and assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    White, M.J.; Del Olmo, C.

    1996-01-01

    The deep disposal of radioactive waste requires the collection and analysis of large amounts of geological data. These data give information on the geological and hydrogeological setting of repositories and research sites, including the geological structure and the nature of the groundwater. The collection of these data is required in order to develop an understanding of the geology and the geological evolution of sites and to provide quantitative information for performance assessments. An integrated approach to the interpretation and provision of these data is proposed in this paper, via the use of computer systems, here termed geological modelling systems. Geological modelling systems are families of software programmes which allow the incorporation of site investigation data into integrated 3D models of sub-surface geology

  1. The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle

    Science.gov (United States)

    Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.

    2010-01-01

    The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).

  2. Electrical Resistivity Models in Geological Formations in the Southern Area of the East of Cuba

    Directory of Open Access Journals (Sweden)

    José Antonio García-Gutiérrez

    2017-04-01

    Full Text Available The purpose of this study is to develop electrical resistivity models in geological formations of greater interest for geological engineering in the southern area of the East of Cuba. A procedure for the generalization of the geo-electrical database was prepared to generate the referred geo-electrical models. A total of 38 works with 895 vertical electrical surveys, of which 317 (35.4% located near (parametrical drills. Three models for the Paso Real formation and one for the Capdevila, the most distributed in the region under investigation were defined. The surface quartz sands from the municipality of Sandino were identified to have higher electrical resistivity averages (1241 Ω•m, while they do not exceed 86 Ω•m in the lower horizons to resolve basic tasks of the geological engineering investigations. The assessment of the cover clayey sandy soils was satisfactory in both geological formations while the determination of the water table depth was unfavorable. The remaining tasks varied between relatively favorable to unfavorable according to the geological formations.

  3. Verification study on technology for site investigation for geological disposal. Confirmation of the applicability of survey methods through establishing site descriptive models in accordance with stepwise investigation approach

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Hamada, Takaomi; Yoshimura, Kimitaka

    2014-01-01

    The Yokosuka Demonstration and Validation Project, which uses the Yokosuka Central Research Institute of Electric Power Industry (CRIEPI) site, a Neogene sedimentary and coastal environment, has been conducted since the 2006 fiscal year as a cooperative research project between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project were to examine and refine the basic methodology of the investigation and assessment in accordance with the conditions of geological environment at each stage of investigations from the surface (Preliminary Investigation and the first half of Detailed Investigation conducted by NUMO) for high level radioactive waste geological disposal. Within investigation technologies at these early stages, a borehole survey is an important means of directly obtaining various properties of the deep geological environment. On the other hand, surface geophysical prospecting data provide information about the geological and resistivity structures at depth for planning borehole surveys. During the 2006-2009 fiscal years, a series of on-site surveys and tests, including borehole surveys of YDP-1 (depth: 350 m) and YDP-2 (depth: 500 m), were conducted in this test site. Furthermore, seismic surveys (including seismic reflection method) and electromagnetic surveys (including magnetotelluric method) were conducted within the expanded CRIEPI site in the 2010 fiscal year to obtain information about the geological structure, and the resistivity structure reflecting the distribution of the salt water/fresh water boundary, respectively, to a depth of over several hundred meters. The validity of existing survey and testing methods for stepwise investigations (from surface to borehole surveys) for obtaining properties of the geological environment (in various conditions relating to differences in the properties of the Miura and the Hayama Groups at this site) was confirmed through establishing site descriptive models based on

  4. Exploration methods for granitic natural stones – geological and topographical aspects from case studies in Finland

    Directory of Open Access Journals (Sweden)

    Olavi Selonen

    2014-06-01

    Full Text Available Regional and local geological constraints for location of natural stone deposits in glaciated terrains of southern and central Finland have been studied and applied to practical exploration for natural stone. A list of geological and topographical aspects to be considered in exploration, is presented. Important aspects refer to: 1. Regional geology of the target area. 2. Magmatism (type and structure of intrusion, relative time of pluton emplacement. 3. Metamorphism (grade, mineral composition, parent material. 4. Deformation (lineaments, shear zones, folding, fault zones, fracture zones, shape preferred mineral orientations, and 5. Topography (relative elevation, micro topography. The proposed aspects can be used as geological guidelines in exploration for granitic natural stones.

  5. Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico

    Science.gov (United States)

    Dethier, David P.; Thompson, Ren A.; Hudson, Mark R.; Minor, Scott A.; Sawyer, David A.

    2011-01-01

    The Cochiti Dam quadrangle is located in the southern part of the Española Basin and contains sedimentary and volcanic deposits that record alluvial, colluvial, eolian, tectonic and volcanic processes over the past seventeen million years. The geology was mapped from 1997 to 1999 and modified in 2004 to 2008. The primary mapping responsibilities were as follows: Dethier mapped the surficial deposits, basin-fill sedimentary deposits, Miocene to Quaternary volcanic deposits of the Jemez volcanic field, and a preliminary version of fault distribution. Thompson and Hudson mapped the Pliocene and Quaternary volcanic deposits of the Cerros del Rio volcanic field. Thompson, Minor, and Hudson mapped surface exposures of faults and Hudson conducted paleomagnetic studies for stratigraphic correlations. Thompson prepared the digital compilation of the geologic map.

  6. Potential of semiautomated, synoptic geologic studies for characterization of hazardous waste sites

    International Nuclear Information System (INIS)

    Foley, M.G.; Beaver, D.E.; Glennon, M.A.; Eliason, J.R.

    1988-01-01

    Siting studies for licensing hazardous facilities require three-dimensional characterization of site geology including lithology, structure, and tectonics. The scope of these studies depends on the type of hazardous facility and its associated regulations. This scope can vary from a pro forma literature review to an extensive, multiyear research effort. Further, the regulatory environment often requires that the credibility of such studies be established in administrative and litigative proceedings, rather than solely by technical peer review. Pacific Northwest Laboratory (PNL) has developed a technology called remote geologic analysis (RGA). This technology provides reproducible photogeologic maps, determinations of three- dimensional faults and fracture sets expressed as erosional lineaments or planar topographic features, planar feature identification in seismic hypocenter data, and crustal- stress/tectonic analyses. Results from the RGA establish a foundation for interpretations that are defensible in licensing proceedings

  7. The Aristarchus-Harbinger region of the moon: Surface geology and history from recent remote-sensing observations

    Science.gov (United States)

    Zisk, S.H.; Hodges, C.A.; Moore, H.J.; Shorthill, R.W.; Thompson, T.W.; Whitaker, E.A.; Wilhelms, D.E.

    1977-01-01

    The region including the Aristarchus Plateau and Montes Harbinger is probably the most diverse, geologically, of any area of comparble size on the Moon. This part of the northwest quadrant of the lunar near side includes unique dark mantling material; both the densest concentration and the largest of the sinuous rilles; apparent volcanic vents, sinks, and domes; mare materials of various ages and colors; one of the freshest large craters (Aristarchus) with ejecta having unique colors and albedos; and three other large craters in different states of flooding and degradation (krieger, Herodotus, and Prinz). The three best-authenticated lunar transient phenomena were also observed here. This study is based principally on photographic and remote sensing observations made from Earth and Apollo orbiting space craft. Results include (1) delineation of geologic map units and their stratigraphic relationships; (2) discussion of the complex interrelationships between materials of volcanic and impact origin, including the effects of excavation, redistribution and mixing of previously deposited materials by younger impact craters; (3) deduction of physical and chemical properties of certain of the geologic units, based on both the remote-sensing information and on extrapolation of Apollo data to this area; and (4) development of a detailed geologic history of the region, outlining the probable sequence of events that resulted in its present appearance. A primary concern of the investigation has been anomalous red dark mantle on the Plateau. Based on an integration of Earth- and lunar orbit-based data, this layer seems to consist of fine-grained, block-free material containing a relatively large fraction of orange glass. It is probably of pyroclastic origin, laid down at some time during the Imbrian period of mare flooding. ?? 1977 D. Reidel Publishing Company.

  8. Characterization of Near-Surface Geology and Possible Voids Using Resistivity and Electromagnetic Methods at the Gran Quivira Unit of Salinas Pueblo Missions National Monument, Central New Mexico, June 2005

    Science.gov (United States)

    Ball, Lyndsay B.; Lucius, Jeffrey E.; Land, Lewis A.; Teeple, Andrew

    2006-01-01

    At the Gran Quivira Unit of Salinas Pueblo Missions National Monument in central New Mexico, a partially excavated pueblo known as Mound 7 has recently become architecturally unstable. Historical National Park Service records indicate both natural caves and artificial tunnels may be present in the area. Knowledge of the local near-surface geology and possible locations of voids would aid in preservation of the ruins. Time-domain and frequency-domain electromagnetic as well as direct-current resistivity methods were used to characterize the electrical structure of the near-surface geology and to identify discrete electrical features that may be associated with voids. Time-domain electromagnetic soundings indicate three major electrical layers; however, correlation of these layers to geologic units was difficult because of the variability of lithologic data from existing test holes. Although resistivity forward modeling was unable to conclusively determine the presence or absence of voids in most cases, the high-resistivity values (greater than 5,000 ohm-meters) in the direct-current resistivity data indicate that voids may exist in the upper 50 meters. Underneath Mound 7, there is a possibility of large voids below a depth of 20 meters, but there is no indication of substantial voids in the upper 20 meters. Gridded lines and profiled inversions of frequency-domain electromagnetic data showed excellent correlation to resistivity features in the upper 5 meters of the direct-current resistivity data. This technique showed potential as a reconnaissance tool for detecting voids in the very near surface.

  9. The role of colloids in the transport of radionuclides in geological media

    International Nuclear Information System (INIS)

    Moulin, V.

    1993-01-01

    The main objective of this programme is to understand how colloids could influence the migration behaviour of radionuclides in geological formations. This is being achieved firstly, by identifying the retention mechanisms of colloids and pseudocolloids (association of radionuclides with colloids) on mineral surfaces by static and dynamic experiments, and secondly by investigating the formation of pseudocolloids. Moreover, these studies will be focused on model systems (surfaces, colloids) selected from studies carried out on the El Berrocal site (characterization of the granite, of the colloids). Two types of experiments are planned: for the study of pseudocolloid formation, sorption experiments (batch tests) with radionuclides will be conducted either with model inorganic colloidal suspensions or with mineral monoliths as macroscopic surfaces of colloids. Dynamic experiments will be performed using well-defined packings of both synthetic and natural minerals (major constituents of granite). Moreover, a particular attention will be devoted to the organic coatings (in static and dynamic conditions). These studies will provide data directly usable by migration models to predict colloid transport under conditions relevant to geological disposals. This programme will be carried out in collaboration with the different partners of this contract: CEA (Fontenay-aux-Roses/F), CIEMAT (Madrid/S), CNRS (Orsay/F), GERMETRAD (Nantes/F), GSF (Munich/G), INFM (Padua/I), INTERA (London/UK) with Dr V. Moulin, Dr P. Rivas, Dr J.C. Dran, Pr Pieri, Dr C. Wolfrum, Pr G. Della Mea and Dr P. Grindrod as project leaders respectively. 4 refs., 2 figs., 1 tab

  10. Geologic processes and sedimentary system on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A S

    1988-01-01

    The subject is covered under following headings: (1) morphology and processes at the martian surface (impact craters, water and ice, landslide, aeolian processes, volcanism, chemical weathering); (2) the sedimentary system (martian geologic documentation, sedimentary balance, regolith, pyroclastics, erosion phenomena, deposit and loss of sediments) as well as (3) summary and final remarks. 72 refs.

  11. Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada.

    Science.gov (United States)

    Kohnert, Katrin; Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Sachs, Torsten

    2017-07-19

    Arctic permafrost caps vast amounts of old, geologic methane (CH 4 ) in subsurface reservoirs. Thawing permafrost opens pathways for this CH 4 to migrate to the surface. However, the occurrence of geologic emissions and their contribution to the CH 4 budget in addition to recent, biogenic CH 4 is uncertain. Here we present a high-resolution (100 m × 100 m) regional (10,000 km²) CH 4 flux map of the Mackenzie Delta, Canada, based on airborne CH 4 flux data from July 2012 and 2013. We identify strong, likely geologic emissions solely where the permafrost is discontinuous. These peaks are 13 times larger than typical biogenic emissions. Whereas microbial CH 4 production largely depends on recent air and soil temperature, geologic CH 4 was produced over millions of years and can be released year-round provided open pathways exist. Therefore, even though they only occur on about 1% of the area, geologic hotspots contribute 17% to the annual CH 4 emission estimate of our study area. We suggest that this share may increase if ongoing permafrost thaw opens new pathways. We conclude that, due to permafrost thaw, hydrocarbon-rich areas, prevalent in the Arctic, may see increased emission of geologic CH 4 in the future, in addition to enhanced microbial CH 4 production.

  12. Evolution of the global water cycle on Mars: The geological evidence

    Science.gov (United States)

    Baker, V. R.; Gulick, V. C.

    1993-01-01

    The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments?

  13. Geologic Map of the Helen Planitia Quadrangle (V-52), Venus

    Science.gov (United States)

    Lopez, Ivan; Hansen, Vicki L.

    2008-01-01

    The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan Mission objectives included (1) improving the knowledge of the geological processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving the knowledge of the geophysics of Venus by analysis of Venusian gravity. The Helen Planitia quadrangle (V-52), located in the southern hemisphere of Venus between lat 25 deg S. and 50 deg S. and between long 240 deg E. and 270 deg E., covers approximately 8,000,000 km2. Regionally, the map area is located at the southern limit of an area of enhanced tectonomagmatic activity and extensional deformation, marked by a triangle that has highland apexes at Beta, Atla, and Themis Regiones (BAT anomaly) and is connected by the large extensional belts of Devana, Hecate, and Parga Chasmata. The BAT anomaly covers approximately 20 percent of the Venusian surface.

  14. Fission-track studies of uranium distribution in geological samples

    International Nuclear Information System (INIS)

    Brynard, H.J.

    1983-01-01

    The standard method of studying uranium distribution in geological material by registration of fission tracks from the thermal neutron-induced fission of 235 U has been adapted for utilisation in the SAFARI-1 reactor at Pelindaba. The theory of fission-track registration as well as practical problems are discussed. The method has been applied to study uranium distribution in a variety of rock types and the results are discussed in this paper. The method is very sensitive and uranium present in quantities far below the detection limit of the microprobe have been detected

  15. Parameterizing sub-surface drainage with geology to improve modeling streamflow responses to climate in data limited environments

    Directory of Open Access Journals (Sweden)

    C. L. Tague

    2013-01-01

    Full Text Available Hydrologic models are one of the core tools used to project how water resources may change under a warming climate. These models are typically applied over a range of scales, from headwater streams to higher order rivers, and for a variety of purposes, such as evaluating changes to aquatic habitat or reservoir operation. Most hydrologic models require streamflow data to calibrate subsurface drainage parameters. In many cases, long-term gage records may not be available for calibration, particularly when assessments are focused on low-order stream reaches. Consequently, hydrologic modeling of climate change impacts is often performed in the absence of sufficient data to fully parameterize these hydrologic models. In this paper, we assess a geologic-based strategy for assigning drainage parameters. We examine the performance of this modeling strategy for the McKenzie River watershed in the US Oregon Cascades, a region where previous work has demonstrated sharp contrasts in hydrology based primarily on geological differences between the High and Western Cascades. Based on calibration and verification using existing streamflow data, we demonstrate that: (1 a set of streams ranging from 1st to 3rd order within the Western Cascade geologic region can share the same drainage parameter set, while (2 streams from the High Cascade geologic region require a different parameter set. Further, we show that a watershed comprised of a mixture of High and Western Cascade geologies can be modeled without additional calibration by transferring parameters from these distinctive High and Western Cascade end-member parameter sets. More generally, we show that by defining a set of end-member parameters that reflect different geologic classes, we can more efficiently apply a hydrologic model over a geologically complex landscape and resolve geo-climatic differences in how different watersheds are likely to respond to simple warming scenarios.

  16. Assessment of Environmental Factors of Geology on Waste and Engineering Barriers for Waste Storage Near Surface

    International Nuclear Information System (INIS)

    Arimuladi SP

    2007-01-01

    Geological environment factors include features and processes occurring within that spatial and temporal (post-closure) domain whose principal effect is to determine the evolution of the physical, chemical, biological and human conditions of the domain that are relevant to estimating the release and migration of radionuclide and consequent exposure to man. Hardness of radioactive waste and engineer barrier can be decrease by environmental factors. Disposal system domain geological environment factors is a category in the International FEP list and is divided into sub-categories. There are 13 sub-factors of geological environment, 12 sub-factors influence hardness of radioactive waste and engineer barrier, thermal processes and conditions in geosphere can be excluded. (author)

  17. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    International Nuclear Information System (INIS)

    Gustavson, T.C.; Presley, M.W.; Handford, C.R.; Finley, R.J.; Dutton, S.P.; Baumgardner, R.W. Jr.; McGillis, K.A.; Simpkins, W.W.

    1980-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated

  18. Geology and seismology

    International Nuclear Information System (INIS)

    Schneider, J.F.; Blanc, B.

    1980-01-01

    For the construction of nuclear power stations, comprehensive site investigations are required to assure the adequacy and suitability of the site under consideration, as well as to establish the basic design data for designing and building the plant. The site investigations cover mainly the following matters: geology, seismology, hydrology, meteorology. Site investigations for nuclear power stations are carried out in stages in increasing detail and to an appreciable depth in order to assure the soundness of the project, and, in particular, to determine all measures required to assure the safety of the nuclear power station and the protection of the population against radiation exposure. The aim of seismological investigations is to determine the strength of the vibratory ground motion caused by an expected strong earthquake in order to design the plant resistant enough to take up these vibrations. In addition, secondary effects of earthquakes, such as landslides, liquefaction, surface faulting, etc. must be studied. For seashore sites, the tsunami risk must be evaluated. (orig.)

  19. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  20. The geology of uranium in the Saint-Sylvestre granite district (Limousin, Massif Central, France)

    International Nuclear Information System (INIS)

    Marquaire, C.; Moreau, M.; Barbier, J.; Ranchin, G.; Carrat, H.G.; Coppens, R.; Senecal, J.; Koszotolanyi, C.; Dottin, H.

    1969-01-01

    This report concerns the geology of uranium in Limousin, more particularly in the St-Sylvestre massif, and the related phenomena: regional geology, petrographic and geochemical zonal distribution observed in various granite massifs, uranium movement in connection with surface alteration, geochronology of uranium ore. The work is made up of six articles covering the various scientific aspects listed above. Each article is headed with an abstract. The paper comprises the following chapters: Foreword by Marcel ROUBAULT. 1. Ch. MARQUAIRE, M. MOREAU Outline of geological conditions in Northern Limousin and distribution of uraniferous occurrences. 2. J. BARBIER, G. RANCHIN, H. G. CARRAT and R. COPPENS Geology of the St-Sylvestre Massif and uranium geochemistry - Introduction to laboratory studies - Problems of methodology. 3. J. BARBIER and G. RANCHIN Petrographical and geochemical zones in the St-Sylvestre granite massif (Limousin - French 'Massif Central'). 4. J. BARBIER and G. RANCHIN Uranium geochemistry in the St-Sylvestre Massif (Limousin - French 'Massif Central') - Occurrences of primary geochemical uranium and replacement processes. 5. J. SENEGAL Monograph of the Brugeaud orebody. 6. R. COPPENS, Ch. KOSZTOLANYI and H. DOTTIN Geochronological study of the Brugeaud mine. 1969. (authors) [fr

  1. Quantitative geological modeling based on probabilistic integration of geological and geophysical data

    DEFF Research Database (Denmark)

    Gulbrandsen, Mats Lundh

    In order to obtain an adequate geological model of any kind, proper integration of geophysical data, borehole logs and geological expert knowledge is important. Geophysical data provide indirect information about geology, borehole logs provide sparse point wise direct information about geology...... entitled Smart Interpretation is developed. This semi-automatic method learns the relation between a set of data attributes extracted from deterministically inverted airborne electromagnetic data and a set of interpretations of a geological layer that is manually picked by a geological expert...

  2. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  3. A Geological and Geophysical Study of the Geothermal Energy Potential of Pilgrim Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Donald L.; Forbes, Robert B. [eds.

    1980-01-01

    The Pilgrim Springs geothermal area, located about 75 km north of Nome, was the subject of an intensive, reconnaissance-level geophysical and geological study during a 90-day period in the summer of 1979. The thermal springs are located in a northeast-oriented, oval area of thawed ground approximately 1.5 km{sup 2} in size, bordered on the north by the Pilgrim River. A second, much smaller, thermal anomaly was discovered about 3 km northeast of the main thawed area. Continuous permafrost in the surrounding region is on the order of 100 m thick. Present surface thermal spring discharge is {approx} 4.2 x 10{sup -3} m{sup 3} s{sup -1} (67 gallons/minute) of alkali-chloride-type water at a temperature of 81 C. The reason for its high salinity is not yet understood because of conflicting evidence for seawater vs. other possible water sources. Preliminary Na-K-Ca geothermometry suggests deep reservoir temperatures approaching 150 C, but interpretation of these results is difficult because of their dependence on an unknown water mixing history. Based on these estimates, and present surface and drill hole water temperatures, Pilgrim Springs would be classified as an intermediate-temperature, liquid-dominated geothermal system.

  4. Feasibility studies for alpha waste disposal on geological formations in France

    International Nuclear Information System (INIS)

    Jaouen, C.; Boulanger, A.

    1986-01-01

    Since 1977, SGN has been involved in many feasibility studies and consultant works in the fields of HLW storages. Starting as nuclear consultant company in the KBS review of the long term storage of HLW, SGN and GEOSTOCK were entrusted in 1978 by the EEC for the basic design and evaluation of the deep storage into granite rock of HLW, followed by a participation in the thermal sensitivity study of such a storage. The cooperation with GEOSTOCK was first extended in 1981 to a preliminary study of HLW storage conditions in granite for a Japanese company, and then in France for several feasibility studies of HLW and TRU waste geological disposal. Three kinds of scenarios have been forecasted and evaluated in the case of vitrified HLW storage, allowing the thermal power to be decreased and the whole management scheme to be optimized. More recently, SGN participation to French engineering studies has been extended by ANDRA to the TRU waste repository evaluation. All these works for French authorities have been performed in a close connection with several specialized departments in the CEA group, and with the help of geological specialists, under the leadership of ANDRA [fr

  5. Feasibility studies for alpha waste disposal on geological formations in France

    International Nuclear Information System (INIS)

    Jaouen, C.; Boulanger, A.

    1985-01-01

    Since 1977, SGN has been involved in many feasibility studies and consultant works in the fields of HLW storages. Starting as nuclear consultant company in the KBS review of the long term storage of HLW, SGN and Geostock were entrusted in 1978 by the EEC for the basic design and evaluation of the deep storage into granite rock of HLW, followed by a participation in the thermal sensitivity study of such a storage. The cooperation with Geostock was first extended in 1981 to a preliminary study of HLW storage conditions in granite for a Japanese company, and then in France for several feasibility studies of HLW and TRU waste geological disposal. Three kinds of scenarios have been forecasted and evaluated in the case of vitrified HLW storage, allowing the thermal power to be decreased and the whole management scheme to be optimized. More recently, SGN participation to French engineering studies has been extended by ANDRA to the TRU waste repository evaluation. All these works for French authorities have been performed in a close connection with several specialized departments in the CEA group, and with the help of geological specialists, under the leadership of ANDRA [fr

  6. Active fault and other geological studies for seismic assessment: present state and problems

    International Nuclear Information System (INIS)

    Kakimi, Toshihiro

    1997-01-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the 'cautiousness' of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the 'precaution faults' having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a 'precaution fault'. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  7. Active fault and other geological studies for seismic assessment: present state and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  8. Geology of the Shakespeare quadrangle (H03), Mercury

    Science.gov (United States)

    Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.

    2017-09-01

    A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the remotely sensed images of the NASA MESSENGER mission. This quadrangle is characterized by the occurrence of three main types of plains materials and four basin materials, pertaining to the Caloris basin, the largest impact crater on Mercury's surface. The geologic boundaries have been redefined compared to the previous 1:5M map of the quadrangle and the craters have been classified privileging their stratigraphic order rather than morphological appearance. The abundant tectonic landforms have been interpreted and mapped as thrusts or wrinkle ridges.

  9. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories

    International Nuclear Information System (INIS)

    Rojo Sanz, H.

    2010-01-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  10. Decommissioning of surface facilities associated with repositories for the deep geological disposal of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1978-11-01

    A methodology is presented in this paper to evaluate the decommissioning of the surface facilities associated with repositories for the deep geological disposal of high-level nuclear wastes. A cost/risk index (figure of merit), expressed as $/manrem, is proposed as an evaluation criteria. On the basis of this cost/risk index, we gain insight into the advisability of adapting certain decontamination design options into the original facility. Three modes are considered: protective storage, entombment, and dismantlement. Cost estimates are made for the direct labor involved in each of the alternative modes for a baseline design case. Similarly, occupational radiation exposures are estimated, with a larger degree of uncertainty, for each of the modes. Combination of these estimates produces the cost/risk index. To illustrate the methodology, an example using a preliminary baseline repository design is discussed

  11. A Lithology Based Map Unit Schema For Onegeology Regional Geologic Map Integration

    Science.gov (United States)

    Moosdorf, N.; Richard, S. M.

    2012-12-01

    A system of lithogenetic categories for a global lithological map (GLiM, http://www.ifbm.zmaw.de/index.php?id=6460&L=3) has been compiled based on analysis of lithology/genesis categories for regional geologic maps for the entire globe. The scheme is presented for discussion and comment. Analysis of units on a variety of regional geologic maps indicates that units are defined based on assemblages of rock types, as well as their genetic type. In this compilation of continental geology, outcropping surface materials are dominantly sediment/sedimentary rock; major subdivisions of the sedimentary category include clastic sediment, carbonate sedimentary rocks, clastic sedimentary rocks, mixed carbonate and clastic sedimentary rock, colluvium and residuum. Significant areas of mixed igneous and metamorphic rock are also present. A system of global categories to characterize the lithology of regional geologic units is important for Earth System models of matter fluxes to soils, ecosystems, rivers and oceans, and for regional analysis of Earth surface processes at global scale. Because different applications of the classification scheme will focus on different lithologic constituents in mixed units, an ontology-type representation of the scheme that assigns properties to the units in an analyzable manner will be pursued. The OneGeology project is promoting deployment of geologic map services at million scale for all nations. Although initial efforts are commonly simple scanned map WMS services, the intention is to move towards data-based map services that categorize map units with standard vocabularies to allow use of a common map legend for better visual integration of the maps (e.g. see OneGeology Europe, http://onegeology-europe.brgm.fr/ geoportal/ viewer.jsp). Current categorization of regional units with a single lithology from the CGI SimpleLithology (http://resource.geosciml.org/201202/ Vocab2012html/ SimpleLithology201012.html) vocabulary poorly captures the

  12. Groundwater-surface water relations in the Fox River watershed: insights from exploratory studies in Illinois and Wisconsin

    Science.gov (United States)

    Mills, Patrick C.

    2014-01-01

    Exploratory studies were conducted at sites bordering the Fox River in Waukesha, Wisconsin, during 2010 and McHenry, Illinois, during 2011–13. The objectives of the studies were to assess strategies for the study of and insights into the potential for directly connected groundwater and surface-water systems with natural groundwater discharge to streams diverted and (or) streamflow induced (captured) by nearby production-well withdrawals. Several collection efforts of about 2 weeks or less provided information and data on site geology, groundwater and surface-water levels, hydraulic gradients, water-temperature and stream-seepage patterns, and water chemistry including stables isotopes. Overview information is presented for the Waukesha study, and selected data and preliminary findings are presented for the McHenry study.

  13. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  14. Status Report on the Geology of the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, R.D., Jr.

    1992-01-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. A detailed reported on hydrogeology is being produced in parallel to this one. An important element of this work is the construction of a modern detailed geologic map of the ORR containing subdivisions of all mappable rock units and displaying mesoscopic structural data. Understanding the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. This interim report is the result of cooperation between geologists in two Oak Ridge National Laboratory (ORNL) divisions, Environmental Sciences and Energy, and is a major part of one doctoral dissertation in the Department of Geological Sciences at The University of Tennessee--Knoxville. Major long-term goals of geologic investigations in the ORR are to determine what interrelationships exist between fractures systems in individual rock or tectonic units and the fluid flow regimes, to understand how regional and local geology can be used to help predict groundwater movement, and to formulate a structural-hydrologic model that for the first time would enable prediction of the movement of groundwater and other subsurface fluids in the ORR. Understanding the stratigraphic and structural framework and how it controls fluid flow at depth should be the first step in developing a model for groundwater movement. Development of a state-of-the-art geologic and geophysical framework for the ORR is therefore essential for formulating an integrated structural-hydrologic model. This report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the data that establish the need for additional geologic mapping and geohydrologic studies. An additional intended

  15. From the repository to the deep geological repository - and back to the Terrain surface?

    International Nuclear Information System (INIS)

    Lahodynsky, R.

    2011-01-01

    How deep is 'safe'? How long is long-term? How and for how long will something be isolated? Which rock, which formation and which location are suitable? A repository constructed for the safekeeping of radioactive or highly toxic wastes can be erected either on the surface, near the surface or underground. Radioactive waste is currently often stored at near-surface locations. The storage usually takes place nearby of a nuclear power plant in pits or concrete tombs (vaults). However, repositories can also be found in restricted areas, e.g. near nuclear weapon production or reprocessing plants (WAA) or nuclear weapons test sites (including Tomsk, Russia, Hanford and Nevada desert, USA), or in extremely low rainfall regions (South Africa). In addition there are disused mines which are now used as underground repositories. Low-level and medium-active (SMA) but also high-level waste (HAA) are stored at these types of sites (NPP, WAA, test areas, former mines). In Russia (Tomsk, Siberia) liquid radioactive waste has been injected into deep geological formations for some time (Minatom, 2001). However, all these locations are not the result of a systematic, scientific search or a holistic process for finding a location, but the result of political decisions, sometimes ignoring scientific findings. Why underground storage is given preference over high-security landfill sites (HSD) often has economic reasons. While a low safety standard can significantly reduce the cost of an above-ground high-security landfill as a waste disposal depot, spending remains high, especially due to the need for capital formation to cover operating expenses after filling the HSD. In the case of underground storage, on the other hand, no additional expenses are required for the period after backfilling. The assumption of lower costs for a deep repository runs through the past decades and coincides with the assumption that the desired ideal underground conditions actually exist and will

  16. High Resolution Geological Site Characterization Utilizing Ground Motion Data

    Science.gov (United States)

    1992-06-26

    rough near a service road, in low velocity, unsaturated, unconsolidated 7 sands. Other than native grass, there was no significant vegetation . Surface...literature, demonstrate slll kale field tests. Similar degrees of spatial variability in ground that these stochastic geologic effects pose a potentially

  17. The role of calculations to define containment phenomenology in complex geology

    International Nuclear Information System (INIS)

    Swift, R.P.; Rambo, J.T.; Bryan, J.B.

    1985-10-01

    Containment evaluation of some underground nuclear events has become strongly dependent on the use of calculations to help define important phenomenology. This results from the increasing necessity to test in sites having a geology that precludes acceptance based solely on experience. This paper discusses the rationale of a suite of TENSOR code calculations undertaken in support of the containment evaluation for a recent event and highlights the results of these calculations. The calculations illustrate containment phenomena in a layered geology of alluvium and tuff with a working point in the proximity of the Paleozoic surface. They show that reflected disturbances from surfaces above and/or below the working point can significantly hinder the development of the residual stress field if their arrival in the residual stress region coincides with the rebound phase of cavity growth. In addition, the results demonstrate a need for the development of a criterion for the probability of successful containment in complex geology other than the historical concept of a strong, sufficiently thick residual stress field. 15 refs., 13 figs., 4 tabs

  18. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  19. Studies of natural analogues and geological systems

    International Nuclear Information System (INIS)

    Brandberg, F.; Grundfelt, B.; Hoeglund, L.; Skagius K.; Karlsson, F.; Smellie, J.

    1993-04-01

    This review has involved studies of natural analogues and natural geological systems leading to the identification and quantification of processes and features of importance to the performance and safety of repositories for radioactive waste. The features and processes selected for the study comprise general geochemical issues related to the performance of the near- and far-field, the performance and durability of construction materials and the effects of glaciation. For each of these areas a number of potentially important processes for repository performance have been described, and evidence for their existence, as well as quantification of parameters of models describing the processes have been sought from major natural analogue studies and site investigations. The review has aimed at covering a relatively broad range of issues at the expense of in-depth analysis. The quantitative data presented are in most cases compilations of data from the literature; in a few cases results of evaluations made within the current project are included

  20. Geologic isolation programs in other countries

    International Nuclear Information System (INIS)

    Gera, F.

    1976-01-01

    Several nations other than West Germany and The Netherlands have declared their intention to investigate geological formations as potential radioactive waste repositories. In Belgium, the formations underlying the Mol Center have been cored down to about 570 m. The target formation is a bed of tertiary clay 165 to 265 m below the surface. The plan is to produce a 10,000-m 3 cavity in the middle of this clay and to use it for the disposal of intermediate-level and alpha-bearing wastes. France has a program underway to assess salt and crystalline formations as possible waste-disposal sites. In Italy, the feasibility of high-level-waste disposal in clay formations is being explored. In situ experiments will be performed in the massive clays underlying the Trisaia Center in southern Italy. Spain has begun studies on waste disposal in salt, clay, anhydrite, and crystalline formations. In Sweden, attention is focused on the possibility of disposal in Precambrian crystalline bedrock. In Switzerland, where crystalline rocks are always fractured, large formations of salt are not known, and suitable clay or marl formations have not been identified, anhydrite formations are being studied. The United Kingdom has declared its intention to investigate clays and crystalline rocks. Other countries that have revealed plans to assess geologic disposal within their territories include Austria, Denmark, India, the German Democratic Republic, and the Soviet Union

  1. Geodiversity: Exploration of 3D geological model space

    Science.gov (United States)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  2. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau

  3. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Reneau, S.L.; Raymond, R. Jr. [eds.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  4. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic map analyses: Correlation of geologic and cratering histories. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    Geologic map analyses are expanded, beginning with a discussion of particular regions which may illustrate volcanic and ballistic plains emplacement on Mercury. Major attention is focused on the surface history of Mercury through discussion of the areal distribution of plains and craters and the paleogeologic maps of the first quadrant. A summary of the lunar intercrater plains formation similarly interrelates the information from the Moon's geologic and cratering histories.

  5. Surface geology of Williston 7.5-minute quadrangle, Aiken and Barnwell Counties, South Carolina

    International Nuclear Information System (INIS)

    Willoughby, R.H.; Nystrom, P.G. Jr.; Denham, M.E.; Eddy, C.A.; Price, L.K.

    1994-01-01

    Detailed geologic mapping has shown the distribution and lithologic character of stratigraphic units and sedimentary deposits in Williston quadrangle. A middle Eocene stratigraphic unit correlative with the restricted McBean Formation is the oldest unit at the surface. The McBean-equivalent unit occurs at low elevations along drainages in the north of the quadrangle but does not crop out. These beds are typically very fine- to fine-grained quartz sand, locally with abundant black organic matter and less commonly with calcium carbonate. The uppermost middle Eocene Orangeburg District bed, commonly composed of loose, clay-poor, very fine- to fine-grained quartz sand, occurs at the surface in the north and southwest of the quadrangle with sparse exposure. The upper Eocene Dry Branch Formation occurs on valley slopes throughout the quadrangle. The Dry Branch is composed of medium- to very coarse-grained quartz sand with varying amounts on interstitial clay and lesser bedded clay. The upper Eocene Tobacco road Sand occurs on upper valley slopes and some interfluves and consists of very fine-grained quartz sand to quartz granules. The upper Middle Miocene to lower Upper Miocene upland unit caps the interfluves and is dominantly coarse-grained quartz sand to quartz granules, with included granule-size particles of white clay that are weathered feldspars. Loose, incohesive quartzose sands of the eolian Pinehurst Formation, Upper Miocene to Lower Pliocene, occur on the eastern slopes of some interfluves in the north of the quadrangle. Quartz sand with varying included humic matter occurs in Carolina bays, and loose deposits of windblown sand occur on the rims of several Carolina bays. Quaternary alluvium fills the valley floors

  6. Geological characterisation of potential disposal areas for radioactive waste from Risoe, Denmark

    International Nuclear Information System (INIS)

    Gravesen, P.; Binderup, M.; Nilsson, B.; Schack Pedersen, S.A.

    2011-01-01

    Low- and intermediate-level radioactive waste from the Danish nuclear research facility, Risoe, includes construction materials from the reactors, different types of contaminated material from the research projects and radioactive waste from hospitals, industry and research institutes. This material must be stored in a permanent disposal site in Denmark for at least 300 years. The latter study was conducted by the Geological Survey of Denmark and Greenland (GEUS) and the aim was to locate a sediment or rock body with low permeability down to 100-300 m below the ground surface. GEUS was given the task to locate approximately 20 potential disposal areas. The survey resulted in the selection of 22 areas throughout Denmark. Six of these areas are preferred on geological and hydrogeological criteria. (LN)

  7. Plane shock wave studies of geologic media

    International Nuclear Information System (INIS)

    Anderson, G.D.; Larson, D.B.

    1977-01-01

    Plane shock wave experiments have been conducted on eight geologic materials in an effort to determine the importance of time-dependent mechanical behavior. Of the eight rocks studied, only Westerly granite and nugget sandstone appear to show time independence. In the slightly porous materials (1-5 percent), Blair dolomite and sodium chloride, and in the highly porous (15 to 40 percent) rock, Mt. Helen tuff and Indiana limestone, time-dependent behavior is associated with the time required to close the available porosity. In water-saturated rocks the time dependence arises because the water that is present shows no indication of transformation to the higher pressure ice phases, thus suggesting the possibility that a metastable form of water exists under dynamic conditions

  8. Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface

    Science.gov (United States)

    Gou, J.; Zhou, W.; Wu, L.

    2016-10-01

    Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.

  9. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica

    Science.gov (United States)

    Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman

    2018-06-01

    Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.

  10. Geological and geomorphological methods for petroleum prospection in the center and west of Cuba

    Directory of Open Access Journals (Sweden)

    Lourdes Jimenez -de la Fuente

    2017-01-01

    Full Text Available The provinces of Holguin and Las Tunas have potential gas and oil resources which have not yet been fully discovered. Therefore, an assessment is completed to identify potential areas for hydrocarbon prospection based on the geological and geomorphological methods and supported by geophysical methods. Numerous proofs of the existence of oils in the surface and gas being reported in the petroleum wells are sufficient elements to think that there is an active petroleum system in the area. The analysis is supported by information given on the geological surface maps on scale of 1:100 000, satellite and radar images, information of surface occurrence of hydrocarbons, drilled wells and recent field work and geophysical interpretation results. The main results include the identification of two areas for petroleum exploration: the Maniabón-La Farola is identified as the most potential area and the second one is to the north of the Picanes well 1x. Neotectonic processes are identified to have a strong influence on the first area, which allowed delimitating petroleum system elements through geological and geomorphological methods.

  11. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  12. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1988-09-01

    The concept of a geological barrier to radionuclide migration from theoretical radioactive waste repositories has drawn attention to the physico-chemical properties of clays, which are traditionally regarded as retarding media. This report addresses the different mechanisms of transport of radionuclides through clay and in particular focuses on the surface diffusion movement of sorbed cations. The relative contributory importance of the different transport mechanisms is governed by the pore size distributions and interconnections within the clay fabric. Surface diffusion data in the literature have been from experiments using compacted montmorillonite and biotite gneiss. A possible programme of laboratory work is outlined, based on diffusion experiments, which describes the way of measuring the effect of surface diffusion more accurately in clays, mudstones and shales. (author)

  13. Environmental geophysics: Locating and evaluating subsurface geology, geologic hazards, groundwater contamination, etc

    International Nuclear Information System (INIS)

    Benson, A.K.

    1994-01-01

    Geophysical surveys can be used to help delineate and map subsurface geology, including potential geologic hazards, the water table, boundaries of contaminated plumes, etc. The depth to the water table can be determined using seismic and ground penetrating radar (GPR) methods, and hydrogeologic and geologic cross sections of shallow alluvial aquifers can be constructed from these data. Electrical resistivity and GPR data are especially sensitive to the quality of the water and other fluids in a porous medium, and these surveys help to identify the stratigraphy, the approximate boundaries of contaminant plumes, and the source and amount of contamination in the plumes. Seismic, GPR, electromagnetic (VLF), gravity, and magnetic data help identify and delineate shallow, concealed faulting, cavities, and other subsurface hazards. Integration of these geophysical data sets can help pinpoint sources of subsurface contamination, identify potential geological hazards, and optimize the location of borings, monitoring wells, foundations for building, dams, etc. Case studies from a variety of locations will illustrate these points. 20 refs., 17 figs., 6 tabs

  14. The U.S. Geological Survey Geologic Collections Management System (GCMS)—A master catalog and collections management plan for U.S. Geological Survey geologic samples and sample collections

    Science.gov (United States)

    ,

    2015-01-01

    The U.S. Geological Survey (USGS) is widely recognized in the earth science community as possessing extensive collections of earth materials collected by research personnel over the course of its history. In 2006, a Geologic Collections Inventory was conducted within the USGS Geology Discipline to determine the extent and nature of its sample collections, and in 2008, a working group was convened by the USGS National Geologic and Geophysical Data Preservation Program to examine ways in which these collections could be coordinated, cataloged, and made available to researchers both inside and outside the USGS. The charge to this working group was to evaluate the proposition of creating a Geologic Collections Management System (GCMS), a centralized database that would (1) identify all existing USGS geologic collections, regardless of size, (2) create a virtual link among the collections, and (3) provide a way for scientists and other researchers to obtain access to the samples and data in which they are interested. Additionally, the group was instructed to develop criteria for evaluating current collections and to establish an operating plan and set of standard practices for handling, identifying, and managing future sample collections. Policies and procedures promoted by the GCMS would be based on extant best practices established by the National Science Foundation and the Smithsonian Institution. The resulting report—USGS Circular 1410, “The U.S. Geological Survey Geologic Collections Management System (GCMS): A Master Catalog and Collections Management Plan for U.S. Geological Survey Geologic Samples and Sample Collections”—has been developed for sample repositories to be a guide to establishing common practices in the collection, retention, and disposal of geologic research materials throughout the USGS.

  15. Study of an applicability of technologies developed in the conventional industries from the view point of developing the geological disposal system

    International Nuclear Information System (INIS)

    Ushio, Kazuhiro; Ando, Yasumasa; Kubota, Kazuo; Sokejima, Susumu

    1999-02-01

    The geological disposal study of HLW (High Level Wastes) is being developed in Japan. Especially, JNC has played the central role to proceed this project, while in the industries, from the viewpoint of the environmental measures, various technologies and materials have been developed. Some of them might be applied into the geological disposal. The purpose of this study is to investigate such technologies and their applicability to the geological disposal system. Firstly, the environmental technologies used for the repository of industrial wastes were studied. The concepts of management and the regulations for the repository are summarized, and compared with the current geological disposal concept. Secondly, concerning structural and durable materials, their properties and usage were overviewed and their applicability to the current geological disposal concept was studied. (J.P.N.)

  16. Ontology-aided annotation, visualization and generalization of geological time-scale information from online geological map services

    NARCIS (Netherlands)

    Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a RDF (Resource Description Framework) model to represent

  17. Ontology-aided annotation, visualization and generalization of geological time scale information from online geological map services

    NARCIS (Netherlands)

    Ma, Marshal; Ma, X.; Carranza, E.J.M; Wu, C.; van der Meer, F.D.

    2012-01-01

    Geological maps are increasingly published and shared online, whereas tools and services supporting information retrieval and knowledge discovery are underdeveloped. In this study, we developed an ontology of geological time scale by using a Resource Description Framework model to represent the

  18. Subsidence and Rebound in California's Central Valley: Effects of Pumping, Geology, and Precipitation

    Science.gov (United States)

    Farr, T. G.; Fairbanks, A.

    2017-12-01

    Recent rains in California caused a pause, and even a reversal in some areas, of the subsidence that has plagued the Central Valley for decades. The 3 main drivers of surface deformation in the Central Valley are: Subsurface hydro-geology, precipitation and surface water deliveries, and groundwater pumping. While the geology is relatively fixed in time, water inputs and outputs vary greatly both in time and space. And while subsurface geology and water inputs are reasonably well-known, information about groundwater pumping amounts and rates is virtually non-existent in California. We have derived regional maps of surface deformation in the region for the period 2006 - present which allow reconstruction of seasonal and long-term changes. In order to understand the spatial and temporal patterns of subsidence and rebound in the Central Valley, we have been compiling information on the geology and water inputs and have attempted to infer pumping rates using maps of fallowed fields and published pumping information derived from hydrological models. In addition, the spatial and temporal patterns of hydraulic head as measured in wells across the region allow us to infer the spatial and temporal patterns of groundwater pumping and recharge more directly. A better understanding of how different areas (overlying different stratigraphy) of the Central Valley respond to water inputs and outputs will allow a predictive capability, potentially defining sustainable pumping rates related to water inputs. * work performed under contract to NASA and the CA Dept. of Water Resources

  19. Utilizing HyspIRI Prototype Data for Geological Exploration Applications: A Southern California Case Study

    Directory of Open Access Journals (Sweden)

    Wendy M. Calvin

    2016-02-01

    Full Text Available The purpose of this study was to demonstrate the value of the proposed Hyperspectral Infrared Imager (HyspIRI instrument for geological mapping applications. HyspIRI-like data were collected as part of the HyspIRI airborne campaign that covered large regions of California, USA, over multiple seasons. This work focused on a Southern California area, which encompasses Imperial Valley, the Salton Sea, the Orocopia Mountains, the Chocolate Mountains, and a variety of interesting geological phenomena including fumarole fields and sand dunes. We have mapped hydrothermal alteration, lithology and thermal anomalies, demonstrating the value of this type of data for future geologic exploration activities. We believe HyspIRI will be an important instrument for exploration geologists as data may be quickly manipulated and used for remote mapping of hydrothermal alteration minerals, lithology and temperature anomalies.

  20. A preliminary study on the suitability of host rocks for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-02-01

    It is expected that the key issues are listed as the disposal concept, reference disposal system and other relevant technical development for the deep geological disposal of HLW in each country. First above all, however, the preferred host rocks should be suggested prior execution of these activities. And, it is desirable to be reviewed and proposed some host rocks representative its country. For the reviewing of host rocks in Korean peninsula, several issues were considered such as the long-term geological stability, fracture system, surface and groundwater system and geochemical characteristics in peninsula. The three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the R and D of HLW disposal based on the upper stated information. In the following stages, it is suggested that these preferred host rocks would be made an object of all relevant R and D activities for HLW disposal. And, many references for these geologic medium should be characterized and constructed various technical development for the Korean reference disposal system.

  1. A preliminary study on the suitability of host rocks for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-02-01

    It is expected that the key issues are listed as the disposal concept, reference disposal system and other relevant technical development for the deep geological disposal of HLW in each country. First above all, however, the preferred host rocks should be suggested prior execution of these activities. And, it is desirable to be reviewed and proposed some host rocks representative its country. For the reviewing of host rocks in Korean peninsula, several issues were considered such as the long-term geological stability, fracture system, surface and groundwater system and geochemical characteristics in peninsula. The three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the R and D of HLW disposal based on the upper stated information. In the following stages, it is suggested that these preferred host rocks would be made an object of all relevant R and D activities for HLW disposal. And, many references for these geologic medium should be characterized and constructed various technical development for the Korean reference disposal system

  2. Using improved technology for widespread application of a geological carbon sequestration study

    Science.gov (United States)

    Raney, J.

    2013-12-01

    The Kansas Geological Survey is part of an ongoing collaboration between DOE-NETL, academia, and the petroleum industry to investigate the feasibility of carbon utilization and storage in Kansas. Latest findings in the 25,000 mi2 study area in southern Kansas estimate CO2 storage capacity ranges from 8.8 to 75.5 billion metric tons in a deep Lower Orodovican-age Arbuckle saline aquifer. In addition, an estimated 100 million tonnes of CO2 could be used for extracting additional oil from Kansas' fields, making transitions to carbon management economic. This partnership has a rare opportunity to synchronize abundant, yet previously disseminated knowledge into a cohesive scientific process to optimize sequestration site selection and implementation strategies. Following a thorough characterization, a small-scale CO2 injection of 70,000 tonnes will be implemented in Wellington Field in Sumner County, including a five-plot miscible CO2-EOR flood of a Mississippian reservoir followed by the underlying Arbuckle saline aquifer. Best practices and lessons learned from the field study will improve estimates on CO2 storage capacity, plume migration models, and identify potential leakage pathways to pursue safe and effective geological carbon sequestration at commercial scales. A highly accessible and multifunctional online database is being developed throughout the study that integrates all acquired geological, physical, chemical, and hydrogeologic knowledge. This public database incorporates tens of thousands of data points into easily viewable formats for user downloads. An Interactive Project Map Viewer is a key mechanism to present the scientific research, and will delineate compartment candidates and reservoirs matching reference criteria or user defined attributes. This tool uses a familiar pan and zoom interface to filter regional project data or scale down to detailed digitized information from over 3,300 carefully selected preexisting Kansas wells. A Java-based log

  3. Soil science and geology: Connects, disconnects and new opportunities in geoscience education

    Science.gov (United States)

    Landa, E.R.

    2004-01-01

    Despite historical linkages, the fields of geology and soil science have developed along largely divergent paths in the United States during much of the mid- to late- twentieth century. The shift in recent decades within both disciplines to greater emphasis on environmental quality issues and a systems approach has created new opportunities for collaboration and cross-training. Because of the importance of the soil as a dynamic interface between the hydrosphere, biosphere, atmosphere, and lithosphere, introductory and advanced soil science classes are now being taught in a number of earth and environmental science departments. The National Research Council's recent report, Basic Research Opportunities in Earth Science, highlights the soil zone as part of the land surface-to-groundwater "critical zone" requiring additional investigation. To better prepare geology undergraduates to deal with complex environmental problems, their training should include a fundamental understanding of the nature and properties of soils. Those undergraduate geology students with an interest in this area should be encouraged to view soil science as a viable earth science specialty area for graduate study. Summer internships such as those offered by the National Science Foundation-funded Integrative Graduate Education, Research, and Training (IGERT) programs offer geology undergraduates the opportunity to explore research and career opportunities in soil science.

  4. Surficial Geologic Map of the Evansville, Indiana, and Henderson, Kentucky, Area

    Science.gov (United States)

    Moore, David W.; Lundstrom, Scott C.; Counts, Ronald C.; Martin, Steven L.; Andrews, William M.; Newell, Wayne L.; Murphy, Michael L.; Thompson, Mark F.; Taylor, Emily M.; Kvale, Erik P.; Brandt, Theodore R.

    2009-01-01

    The geologic map of the Evansville, Indiana, and Henderson, Kentucky, area depicts and describes surficial deposits according to their origin and age. Unconsolidated alluvium and outwash fill the Ohio River bedrock valley and attain maximum thickness of 33-39 m under Diamond Island, Kentucky, and Griffith Slough, south of Newburgh, Indiana. The fill is chiefly unconsolidated, fine- to medium-grained, lithic quartz sand, interbedded with clay, clayey silt, silt, coarse sand, granules, and gravel. Generally, the valley fill fines upward from the buried bedrock surface: a lower part being gravelly sand to sandy gravel, a middle part mostly of sand, and a surficial veneer of silt and clay interspersed with sandy, natural levee deposits at river's edge. Beneath the unconsolidated fill are buried and discontinuous, lesser amounts of consolidated fill unconformably overlying the buried bedrock surface. Most of the glaciofluvial valley fill accumulated during the Wisconsin Episode (late Pleistocene). Other units depicted on the map include creek alluvium, slackwater lake (lacustrine) deposits, colluvium, dune sand, loess, and sparse bedrock outcrops. Creek alluvium underlies creek floodplains and consists of silt, clayey silt, and subordinate interbedded fine sand, granules, and pebbles. Lenses and beds of clay are present locally. Silty and clayey slackwater lake (lacustrine) deposits extensively underlie broad flats northeast of Evansville and around Henderson and are as thick as 28 m. Fossil wood collected from an auger hole in the lake and alluvial deposits of Little Creek, at depths of 10.6 m and 6.4 m, are dated 16,650+-50 and 11,120+-40 radiocarbon years, respectively. Fossil wood collected from lake sediment 16 m below the surface in lake sediment was dated 33,100+-590 radiocarbon years. Covering the hilly bedrock upland is loess (Qel), 3-7.5 m thick in Indiana and 9-15 m thick in Kentucky, deposited about 22,000-12,000 years before present. Most mapped surficial

  5. Structural geologic study of southeastern Missouri

    International Nuclear Information System (INIS)

    Satterfield, I.R.; Ward, R.A.

    1978-01-01

    A geologic map at 1:62,500 scale was prepared of the Cretaceous (Mesozoic) and Tertiary (cenozoic) sediments and seven major units were recognized with emphasis on faulting. Faulted sediments of Pliocene age (possibly Pleistocene) were observed and younger units are suspected to be involved. Data from hand-augered holes plus water well data were logged and plotted. The feasibility of using physical data (size analysis and pH) as a correlation tool for determining structural disturbance in loess deposits was established

  6. Description of geological data in SKBs database GEOTAB

    International Nuclear Information System (INIS)

    Sehlstedt, S.; Stark, T.

    1991-01-01

    Since 1977 the Swedish Nuclear Fuel and Waste Management Co, SKB, has been performing a research and development programme for final disposal of spent nuclear fuel. The purpose of the programme is to acquire knowledge and data of radioactive waste. Measurement for the characterisation of geological, geophysical, hydrogeological and hydrochemical conditions are performed in specific site investigations as well as for geoscientific projects. Large data volumes have been produced since the start of the programme, both raw data and results. During the years these data were stored in various formats by the different institutions and companies that performed the investigations. It was therefore decided that all data from the research and development programme should be gathered in a database. The database, called GEOTAB, is a relational database. The database comprises six main groups of data volumes. These are: Background information, geological data, geophysical data, hydrological and meteorological data, hydrochemical data, and tracer tests. This report deals with geological data and described the dataflow from the measurements at the sites to the result tables in the database. The geological investigations have been divided into three categories, and each category is stored separately in the database. They are: Surface fractures, core mapping, and chemical analyses. (authors)

  7. The U.S. Geological Survey's water resources program in New York

    Science.gov (United States)

    Wiltshire, Denise A.

    1983-01-01

    The U.S. Geological Survey performs hydrologic investigations throughout the United States to appraise the Nation's water resources. The Geological Survey began its water-resources investigations in New York in 1895. To meet the objectives of assessing New York's water resources, the Geological Survey (1) monitors the quantity and quality of surface and ground water, (2) conducts investigations of the occurrence, availability, and chemical quality of water in specific areas of the State, (3) develops methods and techniques of data-collection and interpretation, (4) provides scientific guidance to the research community, to Federal, State, and local governments, and to the public, and (5) disseminates data and results of research through reports, maps, news releases, conferences, and workshops. Many of the joint hydrologic investigations are performed by the Geological Survey in cooperation with State, county, and nonprofit organizations. The data collection network in New York includes nearly 200 gaging stations and 250 observation wells; chemical quality of water is measured at 260 sites. Data collected at these sites are published annually and are filed in the WATSTORE computer system. Some of the interpretive studies performed by the Geological Survey in New York include (1) determining the suitability of ground-water reservoirs for public-water supply in urban areas, (2) assessing geohydrologic impacts of leachate from hazardous waste sites on stream and ground-water quality, (3) evaluating the effects of precipitation quality and basin characteristics on streams and lakes, and (4) developing digital models of the hydrology of aquifers to simulate ground-water flow and the interaction between ground water and streams.

  8. Integrated evaluation of the geology, aero gamma spectrometry and aero magnetometry of the Sul-Riograndense Shield, southernmost Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Leo A.; Savian, Jairo F., E-mail: leo.hartmann@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Geociencias; Lopes, William R. [Servico Geologico do Brasil (CPRM), Porto Alegre, RS (Brazil). Gerencia de Geologia e Mineracao

    2016-03-15

    An integrated evaluation of geology, aero gamma spectrometry and aero magnetometry of the Sul-Riograndense Shield is permitted by the advanced stage of understanding of the geology and geochronology of the southern Brazilian Shield and a 2010 airborne geophysical survey. Gamma rays are registered from the rocks near the surface and thus describe the distribution of major units in the shield, such as the Pelotas batholith, the juvenile São Gabriel terrane, the granulite-amphibolite facies Taquarembo terrane and the numerous granite intrusions in the foreland. Major structures are also observed, e.g., the Dorsal de Cangucu shear. Magnetic signals register near surface crustal compositions (analytic signal) and total crust composition (total magnetic signal), so their variation as measured indicates either shallow or whole crustal structures. The Cacapava shear is outstanding on the images as is the magnetic low along the N-S central portion of the shield. These integrated observations lead to the deepening of the understanding of the largest and even detailed structures of the Sul-Riograndense Shield, some to be correlated to field geology in future studies. Most significant is the presence of different provinces and their limits depending on the method used for data acquisition - geology, aero gamma spectrometry or aero magnetometry. (author)

  9. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    Science.gov (United States)

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  10. Study of (U,Pu)O2 spent fuel matrix alteration under geological disposal conditions: Experimental approach and geochemical modeling

    International Nuclear Information System (INIS)

    Odorowski, Melina

    2015-01-01

    To assess the performance of direct disposal of spent fuel in a nuclear waste repository, researches are performed on the long-term behavior of spent fuel (UO x and MO x ) under environmental conditions close to those of the French disposal site. The objective of this study is to determine whether the geochemistry of the Callovian-Oxfordian (CO x ) clay geological formation and the steel overpack corrosion (producing iron and hydrogen) have an impact on the oxidative dissolution of the (U,Pu)O 2 matrix under alpha radiolysis of water. Leaching experiments have been performed with UO 2 pellets doped with alpha emitters (Pu) and MIMAS MO x fuel (un-irradiated or spent fuel) to study the effect of the CO x groundwater and of the presence of metallic iron upon the oxidative dissolution of these materials induced by the radiolysis of water. Results indicate an inhibiting effect of the CO x water on the oxidative dissolution. In the presence of iron, two different behaviors are observed. Under alpha irradiation as the one expected in the geological disposal, the alteration of UO 2 matrix and MO x fuel is very strongly inhibited because of the consumption of radiolytic oxidative species by iron in solution leading to the precipitation of Fe(III)-hydroxides on the pellets surface. On the contrary, under a strong beta/gamma irradiation field, alteration tracers indicate that the oxidative dissolution goes on and that uranium concentration in solution is controlled by the solubility of UO 2 (am,hyd). This is explained by the shifting of the redox front from the fuel surface to the bulk solution not protecting the fuel anymore. The developed geochemical (CHESS) and reactive transport (HYTEC) models correctly represent the main results and occurring mechanisms. (author) [fr

  11. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The thermal loading in salt formation is studied for the disposal of high-level radioactive waste embedded in glass. Temperature effect on glass leaching, stability of gel layer on glass surface, quantity of leaching solution available in the borehole and corrosion resistance of materials used for containers are examined. The geological storage medium must satisfy particularly complex requirements: stratigraphy, brine migration, permeability, fissuring, mechanical strength, creep, thermal expansion, cavity structure ..

  12. Geological setting control of flood dynamics in lowland rivers (Poland).

    Science.gov (United States)

    Wierzbicki, Grzegorz; Ostrowski, Piotr; Falkowski, Tomasz; Mazgajski, Michał

    2018-04-27

    We aim to answer a question: how does the geological setting affect flood dynamics in lowland alluvial rivers? The study area covers three river reaches: not trained, relatively large on the European scale, flowing in broad valleys cut in the landscape of old glacial plains. We focus on the locations where levees [both: a) natural or b) artificial] were breached during flood. In these locations we identify (1) the erosional traces of flood (crevasse channels) on the floodplain displayed on DEM derived from ALS LIDAR. In the main river channel, we perform drillings in order to measure the depth of the suballuvial surface and to locate (2) the protrusions of bedrock resistant to erosion. We juxtapose on one map: (1) the floodplain geomorphology with (2) the geological data from the river channel. The results from each of the three study reaches are presented on maps prepared in the same manner in order to enable a comparison of the regularities of fluvial processes written in (1) the landscape and driven by (2) the geological setting. These processes act in different river reaches: (a) not embanked and dominated by ice jam floods, (b) embanked and dominated by rainfall and ice jam floods. We also analyse hydrological data to present hydrodynamic descriptions of the flood. Our principal results indicate similarity of (1) distinctive erosional patterns and (2) specific geological features in all three study reaches. We draw the conclusion: protrusions of suballuvial bedrock control the flood dynamics in alluvial rivers. It happens in both types of rivers. In areas where the floodplain remains natural, the river inundates freely during every flood. In other areas the floodplain has been reclaimed by humans who constructed an artificial levee system, which protects the flood-prone area from inundation, until levee breach occurs. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Using the Critical Zone Observatory Network to Put Geology into Environmental Science

    Science.gov (United States)

    Brantley, S. L.

    2017-12-01

    The use of observatories to study the environment in the U.S.A. arguably began in 1910. Since then, many environmental observatories were set up to study impacts of land use change. At that time, observatories did not emphasize geological structure. Around 2004, scientists in the U.S.A. began to emphasize the need to study the Earth's surface as one integrated system that includes the geological underpinnings. In 2007, the Geosciences Directorate within the U.S. National Science Foundation established the Critical Zone Observatory (CZO) program. Today the CZO network has grown to 9 observatories, and 45 countries now host such observatories. A CZO is an observatory that promotes the study of the entire layer of Earth's surface from vegetation canopy to groundwater as one entity. The observatories are somewhat similar to other NSF-funded observatories such as Long Term Ecological Research (LTER) sites but they differ in that they emphasize the history of the landscape and how it mediates today's fluxes. LTERs largely focus on ecological science. The concepts of CZ science and CZOs - developed by the Geosciences Directorate - have been extraordinarily impactful: we now have deeper understanding of how surficial processes respond to tectonic, climatic, and anthropogenic drivers. One reason CZOs succeed is that they host scientists who make measurements in one place that cross timescales from that of the meteorologist to the geologist. The NSF Geosciences Directorate has thus promoted insights showing that many of the unexplained mysteries of "catchment science" or "ecosystem science" can be explained by the underlying geological story of a site. The scientific challenges of this endeavor are dwarfed, however, by cultural challenges. Specifically, while both CZOs and observatories such as LTERs struggle to publish many types of data from different disciplines in a continually changing cyber-world, only CZO scientists find they must repeatedly explain why such

  14. A Geological Model for the Evolution of Early Continents (Invited)

    Science.gov (United States)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (geology, can be proposed: 1/ Continents appeared at Earth's surface at an early stage during the Hadean/Archean. However, because they were i/ covered by continental flood basalts, ii/ below sea level, and iii/ deprived of modern-style mountain belts and orogenic plateaux, early felsic

  15. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gosse, J.C.; Harrington, C.D.

    1995-01-01

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain

  16. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  17. Investigation of background radiation levels and geologic unit profiles in Durango, Colorado

    International Nuclear Information System (INIS)

    Triplett, G.H.; Foutz, W.L.; Lesperance, L.R.

    1989-11-01

    As part of the Uranium Mill Tailings Remedial Action (UMTRA) Project, Oak Ridge National Laboratory (ORNL) has performed radiological surveys on 435 vicinity properties (VPs) in the Durango area. This study was undertaken to establish the background radiation levels and geologic unit profiles in the Durango VP area. During the months of May through June, 1986, extensive radiometric measurements and surface soil samples were collected in the Durango VP area by personnel from ORNL's Grand Junction Office. A majority of the Durango VP surveys were conducted at sites underlain by Quaternary alluvium, older Quaternary gravels, and Cretaceous Lewis and Mancos shales. These four geologic units were selected to be evaluated. The data indicated no formation anomalies and established regional background radiation levels. Durango background radionuclide concentrations in surface soil were determined to be 20.3 ± 3.4 pCi/g for 40 K, 1.6 ± 0.5 pCi/g for 226 Ra, and 1.2 ± 0.3 pCi/g for 232 Th. The Durango background gamma exposure rate was found to be 16.5 ± 1.3 μR/h. Average gamma spectral count rate measurements for 40 K, 226 Ra and 232 Th were determined to be 553, 150, and 98 counts per minute (cpm), respectively. Geologic unit profiles and Durango background radiation measurements are presented and compared with other areas. 19 refs., 15 figs., 5 tabs

  18. Geology of the North Sea and Skagerrak

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O. [ed.

    1995-12-31

    The Marine Geology Unit of the Department of Earth Sciences organized the second Marine Geology symposium at Aarhus University, 7-8 October 1993. The intention was to bring together people working especially with the geology of the North Sea and Skagerrak. Approximately 60 people from different Danish and Norwegian institutions attended the symposium. 28 oral presentations were given and 2 posters presented. A large range of geological topics was covered, embracing biostratigraphy, sequence stratigraphy, sedimentology and structural geology. The majority of the presentations dealt with Quaternary geology and Cenozoic sequence stratigraphy, but also Jurassic and Lower Cretaceous stratigraphy was treated. Studies from the major part of the Danish sector were presented, spanning from Bornholm to the central North Sea, and further into the Norwegian North Sea sector. (au)

  19. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    Science.gov (United States)

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  20. The Geology of the Marcia Quadrangle of Asteroid 4Vesta: An Integrated Mapping Study Using Dawn Spacecraft Data

    Science.gov (United States)

    Williams, David A.; Denevi, B. W.; Mittlefehldt, D. W.; Mest, S. C.; Schenk, P. M.; Jaumann, R.; DeSanctis, M. C.; Buczkowski, D. L.; Ammannito, E.; Prettyman, T. H.; hide

    2012-01-01

    We used geologic mapping applied to Dawn data as a tool to understand the geologic history of the Marcia quadrangle of Vesta. This region hosts a set of relatively fresh craters and surrounding ejecta field, an unusual dark hill named Arisia Tholus, and a orange (false color) diffuse material surrounding the crater Octavia. Stratigraphically, from oldest to youngest, three increasingly larger impact craters named Minucia, Calpurnia, and Marcia make up a snowmanlike feature, which is surrounded by a zone of dark material interpreted to consist of impact ejecta and possibly impact melts. The floor of Marcia contains a pitted terrain thought to be related to release of volatiles (1). The dark ejecta field has an enhanced signature of H, possibly derived from carbonaceous chondritic material that accumulated in Vesta s crust (2,3). The dark ejecta has a spectrally distinctive behavior with shallow pyroxenes band depths. Outside the ejecta field this quadrangle contains various cratered terrains, with increasing crater abundance moving south to north away from the Rheasilvia basin. Arisia Tholus, originally suggested as an ancient volcano, appears to be an impact-sculpted basin rim fragment with a superposed darkrayed impact crater. There remains no unequivocal evidence of volcanic features on Vesta s surface, likely because basaltic material of the HED meteorite suite demonstrates magmatism ended very early on Vesta (4). Ongoing work includes application of crater statistical techniques to obtain model ages of surface units, and more detailed estimates of the compositional variations among the surface units.

  1. Deep geological disposal of radioactive waste - An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland)

    2015-07-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted.

  2. Deep geological disposal of radioactive waste - An international perspective

    International Nuclear Information System (INIS)

    Gautschi, A.

    2015-01-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted

  3. Uruguayan South Geology

    International Nuclear Information System (INIS)

    Guillemain, H.

    1980-01-01

    This monograph is about the sedimentary geological formation in the southern of Uruguay. According to the previous Gondwana studies there are several concordances between the Uruguayan and Brazilian ground.

  4. Effect of geological medium on seismic signals from underground ...

    Indian Academy of Sciences (India)

    underground nuclear explosion event in a composite media with faults and complex ... faults, in situ stresses and tectonic strains, location of the free surface with respect .... at the elastic radius are the local geological formations, porosity, water con- ... the problem for a longer duration Sommerfeld (1949) radiation boundary ...

  5. Comparative study of geological, hydrological, and geophysical borehole investigations

    International Nuclear Information System (INIS)

    Magnusson, K.A.; Duran, O.

    1984-09-01

    The understanding of the permeability of the bedrock can be improved by supplementing the results of the water injection tests with information from core mapping, TB-inspection and borehole geophysics. The comparison between different borehole investigations encompasses core mapping, TV-inspection and various geophysical bore hole measurements. The study includes data from two different study areas, namely Kraakemaala and Finnsjoen. In these two areas, extensive geological, hydrological and geophysical investigation have been carried out. The fractures and microfractures in crystalline rock constitute the main transport paths for both groundwater and electric currents. They will therefore govern both the permeability and the resistivity of the rock. In order to get a better understanding of the influence of fractures on permeability and resistivity, a detailed comparison has been made between the hydraulic conductivity, respectively, and the character of fractures in the core and the borehole wall. The fractures show very large variations in hydraulic conductivity. Microfractures and most of the thin fractures have no measurable hydraulic conductivity (in this case -9 m s -1 ), while test sections which contain a single isloated fracture can have no measurable, to rather high hydraulic conductivities (> 10 -7 m s -1 ). Wide fracture zones often have hydraulic conductivities which vary from very low (less than 2 x 10 -9 m s -1 ) to high values (10 -5 m s -1 ). This indicates that the hydraulic conductivity is governed by a few discrete fractures. The resistivity shows a continous variation in the range 1,000- 100,000 ohm-m and a relatively poor correlation with hydraulic conductivities. The observed difference is considered to the effect of restriction of water flow on a few channels, while electric surface condition, i.e. current transport through thin water films, makes current transport possible through fractures with very small aperatures. (Author)

  6. Geology of Southern Quintana Roo (Mexico) and the Chicxulub Ejecta Blanket

    Science.gov (United States)

    Schönian, F.; Tagle, R.; Stöffler, D.; Kenkmann, T.

    2005-03-01

    In southern Quintana Roo (Mexico) the Chicxulub ejecta blanket is discontinuously filling a karstified pre-KT land surface. This suggests a completely new scenario for the geological evolution of the southern Yucatán Peninsula.

  7. Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico

    Science.gov (United States)

    Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.

    2011-01-01

    This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.

  8. Micro-XRF : Elemental Analysis for In Situ Geology and Astrobiology Exploration

    Science.gov (United States)

    Allwood, Abigail; Hodyss, Robert; Wade, Lawrence

    2012-01-01

    The ability to make close-up measurements of rock chemistry is one of the most fundamental tools for astrobiological exploration of Mars and other rocky bodies of the solar system. When conducting surface-based exploration, lithochemical measurements provide critical data that enable interpretation of the local geology, which in turn is vital for determining habitability and searching for evidence of life. The value of lithochemical measurements for geological interpretations has been repeatedly demonstrated with virtually every landed Mars mission over the past four decades.

  9. Southeastern Regional geologic characterization report. Volume 1. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in central Maryland; noncoastal Virginia, North Carolina, and South Carolina; and northern Georgia. For each of the states within the Southeastern Region, information is provided on the geological disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geological factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on the age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies

  10. Low Level Waste Conceptual Design Adaption to Poor Geological Conditions

    International Nuclear Information System (INIS)

    Bell, J.; Drimmer, D.; Giovannini, A.; Manfroy, P.; Maquet, F.; Schittekat, J.; Van Cotthem, A.; Van Echelpoel, E.

    2002-01-01

    Since the early eighties, several studies have been carried out in Belgium with respect to a repository for the final disposal of low-level radioactive waste (LLW). In 1998, the Belgian Government decided to restrict future investigations to the four existing nuclear sites in Belgium or sites that might show interest. So far, only two existing nuclear sites have been thoroughly investigated from a geological and hydrogeological point of view. These sites are located in the North-East (Mol-Dessel) and in the mid part (Fleurus-Farciennes) of the country. Both sites have the disadvantage of presenting poor geological and hydrogeological conditions, which are rather unfavorable to accommodate a surface disposal facility for LLW. The underground of the Mol-Dessel site consists of neogene sand layers of about 180 m thick which cover a 100 meters thick clay layer. These neogene sands contain, at 20 m depth, a thin clayey layer. The groundwater level is quite close to the surface (0-2m) and finally, the topography is almost totally flat. The upper layer of the Fleurus-Farciennes site consists of 10 m silt with poor geomechanical characteristics, overlying sands (only a few meters thick) and Westphalian shales between 15 and 20 m depth. The Westphalian shales are tectonized and strongly weathered. In the past, coal seams were mined out. This activity induced locally important surface subsidence. For both nuclear sites that were investigated, a conceptual design was made that could allow any unfavorable geological or hydrogeological conditions of the site to be overcome. In Fleurus-Farciennes, for instance, the proposed conceptual design of the repository is quite original. It is composed of a shallow, buried concrete cylinder, surrounded by an accessible concrete ring, which allows permanent inspection and control during the whole lifetime of the repository. Stability and drainage systems should be independent of potential differential settlements an d subsidences

  11. Identification of discharge zones and quantification of contaminant mass discharges into a local stream from a landfill in a heterogeneous geologic setting

    DEFF Research Database (Denmark)

    Milosevic, Nemanja; Thomsen, Nanna Isbak; Juhler, R.K.

    2012-01-01

    Contaminants from Risby Landfill (Denmark) are expected to leach through the underlying geologic strata and eventually reach the local Risby Stream. Identification of the groundwater discharge zone was conducted systematically by an array of methods including studies on site geology and hydrogeol...... for landfill sites so the approaches and findings from Risby Landfill can be applied to other landfill sites. The study highlights that landfills may pose a risk to surface waters and future studies should be directed towards evaluation of both chemical and ecological risk....

  12. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    Science.gov (United States)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These

  13. Estimating the social value of geologic map information: A regulatory application

    Science.gov (United States)

    Bernknopf, R.L.; Brookshire, D.S.; McKee, M.; Soller, D.R.

    1997-01-01

    People frequently regard the landscape as part of a static system. The mountains and rivers that cross the landscape, and the bedrock that supports the surface, change little during the course of a lifetime. Society can alter the geologic history of an area and, in so doing, affect the occurrence and impact of environmental hazards. For example, changes in land use can induce changes in erosion, sedimentation, and ground-water supply. As the environmental system is changed by both natural processes and human activities, the system's capacity to respond to additional stresses also changes. Information such as geologic maps describes the physical world and is critical for identifying solutions to land use and environmental issues. In this paper, a method is developed for estimating the economic value of applying geologic map information to siting a waste disposal facility. An improvement in geologic map information is shown to have a net positive value to society. Such maps enable planners to make superior land management decisions.

  14. Physicochemical Properties, Micromorphology and Clay Mineralogy of Soils Affected by Geological Formations, Geomorphology and Climate

    Directory of Open Access Journals (Sweden)

    A. Bayat

    2017-01-01

    Full Text Available Introduction: Soil genesis and development in arid and semi-arid areas are strongly affected by geological formations and geomorphic surfaces. Various morphological, physical, and geochemical soil properties at different geomorphic positions are usually attributed to different soil forming factors including parent material and climate. Due to variations in climate, geological formations (Quaternary, Neogene and Cretaceous and geomorphology, the aim of the present research was the study of genesis, development, clay mineralogy, and micromorphology of soils affected by climate, geology and geomorphology in Bardsir area, Kerman Province. Materials and Methods: The study area, 25000 ha, starts from Bardsir and extends to Khanesorkh elevations close to Sirjan city. The climate of the area is warm and semi-arid with mean annual temperature and precipitation of 14.9 °C and 199 mm, respectively. Soil moisture and temperature regimes of the area are aridic and mesic due to 1:2500000 map, provided by Soil and Water Research Institute. Moving to west and southwest, soil moisture regime of the area changes to xeric with increasing elevation. Using topography and geology maps (1:100000 together with Google Earth images, geomorphic surfaces and geologic formations of the area were investigated. Mantled pediment (pedons 1, 3, 7, and 8, rock pediment (pedon 2, semi-stable alluvial plain (pedon 6, unstable alluvial plain (pedon 5, piedmont plain (pedons 9 and 11, intermediate surface of alluvial plain and pediment (pedon 4, and old river terrace (pedon 10 are among geomorphic surfaces investigated in the area. Mantled pediment is composed of young Quaternary sediments and Cretaceous marls. Rock pediments are mainly formed by Cretaceous marls. Quaternary formations are dominant in alluvial plains. Alluvial terraces and intermediate surface of alluvial plain and pediment are dominated by Neogene conglomerates. Siltstone, sandstone, and Neogene marls together with

  15. Lawrence Livermore Laboratory Nuclear Test Effects and Geologic Data Bank

    International Nuclear Information System (INIS)

    Howard, N.W.

    1976-01-01

    Data on the geology of the USERDA Nevada Test Site have been collected for the purpose of evaluating the possibility of release of radioactivity at proposed underground nuclear test sites. These data, including both the rock physical properties and the geologic structure and stratigraphy of a large number of drill-hole sites, are stored in the Lawrence Livermore Laboratory Earth Sciences Division Nuclear Test Effects and Geologic Data Bank. Retrieval programs can quickly provide a geological and geophysical comparison of a particular site with other sites where radioactivity was successfully contained. The data can be automatically sorted, compared, and averaged, and information listed according to site location, drill-hole construction, rock units, depth to key horizons and to the water table, and distance to faults. These programs also make possible ordered listings of geophysical properties (interval bulk density, overburden density, interval velocity, velocity to the surface, grain density, water content, carbonate content, porosity, and saturation of the rocks). The characteristics and capabilities of the data bank are discussed

  16. Geological Hazards analysis in Urban Tunneling by EPB Machine (Case study: Tehran subway line 7 tunnel

    Directory of Open Access Journals (Sweden)

    Hassan Bakhshandeh Amnieh

    2016-06-01

    Full Text Available Technological progress in tunneling has led to modern and efficient tunneling methods in vast underground spaces even under inappropriate geological conditions. Identification and access to appropriate and sufficient geological hazard data are key elements to successful construction of underground structures. Choice of the method, excavation machine, and prediction of suitable solutions to overcome undesirable conditions depend on geological studies and hazard analysis. Identifying and investigating the ground hazards in excavating urban tunnels by an EPB machine could augment the strategy for improving soil conditions during excavation operations. In this paper, challenges such as geological hazards, abrasion of the machine cutting tools, clogging around these tools and inside the chamber, diverse work front, severe water level fluctuations, existence of water, and fine-grained particles in the route were recognized in a study of Tehran subway line 7, for which solutions such as low speed boring, regular cutter head checks, application of soil improving agents, and appropriate grouting were presented and discussed. Due to the presence of fine particles in the route, foam employment was suggested as the optimum strategy where no filler is needed.

  17. Bureau of Economic Geology. 1978 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

  18. Study on the Distribution of Geological Hazards Based on Fractal Characteristics - a Case Study of Dachuan District

    Science.gov (United States)

    Wang, X.; Liu, H.; Yao, K.; Wei, Y.

    2018-04-01

    It is a complicated process to analyze the cause of geological hazard. Through the analysis function of GIS software, 250 landslides were randomly selected from 395 landslide hazards in the study area, superimposed with the types of landforms, annual rainfall and vegetation coverage respectively. It used box dimension method of fractal dimension theory to study the fractal characteristics of spatial distribution of landslide disasters in Dachuan district, and analyse the statistical results. Research findings showed that the The fractal dimension of the landslides in the Dachuan area is 0.9114, the correlation coefficient is 0.9627, and it has high autocorrelation. Zoning statistics according to various natural factors, the fractal dimension between landslide hazard points and deep hill, middle hill area is strong as well as the area whose average annual rainfall is 1050 mm-1250 mm and vegetation coverage is 30 %-60 %. Superposition of the potential hazard distribution map of single influence factors to get the potential hazard zoning of landslides in the area. Verifying the potential hazard zoning map of the potential landslides with 145 remaining disaster points, among them, there are 74 landslide hazard points in high risk area, accounting for 51.03 % of the total. There are 59 landslides in the middle risk area, accounting for 40.69 % of the total, and 12 in the low risk area, accounting for 8.28 % of the total. The matching degree of the verifying result and the potential hazard zoning is high. Therefore, the fractal dimension value divided the degree of geological disaster susceptibility can be described the influence degree of each influence factor to geological disaster point more intuitively, it also can divide potential disaster risk areas and provide visual data support for effective management of geological disasters.

  19. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  20. One consideration about rational design of the multi tunnels in geological disposal facility

    International Nuclear Information System (INIS)

    Mizutani, Kazuhiko; Hiramoto, Masayuki; Morita, Atsushi

    2008-01-01

    In the geological disposal facility of the high-level radioactive waste, a group of galleries is designed in parallel at the depth of more than 300 m below surface. This is an unprecedented structure in the field of conventional engineering, and it is necessary to take this characteristic into consideration in the design of the galleries. In the geological disposal facility, as well as ensuring the dynamic stability of the gallery during construction and operational periods, it is necessary to dynamic characteristic of rock mass for long-term stability after the closure. In this study, analysis of the 'multi tunnels model' which represents the whole gallery group was performed and the results about load to act on a pillar. (author)

  1. Behavior of colloids in radionuclide migration in deep geologic formation

    International Nuclear Information System (INIS)

    Kanno, Takuji

    1994-01-01

    In case high level waste is isolated in deep strata, it is important to elucidate the behavior of movement that radionuclides take in the strata. Recently, it has been recognized that the participation of colloids is very important, and it has been studied actively. In this study, as to the mechanism of the adsorption of colloids to geological media or buffers, analysis was carried out for a number of systems, and it was clarified in what case they are caught or they move without being caught. Also it is considered what research is necessary hereafter. First, the kinds of colloids are shown. As the properties of colloids that control the movement of colloids in groundwater in deep strata, the surface potential, shape, size and so on of colloids are conceivable. These properties are briefly discussed. As the interaction of colloids and geological media, the interaction by electrostatic attraction, the fast and slow movement of colloids through rock crevices, and the filtration of colloids in buffers and porous media are described. The experimental results on the movement of colloids are reported. (K.I.)

  2. Modeling of Geological Objects and Geophysical Fields Using Haar Wavelets

    Directory of Open Access Journals (Sweden)

    A. S. Dolgal

    2014-12-01

    Full Text Available This article is a presentation of application of the fast wavelet transform with basic Haar functions for modeling the structural surfaces and geophysical fields, characterized by fractal features. The multiscale representation of experimental data allows reducing significantly a cost of the processing of large volume data and improving the interpretation quality. This paper presents the algorithms for sectionally prismatic approximation of geological objects, for preliminary estimation of the number of equivalent sources for the analytical approximation of fields, and for determination of the rock magnetization in the upper part of the geological section.

  3. Thermoluminescence and cathodoluminescence studies of calcite and MgO: surface defects and heat treatment

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Brown, L.M.

    1988-01-01

    Some of the problems which preclude accurate thermoluminescence (TL) dating of geologically formed calcite stem from different sample pre-treatment procedures, such as grinding, drilling or pre-heating. It has long been known that grinding can introduce spurious TL in calcite, but there have been wide differences of opinion as to the magnitude of the influence and its importance. Therefore, various grinding and acid-washing procedures have been suggested to avoid spurious thermoluminescence. Various models have been developed to explain the mechanism. We have studied the changes in thermoluminescence (TL) and cathodoluminescence (CL) properties as well as in the spectral composition of the glow from calcite and MgO due to surface defects and heat treatment. It is found that both laboratory heat treatment and surface indents give rise to changes in TL efficiency. (author)

  4. Geology Laxemar. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Wahlgren, Carl-Henric (Geological Survey of Sweden, Uppsala (Sweden)); Curtis, Philip; Hermanson, Jan; Forssberg, Ola; Oehman, Johan (Golder Associates AB (Sweden)); Fox, Aaron; La Pointe, Paul (Golder Associates Inc (United States)); Drake, Henrik (Dept. of Earth Sciences, Univ. of Goeteborg, Goeteborg (Sweden)); Triumf, Carl-Axel; Mattsson, Haakan; Thunehed, Hans (GeoVista AB, Luleaa (Sweden)); Juhlin, Christopher (Dept. of Earth Sciences, Uppsala Univ., Uppsala (Sweden))

    2008-11-15

    The geological work during the SDM Site Laxemar modelling stage has involved the continued development of deterministic models for rock domains (RSM) and deformation zones (ZSM), the identification and deterministic modelling of fracture domains (FSM), and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network (DFN) modelling). The geological DFN model addresses fractures/structures with a size of less than 1 km, which is the lower cut-off of structures included in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local scale model volumes, while the geological DFN model is valid only within specific fracture domains inside the Laxemar local model volume. The geological and geophysical data that constitute the basis for the SDM-Site Laxemar modelling work comprise all data that have been acquired from Laxemar, i.e. all data that were available at the data freeze for SDM-Site Laxemar at August 31, 2007. Selected quality controlled data from the complementary cored borehole KLX27A have also been utilised in the modelling work. Data from the following investigations were acquired during the complete site investigation between the data freezes for Laxemar 1.2 and SDM-Site Laxemar as defined above: A revised bedrock geological map at the ground surface. Geological and geophysical data from 40 new cored boreholes and 14 percussion boreholes. Sampling and subsequent modal and geochemical analytical work of bedrock samples taken in connection with excavations in southern Laxemar. Detailed mapping of fractures and rock units along 10 trench excavations and 2 large surface exposures (drill sites for KLX09 and KLX11A/KLX20A). Special studies involving more detailed characterisation of deformation zones identified in the geological single-hole interpretation

  5. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  6. The use of geological data from pilot holes for predicting FPI (full perimeter intersection) fractures

    International Nuclear Information System (INIS)

    Joutsen, A.

    2012-02-01

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analyzed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting fractures (TCF) or full perimeter intersections (FPI). The purpose for this study was to evaluate the possibility of recognizing FPIs from drill cores by their geological properties. The study was carried out by correlating FPIs mapped from the ONKALO tunnel to the pilot holes logging data with a view of finding out which fracture in the pilot hole corresponds to the FPI in the tunnel. It was also estimated what kind of geological properties does FPIs commonly have in the tunnel and how does these properties differ from the FPI correlated pilot hole fractures. The data sources for this study are the pilot holes from ONK-PH8 to ONK-PH14 and the systematic geological mapping data. The FPIs used in this study usually follow the general trends of the fracturing in the Olkiluoto bedrock. The fracture surface profiles are principally undulating and a striation can be often seen on the fracture surfaces. The FPIs are frequently moderately to intensely altered with diverse filling mineralogy and thick fracture fillings in comparison to the regular fractures. The FPI correlated pilot hole fractures have slightly different properties in comparison to the FPIs. These fractures have wider range of different fracture surface profiles and are slightly less altered than the FPIs. Filling mineralogy follows the trends of the FPIs but filling thicknesses are thinner. These differences probably occur because of the variable uncertainties related to the correlation and to the fact that the

  7. The use of geological data from pilot holes for predicting FPI (full perimeter intersection) fractures

    Energy Technology Data Exchange (ETDEWEB)

    Joutsen, A.

    2012-02-15

    Posiva Oy is responsible for preparation of final disposal of spent nuclear fuel in Olkiluoto. The knowledge about existing network of fractures is important for the safety and feasibility of the final repository. The bedrock properties essential for safety case are analyzed in investigations of Rock Suitability Criteria (RSC). One subtask in RSC is avoidance of large (long) fractures adjacent to disposal holes. The long fractures have been defined in tunnel mapping to indicate tunnel cross-cutting fractures (TCF) or full perimeter intersections (FPI). The purpose for this study was to evaluate the possibility of recognizing FPIs from drill cores by their geological properties. The study was carried out by correlating FPIs mapped from the ONKALO tunnel to the pilot holes logging data with a view of finding out which fracture in the pilot hole corresponds to the FPI in the tunnel. It was also estimated what kind of geological properties does FPIs commonly have in the tunnel and how does these properties differ from the FPI correlated pilot hole fractures. The data sources for this study are the pilot holes from ONK-PH8 to ONK-PH14 and the systematic geological mapping data. The FPIs used in this study usually follow the general trends of the fracturing in the Olkiluoto bedrock. The fracture surface profiles are principally undulating and a striation can be often seen on the fracture surfaces. The FPIs are frequently moderately to intensely altered with diverse filling mineralogy and thick fracture fillings in comparison to the regular fractures. The FPI correlated pilot hole fractures have slightly different properties in comparison to the FPIs. These fractures have wider range of different fracture surface profiles and are slightly less altered than the FPIs. Filling mineralogy follows the trends of the FPIs but filling thicknesses are thinner. These differences probably occur because of the variable uncertainties related to the correlation and to the fact that the

  8. Study of microorganisms present in deep geologic formations

    International Nuclear Information System (INIS)

    Camus, H.; Lion, R.; Bianchi, A.; Garcin, J.

    1987-01-01

    This work has been executed in the scope of the studies on high activity radioactive wastes storage in deep geological environments. The authors make reference to an as complete as possible literature on the existence of microorganisms in those environments or under similar conditions. Then they describe the equipment and methods they have implemented to perform their study of the populations present in three deep-reaching drill-holes in Auriat (France), Mol (Belgique) and Troon (Great Britain). The results of the study exhibit the presence of a certain biological activity, well adapted to that particular life environment. Strains appear to be very varied from the taxonomic point of view and seemingly show an important potential of mineral alteration when provided with an adequate source of energy. Complementary studies, using advanced techniques such as those employed during the work forming the basis of this paper, seem necessary for a more accurate evaluation of long-term risks of perturbation of a deep storage site [fr

  9. Geology--hydrology of Avery Island Salt Dome

    International Nuclear Information System (INIS)

    Jacoby, C.H.

    1977-07-01

    After a review of the geology of the Gulf Coast salt domes, the geology (geomorphology and tectonics) and hydrology of Avery Island Dome, 10 miles south-southwest of New Iberia, Louisiana, were studied in detail. Rock mechanics were studied using grouts and piezometers. 17 figs

  10. Mathematical geology studies of deposit prospect types

    International Nuclear Information System (INIS)

    Liu Guangping

    1998-08-01

    Exact certainty prospect type of uranium deposit, not only can assure the quality of deposit prospects, but also increase economic benefits. Based on the standard of geological prospect of uranium deposit, the author introduces a method of Fuzzy Synthetical Comment for dividing prospect type of uranium deposit. The practical applications demonstrate that the regression accuracy, discriminated by Zadeh operator, of 15 known deposits is 100%

  11. Use of geo-scientific arguments in the Nirex phased geological repository concept: illustrative desk study

    International Nuclear Information System (INIS)

    Norris, S.; Breen, B.; Knight, L.

    2007-01-01

    A desk study recently undertaken by Nirex used data, collected from now-ceased investigations of the Sellafield site (west Cumbria, UK) undertaken in the 1990's, to consider the implications of locating the Nirex Phased Geological Repository Concept (PGRC) in deep rock formations present at the west Cumbrian coast that contain brines in a slow-moving groundwater flow system. Work undertaken brought together geochemical data and interpretation [1], addressing some questions that were posed during active Sellafield investigations concerning the distribution, composition, origin and age of the brine. The desk study also considered geochemical evidence that has a bearing on understanding the hydrodynamic stability of the brine, noting that it has been investigated in a zone where there are quite sharp changes in physical and chemical groundwater conditions over rather short distances; the simplified hypothesis that this brine is 'very old and virtually immobile' is considered. Other important parts of the scientific framework that provide complementary knowledge and insights were utilised for this desk study; physical hydrogeology and numerical modelling, basinal geology, structure and rock properties, and mineralogy were integrated with geochemistry to develop an understanding of the behaviour of the groundwater system in the study region in terms of its evolution to present day, and its potential future behaviour. Semi-quantitative and qualitative comparison between hydrodynamic and geochemical estimates of water ages are reported. The main assumptions and simplifications in each case that affect the degree of comparability are described in that report, and the consistencies and inconsistencies are discussed and reconciled as far as possible. Geochemical ages for time since recharge of the water in the brine are upwards of 1.6 million years. A probable maximum age of 10 million years is inferred from an assumption about how groundwater history might be coupled to

  12. Struktur Geologi dan Sebaran Batubara daerah Bentian Besar, Kabupaten Kutai Barat, Propinsi Kalimantan Timur

    Directory of Open Access Journals (Sweden)

    Asmoro Widagdo

    2013-06-01

    Full Text Available This study is a surface geological mapping work to determine the geological conditions in the study area and in particular the presence of coal of Bentian Besar District, West Kutai Regency, East Kalimantan Province. The goal is to determine the position and spread of coal layer, coal quality and quantity of coal resources in the study area. Research on the existence of coal deposits is done through field survey methods, by observing, define and measure elements of geological structures encountered. At this stage of field work carried identification, observation, measurement of the coal position and takes it sample. In the study area encountered 2 (two rock formations, Pamaluan, and Pulubalang Formation. Coal deposits found in rock unit known as Pulubalang Formation. Direction of the dip of the rock layers in the study area form a syncline structure. At this structure of the coal seam, there are three dip directions, namely: rocks on the southeast side of syncline axis tilted toward the northwest, rocks on the northwest side of the syncline axis tilted to the southeast, while the dip of the rocks on the southwest side Syncline tilted toward the northeast.

  13. Digital Geologic Mapping and Integration with the Geoweb: The Death Knell for Exclusively Paper Geologic Maps

    Science.gov (United States)

    House, P. K.

    2008-12-01

    The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an

  14. Using geologic conditions and multiattribute decision analysis to determine the relative favorability of selected areas for siting a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Harrison, W.; Edgar, D.E.; Baker, C.H.

    1988-05-01

    A method is presented for determining the relative favorability of geologically complex areas for isolating high-level radioactive wastes. In applying the method to the northeastern region of the United States, seismicity and tectonic activity were the screening criteria used to divide the region into three areas of increasing seismotectonic risk. Criteria were then used to subdivide the area of lowest seismotectonic risk into six geologically distinct subareas including characteristics, surface-water and groundwater hydrology, potential human intrusion, site geometry, surface characteristics, and tectonic environment. Decision analysis was then used to identify the subareas most favorable from a geologic standpoint for further investigation, with a view to selecting a site for a repository. Three subareas (parts of northeastern Vermont, northern New Hampshire, and western Maine) were found to be the most favorable, using this method and existing data. However, because this study assessed relative geologic favorability, no conclusions should be drawn concerning the absolute suitability of individual subareas for high-level radioactive waste isolation. 34 refs., 7 figs., 20 tabs

  15. Site characterization information needs for a high-level waste geologic repository

    International Nuclear Information System (INIS)

    Gupta, D.C.; Nataraja, M.S.; Justus, P.S.

    1987-01-01

    At each of the three candidate sites recommended for site characterization for High-Level Waste Geologic Repository development, the DOE has proposed to conduct both surface-based testing and in situ exploration and testing at the depths that wastes would be emplaced. The basic information needs and consequently the planned surface-based and in situ testing program will be governed to a large extent by the amount of credit taken for individual components of the geologic repository in meeting the performance objectives and siting criteria. Therefore, identified information to be acquired from site characterization activities should be commensurate with DOE's assigned performance goals for the repository system components on a site-specific basis. Because of the uncertainties that are likely to be associated with initial assignment of performance goals, the information needs should be both reasonably and conservatively identified

  16. Arizona Geology Trip - February 25-28, 2008

    Science.gov (United States)

    Thomas, Gretchen A.; Ross, Amy J.

    2008-01-01

    A variety of hardware developers, crew, mission planners, and headquarters personnel traveled to Gila Bend, Arizona, in February 2008 for a CxP Lunar Surface Systems Team geology experience. Participating in this field trip were the CxP Space Suit System (EC5) leads: Thomas (PLSS) and Ross (PGS), who presented the activities and findings learned from being in the field during this KC. As for the design of a new spacesuit system, this allowed the engineers to understand the demands this type of activity will have on NASA's hardware, systems, and planning efforts. The engineers also experienced the methods and tools required for lunar surface activity.

  17. Geological exploration of Angola from Sumbe to Namibe: A review at the frontier between geology, natural resources and the history of geology

    Science.gov (United States)

    Masse, Pierre; Laurent, Olivier

    2016-01-01

    This paper provides a review of the Geological exploration of the Angola Coast (from Sumbe to Namibe) from pioneer's first geological descriptions and mining inventory to the most recent publications supported by the oil industry. We focus our attention on the following periods: 1875-1890 (Paul Choffat's work, mainly), 1910-1949 (first maps at country scale), 1949-1974 (detailed mapping of the Kwanza-Namibe coastal series), 1975-2000, with the editing of the last version of the Angola geological map at 1:1 million scale and the progressive completion of previous works. Since 2000, there is a renewal in geological fieldwork publications on the area mainly due to the work of university teams. This review paper thus stands at the frontier between geology, natural resources and the history of geology. It shows how geological knowledge has progressed in time, fueled by economic and scientific reasons.

  18. Site descriptive modelling during characterization for a geological repository for nuclear waste in Sweden

    International Nuclear Information System (INIS)

    Stroem, A.; Andersson, J.; Skagius, K.; Winberg, A.

    2008-01-01

    The Swedish programme for geological disposal of spent nuclear fuel is approaching major milestones in the form of permit applications for an encapsulation plant and a deep geologic repository. This paper presents an overview of the bedrock and surface modelling work that comprises a major part of the on-going site characterization in Sweden and that results in syntheses of the sites, called site descriptions. The site description incorporates descriptive models of the site and its regional setting, including the current state of the geosphere and the biosphere as well as natural processes affecting long-term evolution. The site description is intended to serve the needs of both repository engineering with respect to layout and construction, and safety assessment, with respect to long-term performance. The development of site-descriptive models involves a multi-disciplinary interpretation of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and ecosystems using input in the form of available data for the surface and from deep boreholes

  19. Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research.

    Science.gov (United States)

    Gillams, Richard J; Jia, Tony Z

    2018-05-08

    An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.

  20. Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research

    Directory of Open Access Journals (Sweden)

    Richard J. Gillams

    2018-05-01

    Full Text Available An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.

  1. Quantifying uncertainty of geological 3D layer models, constructed with a-priori geological expertise

    NARCIS (Netherlands)

    Gunnink, J.J.; Maljers, D.; Hummelman, J.

    2010-01-01

    Uncertainty quantification of geological models that are constructed with additional geological expert-knowledge is not straightforward. To construct sound geological 3D layer models we use a lot of additional knowledge, with an uncertainty that is hard to quantify. Examples of geological expert

  2. Geological reconnaissance and chronologic studies. Technical report No. 33

    International Nuclear Information System (INIS)

    Davis, J.

    1983-03-01

    There are several possible scenarios by which a radioactive waste storage facility in the unsaturated zone could be compromised; among them erosion, water table rise, or downward percolation of water. In order to assess these risks, the geologic and climatic events of the past few million years can be used to project the future of the unsaturated deposits. Geologic reconnaissance on and around the NTS was undertaken to identify specific evidence of depositional, erosional, and hydrologic events, as well as to develop an understanding of the timing of these events. Several kinds of evidence were noted and studied: layers or volcanic ash in the basin-fill sediments were discovered and dated at 11 to 5 m.y. old, showing the modern valleys and ranges are at least 11 m.y. old. Exposure of these ash layers by erosion has taken 5 m.y., implying that additional millions of years must pass before modern closed basins on the NTS are eroded. Detailed study of young sediments in Las Vegas Valley suggest that water tables stood at 926 m as recently as 14,000 y ago. To the northeast or the NTS, sediments in basin bottoms also reflect high water tables until about 7000 y ago, but sediments on the NTS proper do not show this effect during the last 700,000 y. The observed relation between erosion due to downwearing or mountain ranges and infilling of valleys suggests that these processes continue, only the uppermost parts of present alluvial fans will be eroded

  3. The Geology of Pluto and Charon as Revealed by New Horizons

    Science.gov (United States)

    Moore, Jeffrey M.; Spencer, John R.; McKinnon, William B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.; Olkin, Cathy B.; Ennico, Kim

    2016-01-01

    NASA's New Horizons spacecraft has revealed that Pluto and Charon exhibit strikingly different surface appearances, despite their similar densities and presumed bulk compositions. Much of Pluto's surface can be attributed to surface-atmosphere interactions and the mobilization of volatile ices by insolation. Many valley systems appear to be the consequence of glaciation involving nitrogen ice. Other geological activity requires or required internal heating. The convection and advection of volatile ices in Sputnik Planum can be powered by present-day radiogenic heat loss. On the other hand, the prominent mountains at the western margin of Sputnik Planum, and the strange, multi-km-high mound features to the south, probably composed of H2O, are young geologically as inferred by light cratering and superposition relationships. Their origin, and what drove their formation so late in Solar System history, is under investigation. The dynamic remolding of landscapes by volatile transport seen on Pluto is not unambiguously evident on Charon. Charon does, however, display a large resurfaced plain and globally engirdling extensional tectonic network attesting to its early endogenic vigor.

  4. Surficial geologic map of the Mount Grace-Ashburnham-Monson-Webster 24-quadrangle area in central Massachusetts

    Science.gov (United States)

    Stone, Janet R.

    2013-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 24 7.5-minute quadrangles (1,238 mi2 total) in central Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction-aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  5. Surficial geologic map of the Norton-Manomet-Westport-Sconticut Neck 23-quadrangle area in southeast Massachusetts

    Science.gov (United States)

    Stone, Byron D.; Stone, Janet R.; DiGiacomo-Cohen, Mary L.; Kincare, Kevin A.

    2012-01-01

    The surficial geologic map shows the distribution of nonlithified earth materials at land surface in an area of 23 7.5-minute quadrangles (919 mi2 total) in southeastern Massachusetts. Across Massachusetts, these materials range from a few feet to more than 500 ft in thickness. They overlie bedrock, which crops out in upland hills and as resistant ledges in valley areas. The geologic map differentiates surficial materials of Quaternary age on the basis of their lithologic characteristics (such as grain size and sedimentary structures), constructional geomorphic features, stratigraphic relationships, and age. Surficial materials also are known in engineering classifications as unconsolidated soils, which include coarse-grained soils, fine-grained soils, and organic fine-grained soils. Surficial materials underlie and are the parent materials of modern pedogenic soils, which have developed in them at the land surface. Surficial earth materials significantly affect human use of the land, and an accurate description of their distribution is particularly important for assessing water resources, construction aggregate resources, and earth-surface hazards, and for making land-use decisions. This work is part of a comprehensive study to produce a statewide digital map of the surficial geology at a 1:24,000-scale level of accuracy. This report includes explanatory text (PDF), quadrangle maps at 1:24,000 scale (PDF files), GIS data layers (ArcGIS shapefiles), metadata for the GIS layers, scanned topographic base maps (TIF), and a readme.txt file.

  6. Lidar-enhanced geologic mapping, examples from the Medford and Hood River areas, Oregon

    Science.gov (United States)

    Wiley, T. J.; McClaughry, J. D.

    2012-12-01

    Lidar-based 3-foot digital elevation models (DEMs) and derivatives (slopeshade, hillshade, contours) were used to help map geology across 1700 km2 (650 mi2) near Hood River and Medford, Oregon. Techniques classically applied to interpret coarse DEMs and small-scale topographic maps were adapted to take advantage of lidar's high resolution. Penetration and discrimination of plant cover by the laser system allowed recognition of fine patterns and textures related to underlying geologic units and associated soils. Surficial geologic maps were improved by the ability to examine tiny variations in elevation and slope. Recognition of low-relief features of all sizes was enhanced where pixel elevation ranges of centimeters to meters, established by knowledge of the site or by trial, were displayed using thousands of sequential colors. Features can also be depicted relative to stream level by preparing a DEM that compensates for gradient. Near Medford, lidar-derived contour maps with 1- to 3-foot intervals revealed incised bajada with young, distal lobes defined by concentric contour lines. Bedrock geologic maps were improved by recognizing geologic features associated with surface textures and patterns or topographic anomalies. In sedimentary and volcanic terrain, structure was revealed by outcrops or horizons lying at one stratigraphic level. Creating a triangulated irregular network (TIN) facet from positions of three or more such points gives strike and dip. Each map area benefited from hundreds of these measurements. A more extensive DEM in the plane of the TIN facet can be subtracted from surface elevation (lidar DEM) to make a DEM with elevation zero where the stratigraphic horizon lies at the surface. The distribution of higher and lower stratigraphic horizons can be shown by highlighting areas similarly higher or lower on the same DEM. Poor fit of contacts or faults projected between field traverses suggest the nature and amount of intervening geologic structure

  7. Optimal sampling schemes applied in geology

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2010-05-01

    Full Text Available Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology UP 2010 2 / 47 Outline 1 Introduction to hyperspectral remote... sensing 2 Objective of Study 1 3 Study Area 4 Data used 5 Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology...

  8. [Constructing ecological security patterns in mountain areas based on geological disaster sensitivity: A case study in Yuxi City, Yunnan Province, China.

    Science.gov (United States)

    Peng, Jian; Guo, Xiao Nan; Hu, Yi Na; Liu, Yan Xu

    2017-02-01

    As one of the key topics in the research of landscape ecology, regional ecological security patterns can effectively promote regional sustainable development and terrestrial ecological barriers construction. It is extremely important for middle Yunnan, with frequent disasters and fragile ecolo-gical environment, to construct ecological security patterns so as to effectively avoid the geological disasters, maintain ecosystem health, and promote the coordinated development of regional ecological system and social economic system. Taking Yuxi City as a case study area, this study firstly estimated the ecosystem services importance of water conservation, carbon fixation and oxygen release, soil conservation, and biodiversity according to the basal characteristics of regional ecological environment, and then identified ecological sources in consideration of the quality of integrated ecosystem services and single types. Secondly, the resistance surface based on land use types was modified by the sensitivity of regional geological disasters. Lastly, the ecological corridors were identified using minimum cumulative resistance model, and as a result, the ecological security pattern of Yuxi City was constructed. The results showed that there were 81 patches for ecological sources in Yuxi City, accounting for 38.4% of the total area, and overlaying 75.2% of nature protection areas. The ecological sources were mainly distributed in the western mountainous areas as well as eastern water areas of the city. The length of ecological corridors was 1642.04 km, presenting a spatial pattern of one vertical and three horizontals, and extending along river valleys and fault basins with high vegetation coverage. This paper constructed ecological security patterns in mountainous areas aiming at the characteristics of geological disasters, providing spatial guidance for development and conservation decision-making in mountain areas.

  9. Geological Disposal of Radioactive Waste: A Long-Term Socio-Technical Experiment.

    Science.gov (United States)

    Schröder, Jantine

    2016-06-01

    In this article we investigate whether long-term radioactive waste management by means of geological disposal can be understood as a social experiment. Geological disposal is a rather particular technology in the way it deals with the analytical and ethical complexities implied by the idea of technological innovation as social experimentation, because it is presented as a technology that ultimately functions without human involvement. We argue that, even when the long term function of the 'social' is foreseen to be restricted to safeguarding the functioning of the 'technical', geological disposal is still a social experiment. In order to better understand this argument and explore how it could be addressed, we elaborate the idea of social experimentation with the notion of co-production and the analytical tools of delegation, prescription and network as developed by actor-network theory. In doing so we emphasize that geological disposal inherently involves relations between surface and subsurface, between humans and nonhumans, between the social, material and natural realm, and that these relations require recognition and further elaboration. In other words, we argue that geological disposal concurrently is a social and a technical experiment, or better, a long-term socio-technical experiment. We end with proposing the idea of 'actor-networking' as a sensitizing concept for future research into what geological disposal as a socio-technical experiment could look like.

  10. Studies for geologic storage of radioactive waste in the southeast

    International Nuclear Information System (INIS)

    Marine, I.W.

    1977-01-01

    The National Waste Terminal Storage (NWTS) program was initiated to conduct the research necessary to select a site for a geologic repository for the storage of high-level, solidified radioactive waste from commercial power reactors. The program also includes the design and construction of the facility and its operation once completed. As part of this program, the Savannah River Laboratory is conducting geological research that is particularly relevant to potential repository sites in the Southeast, but is also of generic applicability. This paper describes the National Waste Terminal Storage program as well as the research program at the Savannah River Laboratory

  11. Studies for geologic storage of radioactive waste in the southeast

    International Nuclear Information System (INIS)

    Marine, I.W.

    1978-01-01

    The National Waste Terminal Storage (NWTS) program was initiated to conduct the research necessary to select a site for a geologic repository for the storage of high-level, solidified radioactive waste from commercial power reactors. The program also includes the design and construction of the facility and its operation once completed. As part of this program, the Savannah River Laboratory is conducting geological research that is particularly relevant to potential repository sites in the southeast, but is also of generic applicability. This paper describes the National Waste Terminal Storage program as well as the research program at the Savannah River Laboratory. 31 figures

  12. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    Science.gov (United States)

    Miah, Khalid; Bellefleur, Gilles

    2014-05-01

    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to

  13. Mercury compositional units inferred by MDIS. A comparison with the geology in support to the BepiColombo mission

    Science.gov (United States)

    Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Filacchione, Gianrico; Giacomini, Lorenza; Massirioni, Matteo; Palumbo, Pasquale

    2016-04-01

    Mercury has been explored by two spatial missions. Mariner 10 acquired 45% of the surface during three Hermean flybys in 1974, giving a first close view of the planet. The recent MESSENGER mission globally mapped the planet and contributed to understand many unsolved issues about Mercury (Solomon et al., 2007). Nevertheless, even after MESSENGER, Mercury surface composition remains still unclear, and the correlation between morphology and compositional heterogeneity is not yet well understood. Thanks to the Mercury Dual Imaging System (MDIS), onboard MESSENGER, a global coverage of Mercury surface with variable spatial resolution has been done. MDIS is equipped with a Narrow Angle Camera (NAC), dedicated to the high-resolution study of the surface morphology and a Wide Angle Camera (WAC) with 12 filters useful to investigate the surface composition (Hawkins et al., 2007). Several works were focused on the different terrains present on Mercury, in particular, Denevi et al. (2013) observes that ~27% of Hermean surface is covered by volcanic origin smooth plains. These plains show differences in composition associated to spectral slope variation. High-reflectance red plains (HRP), with spectral slope greater than the average and low-reflectance blue plains (LBP), with spectral slope lesser than the average has been identified. This spectral variations could be correlated with different chemical composition. The X-Ray Spectrometer (XRS) data show that HRP-type areas are associated with a low-Fe basalt-like composition, while the LBP are also Fe poor but are rich in Mg/Si and Ca/Si and with lower Al/Si and are interpreted as more ultramafic (Nittler et al., 2011; Weider et al., 2012; Denevi at al., 2013, Weider et al., 2014). In these work we produce high resolution multicolor mosaic to found a possible link between morphology and composition. The spectral properties have been used to define the principal units of Mercury's surface or to characterize other globally

  14. Geological investigations for the South African nuclear waste repository facility

    International Nuclear Information System (INIS)

    Hambleton-Jones, B.B.; Levin, M.; Andersen, N.J.B.; Brynard, H.J.; Toens, P.D.

    1984-02-01

    The selection of the Vaalputs site on the arid Bushmanland Plateau in the northwestern Cape of the Republic of South Africa for the disposal of low-level radioactive waste was based on a national screening phase program involving socio-economic and geological criteria. Regional geohydrological studies over an area of 27,000 km 2 and a detailed study over 1,300 km 2 indicated that in general the groundwater is saline and that Vaalputs and environs was the most favourable area. The groundwater table lies between 30 and 45 m below the surface, with 14 C ages between 2,500 and 9,000 years old in the immediate vicinity. The geology of Vaalputs consists of Proterozoic granites, gneisses, metasediments, and noritoids of the 1,050 Ma Namaqualand Metamorphic Complex. Upper cretaceous kimberlitic and basaltic intrusions occur locally. Overlying these basement rocks surficial upper Tertiary to Recent argillaceous sediments occur in the Vaalputs basin. The sediments consist of aeolian sand, calcrete, fluvial sandy to gritty clay, white kaolinised clay and very weathered basement rocks. It is in these rocks that the low-level waste trenches will be located. Extensive airborne geophysical surveys, such as aeromagnetics, INPUT, and infrared thermal line scanning, were undertaken to assist in the evaluation of the regional and local subsurface geology. Ground geophysical surveys included refraction seismics, electromagnetics, magnetics, borehole radiometrics and resistivity. Geohydrological modelling of the unsaturated and saturated zones is in progress

  15. Northeastern Regional geologic characterization report. Volume 1. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crusal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented on the relationship between the US Department of Energy (DOE) Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process

  16. Geologic Map of the Hellas Region of Mars

    Science.gov (United States)

    Leonard, Gregory J.; Tanaka, Kenneth L.

    2001-01-01

    INTRODUCTION This geologic map of the Hellas region focuses on the stratigraphic, structural, and erosional histories associated with the largest well-preserved impact basin on Mars. Along with the uplifted rim and huge, partly infilled inner basin (Hellas Planitia) of the Hellas basin impact structure, the map region includes areas of ancient highland terrain, broad volcanic edifices and deposits, and extensive channels. Geologic activity recorded in the region spans all major epochs of martian chronology, from the early formation of the impact basin to ongoing resurfacing caused by eolian activity. The Hellas region, whose name refers to the classical term for Greece, has been known from telescopic observations as a prominent bright feature on the surface of Mars for more than a century (see Blunck, 1982). More recently, spacecraft imaging has greatly improved our visual perception of Mars and made possible its geologic interpretation. Here, our mapping at 1:5,000,000 scale is based on images obtained by the Viking Orbiters, which produced higher quality images than their predecessor, Mariner 9. Previous geologic maps of the region include those of the 1:5,000,000-scale global series based on Mariner 9 images (Potter, 1976; Peterson, 1977; King, 1978); the 1:15,000,000-scale global series based on Viking images (Greeley and Guest, 1987; Tanaka and Scott, 1987); and detailed 1:500,000-scale maps of Tyrrhena Patera (Gregg and others, 1998), Dao, Harmakhis, and Reull Valles (Price, 1998; Mest and Crown, in press), Hadriaca Patera (D.A. Crown and R. Greeley, map in preparation), and western Hellas Planitia (J.M. Moore and D.E. Wilhelms, map in preparation). We incorporated some of the previous work, but our map differs markedly in the identification and organization of map units. For example, we divide the Hellas assemblage of Greeley and Guest (1987) into the Hellas Planitia and Hellas rim assemblages and change the way units within these groupings are identified

  17. Google Earth Mapping Exercises for Structural Geology Students--A Promising Intervention for Improving Penetrative Visualization Ability

    Science.gov (United States)

    Giorgis, Scott

    2015-01-01

    Three-dimensional thinking skills are extremely useful for geoscientists, and at the undergraduate level, these skills are often emphasized in structural geology courses. Google Earth is a powerful tool for visualizing the three-dimensional nature of data collected on the surface of Earth. The results of a 5 y pre- and posttest study of the…

  18. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  19. Study geology and uranium mineralization of ririt-amir engkala - tiga dara sector West Kalimantan

    International Nuclear Information System (INIS)

    Bambang Soetopo

    2009-01-01

    The results of previous research from Ririt, Amir Engkala, Tiga Dara sector which consist of geology, geophysics and drilling data show that all of the areas has similar in geology and Uranium mineralization. The purpose of this study is to know the relationship between geological condition and Uranium mineralization in Ririt, Amir Engkala and Tiga Dara sector. In general the geology of Ririt and Amir Engkala is similar with Tiga Dara sector. Those areas consist of tourmaline quartzite, muscovite quartzite, meta ignimbrite, biotite quartz schist, muscovite quartz schist, and micro diorite. The direction of the stratification is NE - SW and dipping to SE and the direction of the stochasticity is W - E and dipping to N. The dextral faults have WNW-ESE and NNE - SSW trends, while the sinistral one is WSW - ENE direction. There are also a thrust fault and a normal fault with WSW-ESE and NW-SE striking respectively. Uranium mineralization as a uraninite fill in the stochasticity and fracture N2600-30° E37°-59° in orientation which associated with magnetite, chalcopyrite, pyrite, arsenopyrite,. rutile, ilmenite, tourmaline and quartz. Radiometric value of Uranium mineralization is in the range of 500-15.000 c/s. The mineral association and the present of calcite, gypsum and quartz veins suggest that Uranium mineralization was resulted by hydrothermal magmatic processes. (author)

  20. Study on the development of safety regulations for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Wei Fangxin

    2012-01-01

    The development of regulations under Regulations on Safety Management of Radioactive Waste has become necessary as the issuance of it. The regulations related to geological disposal of high-level radioactive waste can promote the progress of research and development on geological disposal of high-level radioactive waste in China. This paper has present suggestions on development of regulations on geological disposal of high-level radioactive waste by analyzing development of safety regulations on geological disposal of high-level radioactive waste in foreign countries and problems occurred in China and discussed important issues related to the development of safety regulations on geological disposal of high-level radioactive waste. (author)

  1. Preliminary report on the environmnetal geology of the Islamabad-Rawalpindi area, Pakistan

    International Nuclear Information System (INIS)

    Williams, V.S.; Sheikh, I.; Pasha, M.K.; Khan, K.S.A.; Reza, Q.

    1994-01-01

    Islamabad, the capital of Pakistan, is a planned city constructed since about 1960 at the foot of the Margala hills just north of the old city of Rawalpindi. Since then, rapid growth of both Islamabad and Rawalpindi to a combined population of about 1.3 million has caused ever increasing demands for natural resources and adverse effects on the environment. To maintain the quality of the capital, municipal authorities need information on the physical environment to guide future development. Environment concerns include (1) availability of building materials, (2) environmental degradation from extraction and processing of building materials, (3) availability of surface and ground water (4) pollution of water by waste disposal, (5) geological hazards, and (6) engineering characteristics of soil ad rock. This preliminary report summarizes information on the environmental geology of the Islamabad-Rawalpindi area. The information has been collected by a cooperative project of the geological Survey of Pakistan and the U.S. Geological Survey, supported by the United States Agency for International Development. (author)

  2. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  3. Geological disposal: security and R and D. Security of 'second draft for R and D of geological disposal'

    International Nuclear Information System (INIS)

    Shiotsuki, Masao; Miyahara, Kaname

    2003-01-01

    The second draft for R and D of geological disposal (second draft) was arranged in 1999. The idea of security of geological disposal in the second draft is explained. The evaluation results of the uncertainty analysis and an example of evaluation of the effect of separation nuclear transmutation on the geological disposal are shown. The construction of strong engineered barrier is a basic idea of geological disposal system. Three processes such as isolation, engineering countermeasures and safety evaluation are carried out for the security of geological disposal. The security of geological environment for a long time of 12 sites in Japan was studied by data. Provability of production and enforcement of engineered barrier were confirmed by trial of over pack, tests and the present and future technologies developed. By using the conditions of reference case in the second draft, the evaluation results of dose effects in the two cases: 1) 90 to 99% Cs and Sr removed from HLW (High Level radioactive Waste) and 2) high stripping ratio of actinium series are explained. (S.Y.)

  4. Geologic Map of MTM 35337, 40337, and 45337 Quadrangles, Deuteronilus Mensae Region of Mars

    Science.gov (United States)

    Chuang, Frank C.; Crown, David A.

    2009-01-01

    Deuteronilus Mensae, first defined as an albedo feature at lat 35.0 deg N., long 5.0 deg E., by U.S. Geological Survey (USGS) and International Astronomical Union (IAU) nomenclature, is a gradational zone along the dichotomy boundary in the northern mid-latitudes of Mars. The boundary in this location includes the transition from the rugged cratered highlands of Arabia Terra to the northern lowland plains of Acidalia Planitia. Within Deuteronilus Mensae, polygonal mesas are prominent along with features diagnostic of Martian fretted terrain, including lobate debris aprons, lineated valley fill, and concentric crater fill. Lobate debris aprons, as well as the valley and crater fill deposits, are geomorphic indicators of ground ice, and their concentration in Deuteronilus Mensae is of great interest because of their potential association with Martian climate change. The paucity of impact craters on the surfaces of debris aprons and the presence of ice-cemented mantle material imply young (for example, Amazonian) surface ages that are consistent with recent climate change in this region of Mars. North of Deuteronilus Mensae are the northern lowlands, a potential depositional sink that may have had large standing bodies of water or an ocean in the past. The northern lowlands have elevations that are several kilometers below the ancient cratered highlands with significantly younger surface ages. The morphologic and topographic characteristics of the Deuteronilus Mensae region record a diverse geologic history, including significant modification of the ancient highland plateau and resurfacing of low-lying regions. Previous studies of this region have interpreted a complex array of geologic processes, including eolian, fluvial and glacial activity, coastal erosion, marine deposition, mass wasting, tectonic faulting, effusive volcanism, and hydrovolcanism. The origin and age of the Martian crustal dichotomy boundary are fundamental questions that remain unresolved at the

  5. History of geological disposal concept (3). Implementation phase of geological disposal (2000 upward)

    International Nuclear Information System (INIS)

    Masuda, Sumio; Sakuma, Hideki; Umeki, Hiroyuki

    2015-01-01

    Important standards and concept about geological disposal have been arranged as an international common base and are being generalized. The authors overview the concept of geological disposal, and would like this paper to help arouse broad discussions for promoting the implementation plan of geological disposal projects in the future. In recent years, the scientific and technological rationality of geological disposal has been recognized internationally. With the addition of discussions from social viewpoints such as ethics, economy, etc., geological disposal projects are in the stage of starting after establishment of social consensus. As an international common base, the following consolidated and systematized items have been presented as indispensable elements in promoting business projects: (1) step-by-step approach, (2) safety case, (3) reversibility and recovery potential, and (4) trust building and communications. This paper outlines the contents of the following cases, where international common base was reflected on the geological disposal projects in Japan: (1) final disposal method and safety regulations, and (2) impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Power Station accident on geological disposal plan. (A.O.)

  6. Geologic and remote sensing studies of Rima Mozart

    Science.gov (United States)

    Coombs, Cassandra R.; Hawke, B. Ray; Wilson, Lionel

    1988-01-01

    Geologic, photographic, and remote sensing data on Rima Mozart are analyzed to study the processes responsible for the formation of lunar sinuous rilles. The results show that it is unlikely that a complete lava tube could have existed along the Rima Mozart rille. A total eruptive volume of 6372 cu km has been determined for an open channel or tube with an eruption rate of about 80,000 cu m/s and a duration of 947 days. Near-infrared spectral reflectance data and 2.8-cm and 70-cm radar observations indicate that volcanic activity was responsible for the formation of the rille and that pyroclastic deposits are present around Kathleen and Ann as well as at the base of the Apennines.

  7. STUDY ON THE DISTRIBUTION OF GEOLOGICAL HAZARDS BASED ON FRACTAL CHARACTERISTICS – A CASE STUDY OF DACHUAN DISTRICT

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-04-01

    Full Text Available It is a complicated process to analyze the cause of geological hazard. Through the analysis function of GIS software, 250 landslides were randomly selected from 395 landslide hazards in the study area, superimposed with the types of landforms, annual rainfall and vegetation coverage respectively. It used box dimension method of fractal dimension theory to study the fractal characteristics of spatial distribution of landslide disasters in Dachuan district, and analyse the statistical results. Research findings showed that the The fractal dimension of the landslides in the Dachuan area is 0.9114, the correlation coefficient is 0.9627, and it has high autocorrelation. Zoning statistics according to various natural factors, the fractal dimension between landslide hazard points and deep hill, middle hill area is strong as well as the area whose average annual rainfall is 1050 mm–1250 mm and vegetation coverage is 30 %–60 %. Superposition of the potential hazard distribution map of single influence factors to get the potential hazard zoning of landslides in the area. Verifying the potential hazard zoning map of the potential landslides with 145 remaining disaster points, among them, there are 74 landslide hazard points in high risk area, accounting for 51.03 % of the total. There are 59 landslides in the middle risk area, accounting for 40.69 % of the total, and 12 in the low risk area, accounting for 8.28 % of the total. The matching degree of the verifying result and the potential hazard zoning is high. Therefore, the fractal dimension value divided the degree of geological disaster susceptibility can be described the influence degree of each influence factor to geological disaster point more intuitively, it also can divide potential disaster risk areas and provide visual data support for effective management of geological disasters.

  8. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  9. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  10. Spectrophotometry of the Ceres surface

    Science.gov (United States)

    Schröder, Stefan; Mottola, Stefano; Carsenty, Uri; Jaumann, Ralf; Keller, Uwe; Krohn, Katrin; Li, Jian-Yang; Matz, Klaus-Dieter; McFadden, Lucy; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Scholten, Frank; Stephan, Katrin; Wagner, Roland; Raymond, Carol; Russell, Chris

    2015-11-01

    The Dawn spacecraft is in orbit around dwarf planet Ceres. The onboard Framing Camera (FC) is mapping the surface through a clear filter and 7 narrow-band filters at various observational geometries and image resolutions. Generally, Ceres' appearance in these images is affected by shadows and shading, effects which obscure the intrinsic reflective properties of the surface. By means of photometric modeling we remove these effects and reconstruct the surface reflectance for each of the FC filters, creating albedo and color maps in the process. Considering these maps in unison provides clues to the physical nature and composition of the surface and the dominant geologic processes that shape the surface. We assess the nature of color variations in the visible wavelength range for Ceres globally. We identify which terrains express the dominant colors and investigate why some areas are exceptions to the rule. By correlating the color over the surface with geologic units we find an relatively strong enhancement of the reflectance towards the blue end of the visible spectrum for recent impacts and their ejecta.

  11. Study concerning the geological storage of radioactive waste in the Netherlands

    International Nuclear Information System (INIS)

    1987-03-01

    This report presents an intermediate state of affairs in the execution of the first stage of the program of research concerning the geological storage of nuclear waste in the Netherlands (OPLA-program). This first stage consists of desk studies and laboratory investigations in view of the judgement of the desirability of continuation of this program in eventual next steps with field research. 19 refs.; 11 figs.; 1 table

  12. Quaternary Magmatism in the Cascades - Geologic Perspectives

    Science.gov (United States)

    Hildreth, Wes

    2007-01-01

    uniquely qualified to present this synthesis. During more than three decades of volcanological studies, he has carried out comprehensive investigations of Mount Adams, Mount Baker, the Three Sisters, and the Simcoe Mountains Volcanic Field. He also brings a broad experience in other volcanic arcs, having conducted integrated field and laboratory investigations at several major volcanic centers in the Andes and the Aleutian arcs. His expertise and perspective have been further enhanced by in-depth petrologic studies of caldera environments, primarily in Long Valley, California, and Yellowstone. On the basis of all these field and laboratory investigations and exhaustive literature searches, he has published three definitive petrologic syntheses addressing the passage and transformation of basaltic magmas from their mantle sources through the crust to form the many types of volcanic manifestations at the Earth's surface. A major strength of this Professional Paper is that it adheres to data first and foremost, and only then correlates these data with relevant theories. Petrological and geophysical interpretation is left to the later sections of the volume, and even there is never allowed to stray from the pertinent databases. Hildreth's interpretations are not just idle speculations, but are carefully reasoned inferences firmly based on his thorough evaluation of the observational geological data. Professional Paper 1744 should not be skimmed lightly, in the hope that the salient points will quickly rub off. Instead, every section, indeed every paragraph, presents scholarly observations and insightful interpretations that demand careful and thoughtful study. This volume will influence and guide the course of Cascade investigations for decades to come.

  13. Development and management of the knowledge base for the geological disposal technology. Annual report 2006

    International Nuclear Information System (INIS)

    Umeda, Koji; Oyama, Takuya; Kurosawa, Hideki; Semba, Takeshi; Takeuchi, Shinji; Tajikara, Masayoshi; Tsuruta, Tadahiko; Yasue, Ken-ichi; Ohi, Takao; Oda, Chie; Kamei, Gento; Kobayashi, Yasushi; Sasaki, Yasuo; Sawada, Atsushi; Taniguchi, Naoki; Tanai, Kenji; Naito, Morimasa; Nakayama, Masashi; Kuno, Yoshio; Fujita, Tomoo; Honda, Akira; Mihara, Morihiro; Miyahara, Kaname; Osawa, Hideaki; Fujishima, Atsushi; Kuji, Masayoshi; Saito, Haruo; Sanada, Hiroyuki; Niizato, Tadafumi; Funaki, Hironori; Maekawa, Keisuke; Fujiwara, Kenso

    2007-12-01

    To increase technical reliability in geological disposal technology of high-level radioactive waste, JAEA have been conducting R and D activities in the fields in the repository engineering, performance assessment (PA) of the geological disposal system, and geoscientific study. In the field of R and D on the repository engineering, laboratory experimental studies at Tokai Research Center are carried out by engineering-scale and non-radiogenic experiments. The studies on performance assessment include more realistic model development with extensive computer analyses and acquisition of basic data concerning the chemical properties and migration behavior of radionuclides under geological disposal conditions. The information obtained from the Underground Research Laboratories (URLs) is used to provide a realistic condition of geological environments for these studies. The R and D studies are also carried out for TRU waste. A particular JAEA R and D activity is to promote the projects of two Underground Research Laboratories (URLs): one at Mizunami city, in crystalline rock and the other at Horonobe town, in sedimentary rock. In the present stage (2nd R and D phase) of the URL projects, the investigation are being carried out during the excavation of shafts and drifts. Data obtained from the investigations will serve to verify and refine the results from the surface-based investigations and characterize the evolution of the geological environment during drift excavation. The research on natural processes, such as fault and volcanic activities, is also conducted to provide better understanding of long-term stability on the geological environment. JAEA has initiated a project to develop the next generation of novel knowledge management system (KMS) to develop and manage the technical knowledge base for supporting implementers and regulators. This knowledge base includes all technical achievements by the JAEA as well as know-how and experience which have been accumulated

  14. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  15. OneGeology-Europe: architecture, portal and web services to provide a European geological map

    Science.gov (United States)

    Tellez-Arenas, Agnès.; Serrano, Jean-Jacques; Tertre, François; Laxton, John

    2010-05-01

    OneGeology-Europe is a large ambitious project to make geological spatial data further known and accessible. The OneGeology-Europe project develops an integrated system of data to create and make accessible for the first time through the internet the geological map of the whole of Europe. The architecture implemented by the project is web services oriented, based on the OGC standards: the geological map is not a centralized database but is composed by several web services, each of them hosted by a European country involved in the project. Since geological data are elaborated differently from country to country, they are difficult to share. OneGeology-Europe, while providing more detailed and complete information, will foster even beyond the geological community an easier exchange of data within Europe and globally. This implies an important work regarding the harmonization of the data, both model and the content. OneGeology-Europe is characterised by the high technological capacity of the EU Member States, and has the final goal to achieve the harmonisation of European geological survey data according to common standards. As a direct consequence Europe will make a further step in terms of innovation and information dissemination, continuing to play a world leading role in the development of geosciences information. The scope of the common harmonized data model was defined primarily by the requirements of the geological map of Europe, but in addition users were consulted and the requirements of both INSPIRE and ‘high-resolution' geological maps were considered. The data model is based on GeoSciML, developed since 2006 by a group of Geological Surveys. The data providers involved in the project implemented a new component that allows the web services to deliver the geological map expressed into GeoSciML. In order to capture the information describing the geological units of the map of Europe the scope of the data model needs to include lithology; age; genesis and

  16. Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis

    OpenAIRE

    Sumintadireja, Prihadi; Saepuloh, Asep; Irawan, Dasapta E.; Irawan, Diky; Fadillah, Ahmad

    2014-01-01

    The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at p...

  17. Geology of the Huntsville quadrangle, Alabama

    Science.gov (United States)

    Sanford, T.H.; Malmberg, G.T.; West, L.R.

    1961-01-01

    The 7 1/2-minute Huntsville quadrangle is in south-central Madison County, Ala., and includes part of the city of Hunstville. The south, north, east, and west boundaries of the quadrangle are about 3 miles north of the Tennessee River, 15 1/2 miles south of the Tennessee line, 8 miles west of the Jackson County line, and 9 miles east of the Limestone County line. The bedrock geology of the Huntsville quadrangle was mapped by the U.S. Geological Survey in cooperation with the city of Hunstville and the Geological Survey of Alabama as part of a detailed study of the geology and ground-water resources of Madison County, with special reference to the Huntsville area. G. T. Malmberg began the geologic mapping of the county in July 1953, and completed it in April 1954. T. H. Sanford, Jr., assisted Malmberg in the final phases of the county mapping, which included measuring geologic sections with hand level and steel tape. In November 1958 Sanford, assisted by L. R. West, checked contacts and elevations in the Hunstville quadrangle; made revisions in the contact lines; and wrote the text for this report. The fieldwork for this report was completed in April 1959.

  18. Influences of geological parameters to probabilistic assessment of slope stability of embankment

    Science.gov (United States)

    Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr

    2018-04-01

    This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.

  19. Site independent considerations on safety and protection of the groundwater - Basis for the fundamental evaluation of the licence granting for the surface buildings of a geological repository

    International Nuclear Information System (INIS)

    2013-08-01

    This report explains how the protection of man and the environment can be assured for the surface facility of a deep geological repository. The report is intended primarily for the federal authorities, but also provides important information for the siting Cantons and siting regions. Nagra has also prepared an easily understandable brochure on the topic for the general public. The report was prepared at the request of the Swiss Federal Office of Energy (SFOE), with the aim of allowing the responsible federal authorities to evaluate, in a general manner, the aspects of safety and groundwater protection during the construction and operation of the surface facility of a geological repository, and the ability of the facility to fulfill the licensing requirements. The information is based on preliminary design concepts. The report presents the main features of a surface facility (design, activities), taking into account the waste to be emplaced in the repository and the potential conditions at the site. It is not a formal safety report for a facility at a real site within the context of licensing procedures as specified in the nuclear energy legislation. In line with the different legal and regulatory requirements, the following aspects are the subject of a qualitative analysis for the surface facility: (i) Nuclear safety and radiological protection during operation; (ii) Safety with respect to conventional (non-nuclear) accidents during operation and (iii) Protection of the groundwater during the construction and operational phases. The analysis highlights the fundamental requirements relating to the design of the surface facility, the operating procedures and the waste to be emplaced that have to be implemented in order to ensure the safety and protection of the groundwater. The influence of site-specific features and factors on the safety of the surface facility and on a possible impact on groundwater is also considered. To summarise, the report reaches the

  20. Israel Geological Society, annual meeting 1994

    International Nuclear Information System (INIS)

    Amit, R.; Arkin, Y.; Hirsch, F.

    1994-02-01

    The document is a compilation of papers presented during the annual meeting of Israel Geological Society. The document is related with geological and environmental survey of Israel. It discusses the technology and instruments used to carry out such studies. Main emphasis is given to seismology, geochemical analysis of water, water pollution and geophysical survey of rocks

  1. Deep geologic disposal. Lessons learnt from recent performance assessment studies

    International Nuclear Information System (INIS)

    Pescatore, C.; Andersson, J.

    1998-01-01

    Performance assessment (PA) studies are part of the decision basis for the siting, operation, and closure of deep repositories of long-lived nuclear wastes. In 1995 the NEA set up the Working Group on Integrated Performance Assessments of Deep Repositories (IPAG) with the goals to analyse existing PA studies, learn about what has been produced to date, and shed light on what could be done in future studies. Ten organisations submitted their most recent PA study for analysis and discussion, including written answers to over 70 questions. Waste management programmes, disposal concepts, geologies, and different types and amounts of waste offered a unique opportunity for exchanging information, assessing progress in PA since 1990, and identifying recent trends. A report was completed whose main lessons are overviewed. (author)

  2. Geological and geotechnical limitations of radioactive waste retrievability in geologic disposals

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon-Vargas, Rocio; Mintzlaff, Volker; Treidler, Ann-Kathrin [TU Braunschweig (Germany). Inst. for Soil Mechanics and Foundation Engineering

    2015-07-01

    The capability of retrieving radioactive waste emplaced in deep geological formations is nowadays in discussion in many countries. Based on the storage of high-level radioactive waste (HAW) in deep geological repositories there is a number of possible scenarios for their retrieval. Measurements for an improved retrieving capability may impact on the geotechnical and geological barriers, e.g. keeping open the access drifts for a long period of time can result in a bigger evacuation damage zone (EDZ) in the host rock which implies potential flow paths for ground water. Nevertheless, to limit the possible scenarios associated to the retrieval implementation, it is necessary to take in consideration which criteria will be used for an efficient monitoring program, while clearly determining the performance reliability of the geotechnical barriers. In addition, the integrity of the host rock as geological barrier has to be verified. Therefore, it is important to evaluate different design solutions and the most appropriate measurement methods to improve the retrievability process of wastes from a geological repository. A short presentation of the host rocks is given is this paper.

  3. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  4. Geologic and radiometric study of the Santa Rosalia area, Arizpe Department, Sonora Mexico

    International Nuclear Information System (INIS)

    Sanchez M, C.A.

    1977-01-01

    The importance of the radiometrical anomaly, discovered in the Santa Rosalia area, Arizpe Department, Sonota, is defined in this study through topographical and geological surveying of the area by the outline and systematical survey of rocks for sampling and registration of the radioactivity. Two radioactive anomalies were defined and called IIIA and IIIB, identifying the existence of secondary uranium minerals (Torbernite) in the IIIB anomaly. According to the results of the work which was carried out we can't deduce that both localities present signs of the existence of important uranium concentrations. We can conclude that the presence of uranium minerals obliges us to realize a more detailed exploration, suggesting the opening of little excavations and ditches and stretching out of the geochemical, geological and radiometrical exploration to adjacent areas. (author)

  5. Geologic Map of the Thaumasia Region, Mars

    Science.gov (United States)

    Dohm, Janes M.; Tanaka, Kenneth L.; Hare, Trent M.

    2001-01-01

    The geology of the Thaumasia region (fig. 1, sheet 3) includes a wide array of rock materials, depositional and erosional landforms, and tectonic structures. The region is dominated by the Thaumasia plateau, which includes central high lava plains ringed by highly deformed highlands; the plateau may comprise the ancestral center of Tharsis tectonism (Frey, 1979; Plescia and Saunders, 1982). The extensive structural deformation of the map region, which is without parallel on Mars in both complexity and diversity, occurred largely throughout the Noachian and Hesperian periods (Tanaka and Davis, 1988; Scott and Dohm, 1990a). The deformation produced small and large extensional and contractional structures (fig. 2, sheet 3) that resulted from stresses related to the formation of Tharsis (Frey, 1979; Wise and others, 1979; Plescia and Saunders, 1982; Banerdt and others, 1982, 1992; Watters and Maxwell, 1986; Tanaka and Davis, 1988; Francis, 1988; Watters, 1993; Schultz and Tanaka, 1994), from magmatic-driven uplifts, such as at Syria Planum (Tanaka and Davis, 1988; Dohm and others, 1998; Dohm and Tanaka, 1999) and central Valles Marineris (Dohm and others, 1998, Dohm and Tanaka, 1999), and from the Argyre impact (Wilhelms, 1973; Scott and Tanaka, 1986). In addition, volcanic, eolian, and fluvial processes have highly modified older surfaces in the map region. Local volcanic and tectonic activity often accompanied episodes of valley formation. Our mapping depicts and describes the diverse terrains and complex geologic history of this unique ancient tectonic region of Mars. The geologic (sheet 1), paleotectonic (sheet 2), and paleoerosional (sheet 3) maps of the Thaumasia region were compiled on a Viking 1:5,000,000-scale digital photomosaic base. The base is a combination of four quadrangles: the southeast part of Phoenicis Lacus (MC–17), most of the southern half of Coprates (MC–18), a large part of Thaumasia (MC–25), and the northwest margin of Argyre (MC–26

  6. Geology of the Tyrrhenus Mons Lava Flow Field, Mars

    Science.gov (United States)

    Crown, David A.; Mest, Scott C.

    2014-11-01

    The ancient, eroded Martian volcano Tyrrhenus Mons exhibits a central caldera complex, layered flank deposits dissected by radial valleys, and a 1000+ km-long flow field extending to the southwest toward Hellas Planitia. Past studies suggested an early phase of volcanism dominated by large explosive eruptions followed by subsequent effusive activity at the summit and to the southwest. As part of a new geologic mapping study of northeast Hellas, we are examining the volcanic landforms and geologic evolution of the Tyrrhenus Mons flow field, including the timing and nature of fluvial activity and effects on volcanic units. New digital geologic mapping incorporates THEMIS IR (100 m/pixel) and CTX (5 m/pixel) images as well as constraints from MOLA topography.Mapping results to-date include delineation of the boundaries of the flow field, identification and mapping of volcanic and erosional channels within the flow field, and mapping and analysis of lava flow lobes. THEMIS IR and CTX images allow improved discrimination of the numerous flow lobes that are observed in the flow field, including refinement of the margins of previously known flows and identification of additional and smaller lobes. A prominent sinuous rille extending from Tyrrhenus Mons’ summit caldera is a major feature that supplied lava to the flow field. Smaller volcanic channels are common throughout the flow field; some occur in segments along crests of local topographic highs and may delineate lava tubes. In addition to volcanic channels, the flow field surface is characterized by several types of erosional channels, including wide troughs with scour marks, elongate sinuous channels, and discontinuous chains of elongate pits and troughs. High-resolution images reveal the widespread and significant effects of fluvial activity in the region, and further mapping studies will examine spatial and temporal interactions between volcanism and fluvial processes.

  7. Geomorphologic and geologic overview for water resources development: Kharit basin, Eastern Desert, Egypt

    Science.gov (United States)

    Mosaad, Sayed

    2017-10-01

    This study demonstrates the importance of geomorphologic, geologic and hydrogeologic assessment as an efficient approach for water resources development in the Kharit watershed. Kharit is one of largest watersheds in the Eastern Desert that lacks water for agricultural and drinking purposes, for the nomadic communities. This study aims to identify and evaluate the geomorphologic, geologic and hydrogeologic conditions in the Kharit watershed relative to water resource development using remote sensing and GIS techniques. The results reveal that the watershed contains 15 sub-basins and morphometric analyses show high probability for flash floods. These hazards can be managed by constructing earth dikes and masonry dams to minimize damage from flash floods and allow recharge of water to shallow groundwater aquifers. The Quaternary deposits and the Nubian sandstone have moderate to high infiltration rates and are relatively well drained, facilitating surface runoff and deep percolation into the underlying units. The sediments cover 54% of the watershed area and have high potential for groundwater extraction.

  8. A Geology-Based Estimate of Connate Water Salinity Distribution

    Science.gov (United States)

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  9. New approaches in geological studies of tsunami deposits

    Science.gov (United States)

    Szczucinski, Witold

    2017-04-01

    During the last dozen of years tsunamis have appeared to be the most disastrous natural process worldwide. The dramatic, large tsunamis on Boxing Day, 2004 in the Indian Ocean and on March 11, 2011 offshore Japan caused catastrophes listed as the worst in terms of the number of victims and the economic losses, respectively. In the aftermath, they have become a topic of high public and scientific interest. The record of past tsunamis, mainly in form of tsunami deposits, is often the only way to identify tsunami risk at a particular coast due to relatively low frequency of their occurrence. The identification of paleotsunami deposits is often difficult mainly because the tsunami deposits are represented by various sediment types, may be similar to storm deposits or altered by post-depositional processes. There is no simple universal diagnostic set of criteria that can be applied to interpret tsunami deposits with certainty. Thus, there is a need to develop new methods, which would enhance 'classical', mainly sedimentological and stratigraphic approach. The objective of the present contribution is to show recent progress and application of new approaches including geochemistry (Chagué-Goff et al. 2017) and paleogenetics (Szczuciński et al. 2016) in studies of geological impacts of recent tsunamis from various geographical regions, namely in monsoonal-tropical, temperate and polar zones. It is mainly based on own studies of coastal zones affected by 2004 Indian Ocean Tsunami in Thailand, 2011 Tohoku-oki tsunami and older paleotsunamis in Japan, catastrophic saltwater inundations at the coasts of Baltic Sea and 2000 landslide-generated tsunami in Vaigat Strait (west Greenland). The study was partly funded by Polish National Science Centre grant No. 2011/01/B/ST10/01553. Chagué-Goff C., Szczuciński W., Shinozaki T., 2017. Applications of geochemistry in tsunami research: A review. Earth-Science Reviews 165: 203-244. Szczuciński W., Pawłowska J., Lejzerowicz F

  10. Underground gas storage Lobodice geological model development based on 3D seismic interpretation

    International Nuclear Information System (INIS)

    Kopal, L.

    2015-01-01

    Aquifer type underground gas storage (UGS) Lobodice was developed in the Central Moravian part of Carpathian foredeep in Czech Republic 50 years ago. In order to improve knowledge about UGS geological structure 3D seismic survey was performed in 2009. Reservoir is rather shallow (400 - 500 m below surface) it is located in complicated locality so limitations for field acquisition phase were abundant. This article describes process work flow from 3D seismic field data acquisition to geological model creation. The outcomes of this work flow define geometry of UGS reservoir, its tectonics, structure spill point, cap rock and sealing features of the structure. Improving of geological knowledge about the reservoir enables less risky new well localization for UGS withdrawal rate increasing. (authors)

  11. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Bullard, K.L.

    1994-01-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ''worst possible case'' flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services's Hydrometeorological Report No. 49 (HMR 49)

  12. Geologic Water Storage in Pre-Columbian Peru

    Energy Technology Data Exchange (ETDEWEB)

    Fairley Jr., Jerry P.

    1997-07-14

    Agriculture in the arid and semi-arid regions that comprise much of present-day Peru, Bolivia, and Northern Chile is heavily dependent on irrigation; however, obtaining a dependable water supply in these areas is often difficult. The precolumbian peoples of Andean South America adapted to this situation by devising many strategies for transporting, storing, and retrieving water to insure consistent supply. I propose that the ''elaborated springs'' found at several Inka sites near Cuzco, Peru, are the visible expression of a simple and effective system of groundwater control and storage. I call this system ''geologic water storage'' because the water is stored in the pore spaces of sands, soils, and other near-surface geologic materials. I present two examples of sites in the Cuzco area that use this technology (Tambomachay and Tipon) and discuss the potential for identification of similar systems developed by other ancient Latin American cultures.

  13. 'Kozloduy' NPP geological environment as a barrier against radionuclide migration

    International Nuclear Information System (INIS)

    Antonov, D.

    2000-01-01

    The aim of this report is to present an analysis of the geological settings along Kozloduy NPP area from the viewpoint of a natural, protective barrier against unacceptable radionuclides migration in the environment. Possible sources of such migration could be an eventual accident in an active nuclear plant; radioactive releases from decommissioned Power Units or from temporary or permanent radioactive waste repositories. The report is directed mainly to the last case, and especially to the site selection for near surface short lived low and intermediate level (LILW) radioactive repository. The main conclusion of the geological settings assessment and of the many years monitoring is that the Kozloduy NPP area offers good possibilities for site selection of LILW repository. (author)

  14. Quaternary geologic map of the Austin 4° x 6° quadrangle, United States

    Science.gov (United States)

    State compilations by Moore, David W.; Wermund, E.G.; edited and integrated by Moore, David W.; Richmond, Gerald Martin; Christiansen, Ann Coe; Bush, Charles A.

    1993-01-01

    This map is part of the Quaternary Geologic Atlas of the United States (I-1420). It was first published as a printed edition in 1993. The geologic data have now been captured digitally and are presented here along with images of the printed map sheet and component parts as PDF files. The Quaternary Geologic Map of the Austin 4° x 6° Quadrangle was mapped as part of the Quaternary Geologic Atlas of the United States. The atlas was begun as an effort to depict the areal distribution of surficial geologic deposits and other materials that accumulated or formed during the past 2+ million years, the period that includes all activities of the human species. These materials are at the surface of the Earth. They make up the ground on which we walk, the dirt in which we dig foundations, and the soil in which we grow crops. Most of our human activity is related in one way or another to these surface materials that are referred to collectively by many geologists as regolith, the mantle of fragmental and generally unconsolidated material that overlies the bedrock foundation of the continent. The maps were compiled at 1:1,000,000 scale. In recent years, surficial deposits and materials have become the focus of much interest by scientists, environmentalists, governmental agencies, and the general public. They are the foundations of ecosystems, the materials that support plant growth and animal habitat, and the materials through which travels much of the water required for our agriculture, our industry, and our general well being. They also are materials that easily can become contaminated by pesticides, fertilizers, and toxic wastes. In this context, the value of the surficial geologic map is evident.

  15. Native American Students' Understanding of Geologic Time Scale: 4th-8th Grade Ojibwe Students' Understanding of Earth's Geologic History

    Science.gov (United States)

    Nam, Younkyeong; Karahan, Engin; Roehrig, Gillian

    2016-01-01

    Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American--particularly Ojibwe tribe--students' understanding of relative ordering and absolute time of Earth's significant geological and biological events. This study also…

  16. Exploring the assessment of geological observation with design research

    Science.gov (United States)

    Baek, John Y.

    The purpose of this study was to investigate the assessment of geological observation through the development and field testing of performance tasks. The study addressed a central challenge in geoscience education: for students to observe the world around them and make real-world connections. Yet, there existed no cohesive research approach for the study of observation in geoscience education. The research goal was to understand the assessment of geological observation. The design research of geological observation encountered the situation where few performance assessments existed and few domain-specific learning theories were available. Design research is suited to inquiries in which a domain of learning is unexplored and the phenomena needs to be supported in the classroom in order to study it. This dissertation addressed one general research question and four subquestions: (RQ) How should geological observation be assessed? (S1) What role did perception play in assessing students' geological observations? (S2) What role did explanation play in assessing students' geological observations? (S3) What role did gestures play in assessing students' geological observations? (S4) Were there performance differences between the first and second trial of the GO Inquire prototype with fourth graders? Students were supported in making geological observations with three performance tasks: GO Inquire stamp task, Cutting task, and Fieldguide task. The data set for this study consisted of student response data, videorecordings, and participant observations from seven field tests across one fourth and one fifth grade class. Three data-analytic methods, qualitative coding, item-difficulty analysis, and non-parametric comparisons, were utilized based on four mixed-method data analysis strategies: typology development, data transformation, extreme case analysis, and data consolidation. Analysis revealed that assessment should take into account the separation of visual from verbal

  17. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  18. Study on advanced systematic function of the JNC geological disposal technical information integration system. Research document

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Fukui, Hiroshi; Sagawa, Hiroshi; Matsunaga, Kenichi; Ito Takaya

    2004-02-01

    In this study, while attaining systematization about the technical know-how mutually utilized between geology environmental field, disposal technology (design) field and safety assessment field, the share function of general information in which the formation of an information share and the use promotion between the technical information management databases built for every field were aimed at as an advancement of the function of JNC Geological Disposal Technical Information Integration System considered, and the system function for realizing considered in integration of technical information. (1) Since the concrete information about geology environment which is gradually updated with progress of stratum disposal research, or increases in reflected suitable for research of design and safety assessment. After arranging the form suitable for systematizing technical information, while arranging the technical information in both the fields of design and safety assessment with the form of two classes based on tasks/works, it systematized planning adjustment about delivery of technical information with geology environmental field. (2) In order to aim at integration of 3-fields technical information of geological disposal, based on the examination result of systematization of technical information, the function of mutual use of the information managed in two or more databases was considered. Moreover, while considering system functions, such as management of the use history of technical information, connection of information use, and a notice of common information, the system operation windows in consideration of the ease of operation was examined. (author)

  19. North Central Regional geologic characterization report. Volume 1. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Minnesota, Wisconsin, and the Upper Peninsula of Michigan. For each of the states within the North Central Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, post-emplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major groundwater discharge zones, groundwater resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline rock bodies; groundwater resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented of the relationship between the US Department of Energy Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process. 43 figs., 15 tabs

  20. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Daley, T.M.; Majer, E.L.; Karageorgi, E.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies

  1. Geological, geophysical investigations and seismotectonic analysis with reference to selection of site for nuclear power plants: a review

    International Nuclear Information System (INIS)

    Chaki, Anjan

    2014-01-01

    Geological, geophysical investigations and seismotectonic analysis play a major role in qualifying a proposed site for establishment of nuclear power plants. In an area, it is important to understand the aspects such as regional and local geology, geomorphology, tectonic settings, presence of active faults/capable faults, earthquake history and earthquake proneness, neotectonic activity, slope instability, subsidence, liquefaction, seismically induced flooding, tsunami and geohydrological conditions. Geological investigations comprise use of remote sensing and ground validation followed by geological mapping, identification of faults, near surface geological studies for foundation conditions, stratigraphic drilling, palaeoseismology, studies on engineering properties of rock and soil. Geophysical investigations provide insight into subsurface geology including concealed faults, elastic constants and hydrological conditions. Radon emanometry is a valuable tool in the initial stage to decipher subsurface active weak zones/fault lines. Seismotectonic analysis identifies the provinces of tectonic significance and their earthquake potential, thereby designating lineaments of consequence leading to their evaluation. This, in turn, determines the design basis earthquake parameter for the estimation of vibratory ground motion. This article provides certain measures to evaluate the suitability of the sites for the establishment of nuclear power plants in terms of geological, geophysical investigations and seismotectonic status. Atomic Minerals Directorate for Exploration and Research (AMD) had carried out seismotectonic analysis of the area around Kaiga, Narora, Kalpakkam, Kakrapar, Tarapur, Kudankulam and Rawatbhata Nuclear Power Projects, which were either in operation or under expansion and construction. Such analysis was extended to a number of proposed sites for establishing nuclear power plants in West Bengal, Bihar, Orissa, Andhra Pradesh, Gujrat, Madhya Pradesh

  2. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Search for potential [disposal] sites

    International Nuclear Information System (INIS)

    Dixon, G.L.; Glanzman, V.M.

    1982-01-01

    The objective is to locate and characterize rock masses at the NTS and in southern Nevada suitable as host media for high-level radioactive wastes; to describe the areal and depth distribution and structural integrity of these rock masses; and to assess the potential for contaminant release by hydrologic transport, or as a result of tectonic, and (or) volcanic activity. From previous geologic work at NTS, the general geology is well known. Areas likely to have suitable host rocks and hydrologic conditions at depths appropriate for a repository are evaluated by detailed surface mapping, surface geophysical methods, exploratory drilling, and geophysical techniques. 10 refs., 1 figs

  3. Geology and geochemistry of the Atacama Desert.

    Science.gov (United States)

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  4. Solid state nuclear track detection: a useful geological/geophysical tool

    International Nuclear Information System (INIS)

    Khan, H.A.; Qureshi, A.A.

    1994-01-01

    Solid State Nuclear Track Detection (SSNTD) is a relatively new nuclear particle detection technique. Since its inception, it has found useful application in almost every branch of science. This paper gives a very brief review of the role it has played in solving some geological/geophysical problems. Since the technique has been found useful in a wide spectrum of geological/geophysical applications, it was simply not possible to discuss all of these in this paper due to severe space restrictions. However, an attempt has been made to discuss the salient features of some of the most prominent applications in the geological and geophysical sciences. The paper has been divided into two parts. Firstly, applications based on radon measurements by SSNTDs have been described. These include: Uranium/thorium and mineral exploration, search for geothermal energy sources, study of volcanic processes, location of geological faults and earthquake prediction, for example. Secondly, applications based on the study of spontaneous fission tracks in geological samples have been described briefly. The second group of applications includes: fission track dating (FTD) of geological samples, FTD in the study of emplacement times, provenance studies, and thermal histories of minerals. Necessary references have been provided for detailed studies of (a) the applications cited in this paper, and (b) other important geological/geophysical applications, which unfortunately could not be covered in the present paper. (author)

  5. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  6. GeoWall use in an Introductory Geology laboratory: Impacts in Student Understanding of Field Mapping Concepts

    Science.gov (United States)

    Ross, L. E.; Kelly, M.; Springer, A. E.

    2003-12-01

    In the Fall semester of 2003, Northern Arizona University will introduce the GeoWall to its introductory geology courses. This presents an opportunity to assess the impact of this new technology on students' understanding of basic topographic concepts and the spatial relationships between geology, topography, and hydrology on a field trip. Introductory Geology fulfills the Lab Science component of the Liberal Studies Program at Northern Arizona University. The class is open to all Northern Arizona University students, and is most commonly taken by non-science majors. In this class students learn to: locate their position using maps, identify common minerals and rocks, recognize the relationship between geology and geomorphology, visualize how rocks exposed at the surface continue into the subsurface, and to draw conclusions about possible geologic hazards in different settings. In this study we will report how a GeoWall 3D visualization technology was used in a field study of a graben south of Flagstaff. The goal of the field exercise is to improve students' ability to synthesize data collected at field stops into a conceptual model of the graben, linking geology, geomorphology and hydrology. We plan to present a quantitative assessment of the GeoWall learning objectives from data collected from a paired test and control group of students. Teaching assistants (TAs) with two or more lab classes have been identified; these TAs will participate in both GeoWall and non-GeoWall lab exercises. The GeoWall use will occur outside of normal lab hours to avoid disrupting the lab schedule during the eighth week of lab. This field preparation exercise includes a 3D visualization of the Lake Mary graben rendered with the ROMA software. The following week, all students attend the graben field trip; immediately following the trip, students will interviewed about their gain in understanding of the geologic features illustrated during the field trip. The results of the post

  7. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia.

    Science.gov (United States)

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-10-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the Exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a consistent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described

  9. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  10. Effects of local geology on ground motion in the San Francisco Bay region, California—A continued study

    Science.gov (United States)

    Gibbs, James F.; Borcherdt, Roger D.

    1974-01-01

    Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The seismograms, Fourier amplitude spectra, spectral amplification curves for the signal, and the Fourier amplitude spectra of the seismic noise are presented for 60 locations. Analog amplifications, based on the maximum signal amplitude, are computed for an additional 39 locations. The recordings of the nuclear explosions show marked amplitude variations which are consistently related to the local geologic conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1, 1) for granite, (1.5, 1.6) for the Franciscan Formation, (2.3, 2.3), for other pre-Tertiary and Tertiary rocks, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for older bay sediments, and (3.7, 11.3) for younger bay mud. Spectral amplification curves define predominant ground frequencies for younger bay mud sites and for some older bay sediment sites. The predominant frequencies for most sites were not clearly defined by the amplitude spectra computed from the seismic background noise. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2.69 - 1.90 log (Distance Km). For sites on other geologic units, intensity increments, derived from this empirical rela.tion, correlate strongly with the Average Horizontal Spectral Amplifications (MISA) according to the empirical relation Intensity Increment= 0.27 + 2.70 log(AHSA). Average

  11. A Knowledge-Driven Geospatially Enabled Framework for Geological Big Data

    Directory of Open Access Journals (Sweden)

    Liang Wu

    2017-06-01

    Full Text Available Geologic survey procedures accumulate large volumes of structured and unstructured data. Fully exploiting the knowledge and information that are included in geological big data and improving the accessibility of large volumes of data are important endeavors. In this paper, which is based on the architecture of the geological survey information cloud-computing platform (GSICCP and big-data-related technologies, we split geologic unstructured data into fragments and extract multi-dimensional features via geological domain ontology. These fragments are reorganized into a NoSQL (Not Only SQL database, and then associations between the fragments are added. A specific class of geological questions was analyzed and transformed into workflow tasks according to the predefined rules and associations between fragments to identify spatial information and unstructured content. We establish a knowledge-driven geologic survey information smart-service platform (GSISSP based on previous work, and we detail a study case for our research. The study case shows that all the content that has known relationships or semantic associations can be mined with the assistance of multiple ontologies, thereby improving the accuracy and comprehensiveness of geological information discovery.

  12. Parametric study of geohydrologic performance characteristics for geologic waste repositories

    International Nuclear Information System (INIS)

    Bailey, C.E.; Marine, I.W.

    1980-11-01

    One of the major objectives of the National Waste Terminal Storage Program is to identify potential geologic sites for storage and isolation of radioactive waste (and possibly irradiated fuel). Potential sites for the storage and isolation of radioactive waste or spent fuel in a geologic rock unit are being carefully evaluated to ensure that radionuclides from the stored waste or fuel will never appear in the biosphere in amounts that would constitute a hazard to the health and safety of the public. The objective of this report is to quantify and present in graphical form the effects of significant geohydrologic and other performance characteristics that would influence the movement of radionuclides from a storage site in a rock unit to the biosphere. The effort in this study was focused on transport by groundwater because that is the most likely method of radionuclide escape. Graphs of the major performance characteristics that influence the transport of radionuclides from a repository to the biosphere by groundwater are presented. The major characteristics addressed are radioactive decay, leach rate, hydraulic conductivity, porosity, groundwater gradient, hydrodynamic dispersion, ion exchange, and distance to the biosphere. These major performance characteristics are combind with each other and with the results of certain other combinations and presented in graphical form to provide the interrelationships of values measured during field studies. The graphical form of presentation should be useful in the screening process of site selection. An appendix illustrates the use of these graphs to assess the suitability of a site

  13. Popularizing Geological Education among Civil Engineering Students

    Science.gov (United States)

    Chen, Xiang-jun; Zhou, Ying

    2012-01-01

    The sustainable development of an economy and a society cannot be realized without the help of modern geoscience. Engineering geology knowledge is necessary on a civil engineering construction site to ensure the construction work goes smoothly. This paper first discusses the importance of geoscience, especially the study of engineering geology.…

  14. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  15. Geologic Characterization Report for the Paradox Basin Study Region Utah Study Areas, Volume V, Appendices

    OpenAIRE

    United States Department of Energy

    1982-01-01

    This study is a part of the U.S. Department of Energy's (DOE) National Waste Terminal Storage Program (NWTS). The scope of DOE's NWTS responsibilities include providing the technology and facilities to isolate high-level radio-active wastes for as long as the wastes represent a hazard. Emplacement of waste packages in mined geologic repositories deep underground in various types of rock formations is one method being evaluated. Using a basic site selection process (Figure 1-1), regions bei...

  16. The study of the national context in support of planning geological disposal in Romania - 15232

    International Nuclear Information System (INIS)

    Andrei, V.; Prisecary, I.

    2015-01-01

    In this paper a risk management process was studied to assess the Romanian national context concerning the setting of a geological disposal of radioactive waste. A PESTEL analysis involving political, economical, social, technical, environmental and legal issues, has been performed to identify factors that could endanger the project. The analysis of a pessimistic scenario indicates the national context could delay the schedule of the siting and site licensing process by 17.5 years. The estimation of a maximum time of 38 years for this process was considered realistic since this value was met in the countries which were confronted with suspensions/reconsiderations of the siting process of a geological disposal facility

  17. TEAM Science Advances STEM through Experiential Learning about Karst Geology at the Ozark Underground Laboratory.

    Science.gov (United States)

    Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.

    2017-12-01

    Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)

  18. Recent aspects of uranium toxicology in medical geology.

    Science.gov (United States)

    Bjørklund, Geir; Albert Christophersen, Olav; Chirumbolo, Salvatore; Selinus, Olle; Aaseth, Jan

    2017-07-01

    Uranium (U) is a chemo-toxic, radiotoxic and even a carcinogenic element. Due to its radioactivity, the effects of U on humans health have been extensively investigated. Prolonged U exposure may cause kidney disease and cancer. The geological distribution of U radionuclides is still a great concern for human health. Uranium in groundwater, frequently used as drinking water, and general environmental pollution with U raise concerns about the potential public health problem in several areas of Asia. The particular paleo-geological hallmark of India and other Southern Asiatic regions enhances the risk of U pollution in rural and urban communities. This paper highlights different health and environmental aspects of U as well as uptake and intake. It discusses levels of U in soil and water and the related health issues. Also described are different issues of U pollution, such as U and fertilizers, occupational exposure in miners, use and hazards of U in weapons (depleted U), U and plutonium as catalysts in the reaction between DNA and H 2 O 2, and recycling of U from groundwater to surface soils in irrigation. For use in medical geology and U research, large databases and data warehouses are currently available in Europe and the United States. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Japanese issues on the future behavior of the geological environment

    International Nuclear Information System (INIS)

    Aoki, Kaz; Nakatsuka, Noboru; Ishimaru, Tsuneari

    1994-01-01

    Comprehending and predicting the future states of the geological environment is very important in ensuring a safe geological disposal of high level radioactive wastes (HLW). This paper is one in a series of studies required to ascertain the existence of a geologically stable area in Japan over the long term. In particular, interest is focussed on the aspect of accumulating data on behavior patterns of selected natural phenomena which will enable predictions of future behavior of geological processes and finding of areas of long term stability. While this paper limits itself to the second and part of the third step, the overall flow-chart of study on natural processes and events which may perturb the geological environment entails three major steps. They include: (i) identification of natural processes and events relevant to long term stability of geological environment to be evaluated; (ii) characterization of the identified natural processes and events; and (iii) prediction of the probability of occurrence, magnitude and influence of the natural processes and events which may perturb the geological environment. (J.P.N)

  20. The U.S. Geological Survey Astrogeology Science Center

    Science.gov (United States)

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.