WorldWideScience

Sample records for surface fuel litterfall

  1. Biophysical controls on surface fuel litterfall and decomposition in the northern Rocky Mountains, USA

    Science.gov (United States)

    Robert E. Keane

    2008-01-01

    Litterfall and decomposition rates of the organic matter that comprise forest fuels are important to fire management, because they define fuel treatment longevity and provide parameters to design, test, and validate ecosystem models. This study explores the environmental factors that control litterfall and decomposition in the context of fuel management for several...

  2. Environmental assessment of nuclear installations using accumulated litterfall cycling

    International Nuclear Information System (INIS)

    Coelho, Joaquim M.S.; Scapin, Marcos A.; Pires, Maria A.F.

    2011-01-01

    For 25 years the Nuclear and Energy Research Institute - IPEN/SP processed uranium oxide to produce the fuel element. Even with major care in the handling of uranium hexafluoride and uranium compounds, there is the probability of small fractions are dispersed into the atmosphere. Due to this fact, it was proposed a study of these compounds in the environment, aiming at the bio monitoring of toxic substances originating from the fabrications process of fuel element, as well toxic metals. The litterfall it's consisted of fragments of organic vegetable, including leaves, flowers, fruits, branches, twigs and animal waste. The objective of this study was to determine the production and seasonality of litterfall in the gardens of IPEN, establish a correlation between the compartment leaves, wood and reproductive parts and evaluate the chemical composition of leaves originated of litterfall through chemical analysis. Was installed 10 litterfall collectors to determinate the production . The determination of chemical elements was realized by X-ray fluorescence for dispersion of wavelength (WDXRF). The production of dry litterfall during the period was 5.86 Kg m 2 -1. The elements analyzed were Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Br, Rb, Sr, Zr, Th and U. The major constituents of the composition of leaf Ca, Si, and K (1.8%, 0.5% and 0.6% respectively). The results allowed to conclude that the installations used in the nuclear fuel cycle earlier, as well as the installations in operation, actually didn't affect the biogeochemical cycle of plants. (author)

  3. Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest

    Science.gov (United States)

    W.L. Silver; S.J. Hall; Grizelle Gonzalez

    2014-01-01

    Humid tropical forests have the highest rates of litterfall production globally, which fuels rapid nutrient recycling and high net ecosystem production. Severe storm events significantly alter patterns in litterfall mass and nutrient dynamics through a combination of canopy disturbance and litter deposition. In this study, we used a large-scale long-term manipulation...

  4. Litterfall and Nutrient Returns in Isolated Stands of Persea ...

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... The study examined litter production, the concentrations of nutrients in litterfall, the returns of nutrient elements to the soil via litterfall, the relationship between litter production nutrient returns via litterfall, and determined the seasonal variations in litter ...

  5. LITTERFALL AND NUTRIENT RETURNS IN ISOLATED STANDS ...

    African Journals Online (AJOL)

    Dr Osondu

    area has implications in returning nutrient elements to the soils of the rainforest ecosystem. Keywords: Litterfall, Nutrient returns, Seasonal variation, Southern Nigeria, Terminalia catappa, Tropical rainforest. Introduction. In the tropical rainforests, plants and soils are in equilibrium involving an almost closed cycling.

  6. Aboveground Biomass and Litterfall Dynamics in Secondary Forest ...

    African Journals Online (AJOL)

    The differences in aboveground biomass, litterfall patterns and the seasonality of litterfall in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation and a mature forest were studied in southern Nigeria. This is with a view to understanding the possibility of ...

  7. Litterfall mercury dry deposition in the eastern USA

    Science.gov (United States)

    Martin R. Risch; John F. DeWild; David P. Krabbenhoft; Randall K. Kolka; Leiming. Zhang

    2012-01-01

    Mercury (Hg) in autumn litterfall frompredominately deciduous forestswas measured in 3 years of samples from 23 Mercury Deposition Network sites in 15 states across the eastern USA. Annual litterfall Hg dry depositionwas significantly higher (median 12.3 micrograms per square meter (µg/m2), range 3.5-23.4 µg/m2...

  8. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Directory of Open Access Journals (Sweden)

    Long Yang

    Full Text Available For the purposes of forest restoration, carbon (C fixation, and economic improvement, eucalyptus (Eucalyptus urophylla has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm and bottom (0-50 cm of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  9. Effects of the interception of litterfall by the understory on carbon cycling in eucalyptus plantations of South China.

    Science.gov (United States)

    Yang, Long; Wang, Jun; Huang, Yuhui; Hui, Dafeng; Wen, Meili

    2014-01-01

    For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception of litterfall on C cycling in eucalyptus plantations, we quantified the mass of intercepted litter and the influences of litterfall interception on litter decomposition and soil respiration. The total mass of E. urophylla litterfall collected on the understory was similar to that collected by the traditional litter trap method. All of the eucalyptus litterfall is intercepted by the D. dichotoma canopy. Of the litterfall that was intercepted by D. dichotoma, 20-40% and 60-80% was intercepted by the top (50-100 cm) and bottom (0-50 cm) of the understory canopy, respectively. Intercepted litterfall decomposed faster at the bottom of understory canopy (at the base of the plants) than at the top, and decomposition was slower on the soil surface in the absence of understory than on any location in the understory canopy. Soil respiration was highest when both the understory and litter were present and was lowest when both the understory and litter were absent. These results indicate that litterfall interception changed carbon flow between aboveground and belowground through litter decomposition and soil respiration, which changed carbon cycling in eucalyptus plantations. The effects of the understory on litter decomposition and soil respiration should be considered in ecosystem carbon models.

  10. Bayesian techniques for surface fuel loading estimation

    Science.gov (United States)

    Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell

    2016-01-01

    A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...

  11. A model of wind-influenced leaf litterfall in a mixed hardwood forest

    NARCIS (Netherlands)

    Staelens, Jeroen; Nachtergale, Lieven; Luyssaert, Sebastiaan; Lust, Noël

    2003-01-01

    Litterfall is an important ecological process in forest ecosystem functioning. Some attempts have been made to develop spatially explicit models of litterfall, but wind influence has never been included. Therefore, we studied the effect of wind on litterfall in an intimately mixed birch-oak forest

  12. Litterfall and Nutrient Returns in Isolated Stands of Terminalia ...

    African Journals Online (AJOL)

    This study assesses litter production, concentrations and returns of nutrient elements with respect to seasons, so as to provide empirical information on nutrient flux by the isolated exotic stands of Terminalia. Litterfall samples were collected from the isolated stands of Terminalia catappa and adjoining native rainforest which ...

  13. Overview of mercury dry deposition, litterfall, and throughfall studies

    Directory of Open Access Journals (Sweden)

    L. P. Wright

    2016-10-01

    Full Text Available The current knowledge concerning mercury dry deposition is reviewed, including dry-deposition algorithms used in chemical transport models (CTMs and at monitoring sites and related deposition calculations, measurement methods and studies for quantifying dry deposition of gaseous oxidized mercury (GOM and particulate bound mercury (PBM, and measurement studies of litterfall and throughfall mercury. Measured median GOM plus PBM dry deposition in Asia (10.7 µg m−2 yr−1 is almost double that in North America (6.1 µg m−2 yr−1 due to the higher anthropogenic emissions in Asia. The measured mean GOM plus PBM dry deposition in Asia (22.7 µg m−2 yr−1, however, is less than that in North America (30.8 µg m−2 yr−1. The variations between the median and mean values reflect the influences that single extreme measurements can have on the mean of a data set. Measured median litterfall and throughfall mercury are, respectively, 34.8 and 49.0 µg m−2 yr−1 in Asia, 12.8 and 16.3 µg m−2 yr−1 in Europe, and 11.9 and 7.0 µg m−2 yr−1 in North America. The corresponding measured mean litterfall and throughfall mercury are, respectively, 42.8 and 43.5 µg m−2 yr−1 in Asia, 14.2 and 19.0 µg m−2 yr−1 in Europe, and 12.9 and 9.3 µg m−2 yr−1 in North America. The much higher litterfall mercury than GOM plus PBM dry deposition suggests the important contribution of gaseous elemental mercy (GEM to mercury dry deposition to vegetated canopies. Over all the regions, including the Amazon, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition. Regardless of the measurement or modelling method used, a factor of 2 or larger uncertainties in GOM plus PBM dry deposition need to be kept in mind when using these numbers for mercury impact studies.

  14. Ecology of litterfall production of giant bamboo Dendrocalamus asper in a watershed area

    Directory of Open Access Journals (Sweden)

    A.G. Toledo Bruno

    2017-12-01

    Full Text Available Giant bamboo Dendrocalamus asper is recommended in environmental and livelihood programs in the Philippines due to its various ecological, economic and social benefits. However, there are limited data on the ecology of giant bamboo litterfall production, which contributes to soil nutrient availability. Bamboo also contributed in carbon sequestration. The study was conducted within the Taganibong Watershed in Bukidnon, Philippines. Nine litterfall traps measuring 1mx1m were established within the giant bamboo stand in the study area. Results show that giant bamboo litterfall is dominated by leaves. Biological characteristics of bamboo litterfall do no not influence litterfall production but temperature, wind speed and humidity correlate with the amount of litterfall. Findings of the study further revealed that fresh giant bamboo tissue contains high carbon content and the soil in the bamboo stand has higher organic matter than the open clearing. These data indicate the role of giant bamboo in carbon sequestration and soil nutrient availability.

  15. A Global Database of Litterfall Mass and Litter Pool Carbon and Nutrients

    Data.gov (United States)

    National Aeronautics and Space Administration — Measurement data of aboveground litterfall and littermass and litter carbon, nitrogen, and nutrient concentrations were extracted from 685 original literature...

  16. High-resolution observations of combustion in heterogeneous surface fuels

    Science.gov (United States)

    E. Louise Loudermilk; Gary L. Achtemeier; Joseph J. O' Brien; J. Kevin Hiers; Benjamin S. Hornsby

    2014-01-01

    In ecosystems with frequent surface fires, fire and fuel heterogeneity at relevant scales have been largely ignored. This could be because complete burns give an impression of homogeneity, or due to the difficulty in capturing fine-scale variation in fuel characteristics and fire behaviour. Fire movement between patches of fuel can have implications for modelling fire...

  17. Near surface spent fuel storage: environmental issues

    International Nuclear Information System (INIS)

    Nelson, I.C.; Shipler, D.B.; McKee, R.W.; Glenn, R.D.

    1979-01-01

    Interim storage of spent fuel appears inevitable because of the lack of reprocessing plants and spent fuel repositories. This paper examines the environmental issues potentially associated with management of spent fuel before disposal or reprocessing in a reference scenario. The radiological impacts of spent fuel storage are limited to low-level releases of noble gases and iodine. Water needed for water basin storage of spent fuel and transportation accidents are considered; the need to minimize the distance travelled is pointed out. Resource commitments for construction of the storage facilities are analyzed

  18. Hot Surface Ignition of A Composite Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available The present study examines the characteristics of conductive heating (up to ignition temperature of a composite fuel droplet based on coal, liquid petroleum products, and water. In this paper, we have established the difference between heat transfer from a heat source to a fuel droplet in case of conductive (hot surface and convective (hot gas heat supply. The Leidenfrost effect influences on heat transfer characteristics significantly due to the gas gap between a composite fuel droplet and a hot surface.

  19. Surface area considerations for corroding N reactor fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to open-quotes trueclose quotes surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated open-quotes trueclose quotes surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage

  20. Litterfall in the hardwood forest of a minor alluvial-floodplain

    Science.gov (United States)

    Calvin E. Meier; John A. Stanturf; Emile S. Gardiner

    2006-01-01

    within mature deciduous forests, annual development of foliar biomass is a major component of aboveground net primary production and nutrient demand. As litterfall, this same foliage becomes a dominant annual transfer of biomass and nutrients to the detritus pathway. We report litterfall transfers of a mature bottomland hardwood forest in a minor alluvial-floodplain...

  1. Predicting the spatial distribution of leaf litterfall in a mixed deciduous forest

    NARCIS (Netherlands)

    Staelens, Jeroen; Nachtergale, Lieven; Luyssaert, Sebastiaan

    2004-01-01

    An accurate prediction of the spatial distribution of litterfall can improve insight in the interaction between the canopy layer and forest floor characteristics, which is a key feature in forest nutrient cycling. Attempts to model the spatial variability of litterfall have been made across forest

  2. Litterfall production in Gallery and Mesophytic Forest, in Garapa Doline, Federal District, Brazil

    Directory of Open Access Journals (Sweden)

    Otacílio Antunes Santana

    2010-12-01

    Full Text Available The accumulated litterfall on the soil of forests has an important role in the dynamics of these ecosystems, because the high portion of energy flowing in the system is concentrated in this compartment. The objective this work was to quantify and analyze the litterfall got understory of the Gallery and Mesophytic Forests present in the Dolina da Garapa, and to relate this data with meteorological and ecophysiological data, with aim to check different significance between these two forest environments and between the months of study. From January 2006 to December 2007 were established 50 litterfall trap in each forest environment, where was collected, weighted and classified the litterfall in leaves, stem and trunk, flowers and fruits and seed. The mean values sampled of litterfall production in total mass, leaf, flowers, stem and trunk, fruit and seeds were significatively different in two studied environments. In the correlation carried out between the meteorological and ecophysiological variables and the registered value of litterfall was observed that just the temperature variable had not significance in the coefficient of correlation (ρ < 0.5 to litterfall yield. The total production of litterfall during the studied period showed that the Mesophytic Forest is most vulnerable to external meteorological factors and ecophysiological factors of their species, than Gallery Forest. First because the spatial factor, the Forest Gallery location are in low altitude, not being exposed to meteorological factors (e.g., solar radiation as the Mesophytic,Forest, and second by proximity to the watercourse. This spatial factor and the low influence of meteorological factors kept the total litterfall production with a lower average deviation in the Gallery Forest at a temporal scale, and the Mesophytic Forest was susceptible to seasonal weather, thus having a largest average deviation of the litterfall production a long studied period.

  3. Evaluation of Metal-Fueled Surface Reactor Concepts

    International Nuclear Information System (INIS)

    Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Hiatt, Matthew T.; Amiri, Benjamin W.

    2007-01-01

    Surface fission power systems for use on the Moon and Mars may provide the first use of near-term reactor technology in space. Most near-term surface reactor concepts specify reactor temperatures <1000 K to allow the use of established material and power conversion technology and minimize the impact of the in-situ environment. Metal alloy fuels (e.g. U-10Zr and U-10Mo) have not traditionally been considered for space reactors because of high-temperature requirements, but they might be an attractive option for these lower temperature surface power missions. In addition to temperature limitations, metal fuels are also known to swell significantly at rather low fuel burnups (∼1 a/o), but near-term surface missions can mitigate this concern as well, because power and lifetime requirements generally keep fuel burnups <1 a/o. If temperature and swelling issues are not a concern, then a surface reactor concept may be able to benefit from the high uranium density and relative ease of manufacture of metal fuels. This paper investigates two reactor concepts that utilize metal fuels. It is found that these concepts compare very well to concepts that utilize other fuels (UN, UO2, UZrH) on a mass basis, while also providing the potential to simplify material safeguards issues

  4. NUTRIENT RETURN THROUGH LITTERFALL IN A Eucalyptus dunnii Maiden STAND IN SANDY SOIL

    Directory of Open Access Journals (Sweden)

    Aline Aparecida Ludvichak

    Full Text Available ABSTRACT In a forest stand, litterfall is primarily responsible for the retention and return of nutrients to the soil. The objective of this study was to evaluate the return of nutrients through litterfall in a stand of Eucalyptus dunnii in a Pampa biome. For quantification of litterfall, four 420-m2 installments were marked; within each one, four 0.50-m2 collection plots were distributed. For the collection of thick branches, four 7.00-m2 sub-plots were staked out. The collected litterfall was separated into leaf, twig, thick branch, and miscellany fractions for subsequent chemical analysis. The total litterfall measured was 6.99 Mg ha-1 yr-1, and comprised 61.57% leaves, 17.34% twigs, 13.83% thick branches, and 7.26% miscellany. The total amount of macronutrients in the litterfall was 160.22 kg ha-1 yr-1, and the macronutrient transfer order was the same for the leaf, twig, and thick branch fractions (Ca > N > K > Mg > S > P. The total quantity of micronutrients was 7.55 kg ha-1 yr-1, and the transfer order was Mn > Fe > B > Zn > Cu. Maintaining litterfall on the site, especially in degraded or low fertility soils like in the Pampa biome, may contribute to possible improvements in soil characteristics.

  5. Mortality and community changes drive sudden oak death impacts on litterfall and soil nitrogen cycling.

    Science.gov (United States)

    Cobb, Richard C; Eviner, Valerie T; Rizzo, David M

    2013-10-01

    Few studies have quantified pathogen impacts to ecosystem processes, despite the fact that pathogens cause or contribute to regional-scale tree mortality. We measured litterfall mass, litterfall chemistry, and soil nitrogen (N) cycling associated with multiple hosts along a gradient of mortality caused by Phytophthora ramorum, the cause of sudden oak death. In redwood forests, the epidemiological and ecological characteristics of the major overstory species determine disease patterns and the magnitude and nature of ecosystem change. Bay laurel (Umbellularia californica) has high litterfall N (0.992%), greater soil extractable NO3 -N, and transmits infection without suffering mortality. Tanoak (Notholithocarpus densiflorus) has moderate litterfall N (0.723%) and transmits infection while suffering extensive mortality that leads to higher extractable soil NO3 -N. Redwood (Sequoia sempervirens) has relatively low litterfall N (0.519%), does not suffer mortality or transmit the pathogen, but dominates forest biomass. The strongest impact of pathogen-caused mortality was the potential shift in species composition, which will alter litterfall chemistry, patterns and dynamics of litterfall mass, and increase soil NO3 -N availability. Patterns of P. ramorum spread and consequent mortality are closely associated with bay laurel abundances, suggesting this species will drive both disease emergence and subsequent ecosystem function. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. A direct methanol fuel cell system with passive fuel delivery based on liquid surface tension

    Science.gov (United States)

    Yang, Yuming; Liang, Yung C.

    The existing direct methanol fuel cell (DMFC) systems are fed with a fixed concentration of fuel, which are either a diluted methanol solution or an active fuel delivery driven by an attached active pump. Both approaches limit the power conversion density or degrade the overall efficiency of the DMFC system significantly. Such disadvantages become more severe in small-scale DMFCs, which require a high conversion efficiency and a small physical space suitable for portable electronics. In this paper, passive fuel delivery based on a surface tension driving mechanism was designed and integrated in a laboratory-made prototype to achieve consumption depending on fuel concentration and power-free fuel delivery. Unidirectional methanol-to-water smooth flow is achieved through the capillaries of a Teflon PTFE (polytetrafluoroethylene) membrane based on the difference in liquid surface tension. The prototype was demonstrated to exhibit a better polarization performance and to last for an extended operating time compared to conventional DMFCs. Its high efficiency and load regulation performance were also demonstrated in contrast to an active DMFC supplied with a constant concentration fuel. The fuel delivery driven by the liquid surface tension effect demonstrated here is believed to be more applicable for future small-scale DMFCs for portable electronics.

  7. Soil CO2 Flux, Moisture, Temperature, and Litterfall, La Selva, Costa Rica, 2003-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurements of soil carbon dioxide (CO2) emission rates, soil moisture, relative humidity (RH), temperature, and litterfall from six types of...

  8. Leaf Litterfall and Decomposition of Polylepis reticulata in the Treeline of the Ecuadorian Andes

    Directory of Open Access Journals (Sweden)

    Juan Pinos

    2017-02-01

    Full Text Available Leaf litterfall contributes significantly to carbon fluxes in forests. A crucial open question for the sustainability of mountain forests is how climate change will affect this and other carbon fluxes (eg photosynthesis and respiration. Leaf litterfall and decomposition of Polylepis reticulata, an endemic species of the Andes, were analyzed during a period of 1 year at 6 experimental plots located in the Andean páramo between 3700 and 3900 m above sea level in Cajas National Park, Ecuador. Litterfall was collected in each plot using 5 randomly distributed traps. Every trap had a 40-cm diameter (0.125 m2 and was suspended 0.8 to 1.0 m above the ground. The decomposition rate of the leaf litter was analyzed using litter bags. Eighteen bags with approximately 20 g of dry litter were placed in the litter layer in each experimental plot and collected 30, 60, 90, 150, 210, 300, and 365 days after they were installed. The mean annual litterfall recorded was 3.77 Mg ha−1, representing 51% of the leaf biomass present in the canopy, so the leaf life span of P. reticulata in Cajas National Park is 1.98 years. Litterfall occurred all year, with no significant seasonal pattern. The mean decomposition rate (k obtained for this study period was 0.38 year−1. This study contributes to the information gap on litterfall and decomposition in natural forests located at the highest elevations in the world.

  9. Visual Assessment of Surface Fuel Loads Does Not Align with Destructively Sampled Surface Fuels

    Directory of Open Access Journals (Sweden)

    Sarah C. McColl-Gausden

    2017-10-01

    Full Text Available Fuel load and structure are fundamental drivers of fire behaviour. Accurate data is required for managers and researchers to better understand our ability to alter fire risk. While there are many ways to quantify fuel, visual assessment methods are generally considered the most efficient. Visual hazard assessments are commonly used by managers, government agencies and consultants to provide a fuel hazard score or rating but not a quantity of fuel. Many systems attempt to convert the hazard score or rating to a fuel load for use in fire behaviour models. Here we investigate whether the conversion table in the widely used Overall Fuel Hazard Guide (OFHG matches destructively sampled fuel loads from 116 sites across five forest types. We specifically examine whether there are quantifiable differences that can be attributed to forest type. We found there is overlap between the two methods for low, moderate and high hazard categories, however for the very high and extreme hazard categories, visual assessment overestimated fuel load in four of the five forest types. Using a commonly applied fire behaviour model, we found that the overestimation of fuel load in very high and extreme hazard categories leads to an overestimation of fire behavior in these hazard categories.

  10. Automatic surface flaw inspection of nuclear fuel pellets

    International Nuclear Information System (INIS)

    McLemore, D.R.; Nyman, D.H.; Wilks, R.S.

    1978-01-01

    The Hanford Engineering Development Laboratory (HEDL), operated by the Westinghouse Hanford Company, is developing automated equipment for fabrication and inspection of nuclear reactor fuels. One inspection process that has been evaluated is automatic surface flaw inspection of nuclear fuel pellets. The inspection technique involves projecting a well-defined spot of light onto the surface of a rotating pellet and collecting the light specularly reflected from the pellet's surface. The data form a binary description of the surface topography, which is then processed to identify and quantify flaw attributes before accept/reject decisions are made. The inspection apparatus is designed to operate at a rate of three pellets per second. A unique flaw interpretation algorithm is used to evaluate surface acceptability. The size and shape of a flaw is characterized by its area and by its area-to-perimeter ratio

  11. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model

    Science.gov (United States)

    Joe H. Scott; Robert E. Burgan

    2005-01-01

    This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.

  12. Evaluating the performance and mapping of three fuel classification systems using Forest Inventory and Analysis surface fuel measurements

    Science.gov (United States)

    Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar

    2013-01-01

    Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are used throughout wildland fire science and management to simplify fuel inputs into fire behavior and effects models, but they have yet to be thoroughly evaluated with field data. In this study, we used a large dataset of Forest Inventory and Analysis (FIA) surface fuel...

  13. A time dependent behavior of radiocesium from the Fukushima-fallout in litterfalls of Japanese flowering cherry trees

    International Nuclear Information System (INIS)

    Yoshihara, Toshihiro; Hashida, Shin-nosuke; Abe, Kazuhiro; Ajito, Hiroyuki

    2014-01-01

    Radiocesium ( 134 Cs + 137 Cs) concentrations, primarily derived from the Fukushima accident in March 2011, were measured in litterfalls and green leaves of Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino). The sampling was performed mainly during the defoliation season in 2011 and 2012 using traps to collect litterfalls before contact with the ground. The average radiocesium concentration in litterfalls in 2012 fell to one-third of that in 2011 (0.43 and 1.2 kBq kg-DW −1 , respectively). Interestingly, the concentrations in litterfalls collected in late autumn in both 2011 and 2012 (0.68 and 0.19 kBq kg-DW −1 , respectively) were significantly lower than those in litterfalls collected in the early autumn (1.7 and 1.1 kBq kg-DW −1 , respectively). In addition, the reductions in radiocesium concentrations in the litterfall were nearly synchronous with those in potassium concentrations (p ≤ 0.05). On the contrary, radiocesium concentrations in green leaves were also correlated with potassium concentrations; however, the slopes of the regression lines between the radiocesium and potassium concentrations were very similar in the 2011 litterfalls and the 2012 litterfalls, while the slopes were significantly different between these litterfalls and the green leaves. Consequently, the correlation between potassium and radiocesium was clear but independently observable in each of the litterfalls and the green leaves. It is possible that the reduction in radiocesium concentration occurred as a part of physiological demand, a translocation of potassium from the leaves to the body/twigs. -- Highlights: • Autumnal radiocesium reduction in litterfalls of Japanese flowering cherry trees. • Correlation between radiocesium and stable potassium (K). • Difference in the radiocesium/K correlation between green leaves and litterfalls. • A possible translocation of radiocesium with K from the leaves to the body/twigs

  14. 100KE/KW fuel storage basin surface volumetric factors

    International Nuclear Information System (INIS)

    Conn, K.R.

    1996-01-01

    This Supporting Document presents calculations of surface Volumetric factors for the 100KE and 100KW Fuel Storage Basins. These factors relate water level changes to basin loss or additions of water, or the equivalent water displacement volumes of objects added to or removed from the basin

  15. Litterfall production and fine root dynamics in cool-temperate forests.

    Science.gov (United States)

    An, Ji Young; Park, Byung Bae; Chun, Jung Hwa; Osawa, Akira

    2017-01-01

    Current understanding of litterfall and fine root dynamics in temperate forests is limited, even though these are the major contributors to carbon and nutrient cycling in the ecosystems. In this study, we investigated litterfall and fine root biomass and production in five deciduous and four coniferous forests at the Gwangneung Experimental Forest in Korea. We used ingrowth cores to measure fine root production and root turnover rate. The litterfall was separated into leaves, twigs, and others, and then leaves were further separated according to species. Annual litterfall mass was not significantly different between the years, 360 to 651 g m-2 in 2011 and 300 to 656 g m-2 in 2012. Annual fine root (forests and 1.97 for coniferous forests. Fine root production constituted 18-44% of NPP, where NPP was the sum of woody biomass production, litterfall production, and fine root production. Belowground production was a greater fraction of NPP in more productive forests suggesting their greater carbon allocation belowground.

  16. Annual litterfall dynamics and nutrient deposition depending on elevation and land use at Mt. Kilimanjaro

    Science.gov (United States)

    Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.

    2015-10-01

    Litterfall is one of the major pathways connecting above- and below-ground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) ecosystems was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.

  17. Nitrogen and carbon export from urban areas through removal and export of litterfall

    International Nuclear Information System (INIS)

    Templer, Pamela H.; Toll, Jonathan W.; Hutyra, Lucy R.; Raciti, Steve M.

    2015-01-01

    We found that up to 52 ± 17% of residential litterfall carbon (C) and nitrogen (N; 390.6 kg C and 6.5 kg N ha −1  yr −1 ) is exported through yard waste removed from the City of Boston, which is equivalent to more than half of annual N outputs as gas loss (i.e. denitrification) or leaching. Our results show that removing yard waste results in a substantial decrease in N inputs to urban areas, which may offset excess N inputs from atmospheric deposition, fertilizer application and pet waste. However, export of C and N via yard waste removal may create nutrient limitation for some vegetation due to diminished recycling of nutrients. Removal of leaf litter from residential areas disrupts nutrient cycling and residential yard management practices are an important modification to urban biogeochemical cycling, which could contribute to spatial heterogeneity of ecosystems that are either N limited or saturated within urban ecosystems. - Highlights: • We monitored yard waste bags for one complete fall yard waste collection season. • 52% of residential litterfall C and N is exported annually from the City of Boston. • Litterfall export may create nutrient limitation hotspots in urban ecosystems. • C and N export through litterfall collection modifies urban biogeochemical cycling. - Litterfall removal leads to C and N export from urban ecosystems and disrupts nutrient cycling, showing that this activity is an important modification to urban biogeochemical cycling

  18. The relationship of post-fire white ash cover to surface fuel consumption

    Science.gov (United States)

    Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Nolan W. Brewer; Alistair M. S. Smith; Penelope Morgan

    2013-01-01

    White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green...

  19. Surface science studies of model fuel cell electrocatalysts

    Science.gov (United States)

    Marković, N. M.; Ross, P. N.

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  20. Post-fire surface fuel dynamics in California forests across three burn severity classes

    Science.gov (United States)

    Bianca N. I. Eskelson; Vicente J. Monleon

    2018-01-01

    Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...

  1. Post-fire logging reduces surface woody fuels up to four decades following wildfire

    Science.gov (United States)

    David W. Peterson; Erich Kyle Dodson; Richy J. Harrod

    2015-01-01

    Severe wildfires create pulses of dead trees that influence future fuel loads, fire behavior, and fire effects as they decay and deposit surface woody fuels. Harvesting fire-killed trees may reduce future surface woody fuels and related fire hazards, but the magnitude and timing of post-fire logging effects on woody fuels have not been fully assessed. To address this...

  2. Estimation of radioactive 137-cesium transportation by litterfall, stemflow and throughfall in the forests of Fukushima

    International Nuclear Information System (INIS)

    Endo, Izuki; Ohte, Nobuhito; Iseda, Kohei; Tanoi, Keitaro; Hirose, Atsushi; Kobayashi, Natsuko I.; Murakami, Masashi; Tokuchi, Naoko; Ohashi, Mizue

    2015-01-01

    Since the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, large areas of the forests around Fukushima have become highly contaminated by radioactive nuclides. To predict the future dynamics of radioactive cesium ( 137 Cs) in the forest catchment, it is important to measure each component of its movement within the forest. Two years after the accident, we estimated the annual transportation of 137 Cs from the forest canopy to the floor by litterfall, throughfall and stemflow. Seasonal variations in 137 Cs transportation and differences between forests types were also determined. The total amount of 137 Cs transported from the canopy to the floor in two deciduous and cedar plantation forests ranged between 3.9 and 11.0 kBq m −2  year −1 . We also observed that 137 Cs transportation with litterfall increased in the defoliation period, simply because of the increased amount of litterfall. 137 Cs transportation with throughfall and stemflow increased in the rainy season, and 137 Cs flux by litterfall was higher in cedar plantation compared with that of mixed deciduous forest, while the opposite result was obtained for stemflow. - Highlights: • Annual flux of 137 Cs by litterfall, throughfall and stemflow was estimated in two types of forest in Fukushima, Japan. • Annual amount of 137 Cs transportation was 3.9–11.0 kBq m −2 year −1 in two years after the accident. • 137 Cs flux by litterfall was higher in cedar plantation than that of mixed deciduous forest. • 137 Cs transportation with throughfall and stemflow increased in rainy season.

  3. Surface-modified low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Beom; Holme, Timothy P. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Guer, Turgut M. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2011-12-20

    This paper reports both experimental and theoretical results of the role of surface modification on the oxygen reduction reaction in low-temperature solid oxide fuel cells (LT-SOFC). Epitaxial ultrathin films of yttria-doped ceria (YDC) cathode interlayers (<10-130 nm) are grown by pulsed laser deposition (PLD) on single-crystalline YSZ(100). Fuel cell current-voltage measurements and electrochemical impedance spectroscopy are performed in the temperature range of 350 C {approx} 450 C. Quantum mechanical simulations of oxygen incorporation energetics support the experimental results and indicate a low activation energy of only 0.07 eV for YDC, while the incorporation reaction on YSZ is activated by a significantly higher energy barrier of 0.38 eV. Due to enhanced oxygen incorporation at the modified Pt/YDC interface, the cathodic interface resistance is reduced by two-fold, while fuel cell performance shows more than a two-fold enhancement with the addition of an ultrathin YDC interlayer at the cathode side of an SOFC element. The results of this study open up opportunities for improving cell performance, particularly of LT-SOFCs by adopting surface modification of YSZ surface with catalytically superior, ultrathin cathodic interlayers. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Surface tension of Nanofluid-type fuels containing suspended nanomaterials.

    Science.gov (United States)

    Tanvir, Saad; Qiao, Li

    2012-04-18

    The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension.

  5. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    Science.gov (United States)

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  6. The effect of salvage logging on surface fuel loads and fuel moisture in beetle-infested lodgepole pine forests

    Science.gov (United States)

    Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker

    2017-01-01

    Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...

  7. Effect of seasonal flooding cycle on litterfall production in alluvial rainforest on the middle Xingu River (Amazon basin, Brazil).

    Science.gov (United States)

    Camargo, M; Giarrizzo, T; Jesus, A J S

    2015-08-01

    The assumption for this study was that litterfall in floodplain environments of the middle Xingu river follows a pattern of seasonal variation. According to this view, litterfall production (total and fractions) was estimated in four alluvial rainforest sites on the middle Xingu River over an annual cycle, and examined the effect of seasonal flooding cycle. The sites included two marginal flooded forests of insular lakes (Ilha Grande and Pimentel) and two flooded forests on the banks of the Xingu itself (Boa Esperança and Arroz Cru). Total litterfall correlated with rainfall and river levels, but whereas the leaf and fruit fractions followed this general pattern, the flower fraction presented an inverse pattern, peaking in the dry season. The litterfall patterns recorded in the present study were consistent with those recorded at other Amazonian sites, and in some other tropical ecosystems.

  8. Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates

    Science.gov (United States)

    Stohlgren, Thomas J.

    1988-01-01

    Litterfall was measured for 4 years and leaf litter decomposition rates were studied for 3.6 years in two mixed conifer forest (giant sequoia-fir and fir-pine) in the southern Sierra Nevada of California. The giant sequoia-fir forest (GS site) was dominated by giant sequoia (Sequoiadendron giganteum (Lindl.) Buchh.), white fir (Abies concolor Lindl. & Gord.), and sugar pine (Pinus lambertiana Dougl.). The fir-pine forest (FP site) was dominated by white fir, sugar pine, and incense cedar (Calocedrus decurrens (Torr.) Florin). Litterfall, including large woody debris -1•year-1 compared with 4355 kg•ha-1•year-1 at the FP site (3.4:1). In the GS site, leaf litter decomposition after 3.6 years was slowest for giant sequoia (28.2% mass loss), followed by sugar pine (34.3%) and white fie (45.1%). In the FP site, mass loss was slowest for sugar pine (40.0%), followed by white fir (45.1%), while incense cedar showed the greatest mass loss (56.9%) after 3.6 years. High litterfall rates of large woody debris (i.e., 2.5-15.2 cm diameter) and slow rates of leaf litter decomposition in the giant sequoia-fir forest type may result in higher litter accumulation rates than in the fir-pine type. Leaf litter times to 95% decay for the GS and FP sites were 30 and 27 years, respectively, if the initial 0.7-year period (a short period of rapid mass decay) was ignored in the calculation. A mass balance approach for total litterfall (<15.2 cm diameter) decomposition yielded lower decay constants than did the litterbag study and therefore longer times to 95% decay (57 years for the GS site and 62 years for the FP site).

  9. Litterfall production of mangroves in the Huizache-Caimanero lagoon system, México

    Science.gov (United States)

    Flores-Cárdenas, Francisco; Hurtado-Oliva, Miguel Ángel; Doyle, Thomas W.; Nieves-Sotol, Mario; Díaz-Castro, Sara; Manzano-Sarabia, Marlenne

    2017-01-01

    The ecological legacy of the Huizache-Caimanero lagoon system has long been known as a trophically rich and productive ecosystem that supported artisanal fisheries of local and regional importance; however, a decline in fisheries' yields has been observed in recent decades. Mangroves are a fundamental component of this ecosystem, though data records and field studies are lacking in describing their structure and seasonal characteristics. Mangrove litterfall production was monitored during 2012–13 and described for the dominant species, Avicennia germinans (L.) Stearn and Laguncularia racemosa (L.) C.F. Gaertn. Forest surveys and monthly litter collections were obtained along a latitudinal gradient within the larger lagoon system to characterize the forest structure, leaf biomass, and related biological indicators (chlorophyll a concentration and Normalized Difference Vegetation Index [NDVI] estimated on leaf tissues). Results showed that structural characteristics (diameter at breast height, basal area, height, and crown diameter) were greater in Huizache, corresponding to patches with a dominance of A. germinans, while higher stem density was recorded for L. racemosa in Caimanero, comparatively similar to other mangrove habitat in NW Mexico. Litterfall was highest from May to October for both species. Litterfall production was also higher overall in 2012 in comparison to 2013, possibly corresponding with meteorological differences, most notably wind conditions. Annual litterfall production was similar by species across northern and southern Sinaloa. A contrast of the NDVI by site and species showed a wide interval, including low values for A. germinans, suggesting stress conditions for this species.

  10. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  11. Alternative heat transfer surfaces for AGR fuel pins

    International Nuclear Information System (INIS)

    Wilkie, D.

    1983-01-01

    Advanced gas-cooled reactors employing stainless-steel clad fuel pins must be economical in the use of steel to avoid incurring crippling penalties arising from neutron absorption. Any means of enhancing heat transfer by altering the surface of the pin by the adoption of projections necessitates that these projections are of low height relative to the equivalent diameter of the surrounding passage. This rules out the use of extended surfaces in the form of large fins, which in any case would be ruled out on thermal efficiency grounds owing to the large temperature drop down the poorly conducting steel but it does not rule out the use of many fins of low height. Longitudinal fins of low height for which results have been obtained for single pins tested in smooth circular channels and multi-start ribs for which single-pin and cluster results are available, are considered. The advantages and disadvantages of these and other ideas are considered in relation to the Advanced Gas-cooled Reactor. (author)

  12. Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds.

    Science.gov (United States)

    Spits, Christine; Wallace, Luke; Reinke, Karin

    2017-04-20

    Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential.

  13. Surface and canopy fuels vary widely in 24-yr old postfire lodgepole pine forests

    Science.gov (United States)

    Nelson, K. N.; Turner, M.; Romme, W. H.; Tinker, D. B.

    2013-12-01

    Extreme fire seasons have become common in western North America, and the extent of young postfire forests has grown as fire frequency and annual area burned have increased. These young forests will set the stage for future fires, but an assessment of fuel loads in young forests is lacking. The rate of fuel re-accumulation and fuels variability in postfire forest landscapes is needed to anticipate future fire occurrence and behavior in the American West. We studied fuel characteristics in young lodgepole pine forests that regenerated after the 1988 fires in Yellowstone National Park to address two questions: (1) How do surface fuel characteristics change with time-since-fire? (2) How do canopy and surface fuels vary across the Yellowstone landscape 24 years postfire? During summer 2012, we re-measured surface fuels in 11 plots that were established in 1996 (8 yrs post fire), and we measured surface and canopy fuels in 82 stands (each 0.25 ha) distributed across the Yellowstone post-1988 fire landscape. In the remeasured plots, surface fuel loads generally increased over the last 16 years. One-hr fuels did not change between sample dates, but all other fuel classes (i.e., 10-hr, 100-hr, and 1000-hr) increased by a factor of two or three. Within the sample timeframe, variability of fuel loads within stands decreased significantly. The coefficients of variation decreased for all fuel classes by 23% to 67%. Data from the 82 plots revealed that canopy and surface fuels in 24-year-old stands varied tremendously across the Yellowstone landscape. Live tree densities spanned 0 to 344,067 trees ha-1, producing a mean available canopy fuel load of 7.7 Mg ha-1 and a wide range from 0 to 47 Mg ha-1. Total surface fuel loads averaged 130 Mg ha-1 and ranged from 49 to 229 Mg ha-1, of which 90% was in the 1000-hr fuel class. The mass of fine surface fuels (i.e., litter/duff, 1-hr, 10-hr, and herbaceous fuels) and canopy fuels (i.e., foliage and 1-hr branches) were strongly and

  14. Surface fuel loadings within mulching treatments in Colorado coniferous forests

    Science.gov (United States)

    Mike A. Battaglia; Monique E. Rocca; Charles C. Rhoades; Michael G. Ryan

    2010-01-01

    Recent large-scale, severe wildfires in the western United States have prompted extensive mechanical fuel treatment programs to reduce potential wildfire size and severity. Fuel reduction prescriptions typically target non-merchantable material so approaches to mechanically treat and distribute residue on site are becoming increasingly common. We examined how mulch...

  15. Litterfall dynamics and nutrient deposition at different elevation and land use levels on Mt. Kilimanjaro, Tanzania

    Science.gov (United States)

    Becker, Joscha; Pabst, Holger; Mnyonga, James; Kuzyakov, Yakov

    2014-05-01

    One of the major pathways that connect above- and belowground nutrient and carbon stocks in forest ecosystems is litterfall. Depending on climate, tree species composition and stand structure it varies considerably between different ecosystems. Another driving factor that is known to affect ecosystem cycles is the level of anthropogenic disturbance such as land use. In case of tropical regions this is often present as the transformation from rainforests to plantation economy and sustainable agroforestry. The objective of this study was to quantify and determine patterns of carbon and nutrient deposition via tree litterfall in natural and anthropogenically affected forest ecosystems along an elevation gradient of Mt. Kilimanjaro. Tree litter of three natural (lower montane forest), two sustainably used (home gardens) and one intensively managed (shaded coffee plantation) ecosystem was collected on a biweekly basis from May 2012 to July 2013. Samples were separated into leaves, branches and remaining residues, dried and weighted. Carbon and nutrient content were measured in leave samples. We found that the overall annual pattern of litterfall was closely related to rainfall exhibiting a large peak during the dry season. Albeit visible on all plots, this characteristic decreased with elevation. No consistent patterns were found for other components than leaves. Total annual litter mainly consisted of leaf litter and ranges from 4639 kg/ha to 10673 kg/ha for all vegetation types. Flowers, fruits, etc. make up roughly 20% of total litter. Highest and lowest values occurred at home gardens and could not be significantly related to land use or elevation levels. Chemistry though differed between natural and used forest plots. N, P and K contents increased significantly with usage intensity while Mn decreased and C is more or less unaffected. We conclude that on the southern slope of Mt. Kilimanjaro, short term variations in litterfall are related to seasonal climatic

  16. Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest

    Science.gov (United States)

    Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi. Kelly

    2013-01-01

    We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m

  17. Effects of radiation, litterfall and throughfall on herbaceous biomass production in oak woodlands of Southern Portugal

    International Nuclear Information System (INIS)

    Nunes, J.; Sa, C.; Madeira, M.; Gazarini, L.

    2002-01-01

    Micro climatic characteristics (soil moisture, and air and soil temperature) were monitored both under and outside the influence of Quercus rotundifolia canopy. The influence of tree cover on biomass production of herbaceous vegetation was studied through the simulation of the physical and chemical effects associated to the tree canopy (radiation, litterfall, throughfall). Treatments were: control (T), radiation shortage (RR), application of leaf litter (F), application of leaflitter and radiation shortage (FRR) , application of throughfall (N) and application of throughfall and radiation shortage (NRR). Most of the times, and especially in winter, soil temperature was higher in areas not influenced by the canopies than in those under their influence. Soil moisture tended to decrease faster in the areas outside the canopy influence. Mean annual biomass production of the herbaceous vegetation was 159.5, 145.8, 132.2, 126.66, 134.9 and 173.1 g m2, respectively, in treatments C, RR, F, FRR, N and NRR. The N, P, K, Mg, Mn and Ca concentrations in the herbaceous biomass were generally higher in the shaded treatments. When the amount of nutrients accumulated in the herbaceous vegetation biomass was expressed on an area basis, the highest values were observed for treatment with throughfall application and radiation shortage. Besides the possible effects of the micro climatic characteristics, differences with respect to herbaceous vegetation production may be explained by the presence of litterfall, as well as by the nutrients present in the throughfall solution [pt

  18. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA

    Science.gov (United States)

    Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Fabian C. C. Uzoh

    2012-01-01

    Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer...

  19. Nutrient fluxes in litterfall of a secondary successional alluvial rain forest in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Maurício Bergamini Scheer

    2011-12-01

    Full Text Available During forest succession, litterfall nutrient fluxes increase significantly. The higher inputs of organic matter and nutrients through litterfall affects positively soil fertility and the species composition, which are essential components in forest restoration and management programs. In the present study, the input of nutrients to the forest soil via litterfall components was estimated for two sites of different development stages, in an early successional alluvial rain forest in Brazil. Litterfall returned to the soil, in kg/ha, ca. 93 N, 79 Ca, 24 K, 15 Mg, 6 P, 1.7 Mn, 0.94 Fe, 0.18 Zn, 0.09 Cu and 11.2 Al, in the site where trees were more abundant and had higher values of basal area. In the other area, where trees where less abundant and values of basal area were comparatively low, litterfall returned Durante la sucesión secundaria forestal, el flujo de nutrientes en la hojarasca se incrementa significativamente. Los altos ingresos de materia orgánica y nutrientes a través de la hojarasca afecta positivamente la fertilidad del suelo y la composición de especies, las cuales son componentes esenciales para programas de restauración forestal y de manejo. En el presente estudio, el ingreso de nutrientes a través de la hojarasca y sus componentes fueron estimados para dos sitios de una selva lluviosa atlántica aluvial en sucesión temprana. La cantidad anual de elementos que ingresan al suelo desde la vegetación más desarrollada (sitios con alta área basal y abundancia de árboles fueron (en kg/ha: 93 N, 79 Ca, 24 K, 15 Mg, 6 P, 1.7 Mn, 0.94 Fe, 0.18 Zn, 0.09 Cu y 11.2 Al. Menos de la mitad de esas cantidades fueron aportadas por la vegetación menos desarrollada, excepto para el Al. La cantidad de Al aportada a este sitio fue similar a la contribución de la vegetación más desarrollada, debido a la contribución de: Tibouchina pulchra (82% de todo el Al aportado. La eficiencia en el uso de nutrientes de la hojarasca

  20. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    facile H-2 activation. These NSAs could, potentially, facilitate highly selective hydrogenation reactions at low temperatures. In the present work, the suitability of NSAs for use as hydrogen fuel cell anodes has been evaluated: the combination of properties, possessed by selected NSAs, of weak binding...... of such materials for use in fuel cells and in an ever. increasing range of catalytic applications. Furthermore, we introduce a new concept for NSA-defect sites, which could be responsible for the promotional catalytic effects of a second metal added. even in minute quantities, to a host metal catalyst....

  1. Spatial variability of surface fuels in treated and untreated ponderosa pine forests of the southern Rocky Mountains

    Science.gov (United States)

    Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson

    2016-01-01

    There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...

  2. Predicting fire severity using surface fuels and moisture

    Science.gov (United States)

    Pamela G. Sikkink; Robert E. Keane

    2012-01-01

    Fire severity classifications have been used extensively in fire management over the last 30 years to describe specific environmental or ecological impacts of fire on fuels, vegetation, wildlife, and soils in recently burned areas. New fire severity classifications need to be more objective, predictive, and ultimately more useful to fire management and planning. Our...

  3. Litterfall 15N abundance indicates declining soil nitrogen availability in a free-air CO2 enrichment experiment.

    Science.gov (United States)

    Garten, Charles T; Iversen, Colleen M; Norby, Richard J

    2011-01-01

    Forest productivity increases in response to carbon dioxide (CO2) enrichment of the atmosphere. However, in nitrogen-limited ecosystems, increased productivity may cause a decline in soil nitrogen (N) availability and induce a negative feedback on further enhancement of forest production. In a free-air CO2 enrichment (FACE) experiment, the response of sweetgum (Liquidambar styraciflua L.) productivity to elevated CO2 concentrations [CO2] has declined over time, but documenting an associated change in soil N availability has been difficult. Here we assess the time history of soil N availability through analysis of natural 15N abundance in archived samples of freshly fallen leaf litterfall. Litterfall delta15N declined from 1998 to 2005, and the rate of decline was significantly faster in elevated [CO2]. Declining leaf litterfall delta15N is indicative of a tighter ecosystem N cycle and more limited soil N availability. By integrating N availability over time and throughout the soil profile, temporal dynamics in leaf litterfall delta15N provide a powerful tool for documenting changes in N availability and the critical feedbacks between C and N cycles that will control forest response to elevated atmospheric CO2 concentrations.

  4. Mercury in litterfall and sediment using elemental and isotopic composition of carbon and nitrogen in the mangrove of Southeastern Brazil

    Science.gov (United States)

    Fragoso, Cynara Pedrosa; Bernini, Elaine; Araújo, Beatriz Ferreira; Almeida, Marcelo Gomes de; Rezende, Carlos Eduardo de

    2018-03-01

    Mercury and elemental and isotopic compositions of carbon and nitrogen were determined in litterfall and sediments from the mangrove of the Paraíba do Sul River, Rio de Janeiro, Brazil. Total mercury (THg) and monomethylmercury (MMHg) concentrations in sediment ranged from 33 to 123 ng g-1 and 0.20-1.38 ng g-1, respectively. The δ13C in sediment varied from -29.4 to -26.5‰ and from 2.4 to 5.8‰ in δ15N. The THg concentration in litterfall and its annual input to the mangrove was 21 ± 2 ng g-1 and 16 ± 4 μg m-2 for the species Laguncularia racemosa, 18 ± 1 ng g-1 and 17 ± 3 μg m-2 for Rhizophora mangle, and 53 ± 4 ng g-1 and 33 ± 4 μg m-2 for Avicennia germinans, respectively. The isotopic composition of leaf litter ranged from -28.6 to -26.9‰ for δ13C and 4.5-7.2‰ for δ15N. Both the highest annual Hg input via litterfall and highest sediment Hg concentration were observed in areas dominated by A. germinans. These results suggest that the rate of litterfall of plant species and the atmospheric deposition have played an important role in the Hg biogeochemical cycle in the mangrove ecosystem.

  5. Flooding and profuse flowering result in high litterfall in novel Spathodea campanulata forests in northern Puerto Rico

    Science.gov (United States)

    Oscar J. Abelleira Martinez

    2011-01-01

    The African tulip tree, Spathodea campanulata, dominates many post-agricultural secondary forests in the moist tropics. Some consider these novel forests have no ecological value, yet they appear to restore ecosystem processes on degraded sites. This study describes the litterfall mass and seasonality, canopy phenology, and microclimate of S. campanulata forests on...

  6. Litterfall dynamics in a iron-rich rock outcrop complex in the southeastern portion of the Iron Quadrangle of Brazil

    Directory of Open Access Journals (Sweden)

    Eduardo André Ribeiro Valim

    2013-06-01

    Full Text Available Ecosystems on cangas (duricrust present considerable heterogeneity of habitats due to microtopographic variations, soil accumulation and a variety of plant functional groups. Therefore, spatial and temporal ecosystem processes such as litterfall are to be expected to be large, and the absence of a level of productivity represents all the facets of iron-rich landscapes. We investigated litterfall in a iron-rich rock complex in the Iron Quadrangle of Brazil, with habitats formed on different evolutionary stages of the soil, resulting in a gradient of biomass, canopy cover and community structure. The measurements were made in open field areas, dominated by herb-shrub vegetation and interspersed with islands of dense vegetation in which there were individual trees, as well as in areas of semideciduous forest. The litterfall, especially that of leaf litter, followed the gradient of woody cover and was approximately two times greater in the forest formation. However, the spatial and temporal variations in deposition were greatest in the herb-shrub areas and least in the semideciduous forest area, intermediate values being obtained for the tree island areas. The peaks in litterfall also varied among habitats, occurring in some periods of the rainy season and during the transition from rainy to dry in the herb-shrub and tree island areas, whereas they occurred at the end of the dry season in the semideciduous forest area. The results show significant differences in the patterns of litterfall among different physiognomies within the same iron-rich rock complex, indicating the need for expanded studies, focusing on the flow of matter and energy in such environments.

  7. Climatic influences on litterfall production in a forested savannah in Prata – MG

    Directory of Open Access Journals (Sweden)

    Thiago Mendes Siqueira

    2016-05-01

    Full Text Available The objective of this study was to analyze the influence of climate on litterfall production, for a year, in a small fragment of forested savannah, in Minas Gerais, Brazil. Twenty collectors (0.25 m2 arranged in a row were used. The total litter production was 7.5 t.ha-1.year-1, comprising leaves, branches and fertile structures as the fractions. The leaf fraction contributed 67% of the annual litter input. Pearson’s correlation coefficient (r indicated the influence of the climatic variables precipitation and mean and minimum temperature in the accumulation of this fraction. The analysis also resulted in a significant r value between branches and average wind velocity, while the fertile structure fraction was influenced by rainfall and average maximum and minimum temperature. Vegetation characteristics may have interfered with the results. Phytosociological and nutrient cycling studies should be conducted to test the proposed hypothesis.

  8. Climatic influences on litterfall production in a forested savannah in Prata – MG

    Directory of Open Access Journals (Sweden)

    Thiago Mendes Siqueira

    2016-05-01

    The objective of this study was to analyze the influence of climate on litterfall production, for a year, in a small fragment of forested savannah, in Minas Gerais, Brazil. Twenty collectors (0.25 m2 arranged in a row were used. The total litter production was 7.5 t.ha-1.year-1, comprising leaves, branches and fertile structures as the fractions. The leaf fraction contributed 67% of the annual litter input. Pearson’s correlation coefficient (r indicated the influence of the climatic variables precipitation and mean and minimum temperature in the accumulation of this fraction. The analysis also resulted in a significant r value between branches and average wind velocity, while the fertile structure fraction was influenced by rainfall and average maximum and minimum temperature. Vegetation characteristics may have interfered with the results. Phytosociological and nutrient cycling studies should be conducted to test the proposed hypothesis.

  9. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China

    Directory of Open Access Journals (Sweden)

    X. Fu

    2016-09-01

    Full Text Available Mercury (Hg concentrations and deposition fluxes in precipitation and litterfall were measured at multiple sites (six rural sites and an urban site across a broad geographic area in China. The annual deposition fluxes of Hg in precipitation at rural sites and an urban site were 2.0 to 7.2 and 12.6 ± 6.5 µg m−2 yr−1, respectively. Wet deposition fluxes of Hg at rural sites showed a clear regional difference with elevated deposition fluxes in the subtropical zone, followed by the temporal zone and arid/semi-arid zone. Precipitation depth is the primary influencing factor causing the variation of wet deposition. Hg fluxes through litterfall ranged from 22.8 to 62.8 µg m−2 yr−1, higher than the wet deposition fluxes by a factor of 3.9 to 8.7 and representing approximately 75 % of the total Hg deposition at the forest sites in China. This suggests that uptake of atmospheric Hg by foliage is the dominant pathway to remove atmospheric Hg in forest ecosystems in China. Wet deposition fluxes of Hg at rural sites of China were generally lower compared to those in North America and Europe, possibly due to a combination of lower precipitation depth, lower GOM concentrations in the troposphere and the generally lower cloud base heights at most sites that wash out a smaller amount of GOM and PBM during precipitation events.

  10. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere.

    Directory of Open Access Journals (Sweden)

    Emma J Sayer

    Full Text Available Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO(2 concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO(2 production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this 'extra' CO(2 was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests.

  11. Tracking a Common Surface-Bound Intermediate during CO2-to-Fuels Catalysis

    Science.gov (United States)

    2016-01-01

    Rational design of selective CO2-to-fuels electrocatalysts requires direct knowledge of the electrode surface structure during turnover. Metallic Cu is the most versatile CO2-to-fuels catalyst, capable of generating a wide array of value-added products, including methane, ethylene, and ethanol. All of these products are postulated to form via a common surface-bound CO intermediate. Therefore, the kinetics and thermodynamics of CO adsorption to Cu play a central role in determining fuel-formation selectivity and efficiency, highlighting the need for direct observation of CO surface binding equilibria under catalytic conditions. Here, we synthesize nanostructured Cu films adhered to IR-transparent Si prisms, and we find that these Cu surfaces enhance IR absorption of bound molecules. Using these films as electrodes, we examine Cu-catalyzed CO2 reduction in situ via IR spectroelectrochemistry. We observe that Cu surfaces bind electrogenerated CO, derived from CO2, beginning at −0.60 V vs RHE with increasing surface population at more negative potentials. Adsorbed CO is in dynamic equilibrium with dissolved 13CO and exchanges rapidly under catalytic conditions. The CO adsorption profiles are pH independent, but adsorbed CO species undergo a reversible transformation on the surface in modestly alkaline electrolytes. These studies establish the potential, concentration, and pH dependencies of the CO surface population on Cu, which serve to maintain a pool of this vital intermediate primed for further reduction to higher order fuel products. PMID:27610413

  12. Surface science studies on titania for solar fuel applications

    Science.gov (United States)

    Hadsell, Courtney Sara Mathews

    Titanium dioxide (titania) is a well-studied material for various applications including but not limited to, paint, sunscreen, pharmaceuticals and solar cell applications (photocatalysis.) It can be found in three main crystal forms; rutile, anatase, and brookite and this work will focus on the anatase form which has been heavily studied for its potential in dye sensitized solar cells (DSSCs.) I propose that aqueous and photo dye stability can be improved by taking special care to the exposed surface of anatase. Additionally, the theoretical maximum open circuit voltage of a DSSC is dependent upon which surface is exposed to the electrolyte. Previous works in this area have not been rigorous with respect to the surface and morphology of titania being used. Standard synthesis techniques of anatase lead to a crystal that generally has 94% of the titania (101) surface exposed, and the other 6% is the higher energy (001) surface. The (101) surface has 5 & 6-fold coordinated titania whereas the (001) surface only has 5-fold (under) coordinated titania. This under-coordination leads to enhanced reactivity of the (001) surface which has been demonstrated by dissassociative adsorption of water, and catalysis applications. Much theoretical work has focused on the minority (001) surface because up until recently synthesizing anatase with enhanced exposure of the (001) surface has been difficult. The initial materials for this study will be multilayer titania nanotubes (TiNTs) and nanosheets (TiNS) which have been previously characterized by my predecessor. The TiNTs and TiNS have 100% exposed (001)-like surface. Both of these materials show enhanced stability of phosphonated dye binding as compared to the current standard of anatase nanoparticles (NPs) however, due to their limited thermal stability the potential of incorporating the TiNTs and TiNSs into devices has been eliminated in this study. To overcome the device limitations I will synthesis a novel titania nanotile

  13. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    Science.gov (United States)

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  14. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  15. Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister

    International Nuclear Information System (INIS)

    J.W. Davis

    1999-01-01

    The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR. Estimates of volumes, masses, and surface areas are needed as input to structural, thermal, geochemical, nuclear criticality, and radiation shielding calculations to ensure the viability of the proposed disposal configuration

  16. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    Near-surface alloys (NSAs) possess a variety of unusual catalytic properties that could make them useful candidates for improved catalysts in a variety of chemical processes. It is known from previous work, for example, that some NSAs bind hydrogen very weakly while, at the same time, permitting ...

  17. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  18. Critique of Sikkink and Keane's comparison of surface fuel sampling techniques

    Science.gov (United States)

    Clinton S. Wright; Roger D. Ottmar; Robert E. Vihnanek

    2010-01-01

    The 2008 paper of Sikkink and Keane compared several methods to estimate surface fuel loading in western Montana: two widely used inventory techniques (planar intersect and fixed-area plot) and three methods that employ photographs as visual guides (photo load, photoload macroplot and photo series). We feel, however, that their study design was inadequate to evaluate...

  19. Handbook for inventorying surface fuels and biomass in the Interior West

    Science.gov (United States)

    James K. Brown; Rick D. Oberheu; Cameron M. Johnston

    1982-01-01

    Presents comprehensive procedures for inventorying weight per unit area of living and dead surface vegetation, to facilitate estimation of biomass and appraisal of fuels. Provides instructions for conducting fieldwork and calculating estimates of downed woody material, forest floor litter and duff, herbaceous vegetation, shrubs, and small conifers. Procedures produce...

  20. Investigation of radioactive cesium transportation from forest canopy to floor by litterfall, stemflow and throughfall in northern Fukushima

    Science.gov (United States)

    Endo, I.; Ohte, N.; Iseda, K.; Tanoi, K.; Hirose, A.; Kobayashi, N. I.; Murakami, M.; Tokuchi, N.; Ohashi, M.

    2015-12-01

    After the Fukushima Daiichi nuclear power plant accident due to Great East Japan Earthquake in March 11th 2011, large areas of forest have been highly contaminated by the radioactive nuclides. Most of the deposited radioactive material to the canopy is then washed out with rainfall or leaf fall due to the tree phenology. There have been studies showing that the amount of 137Cs transportation differs among litter components and water pathways, and was affected by seasonal variations. Thus, to evaluate the amount of 137Cs flux from canopy to forest floor, continuous monitoring of each component (litterfall, throughfall and stemflow) is required. We investigated the annual transfer of 137Cs from the forest canopy to the floor by litterfall, throughfall and stemflow at two different forest types in northern Fukushima after two years from the accident. Seasonal variations in 137Cs transportation and differences between forests types were also determined. Forest sites were set in the upstream part of Kami-Oguni River catchment at Date city, which locates approximately 50km northwest from the Fukushima Dai-ichi Nuclear Power Plant. The study sites consisted of two deciduous (Mixed deciduous-1, Mixed deciduous-2) and one cedar (Cedar plantation) stands. The cumulative 137Cs transportation from the forest canopy to the floor was 6.6 kBq m-2 year-1 for the Mixed deciduous-1, 3.9 kBq m-2 year-1 for the Mixed deciduous-2 and 11.0 kBq m-2 year-1 for the Cedar plantation. 137Cs transportation with litterfall increased in the defoliation period which correlated with the increased amount of litterfall. 137Cs transportation with throughfall and stemflow increased in the rainy season. 137Cs flux by litterfall was higher in Cedar plantation compared with that of mixed deciduous forests, while the opposite result was obtained for stemflow. The ratio of annual 137Cs flux and the estimated 137Cs amount deposited in the forests will be discussed.

  1. Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling

    Science.gov (United States)

    Cormier, Nicole; Krauss, Ken W.; Conner, William H.

    2013-01-01

    Many tidally influenced freshwater forested wetlands (tidal swamps) along the south Atlantic coast of the USA are currently undergoing dieback and decline. Salinity often drives conversion of tidal swamps to marsh, especially under conditions of regional drought. During this change, alterations in nitrogen (N) uptake from dominant vegetation or timing of N recycling from the canopy during annual litter senescence may help to facilitate marsh encroachment by providing for greater bioavailable N with small increases in salinity. To monitor these changes along with shifts in stand productivity, we established sites along two tidal swamp landscape transects on the lower reaches of the Waccamaw River (South Carolina) and Savannah River (Georgia) representing freshwater (≤0.1 psu), low oligohaline (1.1–1.6 psu), and high oligohaline (2.6–4.1 psu) stands; the latter stands have active marsh encroachment. Aboveground tree productivity was monitored on all sites through monthly litterfall collection and dendrometer band measurements from 2005 to 2009. Litterfall samples were pooled by season and analyzed for total N and carbon (C). On average between the two rivers, freshwater, low oligohaline, and high oligohaline tidal swamps returned 8,126, 3,831, and 1,471 mg N m−2 year−1, respectively, to the forest floor through litterfall, with differences related to total litterfall volume rather than foliar N concentrations. High oligohaline sites were most inconsistent in patterns of foliar N concentrations and N loading from the canopy. Leaf N content generally decreased and foliar C/N generally increased with salinization (excepting one site), with all sites being fairly inefficient in resorbing N from leaves prior to senescence. Stands with higher salinity also had greater flood frequency and duration, lower basal area increments, lower tree densities, higher numbers of dead or dying trees, and much reduced leaf litter fall (103 vs. 624 g m−2 year−1) over the

  2. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    Science.gov (United States)

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  3. Characterization of internal surface finishing of tubes for CAREM 25 fuel rods

    International Nuclear Information System (INIS)

    Loureiro, N.V; Juarez, G; Bianchi, D; Flores, A; Vizcaino, P

    2012-01-01

    One of the factors that ensure the good behavior of the fuel claddings of the nuclear power reactors is the internal surface quality. In the present work has been carried out a study of the internal surface of the tube after a cold rolling process developed in the Departamento de Tecnologia de Aleaciones de Circonio and applied by FAE-SA and PPFAE-CNEA in each rolling stage to obtain the fuel claddings for the reactor CAREM 25. The inner surface has been observed by scanning electron microscopy, SEM, being the objective of this study to verify not only the good internal surface but also infer about how starting from tubes of different initial diameter reduction the quality of the final product will be affected. The manufacturing process of the tubes for this new fuel went through modifications during the development, adding intermediate chemical pickling stages in order to improve the internal surface quality of the final product. From determinations made with ultrasound, the defects charts obtained made it possible to compare the observed signals more relevant and the micrographs in these areas in order to characterize possible defects (author)

  4. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    Directory of Open Access Journals (Sweden)

    G. S. Jones

    2011-01-01

    Full Text Available Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC, produces a positive radiative forcing of about +0.25 Wm−2 over the 20th century, compared with +2.52 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, −0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  5. Surface modification techniques for increased corrosion tolerance of zirconium fuel cladding

    Science.gov (United States)

    Carr, James Patrick, IV

    Corrosion is a major issue in applications involving materials in normal and severe environments, especially when it involves corrosive fluids, high temperatures, and radiation. Left unaddressed, corrosion can lead to catastrophic failures, resulting in economic and environmental liabilities. In nuclear applications, where metals and alloys, such as steel and zirconium, are extensively employed inside and outside of the nuclear reactor, corrosion accelerated by high temperatures, neutron radiation, and corrosive atmospheres, corrosion becomes even more concerning. The objectives of this research are to study and develop surface modification techniques to protect zirconium cladding by the incorporation of a specific barrier coating, and to understand the issues related to the compatibility of the coatings examined in this work. The final goal of this study is to recommend a coating and process that can be scaled-up for the consideration of manufacturing and economic limits. This dissertation study builds on previous accident tolerant fuel cladding research, but is unique in that advanced corrosion methods are tested and considerations for implementation by industry are practiced and discussed. This work will introduce unique studies involving the materials and methods for accident tolerant fuel cladding research by developing, demonstrating, and considering materials and processes for modifying the surface of zircaloy fuel cladding. This innovative research suggests that improvements in the technique to modify the surface of zirconium fuel cladding are likely. Three elements selected for the investigation of their compatibility on zircaloy fuel cladding are aluminum, silicon, and chromium. These materials are also currently being investigated at other labs as alternate alloys and coatings for accident tolerant fuel cladding. This dissertation also investigates the compatibility of these three elements as surface modifiers, by comparing their microstructural and

  6. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  7. Nanosized polycrystalline diamond cladding for surface protection of zirconium nuclear fuel tubes

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Škoda, R.; Škarohlíd, J.; Ashcheulov, Petr; Jäger, Aleš; Racek, Jan; Taylor, Andrew; Shao, L.

    2014-01-01

    Roč. 214, č. 11 (2014), s. 2600-2605 ISSN 0924-0136 R&D Projects: GA TA ČR TA01011165; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 238201 - MATCON Institutional support: RVO:68378271 Keywords : polycrystalline diamond film * nuclear fuel cladding protection Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.236, year: 2014

  8. New approaches to predicting surface fuel moisture in south east Australian forests

    Science.gov (United States)

    Sheridan, Gary; Nyman, Petter; Hawthorne, Sandra; Bovill, William; Walsh, Sean; Baillie, Craig; Duff, Thomas; Tolhurst, Kevin; Lane, Patrick

    2016-04-01

    The capacity to predict of the moisture content (FMC) of fine surface fuels in mountainous south east Australian forests has improved dramatically in recent years due to the convergence of several new technologies, including i) improved process-based account-keeping type FMC models, ii) improved understanding and representation of topographic effects (aspect, drainage position, elevation) on surface fuel and soil moisture, iii) improved methods for downscaling weather variables (eg. rainfall/throughfall, short-wave radiation) using digital elevation models and airborne LIDaR, and, iv) new in-situ sensor technologies (fuelsticks, capacitance sensors, Ibuttons) for continuously monitoring surface fuels and within-litter micro-climate conditions, generating datasets of unprecedented temporal resolution and continuity for model development and testing under real field conditions across a broad range of forests, landscapes and climates. In this study the combined improvements in predictive capacity were quantified by comparing the field FMC observations with predictions from traditional, widely used operational FMC models, and with two new process-based models, including improved spatial parameterisation provided by the new technologies outlined above. The results are interpreted in the context of planned-burning decision making and outcomes, and bushfire modelling and management. The initial results showed that the new approaches to FMC prediction offered substantial improvements over the traditional methods and could be reasonably implemented at operational scales.

  9. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    Science.gov (United States)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  10. Deposition of boron on fuel rod surface under sub-cooled boiling conditions-An approach toward understanding AOA occurrence

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Asakura, Yamato; Suzuki, Hiroaki

    2011-01-01

    Highlights: → AOA is one of key issues for maintaining stable PWR operation. → AOA is caused by boron accumulation on fuel rods under sub-cooled boiling. → Unstable depositing boron was seldom measured on fuel rods. → MED model was originally developed for crud deposition on boiling surface. → Amount of boron on fuel rod can be evaluated with MED model. - Abstract: In PWR primary coolant, it has been assumed that Li and B ions deposited on fuel rod surface under sub-cooled boiling conditions and they changed their chemical forms by chemical reaction with nickel iron oxides on the fuel surface. Accumulated boron on the fuel led to axial offset anomaly (AOA). In the present paper, the amount of boron deposited on the fuel surface was evaluated from two directions. The first calculated the amount with the extended micro-layer evaporation and dry-out (MED) model and the other estimated it from the viewpoint of reactor reactivity (neutron economy calculation). The MED model, which was developed for predicting iron crud deposition on the boiling surface of BWR fuel rods, was extended for application to metallic ion deposition, and modified to evaluate deposition of crud and metallic ions on sub-cooled boiling surface. Processes of growth and collapse of bubbles were calculated to determine the time from bubble generation to collapse and total evaporation volume and deposition amount of boron and metallic ions and their oxides on the fuel rod surface for a bubble. Finally chemical reaction rates of boron and metallic ions were calculated in the deposits. From the evaluation, it was concluded that: (i) the calculated deposition amount of boron on the fuel rod surface, which was four or forty times larger than measured amounts of boron and nickel oxides compounds, was seldom measured in the fuel deposits due to its high release rate; (ii) its hideout return during the reactor shutdown period was seldom observed due to its high concentration in the primary coolant

  11. Assessing three fuel classification systems and their maps using Forest Inventory and Analysis (FIA) surface fuel measurements

    Science.gov (United States)

    Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar

    2015-01-01

    Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...

  12. Physical and chemical characteristics of surface fuels in masticated mixed-conifer stands of the U.S. Rocky Mountains

    Science.gov (United States)

    Robert E. Keane; Pamela G. Sikkink; Theresa B. Jain

    2018-01-01

    Mastication is a wildland fuel treatment technique that is rapidly becoming the preferred method for many fire hazard reduction projects, especially in areas where reducing fuels with prescribed fire is particularly challenging. Mastication is the process of mechanically modifying the live and dead surface and canopy biomass by chopping and shredding vegetation to...

  13. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-01-01

    Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/797

  14. Digital image processing: Cylindrical surface plane development of CAREM fuel pellets

    International Nuclear Information System (INIS)

    Caccavelli, J; Cativa Tolosa, S; Gommes, C

    2012-01-01

    As part of the development of fuel pellets (FPs) for nuclear reactor CAREM-25, is necessary to systematize the analysis of the mechanical integrity of the FPs that is now done manually by a human operator. Following specifications and standards of reference for this purpose, the FPs should be inspected visually for detecting material discontinuities in the FPs surfaces to minimize any deterioration, loss of material and excessive breakage during operation and load of fuel bars. The material discontinuities are classified into two defects: surface cracks and chips. For each of these surface defects exist acceptance criteria that determine if the fuel pellet (FP) as a whole is accepted or rejected. One criteria for surface cracks is that they do not exceed one third (1/3) of the circumferential surface of the FP. The FP has cylindrical shape, so some of these acceptance criteria make difficult to analyze the FP in a single photographic image. Depending on the axial rotation of the FP, the crack could not be entirely visualized on the picture frame. Even a single crack that appears in different parts of the FP rotated images may appear to be different cracks in the FP when it is actually one. For this reason it is necessary, for the automatic detection and measurement of surface defects, obtain the circumferential surface of the FP into a single image in order to decide the acceptance or reject of the FP. As the FP shape is cylindrical, it is possible to obtain the flat development of the cylindrical surface (surface unrolling) of the FPs into a single image combining the image set of the axial rotation of the FP. In this work, we expose the procedure to implement the flat development of the cylindrical surface (surface unrolling). Starting from a photographic image of the FP surface, which represents the projection of a cylinder in the plane, we obtain three-dimensional information of each point on the cylindrical surface of the FP (3D-mapping). Then, we can

  15. Corrosive characteristics of surface-modified stainless steel bipolar plate in solid polymer fuel cell

    Science.gov (United States)

    Zhang, Xiaowen; Wang, Lixia; Sun, Juncai

    2015-03-01

    In this paper, corrosion behavior of an AISI 304 stainless steel modified by niobium or niobium nitride (denoted as niobized 304 SS and Nb-N 304 SS, respectively) is investigated in simulated solid polymer fuel cell (SPFC) operating conditions. Potentiodynamic polarizations show that the corrosion potentials of surface modified 304 SS shift to positive direction while the corrosion current densities decrease greatly comparing with the bare 304 SS in simulated anodic SPFC environments. The order of corrosive resistance in corrosive potential, corrosive current density and pitting potential is: Nb-N 304 SS > niobized 304 SS > bare 304 SS. In the methanol-fueled SPFC operating conditions, the results show that the corrosion resistance of bare and niobized 304 SS increases with the methanol concentration increasing in the test solutions.

  16. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    Science.gov (United States)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  17. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  18. Impregnation/Agglomeration Laboratory Tests of Heavy Fuel from Prestige to Improve Its Manageability and Removal from Seawater Surface. (Physical Behaviour of Fuel Agglomates)

    International Nuclear Information System (INIS)

    Garcia Frutos, F. J.; Rodriguez, V.; Otero, J.

    2002-01-01

    The handling and removal problems showed by heavy fuel floating in seawater could be improved or solved by using materials that agglomerate it. These materials must fulfill the following conditions: be inert materials in marine environment, the agglomerated fuel/material should float and its application and removal should be done using simple technologies. Based on these requirements, clay minerals, pine chips, mineral coal and charcoal were selected. The preliminary/results on impregnation/agglomeration with the materials mentioned above of heavy fuel from Prestige at lab scale are presented in this paper. The results have shown that only hydrophobic materials, such as mineral coal and charcoal, are able to agglomerate with fuel, which is also a hydrophobic substance. Whereas the agglomerates fuel/mineral coal sink, the agglomerates fuel/charcoal keep floating on water surface. It can be concluded that the addition of charcoal on dispersed fuel in seawater could improve its handling and removal. In this sense, pilot scale and eventually controlled in situ tests to study the feasibility of the proposed solution should be performed. (Author) 2 refs

  19. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  20. Testing external surface of fuel element tubes for power nuclear reactors

    International Nuclear Information System (INIS)

    Naugol'nykh, O.G.; Nelyubin, Yu.V.

    1987-01-01

    Optical methods are regarded perspective for discovery and detection of flaws of external surfaces of fuel element tubes. The TV method has highest information content among them. Two mock-ups of facilities based on the TV method using a ''dissector'' type TV device and a TV tube with charge accumulation (vidikon) have been developed. It is concluded that complex testing - combination of ultrasonic, photoelectric and TV methods in a facility is necessary for discovery and analysis of the whole variety of flaws, though sensitivity of the TV method is enough for disclosure of all the main defects

  1. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    International Nuclear Information System (INIS)

    Jo, HangJin; Kim, Jin Man; Yeom, Hwasung; Lee, Gi Cheol; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan; Sridharan, Kumar; Corradini, Michael

    2015-01-01

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding

  2. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Antonio M. Pozo

    2016-05-01

    Full Text Available A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU−1 and a resolution of between 5.7 × 10−4 and 16.5 × 10−4 RIU.

  3. Examination of the surface coatings removed from K-East Basin fuel elements

    International Nuclear Information System (INIS)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage

  4. Examination of the surface coating removed from K-East Basin fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage.

  5. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells.

    Science.gov (United States)

    Vogl, Andreas; Bischof, Franz; Wichern, Marc

    2016-01-01

    The startup of microbial fuel cells (MFCs) is known to be prone to failure or result in erratic performance impeding the research. The aim of this study was to advise a quick launch strategy for laboratory-scale MFCs that ensures steady operation performance in a short period of time. Different startup strategies were investigated and compared with membraneless single chamber MFCs. A direct surface-to-surface biofilm transfer (BFT) in an operating MFC proved to be the most efficient method. It provided steady power densities of 163 ± 13 mWm(-2) 4 days after inoculation compared to 58 ± 15 mWm(-2) after 30 days following a conventional inoculation approach. The in situ BFT eliminates the need for microbial acclimation during startup and reduces performance fluctuations caused by shifts in microbial biodiversity. Anaerobic pretreatment of the substrate and addition of suspended enzymes from an operating MFC into the new MFC proved to have a beneficial effect on startup and subsequent operation. Polarization methods were applied to characterize the startup phase and the steady state operation in terms of power densities, internal resistance and power overshoot during biofilm maturation. Applying this method a well-working MFC can be multiplied into an array of identically performing MFCs.

  6. Litterfall dynamics and nutrient decomposition of arid mangroves in the Gulf of California: Their role sustaining ecosystem heterotrophy

    Science.gov (United States)

    Sánchez-Andrés, R.; Sánchez-Carrillo, S.; Alatorre, L. C.; Cirujano, S.; Álvarez-Cobelas, M.

    2010-10-01

    This study shows results on litterfall dynamics and decay in mangrove stands of Avicennia germinans distributed along a latitudinal gradient (three forest sites) in the Gulf of California, in order to assess whether internal sources could support the observed mangrove ecosystem organic deficit in this arid tropic. Total mean annual litterfall production increased southward (712.6 ± 53.3, 1501.3 ± 145.1 and 1506.2 ± 280.5 g DW m -2 y -1, in the Yaqui, Mayo and Fuerte areas respectively), leaves being the main component of litter in all locations during the entire year, followed by fruits. The wet season (June-September) showed the highest litterfall rates through fruits. The temporal trend of litterfall production was significantly explained through mean air temperature ( R2 = 68%) whilst total annual litter production in the entire region showed a statistically significant relationship with total soil phosphorus, salinity, total nitrogen, organic matter and tree height ( R2 = 0.67). Throughout 117 days of the decomposition experiment, the litter lost 50% of its original dry weight in 5.8 days (average decay rate of 0.032 ± 0.04 g DW d -1) and there were not significant differences in the remaining mass after 6 days. The percentage of both C and P released from the litter correlated significantly with the ratio of tidal inundated days to total experiment days ( R2 = 0.62, p = 0.03 and R2 = 0.67, p = 0.02, respectively); however, the frequency of tidal inundation only showed a significant increase in C release from Avicennia litter after 6 and above 48 days of decomposition. Whereas the total C content of litter bags decreased linearly over the decomposition to (% Total C = 5.52 - 0.46 days, R2 = 0.81, p = 0.0005), N content displayed an irregular pattern with a significant increase of decay between 48 and 76 days from the beginning of the experiment. The pattern for relative P content of litter revealed reductions of up to 99% of the original (%tot- P = -9.77 to

  7. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  8. Fuel moisture content estimation: a land-surface modelling approach applied to African savannas

    Science.gov (United States)

    Ghent, D.; Spessa, A.; Kaduk, J.; Balzter, H.

    2009-04-01

    Despite the importance of fire to the global climate system, in terms of emissions from biomass burning, ecosystem structure and function, and changes to surface albedo, current land-surface models do not adequately estimate key variables affecting fire ignition and propagation. Fuel moisture content (FMC) is considered one of the most important of these variables (Chuvieco et al., 2004). Biophysical models, with appropriate plant functional type parameterisations, are the most viable option to adequately predict FMC over continental scales at high temporal resolution. However, the complexity of plant-water interactions, and the variability associated with short-term climate changes, means it is one of the most difficult fire variables to quantify and predict. Our work attempts to resolve this issue using a combination of satellite data and biophysical modelling applied to Africa. The approach we take is to represent live FMC as a surface dryness index; expressed as the ratio between the Normalised Difference Vegetation Index (NDVI) and land-surface temperature (LST). It has been argued in previous studies (Sandholt et al., 2002; Snyder et al., 2006), that this ratio displays a statistically stronger correlation to FMC than either of the variables, considered separately. In this study, simulated FMC is constrained through the assimilation of remotely sensed LST and NDVI data into the land-surface model JULES (Joint-UK Land Environment Simulator). Previous modelling studies of fire activity in Africa savannas, such as Lehsten et al. (2008), have reported significant levels of uncertainty associated with the simulations. This uncertainty is important because African savannas are among some of the most frequently burnt ecosystems and are a major source of greenhouse trace gases and aerosol emissions (Scholes et al., 1996). Furthermore, regional climate model studies indicate that many parts of the African savannas will experience drier and warmer conditions in future

  9. The technique for determination of surface contamination by uranium on U3Si2-Al plate-type fuel elements

    International Nuclear Information System (INIS)

    Li Shulan; He Fengqi; Wang Qingheng; Han Jingquan

    1993-04-01

    The NDT method for determining the surface contamination by uranium on U 3 Si 2 -Al plate-type fuel elements, the process of standard specimen preparation and the graduation curve are described. The measurement results of U 3 Si 2 -Al plate-type fuel elements show that the alpha counting method to measure the surface contamination by uranium on fuel plate is more reliable. The UB-1 type surface contamination meter, which was recently developed, has many advantages such as high sensitivity to determine the uranium pollution, short time in measuring, convenience for operation, and the minimum detectable amount of uranium is 5 x 10 -10 g/cm 2 . The measuring device is controlled by a microcomputer. Besides data acquisition and processing, it has functions of statistics, output data on terminal or to printer and alarm. The procedures of measurement are fully automatic. All of these will meet the measuring needs in batch process

  10. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    Science.gov (United States)

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legislation and technologies available. The results of the scenario TREND are used as a baseline for the other 2005 fuel scenarios, including fuel reformulation, fuel sulfur content, and compressed natural gas (CNG) as an alternative fuel. Compared to the year 1994, significant reductions in episode peak ozone concentrations and ozone grid hours are predicted for the TREND scenario. These reductions are even more pronounced within the investigated alternative and reformulated fuel scenarios. Especially, low sulfur fuels are appropriate for an immediate improvement in air quality, because they effect the emissions of the whole fleet. Furthermore, the simulation results indicate that the introduction of CNG vehicles would also enhance air quality with respect to ozone.

  11. Biomass,litterfall and decomposition rates for the fringed Rhizophora mangle forest lining the Bon Accord Lagoon,Tobago

    Directory of Open Access Journals (Sweden)

    Rahanna A Juman

    2005-05-01

    Full Text Available The mangrove forest that fringes the Bon Accord Lagoon measures 0.8 km² and is dominated by red mangrove (Rhizophora mangle .This forest forms the landward boundary of the Buccoo Reef Marine Park in Southwest Tobago,and is part of a mangrove-seagrass-coral reef continuum.Biomass and productivity,as indicated by litterfall rates,were measured in seven 0.01 ha monospecific plots from February 1998 to February 1999,and decomposition rates were determined. Red mangrove above-ground biomass ranged between 2.0 and 25.9 kg (dry wt.m-2 .Mean biomass was 14.1 ±8.1 kg (dry wt.m-2 yielding a standing crop of 11 318 ±6 488 t. Litterfall rate varied spatially and seasonally.It peaked from May to August (4.2-4.3 g dry wt.m-2 d-1 and was lowest from October to December (2.3-2.8 g dry wt.m-2 d-1 .Mean annual litterfall rate was 3.4 ±0.9 g dry wt.m-2 d-1 .Leaf degradation rates ranged from 0.3%loss d-1 in the upper intertidal zone to 1%loss d-1 at a lower intertidal site flooded by sewage effluent.Mean degradation rate was 0.4 ±1%loss d-1 .The swamp produces 2.8 t dry wt.of litterfall and 12 kg dry wt.of decomposed leaf material daily.Biomass and litterfall rates in Bon Accord Lagoon were compared to five similar sites that also participate in the Caribbean Coastal Marine Productivity Programme (CARICOMP.The Bon Accord Lagoon mangrove swamp is a highly productive fringed-forest that contributes to the overall productivity of the mangrove-seagrass-reef complex.El manglar que bordea la laguna de Bon Accord mide 0.8 km² y predomina el mangle rojo (Rhizophora mangle .Este manglar es el límite terrestre del Parque Nacional Buccoo Reef en el suroeste de Tobago,y es parte de un continuo de mangles-pastos-arrecifes.En este trabajo se midió la biomasa y productividad,mediante la caída de hojas,y las tasas de descomposición en siete parcelas monoespecíficas de 0.01 ha,de febrero 1998 a febrero 1999.La biomasa sobre el suelo del mangle rojo se registró entre 2

  12. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  13. Analysis of homogeneity of mixed oxide (MOX) fuel surface by laser induced break down spectroscopy (LIBS)

    International Nuclear Information System (INIS)

    Detalle, V.; Lacour, J.L.; Mauchien, P.; Wagner, J.F.

    2000-01-01

    In the nuclear fuel cycle, plutonium is recycled to produce MOX fuel for use in PWR reactors. Surface inspections of mixed PuO 2 /UO 2 pellets is very important in the process. The performance of Laser Induced Breakdown Spectroscopy (LIBS) or Laser Ablation Optical Emission Spectroscopy (LA-OES) was therefore assessed for surface analysis of simulated MOX pellets containing a mixture of UO 2 and CeO 2 , and compared with results obtained with the standard Castaing microprobe analyzer technique. In LIBS, a material is ablated by focussing a laser beam, and the emission from neutral and ionized atoms can be used to determine the composition. An original experimental set up was developed to obtain a LIBS microprobe system for microanalysis of the sample surface. The instrument has three main components : a laser (quadrupled Nd YAG), an ablation head (using a microscope lens) and a detection unit (spectrometer combined with an ICCD Intensified Charge Coupled Device camera). The LIBS technique has well-known advantages particularly for nuclear applications: (1) it requires no sample preparation ; (2) only a small amount of material (craters 7 or 3 μm wide and 1 to 3 μm deep) is needed for the analysis; (3) analysis can be performed remotely via optical fiber, allowing measurements in a hostile environment and at atmospheric pressure. The experimental set-up developed demonstrated that the LIBS microprobe system can be used for surface analysis of UO 2 /CeO 2 pellets. Figure 1 shows the calibration curve obtained, with the Ce/U ratio versus Ce/U concentration. Good linearity was found and a relative standard deviation of 5 % was determined for 100 single shots. A qualitative comparison of the LIBS microanalysis set up and the Castaing microprobe analyzer is shown in Figure 2, which reveals the same features. Thus, both analytical techniques can identify the surface non-homogeneity of the pellet. While LIBS is destructive, it requires no sample preparation, is faster (2

  14. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  16. Relationship of post-fire ground cover to surface fuel loads and consumption in longleaf pine ecosystems

    Science.gov (United States)

    Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Clint S. Wright

    2014-01-01

    The RxCADRE research team collected multi-scale measurements of pre-, during, and post-fire variables on operational prescribed fires conducted in 2008, 2011, and 2012 in longleaf pine ecosystems in the southeastern USA. Pre- and post-fire surface fuel loads were characterized in alternating pre- and post-fire clip plots systematically established within burn units....

  17. The surface water submodel for the assessment of Canada's nuclear fuel waste management concept

    International Nuclear Information System (INIS)

    Bird, G.A.; Stephenson, M.; Cornett, R.J.

    1992-12-01

    A requirement in assessing the safety of Canada's nuclear fuel waste management concept is the prediction of radiological doses to humans and other biota, which may occur far in the future as a result of releases of nuclides to the biosphere. A biosphere model has been developed, consisting of four integrated submodels describing surface water, soil, atmosphere, and food-dose components. This report documents the surface water submodel, which is a simple, generic mass balance model of a Canadian Shield lake. Nuclide input to the lake is the time-dependent mass output from the geosphere model. Nuclides enter the lake from compacted sediments. The surface water submodel calculates nuclide concentrations in lake water and sediment. These concentrations are used in the other biosphere submodels to predict the radiological dose to biota. Selection of parameter values for the model is based on the literature, our own data, and conservative assumptions to ensure that doses are not underestimated. MOst parameters are represented by log normal. This probabilistic approach of using distributed parameter values accounts for variability and uncertainty in parameter values, and short-term environmental fluctuations. Long-term environmental changes, such as glaciation, are not considered in the model. Sensitivity analysis indicates that nuclide concentrations in lake water and sediment are governed primarily by hydrological flushing, with lake catchment area being the most important parameter. When catchment area is held constant, as would occur at a specific site, lake area and nuclide transfer rate from water to sediment strongly influence concentrations in both water and sediment. Sediment accumulation rate also strongly influences sediment nuclide concentrations. Validation of model predictions using published studies and other data demonstrates that our model is realistic and suitable for assessing Canada's disposal concept. (Author)

  18. Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production

    Science.gov (United States)

    Jin, Tong

    Solar fuel generation via carbon dioxide (CO2) reduction is a promising approach to meet the increasing global demand for energy and to minimize the impact of energy consumption on climate change. However, CO2 is thermodynamically stable; its activation often requires the use of appropriate catalysts. In particular, molecular catalysts with well-defined structures and tunability have shown excellent activity in photochemical CO2 reduction. These homogenous catalysts, however, suffer from poor stability under photochemical conditions and difficulty in recycling from the reaction media. Heterogenized molecular catalysts, particularly those prepared by coupling molecular catalysts with solid-state surfaces, have attracted more attention in recent years as potential solutions to address the issues associated with molecular catalysts. In this work, solar CO2 reduction is investigated using systems coupling molecular catalysts with robust nanostructured surfaces. In Chapter 2, heterogenization of macrocyclic cobalt(III) and nickel (II) complexes on mesoporous silica surface was achieved by different methods. Direct ligand derivatization significantly lowered the catalytic activity of Co(III) complex, while grafting the Co(III) complex onto silica surface through Si-O-Co linkage resulted in hybrid catalysts with excellent activity in CO2 reduction in the presence of p-terphenyl as a molecular photosensitizer. An interesting loading effect was observed, in which the optimal activity was achieved at a medium Co(III) surface density. Heterogenization of the Ni(II) complex on silica surface has also been implemented, the poor photocatalytic activity of the hybrid catalyst can be attributed to the intrinsic nature of the homogeneous analogue. This study highlighted the importance of appropriate linking strategies in preparing functional heterogenized molecular catalysts. Coupling molecular complexes with light-harvesting surfaces could avoid the use of expensive molecular

  19. Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan

    Science.gov (United States)

    Huang, Tung-Yi; Hsu, Bing-Mu; Chao, Wei-Chun; Fan, Cheng-Wei

    2018-03-01

    n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14-C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the

  20. Role of Microstructure and Surface Defects on the Dissolution Kinetics of CeO2, a UO2 Fuel Analogue.

    Science.gov (United States)

    Corkhill, Claire L; Bailey, Daniel J; Tocino, Florent Y; Stennett, Martin C; Miller, James A; Provis, John L; Travis, Karl P; Hyatt, Neil C

    2016-04-27

    The release of radionuclides from spent fuel in a geological disposal facility is controlled by the surface mediated dissolution of UO2 in groundwater. In this study we investigate the influence of reactive surface sites on the dissolution of a synthesized CeO2 analogue for UO2 fuel. Dissolution was performed on the following: CeO2 annealed at high temperature, which eliminated intrinsic surface defects (point defects and dislocations); CeO2-x annealed in inert and reducing atmospheres to induce oxygen vacancy defects and on crushed CeO2 particles of different size fractions. BET surface area measurements were used as an indicator of reactive surface site concentration. Cerium stoichiometry, determined using X-ray Photoelectron Spectroscopy (XPS) and supported by X-ray Diffraction (XRD) analysis, was used to determine oxygen vacancy concentration. Upon dissolution in nitric acid medium at 90 °C, a quantifiable relationship was established between the concentration of high energy surface sites and CeO2 dissolution rate; the greater the proportion of intrinsic defects and oxygen vacancies, the higher the dissolution rate. Dissolution of oxygen vacancy-containing CeO2-x gave rise to rates that were an order of magnitude greater than for CeO2 with fewer oxygen vacancies. While enhanced solubility of Ce(3+) influenced the dissolution, it was shown that replacement of vacancy sites by oxygen significantly affected the dissolution mechanism due to changes in the lattice volume and strain upon dissolution and concurrent grain boundary decohesion. These results highlight the significant influence of defect sites and grain boundaries on the dissolution kinetics of UO2 fuel analogues and reduce uncertainty in the long term performance of spent fuel in geological disposal.

  1. Lead isotopes in marine surface sediments reveal historical use of leaded fuel.

    Science.gov (United States)

    Larsen, Martin M; Blusztajn, Jerzy S; Andersen, Ole; Dahllöf, Ingela

    2012-11-01

    Analyses of lead (Pb) isotopes have been performed in terrestrial and fresh water environments to estimate historical uses of leaded fuel, but so far this method has not been employed in studies of world-wide marine surface sediments. We analyzed Pb and its isotopes in 23 surface sediments from four continents collected during the Galathea 3 expedition in 2006-2007. To enhance the anthropogenic signal, a partial digestion using nitric acid was performed. The concentrations of Pb, Th, U and Al were determined with an ICP-Quadrupole MS, and Pb-isotope ratios with an ICP-multi-collector MS. The samples could be divided into three groups: Harbor areas in larger cities with concentrations of 150 to 265 mg kg(-1) dry weight, smaller towns with concentrations between 20 and 40 mg kg(-1) dry weight, and remotely located sites with concentrations below 15 mg kg(-1) dry weight. Pb-isotope ratios were compared to literature values for gasoline and local or geological background values, and the contribution of leaded-gasoline to total concentrations was calculated for contaminated sites using both a one-dimensional and a novel two-dimensional (vector) method. The North American sites had Pb-isotope ratios corresponding to the US leaded gasoline, with 24-88% of the Pb from leaded gasoline. Samples from Oceania showed Pb-isotope ratios corresponding to Australian gasoline, with 60% attributed to leaded gasoline in Sydney and 21% in Christchurch. Outside Cape Town, 15 to 46% of Pb in sediments was from leaded gasoline.

  2. Prediction of Forest Canopy and Surface Fuels from Lidar and Satellite Time Series Data in a Bark Beetle-Affected Forest

    Directory of Open Access Journals (Sweden)

    Benjamin C. Bright

    2017-08-01

    Full Text Available Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and surface fuels from light detection and ranging (lidar and Landsat time series explanatory variables via random forest (RF modeling across a coniferous montane forest in Colorado, USA, which was affected by mountain pine beetles (Dendroctonus ponderosae Hopkins approximately six years prior. We examined relationships between mapped fuels and the severity of tree mortality with correlation tests. RF models explained 59%, 48%, 35%, and 70% of the variation in available canopy fuel, canopy bulk density, canopy base height, and canopy height, respectively (percent root-mean-square error (%RMSE = 12–54%. Surface fuels were predicted less accurately, with models explaining 24%, 28%, 32%, and 30% of the variation in litter and duff, 1 to 100-h, 1000-h, and total surface fuels, respectively (%RMSE = 37–98%. Fuel metrics were negatively correlated with the severity of tree mortality, except canopy base height, which increased with greater tree mortality. Our results showed how bark beetle-caused tree mortality significantly reduced canopy fuels in our study area. We demonstrated that lidar and Landsat time series data contain substantial information about canopy and surface fuels and can be used for large-scale efforts to monitor and map fuel loads for fire behavior modeling at a landscape scale.

  3. Prediction of forest canopy and surface fuels from Lidar and satellite time series data in a bark beetle-affected forest

    Science.gov (United States)

    Bright, Benjamin C.; Hudak, Andrew T.; Meddens, Arjan J.H.; Hawbaker, Todd J.; Briggs, Jenny S.; Kennedy, Robert E.

    2017-01-01

    Wildfire behavior depends on the type, quantity, and condition of fuels, and the effect that bark beetle outbreaks have on fuels is a topic of current research and debate. Remote sensing can provide estimates of fuels across landscapes, although few studies have estimated surface fuels from remote sensing data. Here we predicted and mapped field-measured canopy and surface fuels from light detection and ranging (lidar) and Landsat time series explanatory variables via random forest (RF) modeling across a coniferous montane forest in Colorado, USA, which was affected by mountain pine beetles (Dendroctonus ponderosae Hopkins) approximately six years prior. We examined relationships between mapped fuels and the severity of tree mortality with correlation tests. RF models explained 59%, 48%, 35%, and 70% of the variation in available canopy fuel, canopy bulk density, canopy base height, and canopy height, respectively (percent root-mean-square error (%RMSE) = 12–54%). Surface fuels were predicted less accurately, with models explaining 24%, 28%, 32%, and 30% of the variation in litter and duff, 1 to 100-h, 1000-h, and total surface fuels, respectively (%RMSE = 37–98%). Fuel metrics were negatively correlated with the severity of tree mortality, except canopy base height, which increased with greater tree mortality. Our results showed how bark beetle-caused tree mortality significantly reduced canopy fuels in our study area. We demonstrated that lidar and Landsat time series data contain substantial information about canopy and surface fuels and can be used for large-scale efforts to monitor and map fuel loads for fire behavior modeling at a landscape scale.

  4. Surface fluorination of poly(fluorenyl ether ketone) ionomers as proton exchange membranes for fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.; Xiao, M.; Wang, S.J.; Shen, P.K.; Meng, Y.Z. [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2011-06-15

    A series of sulphonated poly(fluorenyl ether ketone) ionomers were successfully fluorinated by the means of direct surface fluorination. Polymer ionomer samples in two different states (membrane and powder) were treated with F{sub 2} gas which is diluted in N{sub 2} in a special reactor. X-ray photoelectron spectroscopy (XPS) was used to examine the F/C ratios of the fluorinated materials. The results revealed that the fluorination only occurred on the membrane surface and the fluorination degree increased with increasing F{sub 2} concentration in N{sub 2}. The membrane subjected to fluorination shows an obviously enhanced oxidative stability. The endurance in a Fenton's reagent of FSPFEK-P-28 is longer than 180 min which is two times longer than that of un-fluorinated SPFEK. The PEM properties and single fuel cell performances were investigated by comparison of un- and fluorinated polymer ionomers. The fluorinated membranes demonstrated an enhanced hydrophobic surface property, increased proton conductivities and better single fuel cell performances. Surface fluorination provides a convenient and useful approach to prepare highly proton conductive membrane with long life-time PEM fuel cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C., E-mail: christophe.jegou@cea.f [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Vercouter, T. [Commissariat a l' Energie Atomique (CEA), Saclay Reasearch Center, B.P. 11, F-91191 Gif-sur-Yvette Cedex (France); Roudil, D. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2 (registered) ) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 deg. C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO{sub 2} matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO{sub 2} grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH){sub 4(am)} phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  6. Selection of the reference concept for the surface examination stations in the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Frandsen, G.B.; Nash, C.R.

    1978-01-01

    The prototype surface examination station for the Fuels and Materials Examination Facility (FMEF) will use closed circuit television (CCTV) for routine modes of operation along with a nuclear periscope for special examination needs. The CCTV and the nuclear periscope were evaluated against prescribed station requirements and compared in a side-by-side demonstration. A quantitative evaluation of their outputs showed that both systems were capable of meeting surface anomaly detection requirements. The CCTV system was superior in its ability to collect, suppress and present data into a more useful form for the experimenters

  7. Catalytic Surface Promotion of Composite Cathodes in Protonic Ceramic Fuel Cells

    DEFF Research Database (Denmark)

    Solis, Cecilia; Navarrete, Laura; Bozza, Francesco

    2015-01-01

    Composite cathodes based on an electronic conductor and a protonic conductor show advantages for protonic ceramic fuel cells. In this work, the performance of a La5.5WO11.25-δ/ La0.8Sr0.2MnO3+δ (LWO/LSM) composite cathode in a fuel cell based on an LWO protonic conducting electrolyte is shown and...

  8. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  9. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems

    Science.gov (United States)

    Robert E. Keane

    2013-01-01

    Wildland fuelbeds are exceptionally complex, consisting of diverse particles of many sizes, types and shapes with abundances and properties that are highly variable in time and space. This complexity makes it difficult to accurately describe, classify, sample and map fuels for wildland fire research and management. As a result, many fire behaviour and effects software...

  10. A risk-informed basis for establishing non-fixed surface contamination limits for spent fuel transportation casks

    International Nuclear Information System (INIS)

    Rawl, R.R.; Eckerman, K.F.; Bogard, J.S.; Cook, J.R.

    2004-01-01

    The current limits for non-fixed contamination on packages used to transport radioactive materials were introduced in the 1961 edition of the International Atomic Energy Agency (IAEA) transport regulations and were based on radiation protection guidance and practices in use at that time. The limits were based on exposure scenarios leading to intakes of radionuclides by inhalation and external irradiation of the hands. These considerations are collectively referred to as the Fairbairn model. Although formulated over 40 years ago, the model remains unchanged and is still the basis of current regulatory-derived limits on package non-fixed surface contamination. There can also be doses that while not resulting directly from the contamination, are strongly influenced by and attributable to transport regulatory requirements for contamination control. For example, actions necessary to comply with the current derived limits for light-water-reactor (LWR) spent nuclear fuel (SNF) casks can result in significant external doses to workers. This is due to the relatively high radiation levels around the loaded casks, where workers must function during the measurement of contamination levels and while decontaminating the cask. In order to optimize the total dose received due to compliance with cask contamination levels, it is necessary to take into account all the doses that vary as a result of the regulatory limit. Limits for non-fixed surface contamination on spent fuel casks should be established by using a model that considers and optimizes the appropriate exposure scenarios both in the workplace and in the public environment. A risk-informed approach is needed to ensure optimal use of personnel and material resources for SNF-based packaging operations. This paper is a summary of a study sponsored by the US Nuclear Regulatory Commission and performed by Oak Ridge National Laboratory that examined the dose implications for removable surface contamination limits on spent fuel

  11. On the degradation of fuel cell catalyst. From model systems to high surface area catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Arenz, M. [Copenhagen Univ. (Denmark). Dept. of Chemistry

    2010-07-01

    In the presented work, as an alternative accelerated degradation tests in the form of half-cell measurements combined with identical location transmission electron microscopy (IL-TEM){sup 10,} {sup 11} are presented. It is demonstrated that for different catalysts the degradation mechanism can be scrutinized in detail. Thus this approach enables the systematic investigation of fuel cell catalyst degradation in a reduced period of time. (orig.)

  12. Fuel Cell Platinum Catalysts Supported on Mediate Surface Area Carbon Black Supports

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Odgaard, M.

    2015-01-01

    Roč. 43, č. 2015 (2015), s. 913-918 ISSN 1974-9791. [International Conference on Chemical and Process Engineering - ICheaP12 /12./. Milano, 19.05.2015-22.05.2015] R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * platinum catalyst * fuel cell Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  13. Fuel assemblies

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki.

    1986-01-01

    Purpose: To maintain a satisfactory integrity by preventing the increase of corrosion at the outer surface of a fuel can near the point of contact between the fuel can and the spacer due to the use of fuel pellets incorporated with burnable poisons. Constitution: Since reactor coolants are at high temperature and high pressure, zirconium and water are brought into reaction to proceed oxidation at the outer surface of a fuel can to form uniform oxidation layers. However, abrasion corrosion is additionally formed at the contact portion between the spacer and the fuel can, by which the corrosion is increased by about 25 %. For preventing such nodular corrosion, fuel pellets not incorporated with burnable poisons are charged at a portion of the fuel rod where the spacer is supported and fuel pellets incorporated with burnable poisons are charged at the positions other than about to thereby suppress the amount of the corrosion at the portion where the corrosion of the fuel can is most liable to be increased to thereby improve the fuel integrity. That is, radiolysis of coolants due to gamma-rays produced from gadolinium is lowered to reduce the oxygen concentration near the outer surface thereby preventing the corrosion. (Kawakami, Y.)

  14. Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the Solid Oxide Fuel Cell Cathode Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2017-04-06

    This final report for project FE0009656 covers the period from 10/01/2012 to 09/30/2015 and covers research accomplishments on the effects of carbon dioxide on the surface composition and structure of cathode materials for solid oxide fuel cells (SOFCs), specifically La1-xSrxFeyCo1- yO3-δ (LSCF). Epitaxially deposited thin films of LSCF on various single-crystal substrates have revealed the selective segregation of strontium to the surface thereby resulting in a surface enrichment of strontium. The near surface compositional profile in the films have been measured using total x-ray fluorescence (TXRF), and show that the kinetics of strontium segregation are higher at higher partial pressures of carbon dioxide. Once the strontium segregates to the surface, it leads to the formation of precipitates of SrO which convert to SrCO3 in the presence of even modest concentrations of carbon dioxide in the atmosphere. This has important implications for the performance of SOFCs which is discussed in this report. These experimental observations have also been verified by Density Functional Theory calculations (DFT) which predict the conditions under which SrO and SrCO3 can occur in LSCF. Furthermore, a few cathode compositions which have received attention in the literature as alternatives to LSCF cathodes have been studied in this work and shown to be thermodynamically unstable under the operating conditions of the SOFCs.

  15. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y 2 O 3 ) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y 2 O 3 , choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  16. Homogeneous surface oxidation of organosilicates by controlled combustion of adsorbed fuels: a facile method for low-temperature processing.

    Science.gov (United States)

    Feller, Bob E; Deline, Vaughn R; Bass, John; Knoesen, André; Miller, Robert D

    2013-09-25

    We have developed a method for the oxidation of organosilicate materials at temperatures considerably lower than those typically required for uncatalyzed oxidation. The process utilizes a combustible fuel delivered to the surface in an oxidizing environment to locally oxidize materials with carbon-silicon bonds. It also provides a level of control that cannot be achieved through standard high-energy top-to-bottom oxidative procedures such as UV-ozone and O2 plasmas. While the latter processes attack the outer interface, local oxidation can be achieved using our process by manipulating the distribution of the combustible fuel. We use this technique to generate oxidized porous organosilicate films with either a sharp oxidation front or uniform oxidation where the relative carbon content can be controlled through the film thickness depending on processing conditions. Further, we show that this process can also be used to seal bulk interconnected microporosity in films (<1 nm) without substantially changing the refractive index of the material. For both the nominally dense and porous films, the surface oxidation is accompanied by an increase in the Young's modulus and the oxidized films can be readily functionalized using standard silane chemistry to provide a variety of chemical functionalities.

  17. Impregnation/Agglomeration Laboratory Tests of Heavy Fuel from Prestige to Improve Its Manageability and Removal from Seawater Surface. (Physical Behaviour of Fuel Agglomates); Ensayos a Nivel de Laboratorio de Impregnacion/Aglomeracion del Fuel Procedente del Prestige para Facilitar su Manipulacion y Recogida en la Superficie del Mar (Comportamiento Fisico de los Aglomerados de Fuel)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Frutos, F. J.; Rodriguez, V.; Otero, J.

    2002-07-01

    The handling and removal problems showed by heavy fuel floating in seawater could be improved or solved by using materials that agglomerate it. These materials must fulfill the following condition: be inert materials in marine environment, the agglomerated fuel/material should float and its application and removal should be done using simple technologies. Based on these requirements, clay minerals, pine chips, mineral coal and charcoal were selected. The preliminary results on impregnation/agglomeration with the materials mentioned above of heavy fuel from Prestige at lab scale are presented in this paper. The results have shown that only hydrophobic materials, such as mineral coal and charcoal, are able to agglomerate with fuel, which is also a hydrophobic substance. Whereas the agglomerates fuel/mineral coal sink, the agglomerates fuel/charcoal keep floating on water surface. It can be concluded that the addition of charcoal on dispersed fuel in seawater could improve its handling and removal. In this sense, pilot scale and eventually controlled in situ tests to study the feasibility of the proposed solution should be performed. (Author) 2 refs.

  18. Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Khalakhan, Ivan; Václavů, Michal [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Kovács, Gábor; Kozlov, Sergey M. [Departament de Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona (Spain); Kúš, Peter; Skála, Tomáš; Tsud, Natalia; Lavková, Jaroslava [Charles University in Prague, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Potin, Valerie [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université Bourgogne, 9 Av. A. Savary, BP 47870, F-21078 Dijon Cedex (France); and others

    2016-03-01

    Graphical abstract: - Highlights: • Nanostructured Pt-Co thin catalyst films were grown on carbon by magnetron sputtering. • The surface composition of the nanostructured Pt-Co films was investigated by surface analysis techniques. • We carried out modeling of Pt-Co nanoalloys by computational methods. • Both experiment and modeling based on density functional theory showed that the surface of Pt-Co nanoparticles is almost exclusively composed of Pt atoms. - Abstract: Recently we have tested a magnetron sputtered Pt-Co catalyst in a hydrogen-fed proton exchange membrane fuel cell and showed its high catalytic activity for the oxygen reduction reaction. Here we present further investigation of the magnetron sputtered Pt-Co thin film catalyst by both experimental and theoretical methods. Scanning electron microscopy and transmission electron microscopy experiments confirmed the nanostructured character of the catalyst. The surface composition of as-deposited and annealed at 773 K Pt-Co films was investigated by surface analysis techniques, such as synchrotron radiation photoelectron spectroscopy and X-ray photoelectron spectroscopy. Modeling based on density functional theory showed that the surface of 6 nm large 1:1 Pt-Co nanoparticles is almost exclusively composed of Pt atoms (>90%) at typical operation conditions and the Co content does not exceed 20% at 773 K, in agreement with the experimental characterization of such films annealed in vacuum. According to experiment, the density of valence states of surface atoms in Pt-Co nanostructures is shifted by 0.3 eV to higher energies, which can be associated with their higher activity in the oxygen reduction reaction. The changes in electronic structure caused by alloying are also reflected in the measured Pt 4f, Co 3p and Co 2p photoelectron peak binding energies.

  19. Prediction of viscosities and surface tensions of fuels using a new corresponding states model

    DEFF Research Database (Denmark)

    Queimada, A.J.; Rolo, L.I.; Caco, A.I.

    2006-01-01

    While some properties of diesels are cheap, easy and fast to measure, such as densities, others such as surface tensions and viscosities are expensive and time consuming. A new approach that uses some basic information such as densities to predict viscosities and surface tensions is here proposed...

  20. Surface restructuring of lignite by bio-char of Cuminum cyminum - Exploring the prospects in defluoridation followed by fuel applications

    Science.gov (United States)

    Msagati, T. A. M.; Mamba, B. B.; Sivasankar, V.; Omine, Kiyoshi

    2014-05-01

    Recently, there has been an interest in the areas of developing new carbon materials for fluoride removal applications. The development of new carbon materials is of recent choice which involves the synthesis of hybrid carbon from various sources. In this context, the present contribution is made to focus on the study the restructured surface of lignite using a bio-material called Cuminum cyminum. The restructured lignite (RSL) was synthesized with an improved carbon content of 13% and its BET surface area was found to be 3.12 times greater than lignite (L). The amorphous nature of lignite and RSL was quite explicable from XRD studies. SEM studies exhibited a fibrous and finer surface of lignite which was well restructured into a semi-melt (5 μm) surface for RSL. Defluoridation potential of Restructured Lignite (15.8 mg g-1) was greater than the lignite (13.8 mg g-1) at pH 7.93 ± 0.03. Kinetic and isotherm parameters derived from various models helped in comprehending the nature and dynamics of fluoride sorption. Both the normal and the restructured lignite were found to be consistent with its fluoride uptake of 57% and 60% respectively even after fifth cycle of regeneration. High heating values of 22.01 MJ kg-1 and 26.90 MJ kg-1 respectively for lignite and RSL deemed their additional application as fuel materials.

  1. Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells

    KAUST Repository

    Mutoro, Eva

    2011-01-01

    Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La 0.8Sr 0.2CoO 3-δ (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr)oxides/carbonates. "Sr"-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k q, by an order of magnitude while "La"- decoration and "Co"-decoration led to no change and reduction in k q, respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k q enhancement for "Sr"-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. © 2011 The Royal Society of Chemistry.

  2. Electrochemical, interfacial, and surface studies of the conversion of carbon dioxide to liquid fuels on tin electrodes

    Science.gov (United States)

    Wu, Jingjie

    The electrochemical reduction of carbon dioxide (CO2) into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic CO2 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not substantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. An efficient catalyst for the electrochemical conversion of CO2 to fuels must be capable of mediating a proton-coupled electron transfer reaction at low overpotentials, reducing CO2 in the presence of water, selectively converting CO 2 to desirable chemicals, and sustaining long-term operations (Chapter 1). My Ph.D. research was an investigation of the electroreduction of CO2 on tin-based electrodes and development of an electrochemical cell to convert CO2 to liquid fuels. The initial study focused on understanding the CO2 reduction reaction chemistry in the electrical double layer with an emphasis on the effects of electrostatic adsorption of cations, specific adsorption of anion and electrolyte concentration on the potential and proton concentration at outer Helmholtz plane at which reduction reaction occurs. The variation of potential and proton concentration at outer Helmholtz plane accounts for the difference in activity and selectivity towards CO2 reduction when using different electrolytes (Chapter 2). Central to the highly efficient CO2 reduction is an optimum microstructure of catalyst layer in the Sn gas diffusion electrode (GDE) consisting of 100 nm Sn nanoparticles to facilitate gas diffusion and charge transfer. This microstructure in terms of the proton conductor fraction and catalyst layer thickness was optimized to

  3. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  4. Application of response surface optimization technique to the preparation of cathode electrode for the molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Ozkan, G.; Basarir, E.; Ozkan, G.

    2017-01-01

    One of the fuel cells, the molten carbonate fuel cell (MCFC), comes into prominence due to its high energy potential and suitability for industrial applications. Nickel porous structures are used as anodes and cathodes for MCFC. In this study; Green sheets were obtained by means of tape casting method performing on the prepared mixtures. 23% - 37% by weight nickel oxide was used in the mixture for the purpose of synthesizing cathode green sheets. Different slurry were prepared using different ratios of polyethylene glycol (PEG) as plasticizer, polyvinyl butyral (PVB) as binder, glycerol as dispersant and butanol with hexanol as a solvent. The optimum mixture formulation for the tape casting has been determined by measuring, tensile strength on the green tape. Tensile elongation of green tape refers to resistance to dissolution, cracking and breakage for the green tape slurry. Tensile force parameters were evaluated for the green tape’s slurries. Maximum tensile force and thickness of the green tape is critical factor in order to choose the optimum mixture formulation of cathode slurries. Optimum composition was determined as 23% nickel oxide, 3% binder and 3% plasticizer according to analyze two level experimental factorial design and response surface optimization technique. (author)

  5. Immobilization of the iron on the surface of non-woven carbon fiber for use in a microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Nichanan Phansroy

    2016-09-01

    Full Text Available Abstract Iron particles were immobilized onto non-woven carbon fiber via electroplating for use in a microbial fuel cell (MFC. Electroplating was performed under an applied voltage at a current of 0.2 A for 5, 10, and 15 min. The scanning electron microscope (SEM observations show that 5 min was not adequate for the particles to be immobilized, whereas 10 and 15 min of electroplating resulted in an adequate number of particles on the surface. To evaluate the strength of the binding of iron via electroplating on the surface of the fiber, the samples were washed with pure water and observed using an SEM. The 10 min electroplated sample has a larger surface area, which is suitable for the MFC anode, than the 15 min electroplated sample. According to X-ray photoelectron spectroscopy and X-ray diffraction analysis, the peaks corresponded to those of Fe2O3, and the sample dipped into tannic acid shows the peaks of Fe3O4. The amount of biofilm of Shewanella oneidensis MR-1 was evaluated using crystal violet staining, and living bacteria were counted as colony forming units. Electroplated Fe2O3 and Fe3O4 were found to be effective for producing biofilm and immobilizing S. oneidensis MR-1.

  6. Surface composition effect of nitriding Ni-free stainless steel as bipolar plate of polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shironita, Sayoko [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nakatsuyama, Kunio [Nakatsuyama Heat Treatment Co., Ltd., 1-1089-10, Nanyou, Nagaoka, Niigata 940-1164 (Japan); Souma, Kenichi [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Hitachi Industrial Equipment Systems Co., Ltd., 3 Kanda Neribei, Chiyoda, Tokyo 101-0022 (Japan); Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2016-12-01

    Graphical abstract: The anodic current densities in the passive region of nitrided SUS445-N stainless steel are lower than those of a non heat-treated SUS445 stainless steel and heat-treated SUS445-Ar stainless steel under an Ar atmosphere. It shows a better corrosion resistance for the SUS445 stainless steel after the nitriding heat treatment. - Highlights: • The nitriding heat treatment was carried out using Ni-free SUS445 stainless steel. • The corrosion resistance of the nitrided SUS445-N stainless steel was improved. • The structure of the nitrided SUS445-N stainless steel changed from α-Fe to γ-Fe. • The surface elemental components present in the steels affect the corrosion resistance. - Abstract: In order to increase the corrosion resistance of low cost Ni-free SUS445 stainless steel as the bipolar plate of a polymer electrolyte fuel cell, a nitriding surface treatment experiment was carried out in a nitrogen atmosphere under vacuum conditions, while an Ar atmosphere was used for comparison. The electrochemical performance, microstructure, surface chemical composition and morphology of the sample before and after the electrochemical measurements were investigated using linear sweep voltammetry (LSV), X-ray diffraction (XRD), glow discharge optical emission spectroscopy (GDS) and laser scanning microscopy (LSM) measurements. The results confirmed that the nitriding heat treatment not only increased the corrosion resistance, but also improved the surface conductivity of the Ni-free SUS445 stainless steel. In contrast, the corrosion resistance of the SUS445 stainless steel decreased after heat treatment in an Ar atmosphere. These results could be explained by the different surface compositions between these samples.

  7. Surface science and electrochemical studies of metal-modified carbides for fuel cells and hydrogen production

    Science.gov (United States)

    Kelly, Thomas Glenn

    Carbides of the early transition metals have emerged as low-cost catalysts that are active for a wide range of reactions. The surface chemistry of carbides can be altered by modifying the surface with small amounts of admetals. These metal-modified carbides can be effective replacements for Pt-based bimetallic systems, which suffer from the drawbacks of high cost and low thermal stability. In this dissertation, metal-modified carbides were studied for reactions with applications to renewable energy technologies. It is demonstrated that metal-modified carbides possess high activity for alcohol reforming and electrochemical hydrogen production. First, the surface chemistry of carbides towards alcohol decomposition is studied using density functional theory (DFT) and surface science experiments. The Vienna Ab initio Simulation Package (VASP) was used to calculate the binding energies of alcohols and decomposition intermediates on metal-modified carbides. The calculated binding energies were then correlated to reforming activity determined experimentally using temperature programmed desorption (TPD). In the case of methanol decomposition, it was found that tungsten monocarbide (WC) selectively cleaved the C-O bond to produce methane. Upon modifying the surface with a single layer of metal such as Ni, Pt, or Rh, the selectivity shifted towards scission of the C-H bonds while leaving the C-O bond intact, producing carbon monoxide (CO) and H2. High resolution energy loss spectroscopy (HREELS) was used to examine the bond breaking sequence as a function of temperature. From HREELS, it was shown that the surfaces followed an activity trend of Rh > Ni > Pt. The Au-modified WC surface possessed too low of a methanol binding energy, and molecular desorption of methanol was the most favorable pathway on this surface. Next, the ability of Rh-modified WC to break the C-C bond of C2 and C3 alcohols was demonstrated. HREELS showed that ethanol decomposed through an acetaldehyde

  8. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)

  9. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  10. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell

    Science.gov (United States)

    Kireeti, Kota V. M. K.; Jha, Neetu

    2017-10-01

    A strategy for tuning the surface property of Single Walled Carbon Nanotubes (SWNTs) for enhanced methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) along with methanol tolerance is presented. The surface functionality is tailored using controlled acid and base treatment. Acid treatment leads to the attachment of carboxylic carbon (CC) fragments to SWNT making it hydrophilic (P3-SWNT). Base treatment of P3-SWNT with 0.05 M NaOH reduces the CCs and makes it hydrophobic (P33-SWNT). Pt catalyst supported on the P3-SWNT possesses enhanced MOR whereas that supported on P33-SWNT not only enhances ORR kinetics but also possess good tolerance towards methanol oxidation as verified by the electrochemical technique.

  11. Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico.

    Science.gov (United States)

    Ziervogel, Kai; D'Souza, Nigel; Sweet, Julia; Yan, Beizhan; Passow, Uta

    2014-01-01

    We conducted a series of roller tank incubations with surface seawater from the Green Canyon oil reservoir, northern Gulf of Mexico, amended with either a natural oil slick (GCS-oil) or pristine oil. The goal was to test whether bacterial activities of natural surface water communities facilitate the formation of oil-rich marine snow (oil snow). Although oil snow did not form during any of our experiments, we found specific bacterial metabolic responses to the addition of GCS-oil that profoundly affected carbon cycling within our 4-days incubations. Peptidase and β-glucosidase activities indicative of bacterial enzymatic hydrolysis of peptides and carbohydrates, respectively, were suppressed upon the addition of GCS-oil relative to the non-oil treatment, suggesting that ascending oil and gas initially inhibits bacterial metabolism in surface water. Biodegradation of physically dispersed GCS-oil components, indicated by the degradation of lower molecular weight n-alkanes as well as the rapid transformation of particulate oil-carbon (C: N >40) into the DOC pool, led to the production of carbohydrate- and peptide-rich degradation byproducts and bacterial metabolites such as transparent exopolymer particles (TEP). TEP formation was highest at day 4 in the presence of GCS-oil; in contrast, TEP levels in the non-oil treatment already peaked at day 2. Cell-specific enzymatic activities closely followed TEP concentrations in the presence and absence of GCS-oil. These results demonstrate that the formation of oil slicks and activities of oil-degrading bacteria result in a temporal offset of microbial cycling of organic matter, affecting food web interactions and carbon cycling in surface waters over cold seeps.

  12. Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Kai eZiervogel

    2014-05-01

    Full Text Available We conducted a series of roller tank incubations with surface seawater from the Green Canyon oil reservoir, northern Gulf of Mexico, amended with either a natural oil slick (GCS-oil or pristine oil. The goal was to test whether bacterial activities of natural surface water communities facilitate the formation of oil-rich marine snow (oil snow. Although oil snow did not form during any of our experiments, we found specific bacterial metabolic responses to the addition of GCS-oil that profoundly affected carbon cycling within our 4-days incubations. Peptidase and -glucosidase activities indicative of bacterial enzymatic hydrolysis of peptides and carbohydrates, respectively, were suppressed upon the addition of GCS-oil relative to the non-oil treatment, suggesting that ascending oil and gas initially inhibits bacterial metabolism in surface water. Biodegradation of physically dispersed GCS-oil components indicated by the degradation of lower molecular weight n-alkanes as well as the rapid transformation of particulate oil-carbon (C: N >40 into the DOC pool, led to the production of carbohydrate- and peptide-rich degradation byproducts and bacterial metabolites such as transparent exopolymer particles (TEP. TEP formation was highest at day 4 in the presence of GCS-oil; in contrast, TEP levels in the non-oil treatment already peaked at day 2. Cell-specific enzymatic activities closely followed TEP concentrations in the presence and absence of GCS-oil. These results demonstrate that the formation of oil slicks and activities of oil-degrading bacteria result in a temporal offset of microbial cycling of organic matter, affecting food web interactions and carbon cycling in surface waters over cold seeps.

  13. Integral analysis of cavity pressurization in a fuel rod during an ULOF driven TOP with inclusion of surface tension effects on froth gas bubbles and variable cavity conditions due to fuel melting and ejection

    International Nuclear Information System (INIS)

    Royl, P.

    1984-02-01

    The transient cavity pressurization in an ULOF driven TOP excursion has been analyzed for the SPX-1 reactor with an equation of state that allows to simulate the contribution of small froth gas bubbles to the pressure build-up in a fuel pin with inclusion of restraints from surface tension. Calculations were performed for various bubble parameters. Estimates are made for effective gas availabilities at fuel melting which can be used in a cavity model with an ideal gas equation to arrive at similar pressure transients

  14. Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake: nuclear fuel durability enhancement

    Czech Academy of Sciences Publication Activity Database

    Škarohlíd, J.; Ashcheulov, Petr; Škoda, R.; Taylor, Andrew; Čtvrtlík, R.; Tomaštík, J.; Fendrych, František; Kopeček, Jaromír; Cháb, Vladimír; Cichoň, Stanislav; Sajdl, P.; Macák, J.; Xu, P.; Partezana, J.M.; Lorinčík, J.; Prehradná, J.; Steinbrück, M.; Kratochvílová, Irena

    2017-01-01

    Roč. 7, Jul (2017), 1-14, č. článku 6469. ISSN 2045-2322 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR(CZ) GA15-05095S; GA ČR(CZ) GA16-03085S; GA TA ČR TA04020156 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * zirconium alloys * corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 4.259, year: 2016

  15. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    Science.gov (United States)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  16. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells

    KAUST Repository

    Crumlin, Ethan J.

    2010-11-04

    Heterostructured interfaces of oxides, which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here, we show that the ORR of ∼85 nm thick La0.8Sr0.2CoO3-δ (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (∼3-4 orders of magnitude above bulk LSC113) by surface decorations of (La 0.5Sr0.5)2CoO4±δ (LSC214) with coverage in the range from ∼0.1 to ∼15 nm. Their surface and atomic structures were characterized by atomic force, scanning electron, and scanning transmission electron microscopy, and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood, our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. © 2010 American Chemical Society.

  17. A study in the surface treatment of the barrier of a nuclear fuel protector

    International Nuclear Information System (INIS)

    Song, Yo Seung; Chang, Si Young; Lee, Du Hyung; Noh, Bong Hyun; Kim, Ye Na

    2009-06-01

    Materials used in the nuclear power plant, such as pipe, are needed to endure severe corrosion because they could expose the high temperature coolant under radiation. Up to now, the HT9 steel(12Cr-1MoVW) which is one of Ferritic Martensite Stainless steels has been applied because of its high swelling resistance. However, its applications are limited to the temperature of approximately 500 .deg. C. Therefore, it has been strongly demanded that the materials have excellent corrosion resistance concurrent with high mechanical properties such as fracture toughness and irradiation resistance at higher temperatures of more than 500 .dec. C for high efficiency of operating reactor. In order to overcome the corrosion problem of irradiated HT9 steel causing severe environmental problem, particularly, the ceramic coating methods could be applied. Recently, plasma electrolytic oxidation (PEO) emerged as a novel technique being capable of thick, dense and hard oxide ceramic coatings on the surface of light materials. In this study, we focused on applying the newly developed coating method, Plasma Electrolytic Oxidation (PEO) which was mainly developed for non-ferrous materials such as Al, Mg and Ti, for the HT9 steel. And then, we investigated and evaluated the possibility of application of PEO method for HT9 steel treated with/without aluminum cladding based on the microstructure observation of coatings formed under various processing parameters such as current ratio, electrolyte and time. Plasma Electrolytic Oxidation (PEO) treatment, which is an advancement of the conventional electrochemical anodizing treatment and leads to the local formation of a plasma by a spark on the metal surface, is expected to be a promising surface treatment that can overcome the drawbacks of HT9 steel. We applied PEO treatment for HT9 steel. We tried to find the effect of processing parameters, such as coating time, current ratio and electrolyte, on PEO coatings of HT9 steel, and also studied

  18. Characterization and Hydrogen Storage of Surface-Modified Multiwalled Carbon Nanotubes for Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2012-01-01

    Full Text Available The synthesis, identification, and H2 storage of multiwalled carbon nanotubes (MWCNTs have been investigated in the present work. MWCNTs were produced from the catalytic-assembly solvent (benzene-thermal (solvothermal route. Reduction of C6Cl6 with metallic potassium was carried out in the presence of Co/Ni catalyst precursors at 503–623 K for 12 h. XRD patterns indicated that the abstraction of Cl from hexachlorobenzene and the formation of KCl precipitates were involved in the early stage of the synthesis process of MWCNTs. This result offers further explanation for the formation of MWCNT structure and yield using the solvothermal route depending on the Co/Ni catalyst precursors. The diameter of MWCNTs ranged between 30 and 100 nm and the H2 storage capacity of MWCNTs improved when 2.7–3.8 wt% Pd or NaAlH4 were doped. The XANES/EXAFS spectra revealed that the Co/Ni catalyst precursors of the MWCNT synthesis were in metallic form and Pd atoms possessed a Pd–Pd bond distance of 2.78 Å with a coordination number of 9.08. Ti-NaAlH4 or Pd nanoparticles were dispersed on MWCNTs and facilitated to improve the H2 storage capacity significantly with the surface modification process.

  19. Fuel production from microwave assisted pyrolysis of coal with carbon surfaces

    International Nuclear Information System (INIS)

    Mushtaq, Faisal; Mat, Ramli; Ani, Farid Nasir

    2016-01-01

    Highlights: • MW heating of coal was carried out with uniformly distributed carbon surfaces. • The effects of carbon loading, MW power and N 2 flow rate were investigated. • Heating profile, pyrolysis products are influenced by the process variables. • Highest coal-tar obtained when final temperature sustained for longer duration. • Coal-tar is mainly composed of aromatics and saturated aliphatics hydrocarbons. - Abstract: In this study, coal solids were subjected to Microwave (MW) pyrolysis conditions. Coconut Activated Carbon (CAC) solids used as a MW absorber was distributed uniformly over coal solids to reduce hotspots. Three process parameters; CAC loading, MW power and N 2 flow rate were studies on pyrolysis heating performance. The highest coal-tar yield of 18.59 wt% was obtained with 600 W, 75 wt% CAC loading and 4 Liter per Minute (LPM) of N 2 flow rate. This improved coal-tar yield is mainly of the fact that higher MW power and CAC loading produced sustained pyrolysis conditions for longer duration for the complete conversion of pyrolysis solids. The coal-tar was composed mainly of aromatics (naphthalenes, benzenes and xylene) and saturated aliphatics (alkanes and alkenes) hydrocarbons. The gas produced from pyrolysis of coal is mainly of H 2 40.23–65.22 vol%.

  20. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  1. Designing a miniaturised heated stage for in situ optical measurements of solid oxide fuel cell electrode surfaces, and probing the oxidation of solid oxide fuel cell anodes using in situ Raman spectroscopy

    KAUST Repository

    Brightman, E.

    2012-01-01

    A novel miniaturised heated stage for in operando optical measurements on solid oxide fuel cell electrode surfaces is described. The design combines the advantages of previously reported designs, namely, (i) fully controllable dual atmosphere operation enabling fuel cell pellets to be tested in operando with either electrode in any atmosphere being the focus of study, and (ii) combined electrochemical measurements with optical spectroscopy measurements with the potential for highly detailed study of electrochemical processes; with the following advances, (iii) integrated fitting for mounting on a mapping stage enabling 2-D spatial characterisation of the surface, (iv) a compact profile that is externally cooled, enabling operation on an existing microscope without the need for specialized lenses, (v) the ability to cool very rapidly, from 600 °C to 300 °C in less than 5 min without damaging the experimental apparatus, and (vi) the ability to accommodate a range of pellet sizes and thicknesses. © 2012 American Institute of Physics.

  2. Produção de serrapilheira no Cerrado e Floresta de Transição Amazônia-Cerrado do Centro-Oeste Brasileiro Litterfall production in the Brazilian mid-western Amazonia-Cerrado transition forest

    Directory of Open Access Journals (Sweden)

    Carlos José da Silva

    2007-01-01

    Full Text Available O presente trabalho teve como objetivo verificar a variação da produção de serrapilheira de diferentes biomas: Cerrado (com as fitofisionomias Cerrado sensu stricto e Cerradão e Floresta de Transição Amazônia-Cerrado, em clima tropical. Para a determinação da produção de serrapilheira foram utilizados coletores de tela em náilon. Dados micrometereológicos foram coletados nas áreas de estudo. A produção de serrapilheira nos dois biomas mostrou acentuada sazonalidade, com as maiores produções ocorrendo durante a estação seca e menor durante a estação chuvosa. A maior produção de serrapilheira ocorreu na Floresta de Transição, seguida do bioma Cerrado. A fração de folhas foi mais representativa do que as frações de galhos, flores, frutos em ambas as áreas estudadas.The objective of the present work was to verify the variation of litterfall production of different biomass: a cerrado ("savanna" with vegetation types Cerrado sensu stricto ("orchard-like vegetation" and Cerradão ("woodland-like vegetation" and Amazonia-Cerrado transition forest in a tropical climate. To determine the litterfall production, we used nylon screen traps. Micrometereologic data was collected in both areas of study. The litterfall in two biomass revealed themselves as seasonal, with the highest productions occurring during the dry season and the lowest during the wet. The biggest litterfall occurred in the Transition Forest, followed by the Cerrado biome. Leaf fraction was more representative than twigs, flowers, fruits in both areas studied.

  3. Transcontinental Surface Validation of Satellite Observations of Enhanced Methane Anomalies Associated with Fossil Fuel Industrial Methane Emissions

    Science.gov (United States)

    Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.

    2012-12-01

    A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI

  4. Surface Area Expansion of Electrodes with Grass-like Nanostructures to Enhance Electricity Generation in Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Noori, Jafar Safaa

    2012-01-01

    of plain silicium showed a maximum power density of 86.0 mW/m2. Further expanding the surface area of carbon paper electrodes with gold nanoparticles resulted in a maximum stable power density of 346.9 mW/m2 which is 2.9 times higher than that achieved with conventional carbon paper. These results show......Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass......-like nanostructure (termed nanograss) were used. A two-chamber MFC with plain silicium electrodes achieved a maximum power density of 0.002 mW/m2, while an electrode with nanograss of titanium and gold deposited on one side gave a maximum power density of 2.5 mW/m2. Deposition of titanium and gold on both sides...

  5. Fuel assembly

    International Nuclear Information System (INIS)

    Azekura, Kazuo; Kurihara, Kunitosi.

    1993-01-01

    Fuel pellets containing burnable poison and fuel pellets not containing burnable poison are used together in burnable poison-incorporated fuel rods which is disposed at the outermost layer of a cluster. Since the burnable poison-incorporated fuel rods are disposed at the outermost layer of the cluster where a neutron flux level is high and, accordingly, the power is high originally, local power peaking can be suppressed and, simultaneously, fuels can be burnt effectively without increasing the fuel concentration in the inner and the intermediate layers than that of the outermost layer. In addition, a problem of lacking a reactor core reactivity at an initial stage is solved by disposing both of the fuel pellets together, even if burnable poisons of high concentration are used. This is because the extent of the lowering of the reactivity due to the burnable poison-incorporated fuels is mainly determined by the surface area thereof and the remaining period of the burnable poison is mainly determined by the concentration thereof. As a result, the burnup degree can be improved without lowering the reactor reactivity so much. (N.H.)

  6. Irradiation temperature memorization by retention of krypton-85. Application to the temperature determination for the internal cladding surface of fuel elements in PWR

    International Nuclear Information System (INIS)

    Fremiot, Claude

    1977-01-01

    The temperature of the inner surface of the cladding fuel elements, which can not be measured directly, can be determined after irradiation. During its stage within the reactor, the cladding is bombarded by krypton-85 fission product, which is trapped in the metallic lattice defects. The experience shows that the krypton release during postirradiation heating takes place at the irradiation temperature. This method was applied for PWR fuel element. A very simple model for retention and release of the krypton is proposed. The krypton trap-energy in zircaloy partakes in this model. This technique can be ordered amongst the Hot'Lab' control methods and expert appraisements. It is pointed out that the principal interest in that method is the fact that it does not need any fuel element instrumentation. At the present, this method is being used by CEA for routine-control. [fr

  7. An Assessment of Pre- and Post Fire Near Surface Fuel Hazard in an Australian Dry Sclerophyll Forest Using Point Cloud Data Captured Using a Terrestrial Laser Scanner

    Directory of Open Access Journals (Sweden)

    Luke Wallace

    2016-08-01

    Full Text Available Assessment of ecological and structrual changes induced by fire events is important for understanding the effects of fire, and planning future ecological and risk mitigation strategies. This study employs Terrestrial Laser Scanning (TLS data captured at multiple points in time to monitor the changes in a dry sclerophyll forest induced by a prescribed burn. Point cloud data was collected for two plots; one plot undergoing a fire treatment, and the second plot remaining untreated, thereby acting as the control. Data was collected at three epochs (pre-fire, two weeks post fire and two years post fire. Coregistration of these multitemporal point clouds to within an acceptable tolerance was achieved through a two step process utilising permanent infield markers and manually extracted stem objects as reference targets. Metrics describing fuel height and fuel fragmentation were extracted from the point clouds for direct comparison with industry standard visual assessments. Measurements describing the change (or lack thereof in the control plot indicate that the method of data capture and coregistration were achieved with the required accuracy to monitor fire induced change. Results from the fire affected plot show that immediately post fire 67% of area had been burnt with the average fuel height decreasing from 0.33 to 0.13 m. At two years post-fire the fuel remained signicantly lower (0.11 m and more fragmented in comparison to pre-fire levels. Results in both the control and fire altered plot were comparable to synchronus onground visual assessment. The advantage of TLS over the visual assessment method is, however, demonstrated through the use of two physical and spatially quantifiable metrics to describe fuel change. These results highlight the capabilities of multitemporal TLS data for measuring and mapping changes in the three dimensional structure of vegetation. Metrics from point clouds can be derived to provide quantified estimates of surface

  8. Introducing close-range photogrammetry for characterizing forest understory plant diversity and surface fuel structure at fine scales

    Science.gov (United States)

    Benjamin C. Bright; E. Louise Loudermilk; Scott M. Pokswinski; Andrew T. Hudak; Joseph J. O' Brien

    2016-01-01

    Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustris Mill.) forests of the southeastern United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant...

  9. Spent fuel storage and isolation

    International Nuclear Information System (INIS)

    Bensky, M.S.; Kurzeka, W.J.; Bauer, A.A.; Carr, J.A.; Matthews, S.C.

    1979-02-01

    The principal spent fuel activities conducted within the commercial waste and spent fuel within the Commercial Waste and Spent Fuel Packaging Program are: simulated near-surface (drywell) storage demonstrations at Hanford and the Nevada Test Site; surface (sealed storage cask) and drywell demonstrations at the Nevada Test Site; and spent fuel receiving and packaging facility conceptual design. These investigations are described

  10. The influence of operational and design parameters on vertical redox profiles in sub-surface flow constructed wetlands: surveying the optimal scenario for microbial fuel cell implementation

    OpenAIRE

    Garfi, Marianna; Corbella Vidal, Clara; Puigagut Juárez, Jaume

    2013-01-01

    The objective of the present work was to determine the optimal redox gradient that can be obtained in sub-surface flow constructed wetlands (SSF CWs) to maximize the energy production with microbial fuel cells (MFCs). To this aim, a pilot plant based on SSF CW was evaluated for vertical redox profiles. Key operational and design parameters surveyed that influences redox conditions in SSF CW were the presence of plants (Phragmites australis) and the flow regime (continuous and discontinuous fl...

  11. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Surface and near-surface hydrological modelling in the biosphere assessment BSA-2012

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-05-01

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. This study is part of the biosphere assessment (BSA-2012) within the safety case for the repository. The surface hydrological modelling described in this report is aimed at providing link between radionuclide transport in the geosphere and in the biosphere systems. The SVAT-model and Olkiluoto site scale surface hydrological model were calibrated and validated in the present day conditions using the input data provided by the Olkiluoto Monitoring Programme (OMO). During the next 10 000 years the terrain and ecosystem development is to a large extent driven by the postglacial crustal uplift. UNTAMO is a GIS toolbox developed for simulating land-uplift driven or other changes in the biosphere. All the spatial and temporal input data (excluding meteorological data) needed in the surface hydrological modelling were provided by the UNTAMO toolbox. The specific outputs given by UNTAMO toolbox are time-dependent evolution of the biosphere objects. They are continuous and sufficiently homogeneous sub-areas of the modelled area that could potentially receive radionuclides released from the repository. Possible ecosystem types for biosphere objects are coast, lake, river, forest, cropland, pasture and wetland. The primary goal of this study was to compute vertical and horizontal water fluxes in the biosphere objects. These data will be used in the biosphere radionuclide transport calculations. The method adopted here is based on calculating average vertical and horizontal fluxes for biosphere objects from the results of the full 3D-model. It was not necessary to develop any simplified hydrological model for the biosphere objects. This report includes modelling results from for the Reference Case (present day climate) and Terr M axAgri Case (maximum extent of agricultural areas and

  12. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    Science.gov (United States)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  13. UO2 Fuel pellet impurities, pellet surface roughness and n(18O)/n(16O) ratios, applied to nuclear forensic science

    International Nuclear Information System (INIS)

    Pajo, L.

    2001-01-01

    In the last decade, law enforcement has faced the problem of illicit trafficking of nuclear materials. Nuclear forensic science is a new branch of science that enables the identification of seized nuclear material. The identification is not based on a fixed scheme, but further identification parameters are decided based on previous identification results. The analysis is carried out by using traditional analysis methods and applying modern measurement technology. The parameters are generally not unambiguous and not self-explanatory. In order to have a full picture about the origin of seized samples, several identification parameters should be used together and the measured data should be compared to corresponding data from known sources. A nuclear material database containing data from several fabrication plants is installed for the purpose. In this thesis the use of UO 2 fabrication plant specific parameters, fuel impurities, fuel pellet surface roughness and oxygen isotopic ratio in UO 2 were investigated for identification purposes in nuclear forensic science. The potential use of these parameters as 'fingerprints' is discussed for identification purposes of seized nuclear materials. Impurities of the fuel material vary slightly according to the fabrication method employed and a plant environment. Here the impurities of the seized UO 2 were used in order to have some clues about the origin of the fuel material by comparing a measured data to nuclear database information. More certainty in the identification was gained by surface roughness of the UO 2 fuel pellets, measured by mechanical surface profilometry. Categories in surface roughness between a different fuel element type and a producer were observed. For the time oxygen isotopic ratios were determined by Thermal Ionisation Mass Speckometry (TIMS). Thus a TIMS measurement method, using U 16 O + and U 18 0 + ions, was developed and optimised to achieve precise oxygen isotope ratio measurements for the

  14. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications - Surface energy characteristics and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kanakasabai, P.; Vijay, P.; Deshpande, Abhijit P.; Varughese, Susy [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2011-02-01

    Ionic polymers, their blends and composites are considered potential candidates for application as electrolytes in fuel cells. While developing new materials for membranes, it is important to understand the interactions of these electrolytic materials with electrodes/catalysts and with reactants/products. Some of these interactions can be understood by estimating the surface energy and wettability of the membrane materials. In this work, polyvinyl alcohol with varying degrees of sulfonation and its blend with sulfonated poly(ether ether ketone) are prepared and studied for their wettability characteristics using goniometry. The surface energy and its components are estimated using different approaches and compared. Properties such as the ion-exchange capacity, the proton conductivity and the water sorption/desorption behaviour are also investigated to understand the relationship with wettability and surface energy and its components. Among the different methods, the van Oss acid-base and the modified Berthelot approaches yield comparable estimates for the total surface energy. (author)

  15. [Fire behavior of ground surface fuels in Pinus koraiensis and Quercus mongolica mixed forest under no wind and zero slope condition: a prediction with extended Rothermel model].

    Science.gov (United States)

    Zhang, Ji-Li; Liu, Bo-Fei; Chu, Teng-Fei; Di, Xue-Ying; Jin, Sen

    2012-06-01

    A laboratory burning experiment was conducted to measure the fire spread speed, residual time, reaction intensity, fireline intensity, and flame length of the ground surface fuels collected from a Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica) mixed stand in Maoer Mountains of Northeast China under the conditions of no wind, zero slope, and different moisture content, load, and mixture ratio of the fuels. The results measured were compared with those predicted by the extended Rothermel model to test the performance of the model, especially for the effects of two different weighting methods on the fire behavior modeling of the mixed fuels. With the prediction of the model, the mean absolute errors of the fire spread speed and reaction intensity of the fuels were 0.04 m X min(-1) and 77 kW X m(-2), their mean relative errors were 16% and 22%, while the mean absolute errors of residual time, fireline intensity and flame length were 15.5 s, 17.3 kW X m(-1), and 9.7 cm, and their mean relative errors were 55.5%, 48.7%, and 24%, respectively, indicating that the predicted values of residual time, fireline intensity, and flame length were lower than the observed ones. These errors could be regarded as the lower limits for the application of the extended Rothermel model in predicting the fire behavior of similar fuel types, and provide valuable information for using the model to predict the fire behavior under the similar field conditions. As a whole, the two different weighting methods did not show significant difference in predicting the fire behavior of the mixed fuels by extended Rothermel model. When the proportion of Korean pine fuels was lower, the predicted values of spread speed and reaction intensity obtained by surface area weighting method and those of fireline intensity and flame length obtained by load weighting method were higher; when the proportion of Korean pine needles was higher, the contrary results were obtained.

  16. Pre-fire and post-fire surface fuel and cover measurements collected in the southeastern United States for model evaluation and development - RxCADRE 2008, 2011 and 2012

    Science.gov (United States)

    Roger D. Ottmar; Andrew T. Hudak; Susan J. Prichard; Clinton S. Wright; Joseph C. Restaino; Maureen C. Kennedy; Robert E. Vihnanek

    2016-01-01

    A lack of independent, quality-assured data prevents scientists from effectively evaluating predictions and uncertainties in fire models used by land managers. This paper presents a summary of pre-fire and post-fire fuel, fuel moisture and surface cover fraction data that can be used for fire model evaluation and development. The data were collected in the...

  17. Study of deposited crud composition on fuel surfaces in the environment of hydrogen water chemistry (HWC) of a Boiling Water Reactor at Chinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tsai, Tsuey-Lin; Lin, Tzung-Yi; Su, Te-Yen; Wen, Tung-Jen; Men, Lee-Chung

    2012-09-01

    This paper aimed at the characterization of metallic composition and surface analysis on the crud of fuel rods for unit-1 of BWR-4 at Nuclear Power Plant. The inductively coupled plasma- atomic emission spectroscopy (ICPAES) and the gamma spectrometry were carried out to analyze the corrosion product distributions and to determine the elemental compositions along the fuel rod under conditions of hydrogen water chemistry (HWC) switched from normal water chemistry (NWC) of reactor coolant in this study. Most of the crud consisted of the flakes and irregular shapes via SEM morphology. The loosely adherent oxide layer was mostly composed of hematite (α- Fe 2 O 3 ) with amorphous iron oxides by XRD results. The average deposited amounts of crud was the order of 0.5 mg/cm 2 , indicating that the fuel surface of this plant under HWC environment appeared to be one with the lower crud deposition in terms of low iron level of feedwater. It also showed no significant difference in comparison with NWC condition. (authors)

  18. Fuel assembly cleaning device

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1981-01-01

    Purpose: To enable efficient and sufficient cleaning of a fuel assembly even in corners without disassembling the assembly and to effectively remove crud. Constitution: Cleaning water mixed with abrasive is injected into a fuel assembly contained within a cleaning device body to remove crud adhering to the fuel assembly. Since a coolant passage from the opening of the bottom surface is of the fuel assembly to the opening of the top surface is utilized as the cleaning water passage at this, the crud can be removed by the abrasive in the water stream even from narrow gaps of the fuel assembly. (Aizawa, K.)

  19. Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2015-12-01

    Full Text Available In this study, the fuel properties and engine performance of blended palm biodiesel-diesel using diethyl ether as additive have been investigated. The properties of B30 blended palm biodiesel-diesel fuel were measured and analyzed statistically with the addition of 2%, 4%, 6% and 8% (by volume diethyl ether additive. The engine tests were conducted at increasing engine speeds from 1500 rpm to 3500 rpm and under constant load. Optimization of independent variables was performed using the desirability approach of the response surface methodology (RSM with the goal of minimizing emissions and maximizing performance parameters. The experiments were designed using a statistical tool known as design of experiments (DoE based on RSM.

  20. Effect of different surface treatments on the stability of stainless steels for use as bipolar plates in low and high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.; Schmidt, K. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Wolfsburg (Germany); Tuebke, J.; Cremers, C. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal (Germany)

    2010-07-01

    The stability of different stainless steels against corrosion under simulated low and high temperature proton exchange membrane fuel cell (PEMFC) operating conditions was studied. These investigations showed a moderate corrosion resistance for a couple of steels under LT-PEMFC conditions. However, for the HT-PEMFC conditions all specimens except one exhibit visible corrosion traces. With regards to their corrosion resistance after different surface treatments results show a minor improvement in corrosion resistance after the electro polishing process for most of the tested stainless steel samples. (orig.)

  1. Effect of surface treatment on the interfacial contact resistance and corrosion resistance of Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Yang, Meijun; Zhang, Dongming

    2014-01-01

    The bipolar plate is an important component of the PEMFC (polymer electrolyte membrane fuel cell) because it supplies the pathway of electron flow between each unit cell. Fe–Ni–Cr alloy is considered as a good candidate material for bipolar plate, but it is limited to use as a bipolar plate due to its high ICR (interfacial contact resistance) and corrosion problem. In order to explore a cost-effective method on surface modification, various chemical and electrochemical treatments are performed on Fe–Ni–Cr alloy to acquire the effect of the surface modification on the ICR and corrosion behavior. The ICR and corrosion resistance of Fe–Ni–Cr alloy can be effectively controlled by the chemical treatment of immersion in the mixed acid solution with 10 vol% HNO 3 , 2 vol% HCl and 1 vol% HF for 10 min at 65 °C and then was placed in 30 vol% HNO 3 solution for 5 min. The chemical treatment is more effective on reducing ICR and improving corrosion resistance than that of electrochemical methods (be carried out in the 2 mol/L H 2 SO 4 solution with the electrical potential from −0.4 V to 0.6 V) for Fe–Ni–Cr alloy as a bipolar plate for polymer electrolyte membrane fuel cells. - Highlights: • The procedure of the surface treatments on Fe–Ni–Cr alloy as bipolar plate was described in detail. • Effects of various surface treatments on the interfacial contact resistivity and corrosion behavior were discussed. • The mechanism of the surface modification was particularly analyzed

  2. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  3. Fuel rods

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1984-01-01

    Purpose: To reduce the size of the reactor core upper mechanisms and the reactor container, as well as decrease the nuclear power plant construction costs in reactors using liquid metals as the coolants. Constitution: Isotope capturing devices comprising a plurality of pipes are disposed to the gas plenum portion of a nuclear fuel rod main body at the most downstream end in the flowing direction of the coolants. Each of the capturing devices is made of nickel, nickel alloys, stainless steel applied with nickel plating on the surface, nickel alloys applied with nickel plating on the surface or the like. Thus, radioactive nuclides incorporated in the coolants are surely captured by the capturing devices disposed at the most downstream end of the nuclear fuel main body as the coolants flow along the nuclear fuel main body. Accordingly, since discharging of radioactive nuclides to the intermediate fuel exchange system can be prevented, the maintenance or reparing work for the system can be facilitated. (Moriyama, K.)

  4. Requirements and testing methods for surfaces of metallic bipolar plates for low-temperature PEM fuel cells

    Science.gov (United States)

    Jendras, P.; Lötsch, K.; von Unwerth, T.

    2017-03-01

    To reduce emissions and to substitute combustion engines automotive manufacturers, legislature and first users aspire hydrogen fuel cell vehicles. Up to now the focus of research was set on ensuring functionality and increasing durability of fuel cell components. Therefore, expensive materials were used. Contemporary research and development try to substitute these substances by more cost-effective material combinations. The bipolar plate is a key component with the greatest influence on volume and mass of a fuel cell stack and they have to meet complex requirements. They support bending sensitive components of stack, spread reactants over active cell area and form the electrical contact to another cell. Furthermore, bipolar plates dissipate heat of reaction and separate one cell gastight from the other. Consequently, they need a low interfacial contact resistance (ICR) to the gas diffusion layer, high flexural strength, good thermal conductivity and a high durability. To reduce costs stainless steel is a favoured material for bipolar plates in automotive applications. Steel is characterized by good electrical and thermal conductivity but the acid environment requires a high chemical durability against corrosion as well. On the one hand formation of a passivating oxide layer increasing ICR should be inhibited. On the other hand pitting corrosion leading to increased permeation rate may not occur. Therefore, a suitable substrate lamination combination is wanted. In this study material testing methods for bipolar plates are considered.

  5. Microstructural Characterization and Wear Behavior of Nano-Boride Dispersed Coating on AISI 304 Stainless Steel by Hybrid High Velocity Oxy-Fuel Spraying Laser Surface Melting

    Science.gov (United States)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2015-07-01

    The current study concerns the detailed microstructural characterization and investigation of wear behavior of nano-boride dispersed coating developed on AISI 304 stainless steel by high velocity oxy-fuel spray deposition of nickel-based alloy and subsequent laser melting. There is a significant refinement and homogenization of microstructure with improvement in microhardness due to laser surface melting (1200 VHN as compared to 945 VHN of as-sprayed and 250 VHN of as-received substrate). The high temperature phase stability of the as-coated and laser melted surface has been studied by differential scanning calorimeter followed by detailed phase analysis at room and elevated temperature. There is a significant improvement in wear resistance of laser melted surface as compared to as-sprayed and the as-received one due to increased hardness and reduced coefficient of friction. The mechanism of wear has been investigated in details. Corrosion resistance of the coating in a 3.56 wt pct NaCl solution is significantly improved (4.43 E-2 mm/year as compared to 5 E-1 mm/year of as-sprayed and 1.66 mm/year of as-received substrate) due to laser surface melting as compared to as-sprayed surface.

  6. Nuclear fuel element

    Science.gov (United States)

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  7. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States)

    2017-11-29

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperature of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and

  8. La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance

    Science.gov (United States)

    Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana

    2018-01-01

    This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.

  9. The effectiveness and limitations of fuel modeling using the fire and fuels extension to the Forest Vegetation Simulator

    Science.gov (United States)

    Erin K. Noonan-Wright; Nicole M. Vaillant; Alicia L. Reiner

    2014-01-01

    Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned, either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data before and 1, 2, 5, and 8 years after...

  10. Fossil fuels -- future fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  11. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    Science.gov (United States)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  12. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength...... are investigated by comparing wheat straw before and after organic solvent extraction. The lignin glass transition temperature for wheat straw and extracted wheat straw is determined by dynamic mechanical thermal analysis. At a moisture content of 8%, transitions are identified at 53°C and 63°C, respectively....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...

  13. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  14. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    Science.gov (United States)

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.

  15. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  16. Assessing Surface Fuel Hazard in Coastal Conifer Forests through the Use of LiDAR Remote Sensing

    Science.gov (United States)

    Koulas, Christos

    The research problem that this thesis seeks to examine is a method of predicting conventional fire hazards using data drawn from specific regions, namely the Sooke and Goldstream watershed regions in coastal British Columbia. This thesis investigates whether LiDAR data can be used to describe conventional forest stand fire hazard classes. Three objectives guided this thesis: to discuss the variables associated with fire hazard, specifically the distribution and makeup of fuel; to examine the relationship between derived LiDAR biometrics and forest attributes related to hazard assessment factors defined by the Capitol Regional District (CRD); and to assess the viability of the LiDAR biometric decision tree in the CRD based on current frameworks for use. The research method uses quantitative datasets to assess the optimal generalization of these types of fire hazard data through discriminant analysis. Findings illustrate significant LiDAR-derived data limitations, and reflect the literature in that flawed field application of data modelling techniques has led to a disconnect between the ways in which fire hazard models have been intended to be used by scholars and the ways in which they are used by those tasked with prevention of forest fires. It can be concluded that a significant trade-off exists between computational requirements for wildfire simulation models and the algorithms commonly used by field teams to apply these models with remote sensing data, and that CRD forest management practices would need to change to incorporate a decision tree model in order to decrease risk.

  17. Neutronic fuel element fabrication

    Science.gov (United States)

    Korton, George

    2004-02-24

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure

  18. Vapour explosions (fuel-coolant interactions) resulting from the sub-surface injection of water into molten metals: preliminary results

    International Nuclear Information System (INIS)

    Asher, R.C.; Bullen, D.; Davies, D.

    1976-03-01

    Preliminary experiments are reported on the relationship between the injection mode of contact and the occurrence and magnitude of vapour explosions. Water was injected beneath the surface of molten metals, chiefly tin at 250 to 900 0 C. Vapour explosions occurred in many, but not all, cases. The results are compared with Dullforce's observations (Culham Report (CLM-P424) on the dropping mode of contact and it appears that rather different behaviour is found; in particular, the present results suggest that the Temperature Interaction Zone is different for the two modes of contact. (author)

  19. Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells.

    Science.gov (United States)

    Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J

    2018-03-01

    With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.

  20. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  1. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  2. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  3. Fuel cells

    Science.gov (United States)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  5. Evolution of the thickness of the aluminum oxide film due to the pH of the cooling water and surface temperature of the fuel elements clad of a nuclear reactor

    International Nuclear Information System (INIS)

    Babiche, Ivan

    2013-01-01

    This paper describes the mechanism of growth of a film of aluminum oxide on an alloy of the same material, which serves as a protective surface being the constituent material of the RP-10 nuclear reactor fuel elements clads. The most influential parameters on the growth of this film are: the pH of the cooling water and the clad surface temperature of the fuel element. For this study, a mathematical model relating the evolution of the aluminum oxide layer thickness over the time, according to the same oxide film using a power law is used. It is concluded that the time of irradiation, the heat flux at the surface of the aluminum material, the speed of the coolant, the thermal conductivity of the oxide, the initial thickness of the oxide layer and the solubility of the protective oxide are parameters affecting in the rate and film formation. (author).

  6. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  7. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  8. Characterizing hand-piled fuels

    Science.gov (United States)

    Clinton S. Wright; Paige C. Eagle; Cameron S. Balog

    2010-01-01

    Land managers throughout the West pile and burn surface fuels to mitigate fire hazard in dry forests. Whereas piling was historically conducted with heavy machinery following commercial harvesting operations, land managers are increasingly prescribing the use of hand piling and burning to treat surface fuels created by thinning and brush cutting. An estimate of the...

  9. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Sato, Kenji; Goto, Masakazu.

    1984-01-01

    Purpose: To facilitate identification of a fuel assembly upon fuel exchange in BWR type reactors. Constitution: Fluorescent material is coated or metal plating is applied to the impressed portion of a upper tie plate handle of a fuel assembly, and the fluorescent material or the metal plating surface is covered with a protective membrane made of transparent material. This enables to distinguish the impressed surface from a distant place and chemical reaction between the impressed surface and the reactor water can be prevented. Furthermore, since the protective membrane is formed such that it protrudes toward the upper side relative to the impressed surface, there is no risk of depositions of claddings thereover. (Moriyama, K.)

  10. Effect of TiO2 additive on the sintering of nuclear fuel (U,Pu)O2. Contribution of surface diffusion to plutonium distribution

    International Nuclear Information System (INIS)

    Bremier, Stephane

    1997-01-01

    This thesis has as objective the study of the effect of TiO 2 additive on the development of MOX fuel microstructure during sintering in reducing atmosphere. To understand better the mechanisms governing the evolution of microstructure, the behavior of UO 2 in the presence of TiO 2 has been established and the influence of the PuO 2 distribution in the initial state of the material was taken into account. The chapter II is devoted to the bibliographic study of the transport mechanisms responsible of the sintering in the ceramics UO 2 and UO 2 -PuO 2 . The results concerning the influence of TiO 2 upon density, grain size and homogenization are discussed. The following chapter describes the characteristics of initial powder, the procedures and installations of heat treatment, as well as the techniques of characterization used. Then the sintering features of UO 2 alone or in the presence of TiO 2 are presented. It appears that in the last case the surface diffusion becomes sufficient fast so that the distribution of the additive occurs naturally during a slow temperature increase. The fifth chapter treats the effect of UO 2 -PuO 2 preparation upon the initial microstructure of the materials and the role played by the PuO 2 grains in sintering. The potentiality of surface diffusion as a means of PuO 2 spreading in the UO 2 is evaluated and correlated with the reduced capacity of sintering the UO 2 ceramics containing PuO 2 . The last chapter deals with the influence of TiO 2 on the development of microstructure in UO 2 -PuO 2 ceramics. While at temperatures below 1500 deg.C the TiO 2 additive affects the surface diffusion and so the plutonium distribution, at values T≥ 1600 deg.C the additive gives rise to a dissolution-reprecipitation process taking place in a intergranular liquid phase appeared between UO 2 , PuO 2 and titanium oxide. Thus the objective is the optimizing the temperature conditions, the oxygen potential as sintering gas and the additive

  11. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  12. LMFBR fuel assembly design for HCDA fuel dispersal

    Science.gov (United States)

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  13. FUEL ELEMENT FOR NUCLEAR REACTORS

    Science.gov (United States)

    Bassett, C.H.

    1961-11-21

    A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

  14. Characteristics of used CANDU fuel relevant to the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Wasywich, K.M.

    1993-05-01

    Literature data on the characteristics of used CANDU power reactor fuel that are relevant to its performance as a waste form have been compiled in a convenient handbook. Information about the quantities of used fuel generated, burnup, radionuclide inventories, fission gas release, void volume and surface area, fuel microstructure, fuel cladding properties, changes in fuel bundle properties due to immobilization processes, radiation fields, decay heat and future trends is presented for various CANDU fuel designs. (author). 199 refs., 39 tabs., 100 figs

  15. Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface

    International Nuclear Information System (INIS)

    Enos, David; Bryan, Charles R.

    2015-01-01

    Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.

  16. Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David; Bryan, Charles R.

    2015-10-01

    Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.

  17. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  18. Fuel management

    International Nuclear Information System (INIS)

    Schwarz, E.R.

    1975-01-01

    Description of the operation of power plants and the respective procurement of fuel to fulfil the needs of the grid. The operation of the plants shall be optimised with respect to the fuel cost. (orig./RW) [de

  19. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  20. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Black, J.E.; King, F.D.

    1979-01-01

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  1. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    Science.gov (United States)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.

    2013-09-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  2. The Role of Non-Conventional Supports for Single-Atom Platinum-Based Catalysts in Fuel-Cell Technology: A Theoretical Surface Science Approach

    Science.gov (United States)

    2013-02-05

    could be a promising catalyst for PEM fuel cells. Introduction: Proton exchange membrane fuel cells ( PEMFCs ) have found wide potential...Unfortunately, due to their high cost and low lifespan, wide-scale commercialization of PEMFCs has been greatly impeded and much effort has been made to...lower its cost as well as to improve its durability over time. In an attempt to alleviate the high-cost associated with conventional PEMFC catalysts

  3. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  4. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  5. Molybdenum Carbide Synthesis Using Plasmas for Fuel Cells

    Science.gov (United States)

    2013-06-01

    containing a dissolved metal precursor salt (e.g., platinum chloride ) to a high surface area refractory oxide (e.g., alumina). The liquid is added in an...Acid Fuel Cells, Proton Exchange Membrane Fuel Cells, Molten Carbonate Fuel Cells, Solid Oxide Fuel Cell, and Direct and Indirect Methanol Fuel Cell

  6. Containing method for spent fuel and spent fuel containing vessel

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Hanada, Yoshine.

    1996-01-01

    Upon containing spent fuels, a metal vessel main body and a support spacer having fuel containing holes are provided. The support spacer is disposed in the inside of the metal vessel main body, and spent fuel assemblies are loaded in the fuel containing holes. Then, a lid is welded at the opening of the metal vessel main body to provide a sealing state. In this state, heat released from the spent fuel assemblies is transferred to the wall of the metal vessel main body via the support spacer. Since the support spacer has a greater heat conductivity than gases, heat of the spent fuel assemblies tends to be released to the outside, thereby capable of removing heat of the spent fuel assemblies effectively. In addition, since the surfaces of the spent fuel assemblies are in contact with the inner surface of the fuel containing holes of the support spacer, impact-resistance and earthquake-resistance are ensured, and radiation from the spent fuel assemblies is decayed by passing through the layer of the support spacer. (T.M.)

  7. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakamura, Mitsuya; Yamashita, Jun-ichi; Mochida, Takaaki.

    1986-01-01

    Purpose: To improve the fuel economy by increasing the reactivity at the latter burning stage of fuel assemblies and thereby increasing the burn-up degree. Constitution: At the later stage of the burning where the infinite multiplication factor of a fuel assembly is lowered, fuel rods are partially discharged to increase the fuel-moderator volume ratio in the fuel assembly. Then, plutonium is positively burnt by bringing the ratio near to an optimum point where the infinite multiplication factor becomes maximum and the reactivity of the fuel assembly is increased by utilizing the spectral shift effect. The number of the fuel rods to be removed is selected so as to approach the fuel-moderator atom number ratio where the infinite multiplication factor is maximum. Further, the positions where the thermal neutron fluxes are low are most effective for removing the rods and those positions between which no fuel rods are present and which are adjacent with neither the channel box nor the water rods are preferred. The rods should be removed at the time when the burning is proceeded at lest for one cycle. The reactivity is thus increased and the burn-up degree of fuels upon taking-out can be improved. (Kamimura, M.)

  8. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Wada, Toyoji.

    1979-01-01

    Purpose: To remove failures caused from combination of fuel-cladding interactions, hydrogen absorptions, stress corrosions or the likes by setting the quantity ratio of uranium or uranium and plutonium relative to oxygen to a specific range in fuel pellets and forming a specific size of a through hole at the center of the pellets. Constitution: In a fuel rods of a structure wherein fuel pellets prepared by compacting and sintering uranium dioxide, or oxide mixture consisting of oxides of plutonium and uranium are sealed with a zirconium metal can, the ratio of uranium or uranium and plutonium to oxygen is specified as 1 : 2.01 - 1 : 2.05 in the can and a passing hole of a size in the range of 15 - 30% of the outer diameter of the fuel pellet is formed at the center of the pellet. This increases the oxygen partial pressure in the fuel rod, oxidizes and forms a protection layer on the inner surface of the can to control the hydrogen absorption and stress corrosion. Locallized stress due to fuel cladding interaction (PCMI) can also be moderated. (Horiuchi, T.)

  9. Irradiation Test of Dual Instrumented Fuel Rods by using an Instrumented Fuel Capsule(05F-01K) at HANARO

    International Nuclear Information System (INIS)

    Sohn, Jaemin; Park, Sungjae; Shin, Yoontaeg; Lee, Choongsung; Choo, Keenam; Cho, Mansoon; Oh, Jongmyung; Kim, Bonggoo; Kim, Harkrho

    2007-01-01

    The purpose of this paper is to verify the performance of dual instrumented fuel rods. The dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been designed to enhance the efficiency of an irradiation test using an instrumented capsule for the nuclear fuel irradiation test(hereinafter referred to as 'instrumented fuel capsule') in HANARO(High-flux Advanced Neutron Application Reactor). Six types of dual instrumented fuel rods have been designed. The types of dual instrumented fuel rods are summarized as follows; 1) to measure the center temperature of the nuclear fuel and the internal pressure of the fuel rod, 2) to measure the center temperature of the nuclear fuel and the elongation of the fuel pellets, 3) to measure the surface temperature of the nuclear fuel and the internal pressure of the fuel rod, 4) to measure the surface temperature of the nuclear fuel and the elongation of the fuel pellets, 5) to measure the center and surface temperature of the nuclear fuel, and 6) to measure the center temperature of the nuclear fuel of the upper and lower part. And 05F-01K instrumented fuel capsule has been designed for an irradiation test of three dual instrumented fuel rods. This paper presents the manufacturing of the dual instrumented fuel rods and 05F-01K instrumented fuel capsule, and the results of the irradiation test

  10. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  11. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    Science.gov (United States)

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle

  12. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  13. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  14. Effects of dormant and growing season burning on surface fuels and potential fire behavior in northern Florida longleaf pine (Pinus palustris) flatwoods

    Science.gov (United States)

    James B. Cronan; Clinton S. Wright; Maria Petrova

    2015-01-01

    Prescribed fire is widely used to manage fuels in high-frequency, low-severity fire regimes including pine flatwoods of the southeastern USA where prescribed burning during the growing season (the frost-free period during the calendar year) has become more common in recent decades. Growing season prescribed fires address ecological management objectives that focus on...

  15. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Nomata, Terumitsu.

    1993-01-01

    Among fuel pellets to be loaded to fuel cans of a fuel assembly, fuel pellets having a small thermal power are charged in a region from the end of each of spacers up to about 50mm on the upstream of coolants that flow vertically at the periphery of fuel rods. Coolants at the periphery of fuel rods are heated by the heat generation, to result in voids. However, since cooling effect on the upstream of the spacers is low due to influences of the spacers. Further, since the fuel pellets disposed in the upstream region have small thermal power, a void coefficient is not increased. Even if a thermal power exceeding cooling performance should be generated, there is no worry of causing burnout in the upstream region. Even if burnout should be caused, safety margin and reliability relative to burnout are improved, to increase an allowable thermal power, thereby enabling to improve integrity and reliability of fuel rods and fuel assemblies. (N.H.)

  17. The fuel cycle

    International Nuclear Information System (INIS)

    2000-01-01

    In this brochure the fuel cycle is presented. The following fuel cycle steps are described: (1) Front of the fuel cycle (Mining and milling; Treatment; Refining, conversion and enrichment; Fuel fabrication); (2) Use of fuel in nuclear reactors; (3) Back end of the fuel cycle (Interim storage of spent fuel; spent fuel reprocessing; Final disposal of spent fuel)

  18. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...

  19. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  1. Apparatus for mixing fuel in a gas turbine

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-04-21

    A combustor nozzle includes an inlet surface and an outlet surface downstream from the inlet surface, wherein the outlet surface has an indented central portion. A plurality of fuel channels are arranged radially outward of the indented central portion, wherein the plurality of fuel channels extend through the outlet surface.

  2. Nuclear fuel subassembly

    International Nuclear Information System (INIS)

    Cayol, A.; Chalony, A.; Clottes, G.; Praizey, J.P.; Skok, J.; Venobre, H.

    1976-01-01

    A nuclear fuel sub-assembly is described which comprises a bundle of fuel pins provided with helical spacers and located within a shroud for the coolant. The sub-channels at the periphery of the bundle are restricted in order that the rate of flow matches the heat transfer surfaces in all sub-channels. For this purpose the spacers of the outer pins project radially by an extent smaller than the spacers of the inner pins. In addition longitudinal ribs may be provided in the outer sub-channels

  3. Nuclear fuel rod

    International Nuclear Information System (INIS)

    Ross, W.T.; Williamson, H.E.

    1977-01-01

    In order to improve the efficiency of Zr or Zr alloy getters in the fuel cans of a fuel element, the formation of Zr oxide layers must be prevented. Therefore, a compound body acting as a bimetal is to be inserted which consists of a metallic substrate (Ni, Ni alloys, ferro-alloys, steel, Ti, Ti alloys) and a coating (Zr, Zr alloys). The substrate has a much higher thermal expansion coefficient than the coating, so that the surface of the coating layer formed is constantly torn apart at normal operating temperatures of the reactor. The invention is described in great detail. (HP) [de

  4. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  5. Fuel assemblies

    International Nuclear Information System (INIS)

    Echigoya, Hironori; Nomata, Terumitsu.

    1983-01-01

    Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)

  6. FUEL PROCESSING FOR FUEL CELLS: EFFECTS ON CATALYST DURABILITY AND CARBON FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    R. BORUP; M. INBODY; B. MORTON; L. BROWN

    2001-05-01

    monitoring carbon via in situ laser optics, and by monitoring carbon buildup on the catalyst surface. The fuel processing performance of the individual components is compared with the fuel processing performance of blended fuel components and the reformulated gasoline to examine synergistic or detrimental effects the fuel components have in a real fuel blend.

  7. Reactor fuel assembly fastening

    International Nuclear Information System (INIS)

    Formanek, F.J.; Schukei, G.E.

    1980-01-01

    A nuclear fuel assembly is described, adapted to be locked into first mating surfaces on a core support stand, comprising a lower end fitting having posts for resting on the stand; elongated hook members pivotally connected at one end to the lower end fitting and having a second mating surface at the other end to engage the first mating surfaces; actuating means located between the posts on the lower end fitting and being vertically movable relative to the end fitting; and rigid links pivotally attached at one end to the hook members intermediate the connection of the hook members to the end fitting and the second mating surface and pivotally attached at the other end to the actuating means, the link having a length between the pivoted connections such that the second mating surface on the hook members locks into engagement with the first mating surfaces on the stand as the links approach the horizontal. (author)

  8. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  9. Effect of Sr Content and Strain on Sr Surface Segregation of La1-xSrxCo0.2Fe0.8O3-δas Cathode Material for Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yu, Yang; Ludwig, Karl F; Woicik, Joseph C; Gopalan, Srikanth; Pal, Uday B; Kaspar, Tiffany C; Basu, Soumendra N

    2016-10-12

    Strontium-doped lanthanum cobalt ferrite (LSCF) is a widely used cathode material due to its high electronic and ionic conductivity, and reasonable oxygen surface exchange coefficient. However, LSCF can have long-term stability issues such as surface segregation of Sr during solid oxide fuel cell (SOFC) operation, which can adversely affect the electrochemical performance. Thus, understanding the nature of the Sr surface segregation phenomenon and how it is affected by the composition of LSCF and strain are critical. In this research, heteroepitaxial thin films of La 1-x Sr x Co 0.2 Fe 0.8 O 3-δ with varying Sr content (x = 0.4, 0.3, 0.2) were deposited by pulsed laser deposition (PLD) on single-crystal NdGaO 3 , SrTiO 3 , and GdScO 3 substrates, leading to different levels of strain in the films. The extent of Sr segregation at the film surface was quantified using synchrotron-based total-reflection X-ray fluorescence (TXRF) and atomic force microscopy (AFM). The electronic structure of the Sr-rich phases formed on the surface was investigated by hard X-ray photoelectron spectroscopy (HAXPES). The extent of Sr segregation was found to be a function of the Sr content in bulk. Lowering the Sr content from 40% to 30% reduced the surface segregation, but further lowering the Sr content to 20% increased the segregation. The strain of LSCF thin films on various substrates was measured using high-resolution X-ray diffraction (HRXRD), and the Sr surface segregation was found to be reduced with compressive strain and enhanced with tensile strain present within the thin films. A model was developed correlating the Sr surface segregation with Sr content and strain effects to explain the experimental results.

  10. Fuel cell-fuel cell hybrid system

    Science.gov (United States)

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  11. Advances in ultrasonic fuel cleaning

    International Nuclear Information System (INIS)

    Blok, J.; Frattini, P.; Moser, T.

    2002-01-01

    The economics of electric generation is requiring PWR plant operators to consider higher fuel duty and longer cycles. As a result, sub-cooled nucleate boiling is now an accepted occurrence in the upper spans of aggressively driven PWR cores. Thermodynamic and hydraulic factors determine that the boiling surfaces of the fuel favor deposition of corrosion products. Thus, the deposits on high-duty fuel tend to be axially distributed in an inhomogeneous manner. Axial offset anomaly (AOA) is the result of axially non-homogeneous distribution of boron compounds in these axially variable fuel deposits. Besides their axial asymmetry, fuel deposits in boiling cores tend to be qualitatively different from deposits on non-boiling fuel. Thus, deposits on moderate-duty PWR fuel are generally iron rich, predominating in nickel ferrites. Deposits on cores with high boiling duty, on the other hand, tend to be rich in nickel, with sizeable fractions of NiO or elemental nickel. Other unexpected compounds such as m-ZrO 2 and Ni-Fe oxy-borates have been found in significant quantity in deposits on boiling cores. This paper describes the ultrasonic fuel cleaning technology developed by EPRI. Data will be presented to confirm that the method is effective for removing fuel deposits from both high-duty and normal-duty fuel. The report will describe full-core fuel cleaning using the EPRI technology for Callaway Cycle 12 reload fuel. The favorable impact of fuel cleaning on Cycle 12 AOA performance will also be presented. (authors)

  12. FUEL ELEMENT

    Science.gov (United States)

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  13. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... discharge point. (d) If diesel fuel lines are not buried in the ground sufficiently to protect them from... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated...

  14. A surface chemical model of the bentonite-water interface and its implications for modelling the near field chemistry in a repository for spent fuel

    International Nuclear Information System (INIS)

    Wieland, E.; Wanner, H.; Albinsson, Y.; Wersin, P.; Karnland, O.

    1994-07-01

    Understanding the surface chemical properties of montmorillonite in near-neutral and alkaline media is essential for establishing a chemical model of the bentonite/water interaction applicable for repository conditions. A pretreated and well-characterised Wyoming MX-80 bentonite has been used for investigating the acid/base characteristics of Na-montmorillonite. The CEC of Na-montmorillonite was determined to 108 meq/100 g for pretreated bentonite and to 85 meq/100 g for the bulk material. The BET surface area was (31.53±0.16)m 2 /g. Potentiometric titrations of montmorillonite suspensions at ionic strengths I=0.005 M, 0.05 M and 0.5 M were conducted as batch-type experiments. Deprotonation of surface OH groups possibly exposed at the edge surface causes an overall negative charge on the surface of montmorillonite in the alkaline pH range. In this pH range, the protolysis degree of OH groups increases with increasing pH and ionic strength. The proton density on the surface of montmorillonite increases with decreasing pH in the acidic pH range (pH + at the structural-charge sites. The experimental results are interpreted in terms of a two-site model with structural-charge surface sites (X layer sites) and variable-charge surface sites (edge OH groups) as the reactive surface functionalities. The total population of the surface sites are estimated to TOT-OH=2.84*10 -5 mol/g, TOT-X=2.22*10 -5 mol/g. The intrinsic acidity constants for the OH groups are determined to pK int al = (5.4±0.1) and pK int a2 =(6-7±0.1), respectively, using th configuration of the diffuse double layer model (DDLM). 43 refs, 18 figs, 11 tabs

  15. Assessment of fuel concepts

    International Nuclear Information System (INIS)

    Bailey, W.J.; Barner, J.O.

    1978-01-01

    The relative merits of various LWR UO 2 fuel concepts with the potential for improved power-ramping capability were qualitatively assessed. In the evaluation, it was determined that of the various concepts being considered, those that presently possess an adequately developed experience base include annular pellets, cladding coated with graphite on the inner surface, and packed-particle fuel. Therefore, these were selected for initial evaluation as part of the Fuel Performance Improvement Program. For this program, graphite-coated cladding is being used in conjunction with annular pellet fuel as one of the concepts with the anticipation of gaining the advantage of the combined improvements. The report discusses the following: the criteria used to evaluate the candidate fuel concepts; a comparison of the concepts selected for irradiation with the criteria, including a general description of their experience bases; and a general discussion of other candidate concepts, including identifying those which may be considered for out-of-reactor evaluation as part of this program, those for which the results of other programs will be monitored, and those which have been deleted from further consideration at this time

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  17. Behaviour of high O/U fuel

    International Nuclear Information System (INIS)

    Davies, J.H.; Hoshi, E.V.; Zimmerman, D.L.

    2000-01-01

    Full text: The effect of increased fuel oxygen potential on fuel behaviour has been studied by fabricating and irradiating urania fuel with an average O/U ratio of 2.05. The fuel was fabricated by re-sintering standard urania pellets in a controlled oxygen potential environment and irradiated in a segmented rod bundle in a U.S. BWR. Preirradiation ceramographic characterization of the pellets revealed the well-known Widmanstaetten precipitation of U-409 platelets in the UO 2 matrix. The high O/U fuel pellets were clad in Zircaloy-2 and irradiated to over 20 GWd/MT. Ramp tests were performed in a test reactor and detailed postirradiation examinations of both ramped and nonramped rods have been performed. The cladding inner surface condition, fission gas release and swelling behavior of high O/U fuel have been characterized and compared with standard UO 2 pellets. Although fuel microstructural features in ramp-tested high O/U fuel showed evidence of higher fuel temperatures and/or enhanced transport processes, fission gas release to the fuel rod free space was less than for similarly tested standard UO 2 fuel. However, fuel swelling and cladding strains were significantly greater. In spite of high cladding strains, PCI crack propagation was inhibited in the high O/U fuel I rods. Evidence is presented that the crystallographically oriented etch features often noted in peripheral regions of high burnup fuels are not an indication of higher oxides of uranium. (author)

  18. Effects of salvage logging and pile-and-burn on fuel loading, potential fire behaviour, fuel consumption and emissions

    Science.gov (United States)

    Morris C. Johnson; Jessica E. Halofsky; David L. Peterson

    2013-01-01

    We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...

  19. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  20. A surface chemical model of the bentonite-water interface and its implications for modelling the near field chemistry in a repository for spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Wanner, H. [MBT Umwelttechnik AG, Zuerich, (Switzerland); Albinsson, Y. [Chalmers Univ. of Technology, Gothenburg (Sweden); Wersin, P. [MBT Tecnologia Ambiental, Cerdanyola (Spain); Karnland, O. [Clay Technology AB, Lund (Sweden)

    1994-07-01

    Understanding the surface chemical properties of montmorillonite in near-neutral and alkaline media is essential for establishing a chemical model of the bentonite/water interaction applicable for repository conditions. A pretreated and well-characterised Wyoming MX-80 bentonite has been used for investigating the acid/base characteristics of Na-montmorillonite. The CEC of Na-montmorillonite was determined to 108 meq/100 g for pretreated bentonite and to 85 meq/100 g for the bulk material. The BET surface area was (31.53{+-}0.16)m{sup 2}/g. Potentiometric titrations of montmorillonite suspensions at ionic strengths I=0.005 M, 0.05 M and 0.5 M were conducted as batch-type experiments. Deprotonation of surface OH groups possibly exposed at the edge surface causes an overall negative charge on the surface of montmorillonite in the alkaline pH range. In this pH range, the protolysis degree of OH groups increases with increasing pH and ionic strength. The proton density on the surface of montmorillonite increases with decreasing pH in the acidic pH range (pH<7.5). In this pH range, two simultaneously occurring surface reactions account for the observed proton density on montmorillonite: Protonation of edge OH groups and ion exchange of the major cations for H{sup +} at the structural-charge sites. The experimental results are interpreted in terms of a two-site model with structural-charge surface sites (X layer sites) and variable-charge surface sites (edge OH groups) as the reactive surface functionalities. The total population of the surface sites are estimated to TOT-OH=2.84*10{sup -5} mol/g, TOT-X=2.22*10{sup -5} mol/g. The intrinsic acidity constants for the OH groups are determined to pK{sup int}{sub al}= (5.4{+-}0.1) and pK{sup int}{sub a2}=(6-7{+-}0.1), respectively, using th configuration of the diffuse double layer model (DDLM). 43 refs, 18 figs, 11 tabs.

  1. Fuel rod assembly to manifold attachment

    Science.gov (United States)

    Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.

    1980-01-01

    A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.

  2. A BWR fuel channel tracking system

    International Nuclear Information System (INIS)

    Reynolds, R.S.

    1987-01-01

    A relational database management system with a query language, Reference 1, has been used to develop a Boiling Water Reactor (BWR) fuel channel tracking system on a microcomputer. The software system developed implements channel vendor and Nuclear Regulatory Commission recommendations for in-core channel movements between reactor operating cycles. A BWR Fuel channel encloses the fuel bundle and is typically fabricated using Ziracoly-4. The channel serves three functions: (1) it provides a barrier to separate two parallel flow paths, one inside the fuel assembly and the other in the bypass region outside the fuel assembly and between channels; (2) it guides the control rod as it moves between fuel assemblies and provides a bearing surface for the blades; and (3) it provides rigidity for the fuel bundle. All of these functions are necessary in typical BWR core designs. Fuel channels are not part of typical Pressurized Water Reactor (PWR) core designs

  3. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  4. Fuel can for a nuclear reactor

    International Nuclear Information System (INIS)

    Shimizu, Shigeo.

    1984-01-01

    Purpose: To decrease the possibility of damages in a fuel can by avoiding the close contact of the outer circumferential surface of a pellet to the entire inner circumference of the fuel can in the case if the pellet undergoes heat expansion. Constitution: The inner circumference of a fuel can includes at least three linear portions each with an equi-angular distance. The center for the circle (radius R2) inscribing each of the linear portions aligns with the axial center of the fuel can. A gap is formed to each inscribing circle with a band-like circular inner wall. The radius R2 for the inscribing circle is made larger than the radius R1 for the pellet and the length of the linear portion and the radius R2 for the inscribing circle are determined to desired values in view of the fuel design. If the fuel pellet expands thermally during reactor operation, since a gap is remained between the outer circumferential surface of the pellet and the inner circumferential surface of the fuel can and the outer circumferential surface of the pellet is not in close contact entirely with the inner circumferential surface of the fuel can, the possibility of damaging the fuel can is decreased. (Seki, T.)

  5. Spent nuclear fuel/water interface behavior: Alpha dose rate profile determination for model surfaces and microcracks by using Monte-Carlo methods

    Science.gov (United States)

    Tribet, M.; Mougnaud, S.; Jégou, C.

    2017-05-01

    This work aims to better understand the nature and evolution of energy deposits at the UO2/water reactional interface subjected to alpha irradiation, through an original approach based on Monte-Carlo-type simulations, using the MCNPX code. Such an approach has the advantage of describing the energy deposit profiles on both sides of the interface (UO2 and water). The calculations have been performed on simple geometries, with data from an irradiated UOX fuel (burnup of 47 GWd.tHM-1 and 15 years of alpha decay). The influence of geometric parameters such as the diameter and the calculation steps at the reactional interface are discussed, and the exponential laws to be used in practice are suggested. The case of cracks with various different apertures (from 5 to 35 μm) has also been examined and these calculations have also enabled new information on the mean range of radiolytic species in cracks, and thus on the local chemistry.

  6. Fuel element box inspection device

    International Nuclear Information System (INIS)

    Ortmayer, R.M.; Pick, W.

    1985-01-01

    The invention concerns a device for inspecting the outer geometry of a long fuel element box by measuring the surface contours over its longitudinal crossection and along its length by sensors. These are kept in a sledge which can be moved along the fuel element guide in a slot guide. The measurement signals reach an evaluation device outside the longitudinal box. (orig./HP) [de

  7. Fuel rods

    International Nuclear Information System (INIS)

    Hattori, Shinji; Kajiwara, Koichi.

    1980-01-01

    Purpose: To ensure the safety for the fuel rod failures by adapting plenum springs to function when small forces such as during transportation of fuel rods is exerted and not to function the resilient force when a relatively great force is exerted. Constitution: Between an upper end plug and a plenum spring in a fuel rod, is disposed an insertion member to the lower portion of which is mounted a pin. This pin is kept upright and causes the plenum spring to function resiliently to the pellets against the loads due to accelerations and mechanical vibrations exerted during transportation of the fuel rods. While on the other hand, if a compression force of a relatively high level is exerted to the plenum spring during reactor operation, the pin of the insertion member is buckled and the insertion member is inserted to the inside of the plenum spring, whereby the pellets are allowed to expand freely and the failures in the fuel elements can be prevented. (Moriyama, K.)

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.

    1992-01-01

    The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)

  9. Canadian power reactor fuel

    International Nuclear Information System (INIS)

    Page, R.D.

    1976-03-01

    The following subjects are covered: the basic CANDU fuel design, the history of the bundle design, the significant differences between CANDU and LWR fuel, bundle manufacture, fissile and structural materials and coolants used in the CANDU fuel program, fuel and material behaviour, and performance under irradiation, fuel physics and management, booster rods and reactivity mechanisms, fuel procurement, organization and industry, and fuel costs. (author)

  10. Fuel production for LWRs - MOX fuel aspects

    International Nuclear Information System (INIS)

    Deramaix, P.

    2005-01-01

    Plutonium recycling in Light Water Reactors is today an industrial reality. It is recycled in the form of (U, Pu)O 2 fuel pellets (MOX), fabricated to a large extent according to UO 2 technology and pellet design. The similarity of physical, chemical, and neutron properties of both fuels also allows MOX fuel to be burnt in nuclear plants originally designed to burn UO 2 . The industrial processes presently in use or planned are all based on a mechanical blending of UO 2 and PuO 2 powders. To obtain finely dispersed plutonium and to prevent high local concentration of plutonium, the feed materials are micronised. In the BNFL process, the whole (UO 2 , PuO 2 ) blend is micronised by attrition milling. According to the MIMAS process, developed by BELGONUCLEAIRE, a primary blend made of UO 2 containing about 30% PuO 2 is micronised in a ball mill, afterwards this primary blend is mechanically diluted in UO 2 to obtain the specified Pu content. After mixing, the (U, Pu)O 2 powder is pressed and the pellets are sintered. The sintering cover gas contains moisture and 5 v/o H 2 . Moisture increases the sintering process and the U-Pu interdiffusion. After sintering and grinding, the pellets are submitted to severe controls to verify conformity with customer specifications (fissile content, Pu distribution, surface condition, chemical purity, density, microstructure). (author)

  11. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1978-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 0 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (DG) [de

  12. Spacer grid for fuel elements

    International Nuclear Information System (INIS)

    Hensolt, T.; Huenner, M.; Rau, P.; Veca, A.

    1980-01-01

    The spacer grid for fuel elements of a gas-cooled fast breeder reactor (but also for PWRs and BWRs) consists of a lattice field with dodecagonal meshes. These meshes are formed by three each adjacent hexagons grouped arround a central axis. The pairs of legs extending into the dodecagon and being staggered by 120 are designed as knubs with inclined abutting surfaces for the fuel rods. By this means there is formed a three-point bearing for centering the fuel rods. The spacer grid mentioned above is rough-worked from a single disc- resp. plate-shaped body (unfinished piece). (orig.)

  13. Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation

    International Nuclear Information System (INIS)

    Dubau, L.; Maillard, F.; Chatenet, M.; Andre, J.; Rossinot, E.

    2010-01-01

    This study bridges the structure/composition of Pt-Co/C nanoparticles with their surface reactivity and their electrocatalytic activity. We show that Pt 3 Co/C nanoparticles are not stable during PEMFC operation (H 2 /air; j = 0.6 A cm -2 , T = 70 o C) but suffer compositional changes at the nanoscale. In the first hours of operation, the dissolution of Co atoms at their surface yields to the formation of a Pt-enriched shell covering a Pt-Co alloy core ('Pt-skeleton') and increases the affinity of the surface to oxygenated and hydrogenated species. This structure does not ensure stability in PEMFC conditions but is rather a first step towards the formation of 'Pt-shell/Pt-Co alloy core' structures with depleted Co content. In these operating conditions, the Pt-Co/C specific activity for the ORR varies linearly with the fraction of Co alloyed to Pt present in the core and is severely depreciated (ca. -50%) after 1124 h of operation. This is attributed to: (i) the decrease of both the strain and the ligand effect of Co atoms contained in the core (ii) the changes in the surface structure of the electrocatalyst (formation of a multilayer-thick Pt shell) and (iii) the relaxation of the Pt surface atoms.

  14. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  15. Methods of conditioning direct methanol fuel cells

    Science.gov (United States)

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  16. Fuel handling system of nuclear reactor plants

    International Nuclear Information System (INIS)

    Faulstich, D.L.

    1991-01-01

    This patent describes a fuel handing system for nuclear reactor plants comprising a reactor vessel having an openable top and removable cover for refueling and containing therein, submerged in coolant water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units. It comprises a fuel bundle handing platform moveable over the open top of the reactor vessel; a fuel bundle handing mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grappling hook means for attaching to and transporting fuel bundles into and out from the fuel core; and a camera with a prismatic viewing head surrounded by a radioactive resisting quartz cylinder and enclosed within the grapple head which is provided with at least three windows with at least two windows provided with an angled surface for aiming the camera prismatic viewing head in different directions and thereby viewing the fuel bundles of the fuel core from different perspectives, and having a cable connecting the camera with a viewing monitor located above the reactor vessel for observing the fuel bundles of the fuel core and for enabling aiming of the camera prismatic viewing head through the windows by an operator

  17. Reforming of fuel inside fuel cell generator

    Science.gov (United States)

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  18. Fuel performance analysis code 'FAIR'

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1994-01-01

    For modelling nuclear reactor fuel rod behaviour of water cooled reactors under severe power maneuvering and high burnups, a mechanistic fuel performance analysis code FAIR has been developed. The code incorporates finite element based thermomechanical module, physically based fission gas release module and relevant models for modelling fuel related phenomena, such as, pellet cracking, densification and swelling, radial flux redistribution across the pellet due to the build up of plutonium near the pellet surface, pellet clad mechanical interaction/stress corrosion cracking (PCMI/SSC) failure of sheath etc. The code follows the established principles of fuel rod analysis programmes, such as coupling of thermal and mechanical solutions along with the fission gas release calculations, analysing different axial segments of fuel rod simultaneously, providing means for performing local analysis such as clad ridging analysis etc. The modular nature of the code offers flexibility in affecting modifications easily to the code for modelling MOX fuels and thorium based fuels. For performing analysis of fuel rods subjected to very long power histories within a reasonable amount of time, the code has been parallelised and is commissioned on the ANUPAM parallel processing system developed at Bhabha Atomic Research Centre (BARC). (author). 37 refs

  19. Modeling and Thermal Performance Evaluation of Porous Curd Layers in Sub-Cooled Boiling Region of PWRs and Effects of Sub-Cooled Nucleate Boiling on Anomalous Porous Crud Deposition on Fuel Pin Surfaces

    International Nuclear Information System (INIS)

    Barclay Jones

    2005-01-01

    A significant number of current PWRs around the world are experiencing anomalous crud deposition in the sub-cooled region of the core, resulting in an axial power shift or Axial Offset Anomaly (AOA), a condition that continues to elude prediction of occurrence and thermal/neutronic performance. This creates an operational difficulty of not being able to accurately determine power safety margin. In some cases this condition has required power ''down rating'' by as much as thirty percent and the concomitant considerable loss of revenue for the utility. This study examines two aspects of the issue: thermal performance of crud layer and effect of sub-cooled nucleate boiling on the solute concentration and its influence on initiation of crud deposition/formation on fuel pin surface

  20. CANDU fuel

    International Nuclear Information System (INIS)

    MacEwan, J.R.; Notley, M.J.F.; Wood, J.C.; Gacesa, M.

    1982-09-01

    The direction of CANDU fuel development was set in 1957 with the decision to build pressure tube reactors. Short - 50 cm long - rodded bundles of natural UO 2 clad in Zircaloy were adopted to facilitate on-power fuelling to improve uranium utilization. Progressive improvements were made during 25 years of development, involving 650 man years and 180 million dollars. Today's CANDU bundle is based on the knowledge gained from extensive irradiation testing and experience in power reactors. The main thrust of future development is to demonstrate that the present bundle is suitable, with minor modifications, for thorium fuels

  1. Heat Transfer and Deposition Behavior of Hydrocarbon Rocket Fuels

    National Research Council Canada - National Science Library

    Bates, Ron

    2002-01-01

    ... chamber and nozzle heat fluxes also increase. For engines regeneratively cooled with hydrocarbon fuel, this additional thermal stress must be effectively carried by the fuel without degradation of the cooling channel surfaces...

  2. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    Science.gov (United States)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in

  3. Fuels characterization studies. [jet fuels

    Science.gov (United States)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  4. Surface contamination of nuclear spent fuel shipments. Common Report of the Competent Authorities of France, Germany, Switzerland and the United Kingdom

    International Nuclear Information System (INIS)

    France; Germany; Switzerland; United Kingdom

    1999-01-01

    Following the discovery of non-fixed radioactive contamination on spent fuel flasks and associated transport equipment in France, an ad hoc bilateral working group of the competent regulatory authorities was set up by agreement between the German Minister for the Environment, Mrs Angela Merkel, and the French Minister for the Environment, Mrs Dominique Voynet, on 26 May 1998. On 2 June 1998, a constituent meeting of the German, French and now Swiss competent regulatory authorities convened the working group on radioactive contamination in Cologne, Germany. The United Kingdom joined the working group at its second meeting in Paris on 22 June 1998. The working group had the task to ensure a coordinated cooperation of the experts to establish the causes and effects of the contamination incidents and propose appropriate action. This report, agreed at the fifth meeting of the working group in Paris on 24 October 1998, is a compilation of information collected from all four countries, setting out the history of the events, their causes and consequences. The report goes on to describe remedial actions which have already been put in place, those that are being considered, and makes recommendations for future actions. (author)

  5. Surface contamination of nuclear spent fuel shipments. Common Report of the Competent Authorities of France, Germany, Switzerland and the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    France; Germany; Switzerland; United Kingdom

    1999-07-01

    Following the discovery of non-fixed radioactive contamination on spent fuel flasks and associated transport equipment in France, an ad hoc bilateral working group of the competent regulatory authorities was set up by agreement between the German Minister for the Environment, Mrs Angela Merkel, and the French Minister for the Environment, Mrs Dominique Voynet, on 26 May 1998. On 2 June 1998, a constituent meeting of the German, French and now Swiss competent regulatory authorities convened the working group on radioactive contamination in Cologne, Germany. The United Kingdom joined the working group at its second meeting in Paris on 22 June 1998. The working group had the task to ensure a coordinated cooperation of the experts to establish the causes and effects of the contamination incidents and propose appropriate action. This report, agreed at the fifth meeting of the working group in Parison 24 October 1998, is a compilation of information collected from all four countries, setting out the history of the events, their causes and consequences. The report goes on to describe remedial actions which have already been put in place, those that are being considered, and makes recommendations for future actions. (author)

  6. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  7. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  8. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell

    DEFF Research Database (Denmark)

    Chen, Ming; Wang, Meng; Ding, Xianan

    2018-01-01

    Conventional catalyst layer with a smooth surface exists the larger area of“catalytic dead zone” and reduces the utilization of catalyst. Based on this, a novel catalyst layer structure based surface-patterned Nafion® membrane was designed to achieve more efficient electrochemical reaction...... to prepare the novel catalyst layer, and the effect of pressure on the performance of MEA was investigated. The results suggested that the peak power density of DMFC with optimal novel catalyst layer structure increased by 28.84%, the charge transfer resistances of anode and cathode reduced by 28.8% and 26.......5% respectively, compared with the conventional catalyst layer. Performance improvement is attributed to the fact that the novel catalyst layer structure optimizes the electrolyte membrane/catalyst layer and gas diffusion layer/catalyst layer interfacial structure, which increases the electrochemical reaction...

  9. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  10. Spatial variability of wildland fuel characteristics in northern Rocky Mountain ecosystems

    Science.gov (United States)

    Robert E. Keane; Kathy Gray; Valentina Bacciu

    2012-01-01

    We investigated the spatial variability of a number of wildland fuel characteristics for the major fuel components found in six common northern Rocky Mountain ecosystems. Surface fuel characteristics of loading, particle density, bulk density, and mineral content were measured for eight fuel components - four downed dead woody fuel size classes (1, 10, 100, 1000 hr),...

  11. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  12. Fuel cell anode configuration for CO tolerance

    Science.gov (United States)

    Uribe, Francisco A.; Zawodzinski, Thomas A.

    2004-11-16

    A polymer electrolyte fuel cell (PEFC) is designed to operate on a reformate fuel stream containing oxygen and diluted hydrogen fuel with CO impurities. A polymer electrolyte membrane has an electrocatalytic surface formed from an electrocatalyst mixed with the polymer and bonded on an anode side of the membrane. An anode backing is formed of a porous electrically conductive material and has a first surface abutting the electrocatalytic surface and a second surface facing away from the membrane. The second surface has an oxidation catalyst layer effective to catalyze the oxidation of CO by oxygen present in the fuel stream where at least the layer of oxidation catalyst is formed of a non-precious metal oxidation catalyst selected from the group consisting of Cu, Fe, Co, Tb, W, Mo, Sn, and oxides thereof, and other metals having at least two low oxidation states.

  13. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  14. Clean energy from a carbon fuel cell

    Science.gov (United States)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  15. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  16. Analysis of irradiation temperature in fuel rods of OGL-1 fuel assembly

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Minato, Kazuo; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-10-01

    Irradiation temperature in the fuel rods of 5th OGL-1 fuel assembly was analysed by the system composed by STPDSP2 and TRUMP codes. As the measured input-data, following parameters were allowed for; circumferential heating distribution around the fuel rod, which was measured in the JMTR critical assembly, axial heating distribution through the fuel rod, ratio of peak heatings of three fuel rods, and pre- and post-irradiation outer radii of the fuel compacts and inner radii of the graphite sleeves, which had been measured in PIE of the 5th OGL-1 fuel assembly. In computation the axial distributions of helium coolant temperature through the fuel rod and the heating value of each fuel rod were, firstly, calculated as input data for TRUMP. The TRUMP calculation yielded the temperatures which were fitted in those measured by all of the thermo-couples installed in the fuel rods, by adjusting only the value of the surface heat transfer coefficient, and consequently, the temperatures in all portions of the fuel rod were obtained. The apparent heat transfer coefficient changed to 60% of the initial values in the middle period of irradiation. For this reduction it was deduced that shoot had covered the surface of the fuel rod during irradiation, which was confirmed in PIE. Beside it, several things were found in this analysis. (author)

  17. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  18. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  19. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  20. Spent fuel transporting vessel

    International Nuclear Information System (INIS)

    Kumagaya, Takeshi.

    1995-01-01

    A large number of annular cooling fins are disposed each at an equal distance on the outer circumferential surface of a vessel main body. An electric power generation module is disposed on the surface of the cooling fins. The electric power generation module comprises a plurality of thermoelectric power generation elements. In each of the thermoelectric generation elements, the inner side thereof in contact with the surface of the cooling fin is at a high temperature while the outer side thereof is at a low temperature nearly equal with an atmospheric temperature. A predetermined amount of electric power is generated by seebeck effect due to the temperature difference. The electric power is always stored in a battery. Accordingly, even if a power generator of a ship should fail and power supply is stopped during transportation of the vessels for spent nuclear fuels, an appropriate amount of electric power can be supplied to a cooling device of the ship. (I.N.)

  1. Towards a highly-efficient fuel-cell catalyst: optimization of Pt particle size, supports and surface-oxygen group concentration.

    Science.gov (United States)

    Muthuswamy, Navaneethan; de la Fuente, Jose Luis Gomez; Ochal, Piotr; Giri, Rajiv; Raaen, Steinar; Sunde, Svein; Rønning, Magnus; Chen, De

    2013-03-21

    In the present work, methanol oxidation reaction was investigated on Pt particles of various diameters on carbon-nanofibers and carbon-black supports with different surface-oxygen concentrations, aiming for a better understanding of the relationship between the catalyst properties and the electrochemical performance. The pre-synthesized Pt nanoparticles in ethylene glycol, prepared by the polyol method without using any capping agents, were deposited on different carbon supports. Removal of oxygen-groups from the carbon supports had profound positive effects on not only the Pt dispersion but also the specific activity. The edge structures on the stacked graphene sheets in the platelet carbon-nanofibers provided a strong interaction with the Pt particles, significantly reconstructing them in the process. Such reconstruction resulted in the formation of more plated Pt particles on the CNF than on the carbon-black and exposure of more Pt atoms with relatively high co-ordination numbers, and thereby higher specific activity. Owing to the combined advantages of optimum Pt particle diameter, an oxygen-free surface and the unique properties of CNFs, Pt supported on heat-treated CNFs exhibited a higher mass activity twice of that of its commercial counterpart.

  2. Fuel trading

    International Nuclear Information System (INIS)

    2015-01-01

    A first part of this report proposes an overview of trends and predictions. After a synthesis on the sector changes and trends, it indicates and comments the most recent predictions for the consumption of refined oil products and for the turnover of the fuel wholesale market, reports the main highlights concerning the sector's life, and gives a dashboard of the sector activity. The second part proposes the annual report on trends and competition. It presents the main operator profiles and fuel categories, the main determining factors of the activity, the evolution of the sector context between 2005 and 2015 (consumptions, prices, temperature evolution). It analyses the evolution of the sector activity and indicators (sales, turnovers, prices, imports). Financial performances of enterprises are presented. The economic structure of the sector is described (evolution of the economic fabric, structural characteristics, French foreign trade). Actors are then presented and ranked in terms of turnover, of added value, and of result

  3. Nuclear reactor fuel element having improved heat transfer

    Science.gov (United States)

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  4. Combustor and method for distributing fuel in the combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; York, William David

    2016-04-26

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface, and each tube provides fluid communication through the tube bundle. A baffle extends axially inside the tube bundle between adjacent tubes. A method for distributing fuel in a combustor includes flowing a fuel into a fuel plenum defined at least in part by an upstream surface, a downstream surface, a shroud, and a plurality of tubes that extend from the upstream surface to the downstream surface. The method further includes impinging the fuel against a baffle that extends axially inside the fuel plenum between adjacent tubes.

  5. Coal-water mixture fuel burner

    Science.gov (United States)

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  6. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  7. NON-CORROSIVE REACTOR FUEL SYSTEM

    Science.gov (United States)

    Herrick, C.C.

    1962-08-14

    A non-corrosive nuclear reactor fuel system was developed utilizing a molten plutonium-- iron alloy fuel having about 2 at.% carbon and contained in a tantalum vessel. This carbon reacts with the interior surface of the tantalum vessel to form a plutonium resistant self-healing tantalum carbide film. (AEC)

  8. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  9. Forest fuel and carbon balances

    International Nuclear Information System (INIS)

    Lundborg, A.

    1994-10-01

    Forest fuel, i.e., branches and tops that remain after felling, are not considered to give a net surplus of carbon dioxide to the atmosphere. In order to, if possible, verify this theory a survey was made of the literature concerning different carbon flows related to forest fuel. Branches and needles that are not utilised as fuel nonetheless eventually become decomposed to carbon dioxide. Branches and stem wood are broken down in occasional cases to 60-80% already within 5-6 years but the decomposition rate varies strongly. A small amount of existing data suggest that branches and stems are broken down almost completely within 60-70 years, and earlier in some cases. Lignin is the component in needles and wood that is the most resistant to decomposition. Decomposition is favoured by optimal temperature and moisture, ground contact and ground animals. Material that is mulched during soil preparation is decomposed considerably faster than material that lies on the soil surface. Felling residues that are left on the soil are a large momentary addition to the soil's reserves of organic material but after a number of years the difference in soil organic material is small between places where fuel has been removed and places where felling residues have been left. High nitrogen deposition, fire control and effective forestry are factors that contribute to the increases in the reserves of soil organic material. It appears to be a good approximation to consider the forest fuel as being a neutral fuel as regards carbon dioxide in a longer perspective. In comparison with other biofuels and fossil fuels, forest fuel appears, together with Salix, to be the fuel that results in very little extra discharge of carbon dioxide or other greenhouse gases during its production, transport and processing. 70 refs, 5 figs, tabs

  10. A basic design of a double cladding fuel rod to control the irradiation temperature of nuclear fuels

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Oh, Jong Myung; Park, Sung Jae; Choi, Myung Hwan; Cho, Man Soon; Kang, Young Hwan; Kim, Bong Goo

    2008-01-01

    An instrumented capsule for a nuclear fuel irradiation test (hereinafter referred to as 'instrumented fuel capsule') has been developed to measure fuel characteristics, such as a fuel centre and surface temperature, the internal pressure of a fuel rod, a fuel pellet elongation and neutron flux, during an irradiation test at HANARO. And six types of dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been developed to enhance the efficiency of an irradiation test during an instrumented fuel capsule at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technologies for high temperature nuclear fuel irradiation tests at HANARO. The purpose of this paper is to control the control the temperature of nuclear fuels during an irradiation test at HANARO. Therefore, we basically designed a double cladding fuel rod and an instrumented fuel capsule basically. The basic design of a double cladding rod was based on out-pile tests using mockups and the thermal analyses using some relevant codes. This paper presents the design and fabrication of the double cladding fuel rod mockups, the results of the out-pile tests, the results of the temperature calculation and the basic design of a double cladding fuel rod and an instrumented fuel capsule

  11. Fuel rod and fuel assembly

    International Nuclear Information System (INIS)

    Takekawa, Tetsuya.

    1993-01-01

    Burnable poisons are contained in a portion of a pellet constituting a fuel rod. A distribution density of the burnable poison-containing pellets and a concentration of the burnable poisons in the pellet are varied depending on the axial position of the fuel rod. That is, the distribution density of the burnable poison containing-pellets is increased at the central portion of the fuel rod and it is decreased at both ends thereof, and a concentration of the burnable poisons of the burnable poison containing-pellet disposed at the end portions thereof is decreased to less than a concentration of the burnable poison-containing pellet at the central portion. With such a constitution, a central peaking at an early stage of the combustion cycle is decreased. Accordingly, power at the central portion is increased than that in the end portions at the latter half of the cycle, to flatten the power distribution. Further, a burnable poison concentration of the pellets at the end portions is decreased to promote burning of burnable poisons at the end portions which are less burnable relatively, thereby enabling to prevent worsening of neutron economy. (T.M.)

  12. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  13. Towards synthetic fuels via electrocatalysis

    DEFF Research Database (Denmark)

    Jovanov, Zarko

    to Fischer-Tropsch fuel synthesis. The thesis encompasses electrochemical CO2 and CO reduction on pure metals consisting of polycrystalline copper and gold, as well as the bimetallic catalysts consisting of copper overlayers on platinum single crystals and bulk and surface alloys of gold...

  14. Soliton microdynamics of multiphase thermal conductivity of fuel materials of the uranium dioxide type with the generation of new-type surface vibrations

    Science.gov (United States)

    Dubovsky, O. A.; Semenov, V. A.; Orlov, A. V.; Sudarev, V. V.

    2015-07-01

    The microdynamics of large-amplitude nonlinear atomic vibrations in crystals of the UO2, PuO2, and ThO2 types with the fluorite structure has been studied using the neutron spectrometry and computer simulation methods. Investigations performed on the DIN-2PI neutron spectrometer have revealed a fine structure of the multi-resonance spectral density of vibrations in UO2. The temperature dependence of the coefficient of thermal conductivity of UO2 with two maxima in the range from 500 to 3000 K and the multi-resonance density of vibrations has been interpreted according to the results of the computer simulation demonstrating the generation of single solitons and soliton beams at low and high temperatures. It has been shown that the maximum of the coefficient of thermal conductivity at a temperature of 500 K is determined by the energy transfer by solitons. A decrease in the coefficient of thermal conductivity in the range from 500 to 2000 K is determined by soliton-soliton scattering. An increase in the coefficient of thermal conductivity in the range from 2000 to 3000 K is determined by the generation of soliton beams with the formation of dynamic pores. It has been found that, in crystals of the UO2, PuO2, and ThO2 types, there are resonances of new-type surface vibrations between the dispersion branches of optical phonons. An additional resonance between the low-frequency optical branch and the acoustic branch has been revealed at finite temperatures. This resonance has been interpreted as a nonlinear local mode, in the framework of the quantum theory, possible, a biphonon. It has also been found that, with an increase in the excitation energy, there are soliton branches between this resonance and the acoustic branch in UO2, which in the phase plane cross the band of a nonlinear local mode with an increasing rate.

  15. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  16. Fuel cell elements with improved water handling capacity

    Science.gov (United States)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  17. Container for spent fuel assembly

    International Nuclear Information System (INIS)

    Sawai, Takeshi.

    1996-01-01

    The container of the present invention comprises a container main body having a body portion which can contain spent fuel assemblies and a lid, and heat pipes having an evaporation portion disposed along the outer surface of the spent fuel assemblies to be contained and a condensation portion exposed to the outside of the container main body. Further, the heat pipe is formed spirally at the evaporation portions so as to surround the outer circumference of the spent fuel assemblies, branched into a plurality of portions at the condensation portion, each of the branched portion of the condensation portion being exposed to the outside of the container main body, and is tightly in contact with the periphery of the slit portions disposed to the container main body. Then, since released after heat is transferred to the outside of the container main body from the evaporation portion of the heat pipe along the outer surface of the spent fuel assemblies by way of the condensation portion of the heat pipes exposed to the outside of the container main body, the efficiency of the heat transfer is extremely improved to enhance the effect of removing heat of spent fuel assemblies. Further, cooling effect is enhanced by the spiral form of the evaporation portion and the branched condensation portion. (N.H.)

  18. New camera systems for fuel services

    International Nuclear Information System (INIS)

    Hummel, W.; Beck, H.J.

    2010-01-01

    AREVA NP Fuel Services have many years of experience in visual examination and measurements on fuel assemblies and associated core components by using state of the art cameras and measuring technologies. The used techniques allow the surface and dimensional characterization of materials and shapes by visual examination. New enhanced and sophisticated technologies for fuel services f. e. are two shielded color camera systems for use under water and close inspection of a fuel assembly. Nowadays the market requirements for detecting and characterization of small defects (lower than the 10th of one mm) or cracks and analyzing surface appearances on an irradiated fuel rod cladding or fuel assembly structure parts have increased. Therefore it is common practice to use movie cameras with higher resolution. The radiation resistance of high resolution CCD cameras is in general very low and it is not possible to use them unshielded close to a fuel assembly. By extending the camera with a mirror system and shielding around the sensitive parts, the movie camera can be utilized for fuel assembly inspection. AREVA NP Fuel Services is now equipped with such kind of movie cameras. (orig.)

  19. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  20. Locking support for nuclear fuel assemblies

    Science.gov (United States)

    Ledin, Eric

    1980-01-01

    A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.

  1. The national Fire and Fire Surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels

    Science.gov (United States)

    Dylan W. Schwilk; Jon E. Keeley; Eric E. Knapp; James Mciver; John D. Bailey; Christopher J. Fettig; Carl E. Fiedler; Richy J. Harrod; Jason J. Moghaddas; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop; Daniel A. Yaussy; Andrew Youngblood

    2009-01-01

    Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction...

  2. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  3. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate

  4. Thermal analysis for spent fuel casks

    International Nuclear Information System (INIS)

    Wells, A.H.

    1986-01-01

    Thermal analyses for spent fuel storage or transportation must demonstrate that the heat produced in the fuel will be removed without causing excessive fuel cladding temperatures or cask surface temperatures. The time required to ship fuel from a reactor to another site is a matter of days so temperature control during shipment is a short term concern and temperatures of 1100-1200 degrees F are acceptable in a hypothetical fire scenario, but storage is envisioned for twenty years or more and temperatures are limited to 380 degrees C (716 F). Elevated temperatures do more that weaken fuel cladding: the materials of the fuel basket also weaken with higher temperature, thermal stresses may cause cracks to form in welds, and impact limiter materials may soften or degrade. The high temperatures of a fire cause loss of liquid neutron shields and may cause solid materials to char and insulate a cask after the fire

  5. Container for irradiated fuel

    International Nuclear Information System (INIS)

    Guy, R.

    1978-01-01

    The transport container for irradiated or used nuclear fuel is provided with an identical heat shield against fires on the top and bottom sides. Each heat shield consists of two inner nickel plates, whose contact surfaces are polished to a mirror finish and an outer plate of stainless steel. The nickel plate on the box is spot welded to it while the second nickel plate is spot welded to the steel plate. Both together are in turn welded so as to be leaktight to the edges of the box. For extreme heat effects and based on the different (bimetal) coefficients of expansion, the steel plate with the nickel plate attached to it bulges away from the box. The second nickel plate remains at the box, so that a subpressure space is formed with the mirror nickel surfaces. The heat radiation and heat conduction to the box are greatly reduced by this. (DG) [de

  6. Enhanced methanol utilization in direct methanol fuel cell

    Science.gov (United States)

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  7. Nuclear fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1977-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed which has a composite cladding having a substrate, a metal barrier metallurgically bonded to the inside surface of the substrate and an inner layer metallurgically bonded to the inside surface of the metal barrier. In this composite cladding, the inner layer and the metal barrier shield the substrate from any impurities or fission products from the nuclear fuel material held within the composite cladding. The metal barrier forms about 1 to about 4 percent of the thickness of the cladding and is comprised of a metal selected from the group consisting of niobium, aluminum, copper, nickel, stainless steel, and iron. The inner layer and then the metal barrier serve as reaction sites for volatile impurities and fission products and protect the substrate from contact and reaction with such impurities and fission products. The substrate and the inner layer of the composite cladding are selected from conventional cladding materials and preferably are a zirconium alloy. Also in a preferred embodiment the substrate and the inner layer are comprised of the same material, preferably a zirconium alloy. 19 claims, 2 figures

  8. Renewable Fuel Standard Program

    Science.gov (United States)

    Information about regulations, developed by EPA, in collaboration with refiners, renewable fuel producers, and many other stakeholders, that ensure that transportation fuel sold in the United States contains a minimum volume of renewable fuel.

  9. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  10. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  11. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  12. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  13. Fuel storage

    International Nuclear Information System (INIS)

    Palacios, C.; Alvarez-Miranda, A.

    2009-01-01

    ENSA is a well known manufacturer of multi-system primary components for the nuclear industry and is totally prepared to satisfy future market requirements in this industry. At the same time that ENSA has been gaining a reputation world wider for the supply of primary components, has been strengthening its commitment and experience in supplying spent fuel components, either pool racks or storage and transportation casks, and offers not only fabrication but also design capabilities for its products. ENSA has supplied Spent Fuel Pool Racks, in spain, Finland, Taiwan, Korea, China, and currently it is in the process of licensing its own rack design in the United States of America for the ESBWR along with Ge-Hitachi. ENSA has supplied racks for 20 pools and 22 different reactors and it has also manufactured racks under all available technologies and developed a design known as Interlock Cell Matrix whose main features are outlined in this article. Another ENSA achievement in rack technology is the use of remote control for re-racking activities instead of using divers, which improves the ALARA requirements. Regarding casks for storage and transportation, ENSA also has al leading worldwide position, with exports prevailing over the Spanish market where ENSA has supplied 16 storage and transportation casks to the Spanish nuclear power Trillo. In some cases, ENSA acts as subcontractor for other clients. Foreign markets are still a major challenge for ENSA. ENSA-is well known for its manufacturing capabilities in the nuclear industry, but has been always involved in design activities through its engineering division, which carries out different tasks: components Design; Tooling Design; Engineering and Documentation; Project Engineering; Calculations, Design and Development Engineering. (Author)

  14. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  15. CANDU fuel performance

    International Nuclear Information System (INIS)

    Ivanoff, N.V.; Bazeley, E.G.; Hastings, I.J.

    1982-01-01

    CANDU fuel has operated successfully in Ontario Hydro's power reactors since 1962. In the 19 years of experience, about 99.9% of all fuel bundles have performed as designed. Most defects occurred before 1979 and subsequent changes in fuel design, fuel management, reactor control, and manufacturing quality control have reduced the current defect rate to near zero. Loss of power production due to defective fuel has been negligible. The outstanding performance continues while maintaining a low unit energy cost for fuel

  16. Fuel processor for fuel cell power system

    Science.gov (United States)

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  17. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  18. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  19. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  20. Fuel performance experience

    International Nuclear Information System (INIS)

    Sofer, G.A.

    1986-01-01

    The history of LWR fuel supply has been characterized by a wide range of design developments and fuel cycle cost improvements. Exxon Nuclear Company, Inc. has pursued an aggressive fuel research and development program aimed at improved fuel performance. Exxon Nuclear has introduced many design innovations which have improved fuel cycle economics and operating flexibility while fuel failures remain at very low levels. The removable upper tie plate feature of Exxon Nuclear assemblies has helped accelerate this development, enabling repeated inspections during successive plant outages. Also, this design feature has made it possible to repair damaged fuel assemblies during refueling outages, thereby minimizing the economic impact of fuel failure from all causes

  1. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  2. Wavelets for ultrasonic echo identification in aircraft fuel tanks

    Science.gov (United States)

    Sadok, Mokhtar

    2002-03-01

    Recently, Goodrich Corp.- Fuels and Utility systems Division, has launched a research effort to investigate various sensing and computing techniques to gauge fuel in commercial and military aircrafts. Ultrasonics are among other techniques that were tested for such purpose. Generally, in ultrasonic fuel measurement systems, a transducer is excited to create sonic bursts into fuel and measure reflected echo off the fuel surface. A fixed target or pin is usually disposed at a fixed and predetermined distance from the ultrasonic transducer within the tank so as to compute the speed of sound through across fuel in the tank. Knowing the speed of sound in fuel and being able to measure the round trip time from when an ultrasonic burst is generated until its reflected off the fuel surface, the fuel height may be calculated. With a priori knowledge of the tank geometry, the fuel quantity can be estimated. This measurement process seems straightforward. A problem however is being able to discriminate between echoes reflected off various objects within the tank. In particular, it is crucial to discriminate among echoes reflected off various objects within the tank. In particular, it is crucial to discriminate among echoes reflected off the fuel surface and echoes reflected off other object withhin the tank, like the fixed target or tank sides. This paper presents a discrimination method based on wavelets to assign various ultrasonic echoes to their appropriate reflective surfaces.

  3. Agro-fuels, a cartography of stakes

    International Nuclear Information System (INIS)

    2008-09-01

    This document proposes a dashboard of the main issues regarding agro-fuels. Nine sheets propose basic information and data on these issues: 1- agro-fuel production and consumption in the world (ethanol, vegetable oils, perspective for demand in the transport sector), 2- energy efficiency and greenhouse gas emissions (energy assessments and greenhouse effect of agro-fuels, discrepancies of results between first-generation European agro-fuels, case of agro-fuels produced in Southern countries), 3- needed surfaces in Europe (land use and cultivable areas for agro-fuel production in Europe and in France, competition between food and energy crops), 4- deforestation in the South (relationship between agriculture, deforestation and agro-fuels, between deforestation and greenhouse gas emissions), 5- impacts on biodiversity (use of pesticides and fertilizers, large scale cultivations and single-crop farming, cultivation of fallow land and permanent meadows, deforestation in the South, relationship between agro-fuels and GMOs), 6- impacts on water, soil and air (water quality and availability, soil erosion, compaction and fertility loss, air quality), 7- food-related and social stakes (issue of food security, social impacts of agro-fuel production with pressure on family agriculture and issues of land property), 8- public supports and economic efficiency (public promotion of agro-fuels, agro-fuel and oil prices, assessment of the 'avoided' CO 2 ton), and 9- perspectives for second-generation agro-fuels (definitions and processes, benefits with respect to first-generation fuels, possible impacts on the environment, barriers to their development)

  4. Internal reforming fuel cell assembly with simplified fuel feed

    Science.gov (United States)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  5. A basic design of a double cladding fuel rod to control the irradiation temperature of nuclear fuels

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Oh, Jong Myung; Park, Sung Jae; Choi, Myung Hwan; Cho, Man Soon; Kang, Young Hwan; Kim, Bong Goo

    2008-01-01

    An instrumented capsule for a nuclear fuel irradiation test(hereinafter referred to as 'instrumented fuel capsule') has been developed to measure fuel characteristics, such as a fuel center and surface temperature, the internal pressure of a fuel rod, a fuel pellet elongation and neutron flux, during an irradiation test at HANARO. And six types of dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been developed to enhance the efficiency of an irradiation test using an instrumented fuel capsule at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technologies for high temperature nuclear fuel irradiation tests at HANARO. The purpose of this paper is to control the temperature of nuclear fuels during an irradiation test at HANARO. Therefore we basically designed a double cladding rod was based on out pile tests using mockups and the thermal analyses using some relevant codes. This paper presents the design and fabrication of the double cladding fuel rod mockups, the results of the out pile tests, the results of the temperature calculation and the basic design of a double cladding fuel rod and an instrumented fuel capsule

  6. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  7. Irradiated fuel reassembling experience at the fuel monitoring facility

    International Nuclear Information System (INIS)

    Aratani, K.; Koizumi, A.; Matsushima, H.

    1989-01-01

    For the first time in the 10-yr hot operation of the fuel monitoring facility (FMF), the reassembling or irradiated fuels was successfully conducted and a reassembled irradiation vehicle was reinserted in Japanese experimental fast reactor JOYO. The FMF, one of the largest hot laboratories in Japan operated by the Power Reactor and Nuclear Fuel Development Corporation (PNC), demonstrated its new capability in remote handling. More than 130 assemblies have already been examined and disassembled at FMF for postirradiation examination and many results have been obtained to evaluate fuel performance. In addition to these once-through examinations, it is becoming more and more important to conduct interim examinations and reinsertion for continuous irradiation. More flexibility for irradiation experiments will thus be provided. Since FMF was originally designed to make the reinsertion possible, there is a path to get the assembly back to the reactor. The main developments needed for the reinsertion of assemblies were as follows: (1) irradiation vehicle, (2) disassembling and interim examination, (3) decontamination of fuel pin surface, and (4) reassembling machine. This paper mainly describes items 2, 3, and 4. The reinsertion program is now planned for two vehicles a year, and several new types of irradiation vehicles for the reinsertion are now being developed. The reassembling machine may be slightly modified so that those new types of rigs can also be handled

  8. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  9. Fuel dissipater for pressurized fuel cell generators

    Science.gov (United States)

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  10. HEU and Leu FueL Shielding Comparative Study Applied for Spent Fuel Transport

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Margeanu, S.; Barbos, D.

    2009-01-01

    INR Pitesti owns and operates a TRIGA dual-core Research Reactor for material testing, power reactor fuel and nuclear safety studies. The dual core concept involves the operation of a 14 MW TRIGA steady-state, high flux research and material testing reactor at one end of a large pool, and the independent operation of an annular-core pulsing reactor (TRIGA-ACPR) at the other end of the pool. The steady-state reactor is mostly used for long term testing of power reactor fuel components (pellets, pins, subassemblies and fuel assemblies) followed by post-irradiation examination. Following the general trend to replace the He fuel type (High Enriched Uranium) by Leu fuel type (Low Enriched Uranium), in the light of international agreements between IAEA and the states using He fuel in their nuclear reactors, Inr Past's have been accomplished the TRIGA research reactor core full conversion on May 2006. The He fuel repatriation in US in the frame of Foreign Research Reactor Spent Nuclear Fuel Return Programme effectively started in 1999, the final stage being achieved in summer of 2008. Taking into account for the possible impact on the human and environment, in all activities associated to nuclear fuel cycle, the spent fuel or radioactive waste characteristics must be well known. Shielding calculations basic tasks consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper is a comparative study of Leu and He fuel utilization effects for the shielding analysis during spent fuel transport. A comparison against the measured data for He spent fuel, available from the last stage of the spent fuel repatriation, is presented. All the geometrical and material data related on the spent fuel shipping cask were considered according to the Nac-Lt Cask approved model. The shielding analysis estimates radiation doses to shipping cask wall surface

  11. Fuel assembly

    International Nuclear Information System (INIS)

    Bessho, Yasunori; Ishii, Yoshihiko; Sadaoka, Noriyuki.

    1990-01-01

    Burnable poisons are disposed in the lower portions of a water rod, a channel box and a control rod guide pipe in a fuel assembly, and the amount for each of them is set to burn out in one operation cycle. Since the inner side of the water rod and the control rod guide pipe and gaps are filled with steams at the initial and the intermediate stages of the operation cycle, moderation of neutrons is delayed to harden the spectrum. On the other hand, since the burnable poisons are burnt out in the final stage of the operation cycle, γ-ray heating is not expected and since the insides of the water rod and the control rod guide pipe and the gaps are filled with water of great moderation effect, the neutron spectrum arae softened. In view of the above, void coefficient is increased to promote conversion from U-235 to Pu-239 by utilizing exothermic reaction of burnable poisons at the initial and the intermediate stages in the operation cycle and generation of voids are eliminated at the final stage where the burnable poisons are burnt out, thereby enabling effective burning of Pu-239. (N.H.)

  12. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  13. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 02: fire hazard

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...

  14. Lanthanides migration and immobilization in U-Zr nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bozzolo, G., E-mail: guille_bozzolo@yahoo.com [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Hofman, G.L.; Yacout, A.M. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Mosca, H.O. [Gerencia de Investigaciones y Aplicaciones, CNEA, Av. Gral Paz 1499, B165KNA, San Martin, Buenos Aires (Argentina)

    2012-06-15

    Redistribution of lanthanides fission products during irradiation and migration to the surface of U-Zr based metallic fuels is a concern due to their interaction with the cladding. The existing remedy for preventing this effect is the introduction of diffusion barriers on the cladding inner surface or by adding thermodynamically stable compound-forming elements to the fuel. Exploring this second option, in this work atomistic modeling with the Bozzolo-Ferrante-Smith (BFS) method for alloys is used to study the formation of lanthanide-rich precipitates in U-Zr fuel and the segregation patterns of all constituents to the surface. Surface energies for all elements were computed and, together with the underlying concepts of the computational methodology and large scale simulations, the migration of lanthanides to the surface region in U-Zr fuels is explained. The role of additions to the fuel such as In, Ga, and Tl for immobilization of lanthanides is discussed.

  15. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  16. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  17. Fuel element development

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, G.

    1983-01-01

    The studies concerning breeders for the development of fuel elements carried out in Karlsruhe aim at: - optimization of fuel, - support of fuel rod and fuel element concepts from steady-state and field irradiation experiments and their evaluation, and - developing appropriate cladding and structural material and its adaptation to the requirements of high-output breeder reactors.

  18. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  19. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  20. Fuel transfer system

    Science.gov (United States)

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  1. Fuel cells seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  2. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal... Renewable Fuel Standard program regulations. Because EPA received adverse comment, we are withdrawing the...

  3. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  4. Premixed direct injection nozzle for highly reactive fuels

    Science.gov (United States)

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  5. HETEROGENEOUS REBURNING BY MIXED FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Yin Chen; Benson B. Gathitu

    2005-01-14

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  6. Heterogeneous Reburning By Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Anderson Hall

    2009-03-31

    Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

  7. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  8. Reactor fuel rod

    International Nuclear Information System (INIS)

    Inui, Mitsuhiro; Mori, Kazuma.

    1990-01-01

    In a high burnup degree reactor core, a problem of fuel can corrosion caused by coolants occurs due to long stay in a reactor. Then, the use of fuel cladding tubes with improved corrosion resistance is now undertaken and use of corrosion resistant alloys is attempted. However, since the conventional TIG welding melts the entire portion, the welded portion does not remain only in the corrosive resistant alloy but it forms new alloys of the corrosion resistant alloy and zircaloy as the matrix material or inter-metallic compounds, which degrades the corrosion resistance. In the present invention, a cladding tube comprising a dual layer structure using a corrosion resistant alloy only for a required thickness and an end plug made of the same material as the corrosion resistant alloy are welded at the junction portion by using resistance welding. Then, they are joined under welding by the heat generated to the junction surfaces between both of them, to provide corrosion resistant alloys substantially at the outside of the welded portion as well. Accordingly, the corrosion resistance is not degradated. (T.M.)

  9. Fuel cells: principles, types, fuels, and applications.

    Science.gov (United States)

    Carrette, L; Friedrich, K A; Stimming, U

    2000-12-15

    During the last decade, fuel cells have received enormous attention from research institutions and companies as novel electrical energy conversion systems. In the near future, they will see application in automotive propulsion, distributed power generation, and in low power portable devices (battery replacement). This review gives an introduction into the fundamentals and applications of fuel cells: Firstly, the environmental and social factors promoting fuel cell development are discussed, with an emphasis on the advantages of fuel cells compared to the conventional techniques. Then, the main reactions, which are responsible for the conversion of chemical into electrical energy in fuel cells, are given and the thermodynamic and kinetic fundamentals are stated. The theoretical and real efficiencies of fuel cells are also compared to that of internal combustion engines. Next, the different types of fuel cells and their main components are explained and the related material issues are presented. A section is devoted to fuel generation and storage, which is of paramount importance for the practical aspects of fuel cell use. Finally, attention is given to the integration of the fuel cells into complete systems. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  10. MTR fuel testing in BR2

    International Nuclear Information System (INIS)

    Jacquet, P.; Verwimp, A.; Wirix, S.

    2000-01-01

    New fuel design for MTR 's requires to be qualified under representative conditions, that is geometry, neutron spectrum, heat flux and thermo hydraulic conditions. An irradiation device for fuel plates has been designed to derive the maximum benefit from the BR2 irradiation capacities. The fuel plates can be easily extracted from their support during a shutdown to undergo additional tests. One of these tests is the measurement of the thickness changes along the fuel plate. To that purpose, a facility in the reactor water pool has been designed to measure the fuel swelling with an accuracy of 5 μm using inductive probes. At SCK-CEN, the full range of destructive and non-destructive PIE can be performed, including γ-scanning, wet sipping, surface examination and other methods. (author)

  11. Fuel pattern recognition device

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1995-01-01

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  12. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  13. Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels

    Science.gov (United States)

    M.B. Dickinson; E.A. Johnson; R. Artiaga

    2013-01-01

    Although fuel characteristics are assumed to have an important impact on fire regimes through their effects on extinction dynamics, limited capabilities exist for predicting whether a fire will spread in mixedwood boreal forest surface fuels. To improve predictive capabilities, we conducted 347 no-wind, laboratory test burns in surface fuels collected from the mixed-...

  14. Corrosion of fuel assembly materials

    International Nuclear Information System (INIS)

    Noe, M.; Frejaville, G.; Beslu, P.

    1985-08-01

    Corrosion of zircaloy-4 is reviewed in relation with previsions of improvement in PWRs performance: higher fuel burnup; increase coolant temperature, implying nucleate boiling on the hot clad surfaces; increase duration of the cycle due to load-follow operation. Actual knowledge on corrosion rates, based partly on laboratory tests, is insufficient to insure that external clad corrosion will not constitute a limitation to these improvements. Therefore, additional testing within representative conditions is felt necessary [fr

  15. PEM fuel cell degradation

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  16. Irradiation effects on thermal properties of LWR hydride fuel

    Science.gov (United States)

    Terrani, Kurt; Balooch, Mehdi; Carpenter, David; Kohse, Gordon; Keiser, Dennis; Meyer, Mitchell; Olander, Donald

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH1.6) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  17. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  18. Spent fuel and fuel pool component integrity. Annual report, FY 1979

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-μm) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report

  19. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  20. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  1. Comparison of Vibrations and Emissions of Conventional Jet Fuel with Stressed 100% SPK and Fully Formulated Synthetic Jet Fuel

    Directory of Open Access Journals (Sweden)

    Bhupendra Khandelwal

    2014-08-01

    Full Text Available The rapid growth of the aviation sector around the globe has witnessed an overwhelming impact on fossil fuel resources. With the implementation of stricter environmental laws over emissions by conventional jet fuels, growing demand for research on alternative fuels has become imperative. One-hundred percent Synthetic Paraffinic Kerosene (SPK and Fully Formulated Synthetic Jet Fuel have surfaced as viable alternatives for gas turbine engines due to their similar properties as that of Jet Fuel. This paper presents results from an experimental study performed on a small gas turbine engine, comparing emissions performance and vibrations for conventional Jet A-1 Fuel, thermally stressed 100% SPK and Fully Formulated Synthetic Jet Fuel. Different vibration frequencies, power spectra were observed for different fuels. Gaseous emissions observed were nearly the same, whereas, significant changes in particulates emissions were observed.

  2. Fuel injector system

    Science.gov (United States)

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  3. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  4. HTGR Fuel performance basis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  5. Elongated fuel road

    International Nuclear Information System (INIS)

    Williams, A.E.; Linkison, W.S.

    1977-01-01

    A fuel rod is proposed where a reorientation of the fuel in case of a considerable temperature increase, causing the melting of the densified fuel powder, will be avoided. For this purpose, in longitudinal direction of the fuel rod, a number of diameter reductions of the can are applied of certain distances. In the reduction zone the cross-sectional area of the fuel is reduced, as compared to the one of the remaining fuel material in the regions without diameter reduction, but not the density of the fuel. The recess is chosen to that in case of melting of the fuel in the center of the not contracted zone the fuel in the center of the narrowed area will remain solid and keep the molten material in position. (HR) [de

  6. Fuel performance evaluation for the CAFE experimental device

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Hirota, Leandro T.

    2011-01-01

    Fuel rod cladding material is the second barrier to prevent the release of radioactive inventories in a PWR reactor. In this sense, an important safety aspect is to assess the fuel behavior under operational conditions. This can be made by means of fuel performance codes and confirmed by experimental measurements. In order to evaluate the fuel behavior of fuel rods in steady-state conditions, it was designed an experimental irradiation device, the Nuclear Fuel Irradiation Circuit (CAFE-Mod1). This device will allow controlling the surface rod temperature, to measure the power associated to the rod and the evolution of fission gas release for a typical PWR fuel pin. However, to support the experimental irradiation program, it is extremely important to simulate the experimental conditions using a fuel performance code. The aim of this paper is to evaluate some parameters and aspects related to the fuel rod behavior during the irradiation program. This evaluation was carried out by means of an adapted fuel performance code. Obtained results have shown that besides of the variation observed for parameters, such as, fuel temperature and fission gas release as a function of fuel enrichment level, the fuel rod integrity was preserved in all studied conditions. (author)

  7. Method for inspecting nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A technique for disassembling a nuclear reactor fuel element without destroying the individual fuel pins and other structural components from which the element is assembled is described. A traveling bridge and trolley span a water-filled spent fuel storage pool and support a strongback. The strongback is under water and provides a working surface on which the spent fuel element is placed for inspection and for the manipulation that is associated with disassembly and assembly. To remove, in a non-destructive manner, the grids that hold the fuel pins in the proper relative positions within the element, bars are inserted through apertures in the grids with the aid of special tools. These bars are rotated to flex the adjacent grid walls and, in this way relax the physical engagement between protruding portions of the grid walls and the associated fuel pins. With the grid structure so flexed to relax the physical grip on the individual fuel pins, these pins can be withdrawn for inspection or replacement as necessary without imposing a need to destroy fuel element components

  8. Supercritical fuel injection system

    Science.gov (United States)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  9. NONDESTRUCTIVE EXAMINATION OF FUEL PLATES FOR THE RERTR FUEL DEVELOPMENT EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; S.C. Taylor; G.A. Moore; D.M. Sterbentz

    2012-09-01

    Nuclear fuel is the core component of reactors that is used to produce the neutron flux required for irradiation research purposes as well as commercial power generation. The development of nuclear fuels with low enrichments of uranium is a major endeavor of the RERTR program. In the development of these fuels, the RERTR program uses nondestructive examination (NDE) techniques for the purpose of determining the properties of nuclear fuel plate experiments without imparting damage or altering the fuel specimens before they are irradiated in a reactor. The vast range of properties and information about the fuel plates that can be characterized using NDE makes them highly useful for quality assurance and for analyses used in modeling the behavior of the fuel while undergoing irradiation. NDE is also particularly useful for creating a control group for post-irradiation examination comparison. The two major categories of NDE discussed in this paper are X-ray radiography and ultrasonic testing (UT) inspection/evaluation. The radiographic scans are used for the characterization of fuel meat density and homogeneity as well as the determination of fuel location within the cladding. The UT scans are able to characterize indications such as voids, delaminations, inclusions, and other abnormalities in the fuel plates which are generally referred to as debonds as well as to determine the thickness of the cladding using ultrasonic acoustic microscopy methods. Additionally, the UT techniques are now also being applied to in-canal interim examination of fuel experiments undergoing irradiation and the mapping of the fuel plate surface profile to determine fuel swelling. The methods used to carry out these NDE techniques, as well as how they operate and function, are described along with a description of which properties are characterized.

  10. 76 FR 37703 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2011-06-28

    ... Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel... be proposing amendments to the renewable fuel standard program regulations to establish annual...

  11. 75 FR 79964 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Science.gov (United States)

    2010-12-21

    ...-AQ31 Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program AGENCY... the Renewable Fuel Standard program regulations that were published on March 26, 2010, and that took..., distribution, and sale of transportation fuels, including gasoline and diesel fuel and renewable fuels such as...

  12. High Burn Rate Hybrid Fuel for Improved Grain Design, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel type of fuel providing high burning rate for hybrid rocket applications is proposed. This fuel maintains a hydrodynamically rough surface to radically...

  13. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  14. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  15. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  16. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  17. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  18. Possibility for dry storage of the WWR-K reactor spent fuel

    International Nuclear Information System (INIS)

    Arinkin, F.M.; Belyakova, E.A.; Gizatulin, Sh.Kh.; Khromushin, I.V.; Koltochik, S.N.; Maltseva, R.M.; Medvedeva, Z.V.; Petukhov, V.K.; Soloviev, Yu.A.; Zhotabaev, Zh.R.

    2000-01-01

    This work is devoted to development of the way for dry storage of spent fuel of the WWR-K reactor. Residual energy release in spent fuel element assembly was determined via fortune combination of calculations and experiments. The depth of fission product occurrence relative to the fuel element shroud surface was found experimentally. The time of fission product release to the fuel element shroud surface was estimated. (author)

  19. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  20. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  1. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  2. Fuel cells: Project Volta

    Energy Technology Data Exchange (ETDEWEB)

    Vellone, R.; Di Mario, F.

    1987-09-01

    This paper discusses research and development in the field of fuel cell power plants. Reference is made to the Italian research Project Volta. Problems related to research program financing and fuel cell power plant marketing are discussed.

  3. Fuel transporting device

    International Nuclear Information System (INIS)

    Shiratori, Hirozo.

    1979-01-01

    Purpose: In a liquid-metal cooled reactor, to reduce the waiting time of fuel handling apparatuses and shorten the fuel exchange time. Constitution: A fuel transporting machine is arranged between a reactor vessel and an out-pile storage tank, thereby dividing the transportation line of the pot for contracting fuel and transporting the same. By assuming such a construction, the flow of fuel transportation which has heretofore been carried out through fuel transportation pipes is not limited to one direction but the take-out of fuels from the reactor and the take-in thereof from the storage tank can be carried out constantly, and much time is not required for fuel exchange. (Kamimura, M.)

  4. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  5. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  6. Production of fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Stead, W.J.; MacDonald Hildon, A.

    1989-07-05

    A method of producing fuel briquettes from a powdered fuel and a binder comprises the step of subjecting the powdered fuel to a treatment (e.g. pressure and/or heating) effective to promote adhesion between the fuel particles and the binder. In a preferred embodiment for producing fuel briquettes from powdered anthracite and a binder such as molasses, the powdered anthracite is dried to a lower-than-usual moisture content below 5% by treatment in a fluidised bed drier operated to raise the temperature of the anthracite to a higher-than-usual temperature about 100 degrees C. The higher temperature treatment promotes improved adhesion between the fuel particles and the binder and so improves 'Green strength' of the fuel briquettes. A detergent may be added to the powdered fuel or binder a mixture thereof.

  7. High utilization fuel assembly

    International Nuclear Information System (INIS)

    Camden, T.M. Jr.

    1986-01-01

    A nuclear fuel assembly is described comprising an array of parallel arranged guide tubes, an inlet nozzle attached to one end of the guide tubes, an outlet nozzle attached to the other end of the guide tubes, grids having the openings therethrough attached to and spaced along the length of the guide tubes, and of parallel arranged fuel rod assemblies each having an upper end and a lower end. The fuel rod assemblies are fitted within the openings in the grids, the fuel rod assemblies being arranged axially offset relative to each adjacent fuel rod assembly and comprising an upper fuel rod and a lower axially aligned fuel rod with a gap therebetween. The gap between the fuel rods each is axially offset relative to each adjacent gap so as to eliminate an axial gap across the core

  8. Loviisa nuclear fuel service

    International Nuclear Information System (INIS)

    Haegg, P.E.; Koskivirta, O.

    1990-01-01

    The nuclear fuel service of the both units of Loviisa NPS is based on longterm fresh fuel purchasing contracts and longterm spent fuel return contracts. These contracts belong to the Soviet delivery package of Loviisa NPS and they have been made separately for the both units for their whole lifetime. The Soviet contract party is v/o Techsnabexport. Fresh fuel is ordered at the beginning of the year preceding the delivery year. The delivery takes place about one and half years earlier than the fuel is loaded into reactor. The irradiation time of the fuel is typically three years (partly two years). Spent fuel is stored at site in different storage pools five years before its returning to tbe Soviet Union. Altogether the nuclear fuel is staying at Loviisa about ten years

  9. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Delucchi, Mark

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  10. Spent fuels program

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1983-01-01

    The goal of this task is to support the Domestic Spent Fuel Storage Program through studies involving the transport of spent fuel. A catalog was developed to provide authoritative, timely, and accessible transportation information for persons involved in the transport of irradiated reactor fuel. The catalog, drafted and submitted to the Transportation Technology Center, Sandia National Laboratories, for their review and approval, covers such topics as federal, state, and local regulations, spent fuel characteristics, cask characteristics, transportation costs, and emergency response information

  11. FUEL ROD ASSEMBLY

    Science.gov (United States)

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  12. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  13. Neutronics and Fuel Performance Evaluation of Accident Tolerant Fuel under Normal Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu Wu; Piyush Sabharwall; Jason Hales

    2014-07-01

    This report details the analysis of neutronics and fuel performance analysis for enhanced accident tolerance fuel, with Monte Carlo reactor physics code Serpent and INL’s fuel performance code BISON, respectively. The purpose is to evaluate two of the most promising candidate materials, FeCrAl and Silicon Carbide (SiC), as the fuel cladding under normal operating conditions. Substantial neutron penalty is identified when FeCrAl is used as monolithic cladding for current oxide fuel. From the reactor physics standpoint, application of the FeCrAl alloy as coating layer on surface of zircaloy cladding is possible without increasing fuel enrichment. Meanwhile, SiC brings extra reactivity and the neutron penalty is of no concern. Application of either FeCrAl or SiC could be favorable from the fuel performance standpoint. Detailed comparison between monolithic cladding and hybrid cladding (cladding + coating) is discussed. Hybrid cladding is more practical based on the economics evaluation during the transition from current UO2/zircaloy to Accident Tolerant Fuel (ATF) system. However, a few issues remain to be resolved, such as the creep behavior of FeCrAl, coating spallation, inter diffusion with zirconium, etc. For SiC, its high thermal conductivity, excellent creep resistance, low thermal neutron absorption cross section, irradiation stability (minimal swelling) make it an excellent candidate materials for future nuclear fuel/cladding system.

  14. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  15. Fireplaces and Fireplace Fuels.

    Science.gov (United States)

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fireplaces and fuels. Its objective is for the student to be able to discuss the structural design, operation, and efficiency of fireplaces and characteristics of different fireplace fuels. Some topics covered are fuels, elements…

  16. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Gordon, G.M.; Cowan, R.L. II; Davies, J.H.

    1975-01-01

    A nuclear fuel element is described. It includes a central nuclear fuel core and a composite cladding composed of a substrate, the inner face of which is coated with copper, nickel, iron or one of their alloys. The nuclear fuel is selected from uranium compounds, plutonium compounds or mixtures thereof. The substrate is selected from zirconium and zirconium alloys [fr

  17. Plutonium fuel program

    International Nuclear Information System (INIS)

    1979-09-01

    A review is presented of the development of the (UPu)C sphere-pac fuel project during 1978. In particular, the problems encountered in obtaining good fuel quality in the fabrication process and their solution is discussed. The development of a fabrication pilot plant is considered, and the post-irradiation examination of fuel pins is presented. (Auth.)

  18. PWR fuel thermomechanics

    International Nuclear Information System (INIS)

    Traccucci, R.; Leclercq, J.

    1986-01-01

    Fuel thermo-mechanics means the studies of mechanical and thermal effects, and more generally, the studies of the behavior of the fuel assembly under stresses including thermal and mechanical loads, hydraulic effects and phenomena induced by materials irradiation. This paper describes the studies dealing with the fuel assembly behavior, first in normal operating conditions, and then in accidental conditions. 43 refs [fr

  19. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  20. Fuel lock down device

    International Nuclear Information System (INIS)

    Bevilacqua, F.; Groves, M.D.

    1979-01-01

    Disclosed is a lock down device for restraining a nuclear fuel assembly against hydraulic flow forces having cantilever leaf springs on the fuel assembly lower end fitting which lock into recesses in the fuel alignment pins located on the core support plate

  1. CANDU fuel performance

    International Nuclear Information System (INIS)

    Manzer, A.M.

    1998-01-01

    The paper presents a review of CANDU fuel performance including a 28-element bundle for Pickering reactors, a 37-element bundle for the Bruce and Darlington reactors, and a 37-element bundle for the CANDU-6 reactors. Special emphasis is given to the analysis of fuel defect formation and propagation and definition of fuel element operating thresholds for normal operation and accident conditions. (author)

  2. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  3. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  4. Protozoan grazing reduces the current output of microbial fuel cells.

    Science.gov (United States)

    Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R

    2015-10-01

    Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Removing device for fuel assembly crud

    International Nuclear Information System (INIS)

    Ozaki, Shinji; Kanehira, Yoshinori; Iwai, Takashi.

    1993-01-01

    The device of the present invention removes cruds deposited on the surface of fuel assemblies in fuel pool water efficiently, to prevent leakage of cruds into the pool water. That is, a fuel cleaning vessel is disposed in the fuel pool water. Cruds on the surface of the fuel assembly are removed by a ultrasonic wave oscillator while the fuel assembly moves vertically in the cleaning vessel. Removed cruds are sucked together with water in the cleaning vessel by a submerged pump, and sent to a preceding coarse filter, in which relatively great cruds are captured. Fine cruds passing through the preceding filter are sent to a succeeding fine filter together with the filtered water by way of a water supply pump at the outside of the pool, in which fine cruds are completely captured. The filtered water is released into the pool water again. Since the two stage filters are prepared, each of the filters is less clogged. Accordingly, frequency for the exchange of the filters can be reduced. (I.S.)

  6. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  7. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  8. Fuel transfer machine

    International Nuclear Information System (INIS)

    Bernstein, I.

    1978-01-01

    A nuclear fuel transfer machine for transferring fuel assemblies through the fuel transfer tube of a nuclear power generating plant containment structure is described. A conventional reversible drive cable is attached to the fuel transfer carriage to drive it horizontally through the tube. A shuttle carrying a sheave at each end is arranged in parallel with the carriage to also travel into the tube. The cable cooperating with the sheaves permit driving a relatively short fuel transfer carriage a large distance without manually installing sheaves or drive apparatus in the tunnel. 8 claims, 3 figures

  9. Nuclear fuel lease accounting

    International Nuclear Information System (INIS)

    Danielson, A.H.

    1986-01-01

    The subject of nuclear fuel lease accounting is a controversial one that has received much attention over the years. This has occurred during a period when increasing numbers of utilities, seeking alternatives to traditional financing methods, have turned to leasing their nuclear fuel inventories. The purpose of this paper is to examine the current accounting treatment of nuclear fuel leases as prescribed by the Financial Accounting Standards Board (FASB) and the Federal Energy Regulatory Commission's (FERC's) Uniform System of Accounts. Cost accounting for leased nuclear fuel during the fuel cycle is also discussed

  10. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1980-01-01

    An invention is described whereby end fittings are formed from lattices of mutually perpendicular plates. At the plate intersections, sockets are secured to the end fittings in a manner that permits the longitudinal axes of each of the sockets to align with the respective lines of intersection of the plates. The sockets all protrude above one of the surfaces of the end fitting. Further, a detent is formed in the proturding sides of each of the sockets. Annular grooves are formed in each of the ends of the fuel rods that are to be mounted between the end fittings. The socket detents protrude into the respective annular grooves, thus engaging the grooves and retaining the fuel rods and end fittings in one integral structure. (auth)

  11. Method of cleaning nuclear fuels

    International Nuclear Information System (INIS)

    Yanai, Ryoichi; Terai, Kenji.

    1983-01-01

    Purpose: To remove cladding without increasing the volume of a cleaning apparatus. Constitution: A discharge port is provided to a cleaning vessel for containing fuels and a filter is connected to the discharge port by way of a pressure-reduction valve and a water feeder. Further, a communication port is provided to the bottom of the cleaning vessel and a pressurizer equipped with an electrical heater connected to the communication port by way of an air valve and a communication pipeway. Then, after filling water within the vessel, the pressurizer and the communication pipe and closing the pressure-reduction valve, water is heated by a heater. Subsequently, by closing the air valve and opening the pressure-reduction valve, water in the vessel violently boils under a reduction pressure to strip claddings from the surface of fuel rods and release the same into the water due to impact shocks resulted from the generation of gas bubbles. (Sekiya, J.)

  12. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which......Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...

  13. Nuclear fuel elements having a composite cladding

    Science.gov (United States)

    Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.

    1983-09-20

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  14. Compacting spent fuel rods

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    A method and apparatus for compacting spent fuel rods comprises transferring the rods from a nuclear fuel rod assembly into a different nuclear fuel rod container having a smaller cross section than the assembly. The individual rods are moved from a fuel assembly and through a transition funnel by movable grippers at opposite ends of the funnel. One movable gripper reciprocates between gripping and release positions in a gap between the fuel assembly and the transition funnel. All of the fuel rods are withdrawn concurrently and are merged towards one another into a tighter array within the transition funnel and emerge as a bundle. A movable and a stationary bundle gripper are provided between the funnel and the storage container to advance the bundle of fuel rods into the container. (author)

  15. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  16. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Vernaz, Etienne

    2015-10-01

    The author proposes an overview of the different steps of the nuclear fuel cycle: uranium mining (applied processes, formation of Yellow Cake), conversion into uranium hexafluoride (UF 6 ) for enrichment purposes, enrichment (physical methods and plants), nuclear fuel fabrication (description of a fuel assembly), physical, chemical and radiological evolution of the nuclear fuel in the reactor, spent fuel warehousing, spent fuel processing (dissolution, methods of liquid/liquid extraction, output products), effluents and by-products, recycling of valuable materials (URE, MOX, RNR and others), waste containment for the different waste types regarding their radioactivity level and lifetime (vitrification, shell compacting, cementation, and other processes). The author also presents the French policy and choices regarding spent fuel processing and waste management

  17. Ducted fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Charles J.

    2018-03-06

    Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas with low peak fuel to charge-gas ratios to enable minimal, or no, generation of soot and other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be located proximate to an opening in a tip of a fuel injector. The duct can comprise of one or more holes along its length to enable charge-gas to be drawn into the bore, and further, the duct can cool the fuel and/or charge-gas prior to combustion.

  18. Fuel element services

    International Nuclear Information System (INIS)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  19. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    Science.gov (United States)

    Reichner, Philip; Dollard, Walter J.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  20. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... determination; morphology; oxidation state of components and stability.  Electrode composition investigation: optimization on ionomer content and electrode protonic conductivity.  Interaction between electrode components  Morphology of electrode surface and MEA cross section. The above efforts all contribute...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  1. Research and Test Reactor Fuel Elements (RTRFE)

    International Nuclear Information System (INIS)

    Pace, Brett W.; Marinak, Edward A.

    1999-01-01

    BWX Technologies Inc. (BWXT) has experienced several production improvements over the past year. The homogeneity yields in 4.8 gU/cc U 3 Si 2 plates have increased over last year's already high yields. Through teamwork and innovative manufacturing techniques, maintaining high quality surface finishes on plates and elements is becoming easier and less expensive. Currently, BWXT is designing a fabrication development plan to reach a fuel loading of 9 gU/cc within 2 - 4 years. This development will involve a step approach requested by ANL to produce plates using U-8Mo at a loading of 6 gU/cc first and qualify the fuel at those levels. In achieving the goal of a very high-density fuel loading of 9 gU/cc, BWXT is considering employing several new, state of the art, ultrasonic testing techniques for fuel core evaluation. (author)

  2. Mastication and prescribed fire impacts on fuels in a 25-year old ponderosa pine plantation, southern Sierra Nevada

    Science.gov (United States)

    Alicia L. Reiner; Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott N. Dailey

    2009-01-01

    Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and...

  3. 78 FR 41703 - Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the...

    Science.gov (United States)

    2013-07-11

    ... Regulation of Fuels and Fuel Additives: Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program; Final Rule Approving Renewable Fuel Pathways for Giant Reed (Arundo Donax) and.... SUMMARY: This final rule approves pathways for production of renewable fuel from giant reed (Arundo donax...

  4. 77 FR 72746 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-12-06

    ... Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel Sulfur Programs AGENCY... Fuel Standard (``RFS'') program under section 211(o) of the Clean Air Act. The direct final rule also... marine diesel fuel produced by transmix processors, and the fuel marker requirements for 500 ppm sulfur...

  5. 78 FR 12005 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2013-02-21

    ... Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... EPA is announcing a public hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards,'' which was published separately in the Federal Register on...

  6. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; The 118-H-6:3 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel

    2006-06-29

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).

  7. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; the 118-H-6:6 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    International Nuclear Information System (INIS)

    Appel, M.J.

    2006-01-01

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31)

  8. Method for the fabrication of a fuel body from an agglomerate of fuel particles

    International Nuclear Information System (INIS)

    Redding, G.B.

    1977-01-01

    The suggestion deals with the form of coating of a synthetic resin on nuclear fuel particles already having a fission product inhiliting coating. The resin forms a fuel body from the particles. It is proposed to fill a hollow form with nuclear fuel particles, to then pour in liquid synthetic resin and to pour it off again so that only the resin retaired by the surface tension remains on the particles. The mass is then solidified by heat treatment. A high packing density is achieved. (IHOE) [de

  9. Method for the fabrication of a fuel body from an agglomerate of fuel particles

    International Nuclear Information System (INIS)

    Redding, G.B.

    1976-01-01

    The suggestion deals with the form of coating of a synthetic resin on nuclear fuel particles already having a fission product inhibiting coating. The resin forms a fuel body from the particles. It is proposed to fill a hollow form with nuclear fuel particles, to then pour in liquid synthetic resin and to pour it off again so that only the resin retained by the surface tension remains on the particles. The mass is then solidified by heat treatment. A high packing density is achieved. (UWI) [de

  10. Review of oxidation rates of DOE spent nuclear fuel : Part 1 : nuclear fuel

    International Nuclear Information System (INIS)

    Hilton, B.A.

    2000-01-01

    reaction rates of irradiated and unirradiated fuel were determined to be similar. The apparent reaction rate of irradiated metallic fuel increases as a function of swelling due to the increased surface area

  11. Radwaste management and spent fuel management in JAVYS

    International Nuclear Information System (INIS)

    Bozik, M.; Strazovec, R.

    2010-01-01

    In this work authors present radwaste management and spent fuel management in JAVYS, a.s. Processing of radioactive wastes (RAW) in the Bohunice Radioactive Waste Processing Center and surface storage of RAW in National RAW Repository as well as Interim Spent fuel storage in Jaslovske Bohunice are presented.

  12. Design and analytic evaluation of a rim effect reduction type LWR fuel for extending burnup

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo; Kameyama, Takanori; Kinoshita, Motoyasu

    1991-01-01

    We have designed a new concept fuel design 'Rim effect reduction type fuel' which has thin natural UO 2 layer on surface of a UO2 pellet. Our neutronic analyses with ANRB code show this fuel design can reduce rim effect (burnup at plelet rim) by about 30 GWd/t comparing a normal fuel. It is known that a high burnup fuel has different microstructure from as-fabricated one at fuel rim (which is called as rim region) due to rim effect. Therefore this fuel design can expect smaller rim region than a normal fuel. Our fuel performance analyses with EIMUS code show this fuel design can reduce fuel center temperature at high burnup if thermal conductivity of fuel pellet decreases with burnup in inverse proportion. However, this fuel design increases fuel center temperature at low and middle burnup than a normal fuel due to increase of thermal power density at pellet center. Additionally Irradiation experiment of this fuel design can be considered to offer important data which make clear the relation between rim effect and fuel performance. (author)

  13. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  14. Fuel related risks; Braenslerisker

    Energy Technology Data Exchange (ETDEWEB)

    Englund, Jessica; Sernhed, Kerstin; Nystroem, Olle; Graveus, Frank (Grontmij AB, (Sweden))

    2012-02-15

    The project, within which this work report was prepared, aimed to complement the Vaermeforsk publication 'Handbook of fuels' on fuel related risks and measures to reduce the risks. The fuels examined in this project where the fuels included in the first version of the handbook from 2005 plus four additional fuels that will be included in the second and next edition of the handbook. Following fuels were included: woodfuels (sawdust, wood chips, powder, briquettes), slash, recycled wood, salix, bark, hardwood, stumps, straw, reed canary grass, hemp, cereal, cereal waste, olive waste, cocoa beans, citrus waste, shea, sludge, forest industrial sludge, manure, Paper Wood Plastic, tyre, leather waste, cardboard rejects, meat and bone meal, liquid animal and vegetable wastes, tall oil pitch, peat, residues from food industry, biomal (including slaughterhouse waste) and lignin. The report includes two main chapters; a general risk chapter and a chapter of fuel specific risks. The first one deals with the general concept of risk, it highlights laws and rules relevant for risk management and it discuss general risks that are related to the different steps of fuel handling, i.e. unloading, storing, processing the fuel, transportation within the facility, combustion and handling of ashes. The information that was used to produce this chapter was gathered through a literature review, site visits, and the project group's experience from risk management. The other main chapter deals with fuel-specific risks and the measures to reduce the risks for the steps of unloading, storing, processing the fuel, internal transportation, combustion and handling of the ashes. Risks and measures were considered for all the biofuels included in the second version in the handbook of fuels. Information about the risks and risk management was gathered through interviews with people working with different kinds of fuels in electricity and heat plants in Sweden. The information from

  15. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  16. Fuel-cladding chemical interaction in mixed-oxide fuels

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, J.W.; Devary, J.L.

    1978-10-01

    The character and extent of fuel-cladding chemical interaction (FCCI) was established for UO 2 -25 wt% PuO 2 clad with 20% cold worked Type 316 stainless steel irradiated at high cladding temperatures to peak burnups greater than 8 atom %. The data base consists of 153 data sets from fuel pins irradiated in EBR-II with peak burnups to 9.5 atom %, local cladding inner surface temperatures to 725 0 C, and exposure times to 415 equivalent full power days. As-fabricated oxygen-to-metal ratios (O/M) ranged from 1.938 to 1.984 with the bulk of the data in the range 1.96 to 1.98. HEDL P-15 pins provided data at low heat rates, approx. 200 W/cm, and P-23 series pins provided data at higher heat rates, approx. 400 W/cm. A design practice for breeder reactors is to consider an initial reduction of 50 microns in cladding thickness to compensate for possible FCCI. This approach was considered to be a conservative approximation in the absence of a comprehensive design correlation for extent of interaction. This work provides to the designer a statistically based correlation for depth of FCCI which reflects the influences of the major fuel and operating parameters on FCCI

  17. A summary of INSITE activities in tracking SKB's spent fuel repository site investigations from 2002-2009 and of advice provided to the regulatory authorities on the status of site understanding at the end of the surface-based investigations

    International Nuclear Information System (INIS)

    Chapman, Neil; Bath, Adrian; Geier, Joel; Ove Stephansson; Tiren, Sven; Tsang, Chin-Fu

    2010-11-01

    SSM and its predecessor SKI employed a team of earth scientists who followed and reviewed SKB's investigations of the potential spent nuclear fuel repository sites at Forsmark and Laxemar. This group was named INSITE (INdependent Site Investigation Tracking and Evaluation) and began its work in 2002 and completed its task with the review of the final versions SKB's site descriptive models, SDM-Site, in 2009. This report is a summary of INSITE's work over the eight-and-a-half year period of the site investigations and the lead-in and the wind-down to the work. It is intended to provide an outline and a record of how INSITE has worked and how its advice was generated and provided to SKI and, latterly, to SSM. Together with all the other documentation generated by INSITE, this report is intended to support the regulatory review of SKB's licence application for a spent nuclear fuel repository

  18. Electrolyzer for NASA Lunar Regenerative Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Water electrolyzer stacks are a key component of regenerative fuel cells, designed to replace batteries as a means of storing electric energy on the lunar surface....

  19. Electrolyzer for NASA Lunar Regenerative Fuel Cells, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Water electrolyzer stacks are a key component of regenerative fuel cells, designed to replace batteries as a means of storing electric energy on the lunar surface....

  20. Fuel-in-air FY07 summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Daniel, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wittman, Richard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wu, Wesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacFarlan, Paul J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shimskey, Rick W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2008-01-22

    Results of the testing program to determine fractional release rates and particle size distributions from failed commercial spent fuel related to the operations in the surface facility at Yucca Mountain are presented.

  1. Postirradiation examinations of fuel pins from the GCFR F-1 series of mixed-oxide fuel pins at 5.5 at. % burnup

    International Nuclear Information System (INIS)

    Strain, R.V.; Johnson, C.E.

    1978-05-01

    Postirradiation examinations were performed on five fuel pins from the Gas-Cooled Fast-Breeder Reactor F-1 experiment irradiated in EBR-II to a peak burnup of approximately 5.5 at. %. These encapsulated fuel pins were irradiated at peak-power linear ratings from approximately 13 to 15 kW/ft and peak cladding inside diameter temperatures from approximately 625 to 760 0 C. The maximum diametral change that occurred during irradiation was 0.2% ΔD/D 0 . The maximum fuel-cladding chemical interaction depth was 2.6 mils in fuel pin G-1 and 1 mil or less in the other three pins examined destructively. Significant migration of the volatile fission products occurred axially to the fuel-blanket interfaces. Teh postirradiation examination data indicate that fuel melted at the inner surface of the annular fuel pellets in the two highest power rating fuel pins, but little axial movement of fuel occurred

  2. Inspecting fuel pellets for nuclear reactor

    International Nuclear Information System (INIS)

    Wilks, R.S.; Sternheim, E.; Breakey, G.A.; Sturges, R.H.; Taleff, A.; Castner, R.P.

    1982-01-01

    An improved method of controlling the inspection, sorting and classifying of nuclear reactor fuel pellets, including a mechanical handling system and a computer controlled data processing system, is described. Having investigated the diameter, length, surface flaws and weights of the pellets, they are sorted accordingly and the relevant data are stored. (U.K.)

  3. Fuel number identification method and device therefor

    International Nuclear Information System (INIS)

    Doi, Takami; Seno, Makoto; Tanaka, Keiji

    1998-01-01

    The present invention provides a method of and a device for automatically identifying the number on the upper surface of a fuel of a fuel assembly in a PWR type reactor. Namely, the number on the upper surface of the fuel assembly of the PWR is not arranged in a row, but indent letters are dispersed to predetermined positions of the surface to be indented. Accordingly, the identification of letters is difficult. In the present invention, the letters are identified by the following procedures. Procedure (1): the letters are detected while having a corner portion of the upper surface of a fuel assembly where the number is indented as characteristic points. A procedure (2): a letter region is determined to a relative position based on the characteristic points while determining indent letters having the same direction as one group. A procedure (3): a letter identification treatment is applied to the letter images in the above-mentioned letter region to identify them. A neural network is used for the letter identification treatment. (N.H.)

  4. Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest

    Science.gov (United States)

    Jamie M. Lydersen; Brandon M. Collins; Eric E. Knapp; Gary B. Roller; Scott Stephens

    2015-01-01

    Although knowledge of surface fuel loads is critical for evaluating potential fire behaviour and effects, their inherent variability makes these difficult to quantify. Several studies relate fuel loads to vegetation type, topography and spectral imaging, but little work has been done examining relationships between forest overstorey variables and surface fuel...

  5. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    A quarter of humanity's current energy consumption is used for transportation (1). Low-temperature hydrogen fuel cells offer much promise for replacing this colossal use of fossil fuels with renewables; these fuel cells produce negligible emissions and have a mileage and filling time equal to a r......% of the annual automotive vehicle production. Lowering the Pt loading in a fuel cell to a sustainable level requires the reactivity of Pt to be tuned so that it accelerates oxygen reduction more effectively (3). Two reports in this issue address this challenge (4, 5)....... to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  6. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  7. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr

  8. Effect of Sr Content and Strain on Sr Surface Segregation of La 1–x Sr x Co 0.2 Fe 0.8 O 3-δ as Cathode Material for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Ludwig, Karl F.; Woicik, Joseph C.; Gopalan, Srikanth; Pal, Uday B.; Kaspar, Tiffany C.; Basu, Soumendra N.

    2016-10-12

    Strontium doped lanthanum cobalt ferrite (LSCF) is a widely used cathode material due to its high electronic and ionic conductivity, and reasonable oxygen surface exchange coefficient. However, LSCF can have long-term stability issues such as surface segregation of Sr during solid oxide fuel cell (SOFC) operation, which can adversely affect the electrochemical performance. Thus, understanding the nature of the Sr surface segregation phenomenon, and how it is affected by the composition of LSCF and strain are critical. In this research, heteroepitaxial thin films of La1-x SrxCo0.2Fe0.8O3- with varying Sr content (x = 0.4, 0.3, 0.2) were deposited by pulsed laser deposition (PLD) on single crystal NdGaO3, SrTiO3 and GdScO3 substrates, leading to different levels of strain in the films. The extent of Sr segregation at the film surface was quantified using synchrotron-based total reflection x-ray fluorescence (TXRF), and atomic force microscopy (AFM). The electronic structure of the Sr-rich phases formed on the surface was investigated by hard X-ray photoelectron spectroscopy (HAXPES). The extent of Sr segregation was found to be a function of the Sr content in bulk. Lowering the Sr content from 40% to 30% reduced the surface segregation, but further lowering the Sr content to 20% increased the segregation. The strain of LSCF thin films on various substrates was measured using high-resolution x-ray diffraction (HRXRD) and the Sr surface segregation was found to be reduced with compressive strain and enhanced with tensile strain present within the thin films. A model was developed correlating the Sr surface segregation with Sr content and strain effects to explain the experimental results.

  9. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  10. Liquid fuel cells

    Directory of Open Access Journals (Sweden)

    Grigorii L. Soloveichik

    2014-08-01

    Full Text Available The advantages of liquid fuel cells (LFCs over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  11. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  12. Fusion fuel and renewables

    International Nuclear Information System (INIS)

    Entler, Slavomir

    2015-01-01

    It is shown that fusion fuel meets all aspects applied when defining renewables. A table of definitions of renewables is presented. The sections of the paper are as follows: An industrial renewable source; Nuclear fusion; Current situation in research; Definitions of renewable sources; Energy concept of nuclear fusion; Fusion fuel; Natural energy flow; Environmental impacts; Fusion fuel assessment; Sustainable power; and Energy mix from renewables. (P.A.)

  13. Liquid fuel cells

    Science.gov (United States)

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  14. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Gordon, G.M.; Cowan, R.L. II.

    1975-01-01

    A nuclear fuel element is described. It includes a central nuclear fuel core and a composite cladding, composed of a substrate with two coatings on its inner face, the first coating being a diffusion barrier and the second a metal coating. The metal coating is in copper, nickel or iron. The substrate is a zirconium alloy. The diffusion barrier is in chromium or chromium alloy. The nuclear fuel is a uranium or plutonium compound or a mixture of both [fr

  15. Nuclear fuel accounting

    International Nuclear Information System (INIS)

    Aisch, D.E.

    1977-01-01

    After a nuclear power plant has started commercial operation the actual nuclear fuel costs have to be demonstrated in the rate making procedure. For this purpose an accounting system has to be developed which comprises the following features: 1) All costs associated with nuclear fuel shall be correctly recorded; 2) it shall be sufficiently flexible to cover also deviations from proposed core loading patterns; 3) it shall be applicable to different fuel cycle schemes. (orig./RW) [de

  16. Fuel assembly storage pool

    International Nuclear Information System (INIS)

    Hiranuma, Hiroshi.

    1976-01-01

    Object: To remove limitation of the number of storage of fuel assemblies to increase the number of storage thereof so as to relatively reduce the water depth required for shielding radioactive rays. Structure: Fuel assembly storage rack containers for receiving a plurality of spent fuel assembly racks are stacked in multi-layer fashion within a storage pool filled with water for shielding radioactive rays and removing heat. (Furukawa, Y.)

  17. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Butterfield, C.E.; Waite, E.

    1982-01-01

    A nuclear reactor fuel element comprising a column of vibration compacted fuel which is retained in consolidated condition by a thimble shaped plug. The plug is wedged into gripping engagement with the wall of the sheath by a wedge. The wedge material has a lower coefficient of expansion than the sheath material so that at reactor operating temperature the retainer can relax sufficient to accommodate thermal expansion of the column of fuel. (author)

  18. Fuel safety research 2001

    Energy Technology Data Exchange (ETDEWEB)

    Uetsuka, Hiroshi (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    The Fuel Safety Research Laboratory is in charge of research activity which covers almost research items related to fuel safety of water reactor in JAERI. Various types of experimental and analytical researches are being conducted by using some unique facilities such as the Nuclear Safety Research Reactor (NSRR), the Japan Material Testing Reactor (JMTR), the Japan Research Reactor 3 (JRR-3) and the Reactor Fuel Examination Facility (RFEF) of JAERI. The research to confirm the safety of high burn-up fuel and MOX fuel under accident conditions is the most important item among them. The laboratory consists of following five research groups corresponding to each research fields; Research group of fuel behavior under the reactivity initiated accident conditions (RIA group). Research group of fuel behavior under the loss-of-coolant accident conditions (LOCA group). Research group of fuel behavior under the normal operation conditions (JMTR/BOCA group). Research group of fuel behavior analysis (FEMAXI group). Research group of radionuclides release and transport behavior from irradiated fuel under severe accident conditions (VEGA group). The research conducted in the year 2001 produced many important data and information. They are, for example, the fuel behavior data under BWR power oscillation conditions in the NSRR, the data on failure-bearing capability of hydrided cladding under LOCA conditions and the FP release data at very high temperature in steam which simulate the reactor core condition during severe accidents. This report summarizes the outline of research activities and major outcomes of the research executed in 2001 in the Fuel Safety Research Laboratory. (author)

  19. Nuclear fuel financing

    International Nuclear Information System (INIS)

    Lurf, G.

    1975-01-01

    Fuel financing is only at its beginning. A logical way of developing financing model is a step by step method starting with the financing of pre-payments. The second step will be financing of natural uranium and enrichment services to the point where the finished fuel elements are delivered to the reactor operator. The third step should be the financing of fuel elements during the time the elements are inserted in the reactor. (orig.) [de

  20. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016: a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Directory of Open Access Journals (Sweden)

    T. Oda

    2018-01-01

    Full Text Available The Open-source Data Inventory for Anthropogenic CO2 (ODIAC is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2 emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1  ×  1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016 and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1 the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC at the Oak Ridge National Laboratory (ORNL by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers; (2 the use of multiple spatial emissions proxies by fuel type such as (a nighttime light data specific to gas flaring and (b ship/aircraft fleet tracks; and (3 the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000–2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data

  1. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Science.gov (United States)

    Oda, Tomohiro; Maksyutov, Shamil; Andres, Robert J.

    2018-01-01

    The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1 × 1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location) and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016) and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers); (2) the use of multiple spatial emissions proxies by fuel type such as (a) nighttime light data specific to gas flaring and (b) ship/aircraft fleet tracks; and (3) the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000-2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data product could play an important

  2. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  3. Biodiesel Performance within Internal Combustion Engine Fuel System - A Review

    Directory of Open Access Journals (Sweden)

    Z.A. Khan

    2016-06-01

    Full Text Available This review paper highlights the tribological performance of biodiesel at contacting surfaces in the fuel delivery system of compression ignition (diesel engines. The focus is on the injection components that include low and high pressure injection pumps, diesel fuel injectors, electro-hydraulic valves, diesel fuel lubricity measurements and effects of biodiesel on the running conditions in a diesel fuel injection system. The common rail system and the distributor pump injection systems with electronic diesel control are among the modern trends that are specifically highlighted. Boundary, mixed and hydrodynamic lubrication regimes together with lubricant oil film thickness, pressure and engine performance are also considered.

  4. Design and Fabrication of the Double Cladding Instrumented Fuel Rods and the Instrumented Fuel Capsule(07F-06K) for the Irradiation Test at HANARO

    International Nuclear Information System (INIS)

    Sohn, Jae Min; Oh, Jong Myung; Oh, Soo Yeol; Park, Sung Jae; Sho, Man Soon; Kim, Bong Goo; Choo, Kee Nam; Kim, Young Ki

    2009-01-01

    An instrumented capsule for a nuclear fuel irradiation test (hereinafter referred to as 'instrumented fuel capsule'), which is crucial for the verification of a nuclear fuel performance and safety, has been developed to measure the fuel characteristics, such as the centerline and surface temperatures of the nuclear fuel, the internal pressure of a fuel rod, the elongation of the fuel pellet and the neutron fluxes during an irradiation test at HANARO(High-flux Advanced Neutron Application Reactor). The irradiation test of the first instrumented fuel capsule(02F-11K) was carried out for verification test at HANARO in March 2003. Through the irradiation tests of the some capsules, the design specifications and safety of the instrumented fuel capsule were verified successfully. And the dual instrumented fuel rods, which allow for two characteristics to be measured simultaneously in one fuel rod, have been developed to enhance the efficiency of the irradiation test using the instrumented fuel capsule. In this paper, we designed and fabricated a double cladding fuel rod to control the high temperature of nuclear fuels during an irradiation test at HANARO. And we design an instrumented fuel capsule(07F-06K) for an irradiation test of the double cladding fuel rods. We have designed and fabricated the double cladding fuel rod mockups and performed the out-pile tests using these mockups. The purposes of the out-pile tests were to analyze an effect of a gap size(between an outer cladding and an inner cladding) on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. Through the results of the out-pile tests, we have obtained the effects of a gap size and a gas mixture ratio on the temperature of nuclear fuels. Therefore an double cladding fuel rod and the 07F- 06K instrumented fuel capsule were designed on the base of the results of the out-pile tests using the mockups

  5. Method for repairing failed fuel

    International Nuclear Information System (INIS)

    Shakudo, Taketomi.

    1986-01-01

    Purpose: To repair fuel elements that became failed during burnup in a reactor or during handling. Method: After the surface in the vicinity of a failed part of a fuel element is cleaned, a socket made of a shape-memory alloy having a ring form or a horseshoe form made by cutting a part of the ring form is inserted into the failed position according to the position of the failed fuel element. The shape memory alloy socket remembers a slightly larger inside diameter in its original phase (high-temperature side) than the outside diameter of the cladding tube and also a slightly larger inside diameter of the socket in the martensite phase (low-temperature side) than the outside diameter of the cladding tube, such that the socket can easily be inserted into the failed position. The socket, inserted into the failed part of the cladding tube, is heated by a heating jig. The socket recovers the original phase, and the shape also tends to recover a smaller diameter than the outside diameter of the cladding tube that has been remembered, and accordingly the failed part of the cladding tube is fastened with a great force and the failed part is fully closed with the socket, thus keeping radioactive materials from going out. (Horiuchi, T.)

  6. FAILED FUEL DISPOSITION STUDY

    International Nuclear Information System (INIS)

    THIELGES, J.R.

    2004-01-01

    In May 2004 alpha contamination was found on the lid of the pre-filter housing in the Sodium Removal Ion Exchange System during routine filter change. Subsequent investigation determined that the alpha contamination likely came from a fuel pin(s) contained in an Ident-69 (ID-69) type pin storage container serial number 9 (ID-69-9) that was washed in the Sodium Removal System (SRS) in January 2004. Because all evidence indicated that the wash water interacted with the fuel, this ID49 is designated as containing a failed fuel pin with gross cladding defect and was set aside in the Interim Examination and Maintenance (IEM) Cell until it could be determined how to proceed for long term dry storage of the fuel pin container. This ID49 contained fuel pins from the driver fuel assembly (DFA) 16392, which was identified as a Delayed Neutron Monitor (DNM) leaker assembly. However, this DFA was disassembled and the fuel pin that was thought to be the failed pin was encapsulated and was not located in this ID49 container. This failed fuel disposition study discusses two alternatives that could be used to address long term storage for the contents of ID-69-9. The first alternative evaluated utilizes the current method of identifying and storing DNM leaker fuel pin(s) in tubes and thus, verifying that the alpha contamination found in the SRS came from a failed pin in this pin container. This approach will require unloading selected fuel pins from the ID-69, visually examining and possibly weighing suspect fuel pins to identify the failed pin(s), inserting the failed pin(s) in storage tubes, and reloading the fuel pins into ID49 containers. Safety analysis must be performed to revise the 200 Area Interim Storage Area (ISA) Final Safety Analysis Report (FSAR) (Reference 1) for this fuel configuration. The second alternative considered is to store the failed fuel as-is in the ID-69. This was evaluated to determine if this approach would comply with storage requirements. This

  7. Fuel assembly reconstitution

    International Nuclear Information System (INIS)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos

    2009-01-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  8. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  9. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  10. Thorium fueled reactor

    Science.gov (United States)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  11. FAILED FUEL DISPOSITION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.

    2004-12-20

    In May 2004 alpha contamination was found on the lid of the pre-filter housing in the Sodium Removal Ion Exchange System during routine filter change. Subsequent investigation determined that the alpha contamination likely came from a fuel pin(s) contained in an Ident-69 (ID-69) type pin storage container serial number 9 (ID-69-9) that was washed in the Sodium Removal System (SRS) in January 2004. Because all evidence indicated that the wash water interacted with the fuel, this ID49 is designated as containing a failed fuel pin with gross cladding defect and was set aside in the Interim Examination and Maintenance (IEM) Cell until it could be determined how to proceed for long term dry storage of the fuel pin container. This ID49 contained fuel pins from the driver fuel assembly (DFA) 16392, which was identified as a Delayed Neutron Monitor (DNM) leaker assembly. However, this DFA was disassembled and the fuel pin that was thought to be the failed pin was encapsulated and was not located in this ID49 container. This failed fuel disposition study discusses two alternatives that could be used to address long term storage for the contents of ID-69-9. The first alternative evaluated utilizes the current method of identifying and storing DNM leaker fuel pin(s) in tubes and thus, verifying that the alpha contamination found in the SRS came from a failed pin in this pin container. This approach will require unloading selected fuel pins from the ID-69, visually examining and possibly weighing suspect fuel pins to identify the failed pin(s), inserting the failed pin(s) in storage tubes, and reloading the fuel pins into ID49 containers. Safety analysis must be performed to revise the 200 Area Interim Storage Area (ISA) Final Safety Analysis Report (FSAR) (Reference 1) for this fuel configuration. The second alternative considered is to store the failed fuel as-is in the ID-69. This was evaluated to determine if this approach would comply with storage requirements. This

  12. Irradiated fuel reprocessing

    International Nuclear Information System (INIS)

    Ruiz, C.P.; Peterson, J.P. Jr.

    1977-01-01

    A process for separately recovering uranium, plutonium and neptunium substantially free of fission products from irradiated nuclear fuel is presented in which the fuel is dissolved in a strong mineral acid forming an aqueous dissolved nuclear fuel solution and treated to separate the uranium, plutonium and neptunium therefrom substantially free of said fission products by the sequential steps of solvent extraction, ion exchange and fluorination. The process has an improvement comprising the addition of a sufficient quantity of an additive of a stable metallic complex to the aqueous dissolved nuclear fuel solution prior to solvent extraction. This achieves improved purity of the separated uranium, plutonium and neptunium

  13. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  14. Nuclear fuel pin scanner

    Science.gov (United States)

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  15. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  16. Fuel processing device

    Science.gov (United States)

    Ahluwalia, Rajesh K [Burr Ridge, IL; Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  17. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  18. A perfect fuel supplier

    International Nuclear Information System (INIS)

    Terasvirta, R.

    2008-01-01

    WWER fuel market is dominated by the Russian fuel vendor JSC TVEL. There have been attempts to open up the market also for other suppliers, such as BNFL/Westinghouse for Finland, Czech Republic, and Ukraine. However, at the moment it seems that JSC TVEL is the only real alternative to supply fuel to WWER reactors. All existing fuel suppliers have certified quality management systems which put a special emphasis on the customer satisfaction. This paper attempts to define from the customer's point of view, what are the important issues concerning the customer satisfaction. (author)

  19. Fuel cell systems

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  20. Reprocessing RERTR silicide fuels

    International Nuclear Information System (INIS)

    Rodrigues, G.C.; Gouge, A.P.

    1983-05-01

    The Reduced Enrichment Research and Test Reactor Program is one element of the United States Government's nonproliferation effort. High-density, low-enrichment, aluminum-clad uranium silicide fuels may be substituted for the highly enriched aluminum-clad alloy fuels now in use. Savannah River Laboratory has performed studies which demonstrate reprocessability of spent RERTR silicide fuels at Savannah River Plant. Results of dissolution and feed preparation tests and solvent extraction processing demonstrations with both unirradiated and irradiated uranium silicide fuels are presented