WorldWideScience

Sample records for surface freezing point

  1. Monitoring the Freezing Point of Buffalo Milk.

    Science.gov (United States)

    Pesce, Antonella; Salzano, Caterina; De Felice, Anna; Garofalo, Francesca; Liguori, Salvatore; De Santo, Annunziata; Palermo, Pierpaolo; Guarino, Achille

    2016-04-19

    The aim of this study was to evaluate the basic freezing point of buffalo milk. Bulk milk samples were collected from buffalo and cattle farms in Caserta area from 2008 to 2014. The analysis involved a total of 1886 buffalo milk samples and 1711 bovine milk samples. These were also tested for fat, protein and lactose contents by means of infrared spectrometry. The freezing point was determined by means of a thermistor cryoscope. Data underwent statistical analysis. Our research showed an average freezing point of -0.528°C for buffalo milk and -0.522°C for bovine milk. Given the lack of data on the freezing point of buffalo milk, our study provides the first indication of a basic freezing point of the milk of this species in Italy.

  2. Monitoring the Freezing Point of Buffalo Milk

    OpenAIRE

    Pesce, Antonella; Salzano, Caterina; De Felice, Anna; Garofalo, Francesca; Liguori, Salvatore; De Santo, Annunziata; Palermo, Pierpaolo; Guarino, Achille

    2016-01-01

    The aim of this study was to evaluate the basic freezing point of buffalo milk. Bulk milk samples were collected from buffalo and cattle farms in Caserta area from 2008 to 2014. The analysis involved a total of 1886 buffalo milk samples and 1711 bovine milk samples. These were also tested for fat, protein and lactose contents by means of infrared spectrometry. The freezing point was determined by means of a thermistor cryoscope. Data underwent statistical analysis. Our research showed an aver...

  3. Optimization of thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) previously treated with freezing-point regulators using response surface methodology.

    Science.gov (United States)

    Wang, Liang; Liu, Zunying; Zhao, Yuanhui; Dong, Shiyuan; Zeng, Mingyong; Yang, Huicheng

    2015-08-01

    Three freezing-point regulators (glycine, sodium chloride and D-sorbitol) were employed to optimize thermophysical properties of Pacific white shrimp (Litopenaeus vannamei) using response surface methodology (RSM). The independent variables were glycine content (0.250-1.250 %), sodium chloride content (0.500-2.500 %) and D-sorbitol content (0.125-0.625 %) and analysis of variance showed that the effects of glycine, sodium chloride and D-sorbitol on the thermophysical properties were statistically significant (P freezing point (T i ), unfreezable water mass fraction (W u ), apparent specific heat (C app ) and Enthalpy (H) were 0.896 ~ 0.999. The combined effects of these independent variables on T i , W u , C app and H were investigated. The results indicated that T i , C app and H varied curvilinearly with increasing of glycine, sodium chloride and D-sorbitol content whereas W u increased nearly linearly. Based on response plots and desirability functions, the optimum combination of process variables for Pacific white shrimp previously treated with freezing-point regulators were 0.876 % for glycine content, 2.298 % for sodium chloride content and 0.589 % for D-sorbitol content, correspondently the optimized thermophysical properties were T i , - 5.086 °C; W u , 17.222 %; C app , 41.038 J/g °C and H, 155.942 J/g, respectively. Briefly, the application of freezing-point regulators depressed T i and obtained the optimum W u , C app and H, which would be obviously beneficial for the exploitation of various thermal processing and food storage.

  4. Device and method for determining freezing points

    Science.gov (United States)

    Mathiprakasam, Balakrishnan (Inventor)

    1986-01-01

    A freezing point method and device (10) are disclosed. The method and device pertain to an inflection point technique for determining the freezing points of mixtures. In both the method and device (10), the mixture is cooled to a point below its anticipated freezing point and then warmed at a substantially linear rate. During the warming process, the rate of increase of temperature of the mixture is monitored by, for example, thermocouple (28) with the thermocouple output signal being amplified and differentiated by a differentiator (42). The rate of increase of temperature data are analyzed and a peak rate of increase of temperature is identified. In the preferred device (10) a computer (22) is utilized to analyze the rate of increase of temperature data following the warming process. Once the maximum rate of increase of temperature is identified, the corresponding temperature of the mixture is located and earmarked as being substantially equal to the freezing point of the mixture. In a preferred device (10), the computer (22), in addition to collecting the temperature and rate of change of temperature data, controls a programmable power supply (14) to provide a predetermined amount of cooling and warming current to thermoelectric modules (56).

  5. Estimation of the freezing point of concentrated fruit juices for application in freeze concentration

    OpenAIRE

    Auleda Amorós, Josep Maria; Raventós Santamaria, Mercè; Sánchez Machado, José; Hernández Yáñez, Eduard

    2011-01-01

    In freeze concentration operations the fluids remain at temperatures below 0 °C. For a good study of this concentration operation is very important to know the values of freezing point. The aim of this work was to establish a model that predicts the freezing point of fruit juices at various concentrations within the range of interest for freeze concentration (10–40 °Brix). The model proposed relates the freezing point of a juice with the concentrations of main sugars present in the juice: suc...

  6. Study of freezing-point depression of selected food extracts

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Fumihiko [Kagoshima Univ. (Japan). Dept. of Agricultural Systems Engineering; Murata, Satoshi; Habara, Kazuhiro; Amaratunga, K.S.P. [Kyushu Univ., Fukuoka (Japan). Dept. of Agricultural Engineering

    1996-12-31

    The phenomenon of freezing-point depression that accompanies the solute concentration of selected food extracts was investigated to reveal the characteristics of solid-liquid phase equilibrium. The freezing curves of various food extracts did not exhibit ideal solution behavior in the higher concentration range. The experimental data were fitted to new freezing-point depression equations by the method of nonlinear least squares, and the results clearly indicated that the calculated freezing points at various concentrations were in good agreement with the experimental data. Furthermore, by using the determined parameters, the freezing ratio and the activation coefficient were derived.

  7. Evaluation of Factors Affecting Freezing Point of Milk

    OpenAIRE

    Jelena Zagorska; Inga Ciprovica

    2013-01-01

    The freezing point of milk is in important indicator of the milk quality. The freezing point of milk is determined primarily to prove milk adulteration with water and to determine the amount of water in it. Chemical composition and properties of milk, thermal treatment and presence of any substance can influence freezing point of product. There are different substances, which can be added to milk with main purpose to prolong shelf-life of raw milk. There are detergent, pr...

  8. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  9. Nanomaterials for efficiently lowering the freezing point of anti-freeze coolants.

    Science.gov (United States)

    Hong, Haiping; Zheng, Yingsong; Roy, Walter

    2007-09-01

    In this paper, we report, for the first time, the effect of the lowered freezing point in a 50% water/50% anti-freeze coolant (PAC) or 50% water/50% ethylene glycol (EG) solution by the addition of carbon nanotubes and other particles. The experimental results indicated that the nano materials are much more efficient (hundreds fold) in lowering the freezing point than the regular ionic materials (e.g., NaCl). The possible explanation for this interesting phenomenon is the colligative property of fluid and relative small size of nano material. It is quite certain that the carbon nanotubes and metal oxide nano particles could be a wonderful candidate for the nano coolant application because they could not only increase the thermal conductivity, but also efficiently lower the freezing point of traditional coolants.

  10. High-freezing-point fuels used for aviation turbine engines

    Science.gov (United States)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. The higher-freezing-point fuels can be substituted in the majority of present commercial flights, since temperature data indicate that in-flight fuel temperatures are relatively mild. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple system design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating. Both systems offer advantages that outweigh the obvious penalties.

  11. The Freezing Point Depression Law in Physical Chemistry.

    Science.gov (United States)

    Franzen, Hugo F.

    1988-01-01

    Suggests a change in physical chemistry courses to use a slightly more complicated but significantly more useful generalization of the simple freezing point depression law. Lists reasons for the change and presents the treatment of solid-liquid equilibria where solid-solution is allowed. Provides a mathematical treatment. (MVL)

  12. Freezing Point Depressions of Phase Change CO2 Solvents

    DEFF Research Database (Denmark)

    Arshad, Muhammad Waseem; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2013-01-01

    . The experimental values indicate that the DEEA–water interaction is almost similar to that of MEA–water interaction. MAPA has shown a stronger nonideal behavior compared to DEEA. A correlation for the freezing points as a function of solution composition was formulated for the unloaded binary and ternary systems......., in the concentration ranges of (0 to 55) mass percent and (0 to 32.5) mass percent of amine. For the ternary aqueous DEEA–MAPA solutions, freezing points were measured for 5:1, 3:1, 1:1, 1:3, and 1:5 molar ratios of DEEA/MAPA. The FPD method was extended for easy and accurate measurement of freezing points in the CO2...... loaded systems. It is based on saturation of the solution by CO2 and then dilution by using a batch of the original unloaded solution in order to get the solutions with different CO2 loadings. Freezing point measurements were then carried out for (12, 20, 30, and 33) mass percent DEEA solutions and (10...

  13. High freezing point fuels used for aviation turbine engines

    Science.gov (United States)

    Friedman, R.

    1979-01-01

    Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.

  14. Reproducing Black’s experiments: freezing point depression and supercooling of water

    OpenAIRE

    Güémez, Júlio; Fiolhais, Carlos; Fiolhais, Manuel

    2002-01-01

    We carried out two historical experiments referred to by Joseph Black, one on freezing mixtures of salted water with ice and another on freezing supercooled pure water by a small disturbance. The results confirm thermodynamical predictions for the depression of the freezing point of salted water and for the latent heat of freezing of supercooled water respectively, which came after Black. The depression of the freezing point can hardly be fitted in the framework of the caloric theory of heat,...

  15. Effect of Impurities on the Freezing Point of Zinc

    Science.gov (United States)

    Sun, Jianping; Rudtsch, Steffen; Niu, Yalu; Zhang, Lin; Wang, Wei; Den, Xiaolong

    2017-03-01

    The knowledge of the liquidus slope of impurities in fixed-point metal defined by the International Temperature Scale of 1990 is important for the estimation of uncertainties and correction of fixed point with the sum of individual estimates method. Great attentions are paid to the effect of ultra-trace impurities on the freezing point of zinc in the National Institute of Metrology. In the present work, the liquidus slopes of Ga-Zn, Ge-Zn were measured with the slim fixed-point cell developed through the doping experiments, and the temperature characteristics of the phase diagram of Fe-Zn were furthermore investigated. A quasi-adiabatic Zn fixed-point cell was developed with the thermometer well surrounded by the crucible with the pure metal, and the temperature uniformity of less than 20 mK in the region where the metal is located was obtained. The previous doping experiment of Pb-Zn with slim fixed-point cell was checked with quasi-adiabatic Zn fixed-point cell, and the result supports the previous liquidus slope measured with the traditional fixed-point realization.

  16. Freezing Point Determination of Water–Ionic Liquid Mixtures

    DEFF Research Database (Denmark)

    Liu, Yanrong; Meyer, Anne S.; Nie, Yi

    2017-01-01

    of water. On the basis of the cryoscopicbehavior recorded, the solid phases formed at higher IL contents werepresumed to be hydrates of the form IL·nH2O. The HOEtpyBr+H2O and HOEtmimBr+H2O systems formed simple eutectic systems. The eutectic points werefound to be at a water mole fraction of 0.617 and 219.......841 K in thefirst system and at a water mole fraction of 0.657 and 202.565 K inthe second system. Water activities in aqueous IL solutions were predictedby COSMO-RS and COSMO-SAC and compared to water activities derivedfrom the experimentally determined freezing points. The COSMO-RS predictionswere...... closer to the experimental water activities than the COSMO-SACpredictions. The experimental results indicate that the freezing pointsof IL+H2O systems are affected by the nature of both cationsand anions. However, according to the COSMO-RS excess enthalpy predictionresults, the anions have a relatively...

  17. Effect of non-volatile solute on the freezing point of malonic acid ...

    African Journals Online (AJOL)

    The mixture of malonic acid and potassium chloride were obtained in various proportions. The freezing point of pure malonic acid was obtained in the range 134 and 135oC which is in agreement with the literature value of 135 OC. the freezing point of all the mixtures were below the literature value of 135 OC. the freezing ...

  18. Estimation of Freezing Point of Hydrocarbon and Hydrofluorocarbon Mixtures for Mixed Refrigerant jt Cryocooler

    Science.gov (United States)

    Hwang, G.; Lee, J.; Jeong, S.

    2010-04-01

    Estimating the freezing point of refrigerant is an essential part in designing an MR JT (Mixed refrigerant Joule-Thomson) cryocooler to prevent itself from clogging and to operate with stability. There were researches on estimating freezing point, but some of them resulted in the wrong prediction of clogging. In this paper, the freezing point of the MR is precisely estimated with caution of clogging. The solubility of HC (hydrocarbon) and HFC (hydrofluorocarbon) mixture components are obtained with their activity coefficients, which represent the molecular interaction among the components. The freezing points of the MR JT cryocooler are systematically investigated in the operating temperature range from 70 K to 90 K.

  19. Freezing Point of Milk: A Natural Way to Understand Colligative Properties

    Science.gov (United States)

    Novo, Mercedes; Reija, Belen; Al-Soufi, Wajih

    2007-01-01

    A laboratory experiment is presented in which the freezing point depression is analyzed using milk as solution. The nature of milk as a mixture of different solutes makes it a suitable probe to learn about colligative properties. The first part of the experiment illustrates the analytical use of freezing point measurements to control milk quality,…

  20. Changes in freezing point of blood and milk during dehydration and rehydration in lactating cows

    DEFF Research Database (Denmark)

    Bjerg, M.; Rasmussen, M.D.; Nielsen, Mette Olaf

    2005-01-01

    We studied the influence of short-term changes in water intake in 4 lactating Holstein cows on diurnal fluctuation of packed cell volume (PCV), freezing point of blood (FP blood), freezing point of milk ( FP milk), and the relationship between changes in FP blood and FP milk. The experiment lasted...

  1. The freezing point of raw and heat treated sheep milk and its variation during lactation

    Directory of Open Access Journals (Sweden)

    Bohumíra Janštová

    2013-01-01

    Full Text Available The freezing point of milk is an important indicator of the adulteration of the milk with water, but heat treatment may also affect its value. The aim of this study was determine freezing point of raw and heat treated sheep milk and its variation during lactation. The freezing point was determined in 42 bulk tank raw sheep milk samples and 42 pasteurized milk samples collected during lactation of sheep at one ecofarm in Moravian Walachia (Valašsko in the Czech Republic. The freezing point was determined in accordance with the standard ČSN 57 0538 using a thermistor cryoscope. The average freezing point of raw milk was -0.617 ± 0.052 °C, with a range from -0.560 to -0.875 °C. The freezing point was lower in the first months of lactation and increased at the end of lactation. The freezing point correlated (r = 0.8967 with the content of total non-fat solids. The average freezing point of sheep milk pasteurized at 65 °C for 30 min was -0.614 ± 0.053 °C, with a range from -0.564 to -0.702 °C. The median of freezing point differences between raw and pasteurized milk was 0.004 °C. Our study extends data about physico-chemical properties of sheep milk and registers for the first time specific changes in the freezing point value of sheep milk by heating.

  2. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  3. Freezing Point Depressions of Aqueous MEA, MDEA, and MEA−MDEA Measured with a New Apparatus

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Pedersen, Mikkel Gielsager; Thomsen, Kaj

    2011-01-01

    Freezing points for aqueous monoethanolamine (MEA), methyl diethanolamine (MDEA), and MEA−MDEA solutions were measured in the concentration range from 0 to 0.4 mass fractions of the alkanolamines. For the aqueous MEA−MDEA system, freezing points for 1:4, 1:2, 1:1, 2:1, and 4:1 molar ratios of MEA...... and accuracy. A correlation of the freezing points as functions of the solution composition was made. Measurements of aqueous MEA and aqueous MDEA were compared to experiments found in the open literature....

  4. Design and evaluation of aircraft heat source systems for use with high-freezing point fuels

    Science.gov (United States)

    Pasion, A. J.

    1979-01-01

    The objectives were the design, performance and economic analyses of practical aircraft fuel heating systems that would permit the use of high freezing-point fuels on long-range aircraft. Two hypothetical hydrocarbon fuels with freezing points of -29 C and -18 C were used to represent the variation from current day jet fuels. A Boeing 747-200 with JT9D-7/7A engines was used as the baseline aircraft. A 9300 Km mission was used as the mission length from which the heat requirements to maintain the fuel above its freezing point was based.

  5. Experimental Study of the Freezing Point of γ-Al2O3/Water Nanofluid

    Directory of Open Access Journals (Sweden)

    Thierry Maré

    2012-01-01

    Full Text Available Nanofluids are colloidal suspensions made of nanometer-sized particles dispersed in a conventional fluid. Their unusual thermal properties explain intensive investigations for several thermal and industrial applications. In this work, an experimental investigation was performed to measure the freezing point and to study the supercooling point made of alumina γ-Al2O3 nanoparticles with 30 nm diameter size and deionized water. Particles' volume fraction used in this work is ranging from 1% to 4%. The T-historic method based on the measurement of the point of inflexion was performed to measure the thermal properties such as the freezing point and the latent heat of solidification of the nanofluids for different concentrations. The results show that the supercooling degree decreases for the high particles volume concentrations and that the agglomeration does not influence the temperature of the freezing point. However, it makes the freezing process longer.

  6. Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.

    Science.gov (United States)

    Jing, Yaxuan; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2017-12-22

    A new approach for the production of low-freezing-point, high-quality fuels from lignocellulose-derived molecules was developed with Michael addition as the key step. Among the investigated catalysts, CoCl 2 ⋅6 H 2 O was found most active for the Michael addition of 2,4-pentanedione with FA (single aldol adduct of furfural and acetone, 4-(2-furanyl)-3-butene-2-one). Over CoCl 2 ⋅6 H 2 O, a high carbon yield of C 13 oxygenates (about 75 %) can be achieved under mild conditions (353 K, 20 h). After hydrodeoxygenation, low-freezing-point (freezing-point (freezing point from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Determination of the freezing point in cow milk samples preserved with azidiol

    Directory of Open Access Journals (Sweden)

    Nataša Pintić-Pukec

    2011-12-01

    Full Text Available The study involved determination of the freezing point of cow milk by a reference (thermistor cryoscopy and an instrumental (infrared spectrometry method. The aim of the study was to evaluate the possibility of milk freezing point determination in milk samples preserved with azidiol by using a reference and an instrumental method of analysis. Five hundred cow milk samples were analysed during three research periods. Samples were taken at milk collection points in north-western Croatia. Samples preserved with azidiol (0.3 mL azidiol/40 mL; 0.011 g sodium azide/40 mL and without preservatives (control samples were analysed. The freezing point of milk was determined in duplicate. Average freezing point results of azidiol preserved samples were lower compared to control samples. A statistically significant difference between the means of the results obtained for azidiol preserved and control samples was determined (P<0.05; P<0.01 in all research periods. The results revealed a significant influence of the preservative azidiol on milk freezing point determination regardless of the method of analysis applied, which could lead to wrong interpretation of the results.

  8. Evaluation of methods for rapid determination of freezing point of aviation fuels

    Science.gov (United States)

    Mathiprakasam, B.

    1982-01-01

    Methods for identification of the more promising concepts for the development of a portable instrument to rapidly determine the freezing point of aviation fuels are described. The evaluation process consisted of: (1) collection of information on techniques previously used for the determination of the freezing point, (2) screening and selection of these techniques for further evaluation of their suitability in a portable unit for rapid measurement, and (3) an extensive experimental evaluation of the selected techniques and a final selection of the most promising technique. Test apparatuses employing differential thermal analysis and the change in optical transparency during phase change were evaluated and tested. A technique similar to differential thermal analysis using no reference fuel was investigated. In this method, the freezing point was obtained by digitizing the data and locating the point of inflection. Results obtained using this technique compare well with those obtained elsewhere using different techniques. A conceptual design of a portable instrument incorporating this technique is presented.

  9. Note: equation of state and the freezing point in the hard-sphere model.

    Science.gov (United States)

    Robles, Miguel; López de Haro, Mariano; Santos, Andrés

    2014-04-07

    The merits of different analytical equations of state for the hard-sphere system with respect to the recently computed high-accuracy value of the freezing-point packing fraction are assessed. It is found that the Carnahan-Starling-Kolafa and the branch-point approximant equations of state yield the best performance.

  10. A practical approach to obtain the soil freezing characteristic curve and the freezing/melting point of a soil-water system

    NARCIS (Netherlands)

    Aukenthaler, Manuel; Brinkgreve, R.B.J.; Haxaire, A

    2016-01-01

    Knowing that extensive field tests and laboratory tests are time-consuming and expensive, this paper describes a practical approach to obtain crucial properties of frozen soil such as the soil freezing characteristic curve (SFCC), the freezing/melting point of a soil-water system and its hydraulic

  11. Nano materials for efficiently lowering the freezing point of heat transfer nanofluids

    Science.gov (United States)

    Hong, Haiping; Roy, Walter

    2007-09-01

    In this paper, we report, for the first time, the effect of the lowered freezing point in a 50% water / 50% antifreeze coolant (PAC) or 50% water / 50% ethylene glycol (EG) solution by the addition of carbon nanotubes and other particles. The experimental results indicated that the nano materials are much more efficient (hundreds fold) in lowering the freezing point than the regular ionic materials (e.g. NaCl). The possible explanation for this interesting phenomenon is the colligative property of fluid and relative small size of nano material. It is quite certain that the carbon nanotubes and metal oxide nano particles could be a wonderful candidate for the nano coolant application because they could not only increase the thermal conductivity, but also efficiently lower the freezing point of traditional coolants.

  12. Impact of Heat Treatment on the Freezing Points of Cow and Goat Milk

    Directory of Open Access Journals (Sweden)

    Bohumíra Janštová

    2009-01-01

    Full Text Available The aim of this study was to monitor the impact of heat treatment variables on the freezing point of cow and goat milk. The freezing point (FP was established in 30 bulk tank samples of goat milk and in 30 bulk tank samples of cow milk which were subject to laboratory heat treatment at temperatures of 72 °C (A, 85 °C (B, 95 °C (C, with the same exposition times of 20 s. Freezing point measurements of raw and heat-treated milk were carried out in compliance with the Standard CTS 57 0538 by a thermistor cryoscope. The FP of raw cow milk increased with heat treatment from the initial values of -0.5252 ± 0.0114 °C (O by 0.0023 °C (A, 0.0034 °C (B and 0.0051°C (C. Changes in FP values of goat milk were detected, from its initial value of –0.5530 ± 0.0086 °C there was an increase in the FP depending on the mode of heat treatment due to pasteurization by an average of 0.0028 °C (A, 0.0036 °C (B and 0.0054 °C (C. The dynamics of the changes were similar both in goat and cow milk. Freezing point values in cow and goat milk differed (P ⪬ 0.01 when compared to the freezing point of untreated milk after the individual interventions as well as when compared between each other. An increase in the heat treatment temperature of cow and goat milk causes an increase in the freezing point (a shift towards zero. These results can be used in practice for checking the raw material in dairy industry.

  13. Experimental results for the rapid determination of the freezing point of fuels

    Science.gov (United States)

    Mathiprakasam, B.

    1984-01-01

    Two methods for the rapid determination of the freezing point of fuels were investigated: an optical method, which detected the change in light transmission from the disappearance of solid particles in the melted fuel; and a differential thermal analysis (DTA) method, which sensed the latent heat of fusion. A laboratory apparatus was fabricated to test the two methods. Cooling was done by thermoelectric modules using an ice-water bath as a heat sink. The DTA method was later modified to eliminate the reference fuel. The data from the sample were digitized and a point of inflection, which corresponds to the ASTM D-2386 freezing point (final melting point), was identified from the derivative. The apparatus was modifified to cool the fuel to -60 C and controls were added for maintaining constant cooling rate, rewarming rate, and hold time at minimum temperature. A parametric series of tests were run for twelve fuels with freezing points from -10 C to -50 C, varying cooling rate, rewarming rate, and hold time. Based on the results, an optimum test procedure was established. The results showed good agreement with ASTM D-2386 freezing point and differential scanning calorimetry results.

  14. Dissemination of thermodynamic temperature above the freezing point of silver.

    Science.gov (United States)

    Sadli, M; Machin, G; Anhalt, K; Bourson, F; Briaudeau, S; del Campo, D; Diril, A; Kozlova, O; Lowe, D H; Mantilla Amor, J M; Martin, M J; McEvoy, H C; Ojanen-Saloranta, M; Pehlivan, Ö; Rougié, B; Salim, S G R

    2016-03-28

    The mise-en-pratique for the definition of the kelvin at high temperatures will formally allow dissemination of thermodynamic temperature either directly or mediated through high-temperature fixed points (HTFPs). In this paper, these two distinct dissemination methods are evaluated, namely source-based and detector-based. This was achieved by performing two distinct dissemination trials: one based on HTFPs, the other based on absolutely calibrated radiation thermometers or filter radiometers. These trials involved six national metrology institutes in Europe in the frame of the European Metrology Research Programme joint project 'Implementing the new kelvin' (InK). The results have shown that both dissemination routes are possible, with similar standard uncertainties of 1-2 K, over the range 1273-2773 K, showing that, depending on the facilities available in the laboratory, it will soon be possible to disseminate thermodynamic temperatures above 1273 K to users by either of the two methods with uncertainties comparable to the current temperature scale. © 2016 The Author(s).

  15. Predicting the initial freezing point and water activity of meat products from composition data

    NARCIS (Netherlands)

    Sman, van der R.G.M.; Boer, E.P.J.

    2005-01-01

    In this paper we predict the water activity and initial freezing point of food products (meat and fish) based on their composition. The prediction is based on thermodynamics (the Clausius-Clapeyron equation, the Ross equation and an approximation of the Pitzer equation). Furthermore, we have taken

  16. effect of non-volatile solute on the freezing point of malonic acid

    African Journals Online (AJOL)

    DR. AMINU

    and pestle were washed with liquid soap, rinsed with distilled water and then soaked in 10% HNO3 solution for 24 hrs (Todorovi et al 2001). They were then washed with .... concluded that addition of non-volatile solute decreases the freezing point of a solvent and the depression is directly proportional to the amount of.

  17. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    Science.gov (United States)

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  18. [Online soft sensing method for freezing point of diesel fuel based on NIR spectrometry].

    Science.gov (United States)

    Wu, De-Hui

    2008-07-01

    To solve the problems of real-time online measurement for the freezing point of diesel fuel products, a soft sensing method by near-infrared (NIR) spectrometry was proposed. Firstly, the information of diesel fuel samples in the spectral region of 750-1 550 nm was extracted by spectrum analyzer, and the polynomial convolution algorithm was also applied in spectrogram smoothness, baseline correction and standardization. Principal component analysis (PCA) was then used to extract the features of NIR spectrum data sets, which not only reduced the number of input dimension, but increased their sensitivity to output. Finally the soft sensing model for freezing point was built using SVR algorithm. One hundred fifty diesel fuel samples were used as experimental materials, 100 of which were used as training (calibrating) samples and the others as testing samples. Four hundred and one dimensional original NIR absorption spectrum data sets, through PCA, were reduced to 6 dimensions. To investigate the measuring effect, the freezing points of the testing samples were estimated by four different soft sensing models, BP, SVR, PCA-BP and PCA+SVR. Experimental results show that (1) the soft sensing models using PCA to extract features are generally better than those used directly in spectrum wavelength domain; (2) SVR based model outperforms its main competitors-BP model in the limited training data, the error of which is only half of the latter; (3) The MSE between the estimated values by the presented method and the standard chemical values of freezing point by condensing method are less than 4.2. The research suggests that the proposed method can be used in fast measurement of the freezing point of diesel fuel products by NIRS.

  19. Milk freezing point determination with infrared spectroscopy and thermistor cryoscopy method

    Directory of Open Access Journals (Sweden)

    Nataša Pintić Pukec

    2009-09-01

    Full Text Available Two analytical methods were used for determination of the freezing point on identical test raw milk samples. The aim of this research was to investigate possibility of usage infrared spectrometry method, with MilcoScan FT 6000 milk analyzer for determination of milk freezing point, comparing to results obtained by using a reference thermistor cryoscopy method with Cryoscope 4C3 analyzer. During period of four months, total of 320 milk samples were analyzed. Once a week milk samples were sampled at collection reservoirs from twenty milk producers. Milk freezing point was analyzed with each of investigated methods in three consecutive testing respectively repetition. The results of freezing point were recorded as higher by reference in comparison to infrared spectroscopy method. Mean difference from 1.31 to 5.28 m°C respectively 3.43 m°C was determined between results obtained with infrared spectroscopy and reference method. Mean repeatability results for both investigated methods showed slight difference, sr%=0.194 for the reference method and sr%=0.193 for the infrared spectrometry method. Statistically significant difference between the means of the obtained results with two different investigated methods (P>0.05; P>0,01 was not determined. The results indicate the conclusion that infrared spectroscopy method can be used for detecting adulteration of milk with water addition as screening method. Based upon the obtained results usage of infrared spectrometry method in determination of raw milk freezing point is recommended because it is faster and can be carried out with current analyzers used for determination of other milk quality parameters, for example analyzer MilkoScan FT 6000.

  20. Adapting and Modifying the Apparatus for Students to Accurately Determine the Freezing Point of a Solvent and Solution

    Science.gov (United States)

    Li, Shirong; Guo, Jianzhong; Wang, Kewang; Chen, Lin; Hu, Daodao; Bai, Yunshan

    2017-01-01

    An improved apparatus for measuring freezing points has been developed. Compared to the traditional Beckmann freezing point instrument, the improved one overcame prior difficulties with solidification of liquid and made the solid-liquid equilibrium reversible with heat compensation from a heating tube. The reliability and accuracy were carefully…

  1. Understanding and Analyzing Freezing-Point Transitions of Confined Fluids within Nanopores.

    Science.gov (United States)

    Shimizu, Steven; Agrawal, Kumar Varoon; O'Mahony, Marcus; Drahushuk, Lee W; Manohar, Neha; Myerson, Allan S; Strano, Michael S

    2015-09-22

    Understanding phase transitions of fluids confined within nanopores is important for a wide variety of technological applications. It is well known that fluids confined in nanopores typically demonstrate freezing-point depressions, ΔTf, described by the Gibbs-Thomson (GT) equation. Herein, we highlight and correct several thermodynamic inconsistencies in the conventional use of the GT equation, including the fact that the enthalpy of melting, ΔHm, and the solid-liquid surface energy, γ(SL), are functions of pore diameter, complicating their prediction. We propose a theoretical analysis that employs the Turnbull coefficient, originally derived from metal nucleation theory, and show its consistency as a more reliable quantity for the prediction of ΔTf. This analysis provides a straightforward method to estimate ΔTf of nanoconfined organic fluids. As an example, we apply this technique to ibuprofen, an active pharmaceutical ingredient (API), and show that this theory fits well to the experimental ΔTf of nanoconfined ibuprofen.

  2. Reappraisal of disparities between osmolality estimates by freezing point depression and vapor pressure deficit methods.

    Science.gov (United States)

    Winzor, Donald J

    2004-02-15

    As a response to recent expression of concern about possible unreliability of vapor pressure deficit measurements (K. Kiyosawa, Biophys. Chem. 104 (2003) 171-188), the results of published studies on the temperature dependence of the osmotic pressure of aqueous polyethylene glycol solutions are shown to account for the observed discrepancies between osmolality estimates obtained by freezing point depression and vapor pressure deficit osmometry--the cause of the concern.

  3. Quality control of fresh sweet corn in controlled freezing-point storage

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... appearances of husk, silk and kernel were visual evaluation, kernel firmness was tested by finger press and ear .... induced by cold stress (Galindo et al., 2007), so sugar content increased after 5 days. Sweet .... In this work, the mean freezing point of fresh sweet corn was -2.55°C (±0.18°C) and the mean ...

  4. Bovine serum albumin: survival and osmolarity effect in bovine spermatozoa stored above freezing point.

    Science.gov (United States)

    Nang, C F; Osman, K; Budin, S B; Ismail, M I; Jaffar, F H F; Mohamad, S F S; Ibrahim, S F

    2012-05-01

    Liquid nitrogen preservation in remote farms is a limitation. The goal of this study was to determine optimum temperature above freezing point for bovine spermatozoa preservation using bovine serum albumin (BSA) as a supplementation. Pooled semen sample from three ejaculates was subjected to various BSA concentration (1, 4, 8 and 12 mg ml(-1)), before incubation in different above freezing point temperatures (4, 25 and 37 °C). Viability assessment was carried out against time from day 0 (fresh sample) until all spermatozoa become nonviable. Optimal condition for bovine spermatozoa storage was at 4 °C with 1 mg ml(-1) BSA for almost 7 days. BSA improved bovine spermatozoa viability declining rate to 44.28% at day 4 and 57.59% at day 7 compared to control, with 80.54% and 98.57% at day 4 and 7 respectively. Increase in BSA concentration did not improve sperm viability. Our results also confirmed that there was a strong negative correlation between media osmolarity and bovine spermatozoa survival rate with r = 0.885, P freezing point. © 2011 Blackwell Verlag GmbH.

  5. Freezing point depression of water in phospholipid membranes: a solid-state NMR study.

    Science.gov (United States)

    Lee, Dong-Kuk; Kwon, Byung Soo; Ramamoorthy, Ayyalusamy

    2008-12-02

    Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.

  6. Practical limitations of ITS-90 from the mercury triple point to the silver freeze point

    International Nuclear Information System (INIS)

    Tavener, J. P.; Tavener, S. J.; Tavener, I. F.; Davies, N.

    2013-01-01

    The NPL published a forward to the ITS-90 text as follows:- 'The purpose of the ITS is to define procedures by which certain specified practical thermometers of the required quality can be calibrated in such a way that the values of temperature obtained from them can be precise and reproducible, while at the same time closely approximating the corresponding thermodynamic values.' [1]. The paper investigates the properties of thirty four lots of 6N pure metal used to make cells conforming to ITS-90 from mercury through silver over a period of twenty years. Three hundred individual cells are analysed by the impurities listed and supplied with each lot, melt and freeze curve slopes are also summarised for each lot and depressions calculated. These are then compared to the slopes and depressions suggested in the Supplementary Information for the ITS-90 and in CCT/2000-13 'Optimal Realizations'. Results are summarised, tabulated and discussed. Three lots of the thirty four were found to produce cells outside 6N expectations; however the remaining thirty one lots no matter how well or badly the accompanying certification was presented produced cells that conformed to 6N expectations as suggested in Supplementary Information to ITS-90 and CCT/2000-13

  7. Determination of end point of primary drying in freeze-drying process control.

    Science.gov (United States)

    Patel, Sajal M; Doen, Takayuki; Pikal, Michael J

    2010-03-01

    Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.

  8. Freezing point of milk in a herd of high yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Slavica Golc Teger

    2005-04-01

    Full Text Available Factors affecting the freezing point of milk in a herd of 200 Black and White cows with the average milk yield of 8 386 kg in the lactation and 8 328 kg in the standard lactation were examinated. Over the period of one year (2002 and based upon 1 773 individual monthly collected milk samples with the average contents of 3.91% fat, 3.26% protein, 4.54% lactose, 33.4 mg/100 ml urea and 331000 somatic cells per ml in milk were determined. The average freezing point of milk (n = 1 680 was estimated to be –0.527 ºC, with a range from -0.562 ºC to -0.423 ºC. In 210 (12.5% samples was higher than -0.515 ºC. The lowest freezing point (-0.532 ºC was found in the samples collected in the first month after calving and highest (-0.522 ºC in the samples of 12th month of lactation. The differences between the freezing point of milk after the first and the second calving (-0.530 ºC; P < 0.05 and those after the fifth calving (-0.523 ºC; P < 0.05 were also significant. The samples collected in month from January to April (-0.538 ºC to -0.532 ºC were significantly lower in comparison to samples collected in May and June (-0.517 ºC and -0.519 ºC. The following statistically significant correlation coefficients between cows' properties, milk composition and the freezing point of milk were found: month of lactation r = 0.233 (P < 0.001; lactation number r = 0.196 (P < 0.001; age of cows (years r = 0.231 (P < 0.001; month of the year r = 0.0253 (P < 0.001; milk yield per milking day r = -0.106 (P < 0.001; fat corrected milk content (FCM per milking day r = -0.234 (P < 0.001; lactose % r = -0.530 (P < 0.001; fat % r = -0.351 (P < 0.001; protein % r = 0.058 (P < 0.05; urea mg/100 mL r = 0.091 (P < 0.001 and somatic cell count r = 0.154 (P < 0.001. The sum of effects (month of the year, lactation lenght and fat, protein and lactose content of milk was found to account for about 70% variability of the total depression of milk freezing point (R2 = 0.698.

  9. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants

    Science.gov (United States)

    Corsi, Steven R.; Mericas, Dean; Bowman, George

    2012-01-01

    Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.

  10. Relationship of amino acid composition and molecular weight of antifreeze glycopeptides to non-colligative freezing point depression.

    Science.gov (United States)

    Schrag, J D; O'Grady, S M; DeVries, A L

    1982-08-06

    Many polar fishes synthesize a group of eight glycopeptides that exhibit a non-colligative lowering of the freezing point of water. These glycopeptides range in molecular weight between 2600 and 33 700. The largest glycopeptides [1-5] lower the freezing point more than the small ones on a weight basis and contain only two amino acids, alanine and threonine, with the disaccharide galactose-N-acetyl-galactosamine attached to threonine. The small glycopeptides, 6, 7, and 8, also lower the freezing point and contain proline, which periodically substitutes for alanine. Glycopeptides with similar antifreeze properties isolated from the saffron cod and the Atlantic tomcod contain an additional amino acid, arginine, which substitutes for threonine in glycopeptide 6. In this study we address the question of whether differences in amino acid composition or molecular weight between large and small glycopeptides are responsible for the reduced freezing point depressing capability of the low molecular weight glycopeptides. The results indicate that the degree of amino acid substitutions that occur in glycopeptides 6-8 do not have a significant effect on the unusual freezing point lowering and that the observed decrease in freezing point depression with smaller glycopeptides can be accounted for on the basis of molecular weight.

  11. The initial freezing point temperature of beef rises with the rise in pH: a short communication.

    Science.gov (United States)

    Farouk, M M; Kemp, R M; Cartwright, S; North, M

    2013-05-01

    This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, Pfreezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    Science.gov (United States)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  13. Fast membrane osmometer as alternative to freezing point and vapor pressure osmometry.

    Science.gov (United States)

    Grattoni, Alessandro; Canavese, Giancarlo; Montevecchi, Franco Maria; Ferrari, Mauro

    2008-04-01

    Osmometry is an essential technique for solution analysis and the investigation of chemical and biological phenomena. Commercially available osmometers rely on the measurements of freezing point, vapor pressure, and osmotic pressure of solutions. Although vapor pressure osmometry (VPO) and freezing point osmometry (FPO) can perform rapid and inexpensive measurements, they are indirect techniques, which rely on thermodynamic assumptions, which limit their applicability. While membrane osmometry (MO) provides a potentially unlimited direct measurement of osmotic pressure and solution osmolality, the conventional technique is often time-consuming and difficult to operate. In the present work, a novel membrane osmometer is presented. The instrument significantly reduces the conventional MO measurement time and is not subject to the limitations of VPO and FPO. For this paper, the osmotic pressure of aqueous sucrose solutions was collected in a molality range 0-5.5, by way of demonstration of the new instrument. When compared with data found in the literature, the experimental data were generally in good agreement. However, differences among results from the three techniques were observed.

  14. Circumpolar freeze/thaw surface status and surface soil moisture from Metop ASCAT

    Science.gov (United States)

    Bartsch, Annett; Paulik, Christoph; Melzer, Thomas; Hahn, Sebastian; Wagner, Wolfgang

    2013-04-01

    Circumpolar surface soil moisture and freeze/thaw surface status has been derived from Metop ASCAT within the framework of the ESA DUE Permafrost and STSE ALANIS-Methane projects. The dataset is available via Pangaea (doi:10.1594/PANGAEA.775959) and can be vizualized with the WebGIS of the DUE Permafrost data portal (www.ipf.tuwien.ac.at/permafrost). MetOp ASCAT data have been used for both the near surface soil moisture (SSM) product and determination of freeze/thaw status at panboreal/ arctic scale. Metop-A, launched in October 2006 by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), is the first of three satellites within EUMETSAT's Polar System (EPS). The ASCAT SSM DUE Permafrost product is the result of an improved SSM retrieval algorithm developed at the Institute for Photogrammetry and Remote Sensing (IPF) of the Vienna University of Technology. The SSM Product is delivered with a weekly temporal resolution and 25 km spatial resolution. The soil moisture product also includes a quality flag which contains the number of used measurements. Data are masked for frozen ground conditions also based on MetOp ASCAT. The daily SSF is available as separate flag. The SSM product is provided as weekly averaged images north of 50°N in GeoTIFF/NetCDF format and EASE Grid projection Further, complementary regional scale (1km) freeze/thaw information is available at selected sites based on ENVISAT ASAR GM (PANGAEA http://doi.pangaea.de/10.1594/PANGAEA.779658).

  15. New expressions to describe solution nonideal osmotic pressure, freezing point depression, and vapor pressure.

    Science.gov (United States)

    Fullerton, G D; Zimmerman, R J; Cantu, C; Cameron, I L

    1992-12-01

    New empirical expressions for osmotic pressure, freezing point depression, and vapor pressure are proposed based on the concepts of volume occupancy and (or) hydration force. These expressions are in general inverse relationships in comparison to the standard ideal expressions for the same properties. The slopes of the new equations are determined by the molecular weight of the solute and known constants. The accuracy and precision of the molecular weights calculated from the slope are identical and approximately 1% for the experiments reported here. The nonideality of all three colligative expressions is described by a dimensionless constant called the solute-solvent interaction parameter I. The results on sucrose have the same I = 0.26 for all three solution properties. The nonideality parameter I increased from 0.26 on sucrose to 1.7 on hemoglobin to successfully describe the well-known nonideal response of macromolecules.

  16. Analytical validation and reference intervals for freezing point depression osmometer measurements of urine osmolality in dogs.

    Science.gov (United States)

    Guerrero, Samantha; Pastor, Josep; Tvarijonaviciute, Asta; Cerón, José Joaquín; Balestra, Graziano; Caldin, Marco

    2017-11-01

    Urine osmolality (UOsm) is considered the most accurate measure of urine concentration and is used to assess body fluid homeostasis and renal function. We performed analytical validation of freezing point depression measurement of canine UOsm, to establish reference intervals (RIs) and to determine the effect of age, sex, and reproductive status on UOsm in dogs. Clinically healthy dogs ( n = 1,991) were retrospectively selected and stratified in groups by age (young [0-12 mo], adults [13-84 mo], and seniors [>84 mo]), sex (females and males), and reproductive status (intact and neutered). RIs were calculated for each age group. Intra- and inter-assay coefficients of variation were dogs, and 366-2,178 mOsm/kg in seniors. Senior dogs had a significantly lower UOsm than young and adult dogs ( p dogs ( p dogs.

  17. Generalized correlation of latent heats of vaporization of coal liquid model compounds between their freezing points and critical points

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, A.; Kobuyashi, R.; Mayee, J.W.

    1984-02-01

    Based on Pitzer's three-parameter corresponding states principle, the authors have developed a correlation of the latent heat of vaporization of aromatic coal liquid model compounds for a temperature range from the freezing point to the critical point. An expansion of the form L = L/sub 0/ + ..omega..L /sub 1/ is used for the dimensionless latent heat of vaporization. This model utilizes a nonanalytic functional form based on results derived from renormalization group theory of fluids in the vicinity of the critical point. A simple expression for the latent heat of vaporization L = D/sub 1/epsilon /SUP 0.3333/ + D/sub 2/epsilon /SUP 0.8333/ + D/sub 4/epsilon /SUP 1.2083/ + E/sub 1/epsilon + E/sub 2/epsilon/sup 2/ + E/sub 3/epsilon/sup 3/ is cast in a corresponding states principle correlation for coal liquid compounds. Benzene, the basic constituent of the functional groups of the multi-ring coal liquid compounds, is used as the reference compound in the present correlation. This model works very well at both low and high reduced temperatures approaching the critical point (0.02 < epsilon = (T /SUB c/ - T)/(T /SUB c/- 0.69)). About 16 compounds, including single, two, and three-ring compounds, have been tested and the percent root-mean-square deviations in latent heat of vaporization reported and estimated through the model are 0.42 to 5.27%. Tables of the coefficients of L/sub 0/ and L/sub 1/ are presented. The contributing terms of the latent heat of vaporization function are also presented in a table for small increments of epsilon.

  18. Temperatura letal de diferentes plantas frutíferas tropicais Freezing points of various tropical fruits

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Sentelhas

    1996-01-01

    Full Text Available Com o objetivo de conhecer melhor o efeito das baixas temperaturas sobre as frutíferas de clima tropical e possibilitar o desenvolvimento de novas variedades, mais tolerantes, simularam-se geadas em câmaras frigoríficas para a determinação da temperatura letal de diferentes plantas frutíferas tropicais. Os resultados permitiram classificar as espécies em três grupos: Grupo I - moderada tolerância (-4°C: condessa (Annona reticulata; goiaba (Psidium guajava; acerola (Malpighia glabra e abacate (Persea americana var. Geada; Grupo II - média tolerância (-5°C: conde (A. squamosa; araticum-mirim (Rollinea spp.; anona-do-brejo (A. glabra; falsa-gravioleira (A. montana; araticum-de-folha-miúda (R. ermaginata e maracujá-amarelo (Passiflora edulis f. flavicarpa; Grupo III - acentuada tolerância (-6°C: cherimóia (A. cherimola.The effect of low temperature on tropical fruits was studied in order to guide future developments of frost resistant varieties. Simulations of frost were done in a freezing chamber to determine the freezing points of various fruit plants. On the basis of the results the studied species can be classified into three groups according to their tolerance to low temperatures: Group I - little tolerance (-4°C: Annona reticulata; Psidium guajava; Malpighia glabra and Persea americana (var. Geada; Group II - medium tolerance (-5°C: A. squamosa; Rollinea spp.; A. glabra; A. montana; R. ermaginata and Passiflora edulis f. flavicarpa; Group III - high tolerance (-6°C: A. cherimola.

  19. Experimental study and numerical simulation of the salinity effect on water-freezing point and ice-melting rate

    Science.gov (United States)

    Qin, N.; Wu, Y.; Wang, H. W.; Wang, Y. Y.

    2017-12-01

    In this paper, based on the background of snowmelt de-icing tools, we studied the effect of salt on freezing point and melting rate of ice through laboratory test and FLUENT numerical simulation analysis. It was confirmed that the freezing point is inversely proportional to the salt solid content, and with the salt solid content increasing, the freezing process of salt water gradually accepts the curing rule of non-crystal solids. At the same temperature, an increase in the salt solid content, the ice melting rate increase by the empirical formula linking the melting time with temperature and salt content. The theoretical aspects of solid/fluid transformation are discussed in detail.

  20. Comparison of human tear film osmolarity measured by electrical impedance and freezing point depression techniques.

    Science.gov (United States)

    Tomlinson, Alan; McCann, Louise C; Pearce, Edward I

    2010-09-01

    Tear hyperosmolarity is diagnostic of dry eye disease (DED), yet difficulty in measurement has limited its utility; development of new instruments could facilitate its clinical application. This study compares the new OcuSense TearLab osmometer (OcuSense, Inc, San Diego, CA), based on electrical impedance "lab-on-a-chip" nanoliter technology, with the freezing point depression Clifton Osmometer (Clifton Technical Physics, Hartford, NY). Thirty-six subjects were recruited: 15 DED (9 women, 6 men age: 41 +/- 16 years) and 21 controls (12 women, 9 men age: 35 +/- 12 years); criteria for DED were noninvasive tear breakup time points fell within the 95% confidence limits, and actual values differed by less than 1%. A cutoff value of >316 mOsm/L, derived from the distribution of osmolarity values, was used to diagnose DED with an effectiveness of 73% sensitivity, 90% specificity, and 85% positive predictive value for the OcuSense and 73% sensitivity, 71% specificity, and 65% positive predictive value for the Clifton in the study samples. Tear film osmolarity measured with the OcuSense TearLab system correlates well with the Clifton Osmometer. The new instrument has the potential to provide clinicians with a readily available clinically applicable measure, which could become the gold standard in DED.

  1. Osmotic coefficient of aqueous solutions of cyclohexylsulfamic Acid at the freezing point of solutions.

    Science.gov (United States)

    Bešter-Rogač, Marija; Klofutar, Cveto; Rudan-Tasič, Darja

    2010-12-01

    The osmotic coefficient of aqueous solutions of cyclohexylsulfamic acid was determined by freezing point measurements up to the molality 0.65 mol kg-1. The osmotic coefficients were fitted to the Pitzer equation, and ion interaction parameters α1, β(0) and β(1) were evaluated. The mean ion activity coefficient of the solute was calculated, and the non-ideal behaviour of the system investigated was characterized by calculation of the excess Gibbs energy of solution, as well as the respective partial molar functions of solute and solvent. The partial molar excess Gibbs energy of the solute is negative, like the excess Gibbs energy of its solution, while the partial molar excess Gibbs energy of the solvent is positive and increases with increasing concentration of the solute. The solvation ability of water was calculated from the difference between the Gibbs energy of solution of water in solution and that of pure water, and found to be positive and small for the solute investigated, throughout the concentration range studied.

  2. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.

    Science.gov (United States)

    Foroutan, Masumeh; Fatemi, S Mahmood; Shokouh, F

    2016-05-01

    In this work, the melting/freezing point of confined water between two graphene sheets was calculated from the direct coexistence of the solid-liquid interface. Also, molecular dynamics simulation of confined liquid water-ice between two graphene sheets was applied. The phase transition temperature of the confined ice-water mixture was calculated as 240K that was 29K less than the non-confined ice-water system. In order to study the behavior of water molecules at different distances from the graphene sheets, 5 regions were provided using some imaginary planes, located between two graphene sheets. The obtained simulation results showed that water molecules located in the region near each graphene sheet with the thickness of 2nm had a different behavior from other water molecules located in other regions. The results demonstrated that water molecules in the vicinity of graphene sheets had more mean square displacements than those in the middle regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Selected abiotic factors that influence raw cow milk freezing point depression

    Directory of Open Access Journals (Sweden)

    Oto Hanuš

    2012-01-01

    Full Text Available Freezing point depression (FPD is an important property of milk that is influenced primarily by milk components connected to osmotic pressure. Under certain conditions it is possible to detect the addition of water to milk. It is necessary to have the right FPD limit in legislation for milk quality control. The aim of this study was to improve the estimation procedure of this limit. Apart from factors related to dairy cow nutrition, cattle breed and milk yield, it is important to take into account CO2 (6%, water steam evaporation and pasteurization under technological conditions. Bulk milk samples (1, 30, 6, 6, 10, 1 according to experiment from Holstein and Czech Fleckvieh breed (1:1 were used in the experiments and technologically treated. The effects of water addition (water saturated and unsaturated by CO2, carbon dioxide evaporation and pasteurization (80 °C for 22 min were quantified. Pasteurization aggravation of FPD was -0.00394 ± 0.00171 ºC (P P < 0.001 depending on practice. Increase in FPD is recorded after milking during technological procedures of milk storage, mixing, pumping, transport shaking and warming. During FPD shift, the acuteness of FPD data sets increases. This fact should be considered in the process of deriving standard raw cow milk FPD limits. Similar experimental analysis of milk FPD technological shifts has not been performed in this way until now.

  4. Synergistic structures from magnetic freeze casting with surface magnetized alumina particles and platelets.

    Science.gov (United States)

    Frank, Michael B; Hei Siu, Sze; Karandikar, Keyur; Liu, Chin-Hung; Naleway, Steven E; Porter, Michael M; Graeve, Olivia A; McKittrick, Joanna

    2017-12-01

    Magnetic freeze casting utilizes the freezing of water, a low magnetic field and surface magnetized materials to make multi-axis strengthened porous scaffolds. A much greater magnetic moment was measured for larger magnetized alumina platelets compared with smaller particles, which indicated that more platelet aggregation occurred within slurries. This led to more lamellar wall alignment along the magnetic field direction during magnetic freeze casting at 75 mT. Slurries with varying ratios of magnetized particles to platelets (0:1, 1:3, 1:1, 3:1, 7:1, 1:0) produced porous scaffolds with different structural features and degrees of lamellar wall alignment. The greatest mechanical enhancement in the magnetic field direction was identified in the synergistic condition with the highest particle to platelet ratio (7:1). Magnetic freeze casting with varying ratios of magnetized anisotropic and isotropic alumina provided insights about how heterogeneous morphologies aggregate within lamellar walls that impact mechanical properties. Fabrication of strengthened scaffolds with multi-axis aligned porosity was achieved without introducing different solid materials, freezing agents or additives. Resemblance of 7:1 particle to platelet scaffold microstructure to wood light-frame house construction is framed in the context of assembly inspiration being derived from both natural and synthetic sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Electrical Capacitance Tomography Measurement of the Migration of Ice Frontal Surface in Freezing Soil

    Directory of Open Access Journals (Sweden)

    Liu J.

    2016-12-01

    Full Text Available The tracking of the migration of ice frontal surface is crucial for the understanding of the underlying physical mechanisms in freezing soil. Owing to the distinct advantages, including non-invasive sensing, high safety, low cost and high data acquisition speed, the electrical capacitance tomography (ECT is considered to be a promising visualization measurement method. In this paper, the ECT method is used to visualize the migration of ice frontal surface in freezing soil. With the main motivation of the improvement of imaging quality, a loss function with multiple regularizers that incorporate the prior formation related to the imaging objects is proposed to cast the ECT image reconstruction task into an optimization problem. An iteration scheme that integrates the superiority of the split Bregman iteration (SBI method is developed for searching for the optimal solution of the proposed loss function. An unclosed electrodes sensor is designed for satisfying the requirements of practical measurements. An experimental system of one dimensional freezing in frozen soil is constructed, and the ice frontal surface migration in the freezing process of the wet soil sample containing five percent of moisture is measured. The visualization measurement results validate the feasibility and effectiveness of the ECT visualization method

  6. Computational investigation of surface freezing in a molecular model of water.

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2017-03-28

    Water freezes in a wide variety of low-temperature environments, from meteors and atmospheric clouds to soil and biological cells. In nature, ice usually nucleates at or near interfaces, because homogenous nucleation in the bulk can only be observed at deep supercoolings. Although the effect of proximal surfaces on freezing has been extensively studied, major gaps in understanding remain regarding freezing near vapor-liquid interfaces, with earlier experimental studies being mostly inconclusive. The question of how a vapor-liquid interface affects freezing in its vicinity is therefore still a major open question in ice physics. Here, we address this question computationally by using the forward-flux sampling algorithm to compute the nucleation rate in a freestanding nanofilm of supercooled water. We use the TIP4P/ice force field, one of the best existing molecular models of water, and observe that the nucleation rate in the film increases by seven orders of magnitude with respect to bulk at the same temperature. By analyzing the nucleation pathway, we conclude that freezing in the film initiates not at the surface, but within an interior region where the formation of double-diamond cages (DDCs) is favored in comparison with the bulk. This, in turn, facilitates freezing by favoring the formation of nuclei rich in cubic ice, which, as demonstrated by us earlier, are more likely to grow and overcome the nucleation barrier. The films considered here are ultrathin because their interior regions are not truly bulk-like, due to their subtle structural differences with the bulk.

  7. Locating the QCD critical end point through peaked baryon number susceptibilities along the freeze-out line

    Science.gov (United States)

    Li, Zhibin; Chen, Yidian; Li, Danning; Huang, Mei

    2018-01-01

    We investigate the baryon number susceptibilities up to fourth order along different freeze-out lines in a holographic QCD model with a critical end point (CEP), and we propose that the peaked baryon number susceptibilities along the freeze-out line can be used as a clean signature to locate the CEP in the QCD phase diagram. On the temperature and baryon chemical potential plane, the cumulant ratio of the baryon number susceptibilities (up to fourth order) forms a ridge along the phase boundary, and develops a sword-shaped “mountain” standing upright around the CEP in a narrow and oblate region. The measurement of baryon number susceptibilities from heavy-ion collision experiments is along the freeze-out line. If the freeze-out line crosses the foot of the CEP mountain, then one can observe the peaked baryon number susceptibilities along the freeze-out line, and the kurtosis of the baryon number distributions has the highest magnitude. The data from the first phase of the beam energy scan program at the Relativistic Heavy Ion Collider indicates that there should be a peak of the kurtosis of the baryon number distribution at a collision energy of around 5 GeV, which suggests that the freeze-out line crosses the foot of the CEP mountain and the summit of the CEP should be located nearby, around a collision energy of 3–7 GeV. Supported by NSFC (11275213, and 11261130311) (CRC 110 by DFG and NSFC), CAS key project KJCX2-EW-N01, and Youth Innovation Promotion Association of CAS

  8. Lack of Agreement among Electrical Impedance and Freezing-Point Osmometers.

    Science.gov (United States)

    García, Noelia; Melvi, Giovanna; Pinto-Fraga, José; Calonge, Margarita; Maldonado, Miguel J; González-García, María J

    2016-05-01

    To assess the interchangeability of tear osmolarity measurements between electrical impedance and freezing-point depression osmometers and to analyze inter-eye tear osmolarity variability measured with these osmometers in healthy subjects. Tear osmolarity was measured using the TearLab osmometer (OcuSense Inc., San Diego, CA) and the Fiske 210 microsample osmometer (Advanced Instruments Inc., Norwood, MA). We randomly selected one eye in 50 subjects (29 women, 21 men; mean age, 33.16 ± 6.11 years) to analyze whether osmolarity measurements by these osmometers were interchangeable. Both eyes of 25 patients (15 women, 10 men; mean age, 34.32 ± 6.37 years) were included to analyze inter-eye osmolarity variability. The mean tear osmolarity values measured with the TearLab osmometer were higher (305.22 ± 16.06 mOsm/L) than those with the Fiske 210 osmometer (293.40 ± 12.22 mOsm/L), with the intraclass correlation coefficient being 0.23 (p = 0.051). A Bland-Altman plot showed that the systems were not interchangeable because there was a systematic difference, with the limits of agreement being -17.93 to 41.57 mOsm/L. There were no statistically significant differences (p = 0.5006 and p = 0.6533, respectively) between an individual's eyes measured with either osmometer. Because the TearLab tear osmolarity measurements were higher than those of the Fiske 210 measurements and the limits of agreement were too wide, the two osmolarity values cannot be used interchangeably. In healthy subjects, there is no difference in tear osmolarity between right and left eyes of the same individual measured with both instruments.

  9. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying.

    Science.gov (United States)

    Chen, He; Chen, Shiwei; Li, Chuanna; Shu, Guowei

    2015-01-01

    The individual and interactive effects of skimmed milk powder, lactose, and sodium ascorbate on the number of viable cells and freeze-drying survival for vacuum freeze-dried powder formulation of Lactobacillus bulgaricus were studied by response surface methodology, and the optimal compound lyoprotectant formulations were gained. It is shown that skim milk powder, lactose, and sodium ascorbate had a significant impact on variables and survival of cultures after freeze-drying. Also, their protective abilities could be enhanced significantly when using them as a mixture of 28% w/v skim milk, 24% w/v lactose, and 4.8% w/v sodium ascorbate. The optimal freeze-drying survival rate and the number of viable cells of Lactobacillus bulgaricus were observed to be (64.41±0.02)% and (3.22±0.02)×10(11) colony-forming units (CFU)/g using the optimal compound protectants, which were very close to the expected values 64.47% and 3.28×10(11) CFU/g.

  10. Research into action of surface soil moistening, drying or freezing on electrical characteristics of grounding device

    Directory of Open Access Journals (Sweden)

    I.V. Nizhevskiy

    2014-03-01

    Full Text Available The analysis made has shown expediency of modernization rather than reconstruction of earth electrodes, after inspection of long operating substations grounding grids, via building a two-level structure. It will result in both technical and economic effects. The novelty of the results consists in studying, by means of a mathematical model, electrical characteristics of a two-level earth electrode versus the depth of surface soil drying or freezing.

  11. MAS1H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes.

    Science.gov (United States)

    Mandal, Abhishek; van der Wel, Patrick C A

    2016-11-01

    The lipid bilayer typical of hydrated biological membranes is characterized by a liquid-crystalline, highly dynamic state. Upon cooling or dehydration, these membranes undergo a cooperative transition to a rigidified, more-ordered, gel phase. This characteristic phase transition is of significant biological and biophysical interest, for instance in studies of freezing-tolerant organisms. Magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy allows for the detection and characterization of the phase transitions over a wide temperature range. In this study we employ MAS 1 H NMR to probe the phase transitions of both solvent molecules and different hydrated phospholipids, including tetraoleoyl cardiolipin (TOCL) and several phosphatidylcholine lipid species. The employed MAS NMR sample conditions cause a previously noted substantial reduction in the freezing point of the solvent phase. The effect on the solvent is caused by confinement of the aqueous solvent in the small and densely packed MAS NMR samples. In this study we report and examine how the freezing point depression also impacts the lipid phase transition, causing a ssNMR-observed reduction in the lipids' melting temperature (T m ). The molecular underpinnings of this phenomenon are discussed and compared with previous studies of membrane-associated water phases and the impact of membrane-protective cryoprotectants. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Ice growth in supercooled solutions of a biological "antifreeze", AFGP 1-5: an explanation in terms of adsorption rate for the concentration dependence of the freezing point.

    Science.gov (United States)

    Knight, C A; DeVries, A L

    2009-07-21

    It is widely accepted, and we agree, that the lowering of the temperature at which ice can grow in a water solution of one of the biological antifreezes is a result of adsorption of the antifreeze molecules at the ice surface. However, how this can produce a well-defined "freezing point" that varies with the solution concentration has remained problematical. The results of a series of measurements of ice growing in supercooled solutions of an effective antifreeze are reported and interpreted in terms of this fundamental problem. It seemed that the solution of the problem would have to rely upon adsorption rate, because that appeared to be the only way for the concentration in solution to be so important. The crystal growth results are most unusual, and appear to confirm this. The growth rates over a wide range of antifreeze concentration in solution (about 0.05 to 9 mg ml(-1)) are zero from the thermodynamic freezing point down to the "non-equilibrium" freezing point, where there is a very sudden increase to a plateau value that then remains about constant as the supercooling is increased by about 2 degrees C. The plateau values of growth rate are faster than those from pure water at the lower-supercooling ends of the plateaus, but slower at higher supercooling, until the growth rate starts rising toward that from pure water. These plateau values of growth rate increase markedly with increasing concentration of the antifreeze in solution. Along with these changes there are complex changes in the growth orientations, from c-axis spicules in the plateaus to those more characteristic of growth from pure water at greater supercooling. We conclude that the non-equilibrium freezing point is determined by the adsorption rate. It is the warmest temperature at which the ice growth rate on the basal plane (where the antifreeze does not adsorb) is fast enough to prevent the area of basal face on a growing ice crystal from becoming too small to grow, which is determined in

  13. Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying.

    Science.gov (United States)

    Saikia, Sangeeta; Mahnot, Nikhil Kumar; Mahanta, Charu Lata

    2015-03-15

    Optimised of the extraction of polyphenol from star fruit (Averrhoa carambola) pomace using response surface methodology was carried out. Two variables viz. temperature (°C) and ethanol concentration (%) with 5 levels (-1.414, -1, 0, +1 and +1.414) were used to design the optimisation model using central composite rotatable design where, -1.414 and +1.414 refer to axial values, -1 and +1 mean factorial points and 0 refers to centre point of the design. The two variables, temperature of 40°C and ethanol concentration of 65% were the optimised conditions for the response variables of total phenolic content, ferric reducing antioxidant capacity and 2,2-diphenyl-1-picrylhydrazyl scavenging activity. The reverse phase-high pressure liquid chromatography chromatogram of the polyphenol extract showed eight phenolic acids and ascorbic acid. The extract was then encapsulated with maltodextrin (⩽ DE 20) by spray and freeze drying methods at three different concentrations. Highest encapsulating efficiency was obtained in freeze dried encapsulates (78-97%). The obtained optimised model could be used for polyphenol extraction from star fruit pomace and microencapsulates can be incorporated in different food systems to enhance their antioxidant property. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    Science.gov (United States)

    Cuntz, Matthias; Haverd, Vanessa

    2014-05-01

    Transfer of energy and moisture in frozen soil, and hence the active layer depth, are strongly influenced by the soil freezing curve which specifies liquid moisture content as a function of temperature. However, the curve is typically not represented in global land surface models, with less physically-based approximations being used instead. In this work, we develop a physically accurate model of soil freeze-thaw processes, suitable for use in a global land surface scheme. We incorporated soil freeze-thaw processes into an existing detailed model for the transfer of heat, liquid water and water vapor in soils, including isotope diagnostics - Soil-Litter-Iso (SLI, Haverd & Cuntz 2010), which has been used successfully for water and carbon balances of the Australian continent (Haverd et al. 2013). A unique feature of SLI is that fluxes of energy and moisture are coupled using a single system of linear equations. The extension to include freeze-thaw processes and snow maintains this elegant coupling, requiring only coefficients in the linear equations to be modified. No impedance factor for hydraulic conductivity is needed because of the formulation by matric flux potential rather than pressure head. Iterations are avoided which results in the same computational speed as without freezing. The extended model is evaluated extensively in stand-alone mode (against theoretical predictions, lab experiments and field data) and as part of the CABLE global land surface scheme. SLI accurately solves the classical Stefan problem of a homogeneous medium undergoing a phase change. The model also accurately reproduces the freezing front, which is observed in laboratory experiments (Hansson et al. 2004). SLI was further tested against observations at a permafrost site in Tibet (Weismüller et al. 2011). It reproduces seasonal thawing and freezing of the active layer to within 3 K of the observed soil temperature and to within 10% of the observed volumetric liquid soil moisture

  15. Spray Irrigation Effects on Surface-Layer Stability in an Experimental Citrus Orchard during Winter Freezes.

    Science.gov (United States)

    Cooper, Harry J.; Smith, Eric A.; Martsolf, J. David

    1997-02-01

    Observations taken by two surface radiation and energy budget stations deployed in the University of Florida/Institute for Food and Agricultural Service experimental citrus orchard in Gainesville, Florida, have been analyzed to identify the effects of sprayer irrigation on thermal stability and circulation processes within the orchard during three 1992 winter freeze episodes. Lapse rates of temperature observed from a micrometeorological tower near the center of the orchard were also recorded during periods of irrigation for incorporation into the analysis. Comparisons of the near-surface temperature lapse rates observed with the two energy budget stations show consistency between the two sites and with the tower-based lapse rates taken over a vertical layer from 1.5 to 15 m above ground level. A theoretical framework was developed that demonstrates that turbulent-scale processes originating within the canopy, driven by latent heat release associated with condensation and freezing processes from water vapor and liquid water released from sprayer nozzles, can destabilize lapse rates and promote warm air mixing above the orchard canopy. The orchard data were then analyzed in the context of the theory for evidence of local overturning and displacement of surface-layer air, with warmer air from aloft driven by locally buoyant plumes generated by water vapor injected into the orchard during the irrigation periods. It was found that surface-layer lapse rates were lower during irrigation periods than under similar conditions when irrigation was not occurring, indicating a greater degree of vertical mixing of surface-layer air with air from above treetops, as a result of local convective overturning induced by the condensation heating of water vapor released at the nozzles of the sprinklers. This provides an additional explanation to the well-accepted heat of fusion release effect, of how undertree irrigation of a citrus orchard during a freeze period helps protect crops

  16. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  17. Leidenfrost point reduction on micropatterned metallic surfaces.

    Science.gov (United States)

    del Cerro, Daniel Arnaldo; Marín, Alvaro G; Römer, Gertwillem R B E; Pathiraj, B; Lohse, Detlef; Huis in 't Veld, Albertus J

    2012-10-23

    Droplets are able to levitate when deposited over a hot surface exceeding a critical temperature. This is known as the Leidenfrost effect. This phenomenon occurs when the surface is heated above the so-called Leidenfrost point (LFP), above which the vapor film between the droplet and hot surface is able to levitate the droplet. Such a critical temperature depends on several factors. One of the most studied parameters has been the surface roughness. Almost all of the experimental studies in the literature have concluded that the LFP increases with the roughness. According to these results, it seems that the roughness is detrimental for the stability of the vapor film. In contrast with these results, we present here a micropatterned surface that significantly reduces the LFP. The temperature increase, relative to the boiling point, required to reach the LFP is 70% lower than that on the flat surface. The reasons for such an effect are qualitatively and quantitatively discussed with a simple semiempirical model. This result can be relevant to save energy in applications that take advantage of the Leidenfrost effect for drop control or drag reduction.

  18. Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay

    DEFF Research Database (Denmark)

    Heydari, Golrokh; Thormann, Esben; Järn, Mikael

    2013-01-01

    Hydrophobicity, and in particular superhydrophobicity, has been extensively considered to promote ice-phobicity. Dynamic contact angle measurements above 0 °C have been widely used to evaluate the water repellency. However, it is the wetting properties of supercooled water at subzero temperatures...... surfaces in either the Wenzel or the Cassie–Baxter state as characterized by water contact angle measurements at room temperature. We find that the water freezing delay time is not significantly affected by the surface topography and discuss this finding within the classical theory of heterogeneous...... and the derived work of adhesion that are important for applications dealing with icing. In this work we address this issue by determining the temperature-dependent dynamic contact angle of microliter-sized water droplets on a smooth hydrophobic and a superhydrophobic surface with similar surface chemistry...

  19. Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology

    Directory of Open Access Journals (Sweden)

    I. Gouttevin

    2012-04-01

    Full Text Available Soil freezing is a major feature of boreal regions with substantial impact on climate. The present paper describes the implementation of the thermal and hydrological effects of soil freezing in the land surface model ORCHIDEE, which includes a physical description of continental hydrology. The new soil freezing scheme is evaluated against analytical solutions and in-situ observations at a variety of scales in order to test its numerical robustness, explore its sensitivity to parameterization choices and confront its performance to field measurements at typical application scales.

    Our soil freezing model exhibits a low sensitivity to the vertical discretization for spatial steps in the range of a few millimetres to a few centimetres. It is however sensitive to the temperature interval around the freezing point where phase change occurs, which should be 1 °C to 2 °C wide. Furthermore, linear and thermodynamical parameterizations of the liquid water content lead to similar results in terms of water redistribution within the soil and thermal evolution under freezing. Our approach does not allow firm discrimination of the performance of one approach over the other.

    The new soil freezing scheme considerably improves the representation of runoff and river discharge in regions underlain by permafrost or subject to seasonal freezing. A thermodynamical parameterization of the liquid water content appears more appropriate for an integrated description of the hydrological processes at the scale of the vast Siberian basins. The use of a subgrid variability approach and the representation of wetlands could help capture the features of the Arctic hydrological regime with more accuracy.

    The modeling of the soil thermal regime is generally improved by the representation of soil freezing processes. In particular, the dynamics of the active layer is captured with more accuracy, which is of crucial importance in the prospect of

  20. Water adsorption-desorption isotherms of two-dimensional hexagonal mesoporous silica around freezing point.

    Science.gov (United States)

    Endo, Akira; Yamaura, Toshio; Yamashita, Kyohei; Matsuoka, Fumio; Hihara, Eiji; Daiguji, Hirofumi

    2012-02-01

    Zr-doped mesoporous silica with a diameter of approximately 3.8 nm was synthesized via an evaporation-induced self-assembly process, and the adsorption-desorption isotherms of water vapor were measured in the temperature range of 263-298 K. The measured adsorption-desorption isotherms below 273 K indicated that water confined in the mesopores did not freeze at any relative pressure. All isotherms had a steep curve, resulting from capillary condensation/evaporation, and a pronounced hysteresis. The hysteresis loop, which is associated with a delayed adsorption process, increased with a decrease in temperature. Furthermore, the curvature radius where capillary evaporation/condensation occurs was evaluated by the combined Kelvin and Gibbs-Tolman-Koening-Buff (GTKB) equations for the modification of the interfacial tension due to the interfacial curvature. The thickness of the water adsorption layer for capillary condensation was slightly larger, whereas that for capillary evaporation was slightly smaller than 0.7 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2011-03-01

    Full Text Available The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

  2. Cell surface damage and morphological changes in Oenococcus oeni after freeze-drying and incubation in synthetic wine.

    Science.gov (United States)

    Bravo-Ferrada, Bárbara Mercedes; Gonçalves, Sónia; Semorile, Liliana; Santos, Nuno C; Brizuela, Natalia; Elizabeth Tymczyszyn, E; Hollmann, Axel

    2018-04-28

    The aim of the present study was to evaluate the effects of freeze-drying in the presence of trehalose as a cryoprotectant, followed by incubation in synthetic wine, on surface damage, viability and l-malic acid consumption of the oenological strain Oenococcus oeni UNQOe 73.2. After freeze-drying, no significant differences were observed in the number of viable cells (for both acclimated and non-acclimated cultures) respect to the fresh culture. In contrast, loss of viability was observed after wine incubation for 24 h, being acclimated freeze-dried cells the best conditions for this. After the preservation process, small changes in cell morphology were observed by Atomic Force Microscopy (AFM). The Zeta potential and AFM showed that 24 h of wine incubation was enough to induce several cell surface modifications. Plate count data allowed us to establish that surface damage is an important factor for loss of viability, regardless of the acclimation treatment. Although the number of surviving O. oeni cells decreased dramatically after incubation in synthetic wine for 15 days, the consumption of l-malic acid was higher than 70%, with freeze-dried cells showing a better performance than fresh cultures. These results demonstrate that O. oeni freeze-dried cultures could be applied to direct wine inoculation, to conduct malolactic fermentation, maintaining its technological properties and reducing the time and costs of the winemaking process. Copyright © 2018. Published by Elsevier Inc.

  3. Freezing point osmometry of milk to determine the additional water content--an issue in general quality control and German food regulation.

    Science.gov (United States)

    Büttel, Britta; Fuchs, Markus; Holz, Birger

    2008-03-10

    The determination of the osmolality of aqueous samples using a freezing point osmometer is a well-established, routine laboratory method. In addition to their use in clinical and pharmaceutical laboratories, freezing point osmometers are also employed in food testing laboratories. One application is the determination of the osmolality of milk. Although cow's milk is a natural product whose water content is approximately 87%, the osmolality of milk is a significant value when the milk is collected from a larger population of animals. This value is used in milk processing to control the water content, based on the German Food Control Regulations for Milk. Measurement of the freezing point and osmolality of milk samples was performed with a Knauer Semi-Micro Freezing Point Osmometer. Osmolality was measured for the untreated milk samples and following their dilution (by volume) with 10% and 50% water. The measurements were made after 1, 4 and 7 days to evaluate changes over time. All measurement values for the undiluted milk were spread over a small interval with an average of 271 mOsmol/kg. After mixing the milk samples with 10% water, the average decreased to 242 mOsmol/kg, while mixing with 50% water resulted in an average osmolality of 129 mOsmol/kg. There was no significant change for the osmolality within the 7 days (measurements from days 1, 4 and 7). The results observed demonstrate clearly that the additional water content of milk can be determined easily using a freezing point osmometer. Milk samples that contain additional water have a significantly decreased osmolality, corresponding to an increased freezing point. The effect on osmolality of ageing the milk samples could not be determined in this study's time-dependent measurements.

  4. Freezing point osmometry of milk to determine the additional water content – an issue in general quality control and German food regulation

    Directory of Open Access Journals (Sweden)

    Holz Birger

    2008-03-01

    Full Text Available Abstract Background The determination of the osmolality of aqueous samples using a freezing point osmometer is a well-established, routine laboratory method. In addition to their use in clinical and pharmaceutical laboratories, freezing point osmometers are also employed in food testing laboratories. One application is the determination of the osmolality of milk. Although cow's milk is a natural product whose water content is approximately 87%, the osmolality of milk is a significant value when the milk is collected from a larger population of animals. This value is used in milk processing to control the water content, based on the German Food Control Regulations for Milk. Results Measurement of the freezing point and osmolality of milk samples was performed with a Knauer Semi-Micro Freezing Point Osmometer. Osmolality was measured for the untreated milk samples and following their dilution (by volume with 10% and 50% water. The measurements were made after 1, 4 and 7 days to evaluate changes over time. All measurement values for the undiluted milk were spread over a small interval with an average of 271 mOsmol/kg. After mixing the milk samples with 10% water, the average decreased to 242 mOsmol/kg, while mixing with 50% water resulted in an average osmolality of 129 mOsmol/kg. There was no significant change for the osmolality within the 7 days (measurements from days 1, 4 and 7. Conclusion The results observed demonstrate clearly that the additional water content of milk can be determined easily using a freezing point osmometer. Milk samples that contain additional water have a significantly decreased osmolality, corresponding to an increased freezing point. The effect on osmolality of ageing the milk samples could not be determined in this study's time-dependent measurements.

  5. Heterogeneous freezing of droplets with immersed surface modified mineral dust particles

    Science.gov (United States)

    Hartmann, Susan

    2010-05-01

    In the framework of the international measurement campaign FROST II (FReezing Of duST), the heterogeneous freezing of droplets with an immersed surface modified size-segregated mineral dust particles was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al. 2004). The following measurements were done: LACIS, CFDC (Continuous Flow thermal gradient Diffusion Chamber, Rogers (1988)) and FINCH (Fast Ice Nucleus Chamber Counter, Bundke et al (2008)) were used to analyze the immersion freezing behavior of the treated Arizona Test Dust (ATD) particles at different temperature regimes. The ability to act as IN (Ice Nucleus) in the deposition nucleation mode was quantified by the PINC (Portable Ice Nucleation Chamber) and the CFDC instrument. AMS (Aerosol Mass Spectrometers, e.g. Schneider et al. (2005)) and ATOFMS (Aerosol Time-Of-Flight Mass Spectrometer) measurements were applied to determine particle composition. The hygroscopic growth and the critical super-saturations needed for droplet activation were determined by means of an H-TDMA (Humidity-Tandem Differential Mobility Analyzer) and CCN counter (Cloud Condensation Nucleus counter, Droplet Measurement Technologies, Roberts and Nenes (2005)). The 300 nm ATD particles were chemically and physically treated by coating with sulphuric acid (H2SO4, three different coating thicknesses) and ammonium sulphate ((NH4)2SO4) or by thermal treatment with a thermodenuder operating at 250°C. The H2SO4 coating modified the particles by reacting with particle material, forming soluble sulfates and therefore changing surface properties. AMS showed free H2SO4 only for thick H2SO4 coatings. In the heated section of the thermodenuder coating materials were evaporated partly and the surface properties of the particles were additionally altered. Uncoated particles and those coated with thin coatings of H2SO4, showed almost no hygroscopic growth. Particles coated with thicker coatings of H2SO4 and of (NH4

  6. Effect of thawing time, cooling rate and boron nutrition on freezing point of the primordial shoot in norway spruce buds.

    Science.gov (United States)

    Räisänen, Mikko; Repo, Tapani; Lehto, Tarja

    2006-04-01

    Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. In 2003, the freezing point of primordial shoots of buds (T(f)), i.e. the low-temperature exotherm (LTE), was, on average, -39 degrees C when buds were thawed for less than 3 h and the T(f) increased to -21 degrees C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 degrees C h(-1). In 2005, buds dehardened linearly from -39 degrees C to -35 degrees C at a rate of 0.7 degrees C h(-1). In 2003, different cooling rates of 1-5 degrees C h(-1) had a minor effect on T(f) but in 2005 with slow cooling rates T(f) decreased. In both samplings, at cooling rates of 2 and 1 degrees C h(-1), T(f) was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, T(f) was somewhat lower in B-fertilized trees. There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness.

  7. Assimilation of Freeze-Thaw Observations into the NASA Catchment Land Surface Model

    Science.gov (United States)

    Farhadi, L.; Reichle, R. H.; De Lannoy, G. J.; Kimball, J. S.

    2013-12-01

    The land surface freeze/thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and net primary productivity at the land surface. To support the level 4 soil moisture and carbon products (value-added, i.e. using a combination of remote sensing data and modeling) for the planned NASA Soil Moisture Active Passive (SMAP) mission, an F/T assimilation algorithm is developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. A rule-based approach that incorporates model and observational errors is developed and used for assimilating the categorical F/T measurements into the land surface model (F/T analysis). An Observing System Simulation Experiment is conducted using synthetically generated measurements of the F/T state for a region in North America (90-110oW longitude, 45-55oN latitude). The synthetic 'truth' is generated using the NASA Catchment land surface model forced with surface meteorological fields from the Modern-Era Retrospective Reanalysis for Research and Applications (MERRA). To generate synthetic measurements, the true categorical F/T state is corrupted with a prescribed amount of F/T classification error. The assimilation experiment employs the same Catchment model except that forcing errors (relative to truth) are introduced via the application of meteorological forcing fields from the Global Land Data Assimilation System (GLDAS). The effect of the F/T analysis and classification error on land surface temperature and soil temperature predictions is examined in this research.

  8. Optimization of a cryoprotective medium to increase the viability of freeze-dried Streptococcus thermophilus by response surface methodology

    Science.gov (United States)

    Streptococcus thermophilus normally exhibits different survival rates in different bacteria medium during freeze-drying. In this study, response surface methodology (RSM) was applied on the design of experiments for optimizing the cryoprotective medium. Results showed that the most significant facto...

  9. Effect of Aluminum Substrate Surface Modification on Wettability and Freezing Delay of Water Droplet at Subzero Temperatures

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza; Thormann, Esben

    2016-01-01

    chemistry but without significantly modifying the surface topography. The freezing delays and water contact angles were measured as a function of the substrate temperature and the results were compared to the predictions of the heterogeneous ice nucleation theory. Although the trends for each sample...

  10. Aqueous Solubility of Piperazine and 2-Amino-2-methyl-1-propanol plus Their Mixtures Using an Improved Freezing-Point Depression Method

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Neerup, Randi; Waseem Arshad, Muhammad

    2011-01-01

    In this work the solid–liquid equilibrium (SLE) and freezing-point depression (FPD) in the electrolytic binary aqueous systems piperazine (PZ, CAS No. 110-85-0) and aqueous 2-amino-2-methyl-1-propanol (AMP, CAS No. 124-68-5) were measured. The FPD and solubility were also determined in the ternary...

  11. Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme

    Science.gov (United States)

    Cuntz, Matthias; Haverd, Vanessa

    2018-01-01

    The model Soil-Litter-Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE, which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze-thaw processes in the soil and snow. SLI provides thence an implicit solution of the energy and water balances of soil and snow as a standalone model and within CABLE. The enhanced SLI was tested extensively against theoretical formulations, laboratory experiments, field data, and satellite retrievals. The model performed well for all experiments at wide-ranging temporal and spatial scales. SLI melts snow faster at the end of the cold season compared to observations though because there is no subgrid variability within SLI given by the implicit, coupled solution of energy and water. Combined CABLE-SLI shows very realistic dynamics and extent of permafrost on the Northern hemisphere. It illustrated, however, also the limits of possible comparisons between large-scale land surface models and local permafrost observations. CABLE-SLI exhibits the same patterns of snow depth and snow water equivalent on the Northern hemisphere compared to satellite-derived observations but quantitative comparisons depend largely on the given meteorological input fields. Further extension of CABLE-SLI with depth-dependence of soil carbon will allow realistic projections of the development of permafrost and frozen carbon stocks in a changing climate.

  12. Cryopreservation of boar semen. II: Effect of cooling rate and duration of freezing point plateau on boar semen frozen in mini- and maxi-straws and plastic bags.

    Science.gov (United States)

    Bwanga, C O; Einarsson, S; Rodriguez-Martinez, H

    1991-01-01

    The post-thaw motility and the acrosome integrity of semen from 4 boars frozen with a programmable freezing machine, in mini (0.25 ml) and maxi (5 ml) plastic straws and in 10 x 5 cm Teflon FEP-plastic bags (0.12 mm thick, 5 ml), were compared. The freezing of the semen was monitored by way of thermo-couples placed in the straws and the bags. Three freezing programmes were used, namely A: from +5 degrees C, at a rate of 3 degrees C/min, to -6 degrees C, held for 1 min at -6 degrees C, and followed by a cooling rate of 20 degrees C/min to -100 degrees C; B: a similar curve except that there was no holding time at -6 degrees C and that the cooling rate was 30 degrees C/min, and C: from +5 degrees C to -100 degrees C, with a cooling rate of 35 degrees C/min, followed by storage in liquid N2. Despite the freezing curve assayed, both the mini-straws and the bags depicted much shorter freezing point plateaus as compared to the maxi-straws. Post-thaw sperm motility as well as the amount of normal apical ridges were equally significantly higher when semen was frozen in mini-straws or in bags than in maxi-straws. Significant differences in these post-thawing parameters were obtained between the freezing curves used. The stepwise freezing procedure A appeared as the best alternative for boar semen, considering this in vitro evaluation.

  13. Activity coefficients and free energies of nonionic mixed surfactant solutions from vapor-pressure and freezing-point osmometry.

    Science.gov (United States)

    MacNeil, Jennifer A; Ray, Gargi Basu; Leaist, Derek G

    2011-05-19

    The thermodynamic properties of mixed surfactant solutions are widely investigated, prompted by numerous practical applications of these systems and by interest in molecular association and self-organization. General techniques for measuring thermodynamic activities, such as isopiestic equilibration, are well-established for multicomponent solutions. Surprisingly, these techniques have not yet been applied to mixed surfactant solutions, despite the importance of the free energy for micelle stability. In this study, equations are developed for the osmotic coefficients of solutions of nonionic surfactant A + nonionic surfactant B. A mass-action model is used, with virial equations for the activity coefficients of the micelles and free surfactant monomer species. The equations are fitted to osmotic coefficients of aqueous decylsulfobetaine + dodecylsulfobetaine solutions measured by vapor-pressure and freezing-point osmometry. Equilibrium constants for mixed-micelle formation are calculated from the free monomer concentrations at the critical micelle concentrations. The derived activity coefficients of the micelles and free monomers indicate large departures from ideal solution behavior, even for dilute solutions of the surfactants. Stoichiometric activity coefficients of the total surfactant components are evaluated by Gibbs-Duhem integration of the osmotic coefficients. Relatively simple colligative property measurements hold considerable promise for free energy studies of multicomponent surfactant solutions. © 2011 American Chemical Society

  14. The nature of aqueous solutions: insights into multiple facets of chemistry and biochemistry from freezing-point depressions.

    Science.gov (United States)

    Zavitsas, Andreas A

    2010-05-25

    Contrary to current widely held beliefs, many concentrated aqueous solutions of electrolytes and nonelectrolytes behave ideally. For both, the same simple equation yields mole fractions of water that are equal to the theoretical activities of water. No empirical activity coefficients or ad hoc parameters are needed. Thermodynamic hydration numbers and the number of particles produced per mole of solute are found by searching freezing-point depression measurements, as if asking the water, "How much available water solvent is left and how many solute particles are there?" The results answer questions currently under debate: Do solutes alter the nature of water outside their immediate surroundings? What is the number of ion pairs formed by various electrolytes and what affects extents of their formation? What are some factors that cause precipitation of proteins, latexes, and so forth from aqueous solutions upon addition of other solutes (Hofmeister series)? Which nonelectrolytes form aggregates in water and what are the implications? Why do different solutes affect viscosity differently? How do ion-selective channels in cell membranes function at the molecular level?

  15. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  16. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    International Nuclear Information System (INIS)

    Liu, Yang; Ren, Li; Wang, Yingjun

    2014-01-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair

  17. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  18. On laboratory simulation and the effect of small temperature oscillations about the freezing point and ice formation on the evaporation rate of water on Mars.

    Science.gov (United States)

    Moore, Shauntae R; Sears, Derek W G

    2006-08-01

    We report measurements of the evaporation rate of water under Mars-like conditions (CO2 atmosphere at 7 mbar and approximately 0 degrees C) in which small temperature oscillations about the freezing point repeatedly formed and removed a thin layer of ice. We found that the average evaporation at 2.7 +/- 0.5 degrees C without an ice layer (corrected for the difference in gravity on Earth and on Mars) was 1.24 +/- 0.12 mm/h, while at -2.1 +/- 0.3 degrees C with an ice layer the average evaporation rate was 0.84 +/- 0.08 mm/h. These values are in good agreement with those calculated for the evaporation of liquid water and ice when it is assumed that evaporation only depends on diffusion and buoyancy. Our findings suggest that such differences in evaporation rates are entirely due to the temperature difference and that the ice layer has little effect on evaporation rate. We infer that the formation of thin layers of ice on pools of water on Mars does not significantly increase the stability of water on the surface of Mars.

  19. Serum protein and casein concentration: effect on pH and freezing point of milk with added CO2.

    Science.gov (United States)

    Ma, Y; Barbano, D M

    2003-05-01

    The objective of this study was to determine the effect of protein concentration and protein type [i.e., casein (CN) and serum protein (SP)] on pH (0 degree C) and freezing point (FP) of skim milk upon CO2 injection at 0 degree C. CN-free skim milks with increasing SP content (0, 3, and 6%) and skim milks with the same SP content (0.6%) but increasing CN content (2.4, 4.8, and 7.2%) were prepared using a combination of microfiltration and ultrafiltration processes. CO2 was injected into milks at 0 degree C using a continuous flow carbonation unit (230 ml/min). Increasing SP or CN increased milk buffering capacity and protein-bound mineral content. At the same CO2 concentration at 0 degree C, a milk with a higher SP or a higher CN concentration had more resistance to pH change and a greater extent of FP decrease. The buffering capacity provided by an increase of CN was contributed by both the CN itself and the colloidal salts solublized into the serum phase from CN upon carbonation. Skim milks with the same true protein content (3%), one with 2.4% CN plus 0.6% SP and one with 3% SP, were compared. At the same true protein content (3%), increasing the proportion of CN increased milk buffering capacity and protein-bound mineral content. Milk with a higher proportion of CN had more resistance to pH change and a greater extent of FP decrease at the same carbonation level at 0 degree C. Once CO2 was dissolved in the skim portion of a milk, the extent of pH reduction and FP depression depended on protein concentration and protein type (i.e., CN and SP).

  20. Analyse of relationships between freezing point and selected indicators of udder health state among cow, goat and sheep milk

    Directory of Open Access Journals (Sweden)

    Oto Hanuš

    2009-01-01

    Full Text Available Milk freezing point (MFP is important quality indicator. Aim was to analyse the relationships of MFP to selected udder health milk indicators (MIs by comparison between cows (reference, goats and sheep. Bulk milk samples came from 3 herds of Czech Fleckvieh (B, n 93 and 1 goat herd and sheep flock (White short-haired, W, n 60; Tsigai, C, n 60. Animal nutrition was performed under the typical country conditions. MIs which were investigated: DM, dry matter; SNF, solid non fat; L, lactose (all in %; SCC, somatic cell count (103 ml−1; EC, electrical conductivity (mS cm−1; MFP (°C; Na and K (in mg kg−1. W MFP was −0.5544 ± 0.0293, B −0.5221 ± 0.0043 and C −0.6048 ± 0.0691 °C. The B MFP was related to L (−0.36; P < 0.01, W was not related to L (−0.07; P > 0.05 and C was related to L (0.40; P < 0.01. These facts could be explainable by worse SCC geometric averages for used W (3,646 103 ml−1 and C (560 103 ml−1 milk as compared to B (159 103 ml−1. Only 0.5 and 10.5% of variations in MFP were explainable by variations in DM and SNF in B, 32.7 and 12.8% in W but already 49.4 and 45.0% in C. Higher C values were caused by high MFP variability, 11.8% (C versus 0.8% (B. There is possible to derive the more reliable MFP qualitative limits for more efficient monitoring rules of milk quality problems in B, W and C.

  1. Surface Charging and Points of Zero Charge

    CERN Document Server

    Kosmulski, Marek

    2009-01-01

    Presents Points of Zero Charge data on well-defined specimen of materials sorted by trademark, manufacturer, and location. This text emphasizes the comparison between particular results obtained for different portions of the same or very similar material and synthesizes the information published in research reports over the past few decades

  2. Freezing and melting of salt hydrates next to solid surfaces probed by infrared-visible sum frequency generation spectroscopy.

    Science.gov (United States)

    Anim-Danso, Emmanuel; Zhang, Yu; Dhinojwala, Ali

    2013-06-12

    Understanding the freezing of salt solutions near solid surfaces is important in many scientific fields. Here we use sum frequency generation (SFG) spectroscopy to study the freezing of a NaCl solution next to a sapphire substrate. During cooling we observe two transitions. The first corresponds to segregation of concentrated brine next to the sapphire surface as we cool the system down to the region where ice and brine phases coexist. At this transition, the intensity of the ice-like peak decreases, suggesting the disruption of hydrogen-bonding by sodium ions. The second transition corresponds to the formation of NaCl hydrates with abrupt changes in both the SFG intensity and the sharpness of spectral peaks. The similarity in the position of the SFG peaks with those observed using IR and Raman spectroscopy indicates the formation of NaCl·2H2O crystals next to the sapphire substrate. The melting temperatures of the hydrates are very similar to those reported for bulk NaCl·2H2O. This study enhances our understanding of nucleation and freezing of salt solutions on solid surfaces and the effects of salt ions on the structure of interfacial ice.

  3. Effect of temperature of CO2 injection on the pH and freezing point of milks and creams.

    Science.gov (United States)

    Ma, Y; Barbano, D M

    2003-05-01

    The objectives of this study were to measure the impact of CO2 injection temperature (0 degree C and 40 degrees C) on the pH and freezing point (FP) of (a) milks with different fat contents (i.e., 0, 15, 30%) and (b) creams with 15% fat but different fat characteristics. Skim milk and unhomogenized creams containing 15 and 30% fat were prepared from the same batch of whole milk and were carbonated at 0 and 40 degrees C in a continuous flow CO2 injection unit (230 ml/min). At 0 degree C, milk fat was mostly solid; at 40 degrees C, milk fat was liquid. At the same total CO2 concentration with CO2 injection at 0 degree C, milk with a higher fat content had a lower pH and FP, while with CO2 injection at 40 degrees C, milks with 0%, 15%, and 30% fat had the same pH. This indicated that less CO2 was dissolved in the fat portion of the milk when the CO2 was injected at 0 degree C than when it was injected at 40 degrees C. Three creams, 15% unhomogenized cream, 15% butter oil emulsion in skim milk, and 15% vegetable oil emulsion in skim milk were also carbonated and analyzed as described above. Vegetable oil was liquid at both 0 and 40 degrees C. At a CO2 injection temperature of 0 degree C, the 15% vegetable oil emulsion had a slightly higher pH than the 15% butter oil emulsion and the 15% unhomogenized cream, indicating that the liquid vegetable oil dissolved more CO2 than the mostly solid milk fat and butter oil. No difference in the pH or FP of the 15% unhomogenized cream and 15% butter oil emulsion was observed when CO2 was injected at 0 degree C, suggesting that homogenization or physical dispersion of milk fat globules did not influence the amount of CO2 dissolved in milk fat at a CO2 injection temperature of 0 degree C. At a CO2 injection temperature of 40 degrees C and at the same total CO2 concentration, the 15% unhomogenized cream, 15% vegetable oil emulsion, and 15% butter oil emulsion had similar pH. At the same total concentration of CO2 in cream, injection

  4. Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points

    Energy Technology Data Exchange (ETDEWEB)

    Angel, E.; Crossno, P.

    1999-01-06

    Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Often, however, points are generated such that there is additional information available to the reconstruction algorithm. We present a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that fills itself in.

  5. Spiraling Edge: Fast Surface Reconstruction from Partially Organized Sample Points

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Edward; Crossno, Patricia

    1999-07-12

    Many applications produce three-dimensional points that must be further processed to generate a surface. Surface reconstruction algorithms that start with a set of unorganized points are extremely time-consuming. Sometimes, however, points are generated such that there is additional information available to the reconstruction algorithm. We present Spiraling Edge, a specialized algorithm for surface reconstruction that is three orders of magnitude faster than algorithms for the general case. In addition to sample point locations, our algorithm starts with normal information and knowledge of each point's neighbors. Our algorithm produces a localized approximation to the surface by creating a star-shaped triangulation between a point and a subset of its nearest neighbors. This surface patch is extended by locally triangulating each of the points along the edge of the patch. As each edge point is triangulated, it is removed from the edge and new edge points along the patch's edge are inserted in its place. The updated edge spirals out over the surface until the edge encounters a surface boundary and stops growing in that direction, or until the edge reduces to a small hole that is filled by the final triangle.

  6. Correlative analysis of the freezing point and of the microbial content of milk produced by indigenous cows bred in a sub-Carpathian mountain area

    Directory of Open Access Journals (Sweden)

    Ramona Blidar

    2016-11-01

    Full Text Available Introduction: Mountainous geo-climatic conditions exert major beneficial influences on the health and welfare of lactating cows and by default on the compositional and microbiological parameters of milk and also on the sensory characteristics of traditional milk products from those areas. Aims: Through research in this paper we propose to analyze new criteria for evaluation of freshness and health of milk obtained in conditions of sub-Carpathian mountain areas, based on the freezing point - TNG (total number of germs correlation. Materials and methods: During a time of 2 years there were investigated physicochemical (analyzer Ekomilk M and microbiological (with automatic system Soleris milk samples commodity from the mountain area Gurghiu Valley. Milk samples were taken from cows of indigenous breed belonging to traditional households (n=650, to microfarms (n=11 and commercial farms (n=2. From each source were analyzed 10 samples of milk each month, having a total of 240 sample/lot or 720 per entire amount of processed milk. According to the followed objectives, the interpretations were mainly focused on development of the freezing point and of TNG. Statistical analysis was focused on the correlations between these parameters and seasonal influences. Results: The evolution of the freezing point was characterized by insignificant statistically differences (p = 0.071 and very close mean values (between - 0.5660C and - 0.5650 C among 3 samples and by significant statistically differences (p = 0.0001 between winter seasons with the highest values (- 0.5600C and autumn, with the lowest levels (-0.5710C. Regarding the evolution of the microbial content of raw milk is important to note the oscillations of TNG, which are influenced by variables: sampled and season. At the level of the lot, TNG has reached higher levels (71.210 CFU/mL in the case of milk from individual farms. The evolution of the seasonal influences revealed minimal levels (64.300 CFU

  7. Uncertainty analysis of point by point sampling complex surfaces using touch probe CMMs

    DEFF Research Database (Denmark)

    Barini, Emanuele; Tosello, Guido; De Chiffre, Leonardo

    2007-01-01

    The paper describes a study concerning point by point scanning of complex surfaces using tactile CMMs. A four factors-two level full factorial experiment was carried out, involving measurements on a complex surface configuration item comprising a sphere, a cylinder and a cone, combined in a singl...

  8. Calculus on Surfaces with General Closest Point Functions

    KAUST Repository

    März, Thomas

    2012-01-01

    The closest point method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys., 227 (2008), pp. 1943- 1961] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization of this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs. © 2012 Society for Industrial and Applied Mathematics.

  9. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation

    International Nuclear Information System (INIS)

    Sultana, Naznin; Wang Min

    2012-01-01

    Tissue engineering combines living cells with biodegradable materials and/or bioactive components. Composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramic with suitable properties are promising for bone tissue regeneration. In this paper, based on blending two biodegradable and biocompatible polymers, namely poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactic acid) (PLLA) with incorporated nano hydroxyapatite (HA), three-dimensional composite scaffolds with controlled microstructures and an interconnected porous structure, together with high porosity, were fabricated using an emulsion freezing/freeze-drying technique. The influence of various parameters involved in the emulsion freezing/freeze-drying technique was studied for the fabrication of good-quality polymer scaffolds based on PHBV polymers. The morphology, mechanical properties and crystallinity of PHBV/PLLA and HA in PHBV/PLLA composite scaffolds and PHBV polymer scaffolds were studied. The scaffolds were coated with collagen in order to improve wettability. During in vitro biological evaluation study, it was observed that SaOS-2 cells had high attachment on collagen-coated scaffolds. Significant improvement in cell proliferation and alkaline phosphatase activity for HA-incorporated composite scaffolds was observed due to the incorporation of HA. After 3 and 7 days of culture on all scaffolds, SaOS-2 cells also had normal morphology and growth. These results indicated that PHBV/PLLA-based scaffolds fabricated via an emulsion freezing/freeze-drying technique were favorable sites for osteoblastic cells and are promising for the applications of bone tissue engineering.

  10. Response Surface Optimization of Lyoprotectant from Amino Acids and Salts for Bifidobacterium Bifidum During Vacuum Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Qi Kangru

    2017-12-01

    Full Text Available High quality probiotic powder can lay the foundation for the commercial production of functional dairy products. The freeze-drying method was used for the preservation of microorganisms, having a deleterious effect on the microorganisms viability. In order to reduce the damage to probiotics and to improve the survival rate of probiotics during freeze-drying, the Response Surface Methodology (RSM was adopted in this research to optimize lyoprotectant composed of amino acids (glycine, arginine and salts (NaHCO3 and ascorbic acid. Probiotic used was Bifidobacterium bifidum BB01. The regression model (p<0.05 was obtained by Box–Behnken experiment design, indicating this model can evaluate the freeze-drying survival rate of B. bifidum BB01 under different lyoprotectants. The results indicated these concentrations as optimal (in W/V: glycine 4.5%, arginine 5.5%, NaHCO3 0.8% and ascorbic acid 2.3%, respectively. Under these optimal conditions, the survival rate of lyophilized powder of B. bifidum BB01 was significantly increased by 80.9% compared to the control group (6.9±0.62%, the results were agreement with the model prediction value (88.7%.

  11. Leidenfrost point reduction on micro-patterned metallic surface

    NARCIS (Netherlands)

    Arnaldo del Cerro, D.; Gomez Marin, Alvaro; Römer, Gerardus Richardus, Bernardus, Engelina; Pathiraj, B.; Lohse, Detlef; Huis in 't Veld, Bert

    2012-01-01

    Droplets are able to levitate when deposited over a hot surface exceeding a critical temperature. This is known as the Leidenfrost effect. This phenomenon occurs when the surface is heated above the so-called Leidenfrost point (LFP), above which the vapor film between the droplet and hot surface is

  12. Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study.

    Science.gov (United States)

    Wang, Jun; Apte, Pankaj A; Morris, James R; Zeng, Xiao Cheng

    2013-09-21

    Stockmayer fluids are a prototype model system for dipolar fluids. We have computed the freezing temperatures of Stockmayer fluids at zero pressure using three different molecular-dynamics simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature two-phase coexistence method, and the constant-pressure and constant-enthalpy two-phase coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with the dimensionless dipole moment μ*=1, √2, √3 is 0.656 ± 0.001, 0.726 ± 0.002, and 0.835 ± 0.005, respectively. The freezing temperature increases with the dipolar strength. Moreover, for the first time, the solid-liquid interfacial free energies γ of the fcc (111), (110), and (100) interfaces are computed using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, i.e., γ100 > γ110 > γ111.

  13. Study of Huizhou architecture component point cloud in surface reconstruction

    Science.gov (United States)

    Zhang, Runmei; Wang, Guangyin; Ma, Jixiang; Wu, Yulu; Zhang, Guangbin

    2017-06-01

    Surface reconfiguration softwares have many problems such as complicated operation on point cloud data, too many interaction definitions, and too stringent requirements for inputing data. Thus, it has not been widely popularized so far. This paper selects the unique Huizhou Architecture chuandou wooden beam framework as the research object, and presents a complete set of implementation in data acquisition from point, point cloud preprocessing and finally implemented surface reconstruction. Firstly, preprocessing the acquired point cloud data, including segmentation and filtering. Secondly, the surface’s normals are deduced directly from the point cloud dataset. Finally, the surface reconstruction is studied by using Greedy Projection Triangulation Algorithm. Comparing the reconstructed model with the three-dimensional surface reconstruction softwares, the results show that the proposed scheme is more smooth, time efficient and portable.

  14. Numbers of center points appropriate to blocked response surface experiments

    Science.gov (United States)

    Holms, A. G.

    1979-01-01

    Tables are given for the numbers of center points to be used with blocked sequential designs of composite response surface experiments as used in empirical optimum seeking. The tables also give the star point radii for exact orthogonal blocking. The center point options vary from a lower limit of one to an upper limit equal to the numbers proposed by Box and Hunter for approximate rotatability and uniform variance, and exact orthogonal blocking. Some operating characteristics of the proposed options are described.

  15. Gibbs free energy, surface stress and melting point of nanoparticle

    International Nuclear Information System (INIS)

    Luo, Wenhua; Hu, Wangyu

    2013-01-01

    Two approaches to calculating Gibbs free energy of nanoparticle are compared. It is found that the contribution from the vibrational entropy of surface atoms of nanoparticle to its Gibbs free energy can be ignored, and Jiang et al.'s formula [J. Phys. Chem. B 105 (2001) 6275] [27] for calculating surface stress is only valid around room temperature. Furthermore, an approximate relationship between surface stress and surface free energy of nanoparticles is revealed. Finally, the reason why effect of size dependent surface energy on melting point of nanoparticle was neglected is clarified

  16. Surface field theories of point group symmetry protected topological phases

    Science.gov (United States)

    Huang, Sheng-Jie; Hermele, Michael

    2018-02-01

    We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.

  17. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered......The electrical properties of semiconductor surfaces have played a decisive role in one of the most important discoveries of the last century, transistors. In the 1940s, the concept of surface states-new electron energy levels characteristic of the surface atoms-was instrumental in the fabrication...... of the first point-contact transistors, and led to the successful fabrication of field-effect transistors. However, to this day, one property of semiconductor surface states remains poorly understood, both theoretically and experimentally. That is the conduction of electrons or holes directly through...

  18. Assessment of Response Surface Models using Independent Confirmation Point Analysis

    Science.gov (United States)

    DeLoach, Richard

    2010-01-01

    This paper highlights various advantages that confirmation-point residuals have over conventional model design-point residuals in assessing the adequacy of a response surface model fitted by regression techniques to a sample of experimental data. Particular advantages are highlighted for the case of design matrices that may be ill-conditioned for a given sample of data. The impact of both aleatory and epistemological uncertainty in response model adequacy assessments is considered.

  19. Electronic transport at semiconductor surfaces - from point-contact transistor to micro-four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Grey, Francois

    2002-01-01

    show that this type of conduction is measurable using new types of experimental probes, such as the multi-tip scanning tunnelling microscope and the micro-four-point probe. The resulting electronic transport properties are intriguing, and suggest that semiconductor surfaces should be considered...... of the first point-contact transistors, and led to the successful fabrication of field-effect transistors. However, to this day, one property of semiconductor surface states remains poorly understood, both theoretically and experimentally. That is the conduction of electrons or holes directly through...

  20. Magneto-caloric effect of a Gd50Co50 amorphous alloy near the freezing point of water

    Directory of Open Access Journals (Sweden)

    L. Xia

    2015-09-01

    Full Text Available In the present work, we report the magneto-caloric effect (MCE of a binary Gd50Co50 amorphous alloy near the freezing temperature of water. The Curie temperature of Gd50Co50 amorphous ribbons is about 267.5 K, which is very close to room temperature. The peak value of the magnetic entropy change (-ΔSmpeak and the resulting adiabatic temperature rise (ΔTad. of the Gd50Co50 amorphous ribbons is much higher than that of any other amorphous alloys previously reported with a Tc near room temperature. On the other hand, although the -ΔSmpeak of Gd50Co50 amorphous ribbons is not as high as those of crystalline alloys near room temperature, its refrigeration capacity (RC is still much larger than the RC values of these crystalline alloys. The binary Gd50Co50 amorphous alloy provides a basic alloy for developing high performance multi-component amorphous alloys near room temperature.

  1. Classification of simple surface points and a global theorem for simple closed surfaces in three-dimensional digital spaces

    Science.gov (United States)

    Chen, Li; Zhang, Jianping

    1993-12-01

    In this paper, we present two theorems: classification theorem and corner point theorem for closed digital surfaces. The classification theorem deals with the categorization of simple surface points and states that there are exactly six different types of simple surface points. On the basis of the classification theorem and Euler formula on planar graph, we have proved the corner point theorem: Any simple closed surface has at least eight corner points, where a corner point of a closed surface is a point in the surface which has exactly three adjacent points in the closed surface. Another result reported in this paper is that any simple closed surface has at least fourteen points.

  2. Plasma surface interactions at the JET X-point tiles

    International Nuclear Information System (INIS)

    Martinelli, A.P.; Behrisch, R.; Coad, J.P.; Kock, L. de

    1989-01-01

    Operation with a magnetic divertor, which leads to a zero poloidal field inside the volume of the discharge vessel (the X-point) has led to substantial improvements in confinement time in JET. In this mode the diverted plasma is conducted to a large number of graphite tiles (X-point tiles) near the top of the vessel. The power handling capability of these tiles limits the maximum additional heating power to the discharge. The study of the surface modifications of the X-point tiles of JET is therefore of interest both to correlate the magnetic configuration and plasma particle and energy fluxes with the surface modifications, and also to get information about the erosion and deposition at these wall areas. (author) 5 refs., 4 figs

  3. PolyFit: Polygonal Surface Reconstruction from Point Clouds

    KAUST Repository

    Nan, Liangliang

    2017-12-25

    We propose a novel framework for reconstructing lightweight polygonal surfaces from point clouds. Unlike traditional methods that focus on either extracting good geometric primitives or obtaining proper arrangements of primitives, the emphasis of this work lies in intersecting the primitives (planes only) and seeking for an appropriate combination of them to obtain a manifold polygonal surface model without boundary.,We show that reconstruction from point clouds can be cast as a binary labeling problem. Our method is based on a hypothesizing and selection strategy. We first generate a reasonably large set of face candidates by intersecting the extracted planar primitives. Then an optimal subset of the candidate faces is selected through optimization. Our optimization is based on a binary linear programming formulation under hard constraints that enforce the final polygonal surface model to be manifold and watertight. Experiments on point clouds from various sources demonstrate that our method can generate lightweight polygonal surface models of arbitrary piecewise planar objects. Besides, our method is capable of recovering sharp features and is robust to noise, outliers, and missing data.

  4. SURFACE FITTING FILTERING OF LIDAR POINT CLOUD WITH WAVEFORM INFORMATION

    Directory of Open Access Journals (Sweden)

    S. Xing

    2017-09-01

    Full Text Available Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from “WATER (Watershed Allied Telemetry Experimental Research” are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.

  5. Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information

    Science.gov (United States)

    Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.

    2017-09-01

    Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.

  6. Fitting a Point Cloud to a 3d Polyhedral Surface

    Science.gov (United States)

    Popova, E. V.; Rotkov, S. I.

    2017-05-01

    The ability to measure parameters of large-scale objects in a contactless fashion has a tremendous potential in a number of industrial applications. However, this problem is usually associated with an ambiguous task to compare two data sets specified in two different co-ordinate systems. This paper deals with the study of fitting a set of unorganized points to a polyhedral surface. The developed approach uses Principal Component Analysis (PCA) and Stretched grid method (SGM) to substitute a non-linear problem solution with several linear steps. The squared distance (SD) is a general criterion to control the process of convergence of a set of points to a target surface. The described numerical experiment concerns the remote measurement of a large-scale aerial in the form of a frame with a parabolic shape. The experiment shows that the fitting process of a point cloud to a target surface converges in several linear steps. The method is applicable to the geometry remote measurement of large-scale objects in a contactless fashion.

  7. Effects of temperatures near the freezing point on N2O emissions, denitrification and on the abundance and structure of nitrifying and denitrifying soil communities.

    Science.gov (United States)

    Wertz, Sophie; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Tatti, Enrico; Chantigny, Martin H; Filion, Martin

    2013-01-01

    Climate warming in temperate regions may lead to decreased soil temperatures over winter as a result of reduced snow cover. We examined the effects of temperatures near the freezing point on N(2)O emissions, denitrification, and on the abundance and structure of soil nitrifiers and denitrifiers. Soil microcosms supplemented with NO3 - and/or NO3 - plus red clover residues were incubated for 120 days at -4 °C, -1 °C, +2 °C or +5 °C. Among microcosms amended with residues, N(2)O emission and/or denitrification increased with increasing temperature on Days 2 and 14. Interestingly, N(2)O emission and/or denitrification after Day 14 were the greatest at -1 °C. Substantial N(2) O emissions were only observed on Day 2 at +2 °C and +5 °C, while at -1 °C, N(2)O emissions were consistently detected over the duration of the experiment. Abundances of ammonia oxidizing bacteria (AOB) and archaea (AOA), Nitrospira-like bacteria and nirK denitrifiers were the lowest in soils at -4 °C, while abundances of Nitrobacter-like bacteria and nirS denitrifiers did not vary among temperatures. Community structures of nirK and nirS denitrifiers and Nitrobacter-like bacteria shifted between below-zero and above-zero temperatures. Structure of AOA and AOB communities also changed but not systematically among frozen and unfrozen temperatures. Results indicated shifts in some nitrifier and denitrifier communities with freezing and a surprising stimulation of N(2)O emissions at -1 °C when NO3 - and C are present. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method

  9. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter

  10. Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water.

    Science.gov (United States)

    Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek

    2014-01-01

    Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting.

  11. iTRAQ-based quantitative proteomics reveals the biochemical mechanism of cold stress adaption of razor clam during controlled freezing-point storage.

    Science.gov (United States)

    Wang, Chong; Chu, Jianjun; Fu, Linglin; Wang, Yanbo; Zhao, Feng; Zhou, Deqing

    2018-05-01

    Razor clam is a major cultivated shellfish of great economic importance and high nutritional value. Due to high corruptible potential, razor clam is generally preserved by controlled freezing-point storage (CFPS). Here, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling to investigate the biochemical mechanism of cold stress adaption in razor clam during CFPS. In total, 369 proteins were quantified, and 27 of them were identified as differentially expressed proteins during CFPS, mostly involved in energy metabolism process, DNA duplication and protein synthesis, and stress response, specifically, MAPK is the predominant pathway. Further qPCR results revealed H2A and S6K 2 alpha to be the critical post-transcriptionally regulated genes. Our results provided proteomics information with respect to the biochemical mechanism of cold stress adaption in razor clam, shed light on the further elongation of razor clams storage period, and help clarify the novel mechanisms of cold tolerance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology.

    Science.gov (United States)

    Han, Lingjuan; Pu, Taixun; Wang, Xi; Liu, Beiling; Wang, Yonghong; Feng, Juntao; Zhang, Xing

    2018-02-16

    Response surface methodology (RSM) is a commonly used system to optimize cryoprotectants of biocontrol strains when they are subjected to preparations. Various kinds of cryoprotectants and centrifugal conditions were tested to improve the survival of biocontrol agents after freeze-drying. To determine the optimum levels of incorporation of three cryoprotectants (glucose, trehalose and xylitol) in the freeze-drying process of strain Bacillus amyloliquefaciens B1408, a range of experiments based on Box-Behnken Design (BBD) were conducted. The results indicated that the suitable centrifugation conditions were 5000 r/min,10 min and the optimum concentrations of cryoprotectants were glucose 1.00%, trehalose 4.74% and xylitol 1.45%. The proven survival rate of cells after freeze-drying was 91.24%. These results convincingly demonstrated that freeze-drying could be used to preparation of biocontrol strain B1408. This study provides a theoretical basis for commercial possibilities and formulation development. Copyright © 2018. Published by Elsevier Inc.

  13. Influence of sampling points on inspection accuracy of free-form surfaces using coordinate measuring machine

    Science.gov (United States)

    Xie, Mengmin; Chen, Yueping; Zhang, Anshe; Fang, Rui

    2018-03-01

    The inspection accuracy of free-form surfaces is mainly affected by the processing, the number of sampling points, the distribution of sampling points, the measurement equipment and other factors. This paper focuses on the influence of sampling points on inspection accuracy of free-form surfaces, and isoparametric distribution was used in sample point distribution. Different sampling points number was compared on a same surface and a probe, the measurement data were analyzed and the optimal sampling points number was obtained.

  14. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  15. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  16. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value.

    Science.gov (United States)

    Liu, Jinjie; Rice, Adam; McGlew, Kathleen; Shaw, Vincent; Park, Hyunwoo; Clemente, Tom; Pollard, Mike; Ohlrogge, John; Durrett, Timothy P

    2015-08-01

    Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Near-surface ice-rich regolith in mid Utopia Planitia, Mars, and its formation by thaw-freeze cycling

    Science.gov (United States)

    Soare, R. J.; Conway, S. J.

    2012-12-01

    material derived from the north polar cap deposits and transported to the mid-latitudes by katabatic winds. Fifth, the ice-enrichment of the PUPU is distinct from and independent of loess deposition and accumulation. As is the case with their presumed analogues on Earth, we hypothesise that the Martian PPLs form in fine-grained sediments that have accumulated episodically; these sediments undergo post-deposition infiltration by melt water, possibly derived of surface snow or ice precipitated atmospherically. Fine-grained sediments facilitate cryosuction, which is the attraction of water towards a freezing front, and the formation of segregated ice lenses. Metre-thick (near-surface) ice-cemented permafrost has been observed in the Antarctic Dry Valleys. Diffusive exchange between the atmosphere and the near-surface sediments is the process by which ice cementation could have taken place. However, diffusive exchanges to the full depth of the PUPU are not considered to be possible unless this occurs episodically.

  18. Enhancement of viability of a probiotic Lactobacillus strain for poultry during freeze-drying and storage using the response surface methodology.

    Science.gov (United States)

    Khoramnia, Anahita; Abdullah, Norhani; Liew, Siew Ling; Sieo, Chin Chin; Ramasamy, Kalavathy; Ho, Yin Wan

    2011-02-01

    A rotatable central composite design (CCD) was used to study the effect of cryoprotectants (skim milk, sucrose and lactose) on the survival rate of a probiotic Lactobacillus strain, L. reuteri C10, for poultry, during freeze-drying and storage. Using response surface methodology, a quadratic polynomial equation was obtained for response value by multiple regression analyses: Y = 8.59546-0.01038 X(1)-0.09382 X(2)-0.07771 X(3)-0.054861 X(1)(2)-0.04603 X(3)(2)-0.10938 X(1)X(2). Based on the model predicted, sucrose exerted the strongest effect on the survival rate. At various combinations of cryoprotectants, the viability loss of the cells after freeze-drying was reduced from 1.65 log colony forming units (CFU)/mL to 0.26-0.66 log CFU/mL. The estimated optimum combination for enhancing the survival rate of L. reuteri C10 was 19.5% skim milk, 1% sucrose and 9% lactose. Verification experiments confirmed the validity of the predicted model. The storage life of freeze-dried L. reuteri C10 was markedly improved when cryoprotectants were used. At optimum combination of the cryoprotectants, the survival rates of freeze-dried L. reuteri C10 stored at 4°C and 30°C for 6 months were 96.4% and 73.8%, respectively. Total viability loss of cells which were not protected by cryoprotectants occurred after 12 and 8 weeks of storage at 4°C and 30°C, respectively. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Animal Science.

  19. Uncertainty analysis of point-by-point sampling complex surfaces using touch probe CMMs DOE for complex surfaces verification with CMM

    DEFF Research Database (Denmark)

    Barini, Emanuele Modesto; Tosello, Guido; De Chiffre, Leonardo

    2010-01-01

    The paper describes a study concerning point-by-point sampling of complex surfaces using tactile CMMs. A four factor, two level completely randomized factorial experiment was carried out, involving measurements on a complex surface configuration item comprising a sphere, a cylinder and a cone, co...

  20. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  1. Robust surface registration using N-points approximate congruent sets

    Directory of Open Access Journals (Sweden)

    Yao Jian

    2011-01-01

    Full Text Available Abstract Scans acquired by 3D sensors are typically represented in a local coordinate system. When multiple scans, taken from different locations, represent the same scene these must be registered to a common reference frame. We propose a fast and robust registration approach to automatically align two scans by finding two sets of N-points, that are approximately congruent under rigid transformation and leading to a good estimate of the transformation between their corresponding point clouds. Given two scans, our algorithm randomly searches for the best sets of congruent groups of points using a RANSAC-based approach. To successfully and reliably align two scans when there is only a small overlap, we improve the basic RANSAC random selection step by employing a weight function that approximates the probability of each pair of points in one scan to match one pair in the other. The search time to find pairs of congruent sets of N-points is greatly reduced by employing a fast search codebook based on both binary and multi-dimensional lookup tables. Moreover, we introduce a novel indicator of the overlapping region quality which is used to verify the estimated rigid transformation and to improve the alignment robustness. Our framework is general enough to incorporate and efficiently combine different point descriptors derived from geometric and texture-based feature points or scene geometrical characteristics. We also present a method to improve the matching effectiveness of texture feature descriptors by extracting them from an atlas of rectified images recovered from the scan reflectance image. Our algorithm is robust with respect to different sampling densities and also resilient to noise and outliers. We demonstrate its robustness and efficiency on several challenging scan datasets with varying degree of noise, outliers, extent of overlap, acquired from indoor and outdoor scenarios.

  2. Quantifying the effects of spring freeze-thaw transitions and snowpack dynamics on surface albedo change using satellite optical and microwave remote sensing

    Science.gov (United States)

    Kim, Y.; Kimball, J. S.; Du, J.; Glassy, J.; Schaaf, C.

    2016-12-01

    The freeze-thaw (FT) state parameter from satellite microwave remote sensing is closely linked to changes in surface energy exchange, evapotranspiration, snowmelt dynamics, and vegetation phenology over high northern lands affected by seasonally frozen temperatures. Direct impacts of snowpack melt and FT transitions on spring surface energy exchange and vegetation activity are largely unknown. In this study, we use a finer scale satellite microwave Earth System Data Record of daily landscape freeze-thaw status (FT-ESDR) developed from 6-km 36.5 GHz, vertically polarized brightness temperature (Tb) retrievals from NASA AMSR-E and JAXA AMSR2 sensors over a polar grid. The FT retrieval uses a modified seasonal threshold algorithm that classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated using surface air temperatures (SAT) downscaled from coarser ERA-Interim reanalysis data and ancillary elevations, and environmental lapse rates. The 6 km FT record shows improved accuracy against in-situ SAT measurements from regional weather stations and enhanced delineation of FT heterogeneity relative to a coarser 25-km global FT-ESDR. The polar FT-ESDR is compared against satellite optical-IR sensor based vegetation phenology and shortwave broadband albedo records. These results show that the spring FT transition coincides with a large albedo decrease, rapid SAT warming and vegetation growing season onset over Alaska. Snowpack melt seasons identified by integrating satellite FT and snow cover extent records reveal the timing, extent and duration of wet snow conditions and associated shifts in surface albedo and NDVI. These results also reveal linkages between FT related snowpack melt onset and associated changes in surface energy partitioning and vegetation activity.

  3. Surface current equilibria from a geometric point of view

    International Nuclear Information System (INIS)

    Kaiser, R.; Salat, A.

    1993-04-01

    This paper addresses the inverse problem of the existence of surface current MHD equilibria in toroidal geometry with vanishing magnetic field inside. Inverse means that the plasma-vacuum interface rather than the external wall or conductors are given and the latter remain to be determined. This makes a reformulation of the problem possible in geometric terms: What toroidal surfaces with analytic parameterization allow a simple analytic covering by geodesics? If such a covering by geodesics (field lines) exists, their orthogonal trajectories (current lines) also form a simple covering and are described by a function satisfying a nonlinear partial differential equation of the Hamilton-Jacobi type whose coefficients are combinations of the metric elements of the surface. All known equilibria - equilibria with zero and infinite rotational transform and the symmetric ones in the case of finite rotational transform - turn out to be solutions of separable cases of that equation and allow a unified description if the toroidal surface is parametrized in the moving trihedral associated with a closed curve. Analogously to volume current equilibria, the only continuous symmetries compatible with separability are plane, helical and axial symmetry. In the nonseparable case numerical evidence is presented for cases with chaotic behaviour of geodesics, thus restricting possible equilibria for these surfaces. For weak deviation from axisymmetry KAM-type behaviour is observed, i.e. destruction of geodesic coverings with a low rational rotational transform and preservation of those with irrational rotational transform. A previous attempt to establish three-dimensional surface current equilibria on the basis of the KAM theorem is rejected as incomplete, and a complete proof of the existence of equilibria in the weakly nonaxisymmetric case, based on the twist theorem for mappings, is given. Finally, for a certain class of strong deviations from axisymmetry an analytic criterion is

  4. Heat and Mass Transfer of Droplet Vacuum Freezing Process Based on Dynamic Mesh

    Directory of Open Access Journals (Sweden)

    Lili Zhao

    2014-01-01

    Full Text Available A numerical simulation using dynamic mesh method by COMSOL has been developed to model heat and mass transfer during vacuum freezing by evaporation of a single droplet. The initial droplet diameter, initial droplet temperature, and vacuum chamber pressure effect are studied. The surface and center temperature curve was predicted to show the effect. The mass transfer rate and radius displacement were also calculated. The results show the dynamic mesh shows well the freezing process with the radius reduction of droplet. The initial droplet diameter, initial droplet temperature, and vacuum pressure have obvious effect on freezing process. The total freezing time is about 200 s, 300 s, and 400 s for droplet diameter 7.5 mm, 10.5 mm, and 12.5 mm, respectively. The vacuum pressure less than 200 Pa is enough for the less time to freezing the droplet, that is, the key point in freezing time. The initial droplet temperature has obvious effect on freezing but little effect on freezing temperature.

  5. Preservation of flavor in freeze dried green beans

    Science.gov (United States)

    Huber, C. S.; Heidelbaugh, N. D.; Davis, D.

    1973-01-01

    Before freeze drying, green beans are heated to point at which their cell structure is altered. Beans freeze dried with altered cell structure have improved rehydration properties and retain color, flavor, and texture.

  6. Freezing on a sphere

    Science.gov (United States)

    Guerra, Rodrigo E.; Kelleher, Colm P.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2018-02-01

    The best understood crystal ordering transition is that of two-dimensional freezing, which proceeds by the rapid eradication of lattice defects as the temperature is lowered below a critical threshold. But crystals that assemble on closed surfaces are required by topology to have a minimum number of lattice defects, called disclinations, that act as conserved topological charges—consider the 12 pentagons on a football or the 12 pentamers on a viral capsid. Moreover, crystals assembled on curved surfaces can spontaneously develop additional lattice defects to alleviate the stress imposed by the curvature. It is therefore unclear how crystallization can proceed on a sphere, the simplest curved surface on which it is impossible to eliminate such defects. Here we show that freezing on the surface of a sphere proceeds by the formation of a single, encompassing crystalline ‘continent’, which forces defects into 12 isolated ‘seas’ with the same icosahedral symmetry as footballs and viruses. We use this broken symmetry—aligning the vertices of an icosahedron with the defect seas and unfolding the faces onto a plane—to construct a new order parameter that reveals the underlying long-range orientational order of the lattice. The effects of geometry on crystallization could be taken into account in the design of nanometre- and micrometre-scale structures in which mobile defects are sequestered into self-ordered arrays. Our results may also be relevant in understanding the properties and occurrence of natural icosahedral structures such as viruses.

  7. Freezing on a sphere.

    Science.gov (United States)

    Guerra, Rodrigo E; Kelleher, Colm P; Hollingsworth, Andrew D; Chaikin, Paul M

    2018-02-14

    The best understood crystal ordering transition is that of two-dimensional freezing, which proceeds by the rapid eradication of lattice defects as the temperature is lowered below a critical threshold. But crystals that assemble on closed surfaces are required by topology to have a minimum number of lattice defects, called disclinations, that act as conserved topological charges-consider the 12 pentagons on a football or the 12 pentamers on a viral capsid. Moreover, crystals assembled on curved surfaces can spontaneously develop additional lattice defects to alleviate the stress imposed by the curvature. It is therefore unclear how crystallization can proceed on a sphere, the simplest curved surface on which it is impossible to eliminate such defects. Here we show that freezing on the surface of a sphere proceeds by the formation of a single, encompassing crystalline 'continent', which forces defects into 12 isolated 'seas' with the same icosahedral symmetry as footballs and viruses. We use this broken symmetry-aligning the vertices of an icosahedron with the defect seas and unfolding the faces onto a plane-to construct a new order parameter that reveals the underlying long-range orientational order of the lattice. The effects of geometry on crystallization could be taken into account in the design of nanometre- and micrometre-scale structures in which mobile defects are sequestered into self-ordered arrays. Our results may also be relevant in understanding the properties and occurrence of natural icosahedral structures such as viruses.

  8. A surface containing a line and a circle through each point is a quadric

    KAUST Repository

    Nilov, Fedor K.

    2012-06-20

    We prove that a surface in 3-dimensional Euclidean space containing a line and a circle through each point is a quadric. We also give some particular results on the classification of surfaces containing several circles through each point. © 2012 Springer Science+Business Media B.V.

  9. Impacts of the Air Temperature Rising on the Soil Freezing-thawing Processes and the Surface Fluxes on the Tibetan Plateau

    Science.gov (United States)

    Zheng, G.; Yang, D.

    2017-12-01

    The Tibetan Plateau (TP) is the highest plateau all over the world and plays an essential role on the global water cycle and the atmospheric circulation, because many large rivers originating there and it acts as a "heat source" to pump the Asian summer monsoon. During the past 50 years, the TP is among the most sensitive regions to the climatic warming. Many previous researches have been delved into the impacts of the permafrost degradation there. But the variations and the impacts of the changes of the seasonally frozen ground, which consists 50 % of the plateau region, have been less discussed. Thus, this study uses the geomorphology-based eco-hydrological model to simulate the long-term land surface processes on 37 after picked China Meteorological Administration stations. And, these stations uniformly locate within the seasonally frozen regions of the TP. The modelled freezing-thawing cycles have successfully reproduced the observations with the correlation squares of 0.8 (significance level p controlled by the precipitation instead. For the western region, the near-surface thawing increases available liquid moisture significantly (p < 0.05) and so does the evaporation there. Furthermore, the advanced freezing ending time during the early spring has more climatic and biological meanings. The weakened sensible heat would influence the following summer monsoon and redistribute the precipitation over the southeastern Asia. Also, as the incoming radiation and the latent heat keeping stable, less sensible heat fluxes would lead to more ground heat storage which provides a better thermal condition for the vegetation growth.

  10. The freezing and supercooling of garlic (Allium sativum L.)

    Energy Technology Data Exchange (ETDEWEB)

    James, Christian; Seignemartin, Violaine; James, Stephen J. [Food Refrigeration and Process Engineering Research Centre (FRPERC), University of Bristol, Churchill Building, Langford, Bristol BS40 5DU (United Kingdom)

    2009-03-15

    This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (-2.7 C) without freezing. The nucleation point or 'metastable limit temperature' (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between -7.7 and -14.6 C. Peeled garlic cloves were stored under static air conditions at temperatures between -6 and -9 C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at -6 C without freezing. (author)

  11. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... microscopy. Measurements on Si(111) surfaces in ultrahigh vacuum reveal that the Si(111)-root 3x root3-Ag structure induced by a monolayer of Ag atoms has a four-point resistance two orders of magnitude lower than that of the Si(111)-7x7 clean surface. We attribute this remarkable difference to direct...

  12. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have

  13. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Cheung, Yam [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, 75390 and Department of Radiation Oncology, University of Maryland, College Park, Maryland 20742 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  14. A Theory of Immersion Freezing

    Science.gov (United States)

    Barahona, Donifan

    2017-01-01

    Immersion freezing is likely involved in the initiation of precipitation and determines to large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory which however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface, rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. Predicted nucleation rates show good agreement with observations for a diverse set of materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  15. Improved Criteria for Acceptable Yield Point Elongation in Surface Critical Steels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David Matlock; Dr. John Speer

    2007-05-30

    Yield point elongation (YPE) is considered undesirable in surface critical applications where steel is formed since "strain lines" or Luders bands are created during forming. This project will examine in detail the formation of luders bands in industrially relevant strain states including the influence of substrate properties and coatings on Luders appearance. Mechanical testing and surface profilometry were the primary methods of investigation.

  16. Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Aono, M.

    1997-01-01

    We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...

  17. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  18. Fundamentals of freeze-drying.

    Science.gov (United States)

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  19. A Survey on Methods for Reconstructing Surfaces from Unorganized Point Sets

    Directory of Open Access Journals (Sweden)

    Vilius Matiukas

    2011-08-01

    Full Text Available This paper addresses the issue of reconstructing and visualizing surfaces from unorganized point sets. These can be acquired using different techniques, such as 3D-laser scanning, computerized tomography, magnetic resonance imaging and multi-camera imaging. The problem of reconstructing surfaces from their unorganized point sets is common for many diverse areas, including computer graphics, computer vision, computational geometry or reverse engineering. The paper presents three alternative methods that all use variations in complementary cones to triangulate and reconstruct the tested 3D surfaces. The article evaluates and contrasts three alternatives.Article in English

  20. The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces

    KAUST Repository

    Chen, Yujia

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general curved surfaces. Based on the closest point representation of the underlying surface, we formulate an embedding equation for the surface elliptic problem, then discretize it using standard finite differences and interpolation schemes on banded but uniform Cartesian grids. We prove the convergence of the difference scheme for the Poisson\\'s equation on a smooth closed curve. In order to solve the resulting large sparse linear systems, we propose a specific geometric multigrid method in the setting of the closest point method. Convergence studies in both the accuracy of the difference scheme and the speed of the multigrid algorithm show that our approaches are effective.

  1. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  2. Protein freeze concentration and micro-segregation analysed in a temperature-controlled freeze container

    Directory of Open Access Journals (Sweden)

    Ulrich Roessl

    2015-06-01

    Full Text Available To examine effects of varied freezing conditions on the development of spatial heterogeneity in the frozen protein solution, macroscopic freeze concentration and micro-segregation of bovine serum albumin (BSA were investigated in a temperature-controlled 200-ml freeze container. Freezing to −40 °C promoted formation of protein concentration gradients (69–114 μg ml−1 in frozen samples taken from 12 different freezer positions, whereby slow freezing in 4 h or longer facilitated the evolution of strong spatial heterogeneities and caused local concentration increases by 1.15-fold relative to the initial protein concentration (100 μg ml−1. To visualize protein micro-segregation during phase separation, BSA was conjugated with fluorescein isothiocyanate and confocal laser scanning fluorescence microscopy was used to localize and size the freeze-concentrated protein regions. Slow freezing resulted in distinctly fewer and larger protein domains in the frozen bulk than fast freezing. Surface stress on the protein during freezing would therefore be minimized at low cooling rates; microscopic freeze concentration would however be highest under these conditions, potentially favoring protein aggregation.

  3. INVESTIGATION OF SOLAR ABSORPTANCE OF BUILDING EXTERNAL SURFACES FROM HEAT FLUX POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    Meral ÖZEL

    2006-02-01

    Full Text Available In this study, solar absorptance of external surfaces of buildings has been numerically investigated from the heat gain and losses point of view. For this purpose, external surface solar absorptance was icreased from 0 to 1with an ratio of 0.1 and, for the summer and winter conditions, heat fluxs was calculated by considering orientations of the wall and its roof for brick and concrete structure materials. Besides, external surface absorptance was assumed as 0.2, 0.5 and 0.9, respectively. Than, heat gain and losses were calculated to insulation thickness increasing on the outdoor surface of wall. Results obtained were presented as graphics

  4. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.

    2003-01-01

    For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope...... (STM) are used for measurements of four-point probe conductivity. The probe spacing can be changed from 500 nm to 1 mm. The other method involves monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several mum. These probes are installed in scanning...... compared with the macroscopic four-point probe method. Then the conduction through the topmost atomic layers (surface-state conductivity) and the influence of atomic steps on conductivity can be directly measured....

  5. Surface-sensitive conductivity measurement using a micro multi-point probe approach

    DEFF Research Database (Denmark)

    Perkins, Edward; Barreto, Lucas; Wells, Justin

    2013-01-01

    measurements with an equidistant four-point probe for a wide range of contact spacings. In this way, it is possible to distinguish between bulk-like and surface-like conduction. The paper describes the design of the instrument and the approach to data and error analysis. Application examples are given......An instrument for microscale electrical transport measurements in ultra-high vacuum is presented. The setup is constructed around collinear lithographically-created multi-point probes with a contact spacing down to 500 nm. Most commonly, twelve-point probes are used. These probes are approached...... to the surface via piezoelectric positioners. Standard four-point resistance measurements can be performed using any combination of contacts out of the twelve available. Current/voltage measurements are taken semi-automatically for a variety of the possible contact configurations, effectively emulating...

  6. On the reflection point where light reflects to a known destination on quadratic surfaces.

    Science.gov (United States)

    Gonçalves, Nuno

    2010-01-15

    We address the problem of determining the reflection point on a specular surface where a light ray that travels from a source to a target is reflected. The specular surfaces considered are those expressed by a quadratic equation. So far, there is no closed form explicit equation for the general solution of this determination of the reflection point, and the usual approach is to use the Snell law or the Fermat principle whose equations are derived in multidimensional nonlinear minimizations. We prove in this Letter that one can impose a set of three restrictions to the reflection point that can impose a set of three restrictions that culminates in a very elegant formalism of searching the reflection point in a unidimensional curve in space. This curve is the intersection of two quadratic equations. Some applications of this framework are also discussed.

  7. Thermodynamics of freezing and melting

    OpenAIRE

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas; Schrøder, Thomas; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature?pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variatio...

  8. Mean-field behavior for the survival probability and the point-to-surface connectivity

    CERN Document Server

    Sakai, A

    2003-01-01

    We consider the critical survival probability for oriented percolation and the contact process, and the point-to-surface connectivity for critical percolation. By similarity, let \\rho denote the critical expoents for both quantities. We prove in a unified fashion that, if \\rho exists and if both two-point function and its certain restricted version exhibit the same mean-field behavior, then \\rho=2 for percolation with d>7 and \\rho=1 for the time-oriented models with d>4.

  9. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Chesapeake Bay, Point Lookout to... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air... of Chesapeake Bay within an area described as follows: Beginning at the easternmost extremity of...

  10. Application of a new point measurement to estimate goundwater-surface water exchange

    DEFF Research Database (Denmark)

    Cremeans, Mackenzie; Devlin, J.F.; McKnight, Ursula S.

    The StreamBed Point Velocity Probe (SBPVP), a new point measurement device, measures in situ groundwater velocities at the groundwater-surface water interface (GWSWI, based on a mini-tracer test on the probe surface. This device yields velocities without reliance on estimations of hydraulic...... of concentrations and velocities. Given these localized hot spots, detailed information about flow at the GWSWI could be vital to understanding solute, and, by extension, nutrient, movement in ecosystems affected by exchange. Such information could be crucial to effective remediation design....

  11. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...

  12. Surface Roughness Attenuation in EHL Line and Point Contacts under Conditions of Starved Lubrication

    NARCIS (Netherlands)

    Venner, C.H.; Hooke, C.J.; Snidle, R.W.; Evans, H.P.

    2006-01-01

    The authors have previously examined the effect of surface roughness in line and point EHL contacts and have shown that it is the ratio of the wavelength to the inlet pressure sweep that determines the degree of roughness attenuation under the contact. Because of this a single curve can be used to

  13. Integration Over Curves and Surfaces Defined by the Closest Point Mapping

    Science.gov (United States)

    2015-04-01

    3 Numerical simulations In this section we investigate the convergence of our numerical integration using simple Riemann sum over uniform Cartesian...be considered integration of functions defined on suitable hypercubes, periodically extended. In such settings, simple Riemann sums on Cartesian grids... Integration over curves and surfaces defined by the closest point mapping Catherine Kublik∗ and Richard Tsai† Abstract We propose a new formulation

  14. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity...

  15. Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: laboratory investigations

    Directory of Open Access Journals (Sweden)

    R. M. Nagare

    2012-02-01

    Full Text Available There are not many studies that report water movement in freezing peat. Soil column studies under controlled laboratory settings can help isolate and understand the effects of different factors controlling freezing of the active layer in organic covered permafrost terrain. In this study, four peat Mesocosms were subjected to temperature gradients by bringing the Mesocosm tops in contact with sub-zero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost. Soil water movement towards the freezing front (from warmer to colder regions was inferred from soil freezing curves, liquid water content time series and from the total water content of frozen core samples collected at the end of freezing cycle. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period appeared to have moved upwards during freezing. Diffusion under moisture gradients and effects of temperature on soil matric potential, at least in the initial period, appear to drive such movement as seen from analysis of freezing curves. Freezing front (separation front between soil zones containing and free of ice propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost.

  16. Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds.

    Science.gov (United States)

    Spits, Christine; Wallace, Luke; Reinke, Karin

    2017-04-20

    Visual assessment, following guides such as the Overall Fuel Hazard Assessment Guide (OFHAG), is a common approach for assessing the structure and hazard of varying bushfire fuel layers. Visual assessments can be vulnerable to imprecision due to subjectivity between assessors, while emerging techniques such as image-based point clouds can offer land managers potentially more repeatable descriptions of fuel structure. This study compared the variability of estimates of surface and near-surface fuel attributes generated by eight assessment teams using the OFHAG and Fuels3D, a smartphone method utilising image-based point clouds, within three assessment plots in an Australian lowland forest. Surface fuel hazard scores derived from underpinning attributes were also assessed. Overall, this study found considerable variability between teams on most visually assessed variables, resulting in inconsistent hazard scores. Variability was observed within point cloud estimates but was, however, on average two to eight times less than that seen in visual estimates, indicating greater consistency and repeatability of this method. It is proposed that while variability within the Fuels3D method may be overcome through improved methods and equipment, inconsistencies in the OFHAG are likely due to the inherent subjectivity between assessors, which may be more difficult to overcome. This study demonstrates the capability of the Fuels3D method to efficiently and consistently collect data on fuel hazard and structure, and, as such, this method shows potential for use in fire management practices where accurate and reliable data is essential.

  17. Freezing for Love

    DEFF Research Database (Denmark)

    Carroll, Katherine; Kroløkke, Charlotte

    2018-01-01

    their eggs. Our analysis draws on semi-structured interviews with 16 women from the Midwest and East Coast regions of the USA who froze their eggs. Rather than freezing to balance career choices and ‘have it all’, the women in this cohort were largely ‘freezing for love’ and in the hope of having their ‘own...

  18. Freeze drying method

    International Nuclear Information System (INIS)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser

  19. The Design and Performance of a PEFC at a Temperature Below Freezing

    Science.gov (United States)

    Hishinuma, Yukio; Chikahisa, Takemi; Kagami, Fumio; Ogawa, Tomohiro

    At temperatures below freezing, air humidity becomes lower and produced water at the cathode freezes on the surface of catalyst, and it is difficult to start a PEFC (Polymer Electrolyte Fuel Cell) at a cold district. The object of the work is to study the performance of the fuel cell below the freezing point by experiments and simulation. To investigate the characteristics of the starting of a temperature below freezing the performance of a single cell was measured at temperatures from -3 to -25°C and pressures from 1 to 2 atm. The results of the experiments and simulation indicate that the performance of a PEFC decreases at higher current densities and pressures, and lower cell temperatures because of ice more produced on the reactive area of the cathode. To maintain the cell performance below freezing point, it is effective to adjust the current densities and gas flow rate to balance the produced and removed water. However at -5°C, heat generated in the fuel cell is effective to warm the cell and make self-starting possible. These results shows that it is necessary to heat the cell with an additional heat source in order to start the fuel cell below -5°C.

  20. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

    OpenAIRE

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20? to -50?) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2? (10% gelatin) to -6.7? (40% gelatin), while the extent ...

  1. Surface electronic transport measurements: A micro multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas

    2014-01-01

    This work is mostly focused on the study of electronic transport properties of two-dimensional materials, in particular graphene and topological insulators. To study these, we have improved a unique micro multi-point probe instrument used to perform transport measurements. Not only the experimental...... quantities are extracted, such as conductivity, carrier density and carrier mobility. • A method to insulate electrically epitaxial graphene grown on metals, based on a stepwise intercalation methodology, is developed and transport measurements are performed in order to test the insulation. • We show...... a direct measurement of the surface electronic transport on a bulk topological insulator. The surface state conductivity and mobility are obtained. Apart from transport properties, we also investigate the atomic structure of the Bi2Se3(111) surface via surface x-ray diraction and low-energy electron...

  2. Solving eigenvalue problems on curved surfaces using the Closest Point Method

    KAUST Repository

    Macdonald, Colin B.

    2011-06-01

    Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. © 2011 Elsevier Inc.

  3. High-freezing-point fuel studies

    Science.gov (United States)

    Tolle, F. F.

    1980-01-01

    Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.

  4. Double freezing of (NH(4))(2)SO(4)/H(2)O droplets below the eutectic point and the crystallization of (NH(4))(2)SO(4) to the ferroelectric phase.

    Science.gov (United States)

    Bogdan, A

    2010-09-23

    This paper presents the differential scanning calorimetry (DSC) results obtained from measurements of single droplets of different subeutectic concentrations (freezing of the droplets takes place below the eutectic temperature of Te ≈ 254.5 K, a phase separation into ice and a residual freeze-concentrated solution occurs. The residual solution is formed by the expulsion of NH4+ and SO42- ions from the ice lattice during the nucleation and growth of ice and may possess the eutectic concentration of 40 wt % (NH4)2SO4. On further cooling, the residual solution freezes to the eutectic solid mixture of ice/(NH4)2SO4 at a temperature that is either above or below the ferroelectric "Curie" temperature of Tc ≈ 223 K. If the freezing of the residual solution takes place below the Tc, then (NH4)2SO4 crystallizes directly into the ferroelectric phase.

  5. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  6. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    Science.gov (United States)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  7. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    International Nuclear Information System (INIS)

    Gorai, Prashun; Seebauer, Edmund G.

    2014-01-01

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO 2 (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  8. Super-Resolution Mapping of Impervious Surfaces from Remotely Sensed Imagery with Points-of-Interest

    Directory of Open Access Journals (Sweden)

    Yuehong Chen

    2018-02-01

    Full Text Available The accurate mapping of impervious surfaces is of key significance for various urban applications. Usually, traditional methods extract the proportion image of impervious surfaces from remote sensing images; however, the proportion image cannot specify where the impervious surfaces spatially distribute within a pixel. Meanwhile, impervious surfaces often locate urban areas and have a strong correlation with the relatively new big (geodata points of interest (POIs. This study, therefore, proposed a novel impervious surfaces mapping method (super-resolution mapping of impervious surfaces, SRMIS by combining a super-resolution mapping technique and POIs to increase the spatial resolution of impervious surfaces in proportion images and determine the accurate spatial location of impervious surfaces within each pixel. SRMIS was evaluated using a 10-m Sentinel-2 image and a 30-m Landsat 8 Operational Land Imager (OLI image of Nanjing city, China. The experimental results show that SRMIS generated satisfactory impervious surface maps with better-classified image quality and greater accuracy than a traditional hard classifier, the two existing super-resolution mapping (SRM methods of the subpixel-swapping algorithm, or the method using both pixel-level and subpixel-level spatial dependence. The experimental results show that the overall accuracy increase of SRMIS was from 2.34% to 5.59% compared with the hard classification method and the two SRM methods in the first experiment, while the overall accuracy of SRMIS was 1.34–3.09% greater than that of the compared methods in the second experiment. Hence, this study provides a useful solution to combining SRM techniques and the relatively new big (geodata (i.e., POIs to extract impervious surface maps with a higher spatial resolution than that of the input remote sensing images, and thereby supports urban research.

  9. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.

    Science.gov (United States)

    Paulus, Stefan; Dupuis, Jan; Mahlein, Anne-Katrin; Kuhlmann, Heiner

    2013-07-27

    Laserscanning recently has become a powerful and common method for plant parameterization and plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation, segmentation and classification of single plants by a fully automated system. In this report, we introduce a technique for automated classification of point clouds of plants and present the applicability for plant parameterization. A surface feature histogram based approach from the field of robotics was adapted to close-up laserscans of plants. Local geometric point features describe class characteristics, which were used to distinguish among different plant organs. This approach has been proven and tested on several plant species. Grapevine stems and leaves were classified with an accuracy of up to 98%. The proposed method was successfully transferred to 3D-laserscans of wheat plants for yield estimation. Wheat ears were separated with an accuracy of 96% from other plant organs. Subsequently, the ear volume was calculated and correlated to the ear weight, the kernel weights and the number of kernels. Furthermore the impact of the data resolution was evaluated considering point to point distances between 0.3 and 4.0 mm with respect to the classification accuracy. We introduced an approach using surface feature histograms for automated plant organ parameterization. Highly reliable classification results of about 96% for the separation of grapevine and wheat organs have been obtained. This approach was found to be independent of the point to point distance and applicable to multiple plant species. Its reliability, flexibility and its high order of automation make this method well suited for the demands of high throughput phenotyping.

  10. Elastic-plastic adhesive contact of rough surfaces using n-point asperity model

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Mitra, Anirban; Saha, Kashinath

    2009-01-01

    This study considers an analysis of the elastic-plastic contact of rough surfaces in the presence of adhesion using an n-point asperity model. The multiple-point asperity model, developed by Hariri et al (2006 Trans ASME: J. Tribol. 128 505-14) is integrated into the elastic-plastic adhesive contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19). This n-point asperity model differs from the conventional Greenwood and Williamson model (1966 Proc. R. Soc. Lond. A 295 300-19) in considering the asperities not as fixed entities but as those that change through the contact process, and hence it represents the asperities in a more realistic manner. The newly defined adhesion index and plasticity index defined for the n-point asperity model are used to consider the different conditions that arise because of varying load, surface and material parameters. A comparison between the load-separation behaviour of the new model and the conventional one shows a significant difference between the two depending on combinations of mean separation, adhesion index and plasticity index.

  11. Hierarchical Threshold Adaptive for Point Cloud Filter Algorithm of Moving Surface Fitting

    Directory of Open Access Journals (Sweden)

    ZHU Xiaoxiao

    2018-02-01

    Full Text Available In order to improve the accuracy,efficiency and adaptability of point cloud filtering algorithm,a hierarchical threshold adaptive for point cloud filter algorithm of moving surface fitting was proposed.Firstly,the noisy points are removed by using a statistic histogram method.Secondly,the grid index is established by grid segmentation,and the surface equation is set up through the lowest point among the neighborhood grids.The real height and fit are calculated.The difference between the elevation and the threshold can be determined.Finally,in order to improve the filtering accuracy,hierarchical filtering is used to change the grid size and automatically set the neighborhood size and threshold until the filtering result reaches the accuracy requirement.The test data provided by the International Photogrammetry and Remote Sensing Society (ISPRS is used to verify the algorithm.The first and second error and the total error are 7.33%,10.64% and 6.34% respectively.The algorithm is compared with the eight classical filtering algorithms published by ISPRS.The experiment results show that the method has well-adapted and it has high accurate filtering result.

  12. EVALUATION MODEL FOR PAVEMENT SURFACE DISTRESS ON 3D POINT CLOUDS FROM MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Aoki

    2012-07-01

    Full Text Available This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS. The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments’ specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  13. Rheological behaviour, freezing curve, and density of coffee solutions at temperatures close to freezing

    OpenAIRE

    Hernández Yáñez, Eduard; Moreno, Fabian Leonardo; Raventós Santamaria, Mercè; Santamaría, N.; Acosta, J.; Pirachican, Oscar; Torres, L.; Ruiz Pardo, Yolanda

    2015-01-01

    The physical properties of coffee solutions were determined for temperatures close to the freezing point. Rheological behaviour, freezing curve, density, and their relationship between coffee mass fraction and Brix degrees were determined for coffee mass fractions between 5 and 50% (wet basis) in the -6 to 20 degrees C temperature interval. Values of viscosity varied from 1.99 to 1037 mPa center dot s and values of density from 1000 to 1236 kg center dot m(-3). The freezing curve was generate...

  14. Nonrigid iterative closest points for registration of 3D biomedical surfaces

    Science.gov (United States)

    Liang, Luming; Wei, Mingqiang; Szymczak, Andrzej; Petrella, Anthony; Xie, Haoran; Qin, Jing; Wang, Jun; Wang, Fu Lee

    2018-01-01

    Advanced 3D optical and laser scanners bring new challenges to computer graphics. We present a novel nonrigid surface registration algorithm based on Iterative Closest Point (ICP) method with multiple correspondences. Our method, called the Nonrigid Iterative Closest Points (NICPs), can be applied to surfaces of arbitrary topology. It does not impose any restrictions on the deformation, e.g. rigidity or articulation. Finally, it does not require parametrization of input meshes. Our method is based on an objective function that combines distance and regularization terms. Unlike the standard ICP, the distance term is determined based on multiple two-way correspondences rather than single one-way correspondences between surfaces. A Laplacian-based regularization term is proposed to take full advantage of multiple two-way correspondences. This term regularizes the surface movement by enforcing vertices to move coherently with their 1-ring neighbors. The proposed method achieves good performances when no global pose differences or significant amount of bending exists in the models, for example, families of similar shapes, like human femur and vertebrae models.

  15. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    Science.gov (United States)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  16. EFFECTIVE DETECTION OF SUB-SURFACE ARCHEOLOGICAL FEATURES FROM LASER SCANNING POINT CLOUDS AND IMAGERY DATA

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2017-08-01

    Full Text Available The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  17. Stagnation-point flow of second grade nanofluid towards a nonlinear stretching surface with variable thickness

    Directory of Open Access Journals (Sweden)

    Rai Sajjad Saif

    Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness

  18. Modeling and optimization of surface roughness in single point incremental forming process

    Directory of Open Access Journals (Sweden)

    Suresh Kurra

    2015-07-01

    Full Text Available Single point incremental forming (SPIF is a novel and potential process for sheet metal prototyping and low volume production applications. This article is focuses on the development of predictive models for surface roughness estimation in SPIF process. Surface roughness in SPIF has been modeled using three different techniques namely, Artificial Neural Networks (ANN, Support Vector Regression (SVR and Genetic Programming (GP. In the development of these predictive models, tool diameter, step depth, wall angle, feed rate and lubricant type have been considered as model variables. Arithmetic mean surface roughness (Ra and maximum peak to valley height (Rz are used as response variables to assess the surface roughness of incrementally formed parts. The data required to generate, compare and evaluate the proposed models have been obtained from SPIF experiments performed on Computer Numerical Control (CNC milling machine using Box–Behnken design. The developed models are having satisfactory goodness of fit in predicting the surface roughness. Further, the GP model has been used for optimization of Ra and Rz using genetic algorithm. The optimum process parameters for minimum surface roughness in SPIF have been obtained and validated with the experiments and found highly satisfactory results within 10% error.

  19. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    KAUST Repository

    Chroneos, Alexander I.

    2012-01-26

    In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An overview of serum prostatic surface antigen cut points for recommendation of prostatic biopsy.

    Science.gov (United States)

    Patwardhan, Sujata K; Patil, Bhushan P; Shelke, Umesh Ravikant; Singh, Abhishek G

    2018-01-01

    Patients in India frequently present with prostatic surface antigen (PSA) report and request for prostatic biopsy to rule out malignancy. With fear of harboring malignancy set in patient's mind, it becomes difficult to counsel them about absolute indications and need of biopsy. Whether serum PSA has same predictability in symptomatic patients in the Indian context for advising prostatic biopsy at same reference ranges as in western countries, remains to be answered. Symptomatic patients between 45 and 70 years of age presenting with either raised serum PSA (>4 ng/ml) reports or abnormal digital rectal examination (DRE) were considered as cases. Standard 12 core transrectal ultrasound-guided prostatic biopsy was done. Statistical analysis using optimal cut points, an R package was done to overview different PSA cut points for the recommendation of prostatic biopsy. A total of 534 patients were included. Mean age was 64 years. Malignancy was detected in total 77 patients (14.42%). Malignancy was identified in 3.59% (10/279) and 30% (63/210) patients at serum PSA ranges 4-10 ng/ml and serum PSA >10 ng/ml, respectively. Both, maximum sensitivity and specificity were found at PSA cut point 9.7 ng/ml. We evaluated these patients to identify the PSA cut point above which unnecessary biopsies will be avoided. We kept power of study maximum, i.e., 1 with confidence interval of 0.95. PSA value 9.7 ng/ml should be considered as the cut point above which prostatic biopsy should be done to avoid unnecessary biopsies. Unless accompanied by abnormal DRE finding at PSA range 4-10 ng/ml, morbidity of prostatic biopsy procedure can be avoided using this cut-point.

  1. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.

    Science.gov (United States)

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2005-04-01

    To develop a procedure based on manometric temperature measurement (MTM) and an expert system for good practices in freeze drying that will allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment. Freeze drying was performed with a FTS Dura-Stop/Dura-Top freeze dryer with the manometric temperature measurement software installed. Five percent solutions of glycine, sucrose, or mannitol with 2 ml to 4 ml fill in 5 ml vials were used, with all vials loaded on one shelf. Details of freezing, optimization of chamber pressure, target product temperature, and some aspects of secondary drying are determined by the expert system algorithms. MTM measurements were used to select the optimum shelf temperature, to determine drying end points, and to evaluate residual moisture content in real-time. MTM measurements were made at 1 hour or half-hour intervals during primary drying and secondary drying, with a data collection frequency of 4 points per second. The improved MTM equations were fit to pressure-time data generated by the MTM procedure using Microcal Origin software to obtain product temperature and dry layer resistance. Using heat and mass transfer theory, the MTM results were used to evaluate mass and heat transfer rates and to estimate the shelf temperature required to maintain the target product temperature. MTM product dry layer resistance is accurate until about two-thirds of total primary drying time is over, and the MTM product temperature is normally accurate almost to the end of primary drying provided that effective thermal shielding is used in the freeze-drying process. The primary drying times can be accurately estimated from mass transfer rates calculated very early in the run, and we find the target product temperature can be achieved and maintained with only a few adjustments of shelf temperature. The freeze-dryer overload conditions can be estimated by calculation of heat/mass flow at the target product

  2. Microbiological quality of pastrami and associated surfaces at the point of sale in Kayseri, Turkey.

    Science.gov (United States)

    Yildirim, Y; Ertas Onmaz, N; Gonulalan, Z; Al, S; Yildirim, A; Karadal, F; Hizlisoy, H; Pamuk, Ş

    2017-05-01

    The aim of this study is to trace the possible relations between the hygienic status of slicing utensils and the microbiological quality of pastrami. A total of 75 pastrami retail markets were visited in Kayseri, Turkey, where the pastrami (a ready-to-eat meat product) is commonly produced and consumed. Sliced pastrami, the cutting board and knife surface swabs were collected from each pastrami retail point to trace possible sources of contamination. Samples were analysed for the presence of total viable counts (TVC), total coliforms, Escherichia coli, members of Enterobacteriaceae, Staphylococcus aureus and Listeria spp. In addition, pastrami samples were analysed for sulphite-reducing Clostridium spp. and Toxoplasma gondii. When compared with the target values of related literatures, a total of 6 (8%) pastrami samples were found unsatisfactory as a result of TVC (5.3%), Enterobacteriaceae (5.3%), E. coli (2.6%), S. aureus (2.6%), Listeria spp. (2.6%) and Listeria monocytogenes (1.3%) contaminations. No T. gondii positivity was observed among the pastrami samples. None of the cutting board and knife surface swabs were found to harbour TVC level >10 3  cfu/cm 2 , E. coli and L. monocytogenes. For the total coliforms, 7 (9.3%) and 5 (6.6%) of cutting board and knife surface swabs were found to exceed the target value (point of pastrami sale. The conditions at retail points must be monitored and inspections should be tightened to protect public health. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  3. Application of new point measurement device to quantify groundwater-surface water interactions

    DEFF Research Database (Denmark)

    Cremeans, Mackenzie; Devlin, J.F.; McKnight, Ursula S.

    2018-01-01

    hydraulic head and temperature gradient data collected at similar scales. Spatial relationships of water flow through the streambed were found to be similar by all three methods, and indicated a heterogeneous pattern of groundwater-surface water exchange. The magnitudes of estimated flow varied to a greater......The Streambed Point Velocity Probe (SBPVP) measures in situ groundwater velocities at the groundwater-surface water interface without reliance on hydraulic conductivity, porosity, or hydraulic gradient information. The tool operates on the basis of a mini-tracer test that occurs on the probe...... degree. It was found that pollutants enter the stream in localized regions of high flow which do not always correspond to the locations of highest pollutant concentration. The results show the combined influence of flow and concentration on contaminant discharge and illustrate the advantages of adopting...

  4. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  5. Effects of freezing conditions on quality changes in blueberries.

    Science.gov (United States)

    Cao, Xuehui; Zhang, Fangfang; Zhao, Dongyu; Zhu, Danshi; Li, Jianrong

    2018-03-12

    freezing preservation is one of the most effective methods used to maintain flavour and nutritional value of fruit. The effects of different freezing conditions, -20 °C, -40 °C, -80 °C, and immersion in liquid nitrogen on quality changes of freeze-thawed blueberries were studied in this research. The water distribution estimates of blueberries were measured based on low-field NMR analysis. The pectin content, drip loss, and fruit texture were also detected to evaluate quality changes in samples. freezing curves of blueberry showed super-cooling points at -20 °C and -40 °C, while super-cooling points were not observed at -80 °C or in liquid nitrogen. After freeze-thaw treatment, the relaxation time of the cell wall water (T 21 ), cytoplasm water and extracellular space (T 22 ), and vacuole water (T 23 ) were significantly shortened compared to fresh samples, which suggested a lower liquidity. Although the freezing speed for samples immersed in liquid nitrogen was faster than other treatments, samples treated at -80 °C showed better qualities on vacuole water holding, drip loss, and original pectin content retention. this study contributed to understanding how freezing temperature affects qualities of blueberries. The super-fast freezing rate might injure fruit, and a proper freezing rate could better preserve blueberries. This article is protected by copyright. All rights reserved.

  6. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  7. Fermi-surface collapse and dynamical scaling near a quantum-critical point

    Science.gov (United States)

    Friedemann, Sven; Oeschler, Niels; Wirth, Steffen; Krellner, Cornelius; Geibel, Christoph; Steglich, Frank; Paschen, Silke; Kirchner, Stefan; Si, Qimiao

    2010-01-01

    Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh2Si2, a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems. PMID:20668246

  8. Global Pollution of Surface Waters from Point and Nonpoint Sources of Nitrogen

    Directory of Open Access Journals (Sweden)

    G. van Drecht

    2001-01-01

    Full Text Available Global 0.5- by 0.5-degree resolution estimates are presented on the fate of nitrogen (N stemming from point and nonpoint sources, including plant uptake, denitrification, leaching from the rooting zone, rapid flow through shallow groundwater, and slow flow through deep groundwater to riverine systems. Historical N inputs are used to describe the N flows in groundwater. For nonpoint N sources (agricultural and natural ecosystems, calculations are based on local hydrology, climate, geology, soils, climate and land use combined with data for 1995 on crop production, N inputs from N fertilizers and animal manure, and estimates for ammonia emissions, biological N fixation, and N deposition. For point sources, our estimates are based on population densities and human N emissions, sanitation, and treatment. The results provide a first insight into the magnitude of the N losses from soil-plant systems and point sources in various parts of the world, and the fate of N during transport in atmosphere, groundwater, and surface water. The contribution to the river N load by anthropogenic N pollution is dominant in many river basins in Europe, Asia, and North Africa. Our model results explain much of the variation in measured N export from different world river basins.

  9. Xenon-131 surface sensitive imaging of aerogels in liquid xenon near the critical point.

    Science.gov (United States)

    Pavlovskaya, G; Blue, A K; Gibbs, S J; Haake, M; Cros, F; Malier, L; Meersmann, T

    1999-03-01

    In recent years, optically pumped xenon-129 has received a great deal of attention as a contrast agent in gas-phase imaging. This report is about the other NMR active xenon isotope (i.e., xenon-131, S = 32) which exhibits distinctive features for imaging applications in material sciences that are not obtainable from xenon-129 (S = (1/2)). The spin dynamics of xenon-131 in gas and liquid phases is largely determined by quadrupolar interactions which depend strongly on the surface of the surrounding materials. This leads to a surface dependent dispersion of relaxation rates, which can be substantial for this isotope. The dephasing of the coherence due to quadrupolar interactions may be used to yield surface specific contrast for imaging. Although optical pumping is not practical for this isotope because of its fast quadrupolar relaxation, a high spin density of liquid xenon close to the critical point (289 K) overcomes the sensitivity problems of xenon-131. We report the first xenon-131 magnetic resonance images and have tested this technique on various meso-porous aerogels as host structures. Aerogels of different densities and changing levels of hydration can clearly be distinguished from the images obtained. Copyright 1999 Academic Press.

  10. Application of new point measurement device to quantify groundwater-surface water interactions

    Science.gov (United States)

    Cremeans, M. M.; Devlin, J. F.; McKnight, U. S.; Bjerg, P. L.

    2018-04-01

    The streambed point velocity probe (SBPVP) measures in situ groundwater velocities at the groundwater-surface water interface without reliance on hydraulic conductivity, porosity, or hydraulic gradient information. The tool operates on the basis of a mini-tracer test that occurs on the probe surface. The SBPVP was used in a meander of the Grindsted Å (stream), Denmark, to determine the distribution of flow through the streambed. These data were used to calculate the contaminant mass discharge of chlorinated ethenes into the stream. SBPVP data were compared with velocities estimated from hydraulic head and temperature gradient data collected at similar scales. Spatial relationships of water flow through the streambed were found to be similar by all three methods, and indicated a heterogeneous pattern of groundwater-surface water exchange. The magnitudes of estimated flow varied to a greater degree. It was found that pollutants enter the stream in localized regions of high flow which do not always correspond to the locations of highest pollutant concentration. The results show the combined influence of flow and concentration on contaminant discharge and illustrate the advantages of adopting a flux-based approach to risk assessment at the groundwater-surface water interface. Chlorinated ethene mass discharges, expressed in PCE equivalents, were determined to be up to 444 kg/yr (with SBPVP data) which compared well with independent estimates of mass discharge up to 438 kg/yr (with mini-piezometer data from the streambed) and up to 372 kg/yr crossing a control plane on the streambank (as determined in a previous, independent study).

  11. Freezing and Food Safety

    Science.gov (United States)

    ... Page ] Enzymes Enzyme activity can lead to the deterioration of food quality. Enzymes present in animals, vegetables, and fruit ... slows the enzyme activity that takes place in foods. It does not halt ... deterioration. This is called "blanching." For successful freezing, blanch ...

  12. Administrative Freezing of Capital Construction

    Directory of Open Access Journals (Sweden)

    Kropacheva A. V.

    2015-07-01

    Full Text Available The author estimates administrative freezing of capital construction as a type of punishment for violating laws in this sphere. The article provides the mechanism of freezing of capital construction as a serious alternative for fine sanctions

  13. Self-organizing adaptive map: autonomous learning of curves and surfaces from point samples.

    Science.gov (United States)

    Piastra, Marco

    2013-05-01

    Competitive Hebbian Learning (CHL) (Martinetz, 1993) is a simple and elegant method for estimating the topology of a manifold from point samples. The method has been adopted in a number of self-organizing networks described in the literature and has given rise to related studies in the fields of geometry and computational topology. Recent results from these fields have shown that a faithful reconstruction can be obtained using the CHL method only for curves and surfaces. Within these limitations, these findings constitute a basis for defining a CHL-based, growing self-organizing network that produces a faithful reconstruction of an input manifold. The SOAM (Self-Organizing Adaptive Map) algorithm adapts its local structure autonomously in such a way that it can match the features of the manifold being learned. The adaptation process is driven by the defects arising when the network structure is inadequate, which cause a growth in the density of units. Regions of the network undergo a phase transition and change their behavior whenever a simple, local condition of topological regularity is met. The phase transition is eventually completed across the entire structure and the adaptation process terminates. In specific conditions, the structure thus obtained is homeomorphic to the input manifold. During the adaptation process, the network also has the capability to focus on the acquisition of input point samples in critical regions, with a substantial increase in efficiency. The behavior of the network has been assessed experimentally with typical data sets for surface reconstruction, including suboptimal conditions, e.g. with undersampling and noise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    Science.gov (United States)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  15. SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Science.gov (United States)

    Kim, Edward; Wu, Albert; DeMarco, Eugenia; Powers, Jarrett; Berg, Aaron; Rowlandson, Tracy; Freeman, Jacqueline; Gottfried, Kurt; Toose, Peter; Roy, Alexandre; hide

    2016-01-01

    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results.

  16. An updated global grid point surface air temperature anomaly data set: 1851--1990

    Energy Technology Data Exchange (ETDEWEB)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  17. Surface enhanced Raman spectroscopy as a point-of-care diagnostic for infection in wound effluent

    Science.gov (United States)

    Ghebremedhin, Meron; Yesupriya, Shubha; Crane, Nicole J.

    2016-03-01

    In military medicine, one of the challenges in dealing with large combat-related injuries is the prevalence of bacterial infection, including multidrug resistant organisms. This can prolong the wound healing process and lead to wound dehiscence. Current methods of identifying bacterial infection rely on culturing microbes from patient material and performing biochemical tests, which together can take 2-3 days to complete. Surface Enhanced Raman Spectroscopy (SERS) is a powerful vibrational spectroscopy technique that allows for highly sensitive structural detection of analytes adsorbed onto specially prepared metal surfaces. In the past, we have been able to discriminate between bacterial isolates grown on solid culture media using standard Raman spectroscopic methods. Here, SERS is utilized to assess the presence of bacteria in wound effluent samples taken directly from patients. To our knowledge, this is the first attempt for the application of SERS directly to wound effluent. The utilization of SERS as a point-of-care diagnostic tool would enable physicians to determine course of treatment and drug administration in a matter of hours.

  18. Extracellular freezing in leaves of freezing-sensitive species.

    Science.gov (United States)

    Ashworth, Edward N; Pearce, Roger S

    2002-03-01

    Low-temperature scanning-electron microscopy was used to study the freezing of leaves of five species that have no resistance to freezing: bean (Phaseolus vulgaris L.), tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum L.), cucumber (Cucumis sativus L.), and corn (Zea mays L.). In the leaves of the four dicotyledonous species, ice was extracellular and the cells of all tissues were collapsed. In contrast, in maize leaves ice was extracellular in the mesophyll, and these cells were collapsed, but the epidermal and bundle-sheath cells apparently retained their original shapes and volume. It is concluded that the leaves of the freezing-sensitive dicotyledonous species tested were killed by cellular dehydration induced by extracellular freezing, and not by intracellular freezing. Freezing injury in maize leaves apparently resulted from a combination of freezing-induced cellular dehydration of some cells and intracellular ice formation in epidermal and bundle-sheath cells.

  19. Organic acid catalyzed carbon aerogels with freeze-drying

    Science.gov (United States)

    Xu, Yuelong; Yan, Meifang; Liu, Zhenfa

    2017-09-01

    Carbon aerogels (CAs) were synthesized via a sol-gel process by condensation-polymerization of phloroglucinol, resorcinol and formaldehyde using 2,4-dihydroxybenzoic acid as catalyst with freeze-drying. The effects of the freeze-drying method on the texture and pore structure were studied. Meanwhile the structure of carbon aerogels was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a surface-area analyzer. The results show that the freeze-drying method and acid catalyst were good for the specific surface area of carbon aerogel, up to 765m2 g-1, and pore size distribution.

  20. Shaft Excavation in Frozen Ground at Point 5

    CERN Document Server

    Osborne, J

    2000-01-01

    Construction work on the 112 MCHF civil engineering contract started at Point 5 in August 1998. The new surface buildings and underground structures are necessary to accommodate the CMS detector for the LHC Project. The principal underground works consist of two new shafts, two parallel caverns separated by a supporting pillar, and a number of small connection tunnels and service galleries. The two shafts are to be sunk through approximately 50 m of water-bearing moraine to the underlying molasse rock. From a number of possible construction methods, ground freezing of the moraine was considered to be most appropriate. The ground freezing is used to control the groundwater and to support temporarily the moraine during excavation and lining of the shafts. The aim of this paper is to present the ground-freezing technique and to discuss the advantages and disadvantages of the system in the light of its first few months of running on the Point 5 site.

  1. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care

    Science.gov (United States)

    Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard

    2017-06-01

    Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  2. Point, surface and volumetric heat sources in the thermal modelling of selective laser melting

    Science.gov (United States)

    Yang, Yabin; Ayas, Can

    2017-10-01

    Selective laser melting (SLM) is a powder based additive manufacturing technique suitable for producing high precision metal parts. However, distortions and residual stresses within products arise during SLM because of the high temperature gradients created by the laser heating. Residual stresses limit the load resistance of the product and may even lead to fracture during the built process. It is therefore of paramount importance to predict the level of part distortion and residual stress as a function of SLM process parameters which requires a reliable thermal modelling of the SLM process. Consequently, a key question arises which is how to describe the laser source appropriately. Reasonable simplification of the laser representation is crucial for the computational efficiency of the thermal model of the SLM process. In this paper, first a semi-analytical thermal modelling approach is described. Subsequently, the laser heating is modelled using point, surface and volumetric sources, in order to compare the influence of different laser source geometries on the thermal history prediction of the thermal model. The present work provides guidelines on appropriate representation of the laser source in the thermal modelling of the SLM process.

  3. Surface enhanced Raman spectroscopy (SERS for in vitro diagnostic testing at the point of care

    Directory of Open Access Journals (Sweden)

    Marks Haley

    2017-06-01

    Full Text Available Point-of-care (POC device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere – from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted “ASSURED” (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  4. Inactivation of Kudoa septempunctata in olive flounder meat by liquid freezing.

    Science.gov (United States)

    Ohnishi, Takahiro; Akuzawa, Sayuri; Furusawa, Hiroko; Yoshinari, Tomoya; Kamata, Yoichi; Sugita-Konishi, Yoshiko

    2014-01-01

    Kudoa septempunctata in olive flounder meat was inactivated using 3 distinct freezing methods:liquid freezing for 5 min, air blast freezing at -30℃ for 5 h, and -80℃ for 1 h. The fracture curve of olive flounder meat subjected to liquid freezing resembled that of meat stored at 4℃, indicating that the structure of olive flounder muscle was well preserved. In contrast, air blast freezing induced the disappearance of the fracture point in the fracture curve, indicating that there was deterioration in the meat quality. Liquid freezing preserved the transparency of olive flounder meat to the same degree as that of meat stored at 4°C. However, air blast freezing induced meat cloudiness. These results indicate that liquid freezing can be used for K. septempunctata inactivation without affecting the meat quality.

  5. Theory and numerical application of subsurface flow and transport for transient freezing conditions

    International Nuclear Information System (INIS)

    White, M.D.

    1995-04-01

    Protective barriers are being investigated for the containment of radioactive waste within subsurface environments. Predicting the effectiveness of cryogenic barriers and near-surface barriers in temperate or arctic climates requires capabilities for numerically modeling subsurface flow and transport for freezing soil conditions. A predictive numerical model is developed herein to simulate the flow and transport of radioactive solutes for three-phase (water-ice-air) systems under freezing conditions. This physically based model simulates the simultaneous flow of water, air, heat, and radioactive solutes through variably saturated and variably frozen geologic media. Expressions for ice (frozen water) and liquid water saturations as functions of temperature, interfacial pressure differences, and osmotic potential are developed from nonhysteretic versions of the Brooks and Corey and van Genuchten functions for soil moisture retention. Aqueous relative permeability functions for variably saturated and variably frozen geologic media are developed from the Mualem and Burdine theories for predicting relative permeability of unsaturated soil. Soil deformations, caused by freezing and melting transitions, are neglected. Algorithms developed for predicting ice and liquid water saturations and aqueous-phase permeabilities were incorporated into the finite-difference based numerical simulator STOMP (Subsurface Transport Over Multiple Phases). Application of the theory is demonstrated by the solution of heat and mass transport in a horizontal cylinder of partially saturated porous media with differentially cooled ends, with the colder end held below the liquid water freezing point. This problem represents an essential capability for modeling cryogenic barriers in variably saturated geologic media

  6. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.

    Science.gov (United States)

    Knopf, Daniel A; Alpert, Peter A

    2013-01-01

    Immersion freezing of water and aqueous solutions by particles acting as ice nuclei (IN) is a common process of heterogeneous ice nucleation which occurs in many environments, especially in the atmosphere where it results in the glaciation of clouds. Here we experimentally show, using a variety of IN types suspended in various aqueous solutions, that immersion freezing temperatures and kinetics can be described solely by temperature, T, and solution water activity, a(w), which is the ratio of the vapour pressure of the solution and the saturation water vapour pressure under the same conditions and, in equilibrium, equivalent to relative humidity (RH). This allows the freezing point and corresponding heterogeneous ice nucleation rate coefficient, J(het), to be uniquely expressed by T and a(w), a result we term the a(w) based immersion freezing model (ABIFM). This method is independent of the nature of the solute and accounts for several varying parameters, including cooling rate and IN surface area, while providing a holistic description of immersion freezing and allowing prediction of freezing temperatures, J(het), frozen fractions, ice particle production rates and numbers. Our findings are based on experimental freezing data collected for various IN surface areas, A, and cooling rates, r, of droplets variously containing marine biogenic material, two soil humic acids, four mineral dusts, and one organic monolayer acting as IN. For all investigated IN types we demonstrate that droplet freezing temperatures increase as A increases. Similarly, droplet freezing temperatures increase as the cooling rate decreases. The log10(J(het)) values for the various IN types derived exclusively by Tand a(w), provide a complete description of the heterogeneous ice nucleation kinetics. Thus, the ABIFM can be applied over the entire range of T, RH, total particulate surface area, and cloud activation timescales typical of atmospheric conditions. Lastly, we demonstrate that ABIFM can

  7. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    International Nuclear Information System (INIS)

    Liu, W; Sawant, A; Ruan, D

    2016-01-01

    Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity in local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real

  8. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  9. Freezing of Coulomb liquids

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1989-03-01

    Recent progress in the theory of liquid-solid coexistence as approached from the liquid phase in systems with Coulomb forces is reviewed. Main attention is given to (i) Wigner crystallization of the electron gas in the degenerate and classical limits, and (ii) localization of bond particles leading to freezing in a pseudoclassical liquid-state version of the bond-charge model for elemental semiconductors. These models serve to illustrate crystallization driven by pure Coulomb repulsions and crystallization resulting from the interplay of attraction and repulsions in multicomponent systems, respectively. (author). 29 refs, 4 figs

  10. Anhydrobiosis and Freezing-Tolerance

    DEFF Research Database (Denmark)

    McGill, Lorraine; Shannon, Adam; Pisani, Davide

    2015-01-01

    Panagrolaimus strains from tropical, temperate, continental and polar habitats and we analysed their phylogenetic relationships. We found that several other Panagrolaimus isolates can also survive freezing when fully hydrated and that tissue extracts from these freezing-tolerant nematodes can inhibit the growth...... Pennsylvania, USA. Ancestral state reconstructions show that anhydrobiosis evolved deep in the phylogeny of Panagrolaimus. The early-diverging Panagrolaimus lineages are strongly anhydrobiotic but weakly freezing-tolerant, suggesting that freezing tolerance is most likely a derived trait. The common ancestors...

  11. Are gym surfaces reservoirs for Staphylococcus aureus? A point prevalence survey.

    Science.gov (United States)

    Markley, John Daniel; Edmond, Michael B; Major, Yvette; Bearman, Gonzalo; Stevens, Michael P

    2012-12-01

    We sought to identify staphylococcal contamination of gymnasium surfaces. Various environmental surfaces were cultured at a university fitness center. Ten out of 99 samples yielded Staphylococcus aureus, all of which were methicillin-susceptible. Gym surfaces may be colonized with staphylococci and could play a role in community transmission of staphylococcal species. Published by Mosby, Inc.

  12. Genetic Enhancement of an Anti-Freeze Protein for use as a Substitute for Ethylene Glycol for Aircraft Anti-icing

    Science.gov (United States)

    2001-10-01

    freezing point depression is called a " colligative property", denoting "depending on the collection". 2 ...BACKGROUND: Traditional anti-icing agents are either propylene or ethylene glycol. Glycols are effective in lowering the freezing point of water...mixtures by the phenomenon of freezing point depression based solely on the molal concentration.

  13. Extracting Corresponding Point Based on Texture Synthesis for Nearly Flat Textureless Object Surface

    Directory of Open Access Journals (Sweden)

    Min Mao

    2015-01-01

    Full Text Available Since the image feature points are always gathered at the range with significant intensity change, such as textured portions or edges of an image, which can be detected by the state-of-the-art intensity based point-detectors, there is nearly no point in the areas of low textured detected by classical interest-point detectors. In this paper we describe a novel algorithm based on affine transform and graph cut for interest point detecting and matching from wide baseline image pairs with weakly textured object. The detection and matching mechanism can be separated into three steps: firstly, the information on the large textureless areas will be enhanced by adding textures through the proposed texture synthesis algorithm TSIQ. Secondly, the initial interest-point set is detected by classical interest-point detectors. Finally, graph cuts are used to find the globally optimal set of matching points on stereo pairs. The efficacy of the proposed algorithm is verified by three kinds of experiments, that is, the influence of point detecting from synthetic texture with different texture sample, the stability under the different geometric transformations, and the performance to improve the quasi-dense matching algorithm, respectively.

  14. Development and commisioning of a test procedure for the investigation of the impact of freeze-thaw cycles on the sealing material of geothermal probes; Entwicklung und Inbetriebnahme eines Pruefverfahrens zur Bestimmung des Frost-Tau-Wechseleinflusses auf das Verpressmaterial von Erdwaermesonden

    Energy Technology Data Exchange (ETDEWEB)

    Anbergen, Hauke [Knabe Enders Duehrkop Ingenieure GmbH, Hamburg (Germany); Technische Univ. Darmstadt (Germany); Frank, Jens [Knabe Enders Duehrkop Ingenieure GmbH, Hamburg (Germany); Sass, Ingo [Technische Univ. Darmstadt (Germany)

    2011-10-24

    In order to exploit the full potential of near-surface geothermal probes, an operation at brine temperatures below the freezing point of water is necessary. This can result in a cyclic freezing and thawing of the surrounding sealing materials. Thus, such a material must have permanently a water permeability below defined limits even after the freeze-thaw stress. For this, test conditions had to be defined, and a measurement method has to be developed. For this purpose, a measuring cell was modified according to DIN 18130 so that freezing processes can be simulated under in-situ conditions using an axially integrated cooling pipe, and the water permeability can be measured as a function of the number of freeze-thaw cycles. The authors of the contribution under consideration report on the test procedure as well as on the results of a complete series of tests.

  15. An overview of serum prostatic surface antigen cut points for recommendation of prostatic biopsy

    Directory of Open Access Journals (Sweden)

    Sujata K Patwardhan

    2018-01-01

    Conclusion: PSA value 9.7 ng/ml should be considered as the cut point above which prostatic biopsy should be done to avoid unnecessary biopsies. Unless accompanied by abnormal DRE finding at PSA range 4–10 ng/ml, morbidity of prostatic biopsy procedure can be avoided using this cut-point.

  16. Different freezing behavior of millimeter- and micrometer-scaled (NH₄)₂SO₄/H₂O droplets.

    Science.gov (United States)

    Bogdan, A; Molina, M J; Tenhu, H; Mayer, E; Bertel, E; Loerting, T

    2011-01-26

    Although the freezing of aqueous solutions is important for nature and different branches of science and freeze-applications, our understanding of the freezing process is not complete. For example, numerous measurements of micrometer-scaled (NH(4))(2)SO(4)/H(2)O droplets report one freezing event below the eutectic point. However, measurements of larger millimeter-scaled droplets reveal two freezing events: the freezing out of ice and subsequent freezing of a residual freeze-concentrated solution. To resolve this apparent contradiction we performed numerous calorimetric measurements which indicate that the freezing of a residual solution of millimeter-scaled 5-38 wt% (NH(4))(2)SO(4) droplets occurs mainly between ∼ 210 and 225 K. We also find that micrometer-scaled droplets produce one freezing event which is within or in the vicinity of the ∼ 210-225 K region. This fact and the analysis of thermograms suggest that the residual solution of micrometer-scaled droplets may partly crystallize simultaneously with ice and partly transform to glass at T(g)≈172 K. Our results suggest for the first time that the size of (NH(4))(2)SO(4)/H(2)O droplets may affect the number of freezing events below the eutectic point.

  17. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices.

    Science.gov (United States)

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20℃ to -50℃) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2℃ (10% gelatin) to -6.7℃ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above -40℃. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature (-50℃) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals.

  18. Separate effects of surface roughness, wettability and nano-porosity on the Leidenfrost point temperature of water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Dae [Kyunghee University, Yongin (Korea, Republic of)

    2011-05-15

    Quenching phenomena play a key role in LWR safety, particularly in the reflood phase of a large-break LOCA. It is well known that quenching phenomena are affected by the physico-chemical characteristics of the hot surface, such as surface roughness, wettability and porosity. However, while some general qualitative trends are known, there is a lack of quantitative data on the relative importance and magnitude of these effects. Therefore, we conduct water-droplet Leidenfrost Point (LFP) tests using custom-fabricated surfaces for which roughness, wettability and porosity were controlled accurately and separately at the nanoscale

  19. Micro-four-point probes in a UHV scanning electron microscope for in-situ surface-conductivity measurements

    DEFF Research Database (Denmark)

    Shiraki, I.; Nagao, T.; Hasegawa, S.

    2000-01-01

    For in-situ measurements of surface conductivity in ultrahigh vacuum (UHV), we have installed micro-four-point probes (probe spacings down to 4 mum) in a UHV scanning electron microscope (SEM) combined with scanning reflection-high-energy electron diffraction (RHEED). With the aid of piezoactuators...... for precise positioning of the probes, local conductivity of selected surface domains of well-defined superstructures could be measured during SEM and RHEED observations. It was found that the surface sensitivity of the conductivity measurements was enhanced by reducing the probe spacing, enabling...

  20. Self-generation of colligative properties at hydrophilic surfaces

    OpenAIRE

    Chaplin, Martin

    2012-01-01

    The generally accepted view of osmotic pressure is that it is a colligative property, along with freezing point depression, boiling point elevation and vapour pressure lowering. These properties ideally depend on the concentration of dissolved solute molecules. Osmotic pressure, however, is also generated, without any solute, at hydrophilic surfaces. Here is presented a rationale and explanation for this phenomenon.

  1. Manipulation of native point defect behavior in rutile TiO2 via surfaces and extended defects

    Science.gov (United States)

    Gilliard, Kandis Leslie; Seebauer, Edmund G.

    2017-11-01

    Semiconductor surfaces offer efficient pathways for exchanging native point defects with the underlying bulk. For rutile TiO2(1 1 0), isotopic self-diffusion studies of oxygen have suggested that the surface may act as a source for Oi while simultaneously acting as a sink for titanium interstitials Tii. Through self-diffusion measurements with labeled Ti as well as O, the present work develops a more complete picture of the diffusion-reaction network involving Oi and Tii, complete with the surface acting as a source for whichever elements are available from the gas phase and a sink for elements that are not. The picture points to the importance of extended defects such as platelets and crystallographic shear planes as reservoirs of Oi and Tii, acting as net sources or sinks of these species depending upon specific conditions. The results exemplify the combined roles of surfaces and extended defects in regulating point defect behavior even in macroscopic metal oxide crystals, and point to specific strategies for manipulating that behavior intentionally.

  2. Improving pointing of Toruń 32-m radio telescope: effects of rail surface irregularities

    Science.gov (United States)

    Lew, Bartosz

    2018-03-01

    Over the last few years a number of software and hardware improvements have been implemented to the 32-m Cassegrain radio telescope located near Toruń. The 19-bit angle encoders have been upgraded to 29-bit in azimuth and elevation axes. The control system has been substantially improved, in order to account for a number of previously-neglected, astrometric effects that are relevant for milli-degree pointing. In the summer 2015, as a result of maintenance works, the orientation of the secondary mirror has been slightly altered, which resulted in worsening of the pointing precision, much below the nominal telescope capabilities. In preparation for observations at the highest available frequency of 30-GHz, we use One Centimeter Receiver Array (OCRA), to take the most accurate pointing data ever collected with the telescope, and we analyze it in order to improve the pointing precision. We introduce a new generalized pointing model that, for the first time, accounts for the rail irregularities, and we show that the telescope can have root mean square pointing accuracy at the level < 8″ and < 12″ in azimuth and elevation respectively. Finally, we discuss the implemented pointing improvements in the light of effects that may influence their long-term stability.

  3. Large p/sub t/ enhancement from freeze out

    CERN Document Server

    Magas, V K; Csernai, László P; Grassi, Frédérique; Greiner, W; Hama, Y; Kodama, T; Lázár, Z I; Stöcker, H

    1999-01-01

    Freeze out of particles across three dimensional space-time hypersurface is discussed in a simple kinetic model. The final momentum distribution of emitted particles, for freeze out surfaces with space-like normal, shows a $9 non-exponential transverse momentum spectrum. The slope parameter of the p/sub t/ distribution increases with increasing p/sub t/, in agreement with recently measured SPS pion and h/sup -/ spectra. (11 refs).

  4. Freeze Protection in Gas Holders

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Duursma, Gail

    In cold weather, the water seals of gasholders need protection from freez- ing to avoid compromising the seal. These holders have a large reservoir of “tank water” at the base which is below ground. At present freeze- protection is achieved by external heating of the seal water which is in a slot...

  5. An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis

    Science.gov (United States)

    Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang

    2017-10-01

    The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ -function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

  6. 3D Interest Point Detection using Local Surface Characteristics with Application in Action Recognition

    DEFF Research Database (Denmark)

    Holte, Michael Boelstoft

    2014-01-01

    . The proposed Difference-of-Normals (DoN) 3D IP detector operates on the surface mesh, and evaluates the surface structure (curvature) locally (per vertex) in the mesh data. We present an exam- ple of application in action recognition from a sequence of 3-dimensional geometrical data, where local 3D motion de...

  7. Generalized structural theory of freezing

    International Nuclear Information System (INIS)

    Yussouff, M.

    1980-10-01

    The first-principles order parameter theory of freezing, proposed in an earlier work, has been successful in yielding quantitative agreement with known freezing parameters for monoatomic liquids forming solids with one atom per unit cell. A generalization of this theory is presented here to include the effects of a basis set of many atoms per unit cell. The basic equations get modified by the 'density structure factors' fsub(i) which arise from the density variations within the unit cell. Calculations are presented for the important case of monoatomic liquids freezing into hexagonal close packed solids. It is concluded that all freezing transitions can be described by using structural correlations in the liquid instead of the pair potential; and that the three body correlations are important in deciding the type of solid formed after freezing. (author)

  8. Thermal properties of ration components as affected by moisture content and water activity during freezing.

    Science.gov (United States)

    Li, J; Chinachoti, P; Wang, D; Hallberg, L M; Sun, X S

    2008-11-01

    Beef roast with vegetables is an example of a meal, ready-to-eat (MRE) ration entrée. It is a mixture of meat, potato, mushroom, and carrot with a gravy sauce. The thermal properties of each component were characterized in terms of freezing point, latent heat, freezable and unfreezable water contents, and enthalpy during freezing using differential scanning calorimetry. Freezing and thawing curves and the effect of freezing and thawing cycles on thermal properties were also evaluated. The freezing points of beef, potato, mushroom, and sauce were all in the range of -5.1 to -5.6 degrees C, but moisture content, water activity, latent heat, freezable and unfreezable water contents, and enthalpy varied among these components. Freezing temperature greatly affected the unfrozen water fraction. The unfreezable water content (unfrozen water fraction at -50 degrees C) of ration components was in the range of 8.2% to 9.7%. The freezing and thawing curves of vegetables with sauce differed from those of beef but took similar time to freeze or thaw. Freezing and thawing cycles did not greatly affect the thermal properties of each component. Freezing point and latent heat were reduced by decreasing moisture content and water activity of each component. Water activity was proportionally linear to freezing point at a(w) > 0.88, and moisture content was proportionally linear to freezable water content in all ration components. Water was not available for freezing when moisture content was reduced to 28.8% or less. This study indicates that moisture content and water activity are critical factors affecting thermal behavior of ration components during freezing.

  9. Freeze-drying wet digital prints: An option for salvage?

    International Nuclear Information System (INIS)

    Juergens, M C; Schempp, N

    2010-01-01

    On the occasion of the collapse of the Historical Archive of the City of Cologne in March 2009 and the ensuing salvage effort, questions were raised about the use of freeze-drying for soaked digital prints, a technique that has not yet been evaluated for these materials. This study examines the effects of immersion, air-drying, drying in a blotter stack, freezing and freeze-drying on 35 samples of major digital printing processes. The samples were examined visually before, during and after testing; evaluation of the results was qualitative. Results show that some prints were already damaged by immersion alone (e.g. bleeding inks and soluble coatings) to the extent that the subsequent choice of drying method made no significant difference any more. For those samples that did survive immersion, air-drying proved to be crucial for water-sensitive prints, since any contact with the wet surface caused serious damage. Less water-sensitive prints showed no damage throughout the entire procedure, regardless of drying method. Some prints on coated media suffered from minor surface disruption up to total delamination of the surface coating due to the formation of ice crystals during shock-freezing. With few exceptions, freeze-drying did not cause additional damage to any of the prints that hadn't already been damaged by freezing. It became clear that an understanding of the process and materials is important for choosing an appropriate drying method.

  10. Freeze-thaw durability of air-entrained concrete.

    Science.gov (United States)

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to "the test method of long-term and durability on ordinary concrete" GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  11. Freeze-Thaw Durability of Air-Entrained Concrete

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2013-01-01

    Full Text Available One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles. The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss and internal crack growth (characterized by the loss of dynamic modulus of elasticity. The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results.

  12. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening

    Science.gov (United States)

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-06-01

    Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

  13. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening.

    Science.gov (United States)

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-06-01

    Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

  14. Quantitative evaluation for small surface damage based on iterative difference and triangulation of 3D point cloud

    Science.gov (United States)

    Zhang, Yuyan; Guo, Quanli; Wang, Zhenchun; Yang, Degong

    2018-03-01

    This paper proposes a non-contact, non-destructive evaluation method for the surface damage of high-speed sliding electrical contact rails. The proposed method establishes a model of damage identification and calculation. A laser scanning system is built to obtain the 3D point cloud data of the rail surface. In order to extract the damage region of the rail surface, the 3D point cloud data are processed using iterative difference, nearest neighbours search and a data registration algorithm. The curvature of the point cloud data in the damage region is mapped to RGB color information, which can directly reflect the change trend of the curvature of the point cloud data in the damage region. The extracted damage region is divided into three prism elements by a method of triangulation. The volume and mass of a single element are calculated by the method of geometric segmentation. Finally, the total volume and mass of the damage region are obtained by the principle of superposition. The proposed method is applied to several typical injuries and the results are discussed. The experimental results show that the algorithm can identify damage shapes and calculate damage mass with milligram precision, which are useful for evaluating the damage in a further research stage.

  15. Summer Freezing Resistance: A Critical Filter for Plant Community Assemblies in Mediterranean High Mountains.

    Science.gov (United States)

    Pescador, David S; Sierra-Almeida, Ángela; Torres, Pablo J; Escudero, Adrián

    2016-01-01

    Assessing freezing community response and whether freezing resistance is related to other functional traits is essential for understanding alpine community assemblages, particularly in Mediterranean environments where plants are exposed to freezing temperatures and summer droughts. Thus, we characterized the leaf freezing resistance of 42 plant species in 38 plots at Sierra de Guadarrama (Spain) by measuring their ice nucleation temperature, freezing point (FP), and low-temperature damage (LT50), as well as determining their freezing resistance mechanisms (i.e., tolerance or avoidance). The community response to freezing was estimated for each plot as community weighted means (CWMs) and functional diversity (FD), and we assessed their relative importance with altitude. We established the relationships between freezing resistance, growth forms, and four key plant functional traits (i.e., plant height, specific leaf area, leaf dry matter content (LDMC), and seed mass). There was a wide range of freezing resistance responses and more than in other alpine habitats. At the community level, the CWMs of FP and LT50 responded negatively to altitude, whereas the FD of both traits increased with altitude. The proportion of freezing-tolerant species also increased with altitude. The ranges of FP and LT50 varied among growth forms, and only leaf dry matter content was negatively correlated with freezing-resistance traits. Summer freezing events represent important abiotic filters for assemblies of Mediterranean high mountain communities, as suggested by the CWMs. However, a concomitant summer drought constraint may also explain the high freezing resistance of species that thrive in these areas and the lower FD of freezing resistance traits at lower altitudes. Leaves with high dry matter contents may maintain turgor at lower water potential and enhance drought tolerance in parallel to freezing resistance. This adaptation to drought seems to be a general prerequisite for plants

  16. Rapid Procedure for Determining Present Plate Motion at Any Point on the Earth's Surface.

    Science.gov (United States)

    Christofferson, Eric

    1986-01-01

    Presents a procedure for calculating the compass direction and velocity of present plate motions at any geographical point of interest. Includes a table of the relative and geographic motion of the 11 largest plates and a flow chart for determining their present motion. Also offers suggestions for classroom instruction. (ML)

  17. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    of the observed point was derived from PPP to be 2.25 m/day toward the northeast with an azimuth of 41 degrees. Major semi-diurnal and diurnal oceanic tide constituents could be recovered from the 5 days of PPP-derived height variations and compared well with a hydrodynamic ocean tide model. The PPP technique can...

  18. Size-effects on the surface tension near the critical point: Monte Carlo simulations of the Lennard-Jones fluid

    Science.gov (United States)

    Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice

    2018-02-01

    We report Monte Carlo (MC) simulations of the Lennard-Jones (LJ) fluid at the liquid-vapor interface in the critical region. A slab-based tail method is associated with the MC simulations to approach as close as possible the critical point (T∗ = 0.98 TC∗) . We investigate then the impact of system-sizes on the surface tension and coexisting densities by considering very large box dimensions for which the surface tension is independent of system-sizes at low temperatures.

  19. A Numerical and Experimental Investigation of the Internal Flow of a Freezing Water Droplet

    OpenAIRE

    Karlsson, Linn

    2015-01-01

    The overarching aim of this work is to study the freezing process of a single water droplet freezing on a cold surface, which is an interesting and important phenomenon with possible applications in many areas. Understanding the freezing process of a single water droplet is for example an important step when preventing unwanted icing, e.g. in the case of airplane wings and propellers, wind turbine rotor blades, and road surfaces.As a step in understanding the freezing process, the study speci...

  20. RESEARCH OF MOISTURE MIGRATION DURING PARTIAL FREEZING OF GROUND BEEF

    Directory of Open Access Journals (Sweden)

    V. M. Stefanovskiy

    2016-01-01

    Full Text Available The concept of «ideal product» is proposed for the study of mass transfer during partial freezing of food products by freezing plate. The ideal product is a product, in which number of factors affecting the «real product» (meat are excluded. These factors include chemical composition of meat, quality grade of raw material (NOR, DFD, PSE, cryoscopic temperature that determines the degree of water transformation into ice, the phenomenon of osmosis, rate of freezing, etc. By using the concept of «ideal product» and its implementation in a physical experiment, it is proved that the “piston effect” causing the migration of moisture is due to frozen crust formation during partial freezing of the body. During partial freezing of the product by freezing plate, «ideal» and «real» food environment is transformed from closed system into open one with inflow of moisture to unfrozen part of the body. In the «ideal product», there is an expulsion of unfrozen moisture from freezing front, so the water appears on the body surface. Thus, the displacement of moisture increases by the same law, according to which the thickness (weight of frozen layer increases. During partial freezing of ground meat, moisture does not appear on the surface of the product, but hydrates the unfrozen part of meat. The reason of this phenomenon is the expulsion of water during formation of frozen crust and water-binding capacity of meat.

  1. Two-surface Monte Carlo with basin hopping: quantum mechanical trajectory and multiple stationary points of water cluster.

    Science.gov (United States)

    Bandyopadhyay, Pradipta

    2008-04-07

    The efficiency of the two-surface monte carlo (TSMC) method depends on the closeness of the actual potential and the biasing potential used to propagate the system of interest. In this work, it is shown that by combining the basin hopping method with TSMC, the efficiency of the method can be increased by several folds. TSMC with basin hopping is used to generate quantum mechanical trajectory and large number of stationary points of water clusters.

  2. Land surface model performance using cosmic-ray and point-scale soil moisture measurements for calibration

    Directory of Open Access Journals (Sweden)

    J. Iwema

    2017-06-01

    Full Text Available At very high resolution scale (i.e. grid cells of 1 km2, land surface model parameters can be calibrated with eddy-covariance flux data and point-scale soil moisture data. However, measurement scales of eddy-covariance and point-scale data differ substantially. In our study, we investigated the impact of reducing the scale mismatch between surface energy flux and soil moisture observations by replacing point-scale soil moisture data with observations derived from Cosmic-Ray Neutron Sensors (CRNSs made at larger spatial scales. Five soil and evapotranspiration parameters of the Joint UK Land Environment Simulator (JULES were calibrated against point-scale and Cosmic-Ray Neutron Sensor soil moisture data separately. We calibrated the model for 12 sites in the USA representing a range of climatic, soil, and vegetation conditions. The improvement in latent heat flux estimation for the two calibration solutions was assessed by comparison to eddy-covariance flux data and to JULES simulations with default parameter values. Calibrations against the two soil moisture products alone did show an advantage for the cosmic-ray technique. However, further analyses of two-objective calibrations with soil moisture and latent heat flux showed no substantial differences between both calibration strategies. This was mainly caused by the limited effect of calibrating soil parameters on soil moisture dynamics and surface energy fluxes. Other factors that played a role were limited spatial variability in surface fluxes implied by soil moisture spatio-temporal stability, and data quality issues.

  3. Electrochemical Surface Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Marcel D.; Stern, Abraham C.; Levin, Yan; Tobias, Douglas J.; Mundy, Christopher J.

    2012-06-07

    Herein, we present research that suggests that the underlying physics that drive simple empirical models of anions (e.g. point charge, no polarization) to the air-water interface, with water described by SPC/E, or related partial charge models is different than when both ions and water are modeled with quantum mechanical based interactions. Specifically, we will show that the driving force of ions to the air-water interface for point charge models results from both cavitation and the negative electrochemical surface potential. We will demonstrate that we can fully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory (DCT). Our research suggests that a significant part of the electrochemical surface potential in empirical models appears to be an artifact of the failure of point charge models in the vicinity of a broken symmetry. This work was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle.

  4. Assessment of the use of cryopreserved x freeze-dried amniotic membrane (AM for reconstruction of ocular surface in rabbit model Avaliação do uso da membrana amniótica (MA criopreservada x liofilizada na reconstrução da superfície ocular em coelhos

    Directory of Open Access Journals (Sweden)

    Rodrigo Doyle Libera

    2008-10-01

    Full Text Available PURPOSE: To determine the efficacy of freeze-dried amniotic membrane (AM for reconstruction of the ocular surface in rabbit eyes. METHODS: The sterilized, freeze-dried amniotic membrane (lyophilized or FD-AM is a preservative method that uses the drying by freezing process to maintain the AM well preserved for a long time even at room temperature. This paper is an experimental animal interventional study. One eye of each of 15 male New Zealand rabbits (1.5 - 3.0 kg had the central cornea marked with a 6.0 mm trephine. The marked area was deepithelialized with a No.15 blade. The denuded corneal surface was covered as follows: Group 1: cryopreserved AM (n=6; Group 2: freeze-dried AM (n=6; and Group 3: not covered (control group, n=3. The AM in group 1 and 2 and the periphery of the denuded area in group 3 were secured with continuous 10-0 nylon sutures. The clinical evaluation was made by a blinded observer and graded on a four-point scale (1= minimal, 4= marked for conjunctival and ciliary hyperemia, eyelid edema, corneal neovascularization, corneal opacity and reepithelialization on postoperative (PO days 1, 7 and 30 . After PO day 30, the rabbits were euthanized and their corneas were sent for histopathological and ultrastructural analysis to evaluate tissue inflammation, reepithelialization, and basement membrane integrity. RESULTS: Two eyes in group 2 had a corneal infection and were excluded from the analysis. No statistically significant differences among the three groups were found (p>0.05 regarding the clinical evaluation on 1st, 7th and 30th PO days. On transmission electron microscopy, the basement membrane in lyophilized and control groups was more continuous and homogeneous than in the glycerol group. CONCLUSIONS: The freeze-drying method seems to be a good option to preserve human amniotic membrane to be used in ocular surface reconstruction. This preservative method reduces the preservation costs and may enhance the use of AM

  5. An overview of serum prostatic surface antigen cut points for recommendation of prostatic biopsy

    OpenAIRE

    Patwardhan, Sujata K.; Patil, Bhushan P.; Shelke, Umesh Ravikant; Singh, Abhishek G.

    2018-01-01

    Introduction: Patients in India frequently present with prostatic surface antigen (PSA) report and request for prostatic biopsy to rule out malignancy. With fear of harboring malignancy set in patient's mind, it becomes difficult to counsel them about absolute indications and need of biopsy. Whether serum PSA has same predictability in symptomatic patients in the Indian context for advising prostatic biopsy at same reference ranges as in western countries, remains to be answered. Materials an...

  6. Surface Textural Analysis of Quartz Grains from Modern Point Bar Deposits in Lower Reaches of the Yellow River

    Science.gov (United States)

    Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming

    2018-01-01

    The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.

  7. FREEZE DRYING PROCESS: A REVIEW

    OpenAIRE

    Soham Shukla

    2011-01-01

    Among the various methods of drying, this article has mentioned only one most important method, “Freeze drying”. This method is mainly used for the drying of thermo labile materials. This method works on the principle of sublimation. This method is divided into 3 steps for its better understanding; these are Freezing, Primary drying, and secondary drying. There are many advantages and disadvantages of this method, but still this is the most useful drying method nowadays.

  8. ESTABLISHMENT FOR BREAKEVEN POINT IN ORGANIC FARMS WHOSE SURFACE IS LESS THAN 5 HECTARES

    Directory of Open Access Journals (Sweden)

    Anișoara CHIHAIA

    2014-12-01

    Full Text Available Organic agriculture is economically viable, respond the exigencies demand for healthy food and high quality is an agriculture which guarantees the protection and enhancement of natural resources in the long term and forward them unaltered future generations. The paper aims to establish breakeven in organic farm with surface less than five hectares farm which benefits from substantial financial compensation. We considered that the relevant calculation method is the calculation of profitability using gross margin calculating for each type of activity on the farm. In the absence of this support the activity in ecological system production would not be profitable one.

  9. Critical points of the conformational potential energy surface of carbonic acid: H 2CO 3

    Science.gov (United States)

    Janoschek, Rudolf; Csizmadia, Imre G.

    1993-12-01

    The conformational potential energy surface E  E( T1, T2) of H 2CO 3, where T1 is the torsional angle for HO 1CO 2 and T2 is the torsional angle for O 1CO 2H, revealed that the anti—anti conformation is the global minimum. Additional local minima were also found. The next higher energy conformation was the syn—anti conformation, and a degenerate pair of right handed and left handed helical conformations were the highest on the energy scale. The syn—syn conformation turned out to be a transition structure sandwiched between the two helical conformation.

  10. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2016-01-01

    Full Text Available This work concentrates on the mathematical modeling for stagnation point flow of nanofluids over an impermeable stretching sheet with variable thickness. Carbon nanotubes [single-wall carbon nanotubes (SWCNTs and multi-wall carbon nanotubes (MWCNTs] as the nanoparticles are utilized. Water and kerosene oil are taken as the base fluids. Heat transfer through melting effect is discussed. Transformation procedure is adapted to obtain the non-linear ordinary differential equations from the fundamental laws of mass, linear momentum and energy. The optimal values of convergence control parameters and corresponding individual and total residual errors for SWCNTs and MWCNTs are computed by means of homotopy analysis method (HAM based BVPh 2.0. Characteristics of different involved parameters on the velocity, temperature, skin friction coefficient and Nusselt number are discussed. Higher velocity profile is observed for wall thickness parameter in case of water carbon nanotubes when compared with the kerosene oil carbon nanotubes.

  11. Numerical simulation of the effect of groundwater salinity on artificial freezing wall in coastal area

    Science.gov (United States)

    Hu, Rui; Liu, Quan

    2017-04-01

    During the engineering projects with artificial ground freezing (AFG) techniques in coastal area, the freezing effect is affected by groundwater salinity. Based on the theories of artificially frozen soil and heat transfer in porous material, and with the assumption that only the variations of total dissolved solids (TDS) impact on freezing point and thermal conductivity, a numerical model of an AFG project in a saline aquifer was established and validated by comparing the simulated temperature field with the calculated temperature based on the analytic solution of rupak (reference) for single-pipe freezing temperature field T. The formation and development of freezing wall were simulated with various TDS. The results showed that the variety of TDS caused the larger temperature difference near the frozen front. With increasing TDS in the saline aquifer (1 35g/L), the average thickness of freezing wall decreased linearly and the total formation time of the freezing wall increased linearly. Compared with of the scenario of fresh-water (<1g/L), the average thickness of frozen wall decreased by 6% and the total formation time of the freezing wall increased by 8% with each increasing TDS of 7g/L. Key words: total dissolved solids, freezing point, thermal conductivity, freezing wall, numerical simulation Reference D.J.Pringel, H.Eicken, H.J.Trodahl, etc. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research, 2007, 112: 1-13. Lukas U.Arenson, Dave C.Sego. The effect of salinity on the freezing of coarse- grained sand[J]. Canadian Geotechnical Journal, 2006, 43: 325-337. Hui Bing, Wei Ma. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science and Technology, 2011, 67: 79-88.

  12. Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements

    Science.gov (United States)

    Hübner, R.; Heller, K.; Günther, T.; Kleber, A.

    2015-01-01

    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.

  13. On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface

    Science.gov (United States)

    Khan, Masood; Sardar, Humara; Mudassar Gulzar, M.

    2018-03-01

    This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infinite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with convective boundary condition is performed. Moreover effects of Joule heating is observed and mathematical analysis is presented in the presence of viscous dissipation. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The subsequent non-straight common ordinary differential equations are solved numerically by an effective numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is found that the higher values of Hartmann number (M) correspond to thickening of the thermal and thinning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is diminished by increasing the viscosity ratio parameter (β∗) and opposite trend is observed for temperature profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer thickness is increased with velocity ratio parameter (α) and opposite is true for thermal boundary layer thickness.

  14. Novel real-time diagnosis of the freezing process using an ultrasonic transducer.

    Science.gov (United States)

    Tseng, Yen-Hsiang; Cheng, Chin-Chi; Cheng, Hong-Ping; Lee, Dasheng

    2015-05-04

    The freezing stage governs several critical parameters of the freeze drying process and the quality of the resulting lyophilized products. This paper presents an integrated ultrasonic transducer (UT) in a stainless steel bottle and its application to real-time diagnostics of the water freezing process. The sensor was directly deposited onto the stainless steel bottle using a sol-gel spray technique. It could operate at temperature range from -100 to 400 °C and uses an ultrasonic pulse-echo technique. The progression of the freezing process, including water-in, freezing point and final phase change of water, were all clearly observed using ultrasound. The ultrasonic signals could indicate the three stages of the freezing process and evaluate the cooling and freezing periods under various processing conditions. The temperature was also adopted for evaluating the cooling and freezing periods. These periods increased with water volume and decreased with shelf temperature (i.e., speed of freezing). This study demonstrates the effectiveness of the ultrasonic sensor and technology for diagnosing and optimizing the process of water freezing to save energy.

  15. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-10-01

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  16. Locating critical points on multi-dimensional surfaces by genetic algorithm: test cases including normal and perturbed argon clusters

    Science.gov (United States)

    Chaudhury, Pinaki; Bhattacharyya, S. P.

    1999-03-01

    It is demonstrated that Genetic Algorithm in a floating point realisation can be a viable tool for locating critical points on a multi-dimensional potential energy surface (PES). For small clusters, the standard algorithm works well. For bigger ones, the search for global minimum becomes more efficient when used in conjunction with coordinate stretching, and partitioning of the strings into a core part and an outer part which are alternately optimized The method works with equal facility for locating minima, local as well as global, and saddle points (SP) of arbitrary orders. The search for minima requires computation of the gradient vector, but not the Hessian, while that for SP's requires the information of the gradient vector and the Hessian, the latter only at some specific points on the path. The method proposed is tested on (i) a model 2-d PES (ii) argon clusters (Ar 4-Ar 30) in which argon atoms interact via Lennard-Jones potential, (iii) Ar mX, m=12 clusters where X may be a neutral atom or a cation. We also explore if the method could also be used to construct what may be called a stochastic representation of the reaction path on a given PES with reference to conformational changes in Ar n clusters.

  17. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  18. Positron probe to study the freezing of nanodroplets

    International Nuclear Information System (INIS)

    Pujari, P.K.

    2010-01-01

    Positron is an excellent in situ probe to study the phase behavior of fluid confined in nanodomains. The study of phase behavior (freezing/melting) of nano confined fluid or nanodroplet has great relevance in fundamental research as well as applications in nano-tribology, nanofabrication, membrane separation, interfacial adhesion and lubrication. It is seen that the properties of freezing/melting of nanodroplets are different from their bulk behavior due to the combined effects of finite size, surface force, surface anisotropy, pore disorder and reduced dimensionality. We have used positron annihilation spectroscopy (PAS) to study the freezing/melting behavior of different organic liquids like benzene, ethylene glycol and isopropanol confined in nanopores of ZSM5 zeolite and silica gel

  19. Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials.

    Science.gov (United States)

    Antonijević, Djordje; Milovanović, Petar; Riedel, Christoph; Hahn, Michael; Amling, Michael; Busse, Björn; Djurić, Marija

    2016-04-01

    The objective of this study was to elucidate micromechanical properties of Biodentine and two experimental calcium silicate cements (CSCs) using Reference Point Indentation (RPI). Biomechanical characteristics of the cement type and the effects of a radiopacifier, liquid components, acid etching treatment and bioactivation in simulated body fluid (SBF) were investigated by measuring the microhardness, average unloading slope (Avg US) and indentation distance increase (IDI). Biodentine had a greater microhardness than the experimental CSCs, while the Avg US and IDI values were not significantly different among investigated materials. There was a statistically significant difference in microhardness and IDI values between pure CSCs and radiopacified cements (p calcium chloride and CSCs' immersion in SBF are beneficial for CSCs' micromechanical performance, while the addition of radiopacifiers and acid etching treatment weaken the CSCs' surface. Application of RPI aids with the characterization of micromechanical properties of synthetic materials' surfaces.

  20. Seeing fearful body language rapidly freezes the observer's motor cortex

    NARCIS (Netherlands)

    Borgomaneri, Sara; Vitale, Francesca; Gazzola, V.; Avenanti, Alessio

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time

  1. Seeing fearful body language rapidly freezes the observer's motor cortex

    NARCIS (Netherlands)

    Borgomaneri, S.; Vitale, F.; Gazzola, V.; Avenanti, A.

    2015-01-01

    Fearful body language is a salient signal alerting the observer to the presence of a potential threat in the surrounding environment. Although detecting potential threats may trigger an immediate reduction of motor output in animals (i.e., freezing behavior), it is unclear at what point in time

  2. Early Mars was wet but not warm: Erosion, fluvial features, liquid water habitats, and life below freezing

    Science.gov (United States)

    Mckay, C. P.; Davis, W. L.

    1993-01-01

    There is considerable evidence that Mars had liquid water early in its history and possibly at recurrent interval. It has generally been assumed that this implied that the climate was warmer as a result of a thicker CO2 atmosphere than at the present. However, recent models suggest that Mars may have had a thick atmosphere but may not have experienced mean annual temperatures above freezing. In this paper we report on models of liquid water formation and maintenance under temperatures well below freezing. Our studies are based on work in the north and south polar regions of Earth. Our results suggest that early Mars did have a thick atmosphere but precipitation and hence erosion was rare. Transient liquid water, formed under temperature extremes and maintained under thick ice covers, could account for the observed fluvial features. The main difference between the present climate and the early climate was that the total surface pressure was well above the triple point of water.

  3. Freeze-in through portals

    CERN Document Server

    Blennow, Mattias; Zaldivar, Bryan

    2014-01-01

    The popular freeze-out paradigm for Dark Matter (DM) production, relies on DM-baryon couplings of the order of the weak interactions. However, different search strategies for DM have failed to provide a conclusive evidence of such (non-gravitational) interactions, while greatly reducing the parameter space of many representative models. This motivates the study of alternative mechanisms for DM genesis. In the freeze-in framework, the DM is slowly populated from the thermal bath while never reaching equilibrium. In this work, we analyse in detail the possibility of producing a frozen-in DM via a mediator particle which acts as a portal. We give analytical estimates of different freeze-in regimes and support them with full numerical analyses, taking into account the proper distribution functions of bath particles. Finally, we constrain the parameter space of generic models by requiring agreement with DM relic abundance observations.

  4. Synchrotron x-ray visualisation of ice formation in insects during lethal and non-lethal freezing.

    Directory of Open Access Journals (Sweden)

    Brent J Sinclair

    2009-12-01

    Full Text Available Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3(rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae, which survive freezing if it occurs above -14 degrees C, and non-diapausing 3(rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae, neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP, and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects.

  5. Keratoconus Progression in Patients With Allergy and Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test.

    Science.gov (United States)

    Mazzotta, Cosimo; Traversi, Claudio; Mellace, Pierfrancesco; Bagaglia, Simone A; Zuccarini, Silvio; Mencucci, Rita; Jacob, Soosan

    2017-10-04

    To assess keratoconus (KC) progression in patients with allergies who also tested positive to surface matrix metalloproteinase 9 (MMP-9) point-of-care test. Prospective comparative study including 100 stage I-II keratoconic patients, mean age 16.7±4.6 years. All patients underwent an anamnestic questionnaire for concomitant allergic diseases and were screened with the MMP-9 point-of-care test. Patients were divided into two groups: patients KC with allergies (KC AL) and patients KC without allergies (KC NAL). Severity of allergy was established by papillary subtarsal response grade and KC progression assessed by Scheimpflug corneal tomography, corrected distance visual acuity (CDVA) measurement in a 12-month follow-up. The KC AL group included 52 patients and the KC NAL group 48. In the KC AL group, 42/52 of patients (81%) were positive to MMP-9 point-of-care test versus two positive patients in the KC NAL group (4%). The KC AL group data showed a statistically significant decrease of average CDVA, from 0.155±0.11 to 0.301±0.2 logarithm of the minimum angle of resolution (Paverage. The KC NAL group revealed a slight KC progression without statistically significant changes. Pearson correlation test showed a high correlation between Kmax worsening and severity of PSR in the KC AL group. The study demonstrated a statistically significant progression of KC in patients with concomitant allergies, positive to MMP-9 point-of-care test versus negative. A high correlation between severity of allergy and KC progression was documented.

  6. A theoretical extension of the soil freezing curve paradigm

    Science.gov (United States)

    Amiri, Erfan A.; Craig, James R.; Kurylyk, Barret L.

    2018-01-01

    Numerical models of permafrost evolution in porous media typically rely upon a smooth continuous relation between pore ice saturation and sub-freezing temperature, rather than the abrupt phase change that occurs in pure media. Soil scientists have known for decades that this function, known as the soil freezing curve (SFC), is related to the soil water characteristic curve (SWCC) for unfrozen soils due to the analogous capillary and sorptive effects experienced during both soil freezing and drying. Herein we demonstrate that other factors beyond the SFC-SWCC relationship can influence the potential range over which pore water phase change occurs. In particular, we provide a theoretical extension for the functional form of the SFC based upon the presence of spatial heterogeneity in both soil thermal conductivity and the freezing point depression of water. We infer the functional form of the SFC from many abrupt-interface 1-D numerical simulations of heterogeneous systems with prescribed statistical distributions of water and soil properties. The proposed SFC paradigm extension has the appealing features that it (1) is determinable from measurable soil and water properties, (2) collapses into an abrupt phase transition for homogeneous media, (3) describes a wide range of heterogeneity within a single functional expression, and (4) replicates the observed hysteretic behavior of freeze-thaw cycles in soils.

  7. Cast iron freezing mechanisms

    Science.gov (United States)

    Lillybeck, N. P.; Smith, James E., Jr.

    1987-01-01

    This task focused on liquid phase sintering and infiltration studies of refractory metals and metal composites. Particular emphases was placed on those powered metal compacts which produce liquid alloys in sintering. For this class of materials, heating to a two phase region causes the constituent components to react, forming an alloy liquid which must wet the solid phase. Densification is initially driven by the free energy effects which cause rapid rearrangement. Further densification occurs by evaporation and condensation, surface diffusion, bulk flow, and volume diffusion.

  8. Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations

    International Nuclear Information System (INIS)

    Zhong Jian; Dong Gang; Sun Yimei; Zhang Zhaoyang; Wu Yuqin

    2016-01-01

    The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. (paper)

  9. Limonene encapsulation in freeze dried gellan systems.

    Science.gov (United States)

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Influence of the freezing method on the changes that occur in grape samples after frozen storage.

    Science.gov (United States)

    Santesteban, Luis G; Miranda, Carlos; Royo, José B

    2013-09-01

    Sample freezing is frequently used in oenological laboratories as a compromise solution to increase the number of samples that can be analysed, despite the fact that some grape characteristics are known to change after frozen storage. However, freezing is usually performed using standard freezers, which provide a slow freezing. The aim of this work was to evaluate whether blast freezing would decrease the impact of standard freezing on grape composition. Grape quality parameters were assessed in fresh and in frozen stored samples that had been frozen using three different procedures: standard freezing and blast freezing using either a blast freezer or an ultra-freezer. The implications of frozen storage in grape samples reported in earlier research were observed for the three freezing methods evaluated. Although blast freezing improved repeatability for the most problematic parameters (tartaric acidity, TarA; total phenolics, TP), the improvement was not important from a practical point of view. However, TarA and TP were relatively repeatable among the three freezing procedures, which suggests that freezing had an effect on these parameters independently of the method used . According to our results, the salification potential of the must is probably implied in the changes observed for TarA, whereas for TP the precipitation of protoanthocyanins after association with cell wall material is hypothesized to cause the lack of repeatability between fresh and frozen grapes. Blast freezing would not imply a great improvement if implemented in oenological laboratories, at least for the parameters included in this study. © 2013 Society of Chemical Industry.

  11. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    Science.gov (United States)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  12. A tissue snap-freezing apparatus without sacrificial cryogens

    Science.gov (United States)

    Vanapalli, Srinivas; Jagga, Sahil; Holland, Harry; ter Brake, Marcel

    2017-12-01

    Molecular technologies in cancer diagnosis require a fresh and frozen tissue, which is obtained by means of snap-freezing. Currently, coolants such as solid carbon dioxide and liquid nitrogen are used to preserve good morphology of the tissue. Using these coolants, snap freezing of tissues for diagnostic and research purposes is often time consuming, laborious, even hazardous and not user friendly. For that reason snap-freezing is not routinely applied at the location of biopsy acquisition. Furthermore, the influence of optimal cooling rate and cold sink temperature on the viability of the cells is not well known. In this paper, a snap-freezing apparatus powered by a small cryocooler is presented that will allow bio-medical research of tissue freezing methods and is safe to use in a hospital. To benchmark this apparatus, cooldown of a standard aluminum cryo-vial in liquid nitrogen is measured and the cooling rate is about -25 K/s between 295 K and 120 K. Sufficient cooling rate is obtained by a forced convective helium gas flow through a gap formed between the cryo-vial and a cold surface and is therefore chosen as the preferred cooling method. A conceptual design of the snap-apparatus with forced flow is discussed in this paper.

  13. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    Science.gov (United States)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-07-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  14. Flight time beta spectrometer with position sensitive detectors for electronic structure investigation at points of hydrogen adsorption on surface

    International Nuclear Information System (INIS)

    Zhdanov, V.S.; Petukhov, V.K.; Burminsky, V.P.; Lubov, S.K.

    1997-01-01

    The basis of flight time beta spectrometer for investigation of electronic emission with energy not over 500 eV have been created. This device will be used for carrying out the first study of electronic structure at the points of hydrogen adsorption through the measuring of spectra of Auger relaxation electrons emitted by the system investigated surface-tritium. The momentum resolution of beta spectrometer accounts for (0,1 - 0,2)% at 'traditional' solid angle equals to 0,25% from 4π sr owing to the use positron sensitive start and stop detectors on a basis of microchannel plates. Taking into consideration that the area of our beta source is minimum 100 times larger as compared to 'traditional' spectrometers and a spectrum here is registered simultaneously over all energy interval containing useful information, we obtain high quality beta spectrometer. (author)

  15. Al-Si alloy point contact formation and rear surface passivation for silicon solar cells using double layer porous silicon

    International Nuclear Information System (INIS)

    Moumni, Besma; Ben Jaballah, Abdelkader; Bessais, Brahim

    2012-01-01

    Lowering the rear surface recombination velocities by a dielectric layer has fascinating advantages compared with the standard fully covered Al back-contact silicon solar cells. In this work the passivation effect by double layer porous silicon (PS) (wide band gap) and the formation of Al-Si alloy in narrow p-type Si point contact areas for rear passivated solar cells are analysed. As revealed by Fourier transform infrared spectroscopy, we found that a thin passivating aluminum oxide (Al 2 O 3 ) layer is formed. Scanning electron microscopy analysis performed in cross sections shows that with bilayer PS, liquid Al penetrates into the openings, alloying with the Si substrate at depth and decreasing the contact resistivity. At the solar cell level, the reduction in the contact area and resistivity leads to a minimization of the fill factor losses.

  16. Effects of reduced terrestrial LiDAR point density on high-resolution grain crop surface models in precision agriculture.

    Science.gov (United States)

    Hämmerle, Martin; Höfle, Bernhard

    2014-12-16

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up.

  17. Immersion freezing of ambient dust using WISDOM setup

    Science.gov (United States)

    Rudich, Y.; Reicher, N.

    2017-12-01

    A small subset of the atmospheric particles has the ability to induce ice formation. Among them are mineral dust particles that originate from arid regions. Mineral dust particles are internally mixed with various types of minerals such as kaolinite and illite from the clay minerals, quartz and feldspar. The mineral composition of the dust particles determine their freezing efficiency. Much attention was given to the clay group, as they are the most common minerals transported in the atmosphere. Recently, much focus has been directed to the feldspars, since its ice efficiency is higher at warmer temperatures, and as such is may dominate freezing in mixed phase clouds. Moreover, it was found that samples that contained higher content of feldspar had higher nucleation activity. In this study, we examine the immersion freezing of ambient dust particles that were collected in Rehovot, Israel (31.9N, 34.8E about 80m AMSL), during dust storms from the Sahara and the Syrian deserts. The size-segregated dust particles were collected on cyclopore polycarbonate filters using a Micro-orifice Uniform deposit Impactor (MOUDI). Freezing experiments were done using the WeIzmann Supercooled Droplets Observation on Microarray set (WISDOM). The particles were extracted from the filters by sonication and subsequently immersed in 100μm droplets that were cooled in a rate of 1°CPM to -37°C (homogenous freezing threshold). Investigation of the particles mineralogy was also performed. We observed freezing onset at 253K for particles of different diameters (0.3, 1.0, 1.8 and 3.2 μm). Most of the droplets were completely frozen by 243K. The number of active sites ranged from 108 to 1012 per m-2. Droplets that contained larger particles (higher surface area) froze at slightly warmer temperatures and contained slightly higher number of active sites. The freezing behavior fits well with measurements of K-feldspar particles and this may suggest that the feldspar dominated the dust freezing

  18. Medical and social egg freezing

    DEFF Research Database (Denmark)

    Lallemant, Camille; Vassard, Ditte; Andersen, Anders Nyboe

    2016-01-01

    INTRODUCTION: Until recently, limited options for preserving fertility in order to delay childbearing were available. Although egg freezing and successful thawing is now possible, it remains unclear to what extent women are aware of the availability of this technique, their attitudes towards its ...... planning. Reassurance regarding its efficacy appears more important than its potential adverse effects on their health or that of future children, or the costs of the procedure....

  19. Impregnation of leather during "freeze-drying"

    DEFF Research Database (Denmark)

    Storch, Mikkel; Vestergaard Poulsen Sommer, Dorte; Hovmand, Ida

    2016-01-01

    Freeze-drying is a recognized method for the preservation of waterlogged objects. Naturally, freeze-drying has also been used for waterlogged archaeological leather often after treatment with Na2.EDTA and impregnation with PEG; but the treated leather sometimes suffers from “excessive drying......” becoming too stiff and brittle. The aim of this study was to examine the effect of a conventional freeze-drying method against an alternative freeze-drying method that preserves the natural moisture content of the leather. Both new and archaeological waterlogged leather were included in the study...... suggest that the process which takes place within the leather during the freeze-drying in not actual freeze-drying, but rather a sophisticated way of distributing the impregnating agent. The pure ice phase freezes out, but the impregnating agent remains liquid as the temperature does not become low enough...

  20. Synergistic effects of surfactants and sugars on lipoplex stability during freeze-drying and rehydration.

    Science.gov (United States)

    Yu, Jinxiang; Anchordoquy, Thomas J

    2009-09-01

    The stability of nonviral vectors during freeze-drying has been well-studied, and it has been established that sugars can protect lipoplexes during freeze-drying. However low levels of damage are often observed after freeze-drying, and this damage is more evident in dilute lipoplex preparations. By investigating the stability of lipoplexes after each step in the freeze-drying cycle (i.e., freezing, primary drying, and secondary drying), we strive to understand the mechanisms responsible for damage and identify improved stabilization strategies. N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP)-cholesterol/plasmid DNA lipoplexes were prepared at an equimolar DOTAP-cholesterol ratio, and a 3:1 DOTAP(+)-DNA(-) charge ratio. Our experiments indicate that despite sufficient levels of "stabilizing" sugars, significant damage is still evident when dilute lipoplex preparations are subjected to freeze-drying. Analysis of the different stages of freeze-drying suggests that significant damage occurs during freezing, and that sugars have a limited capacity to protect against this freezing-induced damage. Similar effects have been observed in studies with proteins, and surfactants have been employed in protein formulations to protect against surface-induced damage, for example, at the ice crystal, solid, air, or sugar glass surfaces. However, the use of surfactants in a lipid-based formulation is inherently risky due to the potential for altering/solubilizing the lipid delivery vehicle. Our data indicate that judicious use of surfactants can reduce surface-induced damage and result in better preservation of lipoplex size and transfection activity after freeze-drying.

  1. Metabolic activity of permafrost bacteria below the freezing point

    Science.gov (United States)

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

  2. Accuracy of a Freezing Point Depression Technique Osmometer.

    Science.gov (United States)

    Pena-Verdeal, Hugo; García-Resúa, Carlos; Miñones, Mercedes; Giraldez, Maria J; Yebra-Pimentel, Eva

    2015-09-01

    The purpose of this study was to examine the precision and accuracy of the Fiske 110 Osmolarity System under different protocols to determine the possible applications of this device in tear film research and clinical practice. Three separate studies were performed. In the first, Fiske 110 measurements were made on undiluted and diluted (1:1, 1:4, and 1:9 dilutions) standard samples of different osmolarity values: 50, 290, and 850 mOsm/kg and 297 and 338 mOsm/L. In the second study, measurements were made on different types of contact lens care solutions. Finally, in an agreement study, measurements were made in two sets of 60 subjects to compare TearLab versus Fiske 110 (using both 2- and 4-μL tear sample). Although osmolarity measurements for undiluted solutions differed statistically from reference standard values, all biases were in the tolerance range proposed by the manufacturer except for the 850-mOsm/kg solution. No significant differences from reference osmolarity values were observed for the 1:1 and 1:4 diluted 297- and 338-mOsm/L H2O solutions, respectively, although all diluted solutions showed a possible bias out of the range provided. Osmolarities for the soft contact lens solutions fell within the range 293 to 309 mOsm/kg with the exception of Opti-Free Express (225 mOsm/kg). In the agreement study, significant differences were observed between measurements obtained using the TearLab and both Fiske 110 procedures, although the Fiske 110 (4 μL) procedure was closer to the TearLab than the Fiske (2 μL) procedure. For undiluted solutions, the Fiske 110 shows good performance, making it a useful device for osmolarity measurements in lens care solutions or eye drops. A worse performance was observed for more diluted standard solution samples. When testing diluted samples, performance was acceptable for osmolarity values close to tear values.

  3. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  4. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  5. Heterogeneous ice nucleation: bridging stochastic and singular freezing behavior

    Science.gov (United States)

    Niedermeier, D.; Shaw, R. A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.

    2011-01-01

    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized model that bridges these stochastic and singular descriptions of heterogeneous ice nucleation. This "soccer ball" model treats statistically similar particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. We suggest that ice nucleation is fundamentally a stochastic process but that for realistic atmospheric particle populations this process can be masked by the heterogeneity of surface properties. Full evaluation of the model will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.

  6. The effect of dryer load on freeze drying process design.

    Science.gov (United States)

    Patel, Sajal M; Jameel, Feroz; Pikal, Michael J

    2010-10-01

    Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).

  7. DNA comet assay to identify different freezing temperatures of irradiated liver chicken

    International Nuclear Information System (INIS)

    Duarte, Renato C.; Mozeika, Michel A.; Fanaro, Gustavo B.; Villavicencio, Anna L.C.H.; Marchioni, Eric

    2009-01-01

    The cold chain is a succession of steps which maintain the food at low temperature. The thawed food never be frozen again and the best solution being to consume it quickly to avoid the microorganism growth which causes decay and nutrients damage. One of most important point is that freezing process, unlike irradiation, do not destroy microorganisms, only inactive them as long as they remain in a frozen state. The Comet Assay is an original test used to detect irradiated foods that's recognize the DNA damage and can then be used to control the overall degradation of the food and in a certain extend to evaluate the damage caused by irradiation, different forms of freeze and storage time on liver chicken cells. Different freezing temperatures were used, deep freeze -196 deg C and slow freeze -10 deg C. Samples were irradiated in a 60 Co irradiator with 1.5, 3.0 and 4.5 kGy radiation doses. Fast freezing technique induces a low percent of DNA degradation comparing to slow freezing technique. This procedure could be a good choose to chicken freezing processing. (author)

  8. Unsteady mixed convection flow of a micro-polar fluid near the stagnation point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2006-12-15

    The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)

  9. Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact

    International Nuclear Information System (INIS)

    Li Qing; Wang Tianshu; Ma Xingrui

    2009-01-01

    Flexible-body modeling with geometric nonlinearities remains a hot topic of research by applications in multibody system dynamics undergoing large overall motions. However, the geometric nonlinear effects on the impact dynamics of flexible multibody systems have attracted significantly less attention. In this paper, a point-surface impact problem between a rigid ball and a pivoted flexible beam is investigated. The Hertzian contact law is used to describe the impact process, and the dynamic equations are formulated in the floating frame of reference using the assumed mode method. The two important geometric nonlinear effects of the flexible beam are taken into account, i.e., the longitudinal foreshortening effect due to the transverse deformation, and the stress stiffness effect due to the axial force. The simulation results show that good consistency can be obtained with the nonlinear finite element program ABAQUS/Explicit if proper geometric nonlinearities are included in the floating frame formulation. Specifically, only the foreshortening effect should be considered in a pure transverse impact for efficiency, while the stress stiffness effect should be further considered in an oblique case with much more computational effort. It also implies that the geometric nonlinear effects should be considered properly in the impact dynamic analysis of more general flexible multibody systems

  10. Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Layek, G C; Seth, G S

    2014-01-01

    A mathematical model is presented to study the Soret and Dufour effects on the convective heat and mass transfer in stagnation-point flow of viscous incompressible fluid towards a shrinking surface. Suitable similarity transformations are used to convert the governing partial differential equations into self-similarity ordinary differential equations that are then numerically solved by shooting method. Dual solutions for temperature and concentration are obtained in the presence of Soret and Dufour effects. Graphical representations of the heat and mass transfer coefficients, the dimensionless thermal and solute profiles for various values of Prandtl number, Lewis number, Soret number and Dufour number are demonstrated. With Soret number the mass transfer coefficient which is related to mass transfer rate increases for both solutions and the heat transfer coefficient (related to heat transfer rate) for both solutions becomes larger with Dufour number. The Prandtl number causes reduction in heat and the mass transfer coefficients and similarly with the Lewis number mass transfer coefficient decreases. Also, double crossing over is found in dual dimensionless temperature profiles for increasing Soret number and in dual dimensionless concentration profiles for the increase in Dufour number. Due to the larger values of Dufour number the thermal boundary layer increases and for Prandtl number increment it decreases; whereas, the solute boundary layer thickness reduces with increasing values of Prandtl number and Lewis number. (paper)

  11. Monte Carlo simulation of the OCP freezing transition

    International Nuclear Information System (INIS)

    DeWitt, H.E.; Slattery, W.L.; Yang, Juxing

    1992-09-01

    The One Component Plasma (OCP) in three dimensions is a system of classical point charges moving in a fixed uniform neutralizing background. In nature the OCP is a rough approximation of the conditions in a white dwarf star in which one has fully ionized nuclei such as carbon, oxygen, and smaller amounts of heavier elements up to iron all moving in a nearly uniform background provided by relativistically degenerate electrons. The OCP is also a mathematical limiting model for a non-neutral plasma of ions in a Penning trap and cooled to strongly coupled conditions. Similarly, a collection of charge colloidal suspensions in water can exhibit the Coulomb freezing behavior of the OCP. A single dimensionless parameter, Γ is sufficient to describe the system. For very weak coupling, Γ much-lt 1, the thermodynamic properties of the OCP are given rigorously by the Debye-Huckel theory. This paper reports on Monte Carlo simulation of the freezing of the OCP from a random start for particle numbers ranging from 500 to 2000. In one case the authors obtained a perfect bcc lattice, but in most cases the final state would be an imperfect crystal or two different microcrystals, fcc and bcc, growing into each other. With a cluster analysis program the authors looked at the formation of nucleating clusters, and followed the actual freezing process. Roughly 80 particles are needed in a cluster before it starts to grow rapidly and freeze

  12. Sequential Strangeness Freeze-out

    Science.gov (United States)

    Bellwied, Rene

    2018-02-01

    I will describe the latest results from lattice QCD pertaining to a potential flavour hierarchy in the hadronic freeze-out from the QCD crossover region. I will compare these results to a variety of improved hadronic resonance gas calculations and to experimental data of fluctuations of net-charge, net-proton and net-kaon multiplicity distributions, which serve as a proxy for the susceptibilities of conserved quantum numbers on the lattice. I will conclude that there is intriguing evidence for a flavour dependent freezeout, and I will suggest expansions to the experimental program at RHIC and the LHC that could potentially demonstrate the impact of a flavour separation during hadronization.

  13. Well-plate freeze-drying

    DEFF Research Database (Denmark)

    Trnka, Hjalte; Rantanen, Jukka; Grohganz, Holger

    2015-01-01

    Abstract Context: Freeze-drying in presence of excipients is a common practice to stabilize biomacromolecular formulations. The composition of this formulation is known to affect the quality of the final product. Objective: The aim of this study was to evaluate freeze-drying in well...... no significant edge effect was found for any of the quality attributes analyzed. Conclusion: Freeze-drying in well-plates was found to be a suitable and representative high throughput platform for formulation screening....

  14. Structural damages in adsorbed vaccines affected by freezing.

    Science.gov (United States)

    Kurzątkowski, Wiesław; Kartoğlu, Ümit; Staniszewska, Monika; Górska, Paulina; Krause, Aleksandra; Wysocki, Mirosław Jan

    2013-03-01

    This study was planned to evaluate structural damages in adsorbed vaccines affected by freezing using scanning electron microscopy and X-ray analysis of the elements. Randomly selected 42 vials of eight different types of WHO pre-qualified adsorbed freeze-sensitive vaccines from 10 manufacturers were included in the study. Vaccines were kept at 5 °C. Selected numbers of vials from each type were then exposed to -25 °C for 24 h periods. All samples were evaluated for their structure using scanning electron microscopy, X-ray analysis of the elements and precipitation time. Scanning electron microscopy of vaccines affected by freezing showed either smooth or rough surfaced conglomerates associated with phosphate content of the precipitate. These vaccines precipitated 2-15 times faster compared to non-frozen samples. Non-frozen samples showed uniform flocculent structure either dense or dispersed. X-ray analysis of precipitates in frozen samples confirmed that the precipitate is mainly aluminium clutters. Scanning electron microscopy confirmed that the lattice structure of bonds between adsorbent and the antigen is broken and aluminium forms conglomerates that grow in size and weight. The precipitation time of vaccines affected by freezing is 4.5 times faster on average compared to non-frozen samples. These facts form the basis of the "shake test". Copyright © 2012 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  15. A simple and inexpensive point-of-care test for hepatitis B surface antigen detection: serological and molecular evaluation.

    Science.gov (United States)

    Gish, R G; Gutierrez, J A; Navarro-Cazarez, N; Giang, K; Adler, D; Tran, B; Locarnini, S; Hammond, R; Bowden, S

    2014-12-01

    Early identification of chronic hepatitis B is important for optimal disease management and prevention of transmission. Cost and lack of access to commercial hepatitis B surface antigen (HBsAg) immunoassays can compromise the effectiveness of HBV screening in resource-limited settings and among marginalized populations. High-quality point-of-care (POC) testing may improve HBV diagnosis in these situations. Currently available POC HBsAg assays are often limited in sensitivity. We evaluated the NanoSign(®) HBs POC chromatographic immunoassay for its ability to detect HBsAg of different genotypes and with substitutions in the 'a' determinant. Thirty-seven serum samples from patients with HBV infection, covering HBV genotypes A-G, were assessed for HBsAg titre with the Roche Elecsys HBsAg II quantification assay and with the POC assay. The POC assay reliably detected HBsAg at a concentration of at least 50 IU/mL for all genotypes, and at lower concentrations for some genotypes. Eight samples with substitutions in the HBV 'a' determinant were reliably detected after a 1/100 dilution. The POC strips were used to screen serum samples from 297 individuals at risk for HBV in local clinical settings (health fairs and outreach events) in parallel with commercial laboratory HBsAg testing (Quest Diagnostics EIA). POC testing was 73.7% sensitive and 97.8% specific for detection of HBsAg. Although the POC test demonstrated high sensitivity over a range of genotypes, false negatives were frequent in a clinical setting. Nevertheless, the POC assay offers advantages for testing in both developed and resource-limited countries due to its low cost (0.50$) and immediately available results. © 2014 John Wiley & Sons Ltd.

  16. Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

    Science.gov (United States)

    Freeze-fracture/freeze-etch describes a process whereby specimens, typically biological or nanomaterial in nature, are frozen, fractured, and replicated to generate a carbon/platinum "cast" intended for examination by transmission electron microscopy. Specimens are subjected to u...

  17. Freeze dehydration of milk using microwave energy

    International Nuclear Information System (INIS)

    Souda, K.B.; Akyel, C.; Bilgen, E.

    1989-01-01

    This paper presents the results of experimental studies on heat and mass transfer during a microwave freeze dehydration process. An experimental system and procedure was developed to freeze dry milk. A 2500-W microwave system with an appropriate wave guide was set up and instrumented, and a procedure was experimentally developed to obtain milk powder first by freezing milk and then dehydrating it at low pressure using microwave energy. An unsteady-state analysis was used to derive a one-dimensional mathematical model of the freeze dehydration process in a microwave electromagnetic field

  18. Hepatitis B vaccine freezing in the Indonesian cold chain: evidence and solutions.

    OpenAIRE

    Nelson, Carib M.; Wibisono, Hariadi; Purwanto, Hary; Mansyur, Isa; Moniaga, Vanda; Widjaya, Anton

    2004-01-01

    OBJECTIVES: To document and characterize freezing temperatures in the Indonesian vaccine cold chain and to evaluate the feasibility of changes designed to reduce the occurrence of freezing. METHODS: Data loggers were used to measure temperatures of shipments of hepatitis B vaccine from manufacturer to point of use. Baseline conditions and three intervention phases were monitored. During each of the intervention phases, vaccines were removed progressively from the standard 2-8 degrees C cold c...

  19. [Social freezing - the male perspective].

    Science.gov (United States)

    Gromoll, J; Tüttelmann, F; Kliesch, S

    2016-01-01

    In Germany there is an emerging trend for postponing parenthood due to non-medical, sociocultural reasons. This clearly impacts on the reproductive success due to an age-dependent decrease in fertility. Thus, strategies and techniques are currently discussed which could preserve the female fertility status, among which social freezing (cryopreservation of oocytes) for later fertilization is the most realistic one; however, while there is an intensive discussion on the procedure and timing of oocyte cryopreservation, virtually no attention has been paid to the male side and the aging effects on the male germ cells. To evaluate the risk paternal age poses for the integrity of germ cells. For this review a literature search using PubMed, data from the Federal Statistical Office of Germany, the German in vitro fertilization (IVF) register as well as own data were used. Sperm cell integrity is clearly affected by age both at the genetic as well as at the epigenetic levels. The estimated mutation rate for spermatozoa doubles every 16.5 years. Monogenic and multifactorial diseases are strongly associated with paternal age. Men aged >40 years have an increased risk of passing age-related mutations to their children. Cryopreservation of spermatozoa is an option for men who postpone planning a family. Genetic counseling is recommended for couples undertaking social freezing and a male age of >40 years.

  20. Freezing and thawing of processed meat in an industrial freezing tunnel

    OpenAIRE

    Glaucio Antonio Marini; Eduarda Molardi Bainy; Marcelo Kaminski Lenzi; Marcos Lúcio Corazza

    2014-01-01

    Freezing is a commonly used preservation method in the meat industry. The understanding of the product behavior during the freezing process can assist in a better process management and quality control. This work reports the study of freezing and thawing of three types of processed meat in order to determine process parameters in an industrial forced‑air freezing tunnel at ‑30oC. Chicken sausages (frankfurter type), mortadela (bologna type) and mechanically deboned chicken meat (MDCM) were st...

  1. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards

    OpenAIRE

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-01-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total ...

  2. 3-D Surface Visualization of pH Titration "Topos": Equivalence Point Cliffs, Dilution Ramps, and Buffer Plateaus

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md Mainul; MacCarthy, Patrick

    2014-01-01

    3-D topographic surfaces ("topos") can be generated to visualize how pH behaves during titration and dilution procedures. The surfaces are constructed by plotting computed pH values above a composition grid with volume of base added in one direction and overall system dilution on the other. What emerge are surface features that…

  3. Mechanisms of deterioration of nutrients. [of freeze dried foods

    Science.gov (United States)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  4. Ab initio analysis of a vacancy and a self-interstitial near single crystal silicon surfaces: Implications for intrinsic point defect incorporation during crystal growth from a melt

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Gent 9000 (Belgium)

    2012-10-15

    The microscopic model of the Si (001) crystal surface was investigated by first principles calculations to clarify the behavior of intrinsic point defects near crystal surfaces. A c(4 x 2) structure model was used to describe the crystal surface in contact with vacuum. The calculations show lower formation energy near the surface and the existence of formation energy differences between the surface and the bulk for both types of intrinsic point defects. The tetrahedral (T)-site and the dumbbell (DB)-site, in which a Si atom is captured from the surface and forms a self-interstitial, are found as stable sites near the third atomic layer. The T-site has a barrier of 0.48 eV, whereas the DB-site has no barrier for the interstitial to penetrate into the crystal from the vacuum. Si atoms in a melt can migrate and reach at the third layer during crystal growth when bulk diffusion coefficient is used. Therefore, the melt/solid interface is always a source of intrinsic point defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Phase space barriers and dividing surfaces in the absence of critical points of the potential energy: Application to roaming in ozone

    Energy Technology Data Exchange (ETDEWEB)

    Mauguière, Frédéric A. L., E-mail: frederic.mauguiere@bristol.ac.uk; Collins, Peter, E-mail: peter.collins@bristol.ac.uk; Wiggins, Stephen, E-mail: stephen.wiggins@mac.com [School of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom); Kramer, Zeb C., E-mail: zebcolterkramer@gmail.com; Ezra, Gregory S., E-mail: gse1@cornell.edu [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 (United States); Carpenter, Barry K., E-mail: carpenterb1@cardiff.ac.uk [School of Chemistry, Cardiff University, Cardiff CF10 3AT (United Kingdom); Farantos, Stavros C., E-mail: farantos@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, and Department of Chemistry, University of Crete, Iraklion 711 10, Crete (Greece)

    2016-02-07

    We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariant manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.

  6. Freeze-Thaw Cycles and Soil Biogeochemistry: Implications for Greenhouse Gas emission

    Science.gov (United States)

    Rezanezhad, F.; Milojevic, T.; Oh, D. H.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2016-12-01

    Freeze-thaw cycles represent a major natural climate forcing acting on soils at middle and high latitudes. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles regulate carbon and nitrogen cycling and how these transformations influence greenhouse gas (GHG) fluxes. We present a novel approach, which combines the acquisition of physical and chemical data in a newly developed experimental soil column system. This system simulates realistic soil temperature profiles during freeze-thaw cycles. A high-resolution, Multi-Fiber Optode (MuFO) microsensor technique was used to detect oxygen (O2) continuously in the column at multiple depths. Surface and subsurface changes to gas and aqueous phase chemistry were measured to delineate the pathways and quantify soil respiration rates during freeze-thaw cycles. The results indicate that the time-dependent release of GHG from the soil surface is influenced by a combination of two key factors. Firstly, fluctuations in temperature and O2 availability affect soil biogeochemical activity and GHG production. Secondly, the recurrent development of a physical ice barrier prevents exchange of gaseous compounds between the soil and atmosphere during freezing conditions; removal of this barrier during thaw conditions increases GHG fluxes. During freezing, O2 levels in the unsaturated zone decreased due to restricted gas exchange with the atmosphere. As the soil thawed, O2 penetrated deeper into the soil enhancing the aerobic mineralization of organic carbon and nitrogen. Additionally, with the onset of thawing a pulse of gas flux occurred, which is attributed to the build-up of respiratory gases in the pore space during freezing. The latter implies enhanced anaerobic respiration as O2 supply ceases when the upper soil layer freezes.

  7. Ultrasonic Measurements of Unconsolidated Saline Sediments During Freeze/Thaw Cycles: The Seismic Properties of Cryopeg Environments

    Science.gov (United States)

    Dou, S.; Ajo Franklin, J. B.

    2013-12-01

    Saline permafrost and cryopegs (hypersaline unfrozen layers/zones within permafrost) are widespread in the Arctic coastal area as a result of marine transgression and regression in recent geological history. Owing to the freezing-point depression effect of soluble salts, they contain more unfrozen water than non-saline frozen sediments when subjected to the same permafrost temperatures (e.g., from 0 to -15 °C). Mapping subsurface cryopeg structure remains a challenging geophysical task due to the poor penetration of GPR in highly conductive fluids and related limitations for lower frequency EM techniques. Seismic profiling, particularly surface wave characterization, provides one possible approach to delineate the extent of cryopeg bodies. However, interpretation of such surveys is currently limited by the sparse database of measurements examining the seismic properties of unconsolidated materials saturated with saline fluids at sub-zero temperatures. We present the results of experiments examining seismic velocity in the ultrasonic range for both synthetic and natural permafrost sediments during freeze/thaw cycles; in these experiments, use of a range of brine salinities allows us to evaluate the properties of cryopeg sediments at in-situ conditions, a prerequisite for quantitative interpretation of seismic imaging results. Because of the abundant unfrozen water and less developed inter-granular ice structure, the seismic properties of saline permafrost typically falls between frozen and unfrozen soils. We conducted ultrasonic measurements of a freeze-thaw cycle on 20-30 Ottawa sand (grain size 590-840 μm) as well as natural mineral soils from the Barrow Environmental Observatory (BEO) saturated with brines of different salinities (0-2.5 M NaCl). For each salinity, seismic properties were measured using the ultrasonic (~1 MHz) pulse-transmission method in the temperature range from 20 to -30 °C. Similar to sediments saturated with low salinity fluids, seismic

  8. Applicable technical method for lower temperature freeze ...

    African Journals Online (AJOL)

    Cryo-fixation and freeze substitution followed by microscopy are commonly used sample preparation methods for visualizing the morphology of intracellular organelles. Freeze substitution is an especially important preparative step because it enables the preservation of intracellular structures in cryo-fixed cells close to the ...

  9. A contour integral representation for the dual five-point function and a symmetry of the genus-4 surface in R6

    International Nuclear Information System (INIS)

    Hanson, Andrew J; Sha Jiping

    2006-01-01

    The invention of the 'dual resonance model' N-point functions B N motivated the development of current string theory. The simplest of these models, the four-point function B 4 , is the classical Euler Beta function. Many standard methods of complex analysis in a single variable have been applied to elucidate the properties of the Euler Beta function, leading, for example, to analytic continuation formulae such as the contour-integral representation obtained by Pochhammer in 1890. However, the precise features of the expected multiple-complex-variable generalizations to B N have not been systematically studied. Here we explore the geometry underlying the dual five-point function B 5 , the simplest generalization of the Euler Beta function. The original integrand defining B 5 leads to a polyhedral structure for the five-crosscap surface, embedded in RP 5 , that has 12 pentagonal faces and a symmetry group of order 120 in PGL(6). We find a Pochhammer-like representation for B 5 that is a contour integral along a surface of genus 5 in CP 2 x 4(CP 2 )-bar. The symmetric embedding of the five-crosscap surface in RP 5 is doubly covered by a corresponding symmetric embedding of the surface of genus 4 in S 5 is contained in R 6 that has a polyhedral structure with 24 pentagonal faces and a symmetry group of order 240 in O(6). These symmetries enable the construction of elegant visualizations of these surfaces. The key idea of this paper is to realize that the compactification of the set of five-point cross-ratios forms a smooth real algebraic subvariety that is the five-crosscap surface in RP 5 . It is in the complexification of this surface that we construct the contour integral representation for B 5 . Our methods are generalizable in principle to higher dimensions, and therefore should be of interest for further study

  10. A Novel Volume CT With X-Ray on a Trough-Like Surface and Point Detectors on Circle-Plus-Arc Curve

    National Research Council Canada - National Science Library

    Xu, H

    2001-01-01

    A novel imaging mode of cone-beam volume CT is proposed in this paper. It adopts a raster scanning x-ray source on a trough-like surface, and a group of point detectors distributing on a large circle plus an orthogonal arc...

  11. Automatic Registration of Tree Point Clouds from Terrestrial LIDAR Scanning for Reconstructing the Ground Scene of Vegetated Surfaces

    Science.gov (United States)

    Zhou, Guiyun; Zhou, Junjie

    2014-11-01

    Multiple scans are generally required to fully reconstruct three-dimensional models of botanical trees. An algorithm for the automatic registration of tree point clouds scanned from terrestrial laser scanners is proposed in this poster. The method extracts skeletons from the point cloud and conducts coarse registration automatically. The algorithm does not require a perfect skeleton to be extracted. No manual coarse registration is needed. The algorithm contributes to the automatic marker-free tree point cloud registration and improves field scanning efficiency by making the placement of markers unnecessary.

  12. The effects of freezing, boiling and degreasing on the microstructure of bone.

    Science.gov (United States)

    Lander, S L; Brits, D; Hosie, M

    2014-04-01

    The histology of bone has been a useful tool in research. It is commonly used to estimate the age of an individual at death, to assess if the bone is of human or non-human origin and in trauma analysis. Factors that affect the histology of bone include age, sex, population affinity and burning to name but a few. Other factors expected to affect bone histology are freezing, boiling and degreasing but very little information is available for freezing and the effect thereof, and it is unknown if boiling and degreasing affects bone histology. The aim of this study was to assess the effects of freezing, freezing and boiling, and freezing, boiling and degreasing on the histological structure of compact bone. Five cadaver tibiae were frozen at -20°C for 21 days followed by segments being boiled in water for three days and degreased in trichloroethylene at 82°C for three days. Anterior midshaft sections were prepared as ground sections and for Scanning Electron Microscopy (SEM). Quantitatively, there were no significant differences between freezing, boiling and degreasing; however, qualitative differences were observed using SEM. After being frozen the bone displayed cracks and after boiling the bones displayed erosion pits on the surface. It is suggested that further research, using different durations and temperatures for boiling and freezing be undertaken on bone samples representing different ages and various skeletal elements. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Surface Observation and Pore Size Analyses of Polypropylene/Low-Melting Point Polyester Filter Materials: Influences of Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lin Jia-Horng

    2016-01-01

    Full Text Available This study proposes making filter materials with polypropylene (PP and low-melting point (LPET fibers. The influences of temperatures and times of heat treatment on the morphology of thermal bonding points and average pore size of the PP/LPET filter materials. The test results indicate that the morphology of thermal bonding points is highly correlated with the average pore size. When the temperature of heat treatment is increased, the fibers are joined first with the thermal bonding points, and then with the large thermal bonding areas, thereby decreasing the average pore size of the PP/LPET filter materials. A heat treatment of 110 °C for 60 seconds can decrease the pore size from 39.6 μm to 12.0 μm.

  14. Visualization of Buffer Capacity with 3-D "Topo" Surfaces: Buffer Ridges, Equivalence Point Canyons and Dilution Ramps

    Science.gov (United States)

    Smith, Garon C.; Hossain, Md Mainul

    2016-01-01

    BufCap TOPOS is free software that generates 3-D topographical surfaces ("topos") for acid-base equilibrium studies. It portrays pH and buffer capacity behavior during titration and dilution procedures. Topo surfaces are created by plotting computed pH and buffer capacity values above a composition grid with volume of NaOH as the x axis…

  15. Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented

  16. Comparação de metodologias para a determinação do pH e do ponto de congelamento do leite bovino cru sob diferentes características de conservação Comparison of methodologies for the determination of pH and freezing point in raw bovine milk under different conservation characteristics

    Directory of Open Access Journals (Sweden)

    Viviane Maia de Araújo

    2011-07-01

    of this work was to compare reference methodologies to Fourier transform infrared spectroscopy for analysis of pH and freezing point (FP under different storage conditions on samples of raw bovine milk. Milk samples were collected from bulk tank milk on 57 farms. Each sample was subdivided into 45 vials (40 mL which were distributed according to storage temperature (-20ºC, 7ºC and 25ºC, age of the sample (0, 3, 6 and 9 days and levels of water addition (0, 2, 4 and 6%. Bronopol was added into 44 flasks and one was maintained without addition of preservative for control. Frozen point and pH were determined by the standard methods (thermistor cryoscope and potentiometer, respectively and by the alternative methodology by using MilkoScanTM FT+. The results from each method, at different conditions of conservation of the samples, were evaluated by analysis of variance and comparison of means. The linear regression analysis was performed to evaluate the methodologies (reference and alternative for results of the frozen point in function of the age of the sample. Bronopol did not alter pH means, but it reduced frozen point. Correction factors were calculated to eliminate this effect on the results of the frozen point. Means of pH in three-day samples, kept at -20ºC and 25ºC were lower than the samples at 7ºC. The age of the samples affected the results of pH when they were submitted to 25ºC. The increase of storage temperature to 25ºC reduced means of frozen point in samples without addition of water and at nine days of storage. The increase in age of sample at -20ºC and 7ºC does not affect means of frozen point. There is a strong correlation among methodologies in function of age of the sample for frozen point.

  17. Studies of heterogeneous freezing by three different desert dust samples

    Directory of Open Access Journals (Sweden)

    P. J. Connolly

    2009-04-01

    Full Text Available We present results of experiments at the aerosol interactions and dynamics in the atmosphere (AIDA chamber facility looking at the freezing of water by three different types of mineral particles at temperatures between −12°C and −33°C. The three different dusts are Asia Dust-1 (AD1, Sahara Dust-2 (SD2 and Arizona test Dust (ATD. The dust samples used had particle concentrations of sizes that were log-normally distributed with mode diameters between 0.3 and 0.5 μm and standard deviations, σg, of 1.6–1.9. The results from the freezing experiments are consistent with the singular hypothesis of ice nucleation. The dusts showed different nucleation abilities, with ATD showing a rather sharp increase in ice-active surface site density at temperatures less than −24°C. AD1 was the next most efficient freezing nuclei and showed a more gradual increase in activity than the ATD sample. SD2 was the least active freezing nuclei.

    We used data taken with particle counting probes to derive the ice-active surface site density forming on the dust as a function of temperature for each of the three samples and polynomial curves are fitted to this data. The curve fits are then used independently within a bin microphysical model to simulate the ice formation rates from the experiments in order to test the validity of parameterising the data with smooth curves. Good agreement is found between the measurements and the model for AD1 and SD2; however, the curve for ATD does not yield results that agree well with the observations. The reason for this is that more experiments between −20 and −24°C are needed to quantify the rather sharp increase in ice-active surface site density on ATD in this temperature regime. The curves presented can be used as parameterisations in atmospheric cloud models where cooling rates of approximately 1°C min−1 or more are present to predict the concentration of ice crystals forming by the

  18. Synthesis and structural evaluation of freeze-cast porous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Douglas F., E-mail: souzadf@outlook.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Pimenta, Daiana S.; Vasconcelos, Daniela C.L. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil); Nascimento, Jailton F.; Grava, Wilson [Petrobras/CENPES, Avenida Horácio Macedo 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ CEP:21941-915 (Brazil); Houmard, Manuel [Department of Materials Engineering and Civil Construction, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 1, sala 3304 (Brazil); Vasconcelos, Wander L., E-mail: wlv@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais — UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG CEP: 31270-901, Escola de Engenharia, bloco 2, sala 2230 (Brazil)

    2014-10-15

    In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observed that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.

  19. Preparation of Chitosan Nanocompositeswith a Macroporous Structure by Unidirectional Freezing and Subsequent Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Inmaculada Aranaz

    2014-11-01

    Full Text Available Chitosan is the N-deacetylated derivative of chitin, a naturally abundant mucopolysaccharide that consists of 2-acetamido-2-deoxy-β-d-glucose through a β (1→4 linkage and is found in nature as the supporting material of crustaceans, insects, etc. Chitosan has been strongly recommended as a suitable functional material because of its excellent biocompatibility, biodegradability, non-toxicity, and adsorption properties. Boosting all these excellent properties to obtain unprecedented performances requires the core competences of materials chemists to design and develop novel processing strategies that ultimately allow tailoring the structure and/or the composition of the resulting chitosan-based materials. For instance, the preparation of macroporous materials is challenging in catalysis, biocatalysis and biomedicine, because the resulting materials will offer a desirable combination of high internal reactive surface area and straightforward molecular transport through broad “highways” leading to such a surface. Moreover, chitosan-based composites made of two or more distinct components will produce structural or functional properties not present in materials composed of one single component. Our group has been working lately on cryogenic processes based on the unidirectional freezing of water slurries and/or hydrogels, the subsequent freeze-drying of which produce macroporous materials with a well-patterned structure. We have applied this process to different gels and colloidal suspensions of inorganic, organic, and hybrid materials. In this review, we will describe the application of the process to chitosan solutions and gels typically containing a second component (e.g., metal and ceramic nanoparticles, or carbon nanotubes for the formation of chitosan nanocomposites with a macroporous structure. We will also discuss the role played by this tailored composition and structure in the ultimate performance of these materials.

  20. The recovery of a time-dependent point source in a linear transport equation: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    The aim of this paper is to localize the position of a point source and recover the history of its time-dependent intensity function that is both unknown and constitutes the right-hand side of a 1D linear transport equation. Assuming that the source intensity function vanishes before reaching the final control time, we prove that recording the state with respect to the time at two observation points framing the source region leads to the identification of the source position and the recovery of its intensity function in a unique manner. Note that at least one of the two observation points should be strategic. We establish an identification method that determines quasi-explicitly the source position and transforms the task of recovering its intensity function into solving directly a well-conditioned linear system. Some numerical experiments done on a variant of the water pollution BOD model are presented

  1. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards.

    Science.gov (United States)

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-02-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total of 111 fungal genera belonging to 4 phyla were identified, showing remarkable fungal diversity on the apple surface. Comparative analysis of rural samples harboured higher fungal diversity than those from peri-urban orchards. In addition, fungal composition varied significantly across apple samples. At the genus level, the protective genera Coniothyrium, Paraphaeosphaeria and Periconia were enriched in rural samples. The pathogenic genera Acremonium, Aspergillus, Penicillium and Tilletiposis were enriched in peri-urban samples. Our findings indicate that rural samples maintained more diverse fungal communities on apple surfaces, whereas peri-urban-planted apple carried potential pathogenic risks. This study sheds light on ways to improve fruit cultivation and disease prevention practices.

  2. End-point energies of electrons ejected during auger neutralization of slow, multicharged aluminum and carbon ions near a gold surface

    International Nuclear Information System (INIS)

    Wattuhewa, G.

    1990-01-01

    This study of the interaction of slow, multi-charged ions with surfaces made use a laser operated ion source (LOIS) at the University of Arkansas. The diameter of the focused beam at the target surface was approximately 100μm producing a power density estimated to be grater than 10 11 W/cm 2 . The intense radiation field heated the target resulting in production of a plasma which included multi-charged ions with kinetic energies near several hundred eV per charge. The plasma ions enter a 180 degree electrostatic analyzer which separated them according to their kinetic energy to charge ratio. The resulting ion pulses were then allowed to impinge to charge ratio. The resulting ion pulses were then allowed to impinge on a gold surface. Auger-ejected electrons were energy analyzed by the retarding potential method. The present work determined the end-point energies of electrons ejected during the neutralization of slow, multi-charged carbon and aluminum ions near a gold surface. Analysis of the end-point energies that neutralization is stepwise where a captured electron cascades through the energy levels of the once neutralized ion. losing its energy through excitation of the other conduction band electrons. The end-point Auger electrons are produced in the last stages of this energy-loss ladder when the singly neutralized ion is near ground state. There is no evidence of exchange reactions taking place in these last stages or that multiple capture processes are important in producing end-point electrons. The end-point electrons, however, may not be the electrons that would best reflect such processes, since the neutralization energy per captured electron is reduced by each capture event

  3. Stabilization of tetanus toxoid formulation containing aluminium hydroxide adjuvant against freeze-thawing.

    Science.gov (United States)

    Solanki, Vipul A; Jain, Nishant K; Roy, Ipsita

    2011-07-29

    Exposure to subzero temperature leads to loss of vaccine potency. This can happen due to degradation of adjuvant surface and/or inactivation of the antigen. When adsorbed on aluminium hydroxide and subjected to freeze-thawing, tetanus toxoid was desorbed from the gel matrix and the preparation was found to lose its antigenicity. Analyses showed that the gel particles were denatured after freezing. When freeze-thawing was carried out in the presence of glucose, sorbitol and arginine, the degradation of gel particles was inhibited. A higher fraction of the protein could be retained on the gel. However, the antigenicity of these preparations was quite low. In the presence of trehalose, the protein could be partially retained on aluminium hydroxide. Being a cryoprotectant, trehalose was also able to inhibit the freezing-induced denaturation of tetanus toxoid, which resulted in retention of antigenicity of the adjuvanted toxoid. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Hot big bang or slow freeze?

    Science.gov (United States)

    Wetterich, C.

    2014-09-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze - a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple ;crossover model; without a big bang singularity. In the infinite past space-time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  5. Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface

    Science.gov (United States)

    Soomro, Feroz Ahmed; Haq, Rizwan Ul; Al-Mdallal, Qasem M.; Zhang, Qiang

    2018-03-01

    In this study, heat generation/absorption effects are studied in the presence of nonlinear thermal radiation along a moving slip surface. Uniform magnetic field and convective condition along the stretching surface are adjusted to deal the slip mechanisms in term of Brownian motion and thermophoresis for nanofluid. The mathematical model is constructed in the form of coupled partial differential equations. By introducing the suitable similarity transformation, system of coupled nonlinear ordinary differential equations are obtained. Finite difference approach is implemented to obtain the unknown functions of velocity, temperature, nanoparticle concentration. To deduct the effects at the surface, physical quantities of interest are computed under the effects of controlled physical parameters. Present numerical solutions are validated via numerical comparison with existing published work for limiting cases. Present study indicates that due to increase in both Brownian motion and thermophoresis, the Nusselt number decreases while Sherwood number shows the gradual increase.

  6. Analytic model of the stress waves propagation in thin wall tubes, seeking the location of a harmonic point source in its surface

    International Nuclear Information System (INIS)

    Boaratti, Mario Francisco Guerra

    2006-01-01

    Leaks in pressurized tubes generate acoustic waves that propagate through the walls of these tubes, which can be captured by accelerometers or by acoustic emission sensors. The knowledge of how these walls can vibrate, or in another way, how these acoustic waves propagate in this material is fundamental in the detection and localization process of the leak source. In this work an analytic model was implemented, through the motion equations of a cylindrical shell, with the objective to understand the behavior of the tube surface excited by a point source. Since the cylindrical surface has a closed pattern in the circumferential direction, waves that are beginning their trajectory will meet with another that has already completed the turn over the cylindrical shell, in the clockwise direction as well as in the counter clockwise direction, generating constructive and destructive interferences. After enough time of propagation, peaks and valleys in the shell surface are formed, which can be visualized through a graphic representation of the analytic solution created. The theoretical results were proven through measures accomplished in an experimental setup composed of a steel tube finished in sand box, simulating the condition of infinite tube. To determine the location of the point source on the surface, the process of inverse solution was adopted, that is to say, known the signals of the sensor disposed in the tube surface , it is determined through the theoretical model where the source that generated these signals can be. (author)

  7. Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils

    Science.gov (United States)

    Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.

    2017-12-01

    The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.

  8. Nanoimprint lithography-based plasmonic crystal-surface enhanced Raman scattering substrate for point of care testing application

    Science.gov (United States)

    Endo, Tatsuro; Yamada, Kenji

    2017-02-01

    Surface enhanced raman scattering (SERS) is known for its high sensitivity toward detection down to single molecule level under optimal conditions using surface plasmon resonance (SPR). To excite the SPR for SERS application, nanostructured noble metal supports such as a nanoparticle have been widely used. However, for excitation of SPR for SERS application using noble metal nanoparticle has several disadvantages such as sophisticated fabrication procedure and low reproducibility of SPR excitation efficiency. To overcome these disadvantages, in this study, plasmonic crystal (PC)-SERS substrate which has a periodic noble metal nanostructure was successfully fabricated rapidly and cost-effectively based on nanoimprint lithography (NIL).

  9. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  10. Direct molecular-level characterization of different heterogeneous freezing modes on mica - Part 1

    Science.gov (United States)

    Abdelmonem, Ahmed

    2017-09-01

    The mechanisms behind heterogeneous ice nucleation are of fundamental importance to the prediction of the occurrence and properties of many cloud types, which influence climate and precipitation. Aerosol particles act as cloud condensation and freezing nuclei. The surface-water interaction of an ice nucleation particle plays a major, not well explored, role in its ice nucleation ability. This paper presents a real-time molecular-level comparison of different freezing modes on the surface of an atmospherically relevant mineral surface (mica) under varying supersaturation conditions using second-harmonic generation spectroscopy. Two sub-deposition nucleation modes were identified (one- and two-stage freezing). The nonlinear signal at the water-mica interface was found to drop following the formation of a thin film on the surface regardless of (1) the formed phase (liquid or ice) and (2) the freezing path (one or two step), indicating similar molecular structuring. The results also revealed a transient phase of ice at water-mica interfaces during freezing, which has a lifetime of around 1 min. Such information will have a significant impact on climate change, weather modification, and the tracing of water in hydrosphere studies.

  11. SIMPLE: assessment of non-point phosphorus pollution from agricultural land to surface waters by means of a new methodology

    NARCIS (Netherlands)

    Schoumans, O.F.; Mol-Dijkstra, J.P.; Akkermans, L.M.W.; Roest, C.W.J.

    2002-01-01

    In the past, environmental phosphorus (P) parameters like soil P indices have been used to catogorize the potential risk of P losses from agricultural land. In order to assess the actual risk of P pollution of groundwater and surface waters, dynamic process oriented soil and water quality models

  12. Tailorable Porous Ceramics via Freeze Casting

    Data.gov (United States)

    National Aeronautics and Space Administration — Freeze casting of ceramics is a novel technique used to produce porous materials. The process involves solidifying a solvent in a ceramic slurry to produce a frozen...

  13. Freezing and refrigerated storage in fisheries

    National Research Council Canada - National Science Library

    Johnston, W. A

    1994-01-01

    ...; the factors affecting cold storage conditions, etc. In addition, the publication describes the methods used to calculate cold storage refrigeration loads as well as the costs of freezing and cold storage...

  14. Global Annual Freezing and Thawing Indices

    Data.gov (United States)

    National Aeronautics and Space Administration — The total annual freezing and thawing indices are defined as the cumulative number of degree-days when air temperatures are below and above zero degrees Celsius. The...

  15. Freezing tolerance of conifer seeds and germinants.

    Science.gov (United States)

    Hawkins, B J; Guest, H J; Kolotelo, D

    2003-12-01

    Survival after freezing was measured for seeds and germinants of four seedlots each of interior spruce (Picea glauca x engelmannii complex), lodgepole pine (Pinus contorta Dougl. ex Loud.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Donn). Effects of eight seed treatments on post-freezing survival of seeds and germinants were tested: dry, imbibed and stratified seed, and seed placed in a growth chamber for 2, 5, 10, 15, 20 or 30 days in a 16-h photoperiod and a 22/17 degrees C thermoperiod. Survival was related to the water content of seeds and germinants, germination rate and seedlot origin. After freezing for 3 h at -196 degrees C, dry seed of most seedlots of interior spruce, Douglas-fir and western red cedar had 84-96% germination, whereas lodgepole pine seedlots had 53-82% germination. Freezing tolerance declined significantly after imbibition in lodgepole pine, Douglas-fir and interior spruce seed (western red cedar was not tested), and mean LT50 of imbibed seed of these species was -30, -24.5 and -20 degrees C, respectively. Freezing tolerance continued to decline to a minimum LT50 of -4 to -7 degrees C after 10 days in a growth chamber for interior spruce, Douglas-fir and lodgepole pine, or after 15 days for western red cedar. Minimum freezing tolerance was reached at the stage of rapid hypocotyl elongation. In all species, a slight increase in freezing tolerance of germinants was observed once cotyledons emerged from the seed coat. The decrease in freezing tolerance during the transition from dry to germinating seed correlated with increases in seed water content. Changes in freezing tolerance between 10 and 30 days in the growth chamber were not correlated with seedling water content. Within a species, seedlots differed significantly in freezing tolerance after 2 or 5 days in the growth chamber. Because all seedlots of interior spruce and lodgepole pine germinated quickly, there was no correlation

  16. Realization of Copper Melting Point for Thermocouple Calibrations

    Directory of Open Access Journals (Sweden)

    Y. A. ABDELAZIZ

    2011-08-01

    Full Text Available Although the temperature stability and uncertainty of the freezing plateau is better than that of the melting plateau in most of the thermometry fixed points, but realization of melting plateaus are easier than that of freezing plateaus for metal fixed points. It will be convenient if the melting points can be used instead of the freezing points in calibration of standard noble metal thermocouples because of easier realization and longer plateau duration of melting plateaus. In this work a comparison between the melting and freezing points of copper (Cu was carried out using standard noble metal thermocouples. Platinum - platinum 10 % rhodium (type S, platinum – 30 % rhodium / platinum 6 % rhodium (type B and platinum - palladium (Pt/Pd thermocouples are used in this study. Uncertainty budget analysis of the melting points and freezing points is presented. The experimental results show that it is possible to replace the freezing point with the melting point of copper cell in the calibration of standard noble metal thermocouples in secondary-level laboratories if the optimal methods of realization of melting points are used.

  17. Thermal analysis of ice and glass transitions in insects that do and do not survive freezing.

    Science.gov (United States)

    Rozsypal, Jan; Moos, Martin; Šimek, Petr; Koštál, Vladimír

    2018-03-01

    Some insects rely on the strategy of freeze tolerance for winter survival. During freezing, extracellular body water transitions from the liquid to solid phase and cells undergo freeze-induced dehydration. Here we present results of a thermal analysis (from differential scanning calorimetry) of ice fraction dynamics during gradual cooling after inoculative freezing in variously acclimated larvae of two drosophilid flies, Drosophila melanogaster and Chymomyza costata. Although the species and variants ranged broadly between 0 and close to 100% survival of freezing, there were relatively small differences in ice fraction dynamics. For instance, the maximum ice fraction (IF max ) ranged between 67.9 and 77.7% total body water (TBW). The C. costata larvae showed statistically significant phenotypic shifts in parameters of ice fraction dynamics (melting point and IF max ) upon entry into diapause, cold-acclimation, and feeding on a proline-augmented diet. These differences were mostly driven by colligative effects of accumulated proline (ranging between 6 and 487 mmol.kg -1 TBW) and other metabolites. Our data suggest that these colligative effects per se do not represent a sufficient mechanistic explanation for high freeze tolerance observed in diapausing, cold-acclimated C. costata larvae. Instead, we hypothesize that accumulated proline exerts its protective role via a combination of mechanisms. Specifically, we found a tight association between proline-induced stimulation of glass transition in partially-frozen body liquids (vitrification) and survival of cryopreservation in liquid nitrogen. © 2018. Published by The Company of Biologists Ltd.

  18. Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis).

    Science.gov (United States)

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zhihang

    2017-08-15

    Effects of protein denaturation caused by high pressure freezing, involving Pressure-Factors (pressure, time) and Freezing-Factors (temperature, phase transition, recrystallization, ice crystal types), are complicated. In the current study, the conformation and functional changes of natural actomyosin (NAM) under pressure assisted freezing (PAF, 100,150,300,400,500MPa P -20°C/25min ), pressure shift freezing (PSF, 200MPa P -20°C/25min ), and immersion freezing ( 0.1MPa P -20°C/5min ) after pressure was released to 0.1MPa, as compared to normal immersion freezing process (IF, 0.1MPa P -20°C/30min ). Results indicated that PSF ( 200MPa P -20°C/30min ) could reduce the denaturation of frozen NAM and a pressure of 300MPa was the critical point to induce such a denaturation. During the periods of B→D in PSF or B→C→D in PAF, the generation and growth of ice crystals played an important role on changing the secondary and tertiary structure of the treated NAM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars

    Science.gov (United States)

    Marshall, Katie E.; Sinclair, Brent J.

    2012-01-01

    Decreases in snow cover due to climate change could alter the energetics and physiology of ectothermic animals that overwinter beneath snow, yet how snow cover interacts with physiological thresholds is unknown. We applied numerical simulation of overwintering metabolic rates coupled with field validation to determine the importance of snow cover and freezing to the overwintering lipid consumption of the freeze-tolerant Arctiid caterpillar Pyrrharctia isabella. Caterpillars that overwintered above the snow experienced mean temperatures 1.3°C lower than those below snow and consumed 18.36 mg less lipid of a total 68.97-mg reserve. Simulations showed that linear temperature effects on metabolic rate accounted for only 30% of the difference in lipid consumption. When metabolic suppression by freezing was included, 93% of the difference between animals that overwintered above and below snow was explained. Our results were robust to differences in temperature sensitivity of metabolic rate, changes in freezing point, and the magnitude of metabolic suppression by freezing. The majority of the energy savings was caused by the non-continuous reduction in metabolic rate due to freezing, the first example of the importance of temperature thresholds in the lipid use of overwintering insects.

  20. Planetary geodetic control using satellite imaging. [equations for determination of control points from surface television-imagery

    Science.gov (United States)

    Duxbury, T. C.

    1979-01-01

    A new data type for planetary geodetic control using natural satellite imaging is presented. Spacecraft images of natural satellites against the planet give a direct tie between inertial space and surface features surrounding the satellite image. This technique is expected to offer a factor of 3-10 improvement in accuracy over present geodetic reduction for Mars. A specific example using Viking imaging of Phobos against Mars is given.

  1. Flux observations of isoprene oxidation products above a South East US forest point to chemical conversions on leaf canopy surface

    Science.gov (United States)

    Misztal, P. K.; Su, L.; Park, J.; Holzinger, R.; Nguyen, T.; Teng, A.; St Clair, J. M.; Wennberg, P. O.; Crounse, J.; Seco, R.; Karl, T.; Kaser, L.; Hansel, A.; Canaval, E.; Keutsch, F. N.; Mak, J. E.; Guenther, A. B.; Goldstein, A. H.; Mentler, B.; Lepesant, B.; Schnitzler, J. P.; Partoll, E.

    2016-12-01

    Isoprene is globally the dominant biogenic VOC (BVOC) emitted by the biosphere. Isoprene rapidly reacts with hydroxyl radicals in the atmosphere, forming oxidized carbonaceous gases some of which further react to form secondary organic aerosol. Isoprene oxidation proceeds simultaneously via NO and HO2 oxidation pathways with relative proportions depending mainly on the amount of available NOx (NO +NO2). Recent SOA modeling of HO2 oxidation of isoprene peroxides and epoxides reveal different SOA yields but few field studies are available to investigate these processes. Understanding of the fundamental chemical and physical processes controlling the fate of isoprene oxidation products is needed to improve SOA modeling under highly variable NOx concentrations and with the branching ratio between HO2 and NO pathways changing as a function of time of day. Plants are an important sink for many atmospheric chemicals formed in the atmosphere but the role of canopy surfaces is not typically accounted for when modeling atmospheric chemistry. Based on simultaneous flux measurements of isoprene carbonyls (MVK+MAC) by proton transfer reaction mass spectrometry and isoprene hydroxy hydroperoxides and epoxy diols (ISOPOOH+IEPOX) by tandem chemical ionization mass spectrometry, we show that the relative proportions of concentrations of these first-order isoprene products exhibit different diurnal patterns, dependent on NOx. Furthermore, a different diurnal flux pattern observed for first order products of NO and HO2 reactions reveals the occurrence of peroxide conversions to carbonyls at the canopy surface resulting in observed positive net emission flux of MVK+MAC in the afternoon. We hypothesize that the plant canopy provides an active surface which can catalyze chemical conversion. This hypothesis is supported by observation of consistent flux patterns at multiple different sites in the US and by a controlled ISOPOOH fumigation experiment of a plant in an enclosure chamber. In

  2. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor.

    Science.gov (United States)

    Masuda, Tetsuya; Kigo, Satomi; Mitsumoto, Mayuko; Ohta, Keisuke; Suzuki, Mamoru; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2018-01-01

    Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20-40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  3. A Nondestructive Evaluation Method: Measuring the Fixed Strength of Spot-Welded Joint Points by Surface Electrical Resistivity.

    Science.gov (United States)

    Shimamoto, Akira; Yamashita, Keitaro; Inoue, Hirofumi; Yang, Sung-Mo; Iwata, Masahiro; Ike, Natsuko

    2013-04-01

    Destructive tests are generally applied to evaluate the fixed strength of spot-welding nuggets of zinc-plated steel (which is a widely used primary structural material for automobiles). These destructive tests, however, are expensive and time-consuming. This paper proposes a nondestructive method for evaluating the fixed strength of the welded joints using surface electrical resistance. A direct current nugget-tester and probes have been developed by the authors for this purpose. The proposed nondestructive method uses the relative decrease in surface electrical resistance, α . The proposed method also considers the effect of the corona bond. The nugget diameter is estimated by two factors: R Quota , which is calculated from variation of resistance, and a constant that represents the area of the corona bond. Since the maximum tensile strength is correlated with the nugget diameter, it can be inferred from the estimated nugget diameter. When appropriate measuring conditions for the surface electrical resistance are chosen, the proposed method can effectively evaluate the fixed strength of the spot-welded joints even if the steel sheet is zinc-plated.

  4. Use of Unmanned Aerial Systems to Study Atmospheric Processes During Sea Ice Freeze Up

    Science.gov (United States)

    de Boer, G.; Lawrence, D.; Weibel, D.; Borenstein, S.; Bendure, A.; Solomon, A.; Intrieri, J. M.

    2017-12-01

    In October 2016, a team of scientists deployed to Oliktok Point, Alaska to make atmospheric measurements as part of the Evaluation of Routine Atmospheric Sounding measurements using Unmanned Systems (ERASMUS) and Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) campaigns. The deployment included operations using the University of Colorado DataHawk2 UAS. The DataHawk2 was configured to make measurements of atmospheric thermodynamics, wind and surface temperature, providing information on lower tropospheric thermodynamic structure, turbulent surface fluxes, and surface temperature. During this campaign, the team experienced a variety of weather regimes and witnessed the development of near shore sea ice. In this presentation, we will give an overview of the measurements obtained during this time and how they were used to better understand freeze up processes in this coastal environment. Additionally, we will provide insight into how these platforms are being used for evaluation of a fully-coupled sea ice forecast model operated by NOAA's Physical Sciences Division.

  5. Coupling legacy geomorphic surface facies to riparian vegetation: Assessing red cedar invasion along the Missouri River downstream of Gavins Point dam, South Dakota

    Science.gov (United States)

    Greene, Samantha L.; Knox, James C.

    2014-01-01

    Floods increase fluvial complexity by eroding established surfaces and creating new alluvial surfaces. As dams regulate channel flow, fluvial complexity often decreases and the hydro-eco-geomorphology of the riparian habitat changes. Along the Missouri River, flow regulation resulted in channel incision of 1-3 m within the study area and disconnected the pre-dam floodplain from the channel. Evidence of fluvial complexity along the pre-dam Missouri River floodplain can be observed through the diverse depositional environments represented by areas of varying soil texture. This study evaluates the role of flow regulation and depositional environment along the Missouri River in the riparian invasion of red cedar downstream of Gavins Point dam, the final dam on the Missouri River. We determine whether invasion began before or after flow regulation, determine patterns of invasion using Bayesian t-tests, and construct a Bayesian multivariate linear model of invaded surfaces. We surveyed 59 plots from 14 riparian cottonwood stands for tree age, plot composition, plot stem density, and soil texture. Red cedars existed along the floodplain prior to regulation, but at a much lower density than today. We found 2 out of 565 red cedars established prior to regulation. Our interpretation of depositional environments shows that the coarser, sandy soils reflect higher energy depositional pre-dam surfaces that were geomorphically active islands and point bars prior to flow regulation and channel incision. The finer, clayey soils represent lower energy depositional pre-dam surfaces, such as swales or oxbow depressions. When determining patterns of invasion for use in a predictive statistical model, we found that red cedar primarily establishes on the higher energy depositional pre-dam surfaces. In addition, as cottonwood age and density decrease, red cedar density tends to increase. Our findings indicate that flow regulation caused hydrogeomorphic changes within the study area that

  6. Statistical analysis of intramembranous particles using freeze fracture specimens.

    Science.gov (United States)

    Schladitz, Katja; Särkkä, Aila; Pavenstädt, Iris; Haferkamp, Otto; Mattfeldt, Torsten

    2003-08-01

    We studied the point processes of intramembranous particles of mitochondrial membranes from HeLa cells using the freeze fracture technique. Three groups - under normal conditions, after exposition with rotenone, and after exposition with sodium acid - were compared. First, we used several summary statistics in order to study the two-dimensional point patterns of intramembranous particles within each group. Then, we compared the patterns in different groups by bootstrap tests using the K-function and the nearest neighbour distance function G(r). Estimation of the G-function provided significant results but no significant differences between groups were found using the classical K-function; estimation of G(r) should therefore not be omitted when studying observed planar point patterns.

  7. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor

    Science.gov (United States)

    Masuda, Tetsuya; Kigo, Satomi; Mitsumoto, Mayuko; Ohta, Keisuke; Suzuki, Mamoru; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2018-01-01

    Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20–40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model. PMID:29487853

  8. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  9. Prospective Chemistry Teachers' Misconceptions about Colligative Properties: Boiling Point Elevation and Freezing Point Depression

    Science.gov (United States)

    Pinarbasi, Tacettin; Sozbilir, Mustafa; Canpolat, Nurtac

    2009-01-01

    This study aimed at identifying prospective chemistry teachers' misconceptions of colligative properties. In order to fulfill this aim, a diagnostic test composed of four open-ended questions was used. The test was administered to seventy-eight prospective chemistry teachers just before qualifying to teaching in secondary schools. Nine different…

  10. Freezing the Master Production Schedule Under Rolling Planning Horizons

    OpenAIRE

    V. Sridharan; William L. Berry; V. Udayabhanu

    1987-01-01

    The stability of the Master Production Schedule (MPS) is a critical issue in managing production operations with a Material Requirements Planning System. One method of achieving stability is to freeze some portion or all of the MPS. While freezing the MPS can limit the number of schedule changes, it can also produce an increase in production and inventory costs. This paper examines three decision variables in freezing the MPS: the freezing method, the freeze interval length, and the planning ...

  11. A Method to Estimate the Probability That Any Individual Lightning Stroke Contacted the Surface Within Any Radius of Any Point

    Science.gov (United States)

    Huddleston, Lisa L.; Roeder, William; Merceret, Francis J.

    2010-01-01

    A technique has been developed to calculate the probability that any nearby lightning stroke is within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than the error ellipses centered on the stroke. This process takes the current bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to get the probability that the stroke is inside any specified radius. This new facility-centric technique will be much more useful to the space launch customers and may supersede the lightning error ellipse approach discussed in [5], [6].

  12. An Assessment of Pre- and Post Fire Near Surface Fuel Hazard in an Australian Dry Sclerophyll Forest Using Point Cloud Data Captured Using a Terrestrial Laser Scanner

    Directory of Open Access Journals (Sweden)

    Luke Wallace

    2016-08-01

    Full Text Available Assessment of ecological and structrual changes induced by fire events is important for understanding the effects of fire, and planning future ecological and risk mitigation strategies. This study employs Terrestrial Laser Scanning (TLS data captured at multiple points in time to monitor the changes in a dry sclerophyll forest induced by a prescribed burn. Point cloud data was collected for two plots; one plot undergoing a fire treatment, and the second plot remaining untreated, thereby acting as the control. Data was collected at three epochs (pre-fire, two weeks post fire and two years post fire. Coregistration of these multitemporal point clouds to within an acceptable tolerance was achieved through a two step process utilising permanent infield markers and manually extracted stem objects as reference targets. Metrics describing fuel height and fuel fragmentation were extracted from the point clouds for direct comparison with industry standard visual assessments. Measurements describing the change (or lack thereof in the control plot indicate that the method of data capture and coregistration were achieved with the required accuracy to monitor fire induced change. Results from the fire affected plot show that immediately post fire 67% of area had been burnt with the average fuel height decreasing from 0.33 to 0.13 m. At two years post-fire the fuel remained signicantly lower (0.11 m and more fragmented in comparison to pre-fire levels. Results in both the control and fire altered plot were comparable to synchronus onground visual assessment. The advantage of TLS over the visual assessment method is, however, demonstrated through the use of two physical and spatially quantifiable metrics to describe fuel change. These results highlight the capabilities of multitemporal TLS data for measuring and mapping changes in the three dimensional structure of vegetation. Metrics from point clouds can be derived to provide quantified estimates of surface

  13. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger with Bypass Setpoint Temperature Control

    Science.gov (United States)

    Ungar, Eugene K.

    2008-01-01

    Spacecraft radiators are sized for their maximum heat load in their warmest thermal environment, but must operate at reduced heat loads and in colder environments. For systems where the radiator environment can be colder than the working fluid freezing temperature, radiator freezing becomes an issue. Radiator freezing has not been a major issue for the Space Shuttle and the International Space Station (ISS) active thermal control systems (ATCSs) because they operate in environments that are warm relative to the freezing point of their external coolants (Freon-21 and ammonia, respectively). For a vehicle that lands at the Lunar South Pole, the design thermal environment is 215K, but the radiator working fluid must also be kept from freezing during the 0 K sink of transit. A radiator bypass flow control design such as those used on the Space Shuttle and ISS requires more than 30% of the design heat load to avoid radiator freezing during transit - even with a very low freezing point working fluid. By changing the traditional ATCS architecture to include a regenerating heat exchanger inboard of the radiator and by using a regenerator bypass flow control valve to maintain system setpoint, the required minimum heat load can be reduced by more than half. This gives the spacecraft much more flexibility in design and operation. The present work describes the regenerator bypass ATCS setpoint control methodology. It includes analytical results comparing the performance of this system to the traditional radiator bypass system. Finally, a summary of the advantages of the regenerator bypass system are presented.

  14. Roll-to-roll, shrink-induced superhydrophobic surfaces for antibacterial applications, enhanced point-of-care detection, and blood anticoagulation

    Science.gov (United States)

    Nokes, Jolie McLane

    Superhydrophobic (SH) surfaces are desirable because of their unique anti-wetting behavior. Fluid prefers to bead up (contact angle >150°) and roll off (contact angle hysteresis micro- and nanostructure features trap air pockets. Fluid only adheres to the peaks of the structures, causing minimal adhesion to the surface. Here, shrink-induced SH plastics are fabricated for a plethora of applications, including antibacterial applications, enhanced point-of-care (POC) detection, and reduced blood coagulation. Additionally, these purely structural SH surfaces are achieved in a roll-to-roll (R2R) platform for scalable manufacturing. Because their self-cleaning and water resistant properties, structurally modified SH surfaces prohibit bacterial growth and obviate bacterial chemical resistance. Antibacterial properties are demonstrated in a variety of SH plastics by preventing gram-negative Escherichia coli (E. coli) bacterial growth >150x compared to flat when fluid is rinsed and >20x without rinsing. Therefore, a robust and stable means to prevent bacteria growth is possible. Next, protein in urine is detected using a simple colorimetric output by evaporating droplets on a SH surface. Contrary to evaporation on a flat surface, evaporation on a SH surface allows fluid to dramatically concentrate because the weak adhesion constantly decreases the footprint area. On a SH surface, molecules in solution are confined to a footprint area 8.5x smaller than the original. By concentrating molecules, greater than 160x improvements in detection sensitivity are achieved compared to controls. Utility is demonstrated by detecting protein in urine in the pre-eclampsia range (150-300microgmL -1) for pregnant women. Further, SH surfaces repel bodily fluids including blood, urine, and saliva. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200x and >28x reduction of blood residue area and

  15. Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions.

    Science.gov (United States)

    Velly, H; Fonseca, F; Passot, S; Delacroix-Buchet, A; Bouix, M

    2014-09-01

    To investigate the effects of fermentation parameters on the cell growth and on the resistance to each step of the freeze-drying process of Lactococcus lactis subsp. lactis TOMSC161, a natural cheese isolate, using a response surface methodology. Cells were cultivated at different temperatures (22, 30 and 38°C) and pH (5·6, 6·2 and 6·8) and were harvested at different growth phases (0, 3 and 6 h of stationary phase). Cultivability and acidification activity losses of Lc. lactis were quantified after freezing, drying, 1 and 3 months of storage at 4 and 25°C. Lactococcus lactis was not damaged by freezing but was sensitive to drying and to ambient temperature storage. Moreover, the fermentation temperature and the harvesting time influenced the drying resistance of Lc. lactis. Lactococcus lactis cells grown in a whey-based medium at 32°C, pH 6·2 and harvested at late stationary phase exhibited both an optimal growth and the highest resistance to freeze-drying and storage. A better insight on the individual and interaction effects of fermentation parameters made it possible the freeze-drying and storage preservation of a sensitive strain of technological interest. Evidence on the particularly damaging effect of the drying step and the high-temperature storage is presented. © 2014 The Society for Applied Microbiology.

  16. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    Science.gov (United States)

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements

    International Nuclear Information System (INIS)

    Chevallier, F.; Ciais, P.; Bousquet, P.; Maignan, F.; Peylin, P.; Ramonet, M.; Rivier, L.; Schmidt, M.; Conway, T.J.; Aalto, T.; Anderson, B.E.; Vay, S.A.; Brunke, E.G.; Ciattaglia, L.; Esaki, Y.; Froehlich, M.; Gomez, A.; Gomez-Pelaez, A.J.; Haszpra, L.; Krummel, P.B.; Langenfelds, R.L.; Steele, L.P.; Leuenberger, M.; Machida, T.; Mukai, H.; Matsueda, H.; Sawa, Y.; Morgui, J.A.; Nakazawa, T.; Vermeulen, A.T.; Wofsy, S.; Worthy, D.

    2010-01-01

    This paper documents a global Bayesian variational inversion of CO2 surface fluxes during the period 1988-2008. Weekly fluxes are estimated on a 3.75x2.5 (longitude-latitude) grid throughout the 21 years. The assimilated observations include 128 station records from three large data sets of surface CO2 mixing ratio measurements. A Monte Carlo approach rigorously quantifies the theoretical uncertainty of the inverted fluxes at various space and time scales, which is particularly important for proper interpretation of the inverted fluxes. Fluxes are evaluated indirectly against two independent CO2 vertical profile data sets constructed from aircraft measurements in the boundary layer and in the free troposphere. The skill of the inversion is evaluated by the improvement brought over a simple benchmark flux estimation based on the observed atmospheric growth rate. Our error analysis indicates that the carbon budget from the inversion should be more accurate than the a priori carbon budget by 20% to 60% for terrestrial fluxes aggregated at the scale of subcontinental regions in the Northern Hemisphere and over a year, but the inversion cannot clearly distinguish between the regional carbon budgets within a continent. On the basis of the independent observations, the inversion is seen to improve the fluxes compared to the benchmark: the atmospheric simulation of CO2 with the Bayesian inversion method is better by about 1 ppm than the benchmark in the free troposphere, despite possible systematic transport errors. The inversion achieves this improvement by changing the regional fluxes over land at the seasonal and at the interannual time scales.

  18. Dual solutions for MHD stagnation-point flow of a nanofluid over a stretching surface with induced magneticfield

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2015-11-01

    Full Text Available Present study deals with the buoyancy-driven MHD mixed convection stagnation-point flow, heat and mass transfer of a nanofluid over a non-isothermal stretching sheet in presence of induced magneticfield, radiation, chemical reaction, suction/injection and heat source/sink. The basic governing partial differential equations are reduced to a set of ordinary differential equations by using appropriate similarity transformation. The resulting system is solved numerically by bvp5c Matlab package. Numerical results are validated by comparing with the published results. The influence of non-dimensional governing parameters on velocity, induced magneticfield, temperature and concentration profiles along with coefficient of skin friction, local Nusselt and Sherwood numbers are discussed and presented with the help of graphs and tables. Comparisons are made with the existed studies. Results indicate that dual solutions exists only for certain range of suction/ injection parameter and injection parameter have tendency to enhance the momentum, thermal and concentration boundary layer thickness.

  19. PIV study of non-Marangoni surface flows in thin liquid films induced by single- and multi-point thermodes

    Science.gov (United States)

    Cui, Nai-Yi; Wang, Song-Po

    2018-03-01

    The non-Marangoni directional flows, which can occur in only very thin liquid films, have been studied using particle image velocimetry techniques. Single- and multi-point thermodes have been used in this study for generating the flows. The results show that the direction of these flows is governed by the variation trend of the thickness of the film and the shape of the temperature profile. A hot thermode always drives a thick-to-thin flow, whereas a cold thermode always drives a flow in the opposite direction. Increasing the temperature difference between the thermode and the ambience, or decreasing the thickness of the liquid film, can accelerate the flow speed. However, the flow speed cannot exceed an upper limit. When more than one thermode was used, different flow patterns, including thick-to-thin streams driven by hot thermodes and thin-to-thick streams driven by cold thermodes, could be formed. The experimental results strongly suggest that these flows were not driven by thermo-capillary forces but by a newly proposed thermo-dynamic mechanism.

  20. Study of solute incorporation into ice-layer on freeze concentration with ice-lining; Ice lining toketsu noshukuho ni okeru hyosho sochu eno yoshitsu torikomi ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Y.; Shinozaki, K. [Fujisawa Pharmaceutical Co. Ltd., Osaka (Japan); Hirata, Y. [Osaka University, Osaka (Japan)

    1997-07-10

    The mechanism of solute incorporation into an ice-layer in freeze concentration with ice-lining was studied by changing the impeller speed N and the difference between the brine temperature and the freezing point of the feed solution {Delta}T in 10 kg/m{sup 3} CCNa solution. The effect of N on the apparent partition coefficient of the solute K, is more serious than that of {Delta}T. The growth rate of the ice layer is 10{sup -7} - 10{sup -6}m/s under the condition of {Delta}T=2.8 - 7.9degC and N = 20-400 min{sup -1}. The growth rate had a little effect on solute incorporation into the ice-layer. K values depended on the surface condition of the ice layer, which is effected by the mixing speed of the impeller. The ice layer formed at low mixing speed has a complex rough shape, and has much solute because of adhesion to a large surface area. Therefore, it is recommended that freeze concentration is performed by making an ice layer with smooth surface at high mixing speed. 9 refs., 6 figs.

  1. Theoretical characterization of the potential energy surface for the reversible reaction H + O2 yields HO2(asterisk) yields OH + O. III - Computed points to define a global potential energy surface

    Science.gov (United States)

    Walch, Stephen P.; Duchovic, Ronald J.

    1991-01-01

    Computed energies and geometries are reported which, combined with previously published calculations, permit a global representation of the potential energy surface for the reaction H + O2 yields HO2(asterisk) yields OH + O. These new calculations characterize the potential energy surface (PES) for all H atom angles of approach to O2 and for the region of the inner repulsive wall. The region of the T-shaped H-O2 exchange saddle point is connected with the constrained energy minimum (CEM) path, and a new collinear H-O2 exchange saddle point is characterized which lies only 9 kcal/mol above the H + O2 asymptote. A vibrational analysis which utilizes local cubic and quartic polynomial representations of the PES along the CEM path has been carried out. Optimal geometries, energies, and harmonic frequencies are reported along with anharmonic analyses for the O2 and OH asymptotes and for the HO2 minimum region of the PES.

  2. Freeze-drying of lactic acid bacteria.

    Science.gov (United States)

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  3. SENSITIVE TO FREEZING2 Aides in Resilience to Salt and Drought in Freezing-Sensitive Tomato.

    Science.gov (United States)

    Wang, Kun; Hersh, Hope Lynn; Benning, Christoph

    2016-11-01

    SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance of wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg 2+ -dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  5. Indirect spectrophotometric determination of sulfadiazine based on localized surface plasmon resonance peak of silver nanoparticles after cloud point extraction

    Science.gov (United States)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Fattahi, Mohammad Reza; Khodaveisi, Javad

    2017-12-01

    A novel, efficient, easy to use, environmentally friendly and cost-effective methodology is developed for the indirect spectrophotometric determination of sulfadiazine in different samples. The method is based on the micelle-mediated extraction of silver sulfadiazine and converting the silver content of the resultant surfactant-rich phase to the silver nanoparticles via generation of [Ag(NH3)2]+ followed by its chemical reduction using ascorbic acid. The changes in the amplitude of localized surface plasmon resonance peak of silver nanoparticles as a function of sulfadiazine concentration in the sample solution was monitored using fiber optic linear array spectrophotometry at 457 nm. The experimental conditions were thoroughly investigated and optimized. Under the optimized condition, the developed procedure showed dynamic linear calibration within the range of 10.0-800.0 μg L- 1 with a detection limit of 2.8 μg L- 1 for sulfadiazine. The relative standard deviation of the method for six replicate measurements at 150.0 μg L- 1 of sulfadiazine was 4.7%. The developed method was successfully applied to the determination of sulfadiazine in different samples including well water, human urine, milk and pharmaceutical formulation.

  6. A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides

    OpenAIRE

    Walters, Kent R.; Serianni, Anthony S.; Sformo, Todd; Barnes, Brian M.; Duman, John G.

    2009-01-01

    Thermal hysteresis (TH), a difference between the melting and freezing points of a solution that is indicative of the presence of large-molecular-mass antifreezes (e.g., antifreeze proteins), has been described in animals, plants, bacteria, and fungi. Although all previously described TH-producing biomolecules are proteins, most thermal hysteresis factors (THFs) have not yet been structurally characterized, and none have been characterized from a freeze-tolerant animal. We isolated a highly a...

  7. Influence of dough freezing on Saccharomyces cerevisiae metabolism

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2007-01-01

    Full Text Available The need to freeze dough is increasing in bakery production. Frozen dough can be stored for a long time without quality change. The capacity of bakery production can be increased in this way, and in the same time, the night shifts can be decreased. Yeast cells can be damaged by freezing process resulting in poor technological quality of dough after defrostation (longer fermentation of dough. The influence of frozen storage time of dough on survival percentage of Saccharomyces cerevisiae was investigated. Dough samples were taken after 1, 7, 14 and 28 days of frozen storage at -20°C. After defrosting, at room temperature, samples were taken from the surface and the middle part of dough (under aseptic conditions, and the percentage of living S. cerevisiae cells was determined. During frozen storage of dough, the number of living S. cerevisiae decreased. After 28 days of frozen storage, the percentage of live cells on the surface and inside the dough was 53,1% and 54,95%, respectively. The addition of k-carragenan to dough increased the percentage of living cells in the middle part of dough up to 64,63%. Pure cultures, isolated from survived S. cerevisia cells in frozen dough by agar plates method (Koch's method, were multiplied in optimal liquid medium for yeasts. The content of cytochromes in S. cerevisiae cells was determined by spectrophotometric method. The obtained results showed that the content of cytochromes in survived S. cerevisiae cells was not affected by dough freezing process. Growth rate and fermentative activity (Einchor's method were determined in multiplied cells.

  8. An experimental investigation on dynamics and heat transfer associated with a single droplet impacting on a hot surface above the Leidenfrost point temperature

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Kim, H. [Kyung Hee Univ., Gyeonggi-do (Korea, Republic of). Dept. of Nuclear Engineering

    2016-07-15

    During large loss-of-coolant accidents in nuclear reactors, water splatters as the quench front propagates at the quenching surface, and many droplets of different sizes and velocities are generated and carried with the steam in the cooling channel. Heat transfer due to droplets striking an overheated fuel rod above the Leidenfrost point temperature is important for predicting the peak cladding temperature. This study investigated the dynamics and heat transfer characteristics when a single droplet at room temperature collided with a surface at 425 C experimentally, using synchronized high-speed video and infrared cameras. Various physical parameters related to heat transfer model development were measured, including the residence time, spreading diameter, local heat flux distribution, effective heat transfer area, average vapor film thickness, and total heat transfer per collision. The measured data were compared with the values of the physical parameters predicted by existing mechanistic models.

  9. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  10. Hot big bang or slow freeze?

    International Nuclear Information System (INIS)

    Wetterich, C.

    2014-01-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe

  11. Hot big bang or slow freeze?

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C.

    2014-09-07

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  12. Hot big bang or slow freeze?

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2014-09-01

    Full Text Available We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  13. Dry Eye Profiles in Patients with a Positive Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test Versus Negative Patients.

    Science.gov (United States)

    Lanza, Nicole L; McClellan, Allison L; Batawi, Hatim; Felix, Elizabeth R; Sarantopoulos, Konstantinos D; Levitt, Roy C; Galor, Anat

    2016-04-01

    To compare dry eye (DE) symptoms and signs in subjects who tested positive versus those who tested negative for ocular surface matrix metalloproteinase 9 (MMP-9) using the InflammaDry point-of-care test (RPS, Sarasota, FL). In this cross-sectional study, individuals seen in the Miami Veterans Affairs eye clinic with DE symptoms, as evidenced by DE questionnaire 5 (DEQ5) ≥6, were given standardized questionnaires to assess DE symptoms and ocular and non-ocular pain complaints. Also, a complete evaluation was conducted to measure ocular surface signs of DE. MMP-9 testing was performed using the InflammaDry once in each eye, per the manufacturer's instructions. The main outcome measure was a comparison of DE symptoms and signs in MMP-9 positive versus negative subjects. Of 128 subjects, 50 (39%) were positive for MMP-9 for InflammaDry testing in either eye. No statistically significant differences in mental health indices, DE symptoms, or ocular surface signs were seen in subjects based on MMP-9 status. In our population, there was no difference in the DE profile by both symptoms and signs between those testing positive versus negative for MMP-9 on the ocular surface. This suggests that clinical exam alone cannot predict patients with clinically significant inflammation. Published by Elsevier Inc.

  14. Freezing of water droplets colliding with kaolinite particles

    DEFF Research Database (Denmark)

    Svensson, Erik Anders; Delval, Christophe Eric Ludovic; Freiherr von Und zu Hessberg, P J H

    2009-01-01

    Contact freezing of single supercooled water droplets colliding with kaolinite dust particles has been investigated. The experiments were performed with droplets levitated in an electrodynamic balance at temperatures from 240 to 268 K. Under dry conditions freezing 5 was observed to occur below 249...... K, while a freezing threshold of 267 K was observed at high relative humidity. The effect of relative humidity is attributed to an influence on the contact freezing process for the kaolinite-water droplet system, and it is not related to the lifetime of the droplets in the electrodynamic balance...... studies to describe freezing rates are appropriate for kaolinite aerosol particles. Mechanisms for contact freezing are briefly discussed....

  15. Immersion freezing of ice nucleation active protein complexes

    Directory of Open Access Journals (Sweden)

    S. Hartmann

    2013-06-01

    nucleation are attached to the outer membrane of intact bacteria or membrane fragments, (c the temperature range in which heterogeneous droplet freezing occurs, and the fraction of droplets being able to freeze, both depend on the actual number of INA protein complexes present in the droplet ensemble, and (d possible artifacts suspected to occur in connection with the drop freezing method, i.e., the method frequently used by biologist for quantifying ice nucleation behaviour, are of minor importance, at least for substances such as P. syringae, which induce freezing at comparably high temperatures. The last statement implies that for single ice nucleation entities such as INA protein complexes, it is the number of entities present in the droplet population, and the entities' nucleation rate, which control the freezing behaviour of the droplet population. Quantities such as ice active surface site density are not suitable in this context. The results obtained in this study allow a different perspective on the quantification of the immersion freezing behaviour of bacterial ice nucleation.

  16. Cryoprotectant Production in Freeze-Tolerant Wood Frogs Is Augmented by Multiple Freeze-Thaw Cycles.

    Science.gov (United States)

    Larson, Don J; Barnes, Brian M

    2016-01-01

    Ice nucleation across the skin of wood frogs (Lithobates sylvaticus) rapidly induces endogenous production of glucose, a cryoprotectant necessary for freeze tolerance. In laboratory studies of freeze tolerance, wood frogs are cooled slowly, often at -0.05°C h(-1), to facilitate high cryoprotectant production and survival. Under natural conditions in Alaska, however, wood frogs accumulate maximal tissue glucose concentrations while cooling at much faster rates, -0.35° to -1.6°C h(-1), and in addition undergo multiple successive freeze-thaw cycles before remaining frozen for the winter. We examined whether simulating these ecologically relevant cooling rates and repeated freeze-thaw events in captive wood frogs results in the high glucose concentrations found in naturally frozen wood frogs. We found that over successive freezing and thawing events, glucose concentrations increased stepwise in all measured tissues. Short thawing periods did not result in a statistically significant decline of glucose concentrations. Wood frogs that experienced three freeze-thaw events had fresh weight glucose concentrations that approached values found in tissues of wood frogs frozen in natural conditions. Laboratory wood frogs survive frozen for 2 mo, while wood frogs frozen under natural conditions survive frozen for up to 7 mo at temperatures below -18°C. We hypothesize that repeated freeze-thaw cycles with rapid cooling and warming rates allow for greater survival in Alaskan wood frogs through enhanced cryoprotectant production.

  17. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC

    Directory of Open Access Journals (Sweden)

    Seok-Joon Jang

    2014-02-01

    Full Text Available This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.

  18. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC)

    Science.gov (United States)

    Jang, Seok-Joon; Rokugo, Keitetsu; Park, Wan-Shin; Yun, Hyun-Do

    2014-01-01

    This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA) fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior. PMID:28788522

  19. Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating

    NARCIS (Netherlands)

    Overduin, P.; Kane, D.L.; Loon, van W.K.P.

    2006-01-01

    The thermal conductivity of the thin seasonally freezing and thawing soil layer in permafrost landscapes exerts considerable control over the sensitivity of the permafrost to energy and mass exchanges at the surface. At the same time, the thermal conductivity is sensitive to the state of the soil,

  20. Identification of a rare point mutation at C-terminus of merozoite surface antigen-1 gene of Plasmodium falciparum in eastern Indian isolates.

    Science.gov (United States)

    Raj, Dipak Kumar; Das, Bibhu Ranjan; Dash, A P; Supakar, Prakash C

    2004-01-01

    Merozoite surface antigen-1 (MSA-1) of Plasmodium falciparum is highly immunogenic in human. Several studies suggest that MSA-1 protein is an effective target for a protective immune response. Attempt has been made to find new point mutations by analyzing 244 bp [codon 1655(R) to 1735 (I)] relatively conserved C-terminus region of MSA-1 gene in 125 isolates. This region contains two EGF like domains, which are involved in generating protective immune response in human. Point mutations in this region are very much important in view of vaccine development. Searching of mutational hot spots in MSA-1 protein by sequencing method in a representative number of isolates is quite critical and expensive. Therefore, in this study slot blot and PCR-SSCP method have been used to find out new mutations in the individual isolates showing alterations in the mobility of DNA fragment. Sequencing of the altered bands from the SSCP gel shows a rare non-synonymous point mutation in 7 (5.6%) of the 125 isolates at amino acid position 1704 of MSA-1 gene where isoleucine is replaced by valine.

  1. Generalized enthalpy model of a high-pressure shift freezing process

    KAUST Repository

    Smith, N. A. S.

    2012-05-02

    High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work, we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition, the significant heat-transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature. © 2012 The Royal Society.

  2. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results.

    Science.gov (United States)

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-07-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union.

  3. Drought increases freezing tolerance of both leaves and xylem of Larrea tridentata.

    Science.gov (United States)

    Medeiros, Juliana S; Pockman, William T

    2011-01-01

    Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well-watered or drought conditions to minimum temperatures ranging from -8 to -24 °C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf-specific xylem hydraulic conductance (k₁). Drought-exposed plants exhibited smaller decreases in gas exchange after exposure to -8 °C compared to well-watered plants. Drought also conferred a significant positive effect on leaf, xylem and whole-plant function following exposure to -15 °C; drought-exposed plants exhibited less cell death, greater leaf retention, higher k₁ and higher rates of gas exchange than well-watered plants. Both drought-exposed and well-watered plants experienced 100% mortality following exposure to -24 °C. By documenting the combined effects of drought and freezing stress, our data provide insight into the mechanisms determining plant survival and performance following freezing and the potential for shifts in L. tridentata abundance and range in the face of changing temperature and precipitation regimes. © 2010 Blackwell Publishing Ltd.

  4. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    Science.gov (United States)

    Pach, E; Rodriguez, L; Verdaguer, A

    2018-01-18

    The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately: two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

  5. Liquid carbon: structure near the freezing line

    NARCIS (Netherlands)

    Ghiringhelli, L.M.; Los, J.H.; Meijer, E.J.; Fasolino, A.; Frenkel, D.

    2005-01-01

    We present a detailed analysis of the structure of liquid carbon near the freezing line. The results are obtained by molecular simulation using a recently developed state-of-the-art bond order potential. We find that along the melting line the liquid is predominantly threefold coordinated up to

  6. Unitarity Constraints on Asymmetric Freeze-In

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; /SLAC

    2011-08-15

    This paper considers unitarity and CPT constraints on asymmetric freeze-in, the use of freeze-in to store baryon number in a dark sector. In this scenario, Sakharov's out of equilibrium condition is satisfied by placing the visible and hidden sectors at different temperatures while a net visible baryon number is produced by storing negative baryon number in a dark sector. It is shown that unitarity and CPT lead to unexpected cancellations. In particular, the transfer of baryon number cancels completely at leading order. This note has shown that if two sectors are in thermal equilibrium with themselves, but not with each other, then the leading effect transferring conserved quantities between the two sectors is of order the the weak coupling connecting them to the third power. When freeze-in is used to produce a net baryon number density, the leading order effect comes from {Omicron}({lambda}{sup 3}) diagrams where the intermediate state that goes on-shell has a different visible baryon number than the final state visible baryon number. Models in which the correct baryon number is generated with freeze-in as the dominant source of abundance, typically require {lambda} {approx}> 10{sup -6} and m{sub bath} {approx}> TeV. m{sub bath} is the mass of the visible particle which communicates with the hidden sector. The lower window is potentially observable at the LHC.

  7. Anomalous freezing behavior of nanoscale liposomes

    DEFF Research Database (Denmark)

    Spangler, E. J.; Kumar, P. B. S.; Laradji, M.

    2012-01-01

    The effect of the finite size of one-component liposomes on their phase behavior is investigated via simulations of an implicit-solvent model of self-assembled lipid bilayers. We found that the high curvature of nanoscale liposomes has a significant effect on their freezing behavior. While...

  8. Susceptibility of blackberry flowers to freezing temperatures

    Science.gov (United States)

    Injury of tight buds, open flowers and green fruit often occur in fruit crops during spring frost events. In this study, freezing tolerance of ‘Triple Crown’ blackberry flowers at different reproductive stages of development (tight bud to green drupe) was determined using two methods. One method i...

  9. Scaling-Up Eutectic Freeze Crystallization

    NARCIS (Netherlands)

    Genceli, F.E.

    2008-01-01

    A novel crystallization technology, Eutectic Freeze Crystallization (EFC) has been investigated and further developed in this thesis work. EFC operates around the eutectic temperature and composition of aqueous solutions and can be used for recovery of (valuable) dissolved salts (and/or or acids)

  10. Freeze block testing of buried waste lines

    International Nuclear Information System (INIS)

    Robbins, E.D.; Willi, J.C.

    1976-01-01

    An investigation was conducted to demonstrate application of freeze blocking in waste transfer lines such that a hydrostatic pressure test can be applied. A shop test was conducted on a 20-foot length, 3-inch schedule 40, carbon steel pipe using a coolant of dry ice and Freon. The positive results from these tests prompted a similar employment of the freeze block method in hydrostatic pressure testing the feed inlet leading to 241-S-101 Waste Tank. This pipeline is a 3-inch schedule 10, stainless steel pipe approximately 800 feet long. The freeze block was formed near the lower end of the pipe as it entered the 101-S Waste Tank and a pressure hold test was applied to this pipeline. This test proved the integrity of the pipeline in question, and demonstrated the validity of freeze blocking an open-ended pipeline which could not be hydrotested in other conventional ways. The field demonstration facility, costing $30,200 was completed late in 1975

  11. Sysnthesis of powders by freeze-drying

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.; Hildenbrand, D.L.

    1988-01-01

    The freeze-drying method of synthesizing powders of the superconducting oxide YBa 2 Cu 3 O 7 - δ is described. This process produces homogeneous, submicron powders of high purity. The effects of salt selection, solution concentration and pH on the process are described. Some evaluation of the sintering behavior and the effects on critical current density are included

  12. Developing occupational chronologies for surface archaeological deposits from heat retainer hearths on Pine Point and Langwell stations, Far Western New South Wales, Australia

    International Nuclear Information System (INIS)

    Shiner, J.

    2003-01-01

    The archaeological record of arid Australia is dominated by deflated distributions of stone artefacts and heat retainer hearths covering many thousands of square metres. These deposits have often been over-looked by archaeologists in preference for stratified deposits, which are regarded as more appropriate for investigating temporal issues. In recent years this situation had slowly begun to change with the large-scale dating of heat retainer hearths from surface contexts. The work of of Fanning and Holdaway (2001) and Holdaway et al. (2002) in Far Western New South Wales has demonstrated that through the dating of large numbers of hearths it is possible to develop occupational chronologies for surface deposits. At a wider landscape scale these chronologies reflect the timing and tempo of the occupation of different places. A major component of my doctoral fieldwork on Pine Point and Langwell stations, 50 km south of Broken Hill in Western New South Wales, aimed to establish occupational chronologies from hearths for surface archaeological distributions. This paper reports on radiocarbon results from this investigation. (author). 6 refs., 2 figs., 1 tab

  13. Modelling of the granular products vacuum freeze-dried process

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2016-01-01

    Full Text Available In the work reviewed and simulated the process of vacuum freeze-drying of granular products with the destruction of the dried layer. As development of this direction serves the method based on removal of the dried product layer from a surface of a granule, formed in the form of spherical bodies and placed in the punched drum. After process of preliminary freezing of a granule get to the punched drum located in the vacuum drying chamber. In case of fixed hashing of granules of a product due to their friction among themselves and about drum walls a dry part of a product undergoes destruction and regularly separates from the refrigerated remaining balance. Process comes to an end when all product in a granule turns into dry powder. For creation of adequate model of process of drying, it is reasonable to consider a separate granule, but not a layer of granules in general, but taking into account influence of granules at each other in the course of drying. For this purpose, the scheme and mathematical description of radiation heat flux of the individual granules of the product. To account for the intermittent nature of exposure to granules suggested ratio and its two alternative approaches to its definition. As well as an algorithm for determining the coefficient that takes into account the one-sided irradiation of the pellets. Formulated mathematical model of the process the vacuum - freeze-drying of granular products, which is a one-dimensional parabolic boundary value problem with moving boundary. It includes the unsteady heat conduction equation, initial condition, boundary conditions and defining a movable boundary conditions. The sought quantities are the temperature field and the free boundary. Explained the origin of the functions of internal heat sources present in the equations of heat conduction.

  14. Water vapor movement in freezing aggregate base materials.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  15. Static delectric behavior of charged fluids near freezing

    International Nuclear Information System (INIS)

    Fasolino, A.; Parrinello, M.; Tosi, M.P.

    1978-01-01

    The wavenumber-dependent, static dielectric function of classical charged fluids near freezing is obtained from structural data based on computer simulation or neutron diffraction, and its behavior is connected with the freezing process. (Auth.)

  16. Freeze-thaw performance testing of whole concrete railroad ties.

    Science.gov (United States)

    2013-10-01

    Freezing and thawing durability tests of prestressed concrete ties are normally performed according to ASTM C666 specifications. Small specimens are cut from the shoulders of concrete ties and tested through 300 cycles of freezing and thawing. Saw-cu...

  17. Adaptive Control of Freeze-Form Extrusion Fabrication Processes (Preprint)

    National Research Council Canada - National Science Library

    Zhao, Xiyue; Landers, Robert G; Leu, Ming C

    2008-01-01

    Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing process that extrudes high solids loading aqueous ceramic pastes in a layer-by-layer fashion below the paste freezing temperature for component fabrication...

  18. Canalization of freeze tolerance in an alpine grasshopper.

    Science.gov (United States)

    Hawes, Timothy C

    2015-10-01

    In the Rock and Pillar Range, New Zealand, the alpine grasshopper, Sigaus australis Hutton, survives equilibrium freezing (EF) all-year round. A comparison of freeze tolerance (FT) in grasshoppers over four austral seasons for a 1 year period finds that: (a) the majority (>70%) of the sample population of grasshoppers survive single freeze-stress throughout the year; (b) exposure to increased freeze stress (multiple freeze-stress events) does not lead to a loss of freeze tolerance; and (c) responses to increased freeze stress reveal seasonal tuning of the FT adaptation to environmental temperatures. The Rock and Pillar sample population provides a clear example of the canalization of the FT adaptation. Seasonal variability in the extent of tolerance of multiple freezing events indicates that physiology is modulated to environmental temperatures by phenotypic plasticity - i.e. the FT adaptation is permanent and adjustable. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Possible impacts of climate change on freezing rain in south-central Canada using downscaled future climate scenarios

    Directory of Open Access Journals (Sweden)

    C. S. Cheng

    2007-01-01

    Full Text Available Freezing rain is a major atmospheric hazard in mid-latitude nations of the globe. Among all Canadian hydrometeorological hazards, freezing rain is associated with the highest damage costs per event. Using synoptic weather typing to identify the occurrence of freezing rain events, this study estimates changes in future freezing rain events under future climate scenarios for south-central Canada. Synoptic weather typing consists of principal components analysis, an average linkage clustering procedure (i.e., a hierarchical agglomerative cluster method, and discriminant function analysis (a nonhierarchical method. Meteorological data used in the analysis included hourly surface observations from 15 selected weather stations and six atmospheric levels of six-hourly National Centers for Environmental Prediction (NCEP upper-air reanalysis weather variables for the winter months (November–April of 1958/59–2000/01. A statistical downscaling method was used to downscale four general circulation model (GCM scenarios to the selected weather stations. Using downscaled scenarios, discriminant function analysis was used to project the occurrence of future weather types. The within-type frequency of future freezing rain events is assumed to be directly proportional to the change in frequency of future freezing rain-related weather types The results showed that with warming temperatures in a future climate, percentage increases in the occurrence of freezing rain events in the north of the study area are likely to be greater than those in the south. By the 2050s, freezing rain events for the three colder months (December–February could increase by about 85% (95% confidence interval – CI: ±13%, 60% (95% CI: ±9%, and 40% (95% CI: ±6% in northern Ontario, eastern Ontario (including Montreal, Quebec, and southern Ontario, respectively. The increase by the 2080s could be even greater: about 135% (95% CI: ±20%, 95% (95% CI: ±13%, and 45% (95% CI: ±9

  20. An improved model for nucleation-limited ice formation in living cells during freezing.

    Directory of Open Access Journals (Sweden)

    Jingru Yi

    Full Text Available Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF, our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1. We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN and volume-catalyzed nucleation (VCN. Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications.

  1. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    Science.gov (United States)

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Nanocrystals-based Macroporous Materials Synthesized by Freeze-drying Combustion

    International Nuclear Information System (INIS)

    Yan, Ruiqiang; Chen, Yu; Lin, Ye; Chen, Fanglin

    2016-01-01

    We present a novel freeze-drying combustion method for synthesis of macroporous powders with nano-network, using Sm 0.2 Ce 0.8 O 1.9 (SDC) as an example. The metal nitrate salt solution mixed with glycine is frozen to form homogeneous nitrate/glycine mixture and then freeze-dried through sublimation of ice crystals. Upon combustion of the freeze-dried mixture, SDC powders with macroporous microstructure consisting of 10–20 nm nanocrystals, high surface area and excellent sinterability are achieved. High resolution transmission electron microscopy (HRTEM) analysis indicates that nanodomains due to aggregation/segregation of dopants in the SDC powders obtained from freeze-drying combustion are much smaller than those in the SDC powders synthesized by the conventional nitrate solution combustion approach, demonstrating better elemental homogeneity and improved conductivity. Using low cost precursors and simple processing conditions, freeze-drying combustion can be a versatile method to synthesize nanocrystalline powders with excellent composition homogeneity for broad applications.

  3. Thermalization, Freeze-out, and Noise: Deciphering Experimental Quantum Annealers

    Science.gov (United States)

    Marshall, Jeffrey; Rieffel, Eleanor G.; Hen, Itay

    2017-12-01

    By contrasting the performance of two quantum annealers operating at different temperatures, we address recent questions related to the role of temperature in these devices and their function as "Boltzmann samplers." Using a method to reliably calculate the degeneracies of the energy levels of large-scale spin-glass instances, we are able to estimate the instance-dependent effective temperature from the output of annealing runs. Our results corroborate the "freeze-out" picture which posits two regimes, one in which the final state corresponds to a Boltzmann distribution of the final Hamiltonian with a well-defined "effective temperature" determined at a freeze-out point late in the annealing schedule, and another regime in which such a distribution is not necessarily expected. We find that the output distributions of the annealers do not, in general, correspond to a classical Boltzmann distribution for the final Hamiltonian. We also find that the effective temperatures at different programing cycles fluctuate greatly, with the effect worsening with problem size. We discuss the implications of our results for the design of future quantum annealers to act as more-effective Boltzmann samplers and for the programing of such annealers.

  4. POINTS ON THE SPHERE SURFACE

    Directory of Open Access Journals (Sweden)

    O. S. Danilova

    2017-12-01

    Full Text Available Purpose. The extensive use of the computer-aided design system (CAD in education and industry puts forward new demands on the scope, content and quality of up-to-date descriptive geometry course. The purpose of the work is topicality analysis of traditional descriptive geometry methods for 3D modelling and development of methodological recommendations for its teaching as a subject together with a selected CAD. Methodology. Conclusions about effectiveness and expedience of application of descriptive geometry methods are drawn on the basis of tools analysis and comparison of modern CADs and descriptive geometry for solving problems arising during 3D modelling. Generalization of teaching experience made it possible to give recommendations about optimization of the descriptive geometry course taking into account present-day requirements to professional skills of an engineer. Findings. CADs tools and descriptive geometry methods are compared by way of specific example to give the answer what is more suitable for solving problems arising during 3D modelling. Originality. We presented the methodological recommendations about optimization of descriptive geometry teaching together with a selected CAD. We proposed the conception of a modern textbook on descriptive geometry. First of all, the textbook must describe algorithms for solving problems by means of standard CAD tools exactly in 3D, not on the plane. It is desirable to accompany these algorithms by pictorial images in order to have an opportunity to grasp an idea quickly and implement it through methods of direct modeling in CAD application. We also touched practical problems of students’ motivation to ensure high effectiveness of graphical education. Practical value. This paper may be useful mainly for educators in the field of engineering graphics because it raises a vital question ‘Descriptive Geometry versus CAD’ which now has no definite answer. Topicality and teaching approaches of different solution methods of spatial problems by means of projections is subject of a dispute, taking into account that CAD tools are continuously updated. This paper by way of specific example shows some advantages and limitations of descriptive geometry and CAD, as well as touches the issues of their efficient joint application for teaching.

  5. Objective video quality assessment method for freeze distortion based on freeze aggregation

    Science.gov (United States)

    Watanabe, Keishiro; Okamoto, Jun; Kurita, Takaaki

    2006-01-01

    With the development of the broadband network, video communications such as videophone, video distribution, and IPTV services are beginning to become common. In order to provide these services appropriately, we must manage them based on subjective video quality, in addition to designing a network system based on it. Currently, subjective quality assessment is the main method used to quantify video quality. However, it is time-consuming and expensive. Therefore, we need an objective quality assessment technology that can estimate video quality from video characteristics effectively. Video degradation can be categorized into two types: spatial and temporal. Objective quality assessment methods for spatial degradation have been studied extensively, but methods for temporal degradation have hardly been examined even though it occurs frequently due to network degradation and has a large impact on subjective quality. In this paper, we propose an objective quality assessment method for temporal degradation. Our approach is to aggregate multiple freeze distortions into an equivalent freeze distortion and then derive the objective video quality from the equivalent freeze distortion. Specifically, our method considers the total length of all freeze distortions in a video sequence as the length of the equivalent single freeze distortion. In addition, we propose a method using the perceptual characteristics of short freeze distortions. We verified that our method can estimate the objective video quality well within the deviation of subjective video quality.

  6. 7 CFR 58.620 - Freezing and packaging rooms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Freezing and packaging rooms. 58.620 Section 58.620 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....620 Freezing and packaging rooms. The rooms used for freezing and packaging frozen desserts shall be...

  7. Impact of aerosol and freezing level on orographic clouds: A sensitivity study

    Science.gov (United States)

    Xiao, Hui; Yin, Yan; Chen, Qian; Zhao, Pengguo

    2016-07-01

    The response of clouds and precipitation to changes in aerosol properties is variable with the ambient meteorological conditions, which is important for the distribution of water resources, especially in mountain regions. In this study, a detailed bin microphysics scheme is coupled into the Weather Research and Forecasting (WRF) model to investigate how orographic clouds and precipitation respond to changes in aerosols under different thermodynamic profiles. The model results suggest that when the initial aerosol number concentration changes from a clean continental background (4679 cm- 3) to a polluted urban environment (23,600 cm- 3), the accumulated surface precipitation amount can be increased up to 14% mainly due to the enhanced riming process which results from more droplets of 10-30 μm in diameter. When the freezing level is lowered from 2.85 km to 0.9 km (above 1000 hPa level), the growth of ice-phase particles via riming process is enhanced, leading to more precipitation. However, the response of surface precipitation amount to increase in aerosol particle concentration is not linear with lowering freezing level, and there is a maximum precipitation enhancement caused by aerosols (about 14%) as the freezing level is at 1.4 km. Further sensitivity tests show that, the response of riming growth to increase in aerosol particle concentration becomes more significant with lowering the freezing level, but this effect becomes less significant as the freezing level is further lowered due to the limited liquid water. Moreover, the growth of raindrops through collision and coalescence is suppressed with lowering freezing level, due to the shorter distance between the melting level and the ground.

  8. Monitoring Freeze Thaw Transitions in Arctic Soils using Complex Resistivity Method

    Science.gov (United States)

    Wu, Y.; Hubbard, S. S.; Ulrich, C.; Dafflon, B.; Wullschleger, S. D.

    2012-12-01

    The Arctic region, which is a sensitive system that has emerged as a focal point for climate change studies, is characterized by a large amount of stored carbon and a rapidly changing landscape. Seasonal freeze-thaw transitions in the Arctic alter subsurface biogeochemical processes that control greenhouse gas fluxes from the subsurface. Our ability to monitor freeze thaw cycles and associated biogeochemical transformations is critical to the development of process rich ecosystem models, which are in turn important for gaining a predictive understanding of Arctic terrestrial system evolution and feedbacks with climate. In this study, we conducted both laboratory and field investigations to explore the use of the complex resistivity method to monitor freeze thaw transitions of arctic soil in Barrow, AK. In the lab studies, freeze thaw transitions were induced on soil samples having different average carbon content through exposing the arctic soil to temperature controlled environments at +4 oC and -20 oC. Complex resistivity and temperature measurements were collected using electrical and temperature sensors installed along the soil columns. During the laboratory experiments, resistivity gradually changed over two orders of magnitude as the temperature was increased or decreased between -20 oC and 0 oC. Electrical phase responses at 1 Hz showed a dramatic and immediate response to the onset of freeze and thaw. Unlike the resistivity response, the phase response was found to be exclusively related to unfrozen water in the soil matrix, suggesting that this geophysical attribute can be used as a proxy for the monitoring of the onset and progression of the freeze-thaw transitions. Spectral electrical responses contained additional information about the controls of soil grain size distribution on the freeze thaw dynamics. Based on the demonstrated sensitivity of complex resistivity signals to the freeze thaw transitions, field complex resistivity data were collected over

  9. Formation of stable submicron peptide or protein particles by thin film freezing

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Keith P.; Engstrom, Joshua; Williams, III, Robert O.

    2017-04-18

    The present invention includes compositions and methods for preparing micron-sized or submicron-sized particles by dissolving a water soluble effective ingredient in one or more solvents; spraying or dripping droplets solvent such that the effective ingredient is exposed to a vapor-liquid interface of less than 50, 100, 150, 200, 250, 200, 400 or 500 cm.sup.-1 area/volume to, e.g., increase protein stability; and contacting the droplet with a freezing surface that has a temperature differential of at least 30.degree. C. between the droplet and the surface, wherein the surface freezes the droplet into a thin film with a thickness of less than 500 micrometers and a surface area to volume between 25 to 500 cm.sup.-1.

  10. Corrective Action Investigation Plan for Corrective Action Unit 556: Dry Wells and Surface Release Points Nevada Test Site, Nevada (Draft), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2007-02-01

    Corrective Action Unit  (CAU) 556, Dry Wells and Surface Release Points, is located in Areas 6 and 25 of the Nevada Test Site, 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 556 is comprised of four corrective action sites (CASs) listed below: •06-20-04, National Cementers Dry Well •06-99-09, Birdwell Test Hole •25-60-03, E-MAD Stormwater Discharge and Piping •25-64-01, Vehicle Washdown and Drainage Pit These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  11. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Directory of Open Access Journals (Sweden)

    Fiaz Ur Rehman

    2018-03-01

    Full Text Available In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3 types of nanoparticles considered in this study namely, CuO (Copper oxide, Fe3O4 (Magnetite, and Al2O3 (Alumina are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid. Keywords: Heat transfer, Nanofluids, Stagnation-point flow, Three-dimensional flow, Nano particles, Boundary layer

  12. Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids

    Science.gov (United States)

    Cao, Lixue; Huang, Qiao; Wu, Zhichao; Cao, Dong-dong; Ma, Zhanling; Xu, Qianghua; Hu, Peng; Fu, Yanxia; Shen, Yu; Chan, Jiulin; Zhou, Cong-zhao; Zhai, Wanying; Chen, Liangbiao

    2016-01-01

    The mechanisms by which the eggs of the Antarctic notothenioid fishes avoid freezing are not fully understood. Zona pellucida proteins (ZPs) are constituents of the chorion which forms a protective matrix surrounding the egg. Here we report occurrence of freezing temperature-related gene expansion and acquisition of unusual ice melting-promoting (IMP) activity in a family of Antarctic notothenioid ZPs (AnnotoZPs). Members of AnnotoZPs are shown to bind with ice and non-colligatively depress the melting point of a solution in a range of 0.26 to 0.65 °C at a moderate concentration. Eggs of zebrafishes expressing an AnnotoZP transgene show improved melting point depression and enhanced survival in freezing conditions. Mutational analyses in a representative AnnotoZP indicate the ZP domain and patches of acidic residues are essential structures for the IMP activity. AnnotoZPs, therefore, represent a group of macromolecules that prevent freezing by a unique ZP–ice interaction mechanism distinct from the known antifreeze proteins. PMID:27698404

  13. 20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

    CERN Document Server

    Pantelia, Anna

    2014-01-01

    20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

  14. Development of a freeze-tolerant solar water heater using crosslinked polyethylene as a material of construction. Final report, June 18, 1976--October 1, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.M.

    1978-01-01

    The feasibility of building a freeze-tolerant absorber for a solar water heater out of carbon-black-reinforced crosslinked polyethylene has been explored. Ten-foot tube specimens made from various crosslinked polyethylene formulations were filled with water at various pressures, and then placed into a deep freeze, then thawed and frozen again for 100 freeze-thaw cycles, or until the tube specimen failed. Tube diameters were measured before and after each freezing to determine how much distention the freezing caused, and how much permanent distention was caused by the strains of repeated freezings. Five tube specimens containing water at as high as 80 psi survived 100 freeze-thaw cycles. Also, a flat plate collector was fabricated using as absorber surface a single 400 ft tube of carbon-black-reinforced crosslinked polyethylene in the form of a flat spiral coil and this collector was tested for performance at the Los Alamos Scientific Laboratory. The performance test indicates that the absorbancy of such a flat spiral coil to solar radiation is similar to typical black surfaces used on solar absorbers. Thus, it does seem very feasible that domestic water can be directly heated in a solar collector having an absorber made from crosslinked polyethylene, and that this collector can safely withstand at least 100 freeze-thaw cycles.

  15. Simultaneous and multi-point measurement of ammonia emanating from human skin surface for the estimation of whole body dermal emission rate.

    Science.gov (United States)

    Furukawa, Shota; Sekine, Yoshika; Kimura, Keita; Umezawa, Kazuo; Asai, Satomi; Miyachi, Hayato

    2017-05-15

    Ammonia is one of the members of odor gases and a possible source of odor in indoor environment. However, little has been known on the actual emission rate of ammonia from the human skin surface. Then, this study aimed to estimate the whole-body dermal emission rate of ammonia by simultaneous and multi-point measurement of emission fluxes of ammonia employing a passive flux sampler - ion chromatography system. Firstly, the emission fluxes of ammonia were non-invasively measured for ten volunteers at 13 sampling positions set in 13 anatomical regions classified by Kurazumi et al. The measured emission fluxes were then converted to partial emission rates using the surface body areas estimated by weights and heights of volunteers and partial rates of 13 body regions. Subsequent summation of the partial emission rates provided the whole body dermal emission rate of ammonia. The results ranged from 2.9 to 12mgh -1 with an average of 5.9±3.2mgh -1 per person for the ten healthy young volunteers. The values were much greater than those from human breath, and thus the dermal emission of ammonia was found more significant odor source than the breath exhalation in indoor environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Numerical analysis for MHD thermal and solutal stratified stagnation point flow of Powell-Eyring fluid induced by cylindrical surface with dual convection and heat generation effects

    Science.gov (United States)

    Khalil-Ur-Rehman; Malik, M. Y.; Bilal, S.; Bibi, M.

    The current analysis reports the untapped characteristics of magneto-hydrodynamic dual convection boundary layer stagnation point flow of Powell-Eyring fluid by way of cylindrical surface. Flow exploration is carried out with the combined effects of thermal and solutal stratification. The strength of temperature and concentration adjacent to the cylindrical surface is assumed to be greater than the ambient fluid. Flow conducting mathematically modelled equations are fairly transformed into system of coupled non-linear ordinary differential equations with the aid of suitable transformations. The computations are made against these resultant coupled equations through shooting technique by the support of fifth order Runge-Kutta algorithm. A parametric study is performed to examine the effect logs of various pertinent flow controlling parameters on the velocity, temperature and concentration flow regime. The achieved outcomes are validated by developing comparison with existing published literature. In addition, numerical values of skin friction coefficient and Nusselt number are presented graphically for two different geometries namely, plate and cylinder.

  17. Late Spring Freezes in Poland in Relation to Atmospheric Circulation

    Directory of Open Access Journals (Sweden)

    Ustrnul Zbigniew

    2014-09-01

    Full Text Available Late spring freeze events, a significant agroclimatic hazard, are investigated for Poland. Daily minimum air temperatures from 184 stations for the period 1951-2010 were used to analyze the frequency and conditional probability of late spring freezes. In addition, three classification schemes were employed to investigate the atmospheric circulation responsible for late spring freezes events. The findings suggest that knowledge of the airflow influencing late spring freezes can help to understand the complex historical trends and projected future changes in freeze risk for perennial crops

  18. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    Science.gov (United States)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  19. Effects of Polyacrylamide in Controlling of Splash Erosion from a Soil induced Freeze-Thaw Cycle

    Directory of Open Access Journals (Sweden)

    S.H.R. Sadeghi

    2016-09-01

    Full Text Available Introduction: The capability of a soil to resist erosion depends on soil-particle size and distribution, soil structure and structural stability, soil permeability, water content, organic matter content, and mineral and chemical constituents. Among many affecting factors on aforesaid characteristics, the freezing-thawing processes may considerably affects. Freeze–thaw fluctuation is a natural phenomenon that is frequently encountered by soils in the higher latitude and altitude regions in late autumn and early spring. Effects of freezing and freezing-thawing phenomena on soil erosion and sediment yield are important. Nevertheless, soil conservation under these phenomena by using different methods as well as soil amendments has not been yet considered. Surface application of anionic polyacrylamide (PAM in solution has been found to be very effective in decreasing seal formation, runoff, and erosion.PAM stabilizes soil structure due to the ability of the polymer chains to adsorb onto clay particles and bridge them together forming stable domains. This adsorption can be a result of interactions between the negatively-charged functional groups of the PAM molecules and the positively-charged edges of clay minerals, orexchangeable polycations (mainly Ca2+ acting as ‘bridges’ between the negative charges of the PAM's functional groups and the negatively- charged planar surfaces of the clay. The PAM is adsorbed on the external surfaces of the aggregates and binds soil particles far apart together, thereby were shorter and evidently less effective in enhancing increasing their resistance to splash by raindrop impact and detachment by runoff. A lot of research work focused on freezing effects in soils on aggregation or increase aggregate stability and emphasis corresponding effects. But the effects of application of soil amendments on soil induced freeze and thaw cycle have not been studied yet. Materials and Methods: The present study evaluated the

  20. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    Science.gov (United States)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  1. Effect of baking and steaming on physicochemical and thermal properties of sweet potato puree preserved by freezing and freeze-drying

    Directory of Open Access Journals (Sweden)

    Bernarda Svrakačić

    2016-01-01

    Full Text Available Thermal treatments could be one of the hurdles in applications of sweet potato purees for food different products formulation. Sweet potato purees (SPP were prepared from raw, baked and steamed roots and they were preserved by freezing and freeze-drying. The effects of baking and steaming on thermal properties (melting temperature-Tm, melting transition energy - ΔH, and glass transition temperatures - Tg of sweet potato (cultivar Beauregard, were measured by means of a Differential scanning calorimetry (DSC. The SPP made from baked roots had higher total and soluble solids (20.32 and 18.95%, respectively than SPP made from raw and steamed roots. It can be also noticed that starch content was reduced by steaming and baking which reflected on amount of total and reducing sugars. The increase of reducing sugars level in baked SPP for 3.78% and steamed for 0.86% SPP was the result of yielding the maltose. The chemical changes of SPP also influenced the thermal behavior such that SPP prepared from baked sweet potato roots had the lowest initial freezing point (-2.80 °C followed by SPP prepared from steamed (-2.63 °C and raw (-0.71 °C roots. The highest energy for melting (transition was needed for SPP prepared from raw potato roots followed by steamed and baked roots, -103.79, -103.63, and -102.90 J/g, respectively. The glass transition in freeze-dried SPP prepared from raw roots was not detected. However, in the freeze-dried SPP prepared from baked and steamed roots the glass transition was detected in the range of 39 and 42 °C but with no significant difference (p > 0.05.

  2. Development and Design of Sludge Freezing Beds

    Science.gov (United States)

    1988-12-01

    freezing often occurs in nature. A typical example is the desalin - ation of sea ice. Initially, brine is concentrated between ice crystal boundaries...Research, 67(3): 1085-1090. Cox, G.F.N. and W.F. Weeks (1975) Brine drainage and initial salt entrapment in sodium chloride ice. USA Cold Regions...Over a period of time, this brine drains out by gravity leaving relatively pure ice (Cox and Weeks 1975). Another example is the formation of pure ice

  3. SOME STUDIES ON FREEZE - DRIED ARTERIES

    Directory of Open Access Journals (Sweden)

    H. Sadeghi - Nejad

    1970-01-01

    Full Text Available (1 The secondary stage of freeze - drying, particularly the last day, is not important and I suggest the whole procedure is reduced to three days, the primary stage occupying two of these. (2 The mothod used obtains the satisfactory low level of residual moisture. RESUME (3 Experiments on reconstitution with saline and distilled water show that distilled water is more satisfactory and I suggest that saline should not he used.

  4. Microwave Augmented Freeze-Drying - Four Studies

    Science.gov (United States)

    1994-04-01

    F.J. 1G76. Pigments in "Principles of Food Science". O.R. Fennema, ed., Marcel Dekkar, Inc., New York. Datta, A.K. and Hu, W. 1992. Optimization of...and Wilke, C.R 1967. The relationship between transport properties and rates of freeze-drying of poultry meat. AIChE J. 13:428. Slater, L.E. 1975

  5. Attitudes towards Social Oocyte Freezing from a Socio-cultural Perspective.

    Science.gov (United States)

    Schick, Maren; Sexty, Réka; Ditzen, Beate; Wischmann, Tewes

    2017-07-01

    The tendency to delay parenthood is increasing. It is partly driven by the availability of early reproductive technologies such as social oocyte freezing, the cryopreservation of oocytes for non-medical purposes. The goal of this study was to investigate relationships between attitudes towards social oocyte freezing and different socio-cultural backgrounds in a German sample cohort. A quantitative online questionnaire was compiled. A total of 643 participants completed the questionnaire which included items on attitudes toward social oocyte freezing, socio-demographics and items, obtained from the German DELTA Institute for Social and Ecological Research, devised to indicate specific milieus. Data were analyzed using parametric and non-parametric methods. There were clear correlations between attitudes towards social oocyte freezing and socio-cultural background, gender, cohort age, fertility problems, and attitudes to fertility. Positive attitudes towards social oocyte freezing were linked to struggles with fertility, a current or general wish to have a child, and flexible, progressive and self-oriented values. Participants who preferred to become parents at a younger age tended to reject cryopreservation. The huge number of university graduates, persons with fertility problems, and persons from specific socio-cultural backgrounds in our sample point to distinct groups interested in reproductive technologies such as social oocyte freezing. The investigated differences as a function of socio-cultural background suggest that more research into the desire to have children in German society is needed. In conclusion, it may be necessary to develop targeted family planning interventions to prevent affected women from buying into a false sense of security, thereby risking unwanted childlessness.

  6. Relationship between freezing tolerance and shoot water relations of western red cedar.

    Science.gov (United States)

    Grossnickle, S C

    1992-10-01

    Freezing tolerance and shoot water relations parameters of western red cedar (Thuja plicata Donn) seedlings were measured every 2 weeks from October 1989 to April 1990. Freezing tolerance, measured by freeze-induced electrolyte leakage, showed seasonal shifts in the temperature causing 50% foliage electrolyte leakage (LT(50)). The LT(50) value was -4 degrees C in October, it decreased to -20 degrees C in February and then increased to -6 degrees C in April. The foliage index of injury at -10 degrees C (II(-10)) also showed seasonal shifts from a high of 98% in October to a low of 18% in February followed by an increase to 82% in April. Osmotic potentials at saturation (Psi(s(sat))) and turgor loss point (Psi(s(tlp))) were, respectively, -1.07 and -1.26 MPa in October, -1.57 and -2.43 MPa in January, and -1.04 and -1.86 MPa in April. Dry weight fraction (DWF) increased and symplastic volume at full turgor (V(o)) decreased during the fall-winter acclimation phase, whereas DWF decreased and V(o) increased during the late winter-spring deacclimation phase. Relationships between seasonal patterns of freezing tolerance and shoot water relations parameters showed that LT(50) and II(-10) decreased linearly as Psi(s(tlp)) and V(o) decreased and DWF increased. There was no discernible difference in the relationship during fall acclimation or spring deacclimation. The freezing dehydration index at -10 degrees C (FDI(-10)) declined from 0.69 in November to 0.41 in February and increased to 0.56 in April. The value of II(-10) decreased linearly as FDI(-10) decreased, although a measurement made on actively growing spring foliage did not fit this relationship. The results indicate that seasonal changes in freezing tolerance of western red cedar are partially due to changes in tissue water content, symplastic volume, passive osmotic adjustment and FDI(-10).

  7. Validity of a portable urine refractometer: the effects of sample freezing.

    Science.gov (United States)

    Sparks, S Andy; Close, Graeme L

    2013-01-01

    The use of portable urine osmometers is widespread, but no studies have assessed the validity of this measurement technique. Furthermore, it is unclear what effect freezing has on osmolality. One-hundred participants of mean (±SD) age 25.1 ± 7.6 years, height 1.77 ± 0.1 m and weight 77.1 ± 10.8 kg provided single urine samples that were analysed using freeze point depression (FPD) and refractometry (RI). Samples were then frozen at -80°C (n = 81) and thawed prior to re-analysis. Differences between methods and freezing were determined using Wilcoxon's signed rank test. Relationships between measurements were assessed using intraclass correlation coefficients (ICC) and typical error of estimate (TE). Osmolality was lower (P = 0.001) using RI (634.2 ± 339.8 mOsm · kgH2O(-1)) compared with FPD (656.7 ± 334.1 mOsm · kgH2O(-1)) but the TE was trivial (0.17). Freezing significantly reduced mean osmolality using FPD (656.7 ± 341.1 to 606.5 ± 333.4 mOsm · kgH2O(-1); P < 0.001), but samples were still highly related following freezing (ICC, r = 0.979, P < 0.001, CI = 0.993-0.997; TE = 0.15; and r=0.995, P < 0.001, CI = 0.967-0.986; TE = 0.07 for RI and FPD respectively). Despite mean differences between methods and as a result of freezing, such differences are physiologically trivial. Therefore, the use of RI appears to be a valid measurement tool to determine urine osmolality.

  8. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    International Nuclear Information System (INIS)

    Sun, Kai; Li, Ruixin; Jiang, Wenxue; Sun, Yufu; Li, Hui

    2016-01-01

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.

  9. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Li, Ruixin [Institute of Medical Equipment, Academy of Military and Medical Sciences, No. 106, Wandong Street, Hedong District, Tianjin 300000 (China); Jiang, Wenxue, E-mail: jiangortholivea@sina.cn [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Sun, Yufu [Tianjin First Center Hospital, No. 24 Fukang Road, Tianjin, TJ 300192 (China); Li, Hui [Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, TJ 300052 (China)

    2016-09-02

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.

  10. Microbial analysis and survey test of gamma-irradiated freeze-dried fruits for patient's food

    International Nuclear Information System (INIS)

    Park, Jae-Nam; Sung, Nak-Yun; Byun, Eui-Hong; Byun, Eui-Baek; Song, Beom-Seok; Kim, Jae-Hun; Lee, Kyung-A; Son, Eun-Joo; Lyu, Eun-Soon

    2015-01-01

    This study examined the microbiological and organoleptic qualities of gamma-irradiated freeze-dried apples, pears, strawberries, pineapples, and grapes, and evaluated the organoleptic acceptability of the sterilized freeze-dried fruits for hospitalized patients. The freeze-dried fruits were gamma-irradiated at 0, 1, 2, 3, 4, 5, 10, 12, and 15 kGy, and their quality was evaluated. Microorganisms were not detected in apples after 1 kGy, in strawberries and pears after 4 kGy, in pineapples after 5 kGy, and in grapes after 12 kGy of gamma irradiation. The overall acceptance score, of the irradiated freeze-dried fruits on a 7-point scale at the sterilization doses was 5.5, 4.2, 4.0, 4.1, and 5.1 points for apples, strawberries, pears, pineapples, and grapes, respectively. The sensory survey of the hospitalized cancer patients (N=102) resulted in scores of 3.8, 3.7, 3.9, 3.9, and 3.7 on a 5-point scale for the gamma-irradiated freeze-dried apples, strawberries, pears, pineapples, and grapes, respectively. The results suggest that freeze-dried fruits can be sterilized with a dose of 5 kGy, except for grapes, which require a dose of 12 kGy, and that the organoleptic quality of the fruits is acceptable to immuno-compromised patients. However, to clarify the microbiological quality and safety of freeze-dried fruits should be verified by plating for both aerobic and anaerobic microorganisms. - Highlights: • Dried fruits can be sterilized with a dose of 12 kGy. • Sensory survey of the hospitalized cancer patients (N=102). • Sensory quality of dried fruits is acceptable to cancer patients

  11. Sperm Preservation using Freeze-Drying Method

    Directory of Open Access Journals (Sweden)

    TAKDIR SAILI

    2005-03-01

    Full Text Available Since the discovery of cryopreservation method for bull semen, cryopreservation become an alternative method for maintaining gamet resources of certain animal which is threatened or near extinction. This technology was then applied to the preservation of embryo, oocyte, ovary and testis. The application of intracytoplasmic sperm injection (ICSI for which sperm motility is unnecessary had supported the effort to create simplified method such as freeze-drying for sperm preservation. Due to the benefit of ICSI over the conventional in vitro fertilization (IVF the spermatozoon could be mechanically driven to pass through the zona pellucida and entering the cytoplasm of oocytes prior to fertilization. The freeze-drying method is an alternative method in sperm preservation which ignored the motility of sperm. The sperm resulted from this technique is in drying state, therefore, it might be stored in room temperature or in refrigerator. Many reports have claimed that freeze-dried sperm which is not motile but has an intact DNA was able to fertilize oocytes, even produced offspring in mouse.

  12. Freeze substitution in 3 hours or less.

    Science.gov (United States)

    McDonald, K L; Webb, R I

    2011-09-01

    Freeze substitution is a process for low temperature dehydration and fixation of rapidly frozen cells that usually takes days to complete. New methods for freeze substitution have been developed that require only basic laboratory tools: a platform shaker, liquid nitrogen, a metal block with holes for cryotubes and an insulated container such as an ice bucket. With this equipment, excellent freeze substitution results can be obtained in as little as 90 min for cells of small volume such as bacteria and tissue culture cells. For cells of greater volume or that have significant diffusion barriers such as cuticles or thick cell walls, one can extend the time to 3 h or more with dry ice. The 3-h method works well for all manner of specimens, including plants and Caenorhabditis elegans as well as smaller samples. Here, we present the basics of the techniques and some results from Nicotiana leaves, C. elegans adult worms, Escherichia coli and baby hamster kidney tissue culture cells. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  13. Atmospheric freeze drying assisted by power ultrasound

    International Nuclear Information System (INIS)

    Santacatalina, J V; Cárcel, J A; Garcia-Perez, J V; Mulet, A; Simal, S

    2012-01-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms −1 ), temperature (−10°C) and relative humidity (10%) with (20.5 kWm −3 ,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  14. Behaviour of polycyclic aromatic hydrocarbons (PAH) in soils under freeze-thaw cycles

    Science.gov (United States)

    Zschocke, Anne; Schönborn, Maike; Eschenbach, Annette

    2010-05-01

    The arctic region will be one of the most affected regions by climate change due to the predicted temperature rise. As a result of anthropogenic actions as mining, exploration and refining as well as atmospheric transport pollutions can be found in arctic soils. Therefore questions on the behaviour of organic contaminants in permafrost influenced soils are of high relevance. First investigations showed that permafrost can act as a semi-permeable layer for PAH (Curtosi et al., 2007). Therefore it can be assumed that global warming could result in a mobilization of PAH in these permafrost influenced soils. On the other hand a low but detectable mineralization of organic hydrocarbons by microorganisms under repeated freeze-thaw cycles was analysed (Börresen et al. 2007, Eschenbach et al. 2000). In this study the behaviour and distribution of PAH under freezing and periodically freezing and thawing were investigated in laboratory column experiments with spiked soil materials. Two soil materials which are typical for artic regions, a organic matter containing melt water sand and a well decomposed peat, were homogeneously spiked with a composite of a crude oil and the PAH anthracene and benzo(a)pyrene. After 14days preincubation time the soil material was filled in the laboratory columns (40cm high and 10 cm in diameter). Based on studies by Chuvilin et al. (2001) the impact of freezing of the upper third of the column from the surface downwards was examined. The impact of freezing was tested in two different approaches the first one with a single freezing step and the second one with a fourfold repeated cycle of freezing and thawing which takes about 6 or 7 days each. The experimental design and very first results will be shown and discussed. In some experiments with the peat a higher concentration of anthracene and benzo(a)pyrene could be detected below the freezing front in the unfrozen part of the column. Whereas the concentration of PAH had slightly decreased in

  15. The influence of freezing rates on bovine pericardium tissue Freeze-drying

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Borgognoni

    2009-12-01

    Full Text Available The bovine pericardium has been used as biomaterial in developing bioprostheses. Freeze-drying is a drying process that could be used for heart valve's preservation. The maintenance of the characteristics of the biomaterial is important for a good heart valve performance. This paper describes the initial step in the development of a bovine pericardium tissue freeze-drying to be used in heart valves. Freeze-drying involves three steps: freezing, primary drying and secondary drying. The freezing step influences the ice crystal size and, consequently, the primary and secondary drying stages. The aim of this work was to investigate the influence of freezing rates on the bovine pericardium tissue freeze-drying parameters. The glass transition temperature and the structural behaviour of the lyophilized tissues were determined as also primary and secondary drying time. The slow freezing with thermal treatment presented better results than the other freeze-drying protocols.O pericárdio bovino é um material utilizado na fabricação de biopróteses. A liofilização é um método de secagem que vem sendo estudado para a conservação de válvulas cardíacas. A preservação das características do biomaterial é de fundamental importância no bom funcionamento das válvulas. Este artigo é a primeira etapa do desenvolvimento do ciclo de liofilização do pericárdio bovino. Liofilização é o processo de secagem no qual a água é removida do material congelado por sublimação e desorção da água incongelável, sob pressão reduzida. O congelamento influencia o tamanho do cristal de gelo e, consequentemente, a secagem primária e secundária. O objetivo deste estudo foi verificar a influência das taxas de congelamento nos parâmetros de liofilização do pericárdio bovino. Determinou-se a temperatura de transição vítrea e o comportamento estrutural do pericárdio bovino liofilizado. Determinou-se o tempo da secagem primária e secundária. O

  16. Response of New zealand mudsnails Potamopyrgus antipodarum to freezing and near freezing fluctuating water temperatures

    Science.gov (United States)

    Moffitt, Christine M.; James, Christopher A.

    2012-01-01

    We explored the resilience of the invasive New Zealand mudsnail Potamopyrgus antipodarum to fluctuating winter freezing and near-freezing temperature cycles in laboratory tests. Our goal was to provide data to confirm field observations of mortality and presumed mortality in stream habitats with fluctuating freezing to near-freezing temperatures. We tested individuals from 2 locations with distinctly different thermal regimes and population densities. One location had low snail densities and water temperatures with strong diel and seasonal water variation. The other location had high snail densities and nearly constant water temperatures. Groups of individuals from both locations were tested in each of 3 laboratory-created diel thermal cycles around nominal temperatures of 0, 2, or 4°C. Mortality occurred in cycles around 0°C in both populations, and little to no mortality occurred at temperatures >0°C. Individuals from both sources held in diel 0°C cycles for 72 h showed 100% mortality. Our findings support observations from published field studies that survival was limited in infested habitats subject to freezing temperatures.

  17. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark

    Science.gov (United States)

    Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S.; Ishikawa, Masaya

    2014-01-01

    Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (−1 to −4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor. PMID:25082142

  18. High ice nucleation activity located in blueberry stem bark is linked to primary freeze initiation and adaptive freezing behaviour of the bark.

    Science.gov (United States)

    Kishimoto, Tadashi; Yamazaki, Hideyuki; Saruwatari, Atsushi; Murakawa, Hiroki; Sekozawa, Yoshihiko; Kuchitsu, Kazuyuki; Price, William S; Ishikawa, Masaya

    2014-07-31

    Controlled ice nucleation is an important mechanism in cold-hardy plant tissues for avoiding excessive supercooling of the protoplasm, for inducing extracellular freezing and/or for accommodating ice crystals in specific tissues. To understand its nature, it is necessary to characterize the ice nucleation activity (INA), defined as the ability of a tissue to induce heterogeneous ice nucleation. Few studies have addressed the precise localization of INA in wintering plant tissues in respect of its function. For this purpose, we recently revised a test tube INA assay and examined INA in various tissues of over 600 species. Extremely high levels of INA (-1 to -4 °C) in two wintering blueberry cultivars of contrasting freezing tolerance were found. Their INA was much greater than in other cold-hardy species and was found to be evenly distributed along the stems of the current year's growth. Concentrations of active ice nuclei in the stem were estimated from quantitative analyses. Stem INA was localized mainly in the bark while the xylem and pith had much lower INA. Bark INA was located mostly in the cell wall fraction (cell walls and intercellular structural components). Intracellular fractions had much less INA. Some cultivar differences were identified. The results corresponded closely with the intrinsic freezing behaviour (extracellular freezing) of the bark, icicle accumulation in the bark and initial ice nucleation in the stem under dry surface conditions. Stem INA was resistant to various antimicrobial treatments. These properties and specific localization imply that high INA in blueberry stems is of intrinsic origin and contributes to the spontaneous initiation of freezing in extracellular spaces of the bark by acting as a subfreezing temperature sensor. Published by Oxford University Press on behalf of the Annals of Botany Company.

  19. Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior

    Science.gov (United States)

    Niedermeier, D.; Shaw, R. A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.

    2011-08-01

    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized, conceptual model to explore the transition between stochastic and singular ice nucleation. This "soccer ball" model treats particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. Even with ice nucleation treated fundamentally as a stochastic process this process can be masked by the heterogeneity of surface properties, as might be typical for realistic atmospheric particle populations. Full evaluation of the model findings will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.

  20. New High-Performance Droplet Freezing Assay (HP-DFA) for the Analysis of Ice Nuclei with Complex Composition

    Science.gov (United States)

    Kunert, Anna Theresa; Scheel, Jan Frederik; Helleis, Frank; Klimach, Thomas; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water above homogeneous freezing is catalyzed by ice nucleation active (INA) particles called ice nuclei (IN), which can be of various inorganic or biological origin. The freezing temperatures reach up to -1 °C for some biological samples and are dependent on the chemical composition of the IN. The standard method to analyze IN in solution is the droplet freezing assay (DFA) established by Gabor Vali in 1970. Several modifications and improvements were already made within the last decades, but they are still limited by either small droplet numbers, large droplet volumes or inadequate separation of the single droplets resulting in mutual interferences and therefore improper measurements. The probability that miscellaneous IN are concentrated together in one droplet increases with the volume of the droplet, which can be described by the Poisson distribution. At a given concentration, the partition of a droplet into several smaller droplets leads to finely dispersed IN resulting in better statistics and therefore in a better resolution of the nucleation spectrum. We designed a new customized high-performance droplet freezing assay (HP-DFA), which represents an upgrade of the previously existing DFAs in terms of temperature range and statistics. The necessity of observing freezing events at temperatures lower than homogeneous freezing due to freezing point depression, requires high-performance thermostats combined with an optimal insulation. Furthermore, we developed a cooling setup, which allows both huge and tiny temperature changes within a very short period of time. Besides that, the new DFA provides the analysis of more than 750 droplets per run with a small droplet volume of 5 μL. This enables a fast and more precise analysis of biological samples with complex IN composition as well as better statistics for every sample at the same time.

  1. Effective freezing rate for semen cryopreservation in endangered Mediterranean brown trout (Salmo trutta macrostigma) inhabiting the Biferno river (South Italy).

    Science.gov (United States)

    Iaffaldano, Nicolaia; Di Iorio, Michele; Manchisi, Angelo; Esposito, Stefano; Gibertoni, Pier Paolo

    2016-10-01

    This study was designed to determine: (i) the in vitro effects of different freezing rates on post-thaw semen quality of Mediterranean brown trout (Salmo trutta macrostigma) from the Biferno river; and (ii) the in vivo fertilization and hatching percentage of freezing rate giving rise to the best post-thaw semen quality. Pooled semen samples were diluted 1:3 (v:v) in a freezing extender composed of 300 mM glucose, 10% egg yolk and 10% dimethyl sulfoxide (DMSO). The extended semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen surface (1, 5 or 10 cm) for 10 min to give three different freezing rates. Semen samples were thawed at 30°C for 10 s. The variables assessed after thawing were sperm motility, duration of motility and viability. Our results clearly indicate a significant effect of freezing rate on post-thaw semen quality. Semen frozen 5 cm above the liquid nitrogen surface showed the best quality after freezing/thawing. Based on these in vitro data, 2 groups of 200 eggs were fertilized with fresh semen or semen frozen 5 cm above the liquid nitrogen surface. Fertilization and hatching rates recorded for eggs fertilized with frozen semen were significantly lower (25.4% and 22.5%, respectively) than the ones obtained using fresh semen (87.8% and 75.5%, respectively). An effective freezing protocol will allow for the creation of a sperm cryobank to recover the original population of Mediterranean brown trout in the Biferno river.

  2. Recent developments in smart freezing technology applied to fresh foods.

    Science.gov (United States)

    Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu

    2017-09-02

    Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh like quality of foods. In this article, we review the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts have greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during the freezing process and help improve product quality and freezing efficiency. We also provide a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies include computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.

  3. Optimization of a protective medium for freeze-dried Pichia membranifaciens and application of this biocontrol agent on citrus fruit.

    Science.gov (United States)

    Niu, X; Deng, L; Zhou, Y; Wang, W; Yao, S; Zeng, K

    2016-07-01

    To optimize a protective medium for freeze-dried Pichia membranifaciens and to evaluate biocontrol efficacies of agents against blue and green mould and anthracnose in citrus fruit. Based on the screening assays of saccharides and antioxidants, response surface methodology was used to optimize sucrose, sodium glutamate and skim milk to improve viability of freeze-dried Pi. membranifaciens. Biocontrol assays were conducted between fresh and freeze-dried Pi. membranifaciens against Penicillium italicum, Penicillium digitatum and Colletotrichum gloeosporioides in citrus fruit. Solving the regression equation indicated that the optimal protective medium was 6·06% (w/v) sucrose combined with 3·40% (w/v) sodium glutamate and 5·43% (w/v) skim milk. Pi. membranifaciens freeze-dried in the optimal protective medium showed 76·80% viability, and retained biocontrol efficacy against Pe. italicum, Pe. digitatum and Co. gloeosporioides in citrus fruit. The optimal protective medium showed more effective protective properties than each of the three protectants used alone. The viability of freeze-dried Pi. membranifaciens finally reached 76·80%. Meanwhile, the biocontrol efficacies showed no significant difference between fresh and freeze-dried yeast against Pe. italicum, Pe. digitatum and Co. gloeosporioides in citrus fruit. The results showed the potential value of Pi. membranifaciens CICC 32259 for commercialization. © 2016 The Society for Applied Microbiology.

  4. Mathematical prediction of freezing times of bovine semen in straws placed in static vapor over liquid nitrogen.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-02-01

    A widespread practice in cryopreservation is to freeze spermatozoa by suspending the straws in stagnant nitrogen vapor over liquid nitrogen (N(2)V/LN(2)) for variable periods of time before plunging into liquid nitrogen (-196°C) for indefinite storage. A mathematical heat transfer model was developed to predict freezing times (phase change was considered) required for bull semen and extender packaged in 0.5ml plastic straws and suspended in static liquid nitrogen vapor. Thermophysical properties (i.e. thermal conductivity, specific heat, density, initial freezing temperature) of bovine semen and extender as a function of temperature were determined considering the water change of phase. The non-stationary heat transfer partial differential equations with variable properties (nonlinear mathematical problem) were numerically solved considering in series thermal resistances (semen suspension-straw) and the temperature profiles were obtained for both semen suspension and plastic straw. It was observed both the external heat transfer coefficient in stagnant nitrogen vapor and its temperature (controlled by the distance from the surface of liquid nitrogen to the straw) affected freezing times. The accuracy of the model to estimate freezing times of the straws was further confirmed by comparing with experimental literature data. Results of this study will be useful to select "safe" holding times of bull semen in plastic straws placed N(2)V/LN(2) to ensure that complete freezing of the sample has occurred in the nitrogen vapor and avoid cryodamage when plunging in LN(2). Freezing times predicted by the numerical model can be applied to optimize freezing protocols of bull semen in straws. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Thermophysical analysis for three-dimensional MHD stagnation-point flow of nano-material influenced by an exponential stretching surface

    Science.gov (United States)

    Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan

    2018-03-01

    In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.

  6. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles.

    Science.gov (United States)

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2016-01-15

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver. The obtained limits of detection were 0.05 μg kg(-1) of silver nanoparticles and 0.03 μg kg(-1) of ionic silver. Nanoparticles of varied sizes (10-110 nm) with different surface coating, including citrate acid, lipoic acid, polyvinylpyrrolidone and bovine serum albumin (BSA) were successfully analyzed. Particularly good recoveries (>93%) were obtained for both ionic silver and silver nanoparticle in the presence of excess amount of BSA. The method was further tested with six commercially available dietary supplements which varied in concentration and matrix components. The summed values of silver ions and silver nanoparticles correlated well with the total silver concentration determined by ICPMS after acid digestion. This method can serve as an alternative to cloud point extraction technique when the extraction efficiency for protein coated nanoparticles is low. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The freezing of water bonded in the wheat (Triticum aestivum L.) grain studied by means protons magnetic relaxation method; Zamarzanie wody zwiazanej w ziarnach pszenicy (Triticum aestivum L.) badane metoda relaksacji magnetycznej dla protonow

    Energy Technology Data Exchange (ETDEWEB)

    Haranczyk, H.; Jasinski, G. [Inst. Fizyki, Uniwersytet Jagiellonski, Cracow (Poland); Strzalka, K. [Inst. Biologii Molekularnej, Uniwersytet Jagiellonski, Cracow (Poland)

    1994-12-31

    Some biological aspects of water freezing in the wheat grain have been studied using NMR methods. Measuring of the relaxation times for freezing and liquid water shown absence of T{sub 2}{approx}100 {mu}s and T{sub 2}{approx}1 ms separated components what pointed for some different way of water bonding. 7 refs, 12 figs, 2 tabs.

  8. Freeze Casting for Assembling Bioinspired Structural Materials.

    Science.gov (United States)

    Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P

    2017-12-01

    Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A new cryosurgical device for controlled freezing.

    Science.gov (United States)

    Rabin, Y; Coleman, R; Mordohovich, D; Ber, R; Shitzer, A

    1996-02-01

    A new cryosurgical device was developed in this study to facilitate examination of factors affecting the outcome of cryotreatment. Special emphasis was placed on the control of the cooling rate at the freezing front. In the new computer-controlled cryosurgical device, the controlling variable is the cryoprobe temperature, which is calculated to ensure prespecified cooling rates at the freezing front. Details of the new cryodevice, results of a validation test, and the system characteristics are presented in Part I of this study. In this part of the study initial results of 13 in vivo experimental cryotreatments, including histological observations, are presented. The in vivo pilot investigations include the normal, healthy skin and the underlying skeletal muscle of the thighs in rabbits. Using low cooling rate-controlled freezing, the new cryosurgical device is demonstrated here as an effective surgical tool. An in vivo temperature measurement technique is employed based on miniature thermocouples and X-ray images. Thermal analysis of the heat transfer in the cryotreated tissue is presented, based on the temperature measurements and on numerical heat transfer simulations. Cryotreated tissue was extracted either immediately or 4 or 7 days following the procedure. The histological observations on the skeletal muscle of the 4- and 7-day postcryoinjury were not substantially different. The effective penetration depth of the cryolesion was in the range of 5-15 mm, possibly extending up to 25 mm, depending on the specific area treated and operating parameters. The cryotreatment resulted in complete destruction of cells in the skin followed by rapid replacement by epithelial cells. Histological responses to cryotreatment of skeletal muscle were similar to those resulting from a range of traumatic episodes, e.g., crush damage. It was also found that most of the blood vessels in the cryotreated region remained intact without histological evidence of extravasation of

  10. Freeze-drying of live virus vaccines: A review.

    Science.gov (United States)

    Hansen, L J J; Daoussi, R; Vervaet, C; Remon, J-P; De Beer, T R M

    2015-10-13

    Freeze-drying is the preferred method for stabilizing live, attenuated virus vaccines. After decades of research on several aspects of the process like the stabilization and destabilization mechanisms of the live, attenuated viruses during freeze-drying, the optimal formulation components and process settings are still matter of research. The molecular complexity of live, attenuated viruses, the multiple destabilization pathways and the lack of analytical techniques allowing the measurement of physicochemical changes in the antigen's structure during and after freeze-drying mean that they form a particular lyophilization challenge. The purpose of this review is to overview the available information on the development of the freeze-drying process of live, attenuated virus vaccines, herewith focusing on the freezing and drying stresses the viruses can undergo during processing as well as on the mechanisms and strategies (formulation and process) that are used to stabilize them during freeze-drying. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Physical Stability of Freeze-Dried Isomalt Diastereomer Mixtures

    DEFF Research Database (Denmark)

    Koskinen, Anna-Kaisa; Fraser-Miller, Sara J.; Bøtker, Johan P.

    2016-01-01

    Purpose Isomalt is a sugar alcohol used as an excipient in commercially available solid oral dosage forms. The potential of isomalt as a novel freeze-drying excipient was studied in order to increase knowledge of the behavior of isomalt when it is freeze-dried. Methods Isomalt was freeze-dried in......Purpose Isomalt is a sugar alcohol used as an excipient in commercially available solid oral dosage forms. The potential of isomalt as a novel freeze-drying excipient was studied in order to increase knowledge of the behavior of isomalt when it is freeze-dried. Methods Isomalt was freeze......-dried in four different diastereomer compositions and its physical stability was investigated with differential scanning calorimetry, Fourier-transform infrared and Raman spectroscopy, X-ray powder diffraction, Karl-Fischer titration and thermogravimetric analysis in order to verify the solid state form...

  12. Tipping Point

    Medline Plus

    Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...

  13. Air-cooled steam condensers non-freeze warranties

    Energy Technology Data Exchange (ETDEWEB)

    Larinoff, M.W.

    1995-09-01

    What this paper is suggesting is the seller quote a condenser package with a LIMITED NON-FREEZE WARRANTY. Relieve the inexperienced buyer of the responsibility for selecting freeze protection design options. The seller cannot afford to over-design because of the added costs and the need for a competitive price. Yet he cannot under-design and allow the condenser tubes to freeze periodically and then pay the repair bills in accordance with the warranty.

  14. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    Science.gov (United States)

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  15. Optimization of Freeze Drying Conditions for Purified Pectinase from Mango (Mangifera indica cv. Chokanan) Peel

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2012-01-01

    Response surface methodology (RSM) along with central composite design (CCD) was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel. The effect of pectinase content (−2.66, 62.66 mg/mL), Arabic gum (−1.21, 10.21%, w/v), and maltodextrin (0.73, 7.26%, w/v) as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05) effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v) of Arabic gum, and 4 (%, w/v) of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL), yield (86.4%) and storage stability (84.2%) of encapsulated pectinase were achieved. PMID:22489134

  16. Optimization of Freeze Drying Conditions for Purified Pectinase from Mango (Mangifera indica cv. Chokanan Peel

    Directory of Open Access Journals (Sweden)

    Abdul Manap Mohd Yazid

    2012-03-01

    Full Text Available Response surface methodology (RSM along with central composite design (CCD was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan peel. The effect of pectinase content (−2.66, 62.66 mg/mL, Arabic gum (−1.21, 10.21%, w/v, and maltodextrin (0.73, 7.26%, w/v as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05 effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v of Arabic gum, and 4 (%, w/v of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL, yield (86.4% and storage stability (84.2% of encapsulated pectinase were achieved.

  17. Identification of Soil Freezing and Thawing States Using SAR Polarimetry at C-Band

    Directory of Open Access Journals (Sweden)

    Thomas Jagdhuber

    2014-03-01

    Full Text Available The monitoring of soil freezing and thawing states over large areas is very challenging on ground. In order to investigate the potential and the limitations of space-borne SAR polarimetry at C-band for soil state survey, analyses were conducted on an entire winter time series of fully polarimetric RADARSAT-2 data from 2011/2012 to identify freezing as well as thawing states within the soil. The polarimetric data were acquired over the Sodankylä test site in Finland together with in situ measurements of the soil and the snow cover. The analyses indicate clearly that the dynamics of the polarimetric entropy and mean scattering alpha angle are directly correlated to soil freezing and thawing states, even under distinct dry snow cover. First modeling attempts using the Extended Bragg soil scattering model justify the observed trends, which indicate surface-like scattering during frozen soil conditions and multiple/volume scattering for thawed soils. Hence, these first investigations at C-band foster motivation to work towards a robust polarimetric detection of soil freezing and thawing states as well as their transition phase.

  18. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model

    Directory of Open Access Journals (Sweden)

    P. A. Alpert

    2016-02-01

    Full Text Available Immersion freezing is an important ice nucleation pathway involved in the formation of cirrus and mixed-phase clouds. Laboratory immersion freezing experiments are necessary to determine the range in temperature, T, and relative humidity, RH, at which ice nucleation occurs and to quantify the associated nucleation kinetics. Typically, isothermal (applying a constant temperature and cooling-rate-dependent immersion freezing experiments are conducted. In these experiments it is usually assumed that the droplets containing ice nucleating particles (INPs all have the same INP surface area (ISA; however, the validity of this assumption or the impact it may have on analysis and interpretation of the experimental data is rarely questioned. Descriptions of ice active sites and variability of contact angles have been successfully formulated to describe ice nucleation experimental data in previous research; however, we consider the ability of a stochastic freezing model founded on classical nucleation theory to reproduce previous results and to explain experimental uncertainties and data scatter. A stochastic immersion freezing model based on first principles of statistics is presented, which accounts for variable ISA per droplet and uses parameters including the total number of droplets, Ntot, and the heterogeneous ice nucleation rate coefficient, Jhet(T. This model is applied to address if (i a time and ISA-dependent stochastic immersion freezing process can explain laboratory immersion freezing data for different experimental methods and (ii the assumption that all droplets contain identical ISA is a valid conjecture with subsequent consequences for analysis and interpretation of immersion freezing. The simple stochastic model can reproduce the observed time and surface area dependence in immersion freezing experiments for a variety of methods such as: droplets on a cold-stage exposed to air or surrounded by an oil matrix, wind and

  19. Design of a blood-freezing system for leukemia research

    Science.gov (United States)

    Williams, T. E.; Cygnarowicz, T. A.

    1978-01-01

    Leukemia research involves the use of cryogenic freezing and storage equipment. In a program being carried out at the National Cancer Institute (NCI), bone marrow (white blood cells) was frozen using a standard cryogenic biological freezer. With this system, it is difficult to maintain the desired rate of freezing and repeatability from sample to sample. A freezing system was developed that satisfies the requirements for a repeatable, constant freezing rate. The system was delivered to NIC and is now operational. This report describes the design of the major subsystems, the analyses, the operating procedure, and final system test results.

  20. Parameter Sensitivity of the Microdroplet Vacuum Freezing Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The vacuum freezing process of microdroplets (1 mm. Pressure and droplet diameter have an effect on cooling and freezing stages, but initial temperature only affects the cooling stage. The thermal conductivity coefficient kl affected the cooling stage, whereas ki affected the freezing stage. Heat capacity Cl affected the cooling stage, but Ci has virtually no effect on all stages. The actual latent heat of freezing ΔH was also affected. Higher density corresponds to lower cooling rate in the cooling stage.

  1. Automated assessment of Pavlovian conditioned freezing and shock reactivity in mice using the VideoFreeze system

    Directory of Open Access Journals (Sweden)

    Stephan G Anagnostaras

    2010-09-01

    Full Text Available The Pavlovian conditioned freezing paradigm has become a prominent mouse and rat model of learning and memory, as well as of pathological fear. Due to its efficiency, reproducibility, and well-defined neurobiology, the paradigm has become widely adopted in large-scale genetic and pharmacological screens. However, one major shortcoming of the use of freezing behavior has been that it has required the use of tedious hand scoring, or a variety of proprietary automated methods that are often poorly validated or difficult to obtain and implement. Here we report an extensive validation of the Video Freeze system in mice, a turn-key all-inclusive system for fear conditioning in small animals. Using digital video and near-infrared lighting, the system achieved outstanding performance in scoring both freezing and movement. Given the large-scale adoption of the conditioned freezing paradigm, we encourage similar validation of other automated systems for scoring freezing, or other behaviors.

  2. Effect of freezing on rabbit cultured chondrocytes

    Directory of Open Access Journals (Sweden)

    R.R Filgueiras

    2011-02-01

    Full Text Available This work evaluated the effect of freezing on chondrocytes maintained in culture, aiming the establishment of a cell bank for future application as heterologous implant. Chondrocytes extracted from joint cartilage of nine healthy New Zealand White rabbits were cultivated and frozen with the cryoprotector 5% dimethylsulfoxide for six months. Phenotypic and scanning electron microscopy analyses were carried out to identify morphological and functional differences between fresh and thawed cells. After enzymatic digestion, a total of 4.8x10(5cells per rabbit were obtained. Fresh chondrocytes showed a high mitotic rate and abundant matrix was present up to 60 days of culture. Loss of phenotypic stability was notable in the thawed chondrocytes, with a low labeling of proteoglycans and weak immunostaining of type II collagen. The present study showed important loss of chondrocyte viability under the freezing conditions. For future in vivo studies of heterologous implant, these results suggests that a high number of cells should be implanted in the host site in order to achieve an adequate number of viable cells. Furthermore, the chondrocytes should be implanted after two weeks of culture, when the highest viability rate is found

  3. Asset Freezing: Smart Sanction or Criminal Charge?

    Directory of Open Access Journals (Sweden)

    Melissa van den Broek

    2011-02-01

    Full Text Available In this article the question is asked whether asset freezing can be qualified as a criminal charge within the meaning of Article6 ECHR and if yes, what effects this qualification may have on the legislative framework on so called smart sanctions. Byanalysing Community and EU law and case law of the European Court of Human Rights, General Court of Instance andCourt of Justice of the European Communities the authors give an overview of the notion and possible qualification of assetfreezing as a criminal charge. The article further focusses on the consequenses of qualifying asset freezing as a criminal chargeunder ECHR and EC/EU law and concludes by answering the aforementioned question.This article is a rewrite of a research paper written under supervision of prof. dr. J.A.E. Vervaele and prof. dr. C.H. Brants(Willem Pompe Institute for Criminal Law and Criminology, Utrecht University School of Law, whom the authors wouldlike to thank for their useful comments and supervision.

  4. Constraints for the thawing and freezing potentials

    Science.gov (United States)

    Hara, Tetsuya; Suzuki, Anna; Saka, Shogo; Tanigawa, Takuma

    2018-01-01

    We study the accelerating present universe in terms of the time evolution of the equation of state w(z) (redshift z) due to thawing and freezing scalar potentials in the quintessence model. The values of dw/da and d^2w/da^2 at a scale factor of a = 1 are associated with two parameters of each potential. For five types of scalar potentials, the scalar fields Q and w as functions of time t and/or z are numerically calculated under the fixed boundary condition of w(z=0)=-1+Δ. The observational constraint w_obs (Planck Collaboration, arXiv:1502.01590) is imposed to test whether the numerical w(z) is in w_obs. Some solutions show thawing features in the freezing potentials. Mutually exclusive allowed regions in the dw/da vs. d^2w/da^2 diagram are obtained in order to identify the likely scalar potential and even the potential parameters for future observational tests.

  5. High-density G-centers, light-emitting point defects in silicon crystal

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    2011-09-01

    Full Text Available We propose a new method of creating light-emitting point defects, or G-centers, by modifying a silicon surface with hexamethyldisilazane followed by laser annealing of the surface region. This laser annealing process has two advantages: creation of highly dense G-centers by incorporating carbon atoms into the silicon during heating; freezing in the created G-centers during rapid cooling. The method provides a surface region of up to 200 nm with highly dense carbon atoms of up to 4 × 1019 cm−3 to create G-centers, above the solubility limit of carbon atoms in silicon crystal (3 × 1017 cm−3. Photoluminescence measurement reveals that the higher-speed laser annealing produces stronger G-center luminescence. We demonstrate electrically-driven emission from the G-centers in samples made using our new method.

  6. Numerical investigation on MHD micropolar fluid flow toward a stagnation point on a vertical surface with heat source and chemical reaction

    Directory of Open Access Journals (Sweden)

    S. Baag

    2017-01-01

    Full Text Available In this paper, the steady magnetohydrodynamic (MHD mixed convection stagnation point flow of an incompressible and electrically conducting micropolar fluid past a vertical flat plate is investigated. The effects of induced magnetic field, heat generation/absorption and chemical reaction have been taken into account during the present study. Numerical solutions are obtained by using the Runge–Kutta fourth order scheme with shooting technique. The skin friction and rate of heat and mass transfer at the bounding surface are also calculated. The generality of the present study is assured of by discussing the works of Ramachandran et al. (1988, Lok et al. (2005 and Ishak et al. (2008 as particular cases. It is interesting to note that the results of the previous authors are in good agreement with the results of the present study tabulated which is evident from the tabular values. Further, the novelty of the present analysis is to account for the effects of first order chemical reaction in a flow of reactive diffusing species in the presence of heat source/sink. The discussion of the present study takes care of both assisting and opposing flows. From the computational aspect, it is remarked that results of finite difference (Ishak et al. (2008 and Runge–Kutta associated with shooting technique (present method yield same numerical results with a certain degree of accuracy. It is important to note that the thermal buoyancy parameter in opposing flow acts as a controlling parameter to prevent back flow. Diffusion of lighter foreign species, suitable for initiating a destructive reaction, is a suggestive measure for reducing skin friction.

  7. Aqueous synthesis and characterization of TGA-capped CdSe quantum dots at freezing temperature.

    Science.gov (United States)

    Sun, Qizhuang; Fu, Shasha; Dong, Tingmei; Liu, Shuxian; Huang, Chaobiao

    2012-07-11

    CdSe quantum dots (QDs) have traditionally been synthesized in organic phase and then transferred to aqueous solution by functionalizing their surface with silica, polymers, short-chain thiol ligands, or phospholipid micelles. However, a drastic increase in the hydrodynamic size and biotoxicity of QDs may hinder their biomedical applications. In this paper, the TGA-capped CdSe QDs are directly synthesized in aqueous phase at freezing temperature, and they prove to possess high QY (up to 14%).

  8. Forecasting and modelling ice layer formation on the snowpack due to freezing precipitations in the Pyrenees

    Science.gov (United States)

    Quéno, Louis; Vionnet, Vincent; Cabot, Frédéric; Vrécourt, Dominique; Dombrowski-Etchevers, Ingrid

    2017-04-01

    In the Pyrenees, freezing precipitations in altitude occur at least once per winter, leading to the formation of a pure ice layer on the surface of the snowpack. It may lead to accidents and fatalities among mountaineers and skiers, with sometimes a higher human toll than avalanches. Such events are not predicted by the current operational systems for snow and avalanche hazard forecasting. A crowd-sourced database of surface ice layer occurrences is first built up, using reports from Internet mountaineering and ski-touring communities, to mitigate the lack of observations from conventional observation networks. A simple diagnostic of freezing precipitation is then developed, based on the cloud water content and screen temperature forecast by the Numerical Weather Prediction model AROME, operating at 2.5-km resolution. The performance of this diagnostic is assessed for the event of 5-6 January 2012, with a good representation of altitudinal and spatial distributions of the ice layer. An evaluation of the diagnostic for major events over five winters gives good skills of detection compared to the occurrences reported in the observation database. A new modelling of ice formation on the surface of the snowpack due to impinging supercooled water is added to the detailed snowpack model Crocus. It is combined to the atmospheric diagnostic of freezing precipitations and resulting snowpack simulations over a winter season capture well the formation of the main ice layers. Their influence on the snowpack stratigraphy is also realistically simulated. These simple methods enable to forecast the occurrence of surface ice layer formations with good confidence and to simulate their evolution within the snowpack, even if an accurate estimation of freezing precipitation amounts remains the main challenge.

  9. Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch

    Science.gov (United States)

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water. PMID:26018506

  10. Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch.

    Directory of Open Access Journals (Sweden)

    Han Tao

    Full Text Available The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS, as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL. The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water.

  11. Formulation Optimization of Freeze-Dried Long-Circulating Liposomes and In-Line Monitoring of the Freeze-Drying Process Using an NIR Spectroscopy Tool.

    Science.gov (United States)

    Sylvester, Bianca; Porfire, Alina; Van Bockstal, Pieter-Jan; Porav, Sebastian; Achim, Marcela; Beer, Thomas De; Tomuţă, Ioan

    2018-01-01

    The effect of lyoprotectant type and concentration on the stability of freeze-dried prednisolone sodium phosphate-loaded long-circulating liposomes was investigated. Trehalose at a 5:1 carbohydrate to lipid molar ratio proved to be superior in maintaining the structural integrity and the permeability properties of the liposome bilayers, assuring the desired characteristics of the final product: a cake with a porous structure and easy to reconstitute, a similar size to the liposomes before freeze-drying, a high percent of encapsulated drug, and a low residual moisture content. Further on, the study demonstrated the possibility of near-infrared spectroscopy to provide valuable insights for detecting critical changes in acyl chain packing of the liposome bilayer. By visualizing the spectra after principal component analysis, one can predict if any harm has occurred to liposome integrity during the process. Moreover, near-infrared spectroscopy enabled us to determine the end points of primary and secondary drying without disturbing the normal freeze-drying procedure, which allowed us to gain a better understanding of the process and to improve process efficiency by optimizing the primary and secondary drying time. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Optimization of the secondary drying step in freeze drying using TDLAS technology.

    Science.gov (United States)

    Schneid, Stefan C; Gieseler, Henning; Kessler, William J; Luthra, Suman A; Pikal, Michael J

    2011-03-01

    The secondary drying phase in freeze drying is mostly developed on a trial-and-error basis due to the lack of appropriate noninvasive process analyzers. This study describes for the first time the application of Tunable Diode Laser Absorption Spectroscopy, a spectroscopic and noninvasive sensor for monitoring secondary drying in laboratory-scale freeze drying with the overall purpose of targeting intermediate moisture contents in the product. Bovine serum albumin/sucrose mixtures were used as a model system to imitate high concentrated antibody formulations. First, the rate of water desorption during secondary drying at constant product temperatures (-22 °C, -10 °C, and 0 °C) was investigated for three different shelf temperatures. Residual moisture contents of sampled vials were determined by Karl Fischer titration. An equilibration step was implemented to ensure homogeneous distribution of moisture (within 1%) in all vials. The residual moisture revealed a linear relationship to the water desorption rate for different temperatures, allowing the evaluation of an anchor point from noninvasive flow rate measurements without removal of samples from the freeze dryer. The accuracy of mass flow integration from this anchor point was found to be about 0.5%. In a second step, the concept was successfully tested in a confirmation experiment. Here, good agreement was found for the initial moisture content (anchor point) and the subsequent monitoring and targeting of intermediate moisture contents. The present approach for monitoring secondary drying indicated great potential to find wider application in sterile operations on production scale in pharmaceutical freeze drying. © 2011 American Association of Pharmaceutical Scientists

  13. The Effect of Freezing on Thylakoid Membranes in the Presence of Organic Acids

    Science.gov (United States)

    Santarius, Kurt A.

    1971-01-01

    The effect of salts of organic acids on washed and non-washed chloroplast membranes during freezing was investigated. Thylakoids were isolated from spinach leaves (Spinacia oleracea L.) and, prior to freezing, salts of various organic acids or inorganic salts or both were added. Freezing occurred for 3 to 4 hours at −25 C. After thawing membrane integrity was investigated by measuring the activity of cyclic photophosphorylation. At very low NaCl levels (1 to 3 mm, washed thylakoids) salts of organic acids either could not prevent membrane inactivation in the course of freezing (succinate) or were effective only at relatively high concentrations (0.1 m or more of acetate, pyruvate, malate, tartrate, citrate). If NaCl was present at higher concentrations (e.g., 0.1 m) some organic acids, e.g. succinate, malate, tartrate, and citrate, were able to protect frost-sensitive thylakoids at surprisingly low concentrations (10 to 20 mm). Other inorganic salts such as KCl, MgCl2, NaNO3 could also induce protection by organic acids which otherwise were ineffective or poorly effective. For effective protection, a more or less constant ratio between inorganic salt and organic acid or between two or more organic acids had to be maintained. Departure to either side from the optimal ratio led to progressive inactivation. The unspecificity of the protective effect of organic acids suggests that these compounds protect colligatively. There are also indications that, in addition, more specific interaction with the membranes contributes to protection. At temperatures above the freezing point, the presence of salts of organic acids decreased the rate of membrane inactivation by high electrolyte concentrations. PMID:16657754

  14. In-line multipoint near-infrared spectroscopy for moisture content quantification during freeze-drying.

    Science.gov (United States)

    Kauppinen, Ari; Toiviainen, Maunu; Korhonen, Ossi; Aaltonen, Jaakko; Järvinen, Kristiina; Paaso, Janne; Juuti, Mikko; Ketolainen, Jarkko

    2013-02-19

    During the past decade, near-infrared (NIR) spectroscopy has been applied for in-line moisture content quantification during a freeze-drying process. However, NIR has been used as a single-vial technique and thus is not representative of the entire batch. This has been considered as one of the main barriers for NIR spectroscopy becoming widely used in process analytical technology (PAT) for freeze-drying. Clearly it would be essential to monitor samples that reliably represent the whole batch. The present study evaluated multipoint NIR spectroscopy for in-line moisture content quantification during a freeze-drying process. Aqueous sucrose solutions were used as model formulations. NIR data was calibrated to predict the moisture content using partial least-squares (PLS) regression with Karl Fischer titration being used as a reference method. PLS calibrations resulted in root-mean-square error of prediction (RMSEP) values lower than 0.13%. Three noncontact, diffuse reflectance NIR probe heads were positioned on the freeze-dryer shelf to measure the moisture content in a noninvasive manner, through the side of the glass vials. The results showed that the detection of unequal sublimation rates within a freeze-dryer shelf was possible with the multipoint NIR system in use. Furthermore, in-line moisture content quantification was reliable especially toward the end of the process. These findings indicate that the use of multipoint NIR spectroscopy can achieve representative quantification of moisture content and hence a drying end point determination to a desired residual moisture level.

  15. Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space.

    Science.gov (United States)

    Arsiccio, Andrea; Pisano, Roberto

    2018-02-09

    The present work shows a rational method for the development of the freezing step of a freeze-drying cycle. The current approach to the selection of freezing conditions is still empirical and non-systematic, thus resulting in poor robustness of control strategy. The final aim of this work is to fill this gap, describing a rational procedure, based on mathematical modelling, for properly choosing the freezing conditions. Mechanistic models are used for the prediction of temperature profiles during freezing and dimension of ice crystals being formed. Mathematical description of the drying phase of freeze-drying is also coupled with results obtained by freezing models, thus providing a comprehensive characterization of the lyophilization process. In this framework, deep understanding of the phenomena involved is required, and, according to the Quality by Design approach, this knowledge can be used to build the design space. The step by step procedure for building the design space for freezing is thus described and examples of applications are provided. The calculated design space is validated upon experimental data and we show that it allows easy control of the freezing process and fast selection of appropriate operating conditions. Copyright © 2018. Published by Elsevier Inc.

  16. Probability of freezing in the freeze-avoiding beetle larvae Cucujus clavipes puniceus (Coleoptera: Cucujidae) from interior Alaska.

    Science.gov (United States)

    Sformo, T; McIntyre, J; Walters, K R; Barnes, B M; Duman, J

    2011-08-01

    Freeze-avoiding insects must resist freezing or die. A suite of adaptations to low temperatures, including the production of antifreeze proteins, colligative antifreezes (polyols), and dehydration allows most individuals to prevent freezing below the lowest ambient temperatures experienced in situ; however, there can be a wide variance in the minimum temperatures that individuals of freeze-avoiding species reach before freezing. We used logistic regression to explore factors that affect this variance and to estimate the probability of freezing in larvae of the freeze-avoiding beetle Cucujus clavipes puniceus. We hypothesized that water content ≤0.5 mg mg(-1) dry mass would lead to deep supercooling (avoidance of freezing below -58°C). We found a significant interaction between water content and ambient below-snow temperature and a significant difference between individuals collected from two locations in Alaska: Wiseman and Fairbanks. Individuals collected in Wiseman deep supercooled with greater water content and to a greater range of ambient temperatures than individuals collected in Fairbanks, leading to significantly different lethal water contents associated with 50% probability of freezing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A practical method to detect the freezing/thawing onsets of seasonal frozen ground in Alaska

    Science.gov (United States)

    Chen, Xiyu; Liu, Lin

    2017-04-01

    Microwave remote sensing can provide useful information about freeze/thaw state of soil at the Earth surface. An edge detection method is applied in this study to estimate the onsets of soil freeze/thaw state transition using L band space-borne radiometer data. The Soil Moisture Active Passive (SMAP) mission has a L band radiometer and can provide daily brightness temperature (TB) with horizontal/vertical polarizations. We use the normalized polarization ratios (NPR) calculated based on the Level-1C TB product of SMAP (spatial resolution: 36 km) as the indicator for soil freeze/thaw state, to estimate the freezing and thawing onsets in Alaska in the year of 2015 and 2016. NPR is calculated based on the difference between TB at vertical and horizontal polarizations. Therefore, it is strongly sensitive to liquid water content change in the soil and independent with the soil temperature. Onset estimation is based on the detection of abrupt changes of NPR in transition seasons using edge detection method, and the validation is to compare estimated onsets with the onsets derived from in situ measurement. According to the comparison, the estimated onsets were generally 15 days earlier than the measured onsets in 2015. However, in 2016 there were 4 days in average for the estimation earlier than the measured, which may be due to the less snow cover. Moreover, we extended our estimation to the entire state of Alaska. The estimated freeze/thaw onsets showed a reasonable latitude-dependent distribution although there are still some outliers caused by the noisy variation of NPR. At last, we also try to remove these outliers and improve the performance of the method by smoothing the NPR time series.

  18. Corrective Action Decision Document/ Closure Report for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada with Errata Sheet, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2008-09-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit 556, Dry Wells and Surface Release Points, located at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996; as amended February 2008). Corrective Action Unit (CAU) 556 is comprised of four corrective action sites (CASs): • 06-20-04, National Cementers Dry Well • 06-99-09, Birdwell Test Hole • 25-60-03, E-MAD Stormwater Discharge and Piping • 25-64-01, Vehicle Washdown and Drainage Pit The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 556 with no further corrective action. To achieve this, corrective action investigation (CAI) activities began on February 7 and were completed on June 19, 2008, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 556: Dry Wells and Surface Release Points, Nevada Test Site, Nevada (NNSA/NSO, 2007). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent. • Provide sufficient information and data to complete appropriate corrective actions. The CAU 556 data were evaluated based on the data quality assessment process, which demonstrated the quality and acceptability of the data for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the COCs for each CAS. The results of the CAI identified COCs at one of the four CASs in CAU 556 that required the completion of a corrective action. Assessment of the data generated from investigation activities conducted at CAU 556 revealed the following: • Corrective Action Sites 06-20-04, 06-99-09, and 25-64-01 do not contain contamination at

  19. Kinetics Versus Hydrodynamics: Generalization of Landau/Cooper-Frye Prescription for Freeze-Out

    Science.gov (United States)

    Sinyukov, Yu. M.; Akkelin, S. V.; Karpenko, Iu. A.; Hama, Y.

    2009-04-01

    The problem of spectra formation in hydrodynamic approach to A+A collisions is considered within the Boltzmann equations. It is shown analytically and illustrated by numerical calculations that the particle momentum spectra can be presented in the Cooper-Frye form despite freeze-out is not sharp and has the finite temporal width. The latter is equal to the inverse of the particle collision rate at points (tsigma (r,p),r) of the maximal emission at a fixed momentum p. The set of these points forms the hypersurfaces tsigma (r,p) which strongly depend on the values of p and typically do not enclose completely the initially dense matter. This is an important difference from the standard Cooper-Frye prescription (CFp), with a common freeze-out hypersurface for all p, that affects significantly the predicted spectra. Also, the well known problem of CFp as for negative contributions to the spectra from non-space-like parts of the freeze-out hypersurface is naturally eliminated in this improved prescription.

  20. Durability of cracked fibre reinforced concrete exposed to freeze-thaw and deicing salt

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1998-01-01

    Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by subjecting beams to 4-point bending until a predefined crack width is reached. Specimens sawn from the beams after unloading are exposed to freeze-thaw and deic......Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by subjecting beams to 4-point bending until a predefined crack width is reached. Specimens sawn from the beams after unloading are exposed to freeze......-thaw and deicing salt. The concrete has a water-powder ratio of 0.38 including both fly ash and silica fume. Both steel fibres (ZP, 0.4 vol%) and polypropylene fibres (PP, 1 vol%) are used as well as main reinforcement. The freeze-thaw test emphasizes the need for a critical evaluation of the mix design and mixing...... methods when designing FRC-structures. The scaling is increased by a factor 5 to 10 when adding fibres to the concrete while the air content is below 4% by volume. The variation of the scaling increases when adding fibres. Capillary water uptake in uncracked specimens of FRC was 20-30% higher at 1°C than...