WorldWideScience

Sample records for surface fluxes soil

  1. Soil surface CO2 fluxes on the Konza Prairie

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, Shoshi B.

    1990-01-01

    The utilization of a soil chamber to measure fluxes of soil-surface CO2 fluxes is described in terms of equipment, analytical methods, and estimate quality. A soil chamber attached to a gas-exchange system measures the fluxes every 5-15 min, and the data are compared to measurements of the CO2 fluxes from the canopy and from the soil + canopy. The soil chamber yields good measurements when operated in a closed system that is ported to the free atmosphere, and the CO2 flux is found to have a diurnal component.

  2. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  3. Soil surface CO2 fluxes and the carbon budget of a grassland

    Science.gov (United States)

    Norman, J. M.; Garcia, R.; Verma, S. B.

    1992-01-01

    Measurements of soil surface CO2 fluxes are reported for three sites within the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area, and simple empirical equations are fit to the data to provide predictions of soil fluxes from environmental observations. A prototype soil chamber, used to make the flux measurements, is described and tested by comparing CO2 flux measurements to a 40-L chamber, a 1-m/cu chamber, and eddy correlation. Results suggest that flux measurements with the prototype chamber are consistent with measurements by other methods to within about 20 percent. A simple empirical equation based on 10-cm soil temperature, 0- to 10-cm soil volumetric water content, and leaf area index predicts the soil surface CO2 flux with a rms error of 1.2 micro-mol sq m/s for all three sites. Further evidence supports using this equation to evaluate soil surface CO2 during the 1987 FIFE experiment. The soil surface CO2 fluxes when averaged over 24 hours are comparable to daily gross canopy photosynthetic rates. For 6 days of data the net daily accumulation of carbon is about 0.6 g CO2 sq m/d; this is only a few percent of the daily gross accumulation of carbon by photosynthesis. As the soil became drier in 1989, the net accumulation of carbon by the prairie increased, suggesting that the soil flux is more sensitive to temperature and drought than the photosynthetic fluxes.

  4. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  5. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  6. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  7. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  8. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  9. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan

    2008-01-01

    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  10. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  11. Nocturnal soil CO2 uptake and its relationship to sub-surface soil and ecosystem carbon fluxes in a Chihuahuan Desert shrubland

    Science.gov (United States)

    Despite their prevalence, little attention has been given to quantifying aridland soil and ecosystem carbon fluxes over prolonged, annually occurring dry periods. We measured surface soil respiration (Rsoil), volumetric soil moisture and temperature in inter- and under-canopy soils, sub-surface soi...

  12. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  13. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    Science.gov (United States)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil

  14. Detecting buried radium contamination using soil-gas and surface-flux radon meaurements

    International Nuclear Information System (INIS)

    Karp, K.E.

    1988-06-01

    The Technical Measurements Center (TMC) has investigated the effectiveness of using radon soil-gas under surface-flux measurments to locate radium contamination that is buried sufficiently deep to be undetectable by surface gamma methods. At the first test site studied, an indication of a buried source was revealed by mapping anomalous surface-flux and soil-gas concentrations in the near surface overburden. The mapped radon anomalies were found to correspond in rough outline to the shape of the areal extent of the deposit as determined by borehole gamma-ray logs. The 5.9pCi/g radium deposit, buried 2 feet below the surface, went undetected by conventional surface gamma measurements. Similar results were obtained at the second test site where radon and conventional surface gamma measurements were taken in an area having radium concentrations ranging from 13.3 to 341.0 pCi/g at a depth of 4 feet below the surface. The radon methods were found to have a detection limit for buried radium lower than that of the surface gamma methods, as evidenced by the discovery of the 13.3 pCi/g deposit which went undetected by the surface gamma methods. 15 refs., 33 figs., 8 tabs

  15. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.

    Science.gov (United States)

    Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi

    2018-03-30

    Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2  h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2  h -1 ; no coal-fire area 19 and 32 ng m -2  h -1 ; and backfilling area 53 ng m -2  h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.

  16. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.

    1998-01-01

    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  17. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  18. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  19. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Science.gov (United States)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  20. Volatilisation of aromatic hydrocarbons from soil: part II, fluxes from coal tar contaminated soils residing below the soil surface

    International Nuclear Information System (INIS)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons from coal tar contaminated soil, placed below a 5 cm deep layer of uncontaminated soil, were measured in the laboratory over a period of 53 days. The contaminated soil originated from a former gasworks site and contained concentrations of 11 selected aromatic hydrocarbons between 50 to 840 μg/cm 3 . Where the microbial activity was inhibited, the fluxes stabilized on a semi-steady-state level for the monocyclic aromatic hydrocarbons, naphthalene and 1-methylnaphthalene after a period of 10-20 days. Fluxes of acenaphthene and fluorene were only measurable in an experiment that utilized a cover soil with a low organic content. The fluxes were predicted by a numerical model assuming that the compounds acted independently of each other and that local equilibrium between the air, water, and sorbed phases existed. The model overestimated the fluxes for all the detected aromatic hydrocarbons by a factor of 1.3 to 12. When the cover soil was adapted to degrade naphthalene, the fluxes of naphthalene and 1-methylnaphthalene approached the detection limit after 5 to 8 days. Thereafter the fluxes of these two compounds were less than predicted by the model employing half-life values of 0.5 and 1 day for naphthalene and 1-methylnaphthalene respectively. 10 refs., 6 figs., 7 tabs

  1. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  2. Soil methane and CO2 fluxes in rainforest and rubber plantations

    Science.gov (United States)

    Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu

    2017-04-01

    Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old

  3. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  4. Soil Heat Flux Measurements in an Open Forest

    NARCIS (Netherlands)

    Meulen, M.W.J. van der; Klaassen, W.

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  5. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  6. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  7. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

    Directory of Open Access Journals (Sweden)

    A. L. Matson

    2017-07-01

    Full Text Available Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO or 2 (CO2, CH4, N2O years (2010–2012 using vented dynamic (for NO only or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, −2.0 to −0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and −0.82 to −0.03 kg NO-N ha−1 yr−1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic and long-term (soil and site characteristics factors in predicting soil trace gas fluxes.

  8. Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils.

    Science.gov (United States)

    García, Ana R; Maisonnave, Roberto; Massobrio, Marcelo J; Fabrizio de Iorio, Alicia R

    2012-01-01

    Accumulation of beef cattle manure on feedlot pen surfaces generates large amounts of dissolved solutes that can be mobilized by water fluxes, affecting surface and groundwater quality. Our objective was to examine the long-term impacts of a beef cattle feeding operation on water fluxes and manure leaching in feedlot pens located on sandy loam soils of the subhumid Sandy Pampa region in Argentina. Bulk density, gravimetric moisture content, and chloride concentration were quantified. Rain simulation trials were performed to estimate infiltration and runoff rates. Using chloride ion as a tracer, profile analysis techniques were applied to estimate the soil moisture flux and manure conservative chemical components leaching rates. An organic stratum was found over the surface of the pen soil, separated from the underlying soil by a highly compacted thin layer (the manure-soil interface). The soil beneath the organic layer showed greater bulk density in the A horizon than in the control soil and had greater moisture content. Greater concentrations of chloride were found as a consequence of the partial sealing of the manure-soil interface. Surface runoff was the dominant process in the feedlot pen soil, whereas infiltration was the main process in control soil. Soil moisture flux beneath pens decreased substantially after 15 yr of activity. The estimated minimum leaching rate of chloride was 13 times faster than the estimated soil moisture flux. This difference suggests that chloride ions are not exclusively transported by advective flow under our conditions but also by solute diffusion and preferential flow. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Soil greenhouse gas fluxes from different tree species on Taihang Mountain, North China

    Science.gov (United States)

    Liu, X. P.; Zhang, W. J.; Hu, C. S.; Tang, X. G.

    2014-03-01

    The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all tree

  10. Faunal Drivers of Soil Flux Dynamics via Alterations in Crack Structure

    Science.gov (United States)

    DeCarlo, Keita; Caylor, Kelly

    2016-04-01

    Organismal activity, in addition to its role in ecological feedbacks, has the potential to serve as instigators or enhancers of atmospheric and hydrologic processes via alterations in soil structural regimes. We investigated the biomechanical effect of faunal activity on soil carbon dynamics via changes in soil crack structure, focusing on three dryland soil systems: bioturbated, biocompacted and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Results show that faunal influences play a divergent biomechanics role in bulk soil cracking: bioturbation induced by belowground fauna creates "surficial" (shallow, large, well-connected) networks relative to the "systematic" (deep, moderate, poorly connected) networks created by aboveground fauna. The latter also shows a "memory" of past wetting/drying events in the consolidated soil through a crack layering effect. These morphologies further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively, while biocompacted soils show a large diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that the increased surface area in the bioturbated soils create enhanced but constant diffusive processes, whereas the increased thermal gradient in the biocompacted soils create novel convective processes that create high fluxes that are diurnal in nature.

  11. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Science.gov (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  12. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from the ...

  13. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  14. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  15. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  16. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Gerken

    2012-04-01

    Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.

  17. Diurnal Change of Soil Carbon Flux of Binhai New District

    Science.gov (United States)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(Pequations (Pquadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  18. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Energy Technology Data Exchange (ETDEWEB)

    Eckley, Chris S., E-mail: eckley.chris@epa.gov [US Environmental Protection Agency, Region-10, Seattle, WA 98101 (United States); Tate, Mike T. [US Geological Survey, Middleton, WI 53562 (United States); Lin, Che-Jen [Center for Advances on Water and Air quality, Lamar University, Beaumont, TX 77710 (United States); Gustin, Mae [Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89557 (United States); Dent, Stephen [CDM Smith, Portland, OR 97205 (United States); Eagles-Smith, Collin [US Geological Survey, Corvallis, OR 97331 (United States); Lutz, Michelle A. [US Geological Survey, Middleton, WI 53562 (United States); Wickland, Kimberly P. [US Geological Survey Boulder, CO 80303 (United States); Wang, Bronwen [US Geological Survey, Anchorage, AK 99508 (United States); Gray, John E. [US Geological Survey, Denver, CO 80225 (United States); Edwards, Grant C. [Department of Environment and Geography, Macquarie University, North Ryde, NSW 2109 (Australia); Krabbenhoft, Dave P. [US Geological Survey, Middleton, WI 53562 (United States); Smith, David B. [US Geological Survey, Denver, CO 80225 (United States)

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  19. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    International Nuclear Information System (INIS)

    Eckley, Chris S.; Tate, Mike T.; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A.; Wickland, Kimberly P.; Wang, Bronwen; Gray, John E.; Edwards, Grant C.; Krabbenhoft, Dave P.; Smith, David B.

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  20. BOREAS TF-3 NSA-OBS Tower Flux, Meteorological, and Soil Temperature Data

    Science.gov (United States)

    Wofsy, Steven; Sutton, Doug; Goulden, Mike; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-3) team collected tower flux, surface meteorological, and soil temperature data at the BOREAS Northern Study Area-Old Black Spruce (NSA-OBS) site continuously from the March 1994 through October 1996. The data are available in tabular ASCII files.

  1. Surface-Air Mercury Fluxes Across Western North America: A Synthesis of Spatial Trends and Controlling Variables.

    Science.gov (United States)

    Eckley, C.; Tate, M.; Lin, C. J.; Gustin, M. S.; Dent, S.; Eagles-Smith, C.; Lutz, M.; Wickland, K.; Wang, B.; Gray, J.; Edwards, G. C.; Krabbenhoft, D. P.; Smith, D. B.

    2016-12-01

    Mercury (Hg) emission and deposition can occur to and from soils and are an important component of the global atmospheric Hg budget. This presentation focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  2. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Science.gov (United States)

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  3. Inferring 222Rn soil fluxes from ambient 222Rn activity and eddy covariance measurements of CO2

    Directory of Open Access Journals (Sweden)

    S. van der Laan

    2016-11-01

    Full Text Available We present a new methodology, which we call Single Pair of Observations Technique with Eddy Covariance (SPOT-EC, to estimate regional-scale surface fluxes of 222Rn from tower-based observations of 222Rn activity concentration, CO2 mole fractions and direct CO2 flux measurements from eddy covariance. For specific events, the regional (222Rn surface flux is calculated from short-term changes in ambient (222Rn activity concentration scaled by the ratio of the mean CO2 surface flux for the specific event to the change in its observed mole fraction. The resulting 222Rn surface emissions are integrated in time (between the moment of observation and the last prior background levels and space (i.e. over the footprint of the observations. The measurement uncertainty obtained is about ±15 % for diurnal events and about ±10 % for longer-term (e.g. seasonal or annual means. The method does not provide continuous observations, but reliable daily averages can be obtained. We applied our method to in situ observations from two sites in the Netherlands: Cabauw station (CBW and Lutjewad station (LUT. For LUT, which is an intensive agricultural site, we estimated a mean 222Rn surface flux of (0.29 ± 0.02 atoms cm−2 s−1 with values  > 0.5 atoms cm−2 s−1 to the south and south-east. For CBW we estimated a mean 222Rn surface flux of (0.63 ± 0.04 atoms cm−2 s−1. The highest values were observed to the south-west, where the soil type is mainly river clay. For both stations good agreement was found between our results and those from measurements with soil chambers and two recently published 222Rn soil flux maps for Europe. At both sites, large spatial and temporal variability of 222Rn surface fluxes were observed which would be impractical to measure with a soil chamber. SPOT-EC, therefore, offers an important new tool for estimating regional-scale 222Rn surface fluxes. Practical applications furthermore include

  4. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    Science.gov (United States)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and

  5. Use of Neutron Probe to Quantify the Soil Moisture Flux in Layers of Cultivated Soil by Chickpea

    International Nuclear Information System (INIS)

    El- Gendy, R.W.

    2008-01-01

    This work aims to use the neutron moisture meter and the soil moisture retention curve to quantify the soil moisture flux in the soil profile of Nubarria soil in Egypt at 15, 30, 45, and 60-cm depths during the growth season of Chickpea. This method depends on the use of in situ θ measurements via neutron moisture meter and soil matric suction using model of the soil moisture retention curve at different soil depths, which can be determined in situ. Total hydraulic potential values at the different soil depths were calculated as a function (θ) using the derivative model. The gradient of hydraulic potential at any soil depth can be obtained by detecting of the hydraulic potential within the soil profile. The soil water fluxes at the different soil depths were calculated using In situ measured unsaturated hydraulic conductivity and the gradient of hydraulic potential, which correlated with soil moisture contents as measured by neutron probe. Values of hydraulic potentials after and before irrigation indicate that the direction of soil moisture movement was downward after irrigation and was different before next irrigation. Collecting active roots for water absorption of chickpea were defined from direction of soil water movement from up and down to a certain soil depth was 19 cm depth from the soil surface. Active rooting depth was 53 cm depth, which separates between evapotranspiration and gravity effects The soil water fluxes after and before the next irrigation of chickpea were 1.2453, 0.8613, 0.8197 and 0.6588 cm/hr and 0.0037, - 0.0270,- 0.1341, and 0.2545 cm/hr at 15, 30, 45 and 60 cm depths, respectively. The negative values at 30 and 45 cm depth before the next irrigation indicates there were up ward movement for soil water flux, where finding collecting active roots for water absorption of chickpea at 19 cm depth. Direction of soil water movement, soil water flux, collecting active roots for water absorption and active rooting depth can be determined using

  6. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  7. [Characteristics of mercury exchange flux between soil and atmosphere under the snow retention and snow melting control].

    Science.gov (United States)

    Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi

    2013-02-01

    Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange

  8. On the use of radiative surface temperature to estimate sensible heat flux over sparse shrubs in Nevada

    Science.gov (United States)

    Chehbouni, A.; Nichols, W. D.; Qi, J.; Njoku, E. G.; Kerr, Y. H.; Cabot, F.

    1994-01-01

    The accurate partitioning of available energy into sensible and latent heat flux is crucial to the understanding of surface atmosphere interactions. This issue is more complicated in arid and semi arid regions where the relative contribution to surface fluxes from the soil and vegetation may vary significantly throughout the day and throughout the season. A three component model to estimate sensible heat flux over heterogeneous surfaces is presented. The surface was represented with two adjacent compartments. The first compartment is made up of two components, shrubs and shaded soil, the second of open 'illuminated' soil. Data collected at two different sites in Nevada (U.S.) during the Summers of 1991 and 1992 were used to evaluate model performance. The results show that the present model is sufficiently general to yield satisfactory results for both sites.

  9. Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils

    Science.gov (United States)

    Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.

    2017-12-01

    The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.

  10. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber

    Science.gov (United States)

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice

    2003-01-01

    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  11. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state

    Science.gov (United States)

    Tucker, Colin; Ferrenberg, Scott; Reed, Sasha C.

    2018-01-01

    Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.

  12. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.

    2017-11-01

    This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures

  13. Aspect as a Driver of Soil Carbon and Water Fluxes in Desert Environments

    Science.gov (United States)

    Sutter, L., Jr.; Barron-Gafford, G.; Sanchez-Canete, E. P.

    2016-12-01

    Within dryland environments, precipitation and incoming energy are the primary determinants of carbon and water cycling. We know aspect can influence how much sun energy reaches the ground surface, but how does this spatial feature of the landscape propagate into temporal moisture and carbon flux dynamics? We made parallel measurements across north and south-facing slopes to examine the effects of aspect on soil temperature and moisture and the resulting soil carbon and water flux rates within a low elevation, desert site in the Santa Catalina-Jemez Critical Zone Observatory. We coupled spatially distributed measurements at a single point in time with diel patterns of soil fluxes at singular point and in response to punctuated rain events. Reponses concerning aspect after spring El Niño rainfall events were complex, with higher cumulative carbon flux on the south-facing slope two weeks post rain, despite higher daily flux values starting on the north-facing slope ten days after the rain. Additional summer monsoon rain events and dry season measurements will give further insights into patterns under hotter conditions of periodic inter-storm drought. We will complete a year-round carbon and water flux budget of this site by measuring throughout the winter rainfall months. Ultimately, our work will illustrate the interactive effects of a range of physical factors on soil fluxes. Critical zone soil dynamics, especially within dryland environments, are very complex, but capturing the uncertainty around these flux is necessary to understand concerning vertical carbon and water exchange and storage.

  14. Towards scale-independent land-surface flux estimates in Noah-MP

    Science.gov (United States)

    Thober, Stephan; Mizukami, Naoki; Samaniego, Luis; Attinger, Sabine; Clark, Martyn; Cuntz, Matthias

    2017-04-01

    Land-surface models use a variety of process representations to calculate terrestrial energy, water and biogeochemical fluxes. These process descriptions are usually derived from point measurements which are, in turn, scaled to much larger resolutions ranging from 1 km in catchment hydrology to 100 km in climate modelling. Both, hydrologic and climate models are nowadays run on different spatial resolutions, using the exactly same land surface representations. A fundamental criterion for the physical consistency of land-surface simulations across scales is that a flux estimated over a given area is independent of the spatial model resolution (i.e., the flux-matching criterion). The Noah-MP land surface model considers only one soil and land cover type per model grid cell without any representation of their subgrid variability, implying a weak flux-matching. A fractional approach simulates the subgrid variability but it requires a higher computational demand than using effective parameters and it is used only for land cover in current land surface schemes. A promising approach to derive scale-independent parameters is the Multiscale Parameter Regionalization (MPR) technique, which consists of two steps: first, it applies transfer functions directly to high-resolution data (such as 100 m soil maps) to derive high-resolution model parameter fields, acknowledging the full subgrid variability. Second, it upscales these high-resolution parameter fields to the model resolution by using appropriate upscaling operators. MPR has shown to improve substantially the scalability of the mesoscale Hydrologic Models mHM (Samaniego et al., 2010 WRR). Here, we apply the MPR technique to the Noah-MP land-surface model for a large sample of basins distributed across the contiguous USA. Specifically, we evaluate the flux-matching criterion for several hydrologic fluxes such as evapotranspiration and drainage at scales ranging from 3 km to 48 km. We investigate the impact of different

  15. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  16. Evaluating the Performance of a Surface Barrier on Reducing Soil-Water Flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.; Clayton, Ray E.

    2012-08-31

    One of the most common effective techniques for contaminant remediation in the vadose zone is to use a surface barrier to reduce or eliminate soil-water flow to reduce the contaminant flux to the underlying groundwater. Confirming the reduction of the soil-water flux rate is challenging because of the difficulty of determining the very low soil-water flux beneath the barrier. We propose a hydraulic-conductivity factor, fK, as a conservative indicator for quantifying the reduction of soil-water flow. The factor can be calculated using the measured soil-water content or pressure but does not require the knowledge of the saturated hydraulic conductivity or the hydraulic gradient. The formulas were tested by comparing with changes in hydraulic conductivity, K, from a drainage experiment. The pressure-based formula was further applied to evaluate the performance of the interim surface barrier at T Tank Farm on Hanford Site. Three years after barrier emplacement, the hydraulic conductivity decreased by a factor between 3.8 and 13.0 at the 1-, 2- and 5-m depths. The difference between the conductivity-reduction factor and the flux-rate-reduction factor, fq, was quantified with a numerical simulation. With the calculated fK, the numerically determined fK/fq ratio, and the assumed pre-barrier soil-water flux rate of 100 mm yr-1, the estimated soil-water flux rate 3 years after barrier emplacement was no more than 8.5 mm yr-1 at or above the 5-m depth.

  17. Etched track technique to measure sup 2 sup 2 sup 2 Rn and sup 2 sup 2 sup 0 Rn fluxes on soil surface

    CERN Document Server

    Csige, I

    2003-01-01

    sup 2 sup 2 sup 2 Rn and sup 2 sup 2 sup 0 Rn in the human environment are considered to be a risk factor because of the radiation dose due to the inhalation of their short-lived daughters. Main source of radon is usually the soil; therefore the measurement of fluxes of sup 2 sup 2 sup 2 Rn and sup 2 sup 2 sup 0 Rn on soil surfaces is often a relevant parameter to characterise building site radon potential. An etched track detector technique was developed to measure long-time average sup 2 sup 2 sup 2 Rn and sup 2 sup 2 sup 0 Rn fluxes. (R.P.)

  18. Preliminary estimation of Vulcano of CO2 budget and continuous monitoring of summit soil CO2 flux

    OpenAIRE

    Inguaggiato, S.; Mazot, A.; Diliberto, I. S.; Rouwet, D.; Vita, F.; Capasso, G.; Bobrowski, N.; Inguaggiato, C.; Grassa, F.

    2008-01-01

    Total CO2 output from fumaroles, soil gases, bubbling and water dissolved gases were estimated at Vulcano Island, Italy. The fumaroles output has been estimated from SO2 plume flux, while soil flux emission has been carried out through 730 CO2 fluxes measured on the island surface, performed by means of accumulation chamber method. Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eru...

  19. Scaling up carbonyl sulfide (COS) fluxes from leaf and soil to the canopy

    Science.gov (United States)

    Yang, Fulin; Yakir, Dan

    2016-04-01

    from soil and leaf chamber to canopy scale was possible by estimating LAI, and differential consideration of soil surface components (shaded vs. exposed fractions). 4) Diurnal changes in the atmospheric concentrations of COS and CO2 above the canopy showed complex patterns with opposite trends after sunrise that could be explain by the development of the planetary boundary layer 5) COS-based estimate of GPP can be improved by adopting light dependent LRU, around the mean value of ~1.6, and correcting for soil COS fluxes based on soil temperature and canopy cover estimates, and coupled COS/CO2 concentration measurements provide useful information on boundary layer dynamics.

  20. Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB)

    Science.gov (United States)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as

  1. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  2. Combining in situ and laboratory measurements of soil-atmosphere carbonyl sulfide fluxes from four different biomes across Europe

    Science.gov (United States)

    Kitz, Florian; Gomez-Brandon, Maria; Hammerle, Albin; Spielmann, Felix M.; Insam, Heribert; Ibrom, Andreas; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg

    2017-04-01

    Flux partitioning, the quantification of photosynthesis and respiration, is a major uncertainty in modelling the carbon cycle and in times when robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive gross primary production (GPP) from measurements of the carbonyl sulfide (COS) flux, the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite for using COS as a proxy for photosynthesis is a robust estimation of all non-leaf sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on their properties like soil temperature and soil water content. In 2016 we conducted field campaigns in Austria (managed temperate mountain grassland), Spain (savannah), Denmark (temperate beech forest) and Estonia (hemiboreal forest) to estimate the soil-atmosphere COS fluxes under ambient conditions in different biomes. We used self-built fused silica soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. At the grassland sites (Austria, Spain) vegetation was removed below the chambers, therefor more radiation reached the soil surface compared to natural conditions. The grassland sites were characterized by highly positive COS fluxes during daytime and COS fluxes around zero during nighttime. In contrast, the soils at the forest sites (Denmark, Estonia), characterized by less radiation on the soil surface, acted as a sink for COS. The impact of other abiotic factors, like soil water content and soil temperature, varied between the ecosystems. In addition to the field measurements soil and litter samples were taken at the study sites and used to measure COS fluxes under controlled conditions in the lab. Results from the

  3. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    Science.gov (United States)

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  5. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    Science.gov (United States)

    Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.

    2010-09-01

    To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the

  6. Soil-surface CO2 flux and growth in a boreal Norway spruce stand: Effects of soil warming and nutrition

    International Nuclear Information System (INIS)

    Stroemgren, M.

    2001-01-01

    Global warming is predicted to affect the carbon balance of forests. A change in the carbon balance would give a positive or negative feedback to the greenhouse effect, which would affect global warming. The effects of long-term soil warming on growth, nutrient and soil-surface CO 2 flux (R) dynamics were studied in irrigated (I) and irrigated-fertilised (IL) stands of Norway spruce in northern Sweden. Soil temperature on heated plots (Ih and ILh) was maintained 5 deg C above that on unheated plots (Ic and ILc) from May to October, by heating cables. After six years' soil warming, stemwood production increased by 100% and 50% in the I and IL treatment, respectively. The main production increase occurred at the beginning of the season, probably as an effect of the earlier increase in soil temperature. In the 1h treatment, however, the growth increase was evident during the entire season. The effect of increased nitrogen (N) mineralisation on annual growth appeared to be stronger than the direct effect of warming. From 1995-2000, the total amount of N stored in aboveground tree parts increased by 100 and 475 kg N/ha on Ic and ILc plots, respectively. During the same period, 450 kg N fertiliser was added to the ILc plot. Soil warming increased the total amount of N stored in aboveground tree parts by 50 kg N/ha, independently of nutrient treatment. Soil warming did not significantly increase R, except in early spring, when R was 30-50% higher on heated compared to unheated plots. The extended growing season, however, increased annual respiration (RA) by 12-30% throughout. RA losses were estimated to be 0.6-0.7 kg C/ha/year. Use of relationships between R and soil temperature, derived from unheated plots, overestimated RA on heated plots by 50-80%. These results suggest that acclimation of root or microbial respiration or both to temperature had occurred, but the exact process(es) and their relative contribution are still unclear. In conclusion, the study showed that

  7. Monte Carlo surface flux tallies

    International Nuclear Information System (INIS)

    Favorite, Jeffrey A.

    2010-01-01

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  8. Methane and CO2 fluxes from peat soil, palm stems and field drains in two oil palm plantations in Sarawak, Borneo, on different tropical peat soil types.

    Science.gov (United States)

    Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit

    2017-04-01

    Oil palm plantations have been expanding rapidly on tropical peat soils in the last 20 years, with 50 % of SE Asian peatlands now managed as industrial or small-holder plantations, up from 11% in 1990. Tropical peat soils are an important carbon (C) store, containing an estimated 17 % of total peatland C. There are large uncertainties as to the soil C dynamics in oil palm plantations on peat due to a shortage of available data. It is therefore essential to understand the soil C cycle in order to promote effective management strategies that optimise yields, whilst maintaining the high C storage capacity of the soil. Here we present CO2 and CH4 fluxes from two oil palm plantations in Sarawak, Malaysia on peat soils. Data were collected from different surface microforms within each plantation that experienced different surface management practices. These included the area next to the palm, in bare soil harvest paths, beneath frond piles, underneath cover crops, from the surface of drains, and from palm stems. Data were collected continuously over one year and analysed with different environmental variables, including soil temperature, WTD, O2, soil moisture and weather data in order to best determine the constraints on the dataset. Total soil respiration (Rtot) varied between 0.09 and 1.59 g C m-2 hr-1. The largest fluxes (0.59 - 1.59 g C m-2 hr-1) were measured next to the palms. Larger CO2 fluxes were observed beneath the cover crops than in the bare soil. This trend was attributed to priming effects from the input of fresh plant litter and exudates. Peat soil type was shown to have significantly different fluxes. The different plantations also had different environmental drivers best explaining the variation in Rtot - with soil moisture being the most significant variable on Sabaju series soil and soil temperature being the most significant environmental variable in the plantation with the Teraja series soil. Rtot was shown to reduce significantly with increasing

  9. Radiative warming of the air observed near a bare-soil surface on calm clear nights

    International Nuclear Information System (INIS)

    Sang, N.; Kobayahsi, T.

    1999-01-01

    The radiative flux in the lowest three meters above a bare-soil surface was directly measured on calm nights with little cloud cover. Although divergence of upward radiative flux occurred above 1m, convergence was often observed between 0.2m and 1m all through the night. Almost the same results were obtained for the net flux except that the transitional height between divergence and convergence was some tens of centimeters, which means that radiative warming occurred just above the bare-soil surface during the night. This phenomenon can be explained by postulating that cold air is produced by conduction at the surface of small heat-insulated projections (HIPs) such as soil grains on the ground surface, while the ground releases the heat stored during the day by radiation through the pores between HIPs and warms the air immediately above the surface at night. This “HIP hypothesis” can also account for the so-called “raised minimum (RM)” phenomenon. (author)

  10. Hydrocarbon and Carbon Dioxide Fluxes from Natural Gas Well Pad Soils and Surrounding Soils in Eastern Utah.

    Science.gov (United States)

    Lyman, Seth N; Watkins, Cody; Jones, Colleen P; Mansfield, Marc L; McKinley, Michael; Kenney, Donna; Evans, Jordan

    2017-10-17

    We measured fluxes of methane, nonmethane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38 g m -2 h -1 . Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were primarily due to subsurface sources of raw gas that migrated to the atmosphere, with the remainder likely caused primarily by re-emission of spilled liquid hydrocarbons. Total hydrocarbon fluxes during summer were only 39 (16, 97)% as high as during winter, likely because soil bacteria consumed the majority of hydrocarbons during summer months. We estimate that natural gas well pad soils account for 4.6 × 10 -4 (1.6 × 10 -4 , 1.6 × 10 -3 )% of total emissions of hydrocarbons from the oil and gas industry in Utah's Uinta Basin. Our undisturbed soil flux measurements were not adequate to quantify rates of natural hydrocarbon seepage in the Uinta Basin.

  11. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  12. 222Rn flux and soil air concentration profiles in West-Germany. Soil 222Rn as tracer for gas transport in the unsaturated soil zone

    International Nuclear Information System (INIS)

    Doerr, H.; Muennich, K.O.

    1990-01-01

    Measurements of the 222 Rn activity concentration profile in the soil and the 222 Rn flux in West-Germany are presented. The spatial pattern of the 222 Rn flux depends more on soil type than on the 226 Ra activity of the soil material. The average 222 Rn flux from sandy soils is 1000-2000 dpm m -2 h -1 and 4000-6000 dpm m -2 h -1 froam loamy and clayey soils. Weekly 222 Rn flux measurements during a period of 1 year at a sandy site show no significant temporal variations. At a clayey site, the 222 Rn flux tends to be higher in summer than in winter. The permeability coefficient P Rn , obtained from simultaneous 222 Rn flux and concentration profile measurements in various soils, can be expressed as a function of the soil parameters total porosity ε 0 , soil moisture F, tortuosity k and the molecular diffusion coefficient D 0 of 222 Rn in air: P = D 0 ((ε 0 -F)/k-const.). The flux of any other gas into or out of the soil can thus be calculated from its measured concentration profile in the soil and from the 222 Rn permeability coefficient, replacing the molecular diffusion coefficient of 222 Rn by that of the specific gas under consideration. As an example, this method of flux determination is demonstrated for the soil CO 2 flux to the atmosphere and for the flux of atmospheric CH 4 into the soil. (author) 14 refs

  13. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    Science.gov (United States)

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  14. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  15. [Characteristics of water and heat fluxes and its footprint climatology on farmland in low hilly region of red soil].

    Science.gov (United States)

    Li, Yang; Jing, Yuan Shu; Qin, Ben Ben

    2017-01-01

    The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.

  16. Soil Greenhouse Gas Fluxes in a Pacific Northwest Douglas-Fir Forest: Results from a Soil Fertilization and Biochar Addition Experiment

    Science.gov (United States)

    Hawthorne, I.; Johnson, M. S.; Jassal, R. S.; Black, T. A.

    2013-12-01

    Rising atmospheric concentrations of greenhouse gases (GHGs), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), linked to current climate change has stimulated a scientific response to provide robust accounting of sources and sinks of these gases. There is an urgent need to increase awareness of land management impacts on GHG flux dynamics to facilitate the development of management strategies that minimize GHG emissions. Biochar (pyrolyzed organic matter) has been identified as a strategy to reduce net GHG fluxes from soils. This is due to its potential to sequester large amounts of carbon for significant time periods, as well as its modification of biotic and abiotic soil conditions, which in turn can alter the GHG balance. This study describes the effect of biochar and urea-N application on soil surface CO2, CH4 and N2O fluxes in a Pacific Northwest Douglas-fir forest on Vancouver Island, BC, Canada (49o 52' N, 125o 20' W). We used a randomized complete-block design with four replicates of the following treatments: i) control, ii) 5 Mg ha-1 biochar surface application, iii) 200 kg N ha-1 urea pellets surface application, and iv) 5 Mg ha-1 biochar plus 200 kg N ha-1 urea. Soil GHG flux measurements were made biweekly for two years beginning in September 2011 using a non-steady-state non-flow through chamber technique. Biochar was added in February 2012, with urea applied in March 2013. A collar made from 21-cm diameter x 11-cm long PVC piping was installed in each of the 16 plots between two large trees on the forest floor, penetrating the organic layer to the mineral soil at the 5-8 cm depth. A clear Plexiglas lid, equipped with a 10-cm long vent tube and 9-V fan, was placed on each collar when making measurements, with 20-mL samples of chamber headspace air collected at 0, 3, 6, 9 and 12 min using a medical syringe with 21-gauge needle inserted through a rubber septum in the chamber lid. Samples were injected into and transported in previously

  17. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  18. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  19. Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands

    Science.gov (United States)

    Wanyama, I.; Rufino, M. C.; Pelster, D. E.; Wanyama, G.; Atzberger, C.; van Asten, P.; Verchot, Louis V.; Butterbach-Bahl, K.

    2018-03-01

    This study aims to explain effects of soil textural class, topography, land use, and land use history on soil greenhouse gas (GHG) fluxes in the Lake Victoria region. We measured GHG fluxes from intact soil cores collected in Rakai, Uganda, an area characterized by low-input smallholder (soil cores were air dried and rewetted to water holding capacities (WHCs) of 30, 55, and 80%. Soil CO2, CH4, and N2O fluxes were measured for 48 h following rewetting. Cumulative N2O fluxes were highest from soils under perennial crops and the lowest from soils under annual crops (P soils had lower N2O fluxes than the clay soils (P soil CO2 fluxes were highest from eucalyptus plantations and lowest from annual crops across multiple WHC (P = 0.014 at 30% WHC and P soil cores from the top soil. This study reveals that land use and soil type have strong effects on GHG fluxes from agricultural land in the study area. Field monitoring of fluxes is needed to confirm whether these findings are consistent with what happens in situ.

  20. Measurements of flux and isotopic composition of soil carbon dioxide

    International Nuclear Information System (INIS)

    Gorczyca, Z.; Rozanski, K.; Kuc, T.

    2002-01-01

    The flux and isotope composition of soil CO 2 has been regularly measured at three sites located in the southern Poland, during the time period: January 1998 - October 2000. They represent typical ecosystems appearing in central Europe: (i) mixed forest; (ii) cultivated agricultural field; (iii) grassland. To monitor the flux and isotopic composition of soil CO 2 , a method based on the inverted cup principle was adopted. The flux of soil CO 2 reveals distinct seasonal fluctuations, with maximum values up to ca. 25 mmol/m 2 /h during sommer months and around ten times lower values during winter time. Also significant differences among the monitored sites were detected, the flux density of this gas being highest for the mixed forest site and ca. two times lower for the cultivated grassland. Carbon-13 content of the soil CO 2 reveals little seasonal variability, with δ 13 C values essentially reflecting the isotopic composition of the soil organic matter and the vegetation type. The carbon-14 content of soil CO 2 flux also reveals slight seasonality, with lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values recorded during winter time. Significantly lower δ 14 C values were recorded at depth. (author)

  1. Landscape analysis of soil methane flux across complex terrain

    Science.gov (United States)

    Kaiser, Kendra E.; McGlynn, Brian L.; Dore, John E.

    2018-05-01

    Relationships between methane (CH4) fluxes and environmental conditions have been extensively explored in saturated soils, while research has been less prevalent in aerated soils because of the relatively small magnitudes of CH4 fluxes that occur in dry soils. Our study builds on previous carbon cycle research at Tenderfoot Creek Experimental Forest, Montana, to identify how environmental conditions reflected by topographic metrics can be leveraged to estimate watershed scale CH4 fluxes from point scale measurements. Here, we measured soil CH4 concentrations and fluxes across a range of landscape positions (7 riparian, 25 upland), utilizing topographic and seasonal (29 May-12 September) gradients to examine the relationships between environmental variables, hydrologic dynamics, and CH4 emission and uptake. Riparian areas emitted small fluxes of CH4 throughout the study (median: 0.186 µg CH4-C m-2 h-1) and uplands increased in sink strength with dry-down of the watershed (median: -22.9 µg CH4-C m-2 h-1). Locations with volumetric water content (VWC) below 38 % were methane sinks, and uptake increased with decreasing VWC. Above 43 % VWC, net CH4 efflux occurred, and at intermediate VWC net fluxes were near zero. Riparian sites had near-neutral cumulative seasonal flux, and cumulative uptake of CH4 in the uplands was significantly related to topographic indices. These relationships were used to model the net seasonal CH4 flux of the upper Stringer Creek watershed (-1.75 kg CH4-C ha-1). This spatially distributed estimate was 111 % larger than that obtained by simply extrapolating the mean CH4 flux to the entire watershed area. Our results highlight the importance of quantifying the space-time variability of net CH4 fluxes as predicted by the frequency distribution of landscape positions when assessing watershed scale greenhouse gas balances.

  2. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  3. Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system

    Science.gov (United States)

    Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana

    2017-04-01

    (60.8 mg CO2-C m-2 h-1) than before (65.4 mg CO2-C m-2 h-1). The mean of topsoil water content before rainfall events was 19.7% and after was 28.9%. Soil CO2 fluxes increased on the following days after the rainfall event as the soil dried out but with lower emissions just after the events. This pattern was attributed to the control of soil moisture on microbial activity that affects CO2 production via soil respiration. CO2 measurements from soil surface are useful to evaluate the potential for soil respiration and soil carbon dioxide production capacity under different land use and environmental conditions for a better understanding of C cycling.

  4. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    Science.gov (United States)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  5. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars

    2016-01-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment flu......One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...

  6. Inter-comparison of different direct and indirect methods to determine radon flux from soil

    International Nuclear Information System (INIS)

    Grossi, C.; Vargas, A.; Camacho, A.; Lopez-Coto, I.; Bolivar, J.P.; Xia Yu; Conen, F.

    2011-01-01

    The physical and chemical characteristics of radon gas make it a good tracer for use in the application of atmospheric transport models. For this purpose the radon source needs to be known on a global scale and this is difficult to achieve by only direct experimental methods. However, indirect methods can provide radon flux maps on larger scales, but their reliability has to be carefully checked. It is the aim of this work to compare radon flux values obtained by direct and indirect methods in a measurement campaign performed in the summer of 2008. Different systems to directly measure radon flux from the soil surface and to measure the related parameters terrestrial γ dose and 226 Ra activity in soil, for indirect estimation of radon flux, were tested. Four eastern Spanish sites with different geological and soil characteristics were selected: Teruel, Los Pedrones, Quintanar de la Orden and Madrid. The study shows the usefulness of both direct and indirect methods for obtaining radon flux data. Direct radon flux measurements by continuous and integrated monitors showed a coefficient of variation between 10% and 23%. At the same time, indirect methods based on correlations between 222 Rn and terrestrial γ dose rate, or 226 Ra activity in soil, provided results similar to the direct measurements, when these proxies were directly measured at the site. Larger discrepancies were found when proxy values were extracted from existing data bases. The participating members involved in the campaign study were the Institute of Energy Technology (INTE) of the Technical University of Catalonia (UPC), Huelva University (UHU), and Basel University (BASEL).

  7. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    Jacobsen, A.; Hansen, B.U.

    1999-01-01

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  8. From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.

    Science.gov (United States)

    Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.

    2016-12-01

    The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0

  9. N2O fluxes in soils of contrasting textures fertilized with liquid and solid dairy cattle manures

    International Nuclear Information System (INIS)

    Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gagnon, B.; Bertrand, N.

    2008-01-01

    Nitrous oxide (N 2 O) emissions from loamy and clay soils fertilized with liquid or solid dairy cattle manures and synthetic nitrogen (N) fertilizers were measured in this study in order to determine if the use of manure for silage maize production increased N 2 O emissions when compared with the application of N-based fertilizers. Manures and ammonium nitrate were applied on the soil surface and sampled. Silage corn was then planted over a period of 2 years between 2002 and 2003. Soil-surface fluxes of N 2 O were measured using non-flow through, non-steady-state chambers. Measurements were taken weekly over the study period, and all air samples were analyzed using gas chromatography. Soil temperature and moisture levels were also recorded. One-way analysis of variance (ANOVA) analyses were used to examine the effects of manure type on soil N 2 O concentrations; soil-surface N 2 O fluxes; soil mineral N content; soil temperature; and soil water content. Results of the study showed that between 60 and 90 per cent of N 2 O emissions occurred during the first 40 days of fertilizer application. The fertilization of the silage corn crop with dairy cattle manure resulted in N 2 O emissions greater than, or equal to, soils amended with synthetic N. Maize yields were also lower in the manured fields. No difference in N 2 O emissions was observed between the liquid and the solid manures. It was concluded that the main source of N 2 0 was nitrification in the loamy soils, and denitrification in clay soils. 41 refs., 4 tabs., 5 figs

  10. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  11. Annual and seasonal CO2 fluxes from Russian southern taiga soils

    International Nuclear Information System (INIS)

    Kurganova, I.; Lopes De Gerenyu, V.; Rozanova, L.; Sapronov, D.; Myakshina, T.; Kudeyarov, V.

    2003-01-01

    Annual and seasonal characteristics of CO 2 emission from five different ecosystems were studied in situ (Russia, Moscow Region) from November 1997 through October 2000. The annual behaviour of the soil respiration rate is influenced by weather conditions during a particular year. Annual CO 2 fluxes from the soils depend on land use of the soils and averaged 684 and 906 g C/m 2 from sandy Albeluvisols (sod-podzolic soils) under forest and grassland, respectively. Annual emission from clay Phaeozems (grey forest soils) was lower and ranged from 422 to 660 g C/m 2 ; the order of precedence was arable 2 fluxes caused by weather conditions ranged from 18% (forest ecosystem on Phaeozems) to 31% (agro-ecosystem). The contribution from the cold period (with snow, November-April) to the annual CO 2 flux was substantial and averaged 21% and 14% for natural and agricultural ecosystems, respectively. The CO 2 fluxes comprised approximately 48-51% in summer, 23-24% in autumn, 18-20% in spring and 7-10% in winter of the total annual carbon dioxide flux

  12. Selection of soil hydraulic properties in a land surface model using remotely-sensed soil moisture and surface temperature

    Science.gov (United States)

    Shellito, P. J.; Small, E. E.; Gutmann, E. D.

    2013-12-01

    Synoptic-scale weather is heavily influenced by latent and sensible heating from the land surface. The partitioning of available energy between these two fluxes as well as the distribution of moisture throughout the soil column is controlled by a unique set of soil hydraulic properties (SHPs) at every location. Weather prediction systems, which use coupled land surface and atmospheric models in their forecasts, must therefore be parameterized with estimates of SHPs. Currently, land surface models (LSMs) obtain SHP values by assuming a correlation exists between SHPs and the soil type, which the USDA maps in 12 classes. This method is spurious because texture is only one control of many that affects SHPs. Alternatively, SHPs can be obtained by calibrating them within the framework of an LSM. Because remotely-sensed data have the potential for continent-wide application, there is a critical need to understand their specific role in calibration efforts and the extent to which such calibrated SHPs can improve model simulations. This study focuses on SHP calibration with soil moisture content (SMC) and land surface temperature (Ts), data that are available from the SMOS and MODIS satellite missions, respectively. The scientific goals of this study are: (1) What is the model performance tradeoff between weighting SMC and Ts differently during the calibration process? (2) What can the tradeoff between calibration using in-situ and remotely-sensed SMC reveal about SHP scaling? (3) How are these relationships influenced by climatic regime and vegetation type? (4) To what extent can calibrated SHPs improve model performance over that of texture-based SHPs? Model calibrations are carried out within the framework of the Noah LSM using the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm in five different climatic regimes. At each site, a five-dimensional parameter space of SHPs is searched to find the location that minimizes the difference between observed and

  13. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  14. Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective”

    DEFF Research Database (Denmark)

    Kustas, William P.; Nieto, Hector; Morillas, Laura

    2016-01-01

    The recent paper by Morillas et al. [Morillas, L. et al. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, 2013] evaluates the two-source model (TSM) of Norman et al. (1995) with re......The recent paper by Morillas et al. [Morillas, L. et al. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234–246, 2013] evaluates the two-source model (TSM) of Norman et al. (1995......) with revisions by Kustas and Norman (1999) over a semiarid tussock grassland site in southeastern Spain. The TSM - in its current incarnation, the two-source energy balance model (TSEB) - was applied to this landscape using ground-based infrared radiometer sensors to estimate both the composite surface...... greenness and local leaf area index values as well as modifications to the coefficients of the soil resistance formulation to account for the very rough (rocky) soil surface conditions with a clumped canopy. This indicates that both limitations in remote estimates of biophysical indicators of the canopy...

  15. A statistical model for horizontal mass flux of erodible soil

    International Nuclear Information System (INIS)

    Babiker, A.G.A.G.; Eltayeb, I.A.; Hassan, M.H.A.

    1986-11-01

    It is shown that the mass flux of erodible soil transported horizontally by a statistically distributed wind flow has a statistical distribution. Explicit expression for the probability density function, p.d.f., of the flux is derived for the case in which the wind speed has a Weibull distribution. The statistical distribution for a mass flux characterized by a generalized Bagnold formula is found to be Weibull for the case of zero threshold speed. Analytic and numerical values for the average horizontal mass flux of soil are obtained for various values of wind parameters, by evaluating the first moment of the flux density function. (author)

  16. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  17. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    Science.gov (United States)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  18. [Effects of biological soil crust at different succession stages in hilly region of Loess Plateau on soil CO2 flux].

    Science.gov (United States)

    Wang, Ai-Guo; Zhao, Yun-Ge; Xu, Ming-Xiang; Yang, Li-Na; Ming, Jiao

    2013-03-01

    Biological soil crust (biocrust) is a compact complex layer of soil, which has photosynthetic activity and is one of the factors affecting the CO2flux of soil-atmosphere interface. In this paper, the soil CO, flux under the effects of biocrust at different succession stages on the re-vegetated grassland in the hilly region of Loess Plateau was measured by a modified LI-8100 automated CO, flux system. Under light condition, the soil CO2 flux under effects of cyanobacteria crust and moss crust was significantly decreased by 92% and 305%, respectively, as compared with the flux without the effects of the biocrusts. The decrement of the soil CO, flux by the biocrusts was related to the biocrusts components and their biomass. Under the effects of dark colored cyanobacteria crust and moss crust, the soil CO2 flux was decreased by 141% and 484%, respectively, as compared with that in bare land. The diurnal curve of soil CO2 flux under effects of biocrusts presented a trend of 'drop-rise-drop' , with the maximum carbon uptake under effects of cyanobacteria crust and moss crust being 0.13 and -1.02 micromol CO2.m-2.s-1 and occurred at about 8:00 and 9:00 am, respectively, while that in bare land was unimodal. In a day (24 h) , the total CO2 flux under effects of cyanobacteria crust was increased by 7.7% , while that under effects of moss crust was decreased by 29.6%, as compared with the total CO2 flux in bare land. This study suggested that in the hilly region of Loess Plateau, biocrust had significant effects on soil CO2 flux, which should be taken into consideration when assessing the carbon budget of the 'Grain for Green' eco-project.

  19. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    Science.gov (United States)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8

  20. Field fluxes and speciation of arsines emanating from soils.

    Science.gov (United States)

    Mestrot, Adrien; Feldmann, Joerg; Krupp, Eva M; Hossain, Mahmud S; Roman-Ross, Gabriela; Meharg, Andrew A

    2011-03-01

    The biogeochemical cycle of arsenic (As) has been extensively studied over the past decades because As is an environmentally ubiquitous, nonthreshold carcinogen, which is often elevated in drinking water and food. It has been known for over a century that micro-organisms can volatilize inorganic As salts to arsines (arsine AsH(3), mono-, di-, and trimethylarsines, MeAsH(2), Me(2)AsH, and TMAs, respectively), but this part of the As cycle, with the exception of geothermal environs, has been almost entirely neglected because of a lack of suited field measurement approaches. Here, a validated, robust, and low-level field-deployable method employing arsine chemotrapping was used to quantify and qualify arsines emanating from soil surfaces in the field. Up to 240 mg/ha/y arsines was released from low-level polluted paddy soils (11.3 ± 0.9 mg/kg As), primarily as TMAs, whereas arsine flux below method detection limit was measured from a highly contaminated mine spoil (1359 ± 212 mg/kg As), indicating that soil chemistry is vital in understanding this phenomenon. In microcosm studies, we could show that under reducing conditions, induced by organic matter (OM) amendment, a range of soils varied in their properties, from natural upland peats to highly impacted mine-spoils, could all volatilize arsines. Volatilization rates from 0.5 to 70 μg/kg/y were measured, and AsH(3), MeAsH(2), Me(2)AsH, and TMAs were all identified. Addition of methylated oxidated pentavalent As, namely monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to soil resulted in elevated yearly rates of volatilization with up to 3.5% of the total As volatilized, suggesting that the initial conversion of inorganic As to MMAA limits the rate of arsine and methylarsines production by soils. The nature of OM amendment altered volatilization quantitatively and qualitatively, and total arsines release from soil showed correlation between the quantity of As and the concentration of dissolved organic

  1. Dissolved organic carbon fluxes from soils in the Alaskan coastal temperate rainforest

    Science.gov (United States)

    D'Amore, D. V.; Edwards, R.; Hood, E. W.; Herendeen, P. A.; Valentine, D.

    2011-12-01

    Soil saturation and temperature are the primary factors that influence soil carbon cycling. Interactions between these factors vary by soil type, climate, and landscape position, causing uncertainty in predicting soil carbon flux from. The soils of the North American perhumid coastal temperate rainforest (NCTR) store massive amounts of carbon, yet there is no estimate of dissolved organic carbon (DOC) export from different soil types in the region. There are also no working models that describe the influence of soil saturation and temperature on the export of DOC from soils. To address this key information gap, we measured soil water table elevation, soil temperature, and soil and stream DOC concentrations to calculate DOC flux across a soil hydrologic gradient that included upland soils, forested wetland soils, and sloping bog soils in the NCTR of southeast Alaska. We found that increased soil temperature and frequent fluctuations of soil water tables promoted the export of large quantities of DOC from wetland soils and relatively high amounts of DOC from mineral soils. Average area-weighted DOC flux ranged from 7.7 to 33.0 g C m-2 y-1 across a gradient of hydropedologic soil types. The total area specific export of carbon as DOC for upland, forested wetland and sloping bog catchments was 77, 306, and 329 Kg C ha-1 y-1 respectively. The annual rate of carbon export from wetland soils in this region is among the highest reported in the literature. These findings highlight the importance of terrestrial-aquatic fluxes of DOC as a pathway for carbon loss in the NCTR.

  2. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research

    Directory of Open Access Journals (Sweden)

    D.-G. Kim

    2012-07-01

    Full Text Available The rewetting of dry soils and the thawing of frozen soils are short-term, transitional phenomena in terms of hydrology and the thermodynamics of soil systems. The impact of these short-term phenomena on larger scale ecosystem fluxes is increasingly recognized, and a growing number of studies show that these events affect fluxes of soil gases such as carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O, ammonia (NH3 and nitric oxide (NO. Global climate models predict that future climatic change is likely to alter the frequency and intensity of drying-rewetting events and thawing of frozen soils. These future scenarios highlight the importance of understanding how rewetting and thawing will influence dynamics of these soil gases. This study summarizes findings using a new database containing 338 studies conducted from 1956 to 2011, and highlights open research questions. The database revealed conflicting results following rewetting and thawing in various terrestrial ecosystems and among soil gases, ranging from large increases in fluxes to non-significant changes. Studies reporting lower gas fluxes before rewetting tended to find higher post-rewetting fluxes for CO2, N2O and NO; in addition, increases in N2O flux following thawing were greater in warmer climate regions. We discuss possible mechanisms and controls that regulate flux responses, and recommend that a high temporal resolution of flux measurements is critical to capture rapid changes in gas fluxes after these soil perturbations. Finally, we propose that future studies should investigate the interactions between biological (i.e., microbial community and gas production and physical (i.e., porosity, diffusivity, dissolution changes in soil gas fluxes, apply techniques to capture rapid changes (i.e., automated measurements, and explore synergistic experimental and modelling approaches.

  3. Remote sensing of soil radionuclide fluxes in a tropical ecosystem

    International Nuclear Information System (INIS)

    Clegg, B.; Koranda, J.; Robinson, W.; Holladay, G.

    1980-01-01

    We are using a transponding geostationary satellite to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Eniwetok and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely acquire measurements of net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water flux model predicts wet season plant transpiration rates nearly equal to the 6 to 7 mm/d evaporation pan rate, which decreases to 2 to 3 mm/d for the dry season. Radioisotopic analysis confirms the microclimate-estimated 1:3 to 1:20 soil to plant 137 Cs dry matter concentration ratio. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose

  4. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  5. Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest

    Science.gov (United States)

    Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.

    2017-12-01

    Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that

  6. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  7. Seasonal soil CO2 flux under big sagebrush (Artemisia tridentata Nutt.)

    Science.gov (United States)

    Michael C. Amacher; Cheryl L. Mackowiak

    2011-01-01

    Soil respiration is a major contributor to atmospheric CO2, but accurate landscape-scale estimates of soil CO2 flux for many ecosystems including shrublands have yet to be established. We began a project to measure, with high spatial and temporal resolution, soil CO2 flux in a stand (11 x 25 m area) of big sagebrush (Artemisia tridentata Nutt.) at the Logan, Utah,...

  8. Spectral estimates of net radiation and soil heat flux

    International Nuclear Information System (INIS)

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P.J. Jr.; Jackson, R.D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under non advective conditions

  9. Quantitative comparison of in situ soil CO2 flux measurement methods

    Science.gov (United States)

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  10. Linking soil type and rainfall characteristics towards estimation of surface evaporative capacitance

    Science.gov (United States)

    Or, D.; Bickel, S.; Lehmann, P.

    2017-12-01

    Separation of evapotranspiration (ET) to evaporation (E) and transpiration (T) components for attribution of surface fluxes or for assessment of isotope fractionation in groundwater remains a challenge. Regional estimates of soil evaporation often rely on plant-based (Penman-Monteith) ET estimates where is E is obtained as a residual or a fraction of potential evaporation. We propose a novel method for estimating E from soil-specific properties, regional rainfall characteristics and considering concurrent internal drainage that shelters soil water from evaporation. A soil-dependent evaporative characteristic length defines a depth below which soil water cannot be pulled to the surface by capillarity; this depth determines the maximal soil evaporative capacitance (SEC). The SEC is recharged by rainfall and subsequently emptied by competition between drainage and surface evaporation (considering canopy interception evaporation). We show that E is strongly dependent on rainfall characteristics (mean annual, number of storms) and soil textural type, with up to 50% of rainfall lost to evaporation in loamy soil. The SEC concept applied to different soil types and climatic regions offers direct bounds on regional surface evaporation independent of plant-based parameterization or energy balance calculations.

  11. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    Science.gov (United States)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  12. [Periodic characteristics of soil CO2 flux in mangrove wetland of Quanzhou Bay, China].

    Science.gov (United States)

    Wang, Zong-Lin; Wu, Yan-You; Xing, De-Ke; Liu, Rong-Cheng; Zhou Gui-Yao; Zhao, Kuan

    2014-09-01

    Mangrove wetland ecosystem in Quanzhou Bay in Fujian Province is newly restored with a regular semidiurnal tide. Soil CO2 concentration in the mangrove soil was determined by Li-840 portable gas analyzer, and periodic characteristics of soil CO2 emission was investigated. The soil CO2 flux in the wetland soil was relatively small because the mangrove was young. The change trends of soil CO2 concentration and flux with time were consistent in Kandelia obovate and Aegiceras corniculatum communities in the intertidal periods. The CO2 concentration and flux in the wetland soil were 557.08-2211.50 μmol · mol(-1) and -0.21-0.40 μmol · m(-2) · s(-1), respectively. The average CO2 flux in the wetland soil was 0.26 μmol · mol(-1) · s(-1) in the intertidal of morning and evening tides (early intertidal) and -0.01 μmol · m(-2) · s(-1) in the intertidal of evening and morning tides (late intertidal), respectively. At the same time after the tide, the concentration and flux of CO2 in the mangrove soil in early intertidal was higher than that in late intertidal. In early intertidal, the relationship between the flux and instantaneous concentration of CO2 in the wetland soil was expressed as a bell-shaped curve, and CO2 flux increased first and then decreased with the increasing CO2 concentration, which was in conformity with Gaussian distribution.

  13. PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden

    International Nuclear Information System (INIS)

    Backe, Cecilia; Cousins, Ian T.; Larsson, Per

    2004-01-01

    PCB concentrations were studied in different soils to determine the spatial variation over a region of approximately 11 000 km 2 . PCB congener pattern was used to illustrate the spatial differences, as shown by principal component analysis (PCA). The relationship to different soil parameters was studied. PCB concentrations in soil showed a large variation between sampling-areas with median concentrations ranging between 2.3 and 332 ng g -1 (dw). Highest concentrations were found at two sites with sandy soils, one with extremely high organic carbon content. Both sites were located on the west coast of southern Sweden. Soils with similar soil textures (i.e. sandy silt moraine) did not show any significant differences in PCB concentrations. PCB congener composition was shown to differ between sites, with congener patterns almost site-specific. PCB in air and precipitation was measured and the transfer of chemicals between the soil and air compartments was estimated. Soil-air fugacity quotient calculations showed that the PCBs in the soil consistently had a higher fugacity than the PCBs in the air, with a median quotient value of 2.7. The gaseous fluxes between soil and air were estimated using standard modelling equations and a net soil-air flux estimated by subtracting bulk deposition from gaseous soil-air fluxes. It was shown that inclusion of vertical sorbed phase transport of PCBs in the soil had a large effect on the direction of the net soil-air exchange fluxes. - Soil-air exchange of PCBs is investigated and modelled across Sweden

  14. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    Directory of Open Access Journals (Sweden)

    N. J. Hasselquist

    2011-12-01

    Full Text Available Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C and nitrogen (N fluxes were as high as 235 g C m−1 d−1 and 19 g N m−1 d−1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  15. Importance of lateral flux and its percolation depth on organic carbon export in Arctic tundra soil: Implications from a soil leaching experiment: Changes of OC in Arctic Soil Leachate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaowen [Department of Geological Sciences, University of Florida, Gainesville Florida USA; Hutchings, Jack A. [Department of Geological Sciences, University of Florida, Gainesville Florida USA; Bianchi, Thomas S. [Department of Geological Sciences, University of Florida, Gainesville Florida USA; Liu, Yina [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Arellano, Ana R. [Department of Geological Sciences, University of Florida, Gainesville Florida USA; Schuur, Edward A. G. [Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff Arizona USA; Department of Biology, University of Florida, Gainesville Florida USA

    2017-04-01

    Temperature rise in the Arctic is causing deepening of active layers and resulting in the mobilization of deep permafrost dissolved organic matter (DOM). However, the mechanisms of DOM mobilization from Arctic soils, especially upper soil horizons which are drained most frequently through a year, are poorly understood. Here, we conducted a short-term leaching experiment on surface and deep organic active layer soils, from the Yukon River basin, to examine the effects of DOM transport on bulk and molecular characteristics. Our data showed a net release of DOM from surface soils equal to an average of 5% of soil carbon. Conversely, deep soils percolated with surface leachates retained up to 27% of bulk DOM-while releasing fluorescent components (up to 107%), indicating selective release of aromatic components (e.g. lignin, tannin), while retaining non-chromophoric components, as supported by spectrofluorometric and ultra high resolution mass spectroscopic techniques. Our findings highlight the importance of the lateral flux of DOM on ecosystem carbon balance as well as processing of DOM transport through organic active layer soils en route to rivers and streams. This work also suggests the potential role of leachate export as an important mechanism of C losses from Arctic soils, in comparison with the more traditional pathway from soil to atmosphere in a warming Arctic.

  16. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  17. Heavy metals fluxes and speciation in the surface layer of urban soils in the province of Brescia (Italy)

    Science.gov (United States)

    Peli, Marco; Raffelli, Giulia; Barontini, Stefano; Bostick, Benjamin C.; Donna, Filippo; Lucchini, Roberto G.; Ranzi, Roberto

    2017-04-01

    For the last forty years (1974-2015), a ferroalloy industry has been working in Bagnolo Mella, a municipality nearby the city of Brescia (Northern Italy), producing particulate emissions enriched in heavy metals: manganese (Mn) in particular, but also lead (Pb), iron (Fe), aluminum (Al) and arsenic (As). Although some of these metals are required trace elements for most living organisms and can be largely found in natural environments (e.g. Mn being the fifth most abundant metal in the Earth crust), they all lead to toxic effects when they contaminate work and life environments of the exposed population. Aiming at contributing to quantify the exposure of the population to environmental pollution near the factory, as well as the heavy metals possible tendency to migrate through the considered soil matrix, in this work we investigated metals speciation and fluxes within the Earth Critical Zone. The factory is located near residential areas in a plain characterised by little wind and shallow water table with a great number of water resurgences. Three test sites were identified among the pronest ones to particulate matter deposition, on the basis of data collected during a previous experimental field campaign and of the local wind rose. One more site was selected upwind to the factory as a reference site minimally prone to particulate matter deposition, on the basis of the previous investigations. Sites where lawns have been maintained at least for the last forty years where selected in order to avoid agriculture—induced effects on the metals movement. Total soil metal concentrations were measured by means of a portable X-Ray Fluorescence (XRF) device along the soil profiles, down to the depth of 40 cm from the soil surface. Four loose soil samples were collected at each site, at depths ranging from 5 to 30 cm, and they were later subjected to sequential extractions procedure and ICP—MS analyses, in order to investigate differences in heavy metals speciation along

  18. Comparison of energy fluxes at the land surface-atmosphere interface in an Alpine valley as simulated with different models

    Directory of Open Access Journals (Sweden)

    G. Grossi

    2003-01-01

    Full Text Available Within the framework of a research project coupling meteorological and hydrological models in mountainous areas a distributed Snow-Soil-Vegetation-Atmosphere Transfer model was developed and applied to simulate the energy fluxes at the land surface – atmosphere interface in an Alpine valley (Toce Valley - North Italy during selected flood events in the last decade. Energy fluxes simulated by the distributed energy transfer model were compared with those simulated by a limited area meteorological model for the event of June 1997 and the differences in the spatial and temporal distribution. The Snow/Soil-Vegetation-Atmosphere Transfer model was also applied to simulate the energy fluxes at the land surface-atmosphere interface for a single cell, assumed to be representative of the Siberia site (Toce Valley, where a micro-meteorological station was installed and operated for 2.5 months in autumn 1999. The Siberia site is very close to the Nosere site, where a standard meteorological station was measuring precipitation, air temperature and humidity, global and net radiation and wind speed during the same special observing period. Data recorded by the standard meteorological station were used to force the energy transfer model and simulate the point energy fluxes at the Siberia site, while turbulent fluxes observed at the Siberia site were used to derive the latent heat flux from the energy balance equation. Finally, the hourly evapotranspiration flux computed by this procedure was compared to the evapotranspiration flux simulated by the energy transfer model. Keywords: energy exchange processes, land surface-atmosphere interactions, turbulent fluxes

  19. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    Science.gov (United States)

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  20. Capturing and Processing Soil GHG Fluxes Using the LI-COR LI-8100A

    Science.gov (United States)

    Xu, Liukang; McDermitt, Dayle; Hupp, Jason; Johnson, Mark; Madsen, Rod

    2015-04-01

    The LI-COR LI-8100A Automated Soil CO2 Flux System is designed to measure soil CO2 efflux using automated chambers and a non-steady state measurement protocol. While CO2 is an important gas in many contexts, it is not the only gas of interest for many research applications. With some simple plumbing modifications, many third party analyzers capable of measuring other trace gases, e.g. N2O, CH4, or 13CO2 etc., can be interfaced with the LI-8100A System, and LI-COR's data processing software (SoilFluxPro™) can be used to compute fluxes for these additional gases. In this paper we describe considerations for selecting an appropriate third party analyzer to interface with the system, how to integrate data into the system, and the procedure used to compute fluxes of additional gases in SoilFluxPro™. A case study is presented to demonstrate methane flux measurements using an Ultra-Portable Greenhouse Gas Analyzer (Ultra-Portable GGA, model 915-0011), manufactured by Los Gatos Research and integrated into the LI-8100A System. Laboratory and field test results show that the soil CO2 efflux based on the time series of CO2 data measured either with the LI-8100A System or with the Ultra-Portable GGA are essentially the same. This suggests that soil GHG fluxes measured with both systems are reliable.

  1. Semianalytical model predicting transfer of volatile pollutants from groundwater to the soil surface.

    Science.gov (United States)

    Atteia, Olivier; Höhener, Patrick

    2010-08-15

    Volatilization of toxic organic contaminants from groundwater to the soil surface is often considered an important pathway in risk analysis. Most of the risk models use simplified linear solutions that may overpredict the volatile flux. Although complex numerical models have been developed, their use is restricted to experienced users and for sites where field data are known in great detail. We present here a novel semianalytical model running on a spreadsheet that simulates the volatilization flux and vertical concentration profile in a soil based on the Van Genuchten functions. These widely used functions describe precisely the gas and water saturations and movement in the capillary fringe. The analytical model shows a good accuracy over several orders of magnitude when compared to a numerical model and laboratory data. The effect of barometric pumping is also included in the semianalytical formulation, although the model predicts that barometric pumping is often negligible. A sensitivity study predicts significant fluxes in sandy vadose zones and much smaller fluxes in other soils. Fluxes are linked to the dimensionless Henry's law constant H for H < 0.2 and increase by approximately 20% when temperature increases from 5 to 25 degrees C.

  2. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    Science.gov (United States)

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  3. Advances in the Surface Renewal Flux Measurement Method

    Science.gov (United States)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  4. Impact of Sub-grid Soil Textural Properties on Simulations of Hydrological Fluxes at the Continental Scale Mississippi River Basin

    Science.gov (United States)

    Kumar, R.; Samaniego, L. E.; Livneh, B.

    2013-12-01

    Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked

  5. On the predictability of land surface fluxes from meteorological variables

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  6. Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater.

    Science.gov (United States)

    Coutelot, F; Sappin-Didier, V; Keller, C; Atteia, O

    2014-12-01

    The unsaturated zone plays a major role in elemental fluxes in terrestrial ecosystems. A representative chemical analysis of soil pore water is required for the interpretation of soil chemical phenomena and particularly to assess Trace Elements (TEs) mobility. This requires an optimal sampling system to avoid modification of the extracted soil water chemistry and allow for an accurate estimation of solute fluxes. In this paper, the chemical composition of soil solutions sampled by Rhizon® samplers connected to a standard syringe was compared to two other types of suction probes (Rhizon® + vacuum tube and Rhizon® + diverted flow system). We investigated the effects of different vacuum application procedures on concentrations of spiked elements (Cr, As, Zn) mixed as powder into the first 20 cm of 100-cm columns and non-spiked elements (Ca, Na, Mg) concentrations in two types of columns (SiO2 sand and a mixture of kaolinite + SiO2 sand substrates). Rhizon® was installed at different depths. The metals concentrations showed that (i) in sand, peak concentrations cannot be correctly sampled, thus the flux cannot be estimated, and the errors can easily reach a factor 2; (ii) in sand + clay columns, peak concentrations were larger, indicating that they could be sampled but, due to sorption on clay, it was not possible to compare fluxes at different depths. The different samplers tested were not able to reflect the elemental flux to groundwater and, although the Rhizon® + syringe device was more accurate, the best solution remains to be the use of a lysimeter, whose bottom is kept continuously at a suction close to the one existing in the soil.

  7. The effects of sea surface temperature gradients on surface turbulent fluxes

    Science.gov (United States)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  8. Calibrating soil respiration measures with a dynamic flux apparatus using artificial soil media of varying porosity

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen

    2004-01-01

    Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...

  9. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland

    Science.gov (United States)

    Shao, Wei; Coenders-Gerrits, Miriam; Judge, Jasmeet; Zeng, Yijian; Su, Ye

    2018-06-01

    The process of evaporation interacts with the soil, which has various comprehensive mechanisms. Multiphase flow models solve air, vapour, water, and heat transport equations to simulate non-isothermal soil moisture transport of both liquid water and vapor flow, but are only applied in non-vegetated soils. For (sparsely) vegetated soils often energy balance models are used, however these lack the detailed information on non-isothermal soil moisture transport. In this study we coupled a multiphase flow model with a two-layer energy balance model to study the impact of non-isothermal soil moisture transport on evaporation fluxes (i.e., interception, transpiration, and soil evaporation) for vegetated soils. The proposed model was implemented at an experimental agricultural site in Florida, US, covering an entire maize-growing season (67 days). As the crops grew, transpiration and interception became gradually dominated, while the fraction of soil evaporation dropped from 100% to less than 20%. The mechanisms of soil evaporation vary depending on the soil moisture content. After precipitation the soil moisture content increased, exfiltration of the liquid water flow could transport sufficient water to sustain evaporation from soil, and the soil vapor transport was not significant. However, after a sufficient dry-down period, the soil moisture content significantly reduced, and the soil vapour flow significantly contributed to the upward moisture transport in topmost soil. A sensitivity analysis found that the simulations of moisture content and temperature at the soil surface varied substantially when including the advective (i.e., advection and mechanical dispersion) vapour transport in simulation, including the mechanism of advective vapour transport decreased soil evaporation rate under wet condition, while vice versa under dry condition. The results showed that the formulation of advective soil vapor transport in a soil-vegetation-atmosphere transfer continuum can

  10. Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.; Williams, Ryan J.; Isenhart, Thomas M.; Hofmockel, Kirsten S.

    2018-01-01

    Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gas flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.

  11. Energy flux simulation in heterogeneous cropland - a two year study

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Biernath, Christian; Heinlein, Florian; Priesack, Eckart

    2016-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere [Stainforth et al. 2005]. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial heterogeneity of soil and land use types are high, e.g. in Central Europe. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N [Biernath et al. 2013] . The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N to an analytical footprint model [Mauder & Foken 2011] . The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). The approach accounts for the temporarily and spatially

  12. Simultaneous Measurements of Soil CO2 and CH4 Fluxes Using Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Rachhpal S. Jassal

    2016-04-01

    Full Text Available We present a method of simultaneously measuring soil CO and CH fluxes using a laser-based cavity ring-down spectrometer (CRDS coupled to an automated non-steady-state chamber system. The differential equation describing the change in the greenhouse gas (GHG mixing ratio in the chamber headspace following lid closure is solved for the condition when a small flow rate of chamber headspace air is pulled through the CRDS by an external pump and exhausted to the atmosphere. The small flow rate allows calculation of fluxes assuming linear relationships between the GHG mixing ratios and chamber lid closure times of a few minutes. We also calibrated the chambers for effective volume ( and show that adsorption of the GHGs on the walls of the chamber caused to be 7% higher than the geometric volume, with the near-surface soil porosity causing another 4% increase in .

  13. Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432)

    Science.gov (United States)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.

    2016-09-01

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  14. Radon flux maps for the Netherlands and Europe using terrestrial gamma radiation derived from soil radionuclides

    Science.gov (United States)

    Manohar, S. N.; Meijer, H. A. J.; Herber, M. A.

    2013-12-01

    Naturally occurring radioactive noble gas, radon (222Rn) is a valuable tracer to study atmospheric processes and to validate global chemical transport models. However, the use of radon as a proxy in atmospheric and climate research is limited by the uncertainties in the magnitude and distribution of the radon flux density over the Earth's surface. Terrestrial gamma radiation is a useful proxy for generating radon flux maps. A previously reported radon flux map of Europe used terrestrial gamma radiation extracted from automated radiation monitoring networks. This approach failed to account for the influence of local artificial radiation sources around the detector, leading to under/over estimation of the reported radon flux values at different locations. We present an alternative approach based on soil radionuclides which enables us to generate accurate radon flux maps with good confidence. Firstly, we present a detailed comparison between the terrestrial gamma radiation obtained from the National Radiation Monitoring network of the Netherlands and the terrestrial gamma radiation calculated from soil radionuclides. Extending further, we generated radon flux maps of the Netherlands and Europe using our proposed approach. The modelled flux values for the Netherlands agree reasonably well with the two observed direct radon flux measurements (within 2σ level). On the European scale, we find that the observed radon flux values are higher than our modelled values and we introduce a correction factor to account for this difference. Our approach discussed in this paper enables us to develop reliable and accurate radon flux maps in countries with little or no information on radon flux values.

  15. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-12-01

    This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  16. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    Science.gov (United States)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    ' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).

  17. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    Science.gov (United States)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  18. Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Mazot, Agnès; Smid, Elaine R.; Schwendenmann, Luitgard; Delgado-Granados, Hugo; Lindsay, Jan

    2013-11-01

    The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m-2 day-1, with an average of 27.1 g m-2 day-1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.

  19. A naturally ventilated accumulator for integrating measurements of radon flux from soil

    International Nuclear Information System (INIS)

    Zhuo Weihai; Furukawa, Masahide; Tokonami, Shinji

    2007-01-01

    For long-term and large-scale measurements of the averaged 222 Rn fluxes from soils in the general environmental conditions, a simple measuring method was developed. 222 Rn exhaling from soils is accumulated by a naturally ventilated accumulator (NVA) and its concentration is measured with passive 222 Rn monitors set inside the NVA. The ventilation rate of the NVA is about 0.26 h -1 and it is hardly affected by the changes of meteorological conditions during field measurements. The air and soil conditions inside and outside of the NVA are nearly the same throughout the measurements. It indicates that the natural conditions of soils will not be significantly disturbed by the NVA. Field measurements confirmed that soil 222 Rn fluxes measured by the new method were in general agreement with the results measured by another commonly used method and theoretical estimations. As no electric power is needed as well as the operation and maintenance are easy, the low-cost system offers a promise as an improved technique for long-term measurements of soil 222 Rn fluxes in the general environmental conditions. (author)

  20. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke

    2005-01-01

    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  1. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  2. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  3. Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available The companion paper (Guan et al., 2010 demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  4. Achieving scale-independent land-surface flux estimates - Application of the Multiscale Parameter Regionalization (MPR) to the Noah-MP land-surface model across the contiguous USA

    Science.gov (United States)

    Thober, S.; Mizukami, N.; Samaniego, L. E.; Attinger, S.; Clark, M. P.; Cuntz, M.

    2016-12-01

    Land-surface models use a variety of process representations to calculate terrestrial energy, water and biogeochemical fluxes. These process descriptions are usually derived from point measurements but are scaled to much larger resolutions in applications that range from about 1 km in catchment hydrology to 100 km in climate modelling. Both, hydrologic and climate models are nowadays run on different spatial resolutions, using the exact same land surface representations. A fundamental criterion for the physical consistency of land-surface simulations across scales is that a flux estimated over a given area is independent of the spatial model resolution (i.e., the flux-matching criterion). The Noah-MP land surface model considers only one soil and land cover type per model grid cell without any representation of subgrid variability, implying a weak flux-matching. A fractional approach simulates subgrid variability but it requires a higher computational demand than using effective parameters and it is used only for land cover in current land surface schemes. A promising approach to derive scale-independent parameters is the Multiscale Parameter Regionalization (MPR) technique, which consists of two steps: first, it applies transfer functions directly to high-resolution data (such as 100 m soil maps) to derive high-resolution model parameter fields, acknowledging the full subgrid variability. Second, it upscales these high-resolution parameter fields to the model resolution by using appropriate upscaling operators. MPR has shown to improve substantially the scalability of hydrologic models. Here, we apply the MPR technique to the Noah-MP land-surface model for a large sample of basins distributed across the contiguous USA. Specifically, we evaluate the flux-matching criterion for several hydrologic fluxes such as evapotranspiration and total runoff at scales ranging from 3 km to 48 km. We also investigate a p-norm scaling operator that goes beyond the current

  5. A Numerical Model to Assess Soil Fluxes from Meteoric 10Be Data

    Science.gov (United States)

    Campforts, B.; Govers, G.; Vanacker, V.; Vanderborght, J.; Smolders, E.; Baken, S.

    2015-12-01

    Meteoric 10Be may be mobile in the soil system. The latter hampers a direct translation of meteoric 10Be inventories into spatial variations in erosion and deposition rates. Here, we present a spatially explicit 2D model that allows us to simulate the behaviour of meteoric 10Be in the soil system. The Be2D model is then used to analyse the potential impact of human-accelerated soil fluxes on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile including particle migration, chemical leaching and bioturbation, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes from creep, water and tillage erosion. Model simulations show that meteoric 10Be inventories can indeed be related to erosion and deposition, across a wide range of geomorphological and pedological settings. However, quantification of the effects of vertical mobility is essential for a correct interpretation of the observed spatial patterns in 10Be data. Moreover, our simulations suggest that meteoric 10Be can be used as a tracer to unravel human impact on soil fluxes when soils have a high retention capacity for meteoric meteoric 10Be. Application of the Be2D model to existing data sets shows that model parameters can reliably be constrained, resulting in a good agreement between simulated and observed meteoric 10Be concentrations and inventories. This confirms the suitability of the Be2D model as a robust tool to underpin quantitative interpretations of spatial variability in meteoric 10Be data for eroding landscapes.

  6. Estimation of sensible and latent heat flux from natural sparse vegetation surfaces using surface renewal

    Science.gov (United States)

    Zapata, N.; Martínez-Cob, A.

    2001-12-01

    This paper reports a study undertaken to evaluate the feasibility of the surface renewal method to accurately estimate long-term evaporation from the playa and margins of an endorreic salty lagoon (Gallocanta lagoon, Spain) under semiarid conditions. High-frequency temperature readings were taken for two time lags ( r) and three measurement heights ( z) in order to get surface renewal sensible heat flux ( HSR) values. These values were compared against eddy covariance sensible heat flux ( HEC) values for a calibration period (25-30 July 2000). Error analysis statistics (index of agreement, IA; root mean square error, RMSE; and systematic mean square error, MSEs) showed that the agreement between HSR and HEC improved as measurement height decreased and time lag increased. Calibration factors α were obtained for all analyzed cases. The best results were obtained for the z=0.9 m ( r=0.75 s) case for which α=1.0 was observed. In this case, uncertainty was about 10% in terms of relative error ( RE). Latent heat flux values were obtained by solving the energy balance equation for both the surface renewal ( LESR) and the eddy covariance ( LEEC) methods, using HSR and HEC, respectively, and measurements of net radiation and soil heat flux. For the calibration period, error analysis statistics for LESR were quite similar to those for HSR, although errors were mostly at random. LESR uncertainty was less than 9%. Calibration factors were applied for a validation data subset (30 July-4 August 2000) for which meteorological conditions were somewhat different (higher temperatures and wind speed and lower solar and net radiation). Error analysis statistics for both HSR and LESR were quite good for all cases showing the goodness of the calibration factors. Nevertheless, the results obtained for the z=0.9 m ( r=0.75 s) case were still the best ones.

  7. Soil CO2 flux in response to wheel traffic in a no-till system

    Science.gov (United States)

    Measurements of soil CO2 flux in the absence of living plants can be used to evaluate the effectiveness of soil management practices for C sequestration, but field CO2 flux is spatially variable and may be affected by soil compaction and percentage of total pore space filled with water (%WFPS). The ...

  8. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    Soil respiration fluxes are influenced by natural factors such as climate and soil type, but also by anthropogenic activities in managed ecosystems. As a result, soil CO2 fluxes show a large intra- and interannual as well as intra- and intersite variability. Most of the available soil CO2 flux data giving insights into this variability have been measured with manually closed static chambers, but technological advances in the past 15 years have also led to an increased use of automated closed chamber systems. The great advantage of automated chambers in comparison to manually operated chambers is the higher temporal resolution of the flux data. This is especially important if we want to better understand the effects of short-term events, e.g. fertilization or heavy rainfall, on soil CO2 flux variability. However, the chamber method is an invasive measurement method which can potentially alter soil CO2 fluxes and lead to biased measurement results. In the peer-reviewed literature, many papers compare the field performance and results of different closed static chamber designs, or compare manual chambers with automated chamber systems, to identify potential biases in CO2 flux measurements, and thus help to reduce uncertainties in the flux data. However, inter-comparisons of different automated closed dynamic chamber systems are still lacking. Here we are going to present a field comparison of the most-cited automated chamber system, the LI-8100A Automated Soil Flux System, with the also commercially available Greenhouse Gas Monitoring System AGPS. Both measurement systems were installed side by side at a recently harvested poplar bioenergy plantation (POPFULL, http://uahost.uantwerpen.be/popfull/) from April 2014 until August 2014. The plantation provided optimal comparison conditions with a bare field situation after the harvest and a regrowing canopy resulting in a broad variety of microclimates. Furthermore, the plantation was planted in a double-row system with

  9. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    Science.gov (United States)

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  10. Responses of soil CO2 fluxes to short-term experimental warming in alpine steppe ecosystem, Northern Tibet.

    Science.gov (United States)

    Lu, Xuyang; Fan, Jihui; Yan, Yan; Wang, Xiaodan

    2013-01-01

    Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m(-2) for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.

  11. Mercury fluxes from air/surface interfaces in paddy field and dry land

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jinshan [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China); Wang Dingyong, E-mail: dywang@swu.edu.cn [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)] [Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716 (China); Liu Xiao; Zhang Yutong [Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, No. 216, Tiansheng Street, Beibei, Chongqing 400715 (China)

    2011-02-15

    Research highlights: {yields} It was found that agricultural fields are important local atmospheric Hg sources in the region. {yields} The Hg emissions from dry cornfield were higher than those from the flooded rice paddy, higher mercury emissions in the warm season than the cold season, and during daytime than at night. {yields} Mercury evasion is strongly related to solar radiation which is important in the emission of Hg at both sites. - Abstract: In order to provide insight into the characteristics of Hg exchange in soil/water-air surface from cropland (including paddy field and dry land), Hg fluxes were measured in Chengjiang. Mercury fluxes were measured using the dynamic flux chamber method, coupled with a Lumex (registered) multifunctional Hg analyzer RA-915{sup +} (Lumex Ltd., Russia). The Hg fluxes from paddy field and dry land were alternatively measured every 30 min. Data were collected for 24-48 h once per month for 5 months. Mercury fluxes in both fields were synchronously measured under the same conditions to compare Hg emissions between paddy field and dry land over diurnal and seasonal periods and find out what factors affect Hg emission on each surface. These results indicated that air Hg concentrations at the monitoring site was double the value observed at the global background sites in Europe and North America. The Hg release fluxes were 46.5 {+-} 22.8 ng m{sup -2} h{sup -1} in the warm season, 15.5 {+-} 18.8 ng m{sup -2} h{sup -1} in the cold season for dry land, and 23.8 {+-} 15.6 ng m{sup -2} h{sup -1} in the warm season, 6.3 {+-} 11.9 ng m{sup -2} h{sup -1} in the cold season for paddy field. Solar radiation is important in the emission of Hg over both sites. Hg exchange at the soil/air and water/air interfaces showed temporal variations. The amount of Hg emission from dry land was higher than that from the paddy field, and the emission in daytime was higher than that at night. Moreover, Hg emissions from land covered by crops, was lower

  12. Is X-ray emissivity constant on magnetic flux surfaces?

    International Nuclear Information System (INIS)

    Granetz, R.S.; Borras, M.C.

    1997-01-01

    Knowledge of the elongations and shifts of internal magnetic flux surfaces can be used to determine the q profile in elongated tokamak plasmas. X-ray tomography is thought to be a reasonable technique for independently measuring internal flux surface shapes, because it is widely believed that X-ray emissivity should be constant on a magnetic flux surface. In the Alcator C-Mod tokamak, the X-ray tomography diagnostic system consists of four arrays of 38 chords each. A comparison of reconstructed X-ray contours with magnetic flux surfaces shows a small but consistent discrepancy in the radial profile of elongation. Numerous computational tests have been performed to verify these findings, including tests of the sensitivity to calibration and viewing geometry errors, the accuracy of the tomography reconstruction algorithms, and other subtler effects. We conclude that the discrepancy between the X-ray contours and the magnetic flux surfaces is real, leading to the conclusion that X-ray emissivity is not exactly constant on a flux surface. (orig.)

  13. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    Science.gov (United States)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  14. Interpreting diel hysteresis between soil respiration and temperature

    Science.gov (United States)

    C. Phillips; N. Nickerson; D. Risk; B.J. Bond

    2011-01-01

    Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...

  15. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Science.gov (United States)

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  16. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  17. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  18. A field evaluation of soil moisture modelling with the Soil, Vegetation, and Snow (SVS) land surface model using evapotranspiration observations as forcing data

    Science.gov (United States)

    Maheu, Audrey; Anctil, François; Gaborit, Étienne; Fortin, Vincent; Nadeau, Daniel F.; Therrien, René

    2018-03-01

    To address certain limitations with their current operational model, Environment and Climate Change Canada recently developed the Soil, Vegetation, and Snow (SVS) land surface model and the representation of subsurface hydrological processes was targeted as an area for improvement. The objective of this study is to evaluate the ability of HydroSVS, the component of SVS responsible for the vertical redistribution of water, to simulate soil moisture under snow-free conditions when using flux-tower observations of evapotranspiration as forcing data. We assessed (1) model fidelity by comparing soil moisture modelled with HydroSVS to point-scale measurements of volumetric soil water content and (2) model complexity by comparing the performance of HydroSVS to that of HydroGeoSphere, a state-of-the-art integrated surface and subsurface hydrologic model. To do this, we performed one-dimensional soil column simulations at four sites of the AmeriFlux network. Results indicate that under Mediterranean and temperate climates, HydroSVS satisfactorily simulated soil moisture (Nash-Sutcliffe efficiency between 0.26 and 0.70; R2 ≥ 0.80), with a performance comparable to HydroGeoSphere (Nash-Sutcliffe efficiency ≥0.60; R2 ≥ 0.80). However, HydroSVS performed weakly under a semiarid climate while HydroGeoSphere performed relatively well. By decoupling the magnitude and sourcing of evapotranspiration, this study proposes a powerful diagnostic tool to evaluate the representation of subsurface hydrological processes in land surface models. Overall, this study highlights the potential of SVS for hydrological applications.

  19. Two-wavelength Method Estimates Heat fluxes over Heterogeneous Surface in North-China

    Science.gov (United States)

    Zhang, G.; Zheng, N.; Zhang, J.

    2017-12-01

    Heat fluxes is a key process of hydrological and heat transfer of soil-plant-atmosphere continuum (SPAC), and now it is becoming an important topic in meteorology, hydrology, ecology and other related research areas. Because the temporal and spatial variation of fluxes at regional scale is very complicated, it is still difficult to measure fluxes at the kilometer scale over a heterogeneous surface. A technique called "two-wavelength method" which combines optical scintillometer with microwave scintillometer is able to measure both sensible and latent heat fluxes over large spatial scales at the same time. The main purpose of this study is to investigate the fluxes over non-uniform terrain in North-China. Estimation of heat fluxes was carried out with the optical-microwave scintillometer and an eddy covariance (EC) system over heterogeneous surface in Tai Hang Mountains, China. EC method was set as a benchmark in the study. Structure parameters obtained from scintillometer showed that the typical measurement values of Cn2 are around 10-13 m-2/3 for microwave scintillometer, and values of Cn2 were around 10-15 m-2/3 for optical scintillometer. The correlation of heat fluxes (H) derived from scintillometer and EC system showed as a ratio of 1.05,and with R2=0.75, while the correlation of latent heat fluxes (LE) showed as 1.29 with R2=0.67. It was also found that heat fluxes derived from the two system showed good agreement (R2=0.9 for LE, R2=0.97 for H) when the Bowen ratio (β) was 1.03, while discrepancies showed significantly when β=0.75, and RMSD in H was 139.22 W/m2, 230.85 W/m2 in LE respectively.Experiment results in our research shows that, the two-wavelength method gives a larger heat fluxes over the study area, and a deeper study should be conduct. We expect that our investigate and analysis can be promoted the application of scintillometry method in regional evapotranspiration measurements and relevant disciplines.

  20. Soil fluxes of carbonyl sulfide (COS), carbon monoxide, and carbon dioxide in a boreal forest in southern Finland

    Science.gov (United States)

    Sun, Wu; Kooijmans, Linda M. J.; Maseyk, Kadmiel; Chen, Huilin; Mammarella, Ivan; Vesala, Timo; Levula, Janne; Keskinen, Helmi; Seibt, Ulli

    2018-02-01

    Soil is a major contributor to the biosphere-atmosphere exchange of carbonyl sulfide (COS) and carbon monoxide (CO). COS is a tracer with which to quantify terrestrial photosynthesis based on the coupled leaf uptake of COS and CO2, but such use requires separating soil COS flux, which is unrelated to photosynthesis, from ecosystem COS uptake. For CO, soil is a significant natural sink that influences the tropospheric CO budget. In the boreal forest, magnitudes and variabilities of soil COS and CO fluxes remain poorly understood. We measured hourly soil fluxes of COS, CO, and CO2 over the 2015 late growing season (July to November) in a Scots pine forest in Hyytiälä, Finland. The soil acted as a net sink of COS and CO, with average uptake rates around 3 pmol m-2 s-1 for COS and 1 nmol m-2 s-1 for CO. Soil respiration showed seasonal dynamics controlled by soil temperature, peaking at around 4 µmol m-2 s-1 in late August and September and dropping to 1-2 µmol m-2 s-1 in October. In contrast, seasonal variations of COS and CO fluxes were weak and mainly driven by soil moisture changes through diffusion limitation. COS and CO fluxes did not appear to respond to temperature variation, although they both correlated well with soil respiration in specific temperature bins. However, COS : CO2 and CO : CO2 flux ratios increased with temperature, suggesting possible shifts in active COS- and CO-consuming microbial groups. Our results show that soil COS and CO fluxes do not have strong variations over the late growing season in this boreal forest and can be represented with the fluxes during the photosynthetically most active period. Well-characterized and relatively invariant soil COS fluxes strengthen the case for using COS as a photosynthetic tracer in boreal forests.

  1. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  2. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Chu, Guowei; Han, Xi; Zhang, Quanfa

    2017-07-17

    Rain-induced soil CO 2 pulse, a rapid excitation in soil CO 2 flux after rain, is ubiquitously observed in terrestrial ecosystems, yet the underlying mechanisms in tropical forests are still not clear. We conducted a rain simulation experiment to quantify rain-induced changes in soil CO 2 flux and microbial community composition in a tropical forest. Soil CO 2 flux rapidly increased by ~83% after rains, accompanied by increases in both bacterial (~51%) and fungal (~58%) Phospholipid Fatty Acids (PLFA) biomass. However, soil CO 2 flux and microbial community in the plots without litters showed limited response to rains. Direct releases of CO 2 from litter layer only accounted for ~19% increases in soil CO 2 flux, suggesting that the leaching of dissolved organic carbon (DOC) from litter layer to the topsoil is the major cause of rain-induced soil CO 2 pulse. In addition, rain-induced changes in soil CO 2 flux and microbial PLFA biomass decreased with increasing rain sizes, but they were positively correlated with litter-leached DOC concentration rather than total DOC flux. Our findings reveal an important role of litter-leached DOC input in regulating rain-induced soil CO 2 pulses and microbial community composition, and may have significant implications for CO 2 losses from tropical forest soils under future rainfall changes.

  3. New Constraints on Terrestrial Surface-Atmosphere Fluxes of Gaseous Elemental Mercury Using a Global Database.

    Science.gov (United States)

    Agnan, Yannick; Le Dantec, Théo; Moore, Christopher W; Edwards, Grant C; Obrist, Daniel

    2016-01-19

    Despite 30 years of study, gaseous elemental mercury (Hg(0)) exchange magnitude and controls between terrestrial surfaces and the atmosphere still remain uncertain. We compiled data from 132 studies, including 1290 reported fluxes from more than 200,000 individual measurements, into a database to statistically examine flux magnitudes and controls. We found that fluxes were unevenly distributed, both spatially and temporally, with strong biases toward Hg-enriched sites, daytime and summertime measurements. Fluxes at Hg-enriched sites were positively correlated with substrate concentrations, but this was absent at background sites. Median fluxes over litter- and snow-covered soils were lower than over bare soils, and chamber measurements showed higher emission compared to micrometeorological measurements. Due to low spatial extent, estimated emissions from Hg-enriched areas (217 Mg·a(-1)) were lower than previous estimates. Globally, areas with enhanced atmospheric Hg(0) levels (particularly East Asia) showed an emerging importance of Hg(0) emissions accounting for half of the total global emissions estimated at 607 Mg·a(-1), although with a large uncertainty range (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]). The largest uncertainties in Hg(0) fluxes stem from forests (-513 to 1353 Mg·a(-1) [range of 37.5th and 62.5th percentiles]), largely driven by a shortage of whole-ecosystem fluxes and uncertain contributions of leaf-atmosphere exchanges, questioning to what degree ecosystems are net sinks or sources of atmospheric Hg(0).

  4. Development of computational technique for labeling magnetic flux-surfaces

    International Nuclear Information System (INIS)

    Nunami, Masanori; Kanno, Ryutaro; Satake, Shinsuke; Hayashi, Takaya; Takamaru, Hisanori

    2006-03-01

    In recent Large Helical Device (LHD) experiments, radial profiles of ion temperature, electric field, etc. are measured in the m/n=1/1 magnetic island produced by island control coils, where m is the poloidal mode number and n the toroidal mode number. When the transport of the plasma in the radial profiles is numerically analyzed, an average over a magnetic flux-surface in the island is a very useful concept to understand the transport. On averaging, a proper labeling of the flux-surfaces is necessary. In general, it is not easy to label the flux-surfaces in the magnetic field with the island, compared with the case of a magnetic field configuration having nested flux-surfaces. In the present paper, we have developed a new computational technique to label the magnetic flux-surfaces. This technique is constructed by using an optimization algorithm, which is known as an optimization method called the simulated annealing method. The flux-surfaces are discerned by using two labels: one is classification of the magnetic field structure, i.e., core, island, ergodic, and outside regions, and the other is a value of the toroidal magnetic flux. We have applied the technique to an LHD configuration with the m/n=1/1 island, and successfully obtained the discrimination of the magnetic field structure. (author)

  5. Modeling the impacts of temperature and precipitation changes on soil CO2 fluxes from a Switchgrass stand recently converted from cropland.

    Science.gov (United States)

    Lai, Liming; Kumar, Sandeep; Chintala, Rajesh; Owens, Vance N; Clay, David; Schumacher, Joseph; Nizami, Abdul-Sattar; Lee, Sang Soo; Rafique, Rashad

    2016-05-01

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America and successfully adapted to diverse environmental conditions. It offers the potential to reduce soil surface carbon dioxide (CO2) fluxes and mitigate climate change. However, information on how these CO2 fluxes respond to changing climate is still lacking. In this study, CO2 fluxes were monitored continuously from 2011 through 2014 using high frequency measurements from Switchgrass land seeded in 2008 on an experimental site that has been previously used for soybean (Glycine max L.) in South Dakota, USA. DAYCENT, a process-based model, was used to simulate CO2 fluxes. An improved methodology CPTE [Combining Parameter estimation (PEST) with "Trial and Error" method] was used to calibrate DAYCENT. The calibrated DAYCENT model was used for simulating future CO2 emissions based on different climate change scenarios. This study showed that: (i) the measured soil CO2 fluxes from Switchgrass land were higher for 2012 which was a drought year, and these fluxes when simulated using DAYCENT for long-term (2015-2070) provided a pattern of polynomial curve; (ii) the simulated CO2 fluxes provided different patterns with temperature and precipitation changes in a long-term, (iii) the future CO2 fluxes from Switchgrass land under different changing climate scenarios were not significantly different, therefore, it can be concluded that Switchgrass grown for longer durations could reduce changes in CO2 fluxes from soil as a result of temperature and precipitation changes to some extent. Copyright © 2015. Published by Elsevier B.V.

  6. CYGNSS Surface Wind Observations and Surface Flux Estimates within Low-Latitude Extratropical Cyclones

    Science.gov (United States)

    Crespo, J.; Posselt, D. J.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.

  7. Relationships between Hg Air-surface exchange, Soil Moisture and Precipitation at a Background Vegetated Site in South-Eastern Australia.

    Science.gov (United States)

    Macsween, K.; Edwards, G. C.

    2017-12-01

    Despite many decades of research, the controlling mechanisms of mercury (Hg) air-surface exhange are still poorly understood. Particularly in Australian ecosystems where there are few anthropogenic inputs. A clear understanding of these mechanisms is vital for accurate representation in the global Hg models, particularly regarding re-emission. Water is known to have a considerable influence on Hg exchange within a terrestrial ecosystem. Precipitation has been found to cause spikes is Hg emissions during the initial stages of rain event. While, Soil moisture content is known to enhance fluxes between 15 and 30% Volumetric soil water (VSW), above which fluxes become suppressed. Few field experiments exist to verify these dominantly laboratory or controlled experiments. Here we present work looking at Hg fluxes over an 8-month period at a vegetated background site. The aim of this study is to identify how changes to precipitation intensity and duration, coupled with variable soil moisture content may influence Hg flux across seasons. As well as the influence of other meteorological variables. Experimentation was undertaken using aerodynamic gradient micrometeorological flux method, avoiding disruption to the surface, soil moisture probes and rain gauge measurements to monitor alterations to substrate conditions. Meteorological and air chemistry variables were also measured concurrently throughout the duration of the study. During the study period, South-Eastern Australia experienced several intense east coast low storm systems during the Autumn and Spring months and an unusually dry winter. VSW rarely reached above 30% even following the intense rainfall experienced during the east coast lows. The generally dry conditions throughout winter resulted in an initial spike in Hg emissions when rainfall occurred. Fluxes decreased shortly after the rain began but remained slightly elevated. Given the reduced net radiation and cooler temperatures experienced during the winter

  8. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  9. Validation of a station-prototype designed to integrate temporally soil N2O fluxes: IPNOA Station prototype.

    Science.gov (United States)

    Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico

    2016-04-01

    Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014

  10. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

    DEFF Research Database (Denmark)

    Zhan, Wenfeng; Zhou, Ji; Ju, Weimin

    2014-01-01

    Subsurface soil temperature is a key variable of land surface processes and not only responds to but also modulates the interactions of energy fluxes at the Earth's surface. Thermal remote sensing has traditionally been regarded as incapable of detecting the soil temperature beneath the skin-surf...

  11. COS as a proxy for photosynthesis: foliage and soil contributions to ecosystem COS flux

    Science.gov (United States)

    Erkkilä, Kukka-Maaria; Kooijmans, Linda; Aalto, Juho; Chen, Huilin; Mammarella, Ivan; Maseyk, Kadmiel; Pihlatie, Mari; Seibt, Ulli; Sun, Wu; Vesala, Timo

    2017-04-01

    Traditionally the photosynthetic sink of CO2 (described by gross primary production, GPP) is defined from ecosystem scale measurements of CO2 flux taking into account respiration defined from the nighttime CO2 flux data. The problem with this method is the accurate determination of ecosystem respiration, since the respiratory processes can vary remarkably between daytime and nighttime. Carbonyl sulfide (COS) has been suggested to be a useful proxy for GPP since plants take up COS in a similar way as CO2 via their stomata. In contrast to CO2, there is no back-flux (respiration) of COS by plants and GPP can be calculated directly from COS flux measurements. However, leaf relative uptake (LRU) ratio, that is used when converting COS flux into GPP with a linear relation, has been treated as a constant and needs to be better determined for more accurate GPP estimates. This presentation shows the preliminary results of a measurement campaign organized in Hyytiälä Scots pine (Pinus sylvestris) stand in southern Finland during the growing season 2016. COS fluxes from the soil were measured with soil chambers over different vegetations. Pine and aspen branches were measured with branch chambers and ecosystem scale exchange was monitored via eddy covariance measurements. Preliminary results show night-time ecosystem uptake of COS (negative flux) that is about 15% of the daily uptake. Soil chambers show constantly negative COS fluxes, although there is no uptake of CO2 and the soil flux is about 25% of the total ecosystem flux. Pine and aspen branches seem to be sinks of COS throughout the day indicating open stomata during night-time. These findings suggest that negative ecosystem COS flux can be explained by soil and vegetation uptake during night-time. From branch chamber measurements we were able to calculate the leaf relative uptake (LRU) separately for aspen and pine. We find that LRU has an exponential correlation with photosynthetic active radiation (PAR) when PAR

  12. Carbon fluxes of surfaces vs. ecosystems. Advantages of measuring eddy covariance and soil respiration simultaneously in dry grassland ecosystems

    Czech Academy of Sciences Publication Activity Database

    Nagy, Z.; Pintér, K.; Pavelka, Marian; Dařenová, Eva; Balogh, J.

    2011-01-01

    Roč. 8, č. 9 (2011), s. 2523-2534 ISSN 1726-4170 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : carbon fluxes * ecosystems * grassland ecoystems * measuring eddy covariance * soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.859, year: 2011

  13. Modeling Water Flux at the Base of the Rooting Zone for Soils with Varying Glacial Parent Materials

    Science.gov (United States)

    Naylor, S.; Ellett, K. M.; Ficklin, D. L.; Olyphant, G. A.

    2013-12-01

    Soils of varying glacial parent materials in the Great Lakes Region (USA) are characterized by thin unsaturated zones and widespread use of agricultural pesticides and nutrients that affect shallow groundwater. To better our understanding of the fate and transport of contaminants, improved models of water fluxes through the vadose zones of various hydrogeologic settings are warranted. Furthermore, calibrated unsaturated zone models can be coupled with watershed models, providing a means for predicting the impact of varying climate scenarios on agriculture in the region. To address these issues, a network of monitoring sites was developed in Indiana that provides continuous measurements of precipitation, potential evapotranspiration (PET), soil volumetric water content (VWC), and soil matric potential to parameterize and calibrate models. Flux at the base of the root zone is simulated using two models of varying complexity: 1) the HYDRUS model, which numerically solves the Richards equation, and 2) the soil-water-balance (SWB) model, which assumes vertical flow under a unit gradient with infiltration and evapotranspiration treated as separate, sequential processes. Soil hydraulic parameters are determined based on laboratory data, a pedo-transfer function (ROSETTA), field measurements (Guelph permeameter), and parameter optimization. Groundwater elevation data are available at three of six sites to establish the base of the unsaturated zone model domain. Initial modeling focused on the groundwater recharge season (Nov-Feb) when PET is limited and much of the annual vertical flux occurs. HYDRUS results indicate that base of root zone fluxes at a site underlain by glacial ice-contact parent materials are 48% of recharge season precipitation (VWC RMSE=8.2%), while SWB results indicate that fluxes are 43% (VWC RMSE=3.7%). Due in part to variations in surface boundary conditions, more variable fluxes were obtained for a site underlain by alluvium with the SWB model (68

  14. Measurement of DDT fluxes from a historically treated agricultural soil in Canada.

    Science.gov (United States)

    Kurt-Karakus, Perihan Binnur; Bidleman, Terry F; Staebler, Ralf M; Jones, Kevin C

    2006-08-01

    Organocohlorine pesticide (OCP) residues in agricultural soils are of concern due to the uptake of these compounds by crops, accumulation in the foodchain, and reemission from soils to the atmosphere. Although it has been about three decades since DDT was banned for agricultural uses in Canada, residues persist in soils of some agricultural areas. Emission of DDT compounds to the atmosphere from a historically treated field in southern Ontario was determined in fall 2004 and spring 2005. The sigmaDDTs concentration in the high organic matter (71%) soil was 19 +/- 4 microg g(-1) dry weight. Concentration gradients in the air were measured at 5, 20, 72, and 200 cm above soil using glass fiber filter-polyurethane foam cartridges. Air concentrations of sigmaDDTs averaged 5.7 +/- 5.1 ng m(-3) at 5 cm and decreased to 1.3 +/- 0.8 ng m(-3) at 200 cm and were 60-300 times higher than levels measured at a background site 30 km away. Soil-air fugacity fractions, fs/(fs + fa), of p,p'-DDE, p,p'-DDD, and p,p'-DDT ranged from 0.42 to 0.91 using air concentrations measured above the soil and > or = 0.99 using background air concentrations, indicating that the soil was a net source to the background air. Fractionation of DDT compounds during volatilization was predicted using either liquid-phase vapor pressures (PL) or octanol-air partition coefficients (KOA). Relative emissions of p,p'-DDE and p,p'-DDT were better described by PL than KOA, whereas either PL or KOA successfully accounted for the fractionation of p,p'-DDT and o,p'-DDT. Soil-to-air fluxes were calculated from air concentration gradients and turbulent exchange coefficients determined from micrometeorological measurements. Average fluxes of sigmaDDTs were 90 +/- 24 ng m(-2) h(-1) in fall and 660 +/- 370 ng m(-2) h(-1) in spring. Higher soil temperatures in spring accounted for the higher fluxes. A volatilization half-life of approximately 200 y was estimated for sigmaDDT in the upper 5 cm of the soil column, assuming

  15. Surface renewal: an advanced micrometeorological method for measuring and processing field-scale energy flux density data.

    Science.gov (United States)

    McElrone, Andrew J; Shapland, Thomas M; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L

    2013-12-12

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn.

  16. LBA-ECO TG-07 Soil CO2 Flux by Automated Chamber, Para, Brazil: 2001-2003

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    Measurements of the soil-atmosphere flux of CO2 were made at the km 67 flux tower site in the Tapajos National Forest, Santarem, Para, Brazil. Eight chambers were set up to measure trace gas exchange between the soil and atmosphere about 5 times a day (during daylight and night) at this undisturbed forest site from April 2001 to April 2003. CO2 soil efflux data are...

  17. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  18. Estimating surface fluxes using eddy covariance and numerical ogive optimization

    DEFF Research Database (Denmark)

    Sievers, J.; Papakyriakou, T.; Larsen, Søren Ejling

    2015-01-01

    Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low-frequency con......Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low...

  19. Evaluation of surface layer flux parameterizations using in-situ observations

    Science.gov (United States)

    Katz, Jeremy; Zhu, Ping

    2017-09-01

    Appropriate calculation of surface turbulent fluxes between the atmosphere and the underlying ocean/land surface is one of the major challenges in geosciences. In practice, the surface turbulent fluxes are estimated from the mean surface meteorological variables based on the bulk transfer model combined with the Monnin-Obukhov Similarity (MOS) theory. Few studies have been done to examine the extent to which such a flux parameterization can be applied to different weather and surface conditions. A novel validation method is developed in this study to evaluate the surface flux parameterization using in-situ observations collected at a station off the coast of Gulf of Mexico. The main findings are: (a) the theoretical prediction that uses MOS theory does not match well with those directly computed from the observations. (b) The largest spread in exchange coefficients is shown in strong stable conditions with calm winds. (c) Large turbulent eddies, which depend strongly on the mean flow pattern and surface conditions, tend to break the constant flux assumption in the surface layer.

  20. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    Science.gov (United States)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  1. Neoclassical transport coefficients for tokamaks with bean-shaped flux surfaces

    International Nuclear Information System (INIS)

    Chang, C.S.; Kaye, S.M.

    1990-11-01

    Simple analytic representations of the neoclassical transport coefficients for indented flux surfaces are presented. It is shown that a transport coefficient for an indented flux surface can be expressed in terms of a linear combination of the previously known transport coefficients for two nonindented flux surfaces. Numerical calculations based on actual equilibria from the PBX-M tokamak indicate that, even for modestly indented flux surfaces, the ion neoclassical thermal transport can be over a factor of two smaller than in a circular plasma with the same midplane radius or with the equivalent areas. 6 refs., 5 figs., 1 tab

  2. CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa

    Directory of Open Access Journals (Sweden)

    R. Valentini

    2010-11-01

    Full Text Available The impact of fire on soil fluxes of CO2, CH4 and N2O was investigated in a tropical grassland in Congo Brazzaville during two field campaigns in 2007–2008. The first campaign was conducted in the middle of the dry season and the second at the end of the growing season, respectively one and eight months after burning. Gas fluxes and several soil parameters were measured in each campaign from burned plots and from a close-by control area preserved from fire. Rain events were simulated at each campaign to evaluate the magnitude and duration of the generated gas flux pulses. In laboratory experiments, soil samples from field plots were analysed for microbial biomass, net N mineralization, net nitrification, N2O, NO and CO2 emissions under different water and temperature soil regimes. One month after burning, field CO2 emissions were significantly lower in burned plots than in the control plots, the average daily CH4 flux shifted from net emission in the unburned area to net consumption in burned plots, no significant effect of fire was observed on soil N2O fluxes. Eight months after burning, the average daily fluxes of CO2, CH4 and N2O measured in control and burned plots were not significantly different. In laboratory, N2O fluxes from soil of burned plots were significantly higher than fluxes from soil of unburned plots only above 70% of maximum soil water holding capacity; this was never attained in the field even after rain simulation. Higher NO emissions were measured in the lab in soil from burned plots at both 10% and 50% of maximum soil water holding capacity. Increasing the incubation temperature from 25 °C to 37 °C negatively affected microbial growth, mineralization and nitrification activities but enhanced N2O and CO2 production. Results indicate that fire did not increase post-burning soil GHG emissions in this tropical grasslands characterized by acidic, well drained and nutrient-poor soil.

  3. Modeling energy fluxes in heterogeneous landscapes employing a mosaic approach

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial diversity of soil and land use types are high, e.g. in Central Europe. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N 5.0. The aim of this study was to analyze the impact of the characteristics of two managed fields, planted with winter wheat and potato, on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N 5.0 to an analytical footprint model. The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). This approach accounts for the differences of the two soil types, of land use managements, and of canopy properties due to footprint size dynamics. Our preliminary simulation results show that a mosaic approach can improve modeling and analyzing energy fluxes when the land surface is heterogeneous. In this case our applied method is a promising approach to extend weather and climate models on the regional and on the global scale.

  4. BOREAS TGB-12 Soil Carbon and Flux Data of NSA-MSA in Raster Format

    Science.gov (United States)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Rapalee, Gloria; Davidson, Eric; Harden, Jennifer W.; Trumbore, Susan E.; Veldhuis, Hugo

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites. This data set provides: (1) estimates of soil carbon stocks by horizon based on soil survey data and analyses of data from individual soil profiles; (2) estimates of soil carbon fluxes based on stocks, fire history, drain-age, and soil carbon inputs and decomposition constants based on field work using radiocarbon analyses; (3) fire history data estimating age ranges of time since last fire; and (4) a raster image and an associated soils table file from which area-weighted maps of soil carbon and fluxes and fire history may be generated. This data set was created from raster files, soil polygon data files, and detailed lab analysis of soils data that were received from Dr. Hugo Veldhuis, who did the original mapping in the field during 1994. Also used were soils data from Susan Trumbore and Jennifer Harden (BOREAS TGB-12). The binary raster file covers a 733-km 2 area within the NSA-MSA.

  5. A soil moisture-rainfall feedback mechanism. 1. Theory and observations

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.

    1998-01-01

    This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, the proposed hypothesis implies a positive feedback mechanism between soil moisture and rainfall. This mechanism is based on considerations of the energy balance at the land-atmosphere boundary, in contrast to similar mechanisms that were proposed in the past and that were based on the concepts of water balance and precipitation recycling. The control of soil moisture on surface albedo and Bowen ratio is the fundamental basis of the proposed soil moisture-rainfall feedback mechanism. The water content in the upper soil layer affects these two important properties of the land surface such that both variables decrease with any increase in the water content of the top soil layer. The direct effect of soil moisture on surface albedo implies that wet soil moisture conditions enhance net solar radiation. The direct effect of soil moisture on Bowen ratio dictates that wet soil moisture conditions would tend to enhance net terrestrial radiation at the surface through cooling of surface temperature, reduction of upwards emissions of terrestrial radiation, and simultaneous increase in atmospheric water vapor content and downwards flux of terrestrial radiation. Thus, under wet soil moisture conditions, both components of net radiation are enhanced, resulting in a larger total flux of heat from the surface into the boundary layer. This total flux represents the sum of the corresponding sensible and latent heat fluxes. Simultaneously, cooling of surface temperature should be associated with a smaller sensible heat flux and a smaller depth of the boundary layer

  6. Effects of atmospheric deposition nitrogen flux and its composition on soil solution chemistry from a red soil farmland, southeast China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; Chan, Andrew; Mao, Jingdong

    2015-12-01

    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.

  7. Carbon dioxide flux measurements from a coastal Douglas-fir forest floor

    International Nuclear Information System (INIS)

    Drewitt, G.B.

    2002-01-01

    This thesis examined the process that affects the exchange of carbon between the soil and the atmosphere with particular attention to the large amounts of carbon stored in soils in the form of decaying organic matter. This forest floor measuring study was conducted in 2000 at a micro-meteorological tower flux site in a coastal temperature Douglas-fir forest. The measuring study involved half hourly measurements of both carbon dioxide and below-ground carbon dioxide storage. Measurements were taken at 6 locations between April and December to include a large portion of the growing season. Eddy covariance (EC) measurements of carbon dioxide flux above the forest floor over a two month period in the summer and the autumn were compared with forest floor measurements. Below-ground carbon dioxide mixing ratios of soil air were measured at 6 depths between 0.02 to 1 m using gas diffusion probes and a syringe sampling method. Maximum carbon dioxide fluxes measured by the soil chambers varied by a factor of 3 and a high spatial variability in soil carbon dioxide flux was noted. Forest floor carbon dioxide fluxes measured by each of the chambers indicated different sensitivities to soil temperature. Hysteresis in the flux temperature relationship over the year was evident. Reliable below-canopy EC measurements of the forest floor carbon dioxide flux were difficult to obtain because of the every low wind speeds below the forest canopy. The amount of carbon dioxde present in the soil increased rapidly with depth near the surface but less rapidly deeper in the soil. It was suggested that approximately half of the carbon dioxide produced below-ground comes from between the soil surface and the first 0.15 m of depth. Carbon dioxide fluxes from the floor of a Douglas-fir forest were found to be large compared to other, less productive ecosystems

  8. LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....

  9. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  10. Satellite-based Calibration of Heat Flux at the Ocean Surface

    Science.gov (United States)

    Barron, C. N.; Dastugue, J. M.; May, J. C.; Rowley, C. D.; Smith, S. R.; Spence, P. L.; Gremes-Cordero, S.

    2016-02-01

    Model forecasts of upper ocean heat content and variability on diurnal to daily scales are highly dependent on estimates of heat flux through the air-sea interface. Satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. Traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle. Subsequent evolution depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. The COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates) endeavors to correct ocean forecast bias through a responsive error partition among surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using Navy operational global or regional atmospheric forcing. COFFEE addresses satellite-calibration of surface fluxes to estimate surface error covariances and links these to the ocean interior. Experiment cases combine different levels of flux calibration with different assimilation alternatives. The cases may use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger

  11. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest

    Science.gov (United States)

    Harden, J.W.; O'Neill, K. P.; Trumbore, S.E.; Veldhuis, H.; Stocks, B.J.

    1997-01-01

    We used input and decomposition data from 14C studies of soils to determine rates of vertical accumulation of moss combined with carbon storage inventories on a sequence of burns to model how carbon accumulates in soils and moss after a stand-killing fire. We used soil drainage - moss associations and soil drainage maps of the old black spruce (OBS) site at the BOREAS northern study area (NSA) to areally weight the contributions of each moderately well drained, feathermoss areas; poorly drained sphagnum - feathermoss areas; and very poorly drained brown moss areas to the carbon storage and flux at the OBS NSA site. On this very old (117 years) complex of black spruce, sphagnum bog veneer, and fen systems we conclude that these systems are likely sequestering 0.01-0.03 kg C m-2 yr-' at OBS-NSA today. Soil drainage in boreal forests near Thompson, Manitoba, controls carbon storage and flux by controlling moss input and decomposition rates and by controlling through fire the amount and quality of carbon left after burning. On poorly drained soils rich in sphagnum moss, net accumulation and long-term storage of carbon is higher than on better drained soils colonized by feathermosses. The carbon flux of these contrasting ecosystems is best characterized by soil drainage class and stand age, where stands recently burned are net sources of CO2, and maturing stands become increasingly stronger sinks of atmospheric CO2. This approach to measuring carbon storage and flux presents a method of scaling to larger areas using soil drainage, moss cover, and stand age information.

  12. Grazing reduces soil greenhouse gas fluxes in global grasslands: a meta-analysis

    Science.gov (United States)

    Tang, Shiming; Tian, Dashuan; Niu, Shuli

    2017-04-01

    Grazing causes a worldwide degradation in grassland and likely alters soil greenhouse gas fluxes (GHGs). However, the general patterns of grazing-induced changes in grassland soil GHGs and the underlying mechanisms remain unclear. Thus, we synthesized 63 independent experiments in global grasslands that examined grazing impacts on soil GHGs (CO2, CH4 and N2O). We found that grazing with light or moderate intensity did not significantly influence soil GHGs, but consistently depressed them under heavy grazing, reducing CO2 emission by 10.55%, CH4 uptake by 19.24% and N2O emission by 28.04%. The reduction in soil CO2 was mainly due to decreased activity in roots and microbes (soil respiration per unit root and microbial biomass), which was suppressed by less water availability due to higher soil temperature induced by lower community cover under heavy grazing. N2O emission decreased with grazing-caused decline in soil total N. The inhibitory effect on methanotroph activities by water stress is responsible for the decreased CH4 uptake. Furthermore, grazing duration and precipitation also influenced the direction and magnitude of responses in GHGs fluxes. Overall, our results indicate that the reduction in soil CO2 and N2O emission under heavy grazing is partially compensated by the decrease in CH4 uptake, which is mainly regulated by variations in soil moisture.

  13. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri.

    Science.gov (United States)

    Nkonglolo, Nsalambi Vakanda; Johnson, Shane; Schmidt, Kent; Eivazi, Frieda

    2010-01-01

    Fluctuations of greenhouse gases emissions and soil properties occur at short spatial and temporal scales, however, results are often reported for larger scales studies. We monitored CO2, CH4, and N2O fluxes and soil temperature (T), thermal conductivity (K), resistivity (R) and thermal diffusivity (D) from 2004 to 2006 in a pasture. Soil air samples for determination of CO2, CH4 and N20 concentrations were collected from static and vented chambers and analyzed within two hours of collection with a gas chromatograph. T, K, R and D were measured in-situ using a KD2 probe. Soil samples were also taken for measurements of soil chemical and physical properties. The pasture acted as a sink in 2004, a source in 2005 and again a sink of CH4 in 2006. CO2 and CH4 were highest, but N2O as well as T, K and D were lowest in 2004. Only K was correlated with CO2 in 2004 while T correlated with both N2O (r = 0.76, p = 0.0001) and CO2 (r = 0.88, p = 0.0001) in 2005. In 2006, all gases fluxes were significantly correlated with T, K and R when the data for the entire year were considered. However, an in-depth examination of the data revealed the existence of month-to-month shifts, lack of correlation and differing spatial structures. These results stress the need for further studies on the relationship between soil properties and gases fluxes. K and R offer a promise as potential controlling factors for greenhouse gases fluxes in this pasture.

  14. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  15. Soil nitrogen oxide fluxes from lowland forests converted to smallholder rubber and oil palm plantations in Sumatra, Indonesia

    Science.gov (United States)

    Hassler, Evelyn; Corre, Marife D.; Kurniawan, Syahrul; Veldkamp, Edzo

    2017-06-01

    Oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations cover large areas of former rainforest in Sumatra, Indonesia, supplying the global demand for these crops. Although forest conversion is known to influence soil nitrous oxide (N2O) and nitric oxide (NO) fluxes, measurements from oil palm and rubber plantations are scarce (for N2O) or nonexistent (for NO). Our study aimed to (1) quantify changes in soil-atmosphere fluxes of N oxides with forest conversion to rubber and oil palm plantations and (2) determine their controlling factors. In Jambi, Sumatra, we selected two landscapes that mainly differed in texture but were both on heavily weathered soils: loam and clay Acrisol soils. Within each landscape, we investigated lowland forests, rubber trees interspersed in secondary forest (termed as jungle rubber), both as reference land uses and smallholder rubber and oil palm plantations as converted land uses. In the loam Acrisol landscape, we conducted a follow-on study in a large-scale oil palm plantation (called PTPN VI) for comparison of soil N2O fluxes with smallholder oil palm plantations. Land-use conversion to smallholder plantations had no effect on soil N-oxide fluxes (P = 0. 58 to 0.76) due to the generally low soil N availability in the reference land uses that further decreased with land-use conversion. Soil N2O fluxes from the large-scale oil palm plantation did not differ with those from smallholder plantations (P = 0. 15). Over 1-year measurements, the temporal patterns of soil N-oxide fluxes were influenced by soil mineral N and water contents. Across landscapes, annual soil N2O emissions were controlled by gross nitrification and sand content, which also suggest the influence of soil N and water availability. Soil N2O fluxes (µg N m-2 h-1) were 7 ± 2 to 14 ± 7 (reference land uses), 6 ± 3 to 9 ± 2 (rubber), 12 ± 3 to 12 ± 6 (smallholder oil palm) and 42 ± 24 (large-scale oil palm). Soil NO fluxes (µg N m-2 h-1) were -0.6

  16. Plasmas fluxes to surfaces for an oblique magnetic field

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Stangeby, P.C.; Elder, J.D.; Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M.

    1992-07-01

    The poloidal and toroidal spatial distributions of D α , He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ''Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface

  17. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem

    Science.gov (United States)

    Tucker, Colin; McHugh, Theresa A.; Howell, Armin; Gill, Richard; Weber, Bettina; Belnap, Jayne; Grote, Ed; Reed, Sasha C.

    2017-01-01

    Carbon cycling associated with biological soil crusts, which occupy interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the ‘mantle of fertility’), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report a multi-sensor approach to simultaneously measuring temperature and moisture of this biocrust surface layer (0–2 mm), and the deeper soil profile, concurrent with automated measurement of surface soil CO2effluxes. Our results illuminate robust relationships between biocrust water content and field CO2 pulses that have previously been difficult to detect and explain. All observed CO2 pulses over the measurement period corresponded to surface wetting events, including when the wetting events did not penetrate into the soil below the biocrust layer (0–2 mm). The variability of temperature and moisture of the biocrust surface layer was much greater than even in the 0–5 cm layer of the soil beneath the biocrust, or deeper in the soil profile. We therefore suggest that coupling surface measurements of biocrust moisture and temperature to automated CO2flux measurements may greatly improve our understanding of the climatic sensitivity of carbon cycling in biocrusted interspaces in our study region, and that this method may be globally relevant and applicable.

  18. Soil modern evolution impact on the C fluxes in Chernozems at the Middle Volga Region

    Science.gov (United States)

    Ramazanov, Sabir; Yashin, Ivan; Atenbekov, Ramiz; Vasenev, Ivan

    2017-04-01

    There are results of long-term stationary field research on the aridization impact on the carbon fluxes in the topsoil of Chernozemic soils in the representative agricultural and native forest-steppe landscapes in conditions of the Middle Volga region of Russia (educational-experimental farm "Mummovskoe", Saratov region). Especial attention is dedicated to the water-soluble organic substances (WSOS) which are better available for soil microorganisms that utilize them, enhancing CO2 emission. Dominated in the Middle-Volga natural and agro-landscapes soil conditions are unfavorable for mobile humic acid production and accumulation: organic acids and polyphenols gradually mobilized into solution from root excretions and crop residues or woody plant litter are quickly neutralized by calcium, magnesium or sodium ions in topsoil. Most arable Chernozems of the Middle-Volga region are actively degraded due to both topsoil CO2 emission and water-soluble organic substances fluxes in form of sodium and calcium humates and fulvates, as evidenced by sorption lysimetry data on the WSOS fluxes in 15-21 g/m2 over the vegetation period. Additional researches are necessary to evaluate the ratio between soil organic carbon losses through soil erosion processes, topsoil CO2 emission and WSOS profile and lateral fluxes in conditions of different land-use practice and climate conditions to develop the modern climate-smart farming systems in the Middle-Volga region agrolandscapes with potentially very prolific Chernozemic soils.

  19. Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach

    Directory of Open Access Journals (Sweden)

    Rose Luiza Moraes Tavares

    Full Text Available ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80 for predicted and observed values.

  20. Using greenhouse gas fluxes to define soil functional types

    Energy Technology Data Exchange (ETDEWEB)

    Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben; Vargas, Rodrigo

    2017-12-04

    Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variability of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.

  1. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam

    Science.gov (United States)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander

    2016-04-01

    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the

  2. Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands

    Directory of Open Access Journals (Sweden)

    D. Imer

    2013-09-01

    Full Text Available A profound understanding of temporal and spatial variabilities of soil carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O fluxes between terrestrial ecosystems and the atmosphere is needed to reliably quantify these fluxes and to develop future mitigation strategies. For managed grassland ecosystems, temporal and spatial variabilities of these three soil greenhouse gas (GHG fluxes occur due to changes in environmental drivers as well as fertilizer applications, harvests and grazing. To assess how such changes affect soil GHG fluxes at Swiss grassland sites, we studied three sites along an altitudinal gradient that corresponds to a management gradient: from 400 m a.s.l. (intensively managed to 1000 m a.s.l. (moderately intensive managed to 2000 m a.s.l. (extensively managed. The alpine grassland was included to study both effects of extensive management on CH4 and N2O fluxes and the different climate regime occurring at this altitude. Temporal and spatial variabilities of soil GHG fluxes and environmental drivers on various timescales were determined along transects of 16 static soil chambers at each site. All three grasslands were N2O sources, with mean annual soil fluxes ranging from 0.15 to 1.28 nmol m−2 s−1. Contrastingly, all sites were weak CH4 sinks, with soil uptake rates ranging from −0.56 to −0.15 nmol m−2 s−1. Mean annual soil and plant respiration losses of CO2, measured with opaque chambers, ranged from 5.2 to 6.5 μmol m−2 s−1. While the environmental drivers and their respective explanatory power for soil N2O emissions differed considerably among the three grasslands (adjusted r2 ranging from 0.19 to 0.42, CH4 and CO2 soil fluxes were much better constrained (adjusted r2 ranging from 0.46 to 0.80 by soil water content and air temperature, respectively. Throughout the year, spatial heterogeneity was particularly high for soil N2O and CH4 fluxes. We found permanent hot spots for soil N2O emissions as well as

  3. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  4. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    Directory of Open Access Journals (Sweden)

    N. Wever

    2017-08-01

    Full Text Available The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in

  5. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    Science.gov (United States)

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  6. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  7. [Effects of fertilization on soil CO2 flux in Castanea mollissima stand].

    Science.gov (United States)

    Zhang, Jiao-Jiao; Li, Yong-Fu; Jiang, Pei-Kun; Zhou, Guo-Mo; Shen, Zhen-Ming; Liu, Juan; Wang, Zhan-Lei

    2013-09-01

    In June 2011-June 2012, a fertilization experiment was conducted in a typical Castanea mollissima stand in Lin' an of Zhejiang Province, East China to study the effects of inorganic and organic fertilization on the soil CO2 flux and the relationships between the soil CO2 flux and environmental factors. Four treatments were installed, i. e., no fertilization (CK), inorganic fertilization (IF), organic fertilization (OF), half organic plus half inorganic fertilization (OIF). The soil CO2 emission rate was determined by the method of static closed chamber/GC technique, and the soil temperature, soil moisture content, and soil water-soluble organic carbon (WSOC) concentration were determined by routine methods. The soil CO2 emission exhibited a strong seasonal pattern, with the highest rate in July or August and the lowest rate in February. The annual accumulative soil CO2 emission in CK was 27.7 t CO2 x hm(-2) x a(-1), and that in treatments IF, OF, and OIF was 29.5%, 47.0%, and 50.7% higher than the CK, respectively. The soil WSOC concentration in treatment IF (105.1 mg kg(-1)) was significantly higher than that in CK (76.6 mg x kg(-1)), but was obviously lower than that in treatments OF (133.0 mg x kg(-1)) and OIF (121.2 mg x kg(-1)). The temperature sensitivity of respiration (Q10) in treatments CK, IF, OF, and OIF was 1.47, 1.75, 1.49, and 1.57, respectively. The soil CO2 emission rate had significant positive correlations with the soil temperature at the depth of 5 cm and the soil WSOC concentration, but no significant correlation with soil moisture content. The increase of the soil WSOC concentration caused by fertilization was probably one of the reasons for the increase of soil CO2 emission from the C. mollissima stand.

  8. Soil Dissolved Organic Carbon Fluxes are Controlled by both Precipitation and Longer-Term Climate Effects on Boreal Forest Ecosystems

    Science.gov (United States)

    Hotchkiss, E. R.; Ziegler, S. E.; Edwards, K. A.; Bowering, K.

    2017-12-01

    Water acts as a control on the cycling of organic carbon (OC). Forest productivity responses to climate change are linked to water availability while water residence time is a major control on OC loss in aquatic ecosystems. However, controls on the export of terrestrial OC to the aquatic environment remains poorly understood. Transport of dissolved OC (DOC) through soils both vertically to deeper soil horizons and into aquatic systems is a key flux of terrestrial OC, but the climate drivers controlling OC mobilized from soils is poorly understood. We installed zero-tension lysimeters across similar balsam fir forest sites within three regions that span a MAT gradient of 5.2˚C and MAP of 1050-1500 mm. Using soil water collected over all seasons for four years we tested whether a warmer and wetter climate promotes greater DOC fluxes in ecosystems experiencing relatively high precipitation. Variability within and between years was compared to that observed across climates to test the sensitivity of this flux to shorter relative to longer-term climate effects on this flux. The warmest and wettest southern site exhibited the greatest annual DOC flux (25 to 28 g C m-2 y-1) in contrast to the most northern site (8 to 10 g C m -2 y-1). This flux represented 10% of litterfall C inputs across sites and surpassed the DOC export from associated forested headwater streams (1 to 16 g C m-2 y-1) suggesting terrestrial to aquatic interface processing. Historical climate and increased soil C inputs explain the greater DOC flux in the southern region. Even in years with comparable annual precipitation among regions the DOC flux differed by climate region. Furthermore, neither quantity nor form of precipitation could explain inter-annual differences in DOC flux within each region. Region specific relationships between precipitation and soil water flux instead suggest historical climate effects may impact soil water transport efficiency thereby controlling the regional variation in

  9. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation

  10. Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time

    OpenAIRE

    M. L. Kavvas; A. Ercan; J. Polsinelli

    2017-01-01

    In this study dimensionally consistent governing equations of continuity and motion for transient soil water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical di...

  11. Climate-induced hotspots in surface energy fluxes from 1948 to 2000

    International Nuclear Information System (INIS)

    Sheng Li; Liu Shuhua; Liu Heping

    2010-01-01

    Understanding how land surfaces respond to climate change requires knowledge of land-surface processes, which control the degree to which interannual variability and mean trends in climatic variables affect the surface energy budget. We use the latest version of the Community Land Model version 3.5 (CLM3.5), which is driven by the latest updated hybrid reanalysis-observation atmospheric forcing dataset constructed by Princeton University, to obtain global distributions of the surface energy budget from 1948 to 2000. We identify climate change hotspots and surface energy flux hotspots from 1948 to 2000. Surface energy flux hotspots, which reflect regions with strong changes in surface energy fluxes, reveal seasonal variations with strong signals in winter, spring, and autumn and weak ones in summer. Locations for surface energy flux hotspots are not, however, fully linked with those for climate change hotspots, suggesting that only in some regions are land surfaces more responsive to climate change in terms of interannual variability and mean trends.

  12. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  13. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  14. Long-term soil gas flux and root mortality, Tapajos National Forest

    Science.gov (United States)

    W. L. Silver; A. W. Thompson; M. E. McGroddy; R. K. Varner; J. R. Robertson; J. D. Dias; H. Silva; P. Crill; M. Keller

    2012-01-01

    This data set reports measurements of trace gas fluxes of methane (CH4), nitric oxide (N2O), nitrous oxide (NO), carbon dioxide (CO2) from soils at a study site in the Tapajos National Forest (TNF), near the km 83 on the Santarem-Cuiaba Highway south of Santarem, Para, Brazil. Data for root mass and carbon content, soil nitrogen (N), nitrification, and moisture content...

  15. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture

    Science.gov (United States)

    Gherboudj, Imen; Beegum, S. Naseema; Marticorena, Beatrice; Ghedira, Hosni

    2015-10-01

    The mineral dust emissions from arid/semiarid soils were simulated over the MENA (Middle East and North Africa) region using the dust parameterization scheme proposed by Alfaro and Gomes (2001), to quantify the effect of the soil moisture and clay fraction in the emissions. For this purpose, an extensive data set of Soil Moisture and Ocean Salinity soil moisture, European Centre for Medium-Range Weather Forecasting wind speed at 10 m height, Food Agricultural Organization soil texture maps, MODIS (Moderate Resolution Imaging Spectroradiometer) Normalized Difference Vegetation Index, and erodibility of the soil surface were collected for the a period of 3 years, from 2010 to 2013. Though the considered data sets have different temporal and spatial resolution, efforts have been made to make them consistent in time and space. At first, the simulated sandblasting flux over the region were validated qualitatively using MODIS Deep Blue aerosol optical depth and EUMETSAT MSG (Meteosat Seciond Generation) dust product from SEVIRI (Meteosat Spinning Enhanced Visible and Infrared Imager) and quantitatively based on the available ground-based measurements of near-surface particulate mass concentrations (PM10) collected over four stations in the MENA region. Sensitivity analyses were performed to investigate the effect of soil moisture and clay fraction on the emissions flux. The results showed that soil moisture and soil texture have significant roles in the dust emissions over the MENA region, particularly over the Arabian Peninsula. An inversely proportional dependency is observed between the soil moisture and the sandblasting flux, where a steep reduction in flux is observed at low friction velocity and a gradual reduction is observed at high friction velocity. Conversely, a directly proportional dependency is observed between the soil clay fraction and the sandblasting flux where a steep increase in flux is observed at low friction velocity and a gradual increase is

  16. Characterization of land surface energy fluxes in a tropical lowland rice paddy

    Science.gov (United States)

    Chatterjee, Dibyendu; Tripathi, Rahul; Chatterjee, Sumanta; Debnath, Manish; Shahid, Mohammad; Bhattacharyya, Pratap; Swain, Chinmaya Kumar; Tripathy, Rojalin; Bhattacharya, Bimal K.; Nayak, Amaresh Kumar

    2018-04-01

    A field experiment was conducted in 2015 to study the land surface energy fluxes from tropical lowland rice paddy in eastern India with an objective to determine the mass, momentum, and energy exchange rates between rice paddies and the atmosphere. All the land surface energy fluxes were measured by eddy covariance (EC) system (make Campbell Scientific) in dry season (DS, 1-125 Julian days), dry fallow (DF, 126-181 Julian days), wet season (WS, 182-324 Julian days), and wet fallow (WF, 325-365 Julian days). The rice was cultivated in dry season (January-May) and wet season (July-November) in low wet lands and the ground is kept fallow during the remainder of the year. Results showed that albedo varied from 0.09 to 0.24 and showed positive value from morning 6:00 h until evening 18:00 h. Mean soil temperature (T g) was highest in DF, while the skin temperature (T s) was highest in WS. Average Bowen ratio (B) ranged from 0.21 to 0.64 and large variation in B was observed during the fallow periods as compared to the cropping seasons. The magnitude of aerodynamic, canopy, and climatological resistances increased with the progress of cropping season and their magnitudes decreased during the end of both cropping seasons and found minimum during the fallow periods. At a constant vapor pressure deficit (VPD) at 0.16, 0.18, 0.15, and 0.43 kPa, latent heat flux (LE) initially increased, but later it tended to level off with an increase in VPD. The actual evapotranspiration (ETa) during both the cropping seasons was higher than the fallow period. This study can be used as a source of default values for many land surface energy fluxes which are required in various meteorological or air-quality models for rice paddies. A larger imbalance of energy was observed during the wet season as the energy is stored and perhaps advected in the fresh water.

  17. DO3SE modelling of soil moisture to determine ozone flux to forest trees

    Directory of Open Access Journals (Sweden)

    M. Schaub

    2012-06-01

    Full Text Available The DO3SE (Deposition of O3 for Stomatal Exchange model is an established tool for estimating ozone (O3 deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto, and subsequent O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies, Scots pine (Pinus sylvestris, birch (Betula pendula, aspen (Populus tremuloides, beech (Fagus sylvatica and holm oak (Quercus ilex collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and

  18. The advantages, and challenges, in using multiple techniques in the estimation of surface water-groundwater fluxes.

    Science.gov (United States)

    Shanafield, M.; Cook, P. G.

    2014-12-01

    When estimating surface water-groundwater fluxes, the use of complimentary techniques helps to fill in uncertainties in any individual method, and to potentially gain a better understanding of spatial and temporal variability in a system. It can also be a way of preventing the loss of data during infrequent and unpredictable flow events. For example, much of arid Australia relies on groundwater, which is recharged by streamflow through ephemeral streams during flood events. Three recent surface water/groundwater investigations from arid Australian systems provide good examples of how using multiple field and analysis techniques can help to more fully characterize surface water-groundwater fluxes, but can also result in conflicting values over varying spatial and temporal scales. In the Pilbara region of Western Australia, combining streambed radon measurements, vertical heat transport modeling, and a tracer test helped constrain very low streambed residence times, which are on the order of minutes. Spatial and temporal variability between the methods yielded hyporheic exchange estimates between 10-4 m2 s-1 and 4.2 x 10-2 m2 s-1. In South Australia, three-dimensional heat transport modeling captured heterogeneity within 20 square meters of streambed, identifying areas of sandy soil (flux rates of up to 3 m d-1) and clay (flux rates too slow to be accurately characterized). Streamflow front modeling showed similar flux rates, but averaged over 100 m long stream segments for a 1.6 km reach. Finally, in central Australia, several methods are used to decipher whether any of the flow down a highly ephemeral river contributes to regional groundwater recharge, showing that evaporation and evapotranspiration likely accounts for all of the infiltration into the perched aquifer. Lessons learned from these examples demonstrate the influences of the spatial and temporal variability between techniques on estimated fluxes.

  19. Nitrogen isotope ratios in surface and sub-surface soil horizons

    International Nuclear Information System (INIS)

    Rennie, D.A.; Paul, E.A.

    1975-01-01

    Nitrogen isotope analysis of surface soils and soil-derived nitrate for selected chernozemic and luvisolic soils showed mean delta 15 N values of 11.7 and 11.3, respectively. Isotope enrichment of the total N reached a maximum in the lower B horizon. Sub-soil parent material samples from the one deep profile included in the study indicated a delta 15 N value (NO 3 -N) of 1/3 that of the Ap horizon, at a depth of 180 cm. The delta 15 N of sub-surface soil horizons containing residual fertilizer N were low (-2.2) compared to the surface horizon (9.9). The data reported from this preliminary survey suggest that the natural variations in 15 N abundance between different soils and horizons of the same soil reflect the cumulative effects of soil genesis and soil management. More detailed knowledge and understanding of biological and other processes which control N isotope concentrations in these soils must be obtained before the data reported can be interpreted. (author)

  20. Soil Carbon Dioxide and Methane Fluxes in a Costa Rican Premontane Wet Forest

    Science.gov (United States)

    Hempel, L. A.; Schade, G. W.; Pfohl, A.

    2011-12-01

    A significant amount of the global terrestrial biomass is found in tropical forests, and soil respiration is a vital part of its carbon cycling. However, data on soil trace gas flux rates in the tropics are sparse, especially from previously disturbed regions. To expand the database on carbon cycling in the tropics, this study examined soil flux rate and its variability for CO2 and CH4 in a secondary premontane wet forest south of Arenal Volcano in Costa Rica. Data were collected over a six-week period in June and July 2011 during the transition from dry to wet season. Trace gas sampling was performed at three sub-canopy sites of different elevations. The soil is of volcanic origin with a low bulk density, likely an Andisol. An average KCl pH of 4.8 indicates exchangeable aluminum is present, and a NaF pH>11 indicates the soil is dominated by short-range order minerals. Ten-inch diameter PVC rings were used as static flux chambers without soil collars. To find soil CO2 efflux rates, a battery-powered LICOR 840A CO2-H2O Gas Analyzer was used to take measurements in the field, logging CO2 concentration every ten seconds. Additionally, six, 10-mL Nylon syringes were filled with gas samples at 0, 1, 7, 14, 21, and 28 minutes after closing the chambers. These samples were analyzed the same day with a SRI 8610 Gas Chromatograph for concentrations of CO2 and CH4. The average CO2 efflux calculated was 1.7±0.8E-2 g/m2/min, and did not differ between the applied analytical methods. Soil respiration depended strongly on soil moisture, with decreasing efflux rates at higher water-filled pore space values. An annual soil respiration rate of 8.5E3 g/m2/yr was estimated by applying the observed relationship between soil moisture and CO2 efflux to annual soil moisture measurements. The relatively high respiration rates could be caused by the high soil moisture and low soil bulk density, providing optimal conditions for microbial respiration. Several diurnal sampling periods at

  1. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  2. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  3. Vegetation, soil property and climatic controls over greenhouse gas fluxes in a blanket peatland hosting a wind farm

    Science.gov (United States)

    Armstrong, Alona; Waldron, Susan; Ostle, Nick; Whitaker, Jeanette

    2013-04-01

    Peatlands are important carbon (C) stores, with boreal and subarctic peatlands containing 15-30 % of the world soil carbon stock (Limpens et al., 2008). Research has demonstrated that greenhouse gas (GHG) fluxes in peatlands are influenced by vegetation, soil property and climatic variables, including plant functional type (PFT), water table height and temperature. In this paper we present data from Black Law Wind Farm, Scotland, where we examined the effect of a predicted wind turbine-induced microclimatic gradient and PFT on carbon dioxide (CO2) and methane (CH4) fluxes. Moreover, we determined the role of vegetation, soil property and climatic variables as predictors of the variation in CO2 and CH4 emissions. We measured CO2 and CH4 at 48 plots within Black Law Wind Farm at monthly intervals from May 2011 to April 2012. Four sampling sites were located along a predicted wind turbine-induced microclimatic gradient. At each site four blocks were established, each with plots in areas dominated by mosses, sedges and shrubs. Plant biomass and PFT (vegetation factors); soil moisture, water table height, peat depth, C content, nitrogen (N) content and C:N (soil properties); and soil temperature and photosynthetically active radiation (PAR) (climatic variables) were measured. Analysis of variance (ANOVA) models based on the microclimatic gradient site, PFT and season when measurements were made explained 58 %, 44 % and 49 % of the variation in ecosystem respiration, photosynthesis and CH4, respectively. Site, PFT, season and their interactions were all significant for respiration and photosynthesis (with the exception of the PFT*site interaction) but for CH4 only the main effects were significant. Parsimonious ANOVA models using the biotic, soil property and climatic explanatory data explained 62 %, 55 % and 49 % of the variation in respiration, photosynthesis and CH4, respectively. Published studies (Baidya Roy and Traiteur 2010; Zhou et al., 2012) and preliminary

  4. Surface radiation fluxes in transient climate simulations

    Science.gov (United States)

    Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.

    1999-01-01

    Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.

  5. The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources

    Science.gov (United States)

    Mougin, E.; Hiernaux, P.; Kergoat, L.; Grippa, M.; de Rosnay, P.; Timouk, F.; Le Dantec, V.; Demarez, V.; Lavenu, F.; Arjounin, M.; Lebel, T.; Soumaguel, N.; Ceschia, E.; Mougenot, B.; Baup, F.; Frappart, F.; Frison, P. L.; Gardelle, J.; Gruhier, C.; Jarlan, L.; Mangiarotti, S.; Sanou, B.; Tracol, Y.; Guichard, F.; Trichon, V.; Diarra, L.; Soumaré, A.; Koité, M.; Dembélé, F.; Lloyd, C.; Hanan, N. P.; Damesin, C.; Delon, C.; Serça, D.; Galy-Lacaux, C.; Seghieri, J.; Becerra, S.; Dia, H.; Gangneron, F.; Mazzega, P.

    2009-08-01

    SummaryThe Gourma site in Mali is one of the three instrumented meso-scale sites deployed in West-Africa as part of the African Monsoon Multi-disciplinary Analysis (AMMA) project. Located both in the Sahelian zone sensu stricto, and in the Saharo-Sahelian transition zone, the Gourma meso-scale window is the northernmost site of the AMMA-CATCH observatory reached by the West African Monsoon. The experimental strategy includes deployment of a variety of instruments, from local to meso-scale, dedicated to monitoring and documentation of the major variables characterizing the climate forcing, and the spatio-temporal variability of surface processes and state variables such as vegetation mass, leaf area index (LAI), soil moisture and surface fluxes. This paper describes the Gourma site, its associated instrumental network and the research activities that have been carried out since 1984. In the AMMA project, emphasis is put on the relations between climate, vegetation and surface fluxes. However, the Gourma site is also important for development and validation of satellite products, mainly due to the existence of large and relatively homogeneous surfaces. The social dimension of the water resource uses and governance is also briefly analyzed, relying on field enquiry and interviews. The climate of the Gourma region is semi-arid, daytime air temperatures are always high and annual rainfall amounts exhibit strong inter-annual and seasonal variations. Measurements sites organized along a north-south transect reveal sharp gradients in surface albedo, net radiation, vegetation production, and distribution of plant functional types. However, at any point along the gradient, surface energy budget, soil moisture and vegetation growth contrast between two main types of soil surfaces and hydrologic systems. On the one hand, sandy soils with high water infiltration rates and limited run-off support almost continuous herbaceous vegetation with scattered woody plants. On the other

  6. Assessing soil fluxes using meteoric 10Be: development and application of the Be2D model

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Baken, Stijn; Smolders, Erik; Vanderborght, Jan

    2015-04-01

    Meteoric 10Be is a promising and increasingly popular tool to better understand soil fluxes at different timescales. Unlike other, more classical, methods such as the study of sedimentary archives it enables a direct coupling between eroding and deposition sites. However, meteoric 10Be can be mobilized within the soil. Therefore, spatial variations in meteoric 10Be inventories cannot directly be translated into spatial variations in erosion and sedimentation rates: a correct interpretation of measured 10Be inventories requires that both lateral and vertical movement of meteoric 10Be are accounted for. Here, we present a spatially explicit 2D model that allows to simulate the behaviour of meteoric 10Be in the soil system over timescales of up to 1 million year and use the model to investigate the impact of accelerated erosion on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility within the soil profile, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes. Different types of erosion such as creep, water and tillage erosion are supported. Model runs show that natural soil fluxes can be well reconstructed based on meteoric 10Be inventories, and this for a wide range of geomorphological and pedological conditions. However, extracting signals of human impact and distinguishing them from natural soil fluxes is only feasible when the soil has a rather high retention capacity so that meteoric 10Be is retained in the top soil layer. Application of the Be2D model to an existing data set in the Appalachian Mountains [West et al.,2013] using realistic parameter values for the soil retention capacity as well as for vertical advection resulted in a good agreement between simulated and observed 10Be inventories. This confirms the robustness of the model. We

  7. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    Science.gov (United States)

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  8. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia.

    Science.gov (United States)

    Chen, Guang C; Ulumuddin, Yaya I; Pramudji, Sastro; Chen, Shun Y; Chen, Bin; Ye, Yong; Ou, Dan Y; Ma, Zhi Y; Huang, Hao; Wang, Jing K

    2014-07-15

    The soil to atmosphere fluxes of greenhouse gases N2O, CH4 and CO2 and their relationships with soil characteristics were investigated in three tropical oceanic mangrove swamps (Teremaal, Likupang and Kema) in North Sulawesi, Indonesia. Mangrove soils in North Sulawesi were rich in organic carbon and nitrogen, but the greenhouse gas fluxes were low in these mangroves. The fluxes ranged -6.05-13.14 μmol m(-2)h(-1), -0.35-0.61 μmol m(-2)h(-1) and -1.34-3.88 mmol m(-2)h(-1) for N2O, CH4 and CO2, respectively. The differences in both N2O and CH4 fluxes among different mangrove swamps and among tidal positions in each mangrove swamp were insignificant. CO2 flux was influenced only by mangrove swamps and the value was higher in Kema mangrove. None of the measured soil parameters could explain the variation of CH4 fluxes among the sampling plots. N2O flux was negatively related to porewater salinity, while CO2 flux was negatively correlated with water content and organic carbon. This study suggested that the low gas emissions due to slow metabolisms would lead to the accumulations of organic matters in North Sulawesi mangrove swamps. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  10. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  11. Impacts of soil incorporation of pre-incubated silica-rich rice residue on soil biogeochemistry and greenhouse gas fluxes under flooding and drying.

    Science.gov (United States)

    Gutekunst, Madison Y; Vargas, Rodrigo; Seyfferth, Angelia L

    2017-09-01

    Incorporation of silica-rich rice husk residue into flooded paddy soil decreases arsenic uptake by rice. However, the impact of this practice on soil greenhouse gas (GHG) emissions and elemental cycling is unresolved particularly as amended soils experience recurrent flooding and drying cycles. We evaluated the impact of pre-incubated silica-rich rice residue incorporation to soils on pore water chemistry and soil GHG fluxes (i.e., CO 2 , CH 4 , N 2 O) over a flooding and drying cycle typical of flooded rice cultivation. Soils pre-incubated with rice husk had 4-fold higher pore water Si than control and 2-fold higher than soils pre-incubated with rice straw, whereas the pore water As and Fe concentrations in soils amended with pre-incubated straw and husk were unexpectedly similar (maximum ~0.85μM and ~450μM levels, respectively). Pre-incubation of residues did not affect Si but did affect the pore water levels of As and Fe compared to previous studies using fresh residues where straw amended soils had higher As and Fe in pore water. The global warming potential (GWP) of soil GHG emissions decreased in the order straw (612±76g CO 2 -eqm -2 )>husk (367±42gCO 2 -eqm -2 )>ashed husk=ashed straw (251±26 and 278±28gCO 2 -eqm -2 )>control (186±23gCO 2 -eqm -2 ). The GWP increase due to pre-incubated straw amendment was due to: a) larger N 2 O fluxes during re-flooding; b) smaller contributions from larger CH 4 fluxes during flooded periods; and c) higher CH 4 and CO 2 fluxes at the onset of drainage. In contrast, the GWP of the husk amendment was dominated by CO 2 and CH 4 emissions during flooded and drainage periods, while ashed amendments increased CO 2 emissions particularly during drainage. This experiment shows that ashed residues and husk addition minimizes GWP of flooded soils and enhances pore water Si compared to straw addition even after pre-incubation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Measurement of a surface heat flux and temperature

    Science.gov (United States)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  13. Meteoric 10Be as a tool to investigate human induced soil fluxes: a conceptual model

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; De Vente, Joris; Boix-Fayos, Carolina; Minella, Jean; Baken, Stijn; Smolders, Erik

    2014-05-01

    The use of meteoric 10Be as a tool to understand long term landscape behavior is becoming increasingly popular. Due its high residence time, meteoric 10Be allows in principle to investigate in situ erosion rates over time scales exceeding the period studied with classical approaches such as 137Cs. The use of meteoric 10Be strongly contributes to the traditional interpretation of sedimentary archives which cannot be unequivocally coupled to sediment production and could provide biased information over longer time scales (Sadler, 1981). So far, meteoric 10Be has successfully been used in geochemical fingerprinting of sediments, to date soil profiles, to assess soil residence times and to quantify downslope soil fluxes using accumulated 10Be inventories along a hill slope. However, less attention is given to the potential use of the tracer to directly asses human induced changes in soil fluxes through deforestation, cultivation and reforestation. A good understanding of the processes governing the distribution of meteoric 10Be both within the soil profile and at landscape scale is essential before meteoric 10Be can be successfully applied to assess human impact. We developed a spatially explicit 2D-model (Be2D) in order to gain insight in meteoric 10Be movement along a hillslope that is subject to human disturbance. Be2D integrates both horizontal soil fluxes and vertical meteoric 10Be movement throughout the soil prolife. Horizontal soil fluxes are predicted using (i) well studied geomorphical laws for natural erosion and soil formation as well as (ii) human accelerated water and tillage erosion. Vertical movement of meteoric 10Be throughout the soil profile is implemented by inserting depth dependent retardation calculated using experimentally determined partition coefficients (Kd). The model was applied to different environments such as (i) the Belgian loess belt, characterized by aeolian deposits enriched in inherited meteoric 10Be, (ii) highly degraded and stony

  14. Estimating local atmosphere-surface fluxes using eddy covariance and numerical Ogive optimization

    DEFF Research Database (Denmark)

    Sievers, Jakob; Papakyriakou, Tim; Larsen, Søren

    2014-01-01

    Estimating representative surface-fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modeling efforts, low-frequency cont......Estimating representative surface-fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modeling efforts, low...

  15. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Kettterer, Michael E.; Neff, Jason C.

    2013-01-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50–80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  16. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado

    Science.gov (United States)

    Lawrence, Corey R.; Reynolds, Richard L.; Ketterer, Michael E.; Neff, Jason C.

    2013-04-01

    When dust inputs are large or have persisted for long periods of time, the signature of dust additions are often apparent in soils. The of dust will be greatest where the geochemical composition of dust is distinct from local sources of soil parent material. In this study the influence of dust accretion on soil geochemistry is quantified for two different soils from the San Juan Mountains of southwestern Colorado, USA. At both study sites, dust is enriched in several trace elements relative to local rock, especially Cd, Cu, Pb, and Zn. Mass-balance calculations that do not explicitly account for dust inputs indicate the accumulation of some elements in soil beyond what can be explained by weathering of local rock. Most observed elemental enrichments are explained by accounting for the long-term accretion of dust, based on modern isotopic and geochemical estimates. One notable exception is Pb, which based on mass-balance calculations and isotopic measurements may have an additional source at one of the study sites. These results suggest that dust is a major factor influencing the development of soil in these settings and is also an important control of soil weathering fluxes. After accounting for dust inputs in mass-balance calculations, Si weathering fluxes from San Juan Mountain soils are within the range observed for other temperate systems. Comparing dust inputs with mass-balanced based flux estimates suggests dust could account for as much as 50-80% of total long-term chemical weathering fluxes. These results support the notion that dust inputs may sustain chemical weathering fluxes even in relatively young continental settings. Given the widespread input of far-traveled dust, the weathering of dust is likely and important and underappreciated aspect of the global weathering engine.

  17. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    Science.gov (United States)

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  18. Soil CO 2 fluxes from direct seeding rice fields under two tillage practices in central China

    Science.gov (United States)

    Li, Cheng-fang; Kou, Zhi-kui; Yang, Jin-hua; Cai, Ming-li; Wang, Jin-ping; Cao, Cou-gui

    2010-07-01

    Agricultural practices affect the production and emission of carbon dioxide (CO 2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO 2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha -1) on soil CO 2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO 2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO 2 emissions while tillage affected soil CO 2 emissions, where NT had similar soil CO 2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO 2 emissions. Cumulative CO 2 emissions were 2079-2245 kg CO 2-C ha -1 from NT treatments, and 2084-2141 kg CO 2-C ha -1 from CT treatments in 2008, and were 1257-1401 kg CO 2-C ha -1 from NT treatments, and 1003-1034 kg CO 2-C ha -1 from CT treatments in 2009, respectively. Cumulative CO 2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO 2 fluxes were significantly related to soil temperature with correlation coefficients ( R) of 0.67-0.87 in 2008 and 0.69-0.85 in 2009; moreover, the Q 10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO 2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.

  19. Effects of a holiday week on urban soil CO2 flux: an intensive study in Xiamen, southeastern China

    Science.gov (United States)

    Ye, H.; Wang, K.; Chen, F.

    2012-12-01

    To study the effects of a holiday period on urban soil CO2 flux, CO2 efflux from grassland soil in a traditional park in the city of Xiamen was measured hourly from 28th Sep to 11th Oct, a period that included China's National Day holiday week in 2009. The results of this study revealed that: a) The urban soil CO2 emissions were higher before and after the holiday week and lower during the National Day holiday reflecting changes in the traffic cycles; b) A diurnal cycle where the soil CO2 flux decreased from early morning to noon was associated with CO2 uptake by vegetation which strongly offset vehicle CO2 emissions. The soil CO2 flux increased from night to early morning, associated with reduced CO2 uptake by vegetation; c) During the National Day holiday week in 2009, lower rates of soil respiration were measured after Mid-Autumn Day than earlier in the week, and this was related to a reduced level of human activities and vehicle traffic, reducing the CO2 concentration in the air. Urban holidays have a clear effect on soil CO2 flux through the interactions between vehicle, visitor and vegetation CO2 emissions which indirectly control the use of carbon by plant roots, the rhizosphere and soil microorganisms. Consequently, appropriate traffic controls and tourism travel plans can have positive effects on the soil carbon store and may improve local air quality.

  20. Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data

    Science.gov (United States)

    Siemann, Amanda Lynn

    The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the

  1. [Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition in Pinus massoniana and Castanopsis sclerophylla forests].

    Science.gov (United States)

    Liu, Yu; Hu, Xiao-Fei; Chen, Fu-Sheng; Yuan, Ping-Cheng

    2013-06-01

    Rhizospheric and non-rhizospheric soils and the absorption, transition, and storage roots were sampled from the mid-subtropical Pinus massoniana and Castanopsis sclerophylla forests to study the CO2 fluxes from soil mineralization and root decomposition in the forests. The samples were incubated in closed jars at 15 degrees C, 25 degrees C, 35 degrees C, and 45 degrees C, respectively, and alkali absorption method was applied to measure the CO2 fluxes during 53 days incubation. For the two forests, the rhizospheric effect (ratio of rhizospheric to non-rhizospheric soil) on the CO2 flux from soil mineralization across all incubation temperature ranged from 1.12 to 3.09, with a decreasing trend along incubation days. There was no significant difference in the CO2 flux from soil mineralization between the two forests at 15 degrees C, but the CO2 flux was significantly higher in P. massoniana forest than in C. sclerophylla forest at 25 degrees C and 35 degrees C, and in an opposite pattern at 45 degrees C. At all incubation temperature, the CO2 release from the absorption root decomposition was higher than that from the transition and storage roots decomposition, and was smaller in P. massoniana than in C. sclerophylla forest for all the root functional types. The Q10 values of the CO2 fluxes from the two forests were higher for soils (1.21-1.83) than for roots (0.96-1.36). No significant differences were observed in the Q10 values of the CO2 flux from soil mineralization between the two forests, but the Q10 value of the CO2 flux from root decomposition was significantly higher in P. massoniana than in C. sclerophylla forest. It was suggested that the increment of CO2 flux from soil mineralization under global warming was far higher than that from root decomposition, and for P. massoniana than for C. sclerophylla forest. In subtropics of China, the adaptability of zonal climax community to global warming would be stronger than that of pioneer community.

  2. The influence of cockchafer larvae on net soil methane fluxes under different vegetation types - a mesocosm study

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Chesmore, David; Müller, Christoph

    2017-04-01

    The influence of land-use associated pest insects on net soil CH4 fluxes has received little attention thus far, although e.g. soil-dwelling Scarabaeidae larvae are qualitatively known to emit CH4. The project "CH4ScarabDetect" aims to provide the first quantitative estimate of the importance of soil-dwelling larvae of two important European agricultural and forest pest insect species - the common cockchafer (Melolontha melolontha) and the forest cockchafer (M. hippocastani) - for net soil CH4 fluxes. Here we present a mesocosm study within "CH4ScarabDetect" which tests the influence of different abundances of common cockchafer larvae on net soil CH4 fluxes under different vegetation types. In August 2016, 27 PVC boxes with a base area of 50 cm x 50 cm and a height of 40 cm were buried in planting beds previously used for cultivating vegetables. The bottom of each box was filled with a 10 cm thick layer of loam which was then covered with a 25 cm thick layer of loamy sand. The soil was hand-sieved prior to filling the boxes to remove any macrofauna. The mesocosms were planted with either turf, carrots or a combination of both. Of the resulting nine replicates per vegetation type, six were infested with one cockchafer larvae each in November 2016. In three of these infested mesocosms, the larvae abundance will be further increased to three in May 2017. This mesocosm study will continue until October 2017 during which measurements of net soil CH4 fluxes will be conducted with the chamber flux method twice per month. For the in situ separation of gross CH4 production and gross CH4 oxidation, the chamber method will be combined with a 13CH4 isotope pool dilution technique. Methane concentrations and their isotopic signatures in the collected gas samples will be analysed with a state-of-the-art CRDS analyzer (cavity ring-down spectroscopy, G2201-i) equipped with the Small Sample Isotope Module 2 - A0314 (Picarro Inc., USA). Different combinations of larvae abundance and

  3. The influence of idealized surface heterogeneity on virtual turbulent flux measurements

    Science.gov (United States)

    De Roo, Frederik; Mauder, Matthias

    2018-04-01

    The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity, which affects the boundary-layer turbulence. To investigate the impact of surface variables on the partitioning of the energy budget of flux measurements in the surface layer under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on surface heterogeneity of the kilometer scale, and one order of magnitude smaller. For these two length scales, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g., downdraft region, updraft region, at border between domains, etc.). As the storage term is always small, the non-closure is given by the sum of the advection by the mean flow and the flux-divergence. Remarkably, the missing flux can be described by either the advection by the mean flow or the flux-divergence separately, because the latter two have a high correlation with each other. For kilometer scale heterogeneity, we notice a clear dependence of the updrafts and downdrafts on the surface heterogeneity and likewise we also see a dependence of the energy

  4. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    Science.gov (United States)

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  5. Microbial and environmental controls of methane fluxes along a soil moisture gradient in a Pacific coastal temperate rainforest

    DEFF Research Database (Denmark)

    Christiansen, Jesper Riis; Levy-Booth, David; Prescott, Cindy E.

    2016-01-01

    , and nutrient availability in three typical forest types across a soil moisture gradient. CH4 displayed a spatial variability changing from a net uptake in the upland soils (3.9–46 µmol CH4 m−2 h−1) to a net emission in the wetter soils (0–90 μmol CH4 m−2 h−1). Seasonal variations of CH4 fluxes were related......Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution...... of the underlying microbial communities involved in CH4 cycling and the resultant net CH4 exchange is not well understood at this scale. We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs (CH4 oxidizers) and methanogens (CH4 producers), soil hydrology...

  6. Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region.

    Science.gov (United States)

    Yang, Qidong; Zuo, Hongchao; Li, Weidong

    2016-01-01

    Improving the capability of land-surface process models to simulate soil moisture assists in better understanding the atmosphere-land interaction. In semi-arid regions, due to limited near-surface observational data and large errors in large-scale parameters obtained by the remote sensing method, there exist uncertainties in land surface parameters, which can cause large offsets between the simulated results of land-surface process models and the observational data for the soil moisture. In this study, observational data from the Semi-Arid Climate Observatory and Laboratory (SACOL) station in the semi-arid loess plateau of China were divided into three datasets: summer, autumn, and summer-autumn. By combing the particle swarm optimization (PSO) algorithm and the land-surface process model SHAW (Simultaneous Heat and Water), the soil and vegetation parameters that are related to the soil moisture but difficult to obtain by observations are optimized using three datasets. On this basis, the SHAW model was run with the optimized parameters to simulate the characteristics of the land-surface process in the semi-arid loess plateau. Simultaneously, the default SHAW model was run with the same atmospheric forcing as a comparison test. Simulation results revealed the following: parameters optimized by the particle swarm optimization algorithm in all simulation tests improved simulations of the soil moisture and latent heat flux; differences between simulated results and observational data are clearly reduced, but simulation tests involving the adoption of optimized parameters cannot simultaneously improve the simulation results for the net radiation, sensible heat flux, and soil temperature. Optimized soil and vegetation parameters based on different datasets have the same order of magnitude but are not identical; soil parameters only vary to a small degree, but the variation range of vegetation parameters is large.

  7. Spatial prediction of near surface soil water retention functions using hydrogeophysics

    Science.gov (United States)

    Gibson, J. P.; Franz, T. E.

    2017-12-01

    The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.

  8. Vertical and lateral particle and element fluxes across soil catenas in southern Brazil

    Science.gov (United States)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie

    2016-04-01

    At the Earth's surface, mechanical disaggregation and chemical weathering transform bedrock into mobile regolith and soil. Downslope translocation of weathering products by lateral transport of soil particles and elements are determinant for the development of soil catenas. To grasp the rates of soil formation and development along catenas, we need better constraints on the vertical and lateral fluxes of particles and nutrients along hillslopes. Our study aims to analyze soil catena development in a spatio-temporal framework. The data are collected in the central part of the Rio Grande do Sul State in southern Brazil. The sampling area is located on the Serra Geral plateau composed by rhyodacite rocks (˜700 m.a.s.l). The climate is humid subtropical (Cfa), and the natural vegetation is characterized by deciduous tropical forest and native Araucaria angustifolia forests. Two soil catenas with different slope morphology were selected: a steep slope of 190m long with maximum slope angle of 24° , and a gentle one of 140m long with a maximum slope angle of 11° . In total, eight soil profiles were sampled and 67 soil and 8 saprock or bedrock samples have been analysed for total element composition. Bulk densities were determined on undisturbed soil samples. The soil thickness varies along catenas with soil depths of about 90 cm on the ridge top, 30 cm on the convex nose of the steep slope and >2 m on the foot slope. Chemical mass balance techniques are used to constrain chemical weathering intensities (CDF) and absolute chemical mass losses or gains (δj,w). In each one of the eight soil profiles, we notice important absolute chemical mass losses for the most mobile elements (Na, K and Ca). The mass transfer coefficients of Al and Fe do not show a clear pattern, and largely depend on soil depth and position along the soil catena. The weathering intensity of the soil and the absolute chemical mass transfer are correlated with the residence time of the soil. Our data

  9. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  10. Magnetic flux surface measurements at the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Matthias; Andreeva, Tamara; Biedermann, Christoph; Bozhenkov, Sergey; Geiger, Joachim; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lazerson, Samuel [Princeton Plasma Physics Laboratory, Princeton (United States)

    2016-07-01

    Recently the first plasma operation phase of the Wendelstein 7-X stellarator has been started at IPP Greifswald. Wendelstein 7-X is an optimized stellarator with a complex superconducting magnet system consisting of 50 non-planar and 20 planar field coils and further 10 normal conducting control and 5 trim coils. The magnetic confinement and hence the expected plasma performance are decisively determined by the properties of the magnet system, especially by the existence and quality of the magnetic flux surfaces. Even small error fields may result in significant changes of the flux surface topology. Therefore, measurements of the vacuum magnetic flux surfaces have been performed before plasma operation. The first experimental results confirm the existence and quality of the flux surfaces to the full extend from low field up to the nominal field strength of B=2.5T. This includes the dedicated magnetic limiter configuration that is exclusively used for the first plasma operation. Furthermore, the measurements are indicating that the intrinsic error fields are within the tolerable range and can be controlled utilizing the trim coils as expected.

  11. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    Energy Technology Data Exchange (ETDEWEB)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  12. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    Science.gov (United States)

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  13. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  14. Scaling of surface energy fluxes using remotely sensed data

    Science.gov (United States)

    French, Andrew Nichols

    Accurate estimates of evapotranspiration (ET) across multiple terrains would greatly ease challenges faced by hydrologists, climate modelers, and agronomists as they attempt to apply theoretical models to real-world situations. One ET estimation approach uses an energy balance model to interpret a combination of meteorological observations taken at the surface and data captured by remote sensors. However, results of this approach have not been accurate because of poor understanding of the relationship between surface energy flux and land cover heterogeneity, combined with limits in available resolution of remote sensors. The purpose of this study was to determine how land cover and image resolution affect ET estimates. Using remotely sensed data collected over El Reno, Oklahoma, during four days in June and July 1997, scale effects on the estimation of spatially distributed ET were investigated. Instantaneous estimates of latent and sensible heat flux were calculated using a two-source surface energy balance model driven by thermal infrared, visible-near infrared, and meteorological data. The heat flux estimates were verified by comparison to independent eddy-covariance observations. Outcomes of observations taken at coarser resolutions were simulated by aggregating remote sensor data and estimated surface energy balance components from the finest sensor resolution (12 meter) to hypothetical resolutions as coarse as one kilometer. Estimated surface energy flux components were found to be significantly dependent on observation scale. For example, average evaporative fraction varied from 0.79, using 12-m resolution data, to 0.93, using 1-km resolution data. Resolution effects upon flux estimates were related to a measure of landscape heterogeneity known as operational scale, reflecting the size of dominant landscape features. Energy flux estimates based on data at resolutions less than 100 m and much greater than 400 m showed a scale-dependent bias. But estimates

  15. A Computational Model of Water Migration Flux in Freezing Soil in a Closed System

    Institute of Scientific and Technical Information of China (English)

    裘春晗

    2005-01-01

    A computational model of water migration flux of fine porous soil in frost heave was investigated in a closed system. The model was established with the heat-mass conservation law and from some previous experimental results. Through defining an auxiliary function an empirical function in the water migration flux, which is difficult to get, was replaced. The data needed are about the water content along the soft colunm after test with enough long time. We adopt the test data of sample soil colunms in [1] to verify the model. The result shows it can reflect the real situation on the whole.

  16. Response of Moist Convection to Multi-scale Surface Flux Heterogeneity

    Science.gov (United States)

    Kang, S. L.; Ryu, J. H.

    2015-12-01

    We investigate response of moist convection to multi-scale feature of the spatial variation of surface sensible heat fluxes (SHF) in the afternoon evolution of the convective boundary layer (CBL), utilizing a mesoscale-domain large eddy simulation (LES) model. The multi-scale surface heterogeneity feature is analytically created as a function of the spectral slope in the wavelength range from a few tens of km to a few hundreds of m in the spectrum of surface SHF on a log-log scale. The response of moist convection to the κ-3 - slope (where κ is wavenumber) surface SHF field is compared with that to the κ-2 - slope surface, which has a relatively weak mesoscale feature, and the homogeneous κ0 - slope surface. Given the surface energy balance with a spatially uniform available energy, the prescribed SHF has a 180° phase lag with the latent heat flux (LHF) in a horizontal domain of (several tens of km)2. Thus, warmer (cooler) surface is relatively dry (moist). For all the cases, the same observation-based sounding is prescribed for the initial condition. For all the κ-3 - slope surface heterogeneity cases, early non-precipitating shallow clouds further develop into precipitating deep thunderstorms. But for all the κ-2 - slope cases, only shallow clouds develop. We compare the vertical profiles of domain-averaged fluxes and variances, and the contribution of the mesoscale and turbulence contributions to the fluxes and variances, between the κ-3 versus κ-2 slope cases. Also the cross-scale processes are investigated.

  17. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Larsen, Klaus Steenberg; Ibrom, Andreas

    2016-01-01

    Abstract Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic...... day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when...

  18. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  19. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  20. Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2012-03-01

    Full Text Available The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.

  1. Changes of soil carbon dioxide, methane, and nitrous oxide fluxes in relation to land use/cover management.

    Science.gov (United States)

    Kooch, Yahya; Moghimian, Negar; Bayranvand, Mohammad; Alberti, Giorgio

    2016-06-01

    Conversions of land use/cover are associated with changes in soil properties and biogeochemical cycling, with implications for carbon (C), nitrogen (N), and trace gas fluxes. In an attempt to provide a comprehensive evaluation of the significance of different land uses (Alnus subcordata plantation, Taxodium distichum plantation, agriculture, and deforested areas) on soil features and on the dynamics of greenhouse gas (GHG) fluxes at local scale, this study was carried out in Mazandaran province, northern Iran. Sixteen samples per land use, from the top 10 cm of soil, were taken, from which bulk density, texture, water content, pH, organic C, total N, microbial biomass of C and N, and earthworm density/biomass were determined. In addition, the seasonal changes in the fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored over a year. Our results indicated that the different land uses were different in terms of soil properties and GHG fluxes. Even though the amount of the GHG varied widely during the year, the highest CO2 and CH4 fluxes (0.32 mg CO2 m(-2) day(-1) and 0.11 mg CH4 m(-2) day(-1), respectively) were recorded in the deforested areas. N2O flux was higher in Alnus plantation (0.18 mg N2O m(-2) day(-1)) and deforested areas (0.17 mg N2O m(-2) day(-1)) than at agriculture site (0.05 mg N2O m(-2) day(-1)) and Taxodium plantation (0.03 mg N2O m(-2) day(-1)). This study demonstrated strong impacts of land use change on soil-atmosphere trace gas exchanges and provides useful observational constraints for top-down and bottom-up biogeochemistry models.

  2. Long-term monitoring of soil gas fluxes with closed chambers using automated and manual systems

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A.; Crichton, I.; Ball, B.C.

    1999-10-01

    The authors describe two gas sample collection techniques, each of which is used in conjunction with custom made automated or manually operated closed chambers. The automated system allows automatic collection of gas samples for simultaneous analysis of multiple trace gas efflux from soils, permitting long-term monitoring. Since the manual system is cheaper to produce, it can be replicated more than the automated and used to estimate spatial variability of soil fluxes. The automated chamber covers a soil area of 0.5 m{sup 2} and has a motor driven lid that remains operational throughout a range of weather conditions. Both systems use gas-tight containers of robust metal construction, which give good sample retention, thereby allowing long-term storage and convenience of transport from remote locations. The containers in the automated system are filled by pumping gas from the closed chamber via a multiway rotary valve. Stored samples from both systems are analyzed simultaneously for N{sub 2}O and CO{sub 2} using automated injection into laboratory-based gas chromatographs. The use of both collection systems is illustrated by results from a field experiment on sewage sludge disposal to land where N{sub 2}O fluxes were high. The automated gas sampling system permitted quantification of the marked temporal variability of concurrent N{sub 2}O and CO{sub 2} fluxes and allowed improved estimation of cumulative fluxes. The automated measurement approach yielded higher estimates of cumulative flux because integration of manual point-in-time observations missed a number of transient high-flux events.

  3. Recovery Time After a Late-Dry Season Fire: the Effect on Fluxes, Surface Properties and Vegetation Green-Up.

    Science.gov (United States)

    Saha, M. V.; D'Odorico, P.; Scanlon, T. M.

    2014-12-01

    Large regions of Africa burn on an annual basis. These fires damage vegetation, change surface albedo and modify the hydrologic cycle. Quantifying the magnitude and persistence of these changes is key in understanding the complex ways in which fire affects ecosystem functioning at smaller scales and will inform ongoing modeling efforts. We report the results of a field study in a semi-arid savanna in northern Botswana during the transition from dry to wet season (Oct-Dec) in 2012 and 2013. The goals of this study were to: (1) characterize the multifaceted effect that late dry-season fires have on fluxes and radiative surface processes during green-up, and (2) describe the timescales over which these variables recover to non-burnt levels. Our study synthesizes a suite of data, including flux tower measurements, vegetation sampling, time-lapse photography and concurrent remotely sensed variables over plots with variable burn patterns. Albedo decreased immediately after fire, converging on unburned values 10 days post-burn. The magnitude and direction of this response was comparable to the albedo change elicited by strong rainfall events. Soil temperature and soil heat flux were not significantly modified by fire. Carbon fluxes showed no discernible difference from an unburned control site immediately after fire. There was a small burst in ecosystem respiration at immediately following the first post-fire rainfall event, returning to baseline values after 3 days. Persistent CO2 release, which we attribute to soil respiration, occurred for 10 days after successive strong wetting events, confirming the centrality of available moisture in determining ecosystem function. Fire delayed the green-up in some plots, but this effect was variable and short-lived. One month after fire there was no evidence of a difference in ground observations of greenness between burnt and control plots or plots that differed in their time of burning. We attribute the relatively ephemeral

  4. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency. In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement. This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  5. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    Science.gov (United States)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  6. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    Science.gov (United States)

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P plantations under various management practices.

  7. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  8. Nuclear densimeter of soil simulated in MCNP-4C code

    International Nuclear Information System (INIS)

    Braga, Mario R.M.S.S.; Penna, Rodrigo; Vasconcelos, Danilo C.; Pereira, Claubia; Guerra, Bruno T.; Silva, Clemente J.G.C.

    2009-01-01

    The Monte Carlo code (MCNPX) was used to simulate a nuclear densimeter for measuring soil density. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on soil surface. Results from MCNP shown that scattered photon fluxes may be used to determining soil density. Linear regressions between scattered photons fluxes and soil density were calculated and shown correlation coefficients near unity. (author)

  9. Solar flux incident on an orbiting surface after reflection from a planet

    Science.gov (United States)

    Modest, M. F.

    1980-01-01

    Algorithms describing the solar radiation impinging on an infinitesimal surface after reflection from a gray and diffuse planet are derived. The following conditions apply: only radiation from the sunny half of the planet is taken into account; the radiation must fall on the top of the orbiting surface, and radiation must come from that part of the planet that can be seen from the orbiting body. A simple approximate formula is presented which displays excellent accuracy for all significant situations, with an error which is always less than 5% of the maximum possible reflected flux. Attention is also given to solar albedo flux on a surface directly facing the planet, the influence of solar position on albedo flux, and to solar albedo flux as a function of the surface-planet tilt angle.

  10. Assimilation of Leaf Area Index and Soil Wetness Index into the ISBA-A-gs land surface model over France

    Science.gov (United States)

    Barbu, A. L.; Calvet, J.-C.; Lafont, S.

    2012-04-01

    The development of a Land Data Assimilation System (LDAS) dedicated to carbon and water cycles is considered as a key aspect for monitoring activities of terrestrial carbon fluxes. It allows the assimilation of biophysical products in order to reduce the bias between the model simulations and the observations and have a positive impact on carbon and water fluxes. This work shows the benefits of data assimilation of Earth observations for the monitoring of vegetation status and carbon fluxes, in the framework of the GEOLAND2 project, co-funded by the European Commission within the GMES initiative in FP7. In this study, the SURFEX modelling platform developed at Meteo-France is used for describing the continental vegetation state, surface fluxes and soil moisture. It consists of the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The vegetation biomass and Leaf Area Index (LAI) evolve dynamically in response to weather and climate conditions. The ECOCLIMAP database provides detailed information about the land cover at a resolution of 1 km. Over the France domain, the most present ecosystem types are grasslands (32%), C3 crop lands (24%), deciduous forest (20%), bare soil (11%), and C4 crop lands (8%).The model also includes a representation of the soil moisture stress with two different types of drought responses for herbaceous vegetation and forests. A version of the Extended Kalman Filter (EKF) scheme is developed for the joint assimilation of satellite-derived surface soil moisture from ASCAT-25 km product, namely Soil Wetness Index (SWI-01) developed by TU-Wien, and remote sensing LAI product provided by GEOLAND2. The GEOLAND2 LAI product is derived from CYCLOPES V3.1 and MODIS collection 5 data. It is more consistent with an effective LAI for low LAI and close to the actual LAI for high values. The assimilation experiment was conducted across France at a spatial resolution of 8 km. The study period ranges from July 2007 to December

  11. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?

    Science.gov (United States)

    J.L.M. van Haren; R.C. de Oliveira; N. Restrepo-Coupe; L. Hutyra; P. B. de Camargo; Michael Keller; S.R. Saleska

    2010-01-01

    [1] To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay‐rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10...

  12. An extended rational thermodynamics model for surface excess fluxes

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2012-01-01

    In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell–Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal

  13. Aram Chaos and its constraints on the surface heat flux of Mars

    NARCIS (Netherlands)

    Schumacher, S.; Zegers, T.E.

    2011-01-01

    The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface

  14. Neutron probe measurement of soil water content close to soil surface

    International Nuclear Information System (INIS)

    Faleiros, M.C.; Ravelo S, A.; Souza, M.D. de

    1993-01-01

    The problem of neutron probe soil water content measurements close to soil surface is analysed from the spatial variability and also from the slow neutron loss to the atmosphere points of view. Results obtained on a dark red latosol of the county of Piracicaba, SP, indicate the possibility of precisely measuring the neutron sphere of influence when different media are used on soil surface. (author). 7 refs, 5 figs, 1 tab

  15. Direct nitrous oxide (N2O) fluxes from soils under different land use in Brazil—a critical review

    International Nuclear Information System (INIS)

    Meurer, Katharina H E; Franko, Uwe; Stange, Claus F; Rosa, Jaqueline Dalla; Madari, Beata E; Jungkunst, Hermann F

    2016-01-01

    Brazil typifies the land use changes happening in South America, where natural vegetation is continuously converted into agriculturally used lands, such as cattle pastures and croplands. Such changes in land use are always associated with changes in the soil nutrient cycles and result in altered greenhouse gas fluxes from the soil to the atmosphere. In this study, we analyzed literature values to extract patterns of direct nitrous oxide (N 2 O) emissions from soils of different ecosystems in Brazil. Fluxes from natural ecosystems exhibited a wide range: whereas median annual flux rates were highest in Amazonian and Atlantic rainforests (2.42 and 0.88 kg N ha −1 ), emissions from cerrado soils were close to zero. The decrease in emissions from pastures with increasing time after conversion was associated with pasture degradation. We found comparatively low N 2 O-N fluxes from croplands (−0.07 to 4.26 kg N ha −1 yr −1 , median 0.80 kg N ha −1 yr −1 ) and a low response to N fertilization. Contrary to the assumptions, soil parameters, such as pH, C org , and clay content emerged as poor predictors for N 2 O fluxes. This could be a result of the formation of micro-aggregates, which strongly affect the hydraulic properties of the soil, and consequently define nitrification and denitrification potentials. Since data from croplands mainly derived from areas that had been under natural cerrado vegetation before, it could explain the low emissions under agriculture. Measurements must be more frequent and regionally spread in order to enable sound national estimates. (topical review)

  16. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    Science.gov (United States)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  17. Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration.

    Science.gov (United States)

    Moyes, Andrew B; Gaines, Sarah J; Siegwolf, Rolf T W; Bowling, David R

    2010-11-01

    Carbon isotope ratios (δ¹³C) of heterotrophic and rhizospheric sources of soil respiration under deciduous trees were evaluated over two growing seasons. Fluxes and δ¹³C of soil respiratory CO₂ on trenched and untrenched plots were calculated from closed chambers, profiles of soil CO₂ mole fraction and δ¹³C and continuous open chambers. δ¹³C of respired CO₂ and bulk carbon were measured from excised leaves and roots and sieved soil cores. Large diel variations (>5‰) in δ¹³C of soil respiration were observed when diel flux variability was large relative to average daily fluxes, independent of trenching. Soil gas transport modelling supported the conclusion that diel surface flux δ¹³C variation was driven by non-steady state gas transport effects. Active roots were associated with high summertime soil respiration rates and around 1‰ enrichment in the daily average δ¹³C of the soil surface CO₂ flux. Seasonal δ¹³C variability of about 4‰ (most enriched in summer) was observed on all plots and attributed to the heterotrophic CO₂ source. © 2010 Blackwell Publishing Ltd.

  18. SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS

    Science.gov (United States)

    Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...

  19. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    The effect of soil warming on CO2 and CH4 flux from a spruce-fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May-November) in replicated 15 × 15-m plots using electric cables buried 1-2...

  20. Flux-gradient relationships and soil-water diffusivity from curves of water content versus time

    Energy Technology Data Exchange (ETDEWEB)

    Nofziger, D.L.; Ahuja, L.R.; Swartzendruber, D.

    Direct analysis of a family of curves of soil-water content vs. time at different fixed positions enables assessment of the flux-gradient relationship prior to the calculations of soil-water diffusivity. The method is evaluated on both smooth and random-error data generated from the solution of the horizontal soil-water intake problem with a known diffusivity function. Interpolation, differentiation, and intergration are carried out by least-squares curve fitting based on the 2 recently developed techniques of parabolic splines and sliding parabolas, with all computations performed by computer. Results are excellent for both smooth and random-error input data, whether in terms of recovering the original known diffusivity function, assessing the nature of the flux-gradient relationship, or in making the numerous checks and validations at various intermediate stages of computation. The method applies for any horizontal soil-wetting process independently of the specific boundary conditions, including water entry through a nonzero inlet resistance. It should be adaptable to horizontal dewatering, and extendable to vertical flow. (11 refs.)

  1. Modelling and analysis of flux surface mapping experiments on W7-X

    Science.gov (United States)

    Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team

    2015-11-01

    The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.

  2. Soil fluxes of methane, nitrous oxide, and nitric oxide from aggrading forests in coastal Oregon

    Science.gov (United States)

    Erickson, Heather E.; Perakis, Steven S.

    2014-01-01

    Soil exchanges of greenhouse and other gases are poorly known for Pacific Northwest forests where gradients in nutrient availability and soil moisture may contribute to large variations in fluxes. Here we report fluxes of methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) over multiple seasons from three naturally N-rich, aggrading forests of coastal Oregon, USA. Mean methane uptake rates (3.2 mg CH4 m−2 d−1) were high compared with forests globally, negatively related to water-filled pore space (WFPS), but unrelated to N availability or temperature. Emissions of NO (6.0 μg NO–N m−2 h−1) exceeded N2O (1.4 μg N2O–N m−2 h−1), except when WFPS surpassed 55%. Spatial variation in NO fluxes correlated positively with soil nitrate concentrations (which generally exceeded ammonium concentrations, indicating the overall high N status for the sites) and negatively with soil pH, and at one site increased with basal area of N2-fixing red alder. Combined NO and N2O emissions were greatest from the site with highest annual net N mineralization and lowest needle litterfall C/N. Our findings of high CH4 uptake and NO/N2O ratios generally >1 most likely reflect the high porosity of the andic soils underlying the widespread regenerating forests in this seasonally wet region.

  3. CO and H2 uptake and emissions by soil: variability of fluxes and their isotopic signatures

    Science.gov (United States)

    Popa, Maria Elena; Chen, Qianjie; Ferrero Lopez, Noelia; Röckmann, Thomas

    2017-04-01

    In order to study the uptake and release of H2 and CO by soil, we performed long term, high frequency measurements with an automatic soil chamber at two sites in the Netherlands (Cabauw - grassland, and Speuld - forest). The measurements were performed over different seasons and cover in total a cumulated interval of about one year. These measurements allow determining separately, for each species, the two distinct fluxes i.e. uptake and release, and investigating their temporal variability and dependencies on environmental variables. Additional experiments were performed for determining the isotopic signatures of the H2 and CO uptake and release by soil. Flask samples were filled from the soil chamber, and then analyzed in the laboratory for the stable isotopic composition of H2 (δD) and CO (δ13C and δ18O). We find that both uptake and release are present at all times, regardless of the direction of the net flux. The emissions are significant for both species and at Cabauw, there are times and places where emissions outweigh the soil uptake. For each species, the two fluxes have different behavior and dependence on external variables, which indicates that they have different origins. The isotope results also support that, for both H2 and CO, uptake and emission occur simultaneously. We were able to determine separately the isotopic effects of the two fluxes. For both H2 and CO, soil uptake is associated with a small positive fractionation (the lighter molecule is taken up faster). The soil uptake fractionation (α = kheavy/klight) was 0.945 ± 0.004 for H2; for CO, the fractionation was 0.992 for 13C and 0.985 for 18O. The isotopic composition of the H2 emitted from the grassland was -530 ± 40 ‰, less depleted that what is expected from the isotopic equilibrium of H2 with water. For CO, the isotopic composition of the soil emission is depleted in 13C compared to atmospheric CO, and lower than the average isotopic composition of plant or soil organic matter.

  4. The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary-Layer Growth.

    Science.gov (United States)

    Segal, M.; Garratt, J. R.; Kallos, G.; Pielke, R. A.

    1989-12-01

    The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil surface temperature: (1) due to weather perturbations at a given location, and (2) due to the climatological north-south temperature gradient. Analyses and scaling of the various boundary-layer properties, and soil surface fluxes affecting the sensible beat flux, have been made; related evaluations show that changes in the sensible heat flux at a given location by a factor of 2 to 3 due to temperature changes related to weather perturbations is not uncommon. These changes result in significant alterations in the boundary-layer depth; in the atmospheric boundary-layer warming; and in the break-up time of the nocturnal surface temperature inversion. Investigation of the impact of the winter latitudinal temperature gradient on the above characteristics indicated that the relative increase in very wet soil sensible heat flux, due to the climatological reduction in the surface temperature in northern latitudes, moderates to some extent its reduction due to the corresponding decrease in solar radiation. Numerical model simulations confirmed these analytical evaluations.In addition, the impact of synoptic temperature perturbations during the transition seasons (fall and spring) on canopy sensible heal fluxes, and the related boundary-layer characteristics mentioned above, was evaluated. Analogous features to those found for very wet soil surfaces occurred also for the canopy situations. Likewise, evaluations were also carried out to explore the impact of high midlatitude foreste areas on the boundary-layer characteristics during the winter as compared to those during the summer. Similar impacts were found in both seasons, regardless of the substantial difference in the daily total solar radiation.

  5. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    Science.gov (United States)

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  6. Radium on soil mineral surfaces: Its mobility under environmental conditions and its role in radon emanation. Final report

    International Nuclear Information System (INIS)

    Turekian, K.K.

    1997-01-01

    The ultimate source of 222 Rn to the atmosphere is, of course, 226 Ra. Tracking the mobility of radium therefore is part of the story of radon flux assessment. The study of radium mobility and radon flux measurements has involved virtually all the reservoirs at the Earth's surface. These include soils, groundwaters, coastal waters and the atmosphere. The attempt to understand the mobility of radium involved the study of almost all the radium isotopes ( 226 Ra, 228 Ra, 224 Ra) and the parent and daughters of these isotopes

  7. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  8. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    Science.gov (United States)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  9. A Method for a Multi-Platform Approach to Generate Gridded Surface Evaporation

    Science.gov (United States)

    Badger, A.; Livneh, B.; Small, E. E.; Abolafia-Rosenzweig, R.

    2017-12-01

    Evapotranspiration is an integral component of the surface water balance. While there are many estimates of evapotranspiration, there are fewer estimates that partition evapotranspiration into evaporation and transpiration components. This study aims to generate a CONUS-scale, observationally-based soil evaporation dataset by using the time difference of surface soil moisture by Soil Moisture Active Passive (SMAP) satellite with adjustments for transpiration and a bottom flux out of the surface layer. In concert with SMAP, the Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite, North American Land Data Assimilation Systems (NLDAS) and the Hydrus-1D model are used to fully analyze the surface water balance. A biome specific estimate of the total terrestrial ET is calculated through a variation of the Penman-Monteith equation with NLDAS forcing and NLDAS Noah Model output for meteorological variables. A root density restriction and SMAP-based soil moisture restriction are applied to obtain terrestrial transpiration estimates. By forcing Hydrus-1D with NLDAS meteorology and our terrestrial transpiration estimates, an estimate of the flux between the soil surface and root zone layers (qbot) will dictate the proportion of water that is available for soil evaporation. After constraining transpiration and the bottom flux from the surface layer, we estimate soil evaporation as the residual of the surface water balance. Application of this method at Fluxnet sites shows soil evaporation estimates of approximately 0­3 mm/day and less than ET estimates. Expanding this methodology to produce a gridded product for CONUS, and eventually a global-scale product, will enable a better understanding of water balance processes and contribute a dataset to validate land-surface model's surface flux processes.

  10. Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available In addition to the well-known soil factors which control wind erosion on flat, unridged surfaces, two specific processes affect the susceptibility of tillage ridged surfaces to wind erosion: ridge-induced roughness and ridge- trapping efficiency.

    In order to parameterize horizontal soil fluxes produced by wind over tillage ridges, eight-ridge configurations composed of sandy soil and exhibiting ridge heights to ridge spacing (RH/RS ratios ranging from 0.18 to 0.38 were experimented in a wind tunnel. These experiments are used to develop a parameterization of the horizontal fluxes over tillage ridged surfaces based only on the geometric characteristics of the ridges. Indeed, the key parameters controlling the horizontal flux, namely the friction velocity, threshold friction velocity and the adjustment coefficient, are derived through specific expressions, from ridge heights (RH and ridge spacing (RS. This parameterization was evaluated by comparing the results of the simulations to an additional experimental data set and to the data set obtained by Hagen and Armbrust (1992. In both cases, predicted and measured values are found to be in a satisfying agreement.

    This parameterization was used to evaluate the efficiency of ridges in reducing wind erosion. The results show that ridged surfaces, when compared to a loose, unridged soil surface, lead to an important reduction in the horizontal fluxes (exceeding 60%. Moreover, the effect of ridges in trapping particles contributes for more than 90% in the flux reduction while the ridge roughness effect is weak and decreases when the wind velocity increases.

  11. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes.

    Science.gov (United States)

    Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong

    2017-08-01

    Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems. © 2016 John Wiley & Sons Ltd.

  12. INFIL1D: a quasi-analytical model for simulating one-dimensional, constant flux infiltration

    International Nuclear Information System (INIS)

    Simmons, C.S.; McKeon, T.J.

    1984-04-01

    The program INFIL1D is designed to calculate approximate wetting-front advance into an unsaturated, uniformly moist, homogeneous soil profile, under constant surface-flux conditions. The code is based on a quasi-analytical method, which utilizes an assumed invariant functional relationship between reduced (normalized) flux and water content. The code uses general hydraulic property data in tabular form to simulate constant surface-flux infiltration. 10 references, 4 figures

  13. Mathematical model and simulations of radiation fluxes from buried radionuclides

    International Nuclear Information System (INIS)

    Ahmad Saat

    1999-01-01

    A mathematical model and a simple Monte Carlo simulations were developed to predict radiation fluxes from buried radionuclides. The model and simulations were applied to measured (experimental) data. The results of the mathematical model showed good acceptable order of magnitude agreement. A good agreement was also obtained between the simple simulations and the experimental results. Thus, knowing the radionuclide distribution profiles in soil from a core sample, it can be applied to the model or simulations to estimate the radiation fluxes emerging from the soil surface. (author)

  14. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  15. Quantificação de fluxos de mercúrio gasoso na interface solo/atmosfera utilizando câmara de fluxo dinâmica: aplicação na bacia do Rio Negro Quantification of atmosphere - soil mercury fluxes by using a dynamic flux chamber: application at the Negro River basin, Amazon

    Directory of Open Access Journals (Sweden)

    Gabriella Magarelli

    2005-12-01

    Full Text Available Gaseous mercury sampling conditions were optimized and a dynamic flux chamber was used to measure the air/surface exchange of mercury in some areas of the Negro river basin with different vegetal coverings. At the two forest sites (flooding and non-flooding, low mercury fluxes were observed: maximum of 3 pmol m-2 h-1 - day and minimum of -1 pmol m-2 h-1 - night. At the deforested site, the mercury fluxes were higher and always positive: maximum of 26 pmol m-2 h-1 - day and 17 pmol m-2 h-1 - night. Our results showed that deforestation could be responsible for significantly increasing soil Hg emissions, mainly because of the high soil temperatures reached at deforested sites.

  16. Couplings between the seasonal cycles of surface thermodynamics and radiative fluxes in the semi-arid Sahel

    Science.gov (United States)

    Guichard, F.; Kergoat, L.; Mougin, E.; Timouk, F.; Bock, O.; Hiernaux, P.

    2009-04-01

    A good knowledge of surface fluxes and atmospheric low levels is central to improving our understanding of the West African monsoon. This study provides a quantitative analysis of the peculiar seasonal and diurnal cycles of surface thermodynamics and radiative fluxes encountered in Central Sahel. It is based on a multi-year dataset collected in the Malian Gourma over a sandy soil at 1.5°W-15.3°N (a site referred to as Agoufou) with an automated weather station and a sunphotometer (AERONET), complemented by observations from the AMMA field campaign. The seasonal cycle of this Tropical region is characterized by a broad maximum of temperature in May, following the first minimum of the solar zenith angle by a few weeks, when Agoufou lies within the West African Heat-Low, and a late summer maximum of equivalent potential temperature within the core of the monsoon season, around the second yearly maximum of solar zenith angle, as the temperature reaches its Summer minimum. More broadly, subtle balances between surface air temperature and moisture fields are found on a range of scales. For instance, during the monsoon, apart from August, their opposite daytime fluctuations (warming, drying) lead to an almost flat diurnal cycle of the equivalent potential temperature at the surface. This feature stands out in contrast to other more humid continental regions. Here, the strong dynamics associated with the transition from a drier hot Spring to a brief cooler wet tropical Summer climate involves very large transformations of the diurnal cycles. The Summer increase of surface net radiation, Rnet, is also strong; typically 10-day mean Rnet reaches about 5 times its Winter minimum (~30 W.m-2) in August (~150 W.m-2). A major feature revealed by observations is that this increase is mostly driven by modifications of the surface upwelling fluxes shaped by rainfall events and vegetation phenology (surface cooling and darkening), while the direct impact of atmospheric changes on

  17. Biosphere modelling for a deep radioactive waste repository: site-specific consideration of the groundwater-soil pathway

    International Nuclear Information System (INIS)

    Grogan, H.A.; Baeyens, B.; Mueller, H.; Dorp, F. van

    1991-07-01

    Scenario evaluations indicate that groundwater is the most probable pathway for released radionuclides to reach the biosphere from a deep underground nuclear waste repository. This report considers a small valley in northern Switzerland where the transport of groundwater to surface soil might be possible. The hydrological situation has been examined to allow a system of compartments and fluxes for modelling this pathway with respect to the release of radionuclides from an underground repository to be produced. Assuming present day conditions the best estimate surface soil concentrations are calculated by dividing the soil into two layers (deep soil, surface soil) and assuming an annual upward flux of 10 mm from the groundwater through the two soil layers. A constant unit activity concentration is assumed for the radionuclides in the groundwater. It is concluded that the resultant best estimate values must still be considered to be biased on the conservative side, in view of the fact that the more typical situation is likely to be that no groundwater reaches the surface soil. Upper and lower estimates for the surface soil radionuclide concentrations are based on the parameter perturbation results which were carried out for three key parameters, i.e. precipitation surplus, upward flux and solid-liquid distribution coefficients (K d ). It is noted that attention must be given to the functional relationships which exist between various model parameters. Upper estimates for the surface soil concentration are determined assuming a higher annual upward flux (100 mm) as well as a more conservative K d value compared with the base case. This gives rise to surface soil concentrations more than two orders of magnitude higher than the best estimate values. The lower estimated are more easily assigned assuming that no activity reaches the surface soil via this pathway. (author) 18 figs., 4 tabs., refs

  18. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    Science.gov (United States)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  19. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  20. Measurements and modeling of gas fluxes in unsaturated mine waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Kabwe, L.K.

    2008-07-01

    A technique known as dynamic closed chamber (DDC) was recently developed to measure carbon dioxide (CO{sub 2}) fluxes from the soil surface to the atmosphere. The field application of the DCC was investigated in this thesis with a particular focus on quantifying reaction rates in 2 waste-rock piles at the Key Lake uranium mine in northern Saskatchewan. The dominant geochemical reactions in both waste-rock piles were not typical of acid rock drainage (ARD) waste-rock piles. The CO{sub 2} fluxes measured in this study occur in the organic material underlying the waste rocks. The study provided a complete suite of measurements needed to characterize spatial distribution of CO{sub 2} fluxes on larger-scale studies of waste-rock piles. In comparison to other CO{sub 2} flux measuring techniques, the DCC method accurately quantified field soil respiration and had an added advantage in terms of speed and repeatability. The DCC was also used to investigate CO{sub 2} fluxes under the climatic variables that affect soil water content in waste-rock piles. A simple model for predicting the effects of soil water content on CO{sub 2} diffusion coefficient and concentration profiles was developed and verified. It was concluded that the DCC method is suitable for field applications to quantify CO{sub 2} fluxes and to characterize the spatial and temporal dynamics of CO{sub 2} fluxes from unsaturated C-horizon soils and waste-rock piles.

  1. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  2. Long-term Impacts of Hurricane Wilma on Land Surface-Atmosphere Exchanges

    Science.gov (United States)

    Fuentes, J. D.; Dowell, K. K.; Engel, V. C.; Smith, T. J.

    2008-05-01

    In October 2005, Hurricane Wilma made landfall along the mangrove forests of western Everglades National Park, Florida, USA. Damage from the storm varied with distance from landfall and included widespread mortality and extensive defoliation. Large sediment deposition events were recorded in the interior marshes, with erosion taking place along the coastal margins. Wilma made landfall near a 30 m flux tower where eddy-covariance measurements of ecosystem-level carbon and energy fluxes started in 2003. Repairs to the structure were completed in 2006, enabling comparisons of surface fluxes before and after the storm. One year after the hurricane, both the average and daily integrated CO2 fluxes are consistently lower than the pre-storm values. The storm's impact on standing live biomass and the slow recovery of leaf area appear to have resulted in decreased photosynthetic uptake capacity. Nighttime respiratory CO2 fluxes above the canopy are unchanged from pre-storm values. During some periods, daily integrated fluxes show the forest as a net source of CO2 to the atmosphere. Soil CO2 fluxes are not measured directly, but daytime soil temperatures and vertical heat fluxes have shown consistently higher values after the storm. Nighttime soil temperatures values have been slightly lower. These stronger diurnal soil temperature fluctuations indicate enhanced radiative fluxes at the soil surface, possibly as a result of the reduced leaf area. The increases in daytime soil temperatures are presumably leading to higher below-ground respiration rates and, along with the reduced photosynthetic capacity, contributing to the lower net CO2 assimilation rates. This hypothesis is supported by nearby measurements of declining surface elevations of the organic soils which have been correlated with mangrove mortality in impacted areas. Both sensible and latent heat fluxes above the canopy are found to be reduced following the hurricane, and soil heat storage is higher. Together

  3. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    Soil moisture is a key variable for many soil physical and biogeochemical processes. Its dynamic results from water fluxes in soil and at its boundaries, as well as soil water storage properties. If the water flows are dominated by diffusive processes, modelling approaches based on the Richard's equation or the Philip and de Vries coupled heat and water flow equations lead to a satisfactory representation of the soil moisture dynamic. However, It requires the characterization of soil hydraulic functions, the initialisation and the boundary conditions, which are expensive to obtain. The major problem to assess soil moisture for decision making or for representing its spatiotemporal evolution over complex landscape is therefore the lack of information to run the models. The aim of the presentation is to analyse how a soil moisture model can be implemented when only climatic data and basic soil information are available (soil texture, organic matter) and what would be the added of making a few soil moisture measurements. We considered the field scale, which is the key scale for decision making application (the field being the management unit for farming system) and landscape modelling (field size being comparable to the computation unit of distributed hydrological models). The presentation is limited to the bare soil case in order to limit the complexity of the system and the TEC model based on Philip and De Vries equations is used in this study. The following points are addressed: o the within field spatial variability. This spatial variability can be induced by the soil hydraulic properties and/or by the amount of infiltrated water induced by water rooting towards infiltration areas. We analyse how an effective parameterization of soil properties and boundary conditions can be used to simulate the field average moisture. o The model implementation with limited information. We propose strategies that can be implemented when information are limited to soil texture and

  4. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  5. Heterogeneous surface fluxes and their effects on the SGP CART site

    International Nuclear Information System (INIS)

    Doran, J.C.; Hu, Q.; Hubbe, J.M.; Liljegren, J.C.; Shaw, W.J.; Zhong, S.; Collatz, G.J.

    1995-03-01

    The treatment of subgrid-scale variations of surface properties and the resultant spatial variations of sensible and latent heat fluxes has received increasing attention in recent years. Mesoscale numerical simulations of highly idealized conditions, in which strong flux contrasts exist between adjacent surfaces, have shown that under some circumstances the secondary circulations induced by land-use differences can significantly affect the properties of the planetary boundary layer (PBL) and the region of the atmosphere above the PBL. At the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, the fluxes from different land-surface types are not expected to differ as dramatically as those found in idealized simulations. Although the corresponding effects on the atmosphere should thus be less dramatic, they are still potentially important. From an ARM perspective, in tests of single column models (SCMs) it would be useful to understand the effects of the lower boundary conditions on model performance. We describe here our initial efforts to characterize the variable surface fluxes over the CART site and to assess their effects on the PBL that are important for the performance of SCMs

  6. Methane, carbon dioxide and nitrous oxide fluxes in soil profile under a winter wheat-summer maize rotation in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Yuying Wang

    Full Text Available The production and consumption of the greenhouse gases (GHGs methane (CH4, carbon dioxide (CO2 and nitrous oxide (N2O in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm in a long-term field experiment with a winter wheat-summer maize rotation system, and four N application rates (0; 200; 400 and 600 kg N ha(-1 year(-1 in the North China Plain. The gas samples were taken twice a week and analyzed by gas chromatography. GHG production and consumption in soil layers were inferred using Fick's law. Results showed nitrogen application significantly increased N2O fluxes in soil down to 90 cm but did not affect CH4 and CO2 fluxes. Soil moisture played an important role in soil profile GHG fluxes; both CH4 consumption and CO2 fluxes in and from soil tended to decrease with increasing soil water filled pore space (WFPS. The top 0-60 cm of soil was a sink of atmospheric CH4, and a source of both CO2 and N2O, more than 90% of the annual cumulative GHG fluxes originated at depths shallower than 90 cm; the subsoil (>90 cm was not a major source or sink of GHG, rather it acted as a 'reservoir'. This study provides quantitative evidence for the production and consumption of CH4, CO2 and N2O in the soil profile.

  7. Flux surface shape and current profile optimization in tokamaks

    International Nuclear Information System (INIS)

    Dobrott, D.R.; Miller, R.L.

    1977-01-01

    Axisymmetric tokamak equilibria of noncircular cross section are analyzed numerically to study the effects of flux surface shape and current profile on ideal and resistive interchange stability. Various current profiles are examined for circles, ellipses, dees, and doublets. A numerical code separately analyzes stability in the neighborhood of the magnetic axis and in the remainder of the plasma using the criteria of Mercier and Glasser, Greene, and Johnson. Results are interpreted in terms of flux surface averaged quantities such as magnetic well, shear, and the spatial variation in the magnetic field energy density over the cross section. The maximum stable β is found to vary significantly with shape and current profile. For current profiles varying linearly with poloidal flux, the highest β's found were for doublets. Finally, an algorithm is presented which optimizes the current profile for circles and dees by making the plasma everywhere marginally stable

  8. Tests of a robust eddy correlation system for sensible heat flux

    Science.gov (United States)

    Blanford, J. H.; Gay, L. W.

    1992-03-01

    Sensible heat flux estimates from a simple, one-propeller eddy correlation system (OPEC) were compared with those from a sonic anemometer eddy correlation system (SEC). In accordance with similarity theory, the performance of the OPEC system improved with increasing height of the sensor above the surface. Flux totals from the two systems at sites with adequate fetch were in excellent agreement after frequency response corrections were applied. The propeller system appears suitable for long periods of unattended measurement. The sensible heat flux measurements can be combined with net radiation and soil heat flux measurements to estimate latent heat as a residual in the surface energy balance.

  9. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: Discrete surface chambers and continuous soil CO2 concentration probes

    Science.gov (United States)

    Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch

    2008-01-01

    Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....

  10. Methane and nitrous oxide cycling microbial communities in soils above septic leach fields: Abundances with depth and correlations with net surface emissions.

    Science.gov (United States)

    Fernández-Baca, Cristina P; Truhlar, Allison M; Omar, Amir-Eldin H; Rahm, Brian G; Walter, M Todd; Richardson, Ruth E

    2018-05-31

    Onsite septic systems use soil microbial communities to treat wastewater, in the process creating potent greenhouse gases (GHGs): methane (CH 4 ) and nitrous oxide (N 2 O). Subsurface soil dispersal systems of septic tank overflow, known as leach fields, are an important part of wastewater treatment and have the potential to contribute significantly to GHG cycling. This study aimed to characterize soil microbial communities associated with leach field systems and quantify the abundance and distribution of microbial populations involved in CH 4 and N 2 O cycling. Functional genes were used to target populations producing and consuming GHGs, specifically methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) for CH 4 and nitric oxide reductase (cnorB) and nitrous oxide reductase (nosZ) for N 2 O. All biomarker genes were found in all soil samples regardless of treatment (leach field, sand filter, or control) or depth (surface or subsurface). In general, biomarker genes were more abundant in surface soils than subsurface soils suggesting the majority of GHG cycling is occurring in near-surface soils. Ratios of production to consumption gene abundances showed a positive relationship with CH 4 emissions (mcrA:pmoA, p  0.05). Of the three measured soil parameters (volumetric water content (VWC), temperature, and conductivity), only VWC was significantly correlated to a biomarker gene, mcrA (p = 0.0398) but not pmoA or either of the N 2 O cycling genes (p > 0.05 for cnorB and nosZ). 16S rRNA amplicon library sequencing results revealed soil VWC, CH 4 flux and N 2 O flux together explained 64% of the microbial community diversity between samples. Sequencing of mcrA and pmoA amplicon libraries revealed treatment had little effect on diversity of CH 4 cycling organisms. Overall, these results suggest GHG cycling occurs in all soils regardless of whether or not they are associated with a leach field system. Copyright © 2018 Elsevier B

  11. A process-based 222radon flux map for Europe and its comparison to long-term observations

    Science.gov (United States)

    Karstens, U.; Schwingshackl, C.; Schmithüsen, D.; Levin, I.

    2015-11-01

    Detailed 222radon (222Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution 222Rn flux map for Europe, based on a parameterization of 222Rn production and transport in the soil. The 222Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222Rn soil profile measurements. Monthly 222Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083° × 0.083° and compared to long-term direct measurements of 222Rn exhalation rates in different areas of Europe. The two realizations of the 222Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222Rn flux from soils in Europe is estimated to be 10 mBq m-2 s-1 (ERA-Interim/Land soil moisture) or 15 mBq m-2 s-1 (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m-2 s-1 and from ca. 11 to ca. 20 mBq m-2 s-1, respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of 222Rn exhalation rates. Comparison with observations suggests that the flux estimates based on the GLDAS Noah soil moisture model on average better

  12. A process-based 222radon flux map for Europe and its comparison to long-term observations

    International Nuclear Information System (INIS)

    Karstens, U.; Schwingshackl, C.; Schmithuesen, D.; Levin, I.

    2015-01-01

    Detailed 222 radon ( 222 Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution 222 Rn flux map for Europe, based on a parameterization of 222 Rn production and transport in the soil. The 222 Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based 222 Rn soil profile measurements. Monthly 222 Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083 x 0.083 and compared to long-term direct measurements of 222 Rn exhalation rates in different areas of Europe. The two realizations of the 222 Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean 222 Rn flux from soils in Europe is estimated to be 10 mBq m -2 s -1 (ERA-Interim/Land soil moisture) or 15 mBq m -2 s -1 (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m -2 s -1 and from ca. 11 to ca. 20 mBq m -2 s -1 , respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of 222 Rn exhalation rates. Comparison with observations suggests that the flux estimates based on the GLDAS Noah soil moisture model on

  13. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  14. Portable automation of static chamber sample collection for quantifying soil gas flux

    Science.gov (United States)

    The collection of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled in a given time period is limited by the spacing between chambers and the availability of trained research technicians. However, the static chamber method can limit spatial ...

  15. WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method

    Science.gov (United States)

    Crevoisier, David; Voltz, Marc

    2013-04-01

    To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute

  16. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China.

    Science.gov (United States)

    Wang, Yixiang; Zhu, Xudan; Bai, Shangbin; Zhu, Tingting; Qiu, Wanting; You, Yujie; Wu, Minjuan; Berninger, Frank; Sun, Zhibin; Zhang, Hui; Zhang, Xiaohong

    2018-04-15

    Reforestation after clear-cutting is used to facilitate rapid establishment of new stands. However, reforestation may cause additional soil disturbance by affecting soil temperature and moisture, thus potentially influencing soil respiration. Our aim was to compare the effects of different reforestation methods on soil CO 2 flux after clear-cutting in a Chinese fir plantation in subtropical China: uncut (UC), clear-cut followed by coppicing regeneration without soil preparation (CC), clear-cut followed by coppicing regeneration and reforestation with soil preparation, tending in pits and replanting (CCR P ), and clear-cut followed by coppicing regeneration and reforestation with overall soil preparation, tending and replanting (CCR O ). Clear-cutting significantly increased the mean soil temperature and decreased the mean soil moisture. Compared to UC, CO 2 fluxes were 19.19, 37.49 and 55.93 mg m -2 h -1 higher in CC, CCR P and CCR O , respectively (P soil temperature, litter mass and the mixing of organic matter with mineral soil. The results suggest that, when compared to coppicing regeneration, reforestation practices result in additional CO 2 released, and that regarding the CO 2 emissions, soil preparation and tending in pits is a better choice than overall soil preparation and tending. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    A physical model for analyzing the radiative and convective heat transfer in a fog cooled, naturally ventilated greenhouse was developed for estimating the overall heat transmission coefficient based on the conduction, convection and thermal radiation heat transfer coefficients and for predicting the soil heat flux. The contribution of the water vapor of the inside air to the emission and absorption of thermal radiation was determined. Measurements of the outside and inside greenhouse environments to be used in the analysis were conducted around solar noon (12:19-13:00) on a hot sunny day to provide the maximum solar radiation transmission into the greenhouse. The net solar radiation flux measured at the greenhouse floor showed a reasonable agreement with the predicted value. The net fluxes were estimated around noon. The average net radiation (solar and thermal) at the soil surface was 220.0 W m -2 , the average soil heat flux was 155.0 W m -2 and the average contribution of the water vapor of the inside air to the thermal radiation was 22.0 W m -2 . The average overall heat transmission coefficient was 4.0 W m -2 C -1 and was in the range between 3.0 W m -2 C -1 and 6.0 W m -2 C -1 under the different hot summer conditions between the inside and outside of the naturally ventilated, fog cooled greenhouse

  18. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    Science.gov (United States)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  19. Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120,000 years

    International Nuclear Information System (INIS)

    Tyler, S.W.; Chapman, J.B.; Conrad, S.H.; Hammermeister, D.P.; Blout, D.O.; Miller, J.J.; Sully, M.J.; Ginanni, J.M.

    1996-01-01

    The disposal of hazardous and radioactive waste in arid regions requires a thorough understanding of the occurrence of soil-water flux and recharge. Soil-water chemistry and isotopic data are presented from three deep vadose zone boreholes (> 230 m) at the Nevada Test Site, located in the Great Basin geographic province of the southwestern United States, to quantify soil-water flux and its relation to climate. The low water contents found in the soils significantly reduce the mixing of tracers in the subsurface and provide a unique opportunity to examine the role of climate variation on recharge in arid climates. Tracing techniques and core data are examined in this work to reconstruct the paleohydrologic conditions existing in the vadose zone well beyond the timescales typically investigated. Stable chloride and chlorine 36 profiles indicate that the soil waters deep in the vadose zone range in age from approximately 20,000 to 120,000 years. Secondary chloride bulges that are present in two of the three profiles support the concept of recharge occurring at or near the last two glacial maxima, when the climate of the area was considerably wetter and cooler. The stable isotopic composition of the soil water in the profiles is significantly more depleted in heavy isotopes than is modern precipitation, suggesting that recharge under the current climate is not occurring at this arid site. Past and present recharge appears to have been strongly controlled by surface topography, with increased incidence of recharge where runoff from the surrounding mountains may have been concentrated. The data obtained from this detailed drilling and sampling program shed new light on the behavior of water in thick vadose zones and, in particular, show the sensitivity of arid regions to the extreme variations in climate experienced by the region over the last two glacial maxima

  20. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  1. Material fluxes on the surface of the earth

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; Board on Earth Sciences & Resources; National Research Council; National Academy of Sciences

    ...) level of surficial fluxes and their dynamics. Leading experts in the field offer a historical perspective on geofluxes and discuss the cycles of materials on the earth's surface, from weathering processes to the movement of material...

  2. Response of Soil Biogeochemistry to Freeze-thaw Cycles: Impacts on Greenhouse Gas Emission and Nutrient Fluxes

    Science.gov (United States)

    Rezanezhad, F.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2014-12-01

    Freeze-thaw is an abiotic stress applied to soils and is a natural process at medium to high latitudes. Freezing and thawing processes influence not only the physical properties of soil, but also the metabolic activity of soil microorganisms. Fungi and bacteria play a crucial role in soil organic matter degradation and the production of greenhouse gases (GHG) such as CO2, CH4 and N2O. Production and consumption of these atmospheric trace gases are the result of biological processes such as photosynthesis, aerobic respiration (CO2), methanogenesis, methanotrophy (CH4), nitrification and denitrification (N2O). To enhance our understanding of the effects of freeze-thaw cycles on soil biogeochemical transformations and fluxes, a highly instrumented soil column experiment was designed to realistically simulate freeze-thaw dynamics under controlled conditions. Pore waters collected periodically from different depths of the column and solid-phase analyses on core material obtained at the initial and end of the experiment highlighted striking geochemical cycling. CO2, CH4 and N2O production at different depths within the column were quantified from dissolved gas concentrations in pore water. Subsequent emissions from the soil surface were determined by direct measurement in the head space. Pulsed CO2 emission to the headspace was observed at the onset of thawing, however, the magnitude of the pulse decreased with each subsequent freeze-thaw cycle indicating depletion of a "freeze-thaw accessible" carbon pool. Pulsed CO2 emission was due to a combination of physical release of gases dissolved in porewater and entrapped below the frozen zone and changing microbial respiration in response to electron acceptor variability (O2, NO3-, SO42-). In this presentation, we focus on soil-specific physical, chemical, microbial factors (e.g. redox conditions, respiration, fermentation) and the mechanisms that drive GHG emission and nutrient cycling in soils under freeze-thaw cycles.

  3. Soil surface CO2 fluxes in a Norway spruce stand

    Czech Academy of Sciences Publication Activity Database

    Acosta, Manuel; Janouš, Dalibor; Marek, Michal V.

    2004-01-01

    Roč. 12, č. 50 (2004), s. 573-578 ISSN 1212-4834 R&D Projects: GA AV ČR(CZ) KJB3087301 Institutional research plan: CEZ:AV0Z6087904 Keywords : Norway spruce * Soil CO2 efflux * Q10 Subject RIV: EH - Ecology, Behaviour

  4. The estimation of soil water fluxes using lysimeter data

    Science.gov (United States)

    Wegehenkel, M.

    2009-04-01

    The validation of soil water balance models regarding soil water fluxes in the field is still a problem. This requires time series of measured model outputs. In our study, a soil water balance model was validated using lysimeter time series of measured model outputs. The soil water balance model used in our study was the Hydrus-1D-model. This model was tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin, Germany. One potential source of error in lysimeter experiments is preferential flow caused by an artificial channeling of water due to the occurrence of air space between the soil monolith and the inside wall of the lysimeters. To analyse such sources of errors, Hydrus-1D was applied with different modelling procedures. The first procedure consists of a general uncalibrated appli-cation of Hydrus-1D. The second one includes a calibration of soil hydraulic parameters via inverse modelling of different percolation events with Hydrus-1D. In the third procedure, the model DUALP_1D was applied with the optimized hydraulic parameter set to test the hy-pothesis of the existence of preferential flow paths in the lysimeters. The results of the different modelling procedures indicated that, in addition to a precise determination of the soil water retention functions, vegetation parameters such as rooting depth should also be taken into account. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.

  5. Statistical uncertainty analysis of radon transport in nonisothermal, unsaturated soils

    International Nuclear Information System (INIS)

    Holford, D.J.; Owczarski, P.C.; Gee, G.W.; Freeman, H.D.

    1990-10-01

    To accurately predict radon fluxes soils to the atmosphere, we must know more than the radium content of the soil. Radon flux from soil is affected not only by soil properties, but also by meteorological factors such as air pressure and temperature changes at the soil surface, as well as the infiltration of rainwater. Natural variations in meteorological factors and soil properties contribute to uncertainty in subsurface model predictions of radon flux, which, when coupled with a building transport model, will also add uncertainty to predictions of radon concentrations in homes. A statistical uncertainty analysis using our Rn3D finite-element numerical model was conducted to assess the relative importance of these meteorological factors and the soil properties affecting radon transport. 10 refs., 10 figs., 3 tabs

  6. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  7. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  8. Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2011-07-01

    Full Text Available The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI product provided by an exponential filter together with Leaf Area Index (LAI is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007, at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13 % of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5 % in terms of rms error is obtained.

  9. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    Science.gov (United States)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  10. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J P; Sucksdorff, Y [Finnish Environment Agency, Helsinki (Finland)

    1997-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  11. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  12. Soil surface roughness decay in contrasting climates, tillage types and management systems

    Science.gov (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge

    2014-05-01

    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  13. A noncontact laser system for measuring soil surface topography

    International Nuclear Information System (INIS)

    Huang, C.; White, I.; Thwaite, E.G.; Bendeli, A.

    1988-01-01

    Soil surface topography profoundly influences runoff hydrodynamics, soil erosion, and surface retention of water. Here we describe an optical noncontact system for measuring soil surface topography. Soil elevation is measured by projecting a laser beam onto the surface and detecting the position of the interception point. The optical axis of the detection system is oriented at a small angle to the incident beam. A low-power HeNe (Helium-Neon) laser is used as the laser source, a photodiode array is used as the laser image detector and an ordinary 35-mm single lens reflex camera provides the optical system to focus the laser image onto the diode array. A wide spectrum of measurement ranges (R) and resolutions are selectable, from 1 mm to 1 m. These are determined by the laser-camera distance and angle, the focal length of the lens, and the sensing length of the diode array and the number of elements (N) contained in the array. The resolution of the system is approximately R/2N. We show for the system used here that this resolution is approximately 0.2%. In the configuration selected, elevation changes of 0.16 mm could be detected over a surface elevation range of 87 mm. The sampling rate of the system is 1000 Hz, which permits soil surfaces to be measured at speeds of up to 1 m s −1 with measurements taken at 1-mm spacing. Measurements of individual raindrop impacts on the soil and of soil surfaces before and after rain show the versatility of the laser surface profiler, which has applications in studies of erosion processes, surface storage and soil trafficability

  14. Windthrow and fallow-forest successions impacts in soil carbon stocks and GHG fluxes spatial variability and dynamics in the Central Russia' reserve spruce ecosystems

    Science.gov (United States)

    Vasenev, Ivan; Ivanov, Alexey; Komarova, Tatyana; Valentini, Riccardo

    2015-04-01

    High spatial and temporal variability is mutual feature for most forest soils that is especially obvious in case of their carbon stocks and GHG fluxes. This phenomenon is generally well-known but not so often becomes the object of special precision investigation in detail and small scales so there are still serious gaps in its principal factors understanding due to their high bioclimatic, regional, landscape, tree species and temporal variability. Southern taiga is one of the most environmentally important world zonal forest ecosystems due to its still comparatively intensive carbon biogeochemical cycle and huge area in the northern Eurasia with strong anthropogenic impacts by Western & Central European and Southern & Eastern Asian regions. Central Forest Biospheric Reserve (Tver region, 360 km to North-West from Moscow) is the principal southern-taiga reserve in the European territory of Russia. Since start of its research activity in 1939 the reserve became the regional center of mature spruce ecosystem structure and dynamics investigation. In 1970-1980-s there have been done complex investigations of windthrow soil patterns and fallow-forest successions. Since middle of 1990-s the ecosystem-level GHG fluxes have been observed by eddy covariance method. Since 2012 the detailed year-round monitoring is running in the southern-taiga zonal station of the regional system RusFluxNet with especial attention on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to windthrow and fallow-forest successions (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266). Soil carbon dynamics is investigated in decades-hundred-year chronosequences of dominated parcels and different-size windthrow soil cover patterns, including direct investigation during last 33 years with detailed mapping, soil profile morphometrics and bulk density, morphogenetic and statistical analysis of mass data. Morphogenetic analysis of microrelief, soil profile

  15. Are ghost surfaces quadratic-flux-minimizing?

    International Nuclear Information System (INIS)

    Hudson, S.R.; Dewar, R.L.

    2009-01-01

    Two candidates for 'almost-invariant' toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbits are obtained by displacing closed field lines in the direction of steepest descent of magnetic action, ∫A.dl. A generalized Hamiltonian definition of ghost surfaces is given and specialized to the usual Lagrangian definition. A modified Hamilton's Principle is introduced that allows the use of Lagrangian integration for calculation of the QFMin pseudo-orbits. Numerical calculations show QFMin and Lagrangian ghost surfaces give very similar results for a chaotic magnetic field perturbed from an integrable case, and this is explained using a perturbative construction of an auxiliary poloidal angle for which QFMin and Lagrangian ghost surfaces are the same up to second order. While presented in the context of 3-dimensional magnetic field line systems, the concepts are applicable to defining almost-invariant tori in other 11/2 degree-of-freedom nonintegrable Lagrangian/Hamiltonian systems.

  16. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal......) and boundary layer conductances (gS and gB) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (TS) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, λ......E). The method combines satellite TS data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution...

  17. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    International Nuclear Information System (INIS)

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.

    2015-01-01

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH 4 ) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH 4 fluxes from the uplands were predictably low (< 0.02 g CH 4 m −2 day −1 ), while wetland zone CH 4 fluxes were much greater (< 0.001–3.9 g CH 4 m −2 day −1 ). Mean cumulative seasonal CH 4 fluxes ranged from roughly 0–650 g CH 4 m −2 , with an overall mean of approximately 160 g CH 4 m −2 . These maximum cumulative CH 4 fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N 2 O fluxes from this study (< 0.0001–0.0023 g N 2 O m −2 day −1 ) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH 4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH 4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N 2 O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and

  18. Greenhouse gas flux under warm-season perennial C4 grasses across different soil and climate gradients on the Islands of Hawaii

    Science.gov (United States)

    Pawlowski, M. N.; Crow, S. E.; Sumiyoshi, Y.; Wells, J.; Kikkawa, H. R.

    2011-12-01

    Agricultural soils can serve as either a sink or a source for atmospheric carbon (C) and other greenhouse gases (GHG). This is particularly true for tropical soils where influences from climate and soil gradients are wide ranging. Current estimates of GHG flux from soil are often under or overestimated due to high variability in sample sites and inconsistencies in land use and vegetation type, making extrapolation to new study systems difficult. This work aimed to identify patterns of trace fluxes of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) across two soil types and three species of warm season perennial C4 grasses: Pennisetum purpureum (Napier grass), Panicum maximum (Guinea grass) and Saccharum officinarum (sugar cane) on the islands of Oahu and Maui in Hawaii. Multiple static vented chambers were installed into replicate plots for each species; flux measurements were made during the growth, fertilization and harvest cycles at set time intervals for one hour and analyzed by gas chromatography. Initial results from Oahu indicate no significant differences in CO2 flux between the P. maximum and P. purpureum species after fertilization or at full growth. We observed an average flux of 143 mg m-2 h-1 and 155 mg m-2 h-1 for P. maximum and P. purpureum respectively at full growth for CO2 and 1.7 μg m-2 h-1and 0.3 μg m-2 h-1 for N2O. Additionally, N2O rates sampled after a typical fertilizer application were significantly greater than at full growth (p=0.0005) with flux rates of 25.2 μg m2h-1 and 30.3 μg m2h-1 for P. maximum and P. purpureum respectively. With a global warming potential of 310 for N2O, even short-term spikes following fertilizer application can cause long lasting effects of GHG emission from agricultural soils. CH4 flux was negligible for all species on the Oahu plots during these sample periods. Globally, water limitation is a major factor influencing the potential productivity of agricultural crops and the sustainability of

  19. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  20. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils.

    Science.gov (United States)

    Unno, Yusuke; Tsukada, Hirofumi; Takeda, Akira; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2017-04-01

    We investigated the vertical distribution of the soil-soil-solution distribution coefficients (K d ) of 125 I, 137 Cs, and 85 Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. K d of 137 Cs was highly correlated with water-extractable K + . K d of 85 Sr was highly correlated with water-extractable Ca 2+ and SOC. K d of 125 I - was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high- 125 I - K d middle layer (i.e., with high radioiodide retention ability) differed between sites. K d of 125 I - was significantly correlated with K d of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of K d -OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with K d of 125 I - . Further study is needed to clarify how radioiodide is retained and migrates in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Global Database of Gas Fluxes from Soils after Rewetting or Thawing, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This database contains information compiled from published studies on gas flux from soil following rewetting or thawing. The resulting database includes 222 field...

  2. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-08-01

    Full Text Available Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  3. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    Science.gov (United States)

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  4. Quantifying the changes of soil surface microroughness due to rainfall impact on a smooth surface

    Directory of Open Access Journals (Sweden)

    B. K. B. Abban

    2017-09-01

    Full Text Available This study examines the rainfall-induced change in soil microroughness of a bare smooth soil surface in an agricultural field. The majority of soil microroughness studies have focused on surface roughness on the order of ∼ 5–50 mm and have reported a decay of soil surface roughness with rainfall. However, there is quantitative evidence from a few studies suggesting that surfaces with microroughness less than 5 mm may undergo an increase in roughness when subject to rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, a low roughness condition observed seasonally in some landscapes under bare conditions and chosen to systematically examine the increasing roughness phenomenon. Three rainfall intensities of 30, 60, and 75 mm h−1 are applied to a smoothened bed surface in a field plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser scanner. Several indices are utilized to quantify the soil surface microroughness, namely the random roughness (RR index, the crossover length, the variance scale from the Markov–Gaussian model, and the limiting difference. Findings show a consistent increase in roughness under the action of rainfall, with an overall agreement between all indices in terms of trend and magnitude. Although this study is limited to a narrow range of rainfall and soil conditions, the results suggest that the outcome of the interaction between rainfall and a soil surface can be different for smooth and rough surfaces and thus warrant the need for a better understanding of this interaction.

  5. Incoming Shortwave Fluxes at the Surface--A Comparison of GCM Results with Observations.

    Science.gov (United States)

    Garratt, J. R.

    1994-01-01

    Evidence is presented that the exam surface net radiation calculated in general circulation models at continental surfaces is mostly due to excess incoming shortwave fluxes. Based on long-term observations from 22 worldwide inland stations and results from four general circulation models the overestimate in models of 20% (11 W m2) in net radiation on an annual basis compares with 6% (9 W m2) for shortwave fluxes for the same 22 locations, or 9% (18 W m2) for a larger set of 93 stations (71 having shortwave fluxes only). For annual fluxes, these differences appear to be significant.

  6. Influence of surface conditions in nucleate boiling--the concept of bubble flux density

    International Nuclear Information System (INIS)

    Shoukri, M.; Judd, R.L.

    1978-01-01

    A study of the influence of surface conditions in nucleate pool boiling is presented. The surface conditions are represented by the number and distribution of the active nucleation sites as well as the size and size distribution of the cavities that constitute the nucleation sites. The heat transfer rate during nucleate boiling is shown to be influenced by the surface condition through its effect on the number and distribution of the active nucleation sites as well as the frequency of bubble departure from each of these different size cavities. The concept of bubble flux density, which is a function of both the active site density and frequency of bubble departure, is introduced. A method of evaluating the bubble flux density is proposed and a uniform correlation between the boiling heat flux and the bubble flux density is found to exist for a particular solid-liquid combination irrespective of the surface finish within the region of isolated bubbles

  7. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review

    Directory of Open Access Journals (Sweden)

    N. Brüggemann

    2011-11-01

    Full Text Available The terrestrial carbon (C cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual, including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as

  8. Summer fluxes of atmospheric greenhouse gases N{sub 2}O, CH{sub 4} and CO{sub 2} from mangrove soil in South China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.C. [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR (China); Tam, N.F.Y., E-mail: bhntam@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR (China); Ye, Y. [State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian (China)

    2010-06-01

    The atmospheric fluxes of N{sub 2}O, CH{sub 4} and CO{sub 2} from the soil in four mangrove swamps in Shenzhen and Hong Kong, South China were investigated in the summer of 2008. The fluxes ranged from 0.14 to 23.83 {mu}mol m{sup -2} h{sup -1}, 11.9 to 5168.6 {mu}mol m{sup -2} h{sup -1} and 0.69 to 20.56 mmol m{sup -2} h{sup -1} for N{sub 2}O, CH{sub 4} and CO{sub 2}, respectively. Futian mangrove swamp in Shenzhen had the highest greenhouse gas fluxes, followed by Mai Po mangrove in Hong Kong. Sha Kong Tsuen and Yung Shue O mangroves in Hong Kong had similar, low fluxes. The differences in both N{sub 2}O and CH{sub 4} fluxes among different tidal positions, the landward, seaward and bare mudflat, in each swamp were insignificant. The N{sub 2}O and CO{sub 2} fluxes were positively correlated with the soil organic carbon, total nitrogen, total phosphate, total iron and NH{sub 4}{sup +}-N contents, as well as the soil porosity. However, only soil NH{sub 4}{sup +}-N concentration had significant effects on CH{sub 4} fluxes.

  9. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    International Nuclear Information System (INIS)

    Mazur, M.; Mitchell, C.P.J.; Eckley, C.S.; Eggert, S.L.; Kolka, R.K.; Sebestyen, S.D.; Swain, E.B.

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil–air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown. We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg emissions from the forest floor were monitored after two forest harvesting prescriptions, a traditional clear-cut and a clearcut followed by biomass harvest, and compared to an un-harvested reference plot. Gaseous Hg emissions were measured in quadruplicate at four different times between March and November 2012 using Teflon dynamic flux chambers. We also applied enriched Hg isotope tracers and separately monitored their emission in triplicate at the same times as ambient measurements. Clearcut followed by biomass harvesting increased ambient Hg emissions the most. While significant intra-site spatial variability was observed, Hg emissions from the biomass harvested plot (180 ± 170 ng m −2 d −1 ) were significantly greater than both the traditional clearcut plot (− 40 ± 60 ng m −2 d −1 ) and the un-harvested reference plot (− 180 ± 115 ng m −2 d −1 ) during July. This difference was likely a result of enhanced Hg 2+ photoreduction due to canopy removal and less shading from downed woody debris in the biomass harvested plot. Gaseous Hg emissions from more recently deposited Hg, as presumably representative of isotope tracer measurements, were not significantly influenced by harvesting. Most of the Hg tracer applied to the forest floor became sequestered within the ground vegetation and debris, leaf litter, and soil. We observed a dramatic lessening of tracer Hg emissions to near detection levels within 6 months. As post-clearcutting residues are increasingly used as a fuel or fiber resource, our observations suggest that gaseous Hg emissions from forest soils will increase, although it

  10. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  11. Direct evaluation of transient surface temperatures and heat fluxes

    International Nuclear Information System (INIS)

    Axford, R.A.

    1975-08-01

    Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations

  12. Prediction of Experimental Surface Heat Flux of Thin Film Gauges using ANFIS

    Science.gov (United States)

    Sarma, Shrutidhara; Sahoo, Niranjan; Unal, Aynur

    2018-05-01

    Precise quantification of surface heat fluxes in highly transient environment is of paramount importance from the design point of view of several engineering equipment like thermal protection or cooling systems. Such environments are simulated in experimental facilities by exposing the surface with transient heat loads typically step/impulsive in nature. The surface heating rates are then determined from highly transient temperature history captured by efficient surface temperature sensors. The classical approach is to use thin film gauges (TFGs) in which temperature variations are acquired within milliseconds, thereby allowing calculation of surface heat flux, based on the theory of one-dimensional heat conduction on a semi-infinite body. With recent developments in the soft computing methods, the present study is an attempt for the application of intelligent system technique, called adaptive neuro fuzzy inference system (ANFIS) to recover surface heat fluxes from a given temperature history recorded by TFGs without having the need to solve lengthy analytical equations. Experiments have been carried out by applying known quantity of `impulse heat load' through laser beam on TFGs. The corresponding voltage signals have been acquired and surface heat fluxes are estimated through classical analytical approach. These signals are then used to `train' the ANFIS model, which later predicts output for `test' values. Results from both methods have been compared and these surface heat fluxes are used to predict the non-linear relationship between thermal and electrical properties of the gauges that are exceedingly pertinent to the design of efficient TFGs. Further, surface plots have been created to give an insight about dimensionality effect of the non-linear dependence of thermal/electrical parameters on each other. Later, it is observed that a properly optimized ANFIS model can predict the impulsive heat profiles with significant accuracy. This paper thus shows the

  13. The role of soil pH on soil carbonic anhydrase activity

    Science.gov (United States)

    Sauze, Joana; Jones, Sam P.; Wingate, Lisa; Wohl, Steven; Ogée, Jérôme

    2018-01-01

    Carbonic anhydrases (CAs) are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O) of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2-H2O isotopic exchange rate (kiso) in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content) affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content) played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation) that varied with soil texture. The reasons for this offset are still unknown.

  14. The role of soil pH on soil carbonic anhydrase activity

    Directory of Open Access Journals (Sweden)

    J. Sauze

    2018-01-01

    Full Text Available Carbonic anhydrases (CAs are metalloenzymes present in plants and microorganisms that catalyse the interconversion of CO2 and water to bicarbonate and protons. Because oxygen isotopes are also exchanged during this reaction, the presence of CA also modifies the contribution of soil and plant CO18O fluxes to the global budget of atmospheric CO18O. The oxygen isotope signatures (δ18O of these fluxes differ as leaf water pools are usually more enriched than soil water pools, and this difference is used to partition the net CO2 flux over land into soil respiration and plant photosynthesis. Nonetheless, the use of atmospheric CO18O as a tracer of land surface CO2 fluxes requires a good knowledge of soil CA activity. Previous studies have shown that significant differences in soil CA activity are found in different biomes and seasons, but our understanding of the environmental and ecological drivers responsible for the spatial and temporal patterns observed in soil CA activity is still limited. One factor that has been overlooked so far is pH. Soil pH is known to strongly influence microbial community composition, richness and diversity in addition to governing the speciation of CO2 between the different carbonate forms. In this study we investigated the CO2–H2O isotopic exchange rate (kiso in six soils with pH varying from 4.5 to 8.5. We also artificially increased the soil CA concentration to test how pH and other soil properties (texture and phosphate content affected the relationship between kiso and CA concentration. We found that soil pH was the primary driver of kiso after CA addition and that the chemical composition (i.e. phosphate content played only a secondary role. We also found an offset between the δ18O of the water pool with which CO2 equilibrates and total soil water (i.e. water extracted by vacuum distillation that varied with soil texture. The reasons for this offset are still unknown.

  15. Calibration of a distributed hydrology and land surface model using energy flux measurements

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  16. Measurements of flux surfaces in the ATF torsatron

    International Nuclear Information System (INIS)

    England, A.C.; Colchin, R.J.; Harris, J.H.; Hillis, D.L.; Jernigan, T.C.; Anderson, F.S.B.

    1989-01-01

    Flux surfaces in the advanced toroidal facility (ATF) torsatron have been measured using electron-beam techniques. The beam was injected toroidally and impinged on a phosphor-coated screen located ∼ 180 degrees from the gun. The gun was mounted on a drive mechanism that enabled the beam to scan the entire cross section of the last closed flux surface in ATF. The screen material was st. steel, coated with ZnO:Zn (P-15 or P-24) phosphor, and the transparency was ∼ 90%. The emitted light was detected with an image-intensified CCD camera that viewed the mesh through a nearby port. The images were displayed directly on a TV monitor and stored on video tape. Frames from the video tape were transferred to a computer, where the image was enhanced and transformed to remove spatial distortions due to the lens and the viewing angle of the camera

  17. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    International Nuclear Information System (INIS)

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  18. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges

    Energy Technology Data Exchange (ETDEWEB)

    Richon, Patrick, E-mail: patrick.richon@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France); Institut de Physique du Globe de Paris, Equipe Geologie des Systemes Volcaniques, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Klinger, Yann; Tapponnier, Paul [Institut de Physique du Globe de Paris, Equipe de Seismotectonique, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Li Chenxia [Institute of Geology, Chinese Earthquake Administration, P.O. Box 9803, 100029 Beijing (China); Van Der Woerd, Jerome [Institut de Physique du Globe de Strasbourg, CNRS, UMR-7516, INSU, Universite Louis Pasteur, Strasbourg I, 5 Rue Rene Descartes, F-67084 Strasbourg Cedex (France); Perrier, Frederic [Institut de Physique du Globe de Paris, Equipe de Geomagnetisme, 4 place Jussieu, UMR-7154 CNRS et Universite Paris 7 Denis-Diderot, F-75005 Paris (France)

    2010-02-15

    Searching for gas exhalation around major tectonic contacts raises important methodological issues such as the role of the superficial soil and the possible long distance transport. These effects have been studied on the Xidatan segment of the Kunlun Fault, Qinghai Province, China, using measurement of the radon-222 and carbon dioxide exhalation flux. A significant radon flux, reaching up to 538 +- 33 mBq m{sup -2} s{sup -1} was observed in a 2-3 m deep trench excavated across the fault. On the soil surface, the radon flux varied from 7 to 38 mBq m{sup -2} s{sup -1}, including on the fault trace, with an average value of 14.1 +- 1.0 mBq m{sup -2} s{sup -1}, similar to the world average. The carbon dioxide flux on the soil surface, with an average value of 12.9 +- 3.3 g m{sup -2} day{sup -1}, also remained similar to regular background values. It showed no systematic spatial variation up to a distance of 1 km from the fault, and no clear enhancement in the trench. However, a high carbon dioxide flux of 421 +- 130 g m{sup -2} day{sup -1} was observed near subvertical fractured phyllite outcrops on a hill located about 3 km north of the fault, at the boundary of the large-scale pull-apart basin associated with the fault. This high carbon dioxide flux was associated with a high radon flux of 607 +- 35 mBq m{sup -2} s{sup -1}. These preliminary results indicate that, at the fault trace, it can be important to measure gas flux at the bottom of a trench to remove superficial soil layers. In addition, gas discharges need to be investigated also at some distance from the main fault, in zones where morphotectonics features support associated secondary fractures.

  19. Assessment of large aperture scintillometry for large-area surface ...

    Indian Academy of Sciences (India)

    29

    1995), flat pastoral surfaces. (McAneny ... heat flux using net radiometer and soil heat flux plate, respectively and synchronized with ..... order to facilitates development of satellite based application for ET and drought monitoring, the .... daytime sensible heat flux and momentum fluxes;Boundary- Layer Meteorol.,68 357-373.

  20. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  1. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i

  2. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  3. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie Nøhr

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  4. Plateau diffusion coefficient for arbitrary flux surface geometry

    International Nuclear Information System (INIS)

    Meier, H.K.; Hirshman, S.P.; Sigmar, D.J.; Lao, L.L.

    1981-03-01

    A relatively simple but accurate representation has been developed for magnetic flux surfaces; it is valid for finite β and it describes configurations with both ellipticity and D-shape. This representation has been applied to the computation of the diffusion coefficient in the plateau regime

  5. Overcoming soil compaction in surface mine reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Sweigard, R.J. (University of Kentucky, Lexington, KY (USA). Dept. of Mining Engineering)

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig.

  6. Overcoming soil compaction in surface mine reclamation

    International Nuclear Information System (INIS)

    Sweigard, R.J.

    1991-01-01

    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig

  7. Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices

    International Nuclear Information System (INIS)

    Kustas, W.P.; Daughtry, C.S.T.; Oevelen, P.J. van

    1993-01-01

    Relationships between leaf area index (LAI) and midday soil heat flux/net radiation ratio (G/R n ) and two more commonly used vegetation indices (VIs) were used to analytically derive formulas describing the relationship between G/R n and VI. Use of VI for estimating G/R n may be useful in operational remote sensing models that evaluate the spatial variation in the surface energy balance over large areas. While previous experimental data have shown that linear equations can adequately describe the relationship between G/Rn and VI, this analytical treatment indicated that nonlinear relationships are more appropriate. Data over bare soil and soybeans under a range of canopy cover conditions from a humid climate and data collected over bare soil, alfalfa, and cotton fields in an arid climate were used to evaluate model formulations derived for LAI and G/R n , LAI and VI, and VI and G/R n . In general, equations describing LAI-G/R n and LAI-VI relationships agreed with the data and supported the analytical result of a nonlinear relationship between VI and G/R n . With the simple ratio (NIR/Red) as the VI, the nonlinear relationship with G/R n was confirmed qualitatively. But with the normalized difference vegetation index (NDVI), a nonlinear relationship did not appear to fit the data. (author)

  8. An intercomparison of surface energy flux measurement systems used during FIFE 1987

    International Nuclear Information System (INIS)

    Nie, D.; Kanemasu, E.T.; Fritschen, L.J.; Weaver, H.L.; Smith, E.A.; Verma, S.B.; Field, R.T.; Kustas, W.P.; Stewart, J.B.

    1992-01-01

    During FIFE 1987, surface energy fluxes were measured at 22 flux sites by nine groups of scientists using different measuring systems. A rover Bowen ratio station was taken to 20 of the flux stations to serve as a reference for estimating the instrument-related differences. The rover system was installed within a few meters from the host instrument of a site. Using linear regression analysis, net radiation, Bowen ratio, and latent heat fluxes were compared between the rover measurements and the host measurements. The average differences in net radiation, Bowen ratio, and latent heat flux from different types of instruments can be up to 10, 30, and 20 percent, respectively. The Didcot net radiometer gave higher net radiation while the Swissteco type showed lower values, as compared to the corrected radiation energy balance system (REBS) model. The four-way components method and the Thornthwaite type give similar values to the REBS. The surface energy radiation balance systems type Bowen ratio systems exhibit slightly lower Bowen ratios and thus higher latent heat fluxes, compared to the arid zone evapotranspiration systems. Eddy correlation systems showed slightly lower latent heat flux in comparison to the Bowen ratio systems. It is recommended that users of the flux data take these differences into account. 11 refs

  9. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  10. Seasonal change in precipitation, snowpack, snowmelt, soil water and streamwater chemistry, northern Michigan

    Science.gov (United States)

    Stottlemyer, R.; Toczydlowski, D.

    1999-01-01

    We have studied weekly precipitation, snowpack, snowmelt, soil water and streamwater chemistry throughout winter for over a decade in a small (176 ha) northern Michigan watershed with high snowfall and vegetated by 60 to 80 year-old northern hardwoods. In this paper, we examine physical, chemical, and biological processes responsible for observed seasonal change in streamwater chemistry based upon intensive study during winter 1996-1997. The objective was to define the contributions made to winter and spring streamwater chemical concentration and flux by processes as snowmelt, over-winter forest floor and surface soil mineralization, immobilization, and exchange, and subsurface flowpath. The forest floor and soil were unfrozen beneath the snowpack which permitted most snowmelt to enter. Over-winter soil mineralization and other biological processes maintain shallow subsurface ion and dissolved organic carbon (DOC) reservoirs. Small, but steady, snowmelt throughout winter removed readily mobilized soil NO3- which resulted in high over-winter streamwater concentrations but little flux. Winter soil water levels and flowpaths were generally deep which increased soil water and streamwater base cation (C(B)), HCO3-, and Si concentrations. Spring snowmelt increased soil water levels and removal of ions and DOC from the biologically active forest floor and shallow soils. The snowpack solute content was a minor component in determining streamwater ion concentration or flux during and following peak snowmelt. Exchangeable ions, weakly adsorbed anions, and DOC in the forest floor and surface soils dominated the chemical concentration and flux in soil water and streamwater. Following peak snowmelt, soil microbial immobilization and rapidly increased plant uptake of limiting nutrients removed nearly all available nitrogen from soil water and streamwater. During the growing season high evapotranspiration increased subsurface flowpath depth which in turn removed weathering

  11. Heat and Water Transport in Soils and Across the Soil-Atmosphere Interface: Comparison of Model Concepts

    DEFF Research Database (Denmark)

    Vanderborght, Jan; Smits, Kathleen; Mosthaf, Klaus

    Evaporation from the soil surface represents a water flow and transport process in a porous medium that is coupled with free air flow and with heat fluxes in the system. We give an overview of different model concepts that are used to describe this process. These range from non-isothermal two......-phase flow two-component transport in the porous medium that is coupled with one-phase flow two-component transport in the free air to isothermal water flow in the porous with upper boundary conditions defined by a potential evaporation flux when available energy and transfer to the free air flow...... models were found. The effect of vapor flow in the porous medium on cumulative evaporation could be evaluated using the desorptivity, Sevap, which represents a weighted average of liquid and vapor diffusivity over the range of soil water contents between the soil surface water content and the initial...

  12. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  13. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.

    Science.gov (United States)

    Scholtz, M T; Bidleman, T F

    2007-05-01

    In the first part of this paper, a simple coupled dynamic soil-atmosphere model for studying the gaseous exchange of pesticide soil residues with the atmosphere is described and evaluated by comparing model results with published measurements of pesticide concentrations in air and soil. In Part II, the model is used to study the concentration profiles of pesticide residues in both undisturbed and annually tilled agricultural soils. Future trends are estimated for the measured air and soil concentrations of lindane and six highly persistent pesticides (toxaphene, p,p'-DDE, dieldrin, cis- and trans-chlordane and trans-nonachlor) over a twenty-year period due to volatilization and leaching into the deeper soil. Wet deposition and particle associated pesticide deposition (that increase soil residue concentrations) and soil erosion, degradation in the soil (other than for lindane) and run-off in precipitation are not considered in this study. Estimates of the rain deposition fluxes are reported that show that, other than for lindane, net volatilization fluxes greatly exceed rain deposition fluxes. The model shows that the persistent pesticides studied are highly immobile in soil and that loss of these highly persistent residues from the soil is by volatilization rather than leaching into the deeper soil. The soil residue levels of these six pesticides are currently sources of net volatilization to the atmosphere and will remain so for many years. The maximum rate of volatilization from the soil was simulated by setting the atmospheric background concentration to zero; these simulations show that the rates of volatilization will not be significantly increased since soil resistance rather than the atmospheric concentration controls the volatilization rates. Annual tilling of the soils increases the volatilization loss to the atmosphere. Nonetheless, the model predicts that, if only air-soil exchange is considered, more than 76% of current persistent pesticide residues

  14. Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the Prairie Pothole Region of North America

    Energy Technology Data Exchange (ETDEWEB)

    Tangen, Brian A., E-mail: btangen@usgs.gov; Finocchiaro, Raymond G., E-mail: rfinocchiaro@usgs.gov; Gleason, Robert A., E-mail: rgleason@usgs.gov

    2015-11-15

    Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH{sub 4}) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH{sub 4} fluxes from the uplands were predictably low (< 0.02 g CH{sub 4} m{sup −2} day{sup −1}), while wetland zone CH{sub 4} fluxes were much greater (< 0.001–3.9 g CH{sub 4} m{sup −2} day{sup −1}). Mean cumulative seasonal CH{sub 4} fluxes ranged from roughly 0–650 g CH{sub 4} m{sup −2}, with an overall mean of approximately 160 g CH{sub 4} m{sup −2}. These maximum cumulative CH{sub 4} fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N{sub 2}O fluxes from this study (< 0.0001–0.0023 g N{sub 2}O m{sup −2} day{sup −1}) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH{sub 4} fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH{sub 4} fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N{sub 2}O fluxes from cropland catchments likely would be reduced through restoration. The overall

  15. Theory of redeposition of sputtered flux on to surface asperities

    International Nuclear Information System (INIS)

    Belson, J.; Wilson, I.H.

    1981-01-01

    This paper models the topographical evolution of features on amorphous surfaces under ion bombardment. Specifically, evolution due to accretion of material sputtered from areas adjacent to a feature has been investigated in terms of the flux density redeposited on to an arbitrary profile y = f(xi) from a linear emitter. Analytical solutions have been found for the early ( first burst ) evolution of linear and sinusoidal surface features in cases where the emitter radiates isotropically or anisotropically (cosine law) from each point of its length. The predictions of models based on these two types of emitter are compared. Both types produce enhanced deposition near the foot of a linear slope but the effect is much greater for isotropic emission. Above the foot of a linear slope there is a point beyond which the redeposition due to an anisotropic emitter is greater than that due to an isotropic emitter of identical luminance. For a 90 0 slope (step or groove of rectangular section) the point is about 0.4 times the emitter length (i.e. 0.4 x groove width) above the base. Sinusoidal asperities which are present in a high surface density are expected to receive significant redeposited flux only near their bases. By contrast, widely separated asperities would receive flux over almost all or their profiles. In this latter situation the magnitude of the redeposited flux density is found to be relatively insensitive to position on a profile. (orig.)

  16. Fluxes of N2O and CH4 from forest and grassland lysimeter soils in response to simulated climate change

    Science.gov (United States)

    Weymann, Daniel; Brueggemann, Nicolas; Puetz, Thomas; Vereecken, Harry

    2015-04-01

    Central Europe is expected to be exposed to altered temperature and hydrological conditions, which will affect the vulnerability of nitrogen and carbon cycling in soils and thus production and fluxes of climate relevant trace gases. However, knowledge of the response of greenhouse gas fluxes to climate change is limited so far, but will be an important basis for future climate projections. Here we present preliminary results of an ongoing lysimeter field study which aims to assess the impact of simulated climate change on N2O and CH4 fluxes from a forest and a fertilized grassland soil. The lysimeters are part of the Germany-wide research infrastructure TERENO, which investigates feedbacks of climate change to the pedosphere on a long-term scale. Lysimeters (A = 1m2) were established in 2010 at high elevated sites (HE, 500 and 600 m.a.s.l.) and subsequently transferred along an altitudinal gradient to a low elevated site (LE, 100 m.a.s.l.) within the Eifel / Lower Rhine Valley Observatory in Western Germany, thereby resulting in a temperature increase of 2.3 K whereas precipitation decreased by 160 mm during the present study period. Systematic monitoring of soil-atmosphere exchange of N2O and CH4 based on weekly manual closed chamber measurements at HE and LE sites has started in August 2013. Furthermore, we routinely determine dissolved N2O and CH4 concentrations in the seepage water using a headspace equilibration technique and record water discharge in order to quantify leaching losses of both greenhouse gases. Cumulative N2O fluxes clearly responded to simulated climate change conditions and increased by 250 % and 600 % for the forest and the grassland soil, respectively. This difference between the HE and LE sites was mainly caused by an exceptionally heavy precipitation event in July 2014 which turned the LE site sustainably to a consistently higher emission level. Nonetheless, emissions remained rather small and ranged between 20 and 40 μg m-2 h-1. In

  17. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India.

    Science.gov (United States)

    Ahirwal, Jitendra; Maiti, Subodh Kumar; Singh, Ashok Kumar

    2017-04-01

    Open strip mining of coal results in loss of natural carbon (C) sink and increased emission of CO 2 into the atmosphere. A field study was carried out at five revegetated coal mine lands (7, 8, 9, 10 and 11years) to assess the impact of the reclamation on soil properties, accretion of soil organic C (SOC) and nitrogen (N) stock, changes in ecosystem C pool and soil CO 2 flux. We estimated the presence of C in the tree biomass, soils, litter and microbial biomass to determine the total C sequestration potential of the post mining reclaimed land. To determine the C sequestration of the reclaimed ecosystem, soil CO 2 flux was measured along with the CO 2 sequestration. Reclaimed mine soil (RMS) fertility increased along the age of reclamation and decreases with the soil depths that may be attributed to the change in mine soils characteristics and plant growth. After 7 to 11years of reclamation, SOC and N stocks increased two times. SOC sequestration (1.71MgCha -1 year -1 ) and total ecosystem C pool (3.72MgCha -1 year -1 ) increased with the age of reclamation (CO 2 equivalent: 13.63MgCO 2 ha -1 year -1 ). After 11years of reclamation, soil CO 2 flux (2.36±0.95μmolm -2 s -1 ) was found four times higher than the natural forest soils (Shorea robusta Gaertn. F). The study shows that reclaimed mine land can act as a source/sink of CO 2 in the terrestrial ecosystem and plays an important role to offset increased emission of CO 2 in the atmosphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A process-based {sup 222}radon flux map for Europe and its comparison to long-term observations

    Energy Technology Data Exchange (ETDEWEB)

    Karstens, U. [Max-Planck-Instistut fuer Biogeochemie, Jena (Germany); Schwingshackl, C.; Schmithuesen, D.; Levin, I. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    2015-07-01

    Detailed {sup 222}radon ({sup 222}Rn) flux maps are an essential pre-requisite for the use of radon in atmospheric transport studies. Here we present a high-resolution {sup 222}Rn flux map for Europe, based on a parameterization of {sup 222}Rn production and transport in the soil. The {sup 222}Rn exhalation rate is parameterized based on soil properties, uranium content, and modelled soil moisture from two different land-surface reanalysis data sets. Spatial variations in exhalation rates are primarily determined by the uranium content of the soil, but also influenced by soil texture and local water-table depth. Temporal variations are related to soil moisture variations as the molecular diffusion in the unsaturated soil zone depends on available air-filled pore space. The implemented diffusion parameterization was tested against campaign-based {sup 222}Rn soil profile measurements. Monthly {sup 222}Rn exhalation rates from European soils were calculated with a nominal spatial resolution of 0.083 x 0.083 and compared to long-term direct measurements of {sup 222}Rn exhalation rates in different areas of Europe. The two realizations of the {sup 222}Rn flux map, based on the different soil moisture data sets, both realistically reproduce the observed seasonality in the fluxes but yield considerable differences for absolute flux values. The mean {sup 222}Rn flux from soils in Europe is estimated to be 10 mBq m{sup -2} s{sup -1} (ERA-Interim/Land soil moisture) or 15 mBq m{sup -2} s{sup -1} (GLDAS (Global Land Data Assimilation System) Noah soil moisture) for the period 2006-2010. The corresponding seasonal variations with low fluxes in winter and high fluxes in summer range in the two realizations from ca. 7 to ca. 14 mBq m{sup -2} s{sup -1} and from ca. 11 to ca. 20 mBq m{sup -2} s{sup -1}, respectively. These systematic differences highlight the importance of realistic soil moisture data for a reliable estimation of {sup 222}Rn exhalation rates. Comparison with

  19. Determination of Surface Fluxes Using a Bowen Ratio System

    African Journals Online (AJOL)

    USER

    Components of the surface fluxes of the energy balance equation were determined ... and vapour pressure in combination with point measurements of net .... approaches zero, then almost all the energy available is used in evapotranspiration.

  20. Heat and water transport in soils and across the soil-atmosphere interface: 2. Numerical analysis

    DEFF Research Database (Denmark)

    Fetzer, Thomas; Vanderborght, Jan; Mosthaf, Klaus

    2017-01-01

    evaporation decreases from parts of the heterogeneous soil surface, lateral flow and transport processes in the free flow and in the porous medium generate feedbacks that enhance evaporation from wet surface areas. In the second set of simulations, we assume that the vertical fluxes do not vary considerably...

  1. Spatial analysis of soil erosion and sediment fluxes: a paired watershed study of two Rappahannock River tributaries, Stafford County, Virginia.

    Science.gov (United States)

    Ricker, Matthew C; Odhiambo, Ben K; Church, Joseph M

    2008-05-01

    Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.

  2. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes

    Science.gov (United States)

    Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.

    1999-04-01

    A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is

  3. Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2014-01-01

    Full Text Available The land monitoring service of the European Copernicus programme has developed a set of satellite-based biogeophysical products, including surface soil moisture (SSM and leaf area index (LAI. This study investigates the impact of joint assimilation of remotely sensed SSM derived from Advanced Scatterometer (ASCAT backscatter data and the Copernicus Global Land GEOV1 satellite-based LAI product into the the vegetation growth version of the Interactions between Soil Biosphere Atmosphere (ISBA-A-gs land surface model within the the externalised surface model (SURFEX modelling platform of Météo-France. The ASCAT data were bias corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative Distribution Function matching technique. A multivariate multi-scale land data assimilation system (LDAS based on the extended Kalman Filter (EKF is used for monitoring the soil moisture, terrestrial vegetation, surface carbon and energy fluxes across the domain of France at a spatial resolution of 8 km. Each model grid box is divided into a number of land covers, each having its own set of prognostic variables. The filter algorithm is designed to provide a distinct analysis for each land cover while using one observation per grid box. The updated values are aggregated by computing a weighted average. In this study, it is demonstrated that the assimilation scheme works effectively within the ISBA-A-gs model over a four-year period (2008–2011. The EKF is able to extract useful information from the data signal at the grid scale and distribute the root-zone soil moisture and LAI increments throughout the mosaic structure of the model. The impact of the assimilation on the vegetation phenology and on the water and carbon fluxes varies from one season to another. The spring drought of 2011 is an interesting case study of the potential of the assimilation to improve drought monitoring. A comparison between simulated and in situ soil

  4. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  5. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  6. Response of concrete exposed to a high heat flux on one surface

    International Nuclear Information System (INIS)

    Muir, J.F.

    1977-11-01

    Experiments were performed to investigate the response of concrete to severe thermal environments such as might be encountered during the interaction of molten reactor core materials with the containment substructure following a hypothetical fuel melt accident. The dominant mechanism for erosion of both limestone and basaltic concrete appears to be melting of the cementitious material in the matrix. The erosion proceeded in a quiescent manner with negligible spallation. The erosion rate increased with heat flux, becoming as large as approximately 70 cm/hr for a net surface heat flux of roughly 190 W/cm 2 . Analyses reveal the surface temperature to be the single most significant parameter affecting the net surface heat flux, through its importance to emitted radiation; and that the greatest fraction of the net energy transmitted to the concrete goes into sensible heat

  7. Soil thermal properties at Kalpakkam in coastal south India

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    2012-02-01

    Feb 1, 2012 ... K Anandakumar1, R Venkatesan2, Thara V. Prabha1. 1Crop and ... Time series of soil surface and subsurface temperatures, soil heat flux, net radiation, air temperature and wind ... measured directly using thermal conductivity.

  8. Influence of sustainable irrigation regimes and agricultural practices on the soil CO2 fluxes from olive groves in SE Spain

    Science.gov (United States)

    Marañón-Jiménez, Sara; Serrano-Ortíz, Penelope; Vicente-Vicente, Jose Luis; Chamizo, Sonia; Kowalski, Andrew S.

    2017-04-01

    Olive (Olea europaea) is the dominant agriculture plantation in Spain and its main product, olive oil, is vital to the economy of Mediterranean countries. Given the extensive surface dedicated to olive plantations, olive groves can potentially sequester large amounts of carbon and contribute to mitigate climate change. Their potential for carbon sequestration will, however, largely depend on the management and irrigation practices in the olive grove. Although soil respiration is the main path of C release from the terrestrial ecosystems to the atmosphere and a suitable indicator of soil health and fertility, the interaction of agricultural management practices with irrigation regimes on soil CO2 fluxes have not been assessed yet. Here we investigate the influence of the presence of herbaceous cover, use of artificial fertilizers and their interaction with the irrigation regime on the CO2 emission from the soil to the atmosphere. For this, the three agricultural management treatments were established in replicated plots in an olive grove in the SE of Spain: presence of herbaceous cover ("H"), exclusion of herbaceous cover by using herbicides ("NH"), and exclusion of herbaceous cover along with addition of artificial fertilizers (0.55 kg m-2 year-1 of N, P, K solid fertilizer in the proportion 20:10:10, "NHF"). Within each management treatment, three irrigation regimes were also implemented in a randomized design: no-irrigation ("NO") or rain fed, full irrigation (224 l week-1 per olive tree, "MAX"), and a 50% restriction (112 l week-1 per olive tree, "MED"). Soil respiration was measured every 2-3 weeks at 1, 3, and 5 meters from each olive tree together with soil temperature and soil moisture in order to account for the spatial and seasonal variability over the year. Soil respiration was higher when herbaceous cover was present compared to the herbaceous exclusion, whereas the addition of fertilizer did not exert any significant effect. Although the different

  9. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    Science.gov (United States)

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  10. Comparison of sea surface flux measured by instrumented aircraft and ship during SOFIA and SEMAPHORE experiments

    Science.gov (United States)

    Durand, Pierre; Dupuis, HéLèNe; Lambert, Dominique; BéNech, Bruno; Druilhet, Aimé; Katsaros, Kristina; Taylor, Peter K.; Weill, Alain

    1998-10-01

    Two major campaigns (Surface of the Oceans, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE)) devoted to the study of ocean-atmosphere interaction were conducted in 1992 and 1993, respectively, in the Azores region. Among the various platforms deployed, instrumented aircraft and ship allowed the measurement of the turbulent flux of sensible heat, latent heat, and momentum. From coordinated missions we can evaluate the sea surface fluxes from (1) bulk relations and mean measurements performed aboard the ship in the atmospheric surface layer and (2) turbulence measurements aboard aircraft, which allowed the flux profiles to be estimated through the whole atmospheric boundary layer and therefore to be extrapolated toward the sea surface level. Continuous ship fluxes were calculated with bulk coefficients deduced from inertial-dissipation measurements in the same experiments, whereas aircraft fluxes were calculated with eddy-correlation technique. We present a comparison between these two estimations. Although momentum flux agrees quite well, aircraft estimations of sensible and latent heat flux are lower than those of the ship. This result is surprising, since aircraft momentum flux estimates are often considered as much less accurate than scalar flux estimates. The various sources of errors on the aircraft and ship flux estimates are discussed. For sensible and latent heat flux, random errors on aircraft estimates, as well as variability of ship flux estimates, are lower than the discrepancy between the two platforms, whereas the momentum flux estimates cannot be considered as significantly different. Furthermore, the consequence of the high-pass filtering of the aircraft signals on the flux values is analyzed; it is weak at the lowest altitudes flown and cannot therefore explain the discrepancies between the two platforms but becomes

  11. Soil emission and uptake of carbonyl sulfide at a temperate mountain grassland

    Science.gov (United States)

    Kitz, Florian; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M.; Wohlfahrt, Georg

    2016-04-01

    Flux partitioning, i.e. inferring gross primary productivity (GPP) and ecosystem respiration from the measured net ecosystem carbon dioxide (CO2) exchange, is one uncertainty in modelling the carbon cycle and in times where robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive GPP by measuring carbonyl sulfide (COS), the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite to use COS as a proxy for canopy photosynthesis is a robust estimation of COS sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on properties like soil temperature and soil water content. The main aim of this study was to quantify the soil COS exchange and its drivers of a temperate mountain grassland in order to aid the use of COS as tracer for canopy CO2 and water vapor exchange. We conducted a field campaign with a Quantum cascade laser at a temperate mountain grassland to estimate the soil COS fluxes under ambient conditions and while simulating a drought. We used self-built fused silica (i.e. light-transparent) soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. Vegetation was removed within the chambers, therefor more radiation reached the soil surface compared to natural conditions. This might be the reason for highly positive fluxes during daytime more similar to agricultural study sites. To further investigate this large soil COS source we conducted within canopy concentration measurements near the soil surface and still recorded fluxes confirming the soil as a COS source during daytime. Results from the drought experiment suggested a strong impact of incoming radiation on soil COS fluxes followed by soil

  12. The interaction between land use change, sediment fluxes and carbon dynamics: evaluating an integrated soil-landscape model at the millennial time-scale.

    Science.gov (United States)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle

    2015-04-01

    Soil-landscape modelling has received growing attention as it allows us to evaluate the interaction between earth surface and soil bio-physical processes. At the landscape scale, human-induced land use change has altered the balance between soil erosion and production, and largely modified sediment fluxes. Intensification in soil redistribution rates affects the interaction between soil chemical, physical and biological processes at the landscape scale. Here, we evaluate the SPEROS-LT model, a spatially explicit 3D model combining a dynamic representation of land use, soil erosion and deposition and the soil carbon cycle. We assess the impact of millennial-scale human-induced land use change on sediment fluxes and carbon dynamics in the Dijle catchement (central Belgium). The watershed has undergone a 3000 years continuous human-induced alteration of the vegetation covers for agricultural characterized by Our study is based on land use reconstructions for the last 3000 years, including massive deforestation for agriculture in Roman Times and the Middle Ages followed by urbanization in the last 150 years. Land use reconstructions rely on simple land use allocation rules based on slope gradients. SPEROS-LT is parametrized for erosion rates against available figures in the literature by changing the transport capacity and the transfer coefficient which defines the amount of flux transferred between different land uses. Carbon content profiles at steady state (i.e. without influence of erosion or deposition) are calibrated for each land use and for the first upper meter of soil by comparing modeled profiles to an averaged observed profiles in stable areas of the pedologic region. We present a model sensitivity analysis and a full validation of the predicted soil carbon storage (horizontally, i.e. in space, and vertically, i.e. with depth) using a large database of observational data. The results indicate (i) a good agreement of the erosion rates. Speros LT modeled

  13. Frozen soil and snow cover with respect to the hydrological land-surface behaviour; Gefrorener Boden und Schneebedeckung unter besonderer Beruecksichtigung des hydrologischen Verhaltens der Landoberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Warrach, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2000-07-01

    Investigations of the water and energy cycle in the climate system using atmospheric circulation models require a proper representation of the land surface. The land-surface model SEWAB calculates the vertical exchange of water and energy between the atmosphere and the land-surface. This includes the calculation of runoff from the land-surface into the rivers and of the vertical heat and water fluxes within the soil. The inclusion of soil freezing and thawing and the accumulation and ablation of a snow cover in SEWAB is introduced. Additionally changes in the runoff calculation such as the inclusion of the TOPMODEL-approach to consider orographic effects are made. Applications carried out for various regions of North America show good agreement between model results and measurements. (orig.)

  14. Measurements of NO and NH3 soil fluxes at the Savé super site in Benin, West Africa, during the DACCIWA field campaign.

    Science.gov (United States)

    Pacifico, Federica; Delon, Claire; Jambert, Corinne; Durand, Pierre; Lohou, Fabienne; Reinares Martinez, Irene; Brilouet, Pierre-Etienne; Brosse, Fabien; Pedruzo Bagazgoitia, Xabier; Dione, Cheikh; Gabella, Omar

    2017-04-01

    In the next decades South West Africa will be subject to a strong increase in anthropogenic emissions due to a massive growth in population and urbanization. The impact of global climate change, local or regional land use changes, and the strong sensitivity to the West African monsoon lead to complex interactions between surface emissions and atmospheric dynamics and chemistry. Anthropogenic pollutants are transported northward from the mega cities located on the coast, and react with biogenic emissions, leading to enhanced ozone (O3) production outside urban areas, as well as secondary organic aerosols formation, with detrimental effects on humans, animals, natural vegetation and crops. Nitrogen oxide (NO) emissions from soils, among other sources, directly influence NOx concentrations. Changes in NO sources will consequently modify the rate of O3 production. The largest source of ammonia (NH3) emissions is agriculture, via the application of synthetic fertilizer. When released into the atmosphere, NH3 increases the level of air pollution. Once deposited in water and soils, it can potentially cause two major types of environmental damage, acidification and eutrophication, both of which can harm sensitive vegetation systems, biodiversity and water quality. We investigate the role of soil fluxes of NO and NH3 on atmospheric chemistry in West Africa, making use of the observations taken in June and July 2016 at the Savé super-site, Benin (8°02'03" N, 2°29'11″ E), during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field campaign, which took place in June-July 2016. These observations also include meteorological and soil parameters such as air temperature and humidity (at 2 m height), radiation, soil temperature and moisture at different depths (5 cm and 10 cm). The climate in Savé is typical of a wet Guinea savanna, and the wet season takes place from June to October. Soil fluxes of NO and NH3 were measured on: bare soil, grassland

  15. Evapotranspiration and Surface Energy Fluxes Estimation Using the Landsat-7 Enhanced Thematic Mapper Plus Image over a Semiarid Agrosystem in the North-West of Algeria

    Directory of Open Access Journals (Sweden)

    Nehal Laounia

    Full Text Available Abstract Monitoring evapotranspiration and surface energy fluxes over a range of spatial and temporal scales is crucial for many agroenvironmental applications. Different remote sensing based energy balance models have been developed, to estimate evapotranspiration at both field and regional scales. In this contribution, METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration, has been applied for the estimation of actual evapotranspiration in the Ghriss plain in Mascara (western Algeria, a semiarid region with heterogeneous surface conditions. Four images acquired during 2001 and 2002 by the Landsat-7 satellite were used. The METRIC model followed an energy balance approach, where evapotranspiration is estimated as the residual term when net radiation, sensible and soil heat fluxes are known. Different moisture indicators derived from the evapotranspiration were then calculated: reference evapotranspiration fraction, Priestley-Taylor parameter and surface resistance to evaporation. The evaluation of evapotranspiration and surface energy fluxes are accurate enough for the spatial variations of evapotranspiration rather satisfactory than sophisticated models without having to introduce an important number of parameters in input with difficult accessibility in routine. In conclusion, the results suggest that METRIC can be considered as an operational approach to predict actual evapotranspiration from agricultural areas having limited amount of ground information.

  16. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    Science.gov (United States)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  17. Lateral water flux in the unsaturated zone: A mechanism for the formation of spatial soil heterogeneity in a headwater catchment

    Science.gov (United States)

    John P. Gannon; Kevin J. McGuire; Scott W. Bailey; Rebecca R. Bourgault; Donald S. Ross

    2017-01-01

    Measurements of soil water potential and water table fluctuations suggest that morphologically distinct soils in a headwater catchment at the Hubbard Brook Experimental Forest in New Hampshire formed as a result of variations in saturated and unsaturated hydrologic fluxes in the mineral soil. Previous work showed that each group of these soils had distinct water table...

  18. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests

    Czech Academy of Sciences Publication Activity Database

    Maier, M.; Macháčová, Kateřina; Lang, F.; Svobodová, Kateřina; Urban, Otmar

    2018-01-01

    Roč. 181, č. 1 (2018), s. 31-35 ISSN 1436-8730 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : ch4 * soil gas profile * gas flux * co2 * methanogenesis Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 2.102, year: 2016

  19. Surface Characterization for Land-Atmosphere Studies of CLASIC

    Science.gov (United States)

    Jackson, T. J.; Kustas, W.; Torn, M. S.; Meyers, T.; Prueger, J.; Fischer, M. L.; Avissar, R.; Yueh, S.; Anderson, M.; Miller, M.

    2006-12-01

    The Cloud and Land Surface Interaction Campaign will focus on interactions between the land surface, convective boundary layer, and cumulus clouds. It will take place in the Southern Great Plains (SGP) area of the U.S, specifically within the US DOE ARM Climate Research Facility. The intensive observing period will be June of 2007, which typically covers the winter wheat harvest in the region. This region has been the focus of several related experiments that include SGP97, SGP99, and SMEX03. For the land surface, some of the specific science questions include 1) how do spatial variations in land cover along this trajectory modulate the cloud structure and the low-level water vapor budget, 2) what are the relationships between land surface characteristics (i.e., soil texture, vegetation type and fractional cover) and states (particularly soil moisture and surface temperature) and the resulting impact of the surface energy balance on boundary layer and cloud structure and dynamics and aerosol loading; and 3) what is the interplay between cumulus cloud development and surface energy balance partitioning between latent and sensible heat, and implications for the carbon flux? Most of these objectives will require flux and state measurements throughout the dominant land covers and distributed over the geographic domain. These observations would allow determining the level of up- scaling/aggregation required in order to understand the impact of landscape changes affecting energy balance/flux partitioning and impact on cloud/atmospheric dynamics. Specific contributions that are planned to be added to CLASIC include continuous tower-based monitoring of surface fluxes for key land cover types prior to, during, and post-IOP, replicate towers to quantify flux variance within each land cover, boundary layer properties and fluxes from a helicopter-based system, airplane- and satellite-based flux products throughout the region, aircraft- and tower-based concentration data for

  20. Regional-Scale Surface Magnetic Fields and Proton Fluxes to Mercury's Surface from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, R. M.; Johnson, C. L.; Anderson, B. J.; Gershman, D. J.; Raines, J. M.; Lillis, R. J.; Korth, H.; Slavin, J. A.; Solomon, S. C.; Zurbuchen, T.

    2014-12-01

    The application of a recently developed proton-reflection magnetometry technique to MESSENGER spacecraft observations at Mercury has yielded two significant findings. First, loss-cone observations directly confirm particle precipitation to Mercury's surface and indicate that solar wind plasma persistently bombards the planet not only in the magnetic cusp regions but over a large fraction of the southern hemisphere. Second, the inferred surface field strengths independently confirm the north-south asymmetry in Mercury's global magnetic field structure first documented from observations of magnetic equator crossings. Here we extend this work with 1.5 additional years of observations (i.e., to 2.5 years in all) to further probe Mercury's surface magnetic field and better resolve proton flux precipitation to the planet's surface. We map regions where proton loss cones are observed; these maps indicate regions where protons precipitate directly onto the surface. The augmentation of our data set over that used in our original study allows us to examine the proton loss cones in cells of dimension 10° latitude by 20° longitude in Mercury body-fixed coordinates. We observe a transition from double-sided to single-sided loss cones in the pitch-angle distributions; this transition marks the boundary between open and closed field lines. At the surface this boundary lies between 60° and 70°N. Our observations allow the estimation of surface magnetic field strengths in the northern cusp region and the calculation of incident proton fluxes to both hemispheres. In the northern cusp, our regional-scale observations are consistent with an offset dipole field and a dipole moment of 190 nT RM3, where RM is Mercury's radius, implying that any regional-scale variations in surface magnetic field strengths are either weak relative to the dipole field or occur at length scales smaller than the resolution of our observations (~300 km). From the global proton flux map (north of 40° S

  1. Effect of soil moisture on the temperature sensitivity of Northern soils

    Science.gov (United States)

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  2. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng; Shin, Hosung; Santamarina, Carlos

    2015-01-01

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  3. Formation and development of salt crusts on soil surfaces

    KAUST Repository

    Dai, Sheng

    2015-12-14

    The salt concentration gradually increases at the soil free surface when the evaporation rate exceeds the diffusive counter transport. Eventually, salt precipitates and crystals form a porous sodium chloride crust with a porosity of 0.43 ± 0.14. After detaching from soils, the salt crust still experiences water condensation and salt deliquescence at the bottom, brine transport across the crust driven by the humidity gradient, and continued air-side precipitation. This transport mechanism allows salt crust migration away from the soil surface at a rate of 5 μm/h forming salt domes above soil surfaces. The surface characteristics of mineral substrates and the evaporation rate affect the morphology and the crystal size of precipitated salt. In particular, substrate hydrophobicity and low evaporation rate suppress salt spreading.

  4. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia

    2018-01-01

    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  5. Calculation of gamma-ray flux density above the Venus and Earth surfaces

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.

    1987-01-01

    Calculational results of dependence of flux density of nonscattered gamma-quanta on the height above the Venus and Earth planet surfaces are presented in the paper. Areas, where a certain part of gamma quanta is accumulated, are calaculted for each height. Spectra of scattered gamma quanta and their integral fluxes at different heights above the Venera planet surface are calculated. Effect of the atmosphere on gamma radiation recorded is considered. The results obtained allow to estimate optimal conditions for measuring gamma-fields above the Venus and Earth planet surfaces, to determine the area of the planet surface investigated. They are also necessary to determine the elementary composition of the rock according to the characteristic gamma radiation spectrum recorded

  6. Water and nitrogen management effects on semiarid sorghum production and soil trace gas flux under future climate.

    Science.gov (United States)

    Duval, Benjamin D; Ghimire, Rajan; Hartman, Melannie D; Marsalis, Mark A

    2018-01-01

    External inputs to agricultural systems can overcome latent soil and climate constraints on production, while contributing to greenhouse gas emissions from fertilizer and water management inefficiencies. Proper crop selection for a given region can lessen the need for irrigation and timing of N fertilizer application with crop N demand can potentially reduce N2O emissions and increase N use efficiency while reducing residual soil N and N leaching. However, increased variability in precipitation is an expectation of climate change and makes predicting biomass and gas flux responses to management more challenging. We used the DayCent model to test hypotheses about input intensity controls on sorghum (Sorghum bicolor (L.) Moench) productivity and greenhouse gas emissions in the southwestern United States under future climate. Sorghum had been previously parameterized for DayCent, but an inverse-modeling via parameter estimation method significantly improved model validation to field data. Aboveground production and N2O flux were more responsive to N additions than irrigation, but simulations with future climate produced lower values for sorghum than current climate. We found positive interactions between irrigation at increased N application for N2O and CO2 fluxes. Extremes in sorghum production under future climate were a function of biomass accumulation trajectories related to daily soil water and mineral N. Root C inputs correlated with soil organic C pools, but overall soil C declined at the decadal scale under current weather while modest gains were simulated under future weather. Scaling biomass and N2O fluxes by unit N and water input revealed that sorghum can be productive without irrigation, and the effect of irrigating crops is difficult to forecast when precipitation is variable within the growing season. These simulation results demonstrate the importance of understanding sorghum production and greenhouse gas emissions at daily scales when assessing annual

  7. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  8. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  9. Influence of soil surface structure on simulated infiltration and subsequent evaporation

    International Nuclear Information System (INIS)

    Verplancke, H.; Hartmann, R.; Boodt, M. de

    1983-01-01

    A laboratory rainfall and evaporation experiment was conducted to study the effectiveness of the soil surface structure on infiltration and subsequent evaporation. The stability of the surface layer was improved through the application of synthetic additives such as bituminous emulsion and a prepolymer of polyurea (Uresol). The soil column where the soil surface was treated with a bituminous emulsion shows a decrease in depth of wetting owing to the water repellency of that additive, and consequently an increased runoff. However, the application of Uresol to the surface layer improved the infiltration. The main reason for these differences is that in the untreated soils there is a greater clogging of macropores originating from aggregate breakdown under raindrop impact in the top layer. The evaporation experiment started after all columns were wetted to a similar soil-water content and was carried out in a controlled environmental tunnel. Soil-water content profiles were established during evaporation by means of a fully automatic γ-ray scanner. It appears that in both treatments the cumulative evaporation was less than in the untreated soil. This was due to the effect of an aggregated and stabilized surface layer. Under a treated soil surface the evaporation remains constant during the whole experiment. However, under an untreated soil surface different evaporation stages were recorded. From these experiments the impression is gained that the effect of aggregating the soil surface is an increase of the saturated hydraulic conductivity under conditions near saturation. On the other hand, a finely structured layer exhibits a greater hydraulic conductivity during evaporation in the lower soil-water potential range than a coarsely aggregated layer. So it may be concluded that, to obtain the maximum benefit from the available water - optimal water conservation - much attention must be given to the aggregation of the top soil and its stability. (author)

  10. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.

    Science.gov (United States)

    Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I; Niklaus, Pascal A

    2015-01-01

    Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.

  11. Tree Stress and Mortality from Emerald Ash Borer Does Not Systematically Alter Short-Term Soil Carbon Flux in a Mixed Northeastern U.S. Forest

    Directory of Open Access Journals (Sweden)

    Jaclyn Hatala Matthes

    2018-01-01

    Full Text Available Invasive insect pests are a common disturbance in temperate forests, but their effects on belowground processes in these ecosystems are poorly understood. This study examined how aboveground disturbance might impact short-term soil carbon flux in a forest impacted by emerald ash borer (Agrilus planipennis Fairmaire in central New Hampshire, USA. We anticipated changes to soil moisture and temperature resulting from tree mortality caused by emerald ash borer, with subsequent effects on rates of soil respiration and methane oxidation. We measured carbon dioxide emissions and methane uptake beneath trees before, during, and after infestation by emerald ash borer. In our study, emerald ash borer damage to nearby trees did not alter soil microclimate nor soil carbon fluxes. While surprising, the lack of change in soil microclimate conditions may have been a result of the sandy, well-drained soil in our study area and the diffuse spatial distribution of canopy ash trees and subsequent canopy light gaps after tree mortality. Overall, our results indicate that short-term changes in soil carbon flux following insect disturbances may be minimal, particularly in forests with well-drained soils and a mixed-species canopy.

  12. A Portable, Low-Power Analyzer and Automated Soil Flux Chamber System for Measuring Wetland GHG Emissions

    Science.gov (United States)

    Nickerson, Nick; Kim-Hak, David; McArthur, Gordon

    2017-04-01

    Preservation and restoration of wetlands has the potential to help sequester large amounts of carbon due to the naturally high primary productivity and slow turnover of stored soil carbon. However, the anoxic environmental conditions present in wetland soils are also the largest natural contributor to global methane emissions. While it is well known that wetlands are net carbon sinks over long time scales, given the high global warming potential of methane, the short-term balances between C uptake and storage and loss as CO2 and CH4 need to be carefully considered when evaluating the climate effects of land-use change. It is relatively difficult to measure methane emissions from wetlands with currently available techniques given the temporally and spatially sporadic nature of the processes involved (methanogenesis, methane oxidation, ebullition, etc.). For example, using manual soil flux chambers can often only capture a portion of either the spatial or temporal variability, and often have other disadvantages associated with soil atmosphere disturbance during deployment in these relatively compressible wetland soils. Automated chamber systems offer the advantage of collecting high-resolution time series of gaseous fluxes while reducing some human and method induced biases. Additionally, new laser-based analyzers that can be used in situ alongside automated chambers offer a greater minimum detectable flux than can be achieved using alternative methods such as Gas Chromatography. Until recently these types of automated measurements were limited to areas that had good power coverage, as laser based systems were power intensive and could not easily be supplemented with power from field-available sources such as solar. Recent advances in laser technology has reduced the power needed and made these systems less power intensive and more field portable in the process. Here we present data using an automated chamber system coupled to a portable laser based greenhouse gas

  13. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    Science.gov (United States)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the

  14. Air–surface exchange of gaseous mercury over permafrost soil: an investigation at a high-altitude (4700 m a.s.l. and remote site in the central Qinghai–Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Z. Ci

    2016-11-01

    Full Text Available The pattern of air–surface gaseous mercury (mainly Hg(0 exchange in the Qinghai–Tibet Plateau (QTP may be unique because this region is characterized by low temperature, great temperature variation, intensive solar radiation, and pronounced freeze–thaw process of permafrost soils. However, the air–surface Hg(0 flux in the QTP is poorly investigated. In this study, we performed field measurements and controlled field experiments with dynamic flux chambers technique to examine the flux, temporal variation and influencing factors of air–surface Hg(0 exchange at a high-altitude (4700 m a.s.l. and remote site in the central QTP. The results of field measurements showed that surface soils were the net emission source of Hg(0 in the entire study (2.86 ng m−2 h−1 or 25.05 µg m−2 yr−1. Hg(0 flux showed remarkable seasonality with net high emission in the warm campaigns (June 2014: 4.95 ng m−2 h−1; September 2014: 5.16 ng m−2 h−1; and May–June 2015: 1.95 ng m−2 h−1 and net low deposition in the winter campaign (December 2014: −0.62 ng m−2 h−1 and also showed a diurnal pattern with emission in the daytime and deposition in nighttime, especially on days without precipitation. Rainfall events on the dry soils induced a large and immediate increase in Hg(0 emission. Snowfall events did not induce the pulse of Hg(0 emission, but snowmelt resulted in the immediate increase in Hg(0 emission. Daily Hg(0 fluxes on rainy or snowy days were higher than those of days without precipitation. Controlled field experiments suggested that water addition to dry soils significantly increased Hg(0 emission both on short (minutes and relatively long (hours timescales, and they also showed that UV radiation was primarily attributed to Hg(0 emission in the daytime. Our findings imply that a warm climate and environmental change could facilitate Hg release from the permafrost terrestrial ecosystem

  15. Some practical notes on the land surface modeling in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    K. Yang

    2009-05-01

    Full Text Available The Tibetan Plateau is a key region of land-atmosphere interactions, as it provides an elevated heat source to the middle-troposphere. The Plateau surfaces are typically characterized by alpine meadows and grasslands in the central and eastern part while by alpine deserts in the western part. This study evaluates performance of three state-of-the-art land surface models (LSMs for the Plateau typical land surfaces. The LSMs of interest are SiB2 (the Simple Biosphere, CoLM (Common Land Model, and Noah. They are run at typical alpine meadow sites in the central Plateau and typical alpine desert sites in the western Plateau.

    The identified key processes and modeling issues are as follows. First, soil stratification is a typical phenomenon beneath the alpine meadows, with dense roots and soil organic matters within the topsoil, and it controls the profile of soil moisture in the central and eastern Plateau; all models, when using default parameters, significantly under-estimate the soil moisture within the topsoil. Second, a soil surface resistance controls the surface evaporation from the alpine deserts but it has not been reasonably modeled in LSMs; an advanced scheme for soil water flow is implemented in a LSM, based on which the soil resistance is determined from soil water content and meteorological conditions. Third, an excess resistance controls sensible heat fluxes from dry bare-soil or sparsely vegetated surfaces, and all LSMs significantly under-predict the ground-air temperature gradient, which would result in higher net radiation, lower soil heat fluxes and thus higher sensible heat fluxes in the models. A parameterization scheme for this resistance has been shown to be effective to remove these biases.

  16. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  17. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  18. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  19. Comparison of Sensible Heat Flux from Eddy Covariance and Scintillometer over different land surface conditions

    Science.gov (United States)

    Zeweldi, D. A.; Gebremichael, M.; Summis, T.; Wang, J.; Miller, D.

    2008-12-01

    The large source of uncertainty in satellite-based evapotranspiration algorithm results from the estimation of sensible heat flux H. Traditionally eddy covariance sensors, and recently large-aperture scintillometers, have been used as ground truth to evaluate satellite-based H estimates. The two methods rely on different physical measurement principles, and represent different foot print sizes. In New Mexico, we conducted a field campaign during summer 2008 to compare H estimates obtained from the eddy covariance and scintillometer methods. During this field campaign, we installed sonic anemometers; one propeller eddy covariance (OPEC) equipped with net radiometer and soil heat flux sensors; large aperture scintillometer (LAS); and weather station consisting of wind speed, direction and radiation sensors over three different experimental areas consisting of different roughness conditions (desert, irrigated area and lake). Our results show the similarities and differences in H estimates obtained from these various methods over the different land surface conditions. Further, our results show that the H estimates obtained from the LAS agree with those obtained from the eddy covariance method when high frequency thermocouple temperature, instead of the typical weather station temperature measurements, is used in the LAS analysis.

  20. Processes of ammonia air–surface exchange in a fertilized Zea mays canopy

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2013-02-01

    Full Text Available Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air–surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process-level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short-term (i.e., post-fertilization and total growing season NH3 fluxes. This study examines the processes of NH3 air–surface exchange in a fertilized corn (Zea mays canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil–canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha−1 surface applied to the soil as urea ammonium nitrate (UAN. During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈ 700 ng N m−2 s−1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈ 125 ng N m−2 s−1. A key finding of the surface chemistry measurements was the observation of high pH (7.0–8.5 in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods

  1. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  2. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  3. Fourier and granulometry methods on 3D images of soil surfaces for evaluating soil aggregate size distribution

    DEFF Research Database (Denmark)

    Jensen, T.; Green, O.; Munkholm, Lars Juhl

    2016-01-01

    The goal of this research is to present and compare two methods for evaluating soil aggregate size distribution based on high resolution 3D images of the soil surface. The methods for analyzing the images are discrete Fourier transform and granulometry. The results of these methods correlate...... with a measured weight distribution of the soil aggregates. The results have shown that it is possible to distinguish between the cultivated and the uncultivated soil surface. A sensor system suitable for capturing in-situ high resolution 3D images of the soil surface is also described. This sensor system...

  4. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    Science.gov (United States)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  5. Parameter estimation of a two-horizon soil profile by combining crop canopy and surface soil moisture observations using GLUE

    Science.gov (United States)

    Sreelash, K.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Guérif, M.; Buis, S.; Durand, P.; Gascuel-Odoux, C.

    2012-08-01

    SummaryEstimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to

  6. Gradient flux measurements of sea–air DMS transfer during the Surface Ocean Aerosol Production (SOAP experiment

    Directory of Open Access Journals (Sweden)

    M. J. Smith

    2018-04-01

    Full Text Available Direct measurements of marine dimethylsulfide (DMS fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP voyage in February–March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L−1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC technique using atmospheric pressure chemical ionization–mass spectrometry (API-CIMS and the gradient flux (GF technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean–Atmosphere Response Experiment gas transfer algorithm (COAREG. A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89. A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG

  7. Gradient flux measurements of sea-air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment

    Science.gov (United States)

    Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.

    2018-04-01

    Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.

  8. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  9. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem?

    Science.gov (United States)

    Fang, Qingqing; Wang, Guoqiang; Xue, Baolin; Liu, Tingxi; Kiem, Anthony

    2018-04-23

    In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem exchange of CO 2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, R eco , and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, R eco , and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. ANALYSIS OF THE FLUX OF AN ENDOCRINE DISRUPTING DICARBOXIMIDE AND ITS DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    Science.gov (United States)

    A method for measuring the atmospheric flux of the antiandrogenic dicarboxirnide, vinclozolin, and its degradation products was investigated. A nitric oxide laboratory chamber was modified to measure the flux of semi-volatile compounds. Pesticide application systems and soil in...

  11. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  12. Stair-Step Particle Flux Spectra on the Lunar Surface: Evidence for Nonmonotonic Potentials?

    Science.gov (United States)

    Collier, Michael R.; Newheart, Anastasia; Poppe, Andrew R.; Hills, H. Kent; Farrell, William M.

    2016-01-01

    We present examples of unusual "stair-step" differential flux spectra observed by the Apollo 14 Suprathermal Ion Detector Experiment on the lunar dayside surface in Earth's magnetotail. These spectra exhibit a relatively constant differential flux below some cutoff energy and then drop off precipitously, by about an order of magnitude or more, at higher energies. We propose that these spectra result from photoions accelerated on the lunar dayside by nonmonotonic potentials (i.e.,potentials that do not decay to zero monotonically) and present a model for the expected differential flux. The energy of the cutoff and the magnitude of the differential flux are related to the properties of the local space environment and are consistent with the observed flux spectra. If this interpretation is correct, these surface-based ion observations provide a unique perspective that both complements and enhances the conclusions obtained by remote-sensing orbiter observations on the Moon's exospheric and electrostatic properties.

  13. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  14. A sampling strategy for estimating plot average annual fluxes of chemical elements from forest soils

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.; Vries, de W.

    2010-01-01

    A sampling strategy for estimating spatially averaged annual element leaching fluxes from forest soils is presented and tested in three Dutch forest monitoring plots. In this method sampling locations and times (days) are selected by probability sampling. Sampling locations were selected by

  15. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis.

    Science.gov (United States)

    McGinnis, Daniel F; Kirillin, Georgiy; Tang, Kam W; Flury, Sabine; Bodmer, Pascal; Engelhardt, Christof; Casper, Peter; Grossart, Hans-Peter

    2015-01-20

    Exchange of the greenhouse gases carbon dioxide (CO2) and methane (CH4) across inland water surfaces is an important component of the terrestrial carbon (C) balance. We investigated the fluxes of these two gases across the surface of oligotrophic Lake Stechlin using a floating chamber approach. The normalized gas transfer rate for CH4 (k600,CH4) was on average 2.5 times higher than that for CO2 (k600,CO2) and consequently higher than Fickian transport. Because of its low solubility relative to CO2, the enhanced CH4 flux is possibly explained by the presence of microbubbles in the lake’s surface layer. These microbubbles may originate from atmospheric bubble entrainment or gas supersaturation (i.e., O2) or both. Irrespective of the source, we determined that an average of 145 L m(–2) d(–1) of gas is required to exit the surface layer via microbubbles to produce the observed elevated k600,CH4. As k600 values are used to estimate CH4 pathways in aquatic systems, the presence of microbubbles could alter the resulting CH4 and perhaps C balances. These microbubbles will also affect the surface fluxes of other sparingly soluble gases in inland waters, including O2 and N2.

  17. Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau

    Science.gov (United States)

    Foken, T.; Biermann, T.; Babel, W.; Ma, Y.

    2013-12-01

    With an approximate cover of 450,000 km2 on the Tibetan Plateau (TP), the Cyperaceae Kobresia pygmaea forms he world's largest alpine ecosystem. This species, especially adapted to grazing pressure, grows to a height of only 2-6 cm and can be found in an altitudinal range of 4000 to 5960 m a.s.l. A special characteristic of this ecosystem is the stable turf layer, which is built up from roots and plays a significant role in protecting soil from erosion. This is of great importance since soils on the TP store 2.5 % of the global soil organic carbon stocks. The aim of the investigation was the study of the carbon storage and the impact of human-induced land use change on these Kobresia pygmaea pastures. We therefore applied eddy-covariance measurements and modelling as a long-term control of the fluxes between the atmosphere and the pastures and 13C labelling for the investigation of flux partitioning, and chamber measurements to investigate the degradation of the pastures. Combining CO2 budgets observed in 2010 with eddy-covariance measurements and relative partitioning of Carbon fluxes estimated with 13C labelling enabled us to characterise the C turnover for the vegetation period with absolute fluxes within the plant-soil-atmosphere continuum. These results revealed that this ecosystem indeed stores a great amount of C in below-ground pools, especially in the root turf layer. To further investigate the importance of the root layer, the experiments in 2012 focused on flux measurements over the different surface types which make up the heterogeneity of the Kobresia pygmaea pastures and might result from degradation due to extensive grazing. The three surface types investigated with a LiCOR long-term monitoring chamber system include Kobresia pygmaea with intact turf layer (IRM), a surface type where the turf layer is still present but the vegetation is sparse and mainly consists of Cryptogam crusts (DRM) and finally areas without the turf layer (BS). According to

  18. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery

    International Nuclear Information System (INIS)

    Vanguelova, E.I.; Benham, S.; Pitman, R.; Moffat, A.J.; Broadmeadow, M.; Nisbet, T.; Durrant, D.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; Hutchings, T.; Broadmeadow, S.; Crow, P.; Taylor, P.; Durrant Houston, T.

    2010-01-01

    Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored. - Forest soils are recovering from acid and sulphur pollution in the UK, but soil responses to nitrogen deposition and climatic changes are still uncertain.

  19. Chemical fluxes in time through forest ecosystems in the UK - Soil response to pollution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vanguelova, E.I., E-mail: elena.vanguelova@forestry.gsi.gov.u [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Benham, S.; Pitman, R.; Moffat, A.J. [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Broadmeadow, M. [Forestry Commission, England, Alice Holt, Farnham, Surrey GU10 4LH (United Kingdom); Nisbet, T.; Durrant, D.; Barsoum, N.; Wilkinson, M.; Bochereau, F.; Hutchings, T.; Broadmeadow, S.; Crow, P.; Taylor, P. [Centre of Forestry and Climate Change, Forest Research, Alice Holt Lodge, Farnham, Surrey GU10 4LH (United Kingdom); Durrant Houston, T. [DG Joint Research Centre - European Commission, Institute for Environment and Sustainability, Land Management and Natural Hazards Unit - TP 261, Ispra, I-21027 (Italy)

    2010-05-15

    Long term trend analysis of bulk precipitation, throughfall and soil solution elemental fluxes from 12 years monitoring at 10 ICP Level II forest sites in the UK reveal coherent national chemical trends indicating recovery from sulphur deposition and acidification. Soil solution pH increased and sulphate and aluminium decreased at most sites. Trends in nitrogen were variable and dependant on its form. Dissolved organic nitrogen increased in bulk precipitation, throughfall and soil solution at most sites. Nitrate in soil solution declined at sites receiving high nitrogen deposition. Increase in soil dissolved organic carbon was detected - a response to pollution recovery, changes in soil temperature and/or increased microbial activity. An increase of sodium and chloride was evident - a possible result of more frequent storm events at exposed sites. The intensive and integrated nature of monitoring enables the relationships between climate/pollutant exposure and chemical/biological response in forestry to be explored. - Forest soils are recovering from acid and sulphur pollution in the UK, but soil responses to nitrogen deposition and climatic changes are still uncertain.

  20. Surface Buoyancy Fluxes and the Strength of the Subpolar Gyre

    Science.gov (United States)

    Hogg, A. M.; Gayen, B.

    2017-12-01

    Midlatitude ocean gyres have long been considered to be driven by the mechanical wind stress on the ocean's surface (strictly speaking, the potential vorticity input from wind stress curl). However, surface buoyancy forcing (i.e. heating/cooling or freshening/salinification) also modifies the potential vorticity at the surface. Here, we present a simple argument to demonstrate that ocean gyres may (in principle) be driven by surface buoyancy forcing. This argument is derived in two ways: A Direct Numerical Simulation, driven purely by buoyancy forcing, which generates strong nonlinear gyers in the absence of wind stress; and A series of idealised eddy-resolving numerical ocean model simulations, in which wind stress and buoyancy flux are varied independently and together, are used to understand the relative importance of these two types of forcing. In these simulations, basin-scale gyres and western boundary currents with realistic magnitudes, remain even in the absence of mechanical forcing by surface wind stress. These results support the notion that surface buoyancy forcing can reorganise the potential vorticity in the ocean in such a way as to drive basin-scale gyres. The role of buoyancy is stronger in the subpolar gyre than in the subtropical gyre. We infer that surface buoyancy fluxes are likely to play a contributing role in governing the strength, variability and predictability of the North Atlantic subpolar gyre.

  1. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    Science.gov (United States)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  2. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  3. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs

  4. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  5. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia.

    Science.gov (United States)

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng

    2016-07-01

    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies.

  6. The micrometeorological investigation of heat flux and moisture ...

    African Journals Online (AJOL)

    The diurnal and seasonal variations of heat flux and the moisture content in the soil at a site for the Nigeria Mesoscale Experiment (NIMEX) in the University of Ibadan, Nigeria (7.380 N and 3.930 E), had been investigated. The study also investigated effects of the atmospheric phenomena on magnitudes of the surface layer ...

  7. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    International Nuclear Information System (INIS)

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T.

    2012-01-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m 2 s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  8. Thermal response to heat fluxes of the W7-AS divertor surface submitted to surface modification under high temperature treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, D., E-mail: dieter.hildebrandt@ipp.mpg.d [Euratom Association, Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald (Germany); Duebner, A. [Euratom Association, Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald (Germany); Greuner, H.; Wiltner, A. [Teilinstitut Garching, Boltzmannstr. 2, 85748 Garching (Germany)

    2009-06-15

    Some target tiles of the W7-AS divertor has been investigated with respect to their thermal behaviour at the surface during power loading with well-defined heat fluxes in the Gladis facility. The primary aim was to examine uncertainties in the determination of heat fluxes derived from IR-thermography during operation of W7-AS. It is found that the derived heat flux profiles are strongly influenced by the local distribution of plasma-deposited contamination analyzed by AES and SIMS. With the observed actual surface conditions characterized by redeposited contamination equivalent up to about 1 mum thickness, the heat fluxes were partially overestimated up to a factor of 4 during operation of W7-AS. This uncertainty is observed to be significantly reduced after heat treatment at temperatures beyond 700 deg. C attained at power flux densities of 10.5 MW/m{sup 2} and durations longer than 5 s.

  9. Thermal response to heat fluxes of the W7-AS divertor surface submitted to surface modification under high temperature treatment

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Duebner, A.; Greuner, H.; Wiltner, A.

    2009-01-01

    Some target tiles of the W7-AS divertor has been investigated with respect to their thermal behaviour at the surface during power loading with well-defined heat fluxes in the Gladis facility. The primary aim was to examine uncertainties in the determination of heat fluxes derived from IR-thermography during operation of W7-AS. It is found that the derived heat flux profiles are strongly influenced by the local distribution of plasma-deposited contamination analyzed by AES and SIMS. With the observed actual surface conditions characterized by redeposited contamination equivalent up to about 1 μm thickness, the heat fluxes were partially overestimated up to a factor of 4 during operation of W7-AS. This uncertainty is observed to be significantly reduced after heat treatment at temperatures beyond 700 deg. C attained at power flux densities of 10.5 MW/m 2 and durations longer than 5 s.

  10. Theory of evapotranspiration. 2. Soil and intercepted water evaporation

    OpenAIRE

    Budagovskyi, Anatolij Ivanovič; Novák, Viliam

    2011-01-01

    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  11. The impact of land-use change from forest to oil palm on soil greenhouse gas and volatile organic compound fluxes in Malaysian Borneo

    Science.gov (United States)

    Drewer, Julia; Leduning, Melissa; Kerdraon-Byrne, Deirdre; Sayer, Emma; Sentien, Justin; Skiba, Ute

    2017-04-01

    Monocultures of oil palm have expanded in SE Asia, and more recently also in Africa and South America, frequently replacing tropical forests. The limited data available clearly show that this conversion is associated with a potentially large greenhouse gas (GHG) burden. The physical process of land-use change, such is felling, drainage and ploughing can significantly increase emissions of N2O and soil CO2 respiration and decrease CH4 oxidation rates in the short term; and in the long-term regular nitrogen applications will impact in particular soil N2O fluxes. Little is known about volatile organic compound (VOC) fluxes from soil and litter in tropical forests and their speciation or about the links between GHG and VOC fluxes. VOC emissions are important as they directly and indirectly influence the concentrations and lifetimes of air pollutants and GHGs. For example, oxidation of VOCs generate tropospheric ozone which is also a potent GHG. Within ecosystems, monoterpenes can mediate plant-microbe and plant- interactions and protect photosynthesis during abiotic stress. However, little is known about monoterpene composition in the tropics - a widely recognized major global source of terpenoids to the atmosphere. These knowledge gaps make it difficult for developing countries in the tropics, especially SE Asia, to develop effective mitigation strategies. Current understanding of soil GHG fluxes associated with land-use change from forest to oil palm is not sufficient to provide reliable estimates of their carbon footprints and sustainability or advice on GHG mitigation strategies. To provide the necessary data we have installed a total of 56 flux chambers in logged forests, forest fragments and mature and young oil palm plantations as well as riparian zones within the SAFE landscape in SE Sabah (Stability of Altered Forest Ecosystems; http://www.safeproject.net). Soil respiration rates, N2O, CH4 and VOC fluxes together with soil moisture, pH, mineral and total C and

  12. Impacts of the Air Temperature Rising on the Soil Freezing-thawing Processes and the Surface Fluxes on the Tibetan Plateau

    Science.gov (United States)

    Zheng, G.; Yang, D.

    2017-12-01

    The Tibetan Plateau (TP) is the highest plateau all over the world and plays an essential role on the global water cycle and the atmospheric circulation, because many large rivers originating there and it acts as a "heat source" to pump the Asian summer monsoon. During the past 50 years, the TP is among the most sensitive regions to the climatic warming. Many previous researches have been delved into the impacts of the permafrost degradation there. But the variations and the impacts of the changes of the seasonally frozen ground, which consists 50 % of the plateau region, have been less discussed. Thus, this study uses the geomorphology-based eco-hydrological model to simulate the long-term land surface processes on 37 after picked China Meteorological Administration stations. And, these stations uniformly locate within the seasonally frozen regions of the TP. The modelled freezing-thawing cycles have successfully reproduced the observations with the correlation squares of 0.8 (significance level p rate of 0.13 m/decade and 4.6 days/decade. The changes of the near-surface freezing-thawing cycles exert large influences on the flux exchanges between the land surface and the atmosphere. The advance (delay) of the freezing ending (starting) time has caused 13 % (p influence the following summer monsoon and redistribute the precipitation over the southeastern Asia. Also, as the incoming radiation and the latent heat keeping stable, less sensible heat fluxes would lead to more ground heat storage which provides a better thermal condition for the vegetation growth.

  13. SOIL 222Rn CONCENTRATION, CO2 AND CH4 FLUX MEASUREMENTS AROUND THE JWALAMUKHI AREA OF NORTH-WEST HIMALAYAS, INDIA.

    Science.gov (United States)

    Kumar, Arvind; Walia, Vivek; Yang, Tsanyao Frank; Fu, Ching-Chou; Singh, Surinder; Bajwa, Bikramjit Singh; Arora, Vishal

    2016-10-01

    Soil 222 Rn concentration, CO 2 and CH 4 flux measurements were conducted around the Jwalamukhi area of North-West Himalayas, India. During this study, around 37 soil gas points and flux measurements were taken with the aim to assure the suitability of this method in the study of fault zones. For this purpose, RAD 7 (Durridge, USA) was used to monitor radon concentrations, whereas portable diffuse flux meter (West Systems, Italy) was used for the CO 2 and CH 4 flux measurements. The recorded radon concentration varies from 6.1 to 34.5 kBq m -3 with an average value of 16.5 kBq m -3 The anomalous value of radon concentrations was recorded between Jwalamukhi thrust and Barsar thrust. The recorded average of CO 2 and CH 4 flux were 11.8 and 2.7 g m -2 day -1 , respectively. The good correlation between anomalous CO 2 flux and radon concentrations has been observed along the fault zone in the study area, suggesting that radon migration is dependent on CO 2 . © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    Science.gov (United States)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  15. Copper in Surface Soil of Veles Region, Macedonia

    International Nuclear Information System (INIS)

    Panchevski, Zlatko; Stafilov, Trajche; Frontasyeva, Marina V.

    2006-01-01

    For the first time a systematic study of copper distribution in surface soil over of the Veles region, known for its lead and zinc industrial activity, was undertaken. A total of 201 soil samples were collected according to a dense net (0.5 km) in urban and less dense net (1 km) in rural areas. Copper was determined by flame atomic absorption spectrometry (FAAS) using microwave digestion technique with two different types of solvents: aqua regia (HCI and HNO 3 )and the mixture of strong acids (HNO 3 , HCI, and HF). So far the same soil samples were subjected to reactor non-destructive multi-element instrumental neutron activation analysis (INAA), it served as a reference analytical technique for bulk copper determination. The results obtained by two methods of FAAS and INAA are discussed. GIS technology was applied to reveal the areas most affected by copper contamination. It was found that the content of copper in soil samples around the lead and zinc smelter plant is the highest and reaches 1800 mg/kg. Copper content in surface soil all around the town of Veles exceeds maximum permissible level for urban surface soil. Elevated copper content in some rural areas of the Veles region most likely could be explained through using copper containing fungicides for agricultural needs. (Author)

  16. Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-01-01

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397

  17. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.

    Science.gov (United States)

    Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G L; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof

    2016-06-14

    Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

  18. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  19. Spatiotemporal variability of water and energy fluxes: TERENO- prealpine hydrometeorological data analysis and inverse modeling with GEOtop and PEST

    Science.gov (United States)

    Soltani, M.; Kunstmann, H.; Laux, P.; Mauder, M.

    2016-12-01

    In mountainous and prealpine regions echohydrological processes exhibit rapid changes within short distances due to the complex orography and strong elevation gradients. Water- and energy fluxes between the land surface and the atmosphere are crucial drivers for nearly all ecosystem processes. The aim of this research is to analyze the variability of surface water- and energy fluxes by both comprehensive observational hydrometeorological data analysis and process-based high resolution hydrological modeling for a mountainous and prealpine region in Germany. We particularly focus on the closure of the observed energy balance and on the added value of energy flux observations for parameter estimation in our hydrological model (GEOtop) by inverse modeling using PEST. Our study area is the catchment of the river Rott (55 km2), being part of the TERENO prealpine observatory in Southern Germany, and we focus particularly on the observations during the summer episode May to July 2013. We present the coupling of GEOtop and the parameter estimation tool PEST, which is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. Estimation of the surface energy partitioning during the data analysis process revealed that the latent heat flux was considered as the main consumer of available energy. The relative imbalance was largest during nocturnal periods. An energy imbalance was observed at the eddy-covariance site Fendt due to either underestimated turbulent fluxes or overestimated available energy. The calculation of the simulated energy and water balances for the entire catchment indicated that 78% of net radiation leaves the catchment as latent heat flux, 17% as sensible heat, and 5% enters the soil in the form of soil heat flux. 45% of the catchment aggregated precipitation leaves the catchment as discharge and 55% as evaporation. Using the developed GEOtop-PEST interface, the hydrological model is calibrated by comparing

  20. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  1. Effects of land cover change on litter decomposition and soil greenhouse gas fluxes in subtropical Hong Kong

    Science.gov (United States)

    Ngar Wong, Chun; Lai, Derrick Yuk Fo

    2017-04-01

    Nowadays, over 50% of the world's population live in urbanized areas and the level of urbanization varies substantially across countries. Intense human activities and management associated with urbanization can alter the microclimate and biogeochemical processes in urban areas, which subsequently affect the provision of ecosystem services and functions. Litter decomposition and soil greenhouse gas (GHG) exchange play an important role in governing nutrient cycling and future climate change, respectively. Yet, the effects of urbanization on these two biogeochemical processes remain uncertain and not well understood, especially in subtropical and high-density cities. This study aims to examine the effects of urbanization on decomposition and GHG fluxes among four land covers- natural forest, urban forest, farmland and roadside planter, in Hong Kong based on litterbag experiment and closed chamber measurements for one full year. Litter decomposition rate was significantly lower in farmland than in other land cover types. Significant differences in CO2 emission were detected among the four land cover types (pmean N2O fluxes, respectively. The emission of CO2 was positively correlated with soil potassium content, while CH4 and N2O flux increased markedly with soil temperature and nitrate nitrogen content, respectively. The results obtained in this study will enhance our understanding on urban ecosystem and be useful for recommending sustainable management strategies for conservation of ecosystem services in urban areas.

  2. A Particle-In-Cell approach to particle flux shaping with a surface mask

    Directory of Open Access Journals (Sweden)

    G. Kawamura

    2017-08-01

    Full Text Available The Particle-In-Cell simulation code PICS has been developed to study plasma in front of a surface with two types of masks, step-type and roof-type. Parameter scans with regard to magnetic field angle, electron density, and mask height were carried out to understand their influence on ion particle flux distribution on a surface. A roof-type mask with a small mask height yields short decay length in the flux distribution which is consistent with that estimated experimentally. A roof-type mask with a large height yields very long decay length and the flux value does not depend on a mask height or an electron density, but rather on a mask length and a biasing voltage of the surface. Mask height also changes the flux distribution apart from the mask because of the shading effect of the mask. Electron density changes the distribution near the mask edge according to the Debye length. Dependence of distribution on parameters are complicated especially for a roof-type mask, and simulation study with various parameters are useful to understand the physical reasons of dependence and also is useful as a tool for experiment studies.

  3. Drift wave turbulence studies on closed and open flux surfaces: effect limiter/divertor plates location

    International Nuclear Information System (INIS)

    Ribeiro, T.; Scott, B.

    2007-01-01

    The field line connection of a tokamak sheared magnetic field has an important impact on turbulence, by ensuring a finite parallel dynamical response for every degree of freedom available in the system. This constitutes the main property which distinguishes closed from open flux surfaces in such a device. In the latter case, the poloidal periodicity of the magnetic field is replaced by a Debye sheath arising where the field lines strike the limiter/divertor plates. This is enough to break the field line connection constraint and allow the existence of convective cell modes, leading to a change in the character of the turbulence from drift wave- (closed flux surfaces) to interchange-type (open flux surfaces), and hence increasing the turbulent transport observed. Here we study the effect of changing the poloidal position of the limiter/divertor plates, using the three-dimensional electromagnetic gyrofluid turbulence code GEM, which has time dependently self consistent field aligned flux tube coordinates. For the closed flux surfaces, the globally consistent periodic boundary conditions are invoked, and for open flux surfaces a standard Debye sheath is used at the striking points. In particular, the use of two limiter positions simultaneously, top and bottom, is in order, such to allow a separation between the inboard and outboard sides of the tokamak. This highlights the differences between those two regions of the tokamak, where the curvature is either favourable (former) or unfavourable (latter), and further makes room for future experimental qualitative comparisons, for instance, on double null configurations of the tokamak ASDEX Upgrade. (author)

  4. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  5. Diffuse CO2 flux emissions from the soil in Las Cañadas caldera (Tenerife, Canary Islands)

    Science.gov (United States)

    Luengo-Oroz, Natividad; Torres, Pedro A.; Moure, David; D'Alessandro, Walter; Liuzzo, Marco; Longo, Manfredi; Pecoraino, Giovannella

    2014-05-01

    Starting in April 2004, unusual seismic activity was observed in the interior of the island of Tenerife (Canary Islands, Spain) with much evidence pointing to a reawakening of volcanic activity. During this seismic crisis, several events were felt by the population. Since then, a dense multiparametric monitoring network has been deployed all over the island by Instituto Geográfico Nacional (IGN). In the framework of this volcanic surveillance project, several geochemical studies have been accomplished. Measurements of diffuse CO2 flux from the soil have been carried out in some zones inside Las Cañadas caldera. This study has been performed during three different field campaigns in November 2012 and June and November 2013. The studied area includes two different zones known as Roques de García and Los Azulejos. Since several authors have reported the existence of fractures and faults all along both structures, the objectives of this work were to find anomalous CO2 fluxes from the soil and preferential degassing areas, identify possible hidden faults and study the origin of gas emanations in order to detect the presence of magmatic sources. More than 600 sampling sites have been measured with the accumulation chamber method in an area of about 1 km2. Soil gas has been sampled in points where high CO2 fluxes were detected for the determination of chemical and isotopic composition. The results of the gas prospection confirm the existence of CO2 degassing in the area. Some anomalous fluxes have been measured along previously inferred volcano-tectonic structures. The highest anomalies were found in Los Azulejos with values up to 1774 g/m2.d. Chemical analysis did not reveal significant concentrations of magmatic or geothermal gases except CO2. The latter showed concentrations at 50 cm depth within the soils up to 48% and a C-isotopic composition between -4.72 and -3.67 o indicating a prevailing magmatic origin.

  6. LBA-HMET PC-06 ECMWF Modeled Precipitation and Surface Flux, Rondonia, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides the mean diurnal cycle of precipitation, near-surface thermodynamics, and surface fluxes generated from short-term forecasts from...

  7. Nitrate leaching, direct and indirect nitrous oxide fluxes from sloping cropland in the purple soil area, southwestern China

    International Nuclear Information System (INIS)

    Zhou Minghua; Zhu Bo; Butterbach-Bahl, Klaus; Wang Tao; Bergmann, Jessica; Brüggemann, Nicolas; Wang Zhenhua; Li Taikui; Kuang Fuhong

    2012-01-01

    This study provides a combined dataset on N loss pathways and fluxes from sloping cropland in the purple soil area, southwestern China. A lysimeter experiment was conducted to quantify nitrate leaching (May 2004–May 2010) and N 2 O emission (May 2009–May 2010) losses. Nitrate leaching was the dominant N loss pathway and annual leaching fluxes ranged from 19.2 to 53.4 kg N ha −1 , with significant differences between individual observation years (P 2 O emissions due to N fertilizer use were 1.72 ± 0.34 kg N ha −1 yr −1 , which corresponds to an emission factor of 0.58 ± 0.12%. However, indirect N 2 O emissions caused by nitrate leaching and surface runoff N losses, may contribute another 0.15–0.42 kg N ha −1 yr −1 . Our study shows that nitrate leaching lowered direct N 2 O emissions, highlighting the importance for a better understanding of the tradeoff between direct and indirect N 2 O emissions for the development of meaningful N 2 O emission strategies. - Highlights: ► High NO 3 − leaching losses lowered direct N 2 O emissions. ► Hydrological N losses induced un-neglected indirect N 2 O emissions. ► Considering both direct and indirect N 2 O emission is needed for reduction strategies. - High nitrate leaching losses from sloping croplands of purple soil are accompanied with reductions in direct N 2 O emissions and stimulations of indirect N 2 O emissions.

  8. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  9. The soil-water characteristic curve at low soil-water contents: Relationships with soil specific surface area and texture

    DEFF Research Database (Denmark)

    Resurreccion, A C; Møldrup, Per; Tuller, M

    2011-01-01

    dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...

  10. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model

    International Nuclear Information System (INIS)

    Li Dan.; Jinjun Ji

    2007-01-01

    The sensible and latent heat fluxes, representatives of the physical exchange processes of energy and water between land and air, are the two crucial variables controlling the surface energy partitioning related to temperature and humidity. The net primary production (NPP), the major carbon flux exchange between vegetation and atmosphere, is of great importance for the terrestrial ecosystem carbon cycle. The fluxes are simulated by a two-way coupled model, Atmosphere-Vegetation Interaction Model-Global Ocean-Atmosphere-Land System Model (AVIM-GOALS) in which the surface physical and physiological processes are coupled with general circulation model (GCM), and the global spatial and temporal variation of the fluxes is studied. The simulated terrestrial surface physical fluxes are consistent with the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40) in the global distribution, but the magnitudes are generally 20-40 W/m 2 underestimated. The annual NPP agrees well with the International Geosphere Biosphere Programme (IGBP) NPP data except for the lower value in northern high latitudes. The surface physical fluxes, leaf area index (LAI) and NPP of the global mid-latitudes, especially between 30 deg N-50 deg N, show great variation in annual oscillation amplitudes. And all physical and biological fields in northern mid-latitudes have the largest seasonality with a high statistical significance of 99.9%. The seasonality of surface physical fluxes, LAI and NPP are highly correlated with each other. The meridional three-peak pattern of seasonal change emerges in northern mid-latitudes, which indicates the interaction of topographical gradient variation of surface fluxes and vegetation phenology on these three latitudinal belts

  11. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  12. Methane Flux of Amazonian Peatland Ecosystems: Large Ecosystem Fluxes with Substantial Contribution from Palm (maritia Flexuosa) STEM Emissions

    Science.gov (United States)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2015-12-01

    Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.

  13. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  14. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    International Nuclear Information System (INIS)

    Buzi, Luxherta; Temmerman, Greg De; Unterberg, Bernhard; Reinhart, Michael; Litnovsky, Andrey; Philipps, Volker; Oost, Guido Van; Möller, Sören

    2014-01-01

    Systematic study of deuterium irradiation effects on tungsten was done under ITER – relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER – like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux densities (high: 3.5–7 · 10 23 D + /m 2 s and low: 9 · 10 21 D + /m 2 s). Particle fluence and ion energy, respectively 10 26 D + /m 2 and ∼38 eV were kept constant in all cases. The experiments were performed at three different surface temperatures 530 K, 630 K and 870 K. Experimental results concerning the deuterium retention and surface modifications of low flux exposure confirmed previous investigations. At temperatures 530 K and 630 K, deuterium retention was higher at lower flux density due to the longer exposure time (steady state plasma operation) and a consequently deeper diffusion range. At 870 K, deuterium retention was found to be higher at high flux density according to the thermal desorption spectroscopy (TDS) measurements. While blisters were completely absent at low flux density, small blisters of about 40–50 nm were formed at high flux density exposure. At the given conditions, a relation between deuterium retention and blister formation has been found which has to be considered in addition to deuterium trapping in defects populated by diffusion

  15. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    Science.gov (United States)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the

  16. Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage under Aspen and Conifer Forest Overstories?

    Directory of Open Access Journals (Sweden)

    Antra Boča

    2017-04-01

    Full Text Available Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC storage and stability. Quaking aspen (Populus tremuloides Michx. is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm, characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (<2 mm biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences.

  17. Regional-scale fluxes of zinc, copper, and nickel into and out of the agricultural soils of the Kermanshah province in western Iran.

    Science.gov (United States)

    Ahmadi Doabi, Shahab; Karami, Mahin; Afyuni, Majid

    2016-04-01

    It is important to study the status and trend of soil contamination with trace elements to make sustainable management strategies for agricultural soils. This study was conducted in order to model zinc (Zn), copper (Cu), and nickel (Ni) accumulation rates in agricultural soils of Kermanshah province using input and output fluxes mass balance and to evaluate the associated uncertainties. The input and output fluxes of Zn, Cu, and Ni into (from) the agricultural soils of Kermanshah province via livestock manure, mineral fertilizers, municipal waste compost, pesticides, atmospheric deposition, and crop removal were assessed for the period 2000-2014. The data were collected to compute the fluxes at both township and regional scales from available databases such as regional agricultural statistics. The basic units of the balance were 9 townships of Kermanshah province. Averaged over the entire study region, the estimated net fluxes of Zn, Cu, and Ni into agricultural soils were 341, 84, and131 g ha year(-1), with a range of 211 to 1621, 61 to 463, and 114 to 679 among the townships. The livestock manure was responsible for 55, 56, and 67 % of the total Zn, Cu, and Ni inputs at regional scale, while municipal waste compost and mineral fertilizers accounted for approximately 19, 38, and 15 % and 24, 4, and 14 % of the total Zn, Cu, and Ni inputs, respectively. Atmospheric deposition was a considerable source only for Ni and at township scale (7-29 % of total Ni input). For Zn, Cu, and Ni, the input-to-output ratio of the fluxes ranged from 1.8 to 48.9, 2 to 48.2, and 4 to 303 among townships and averaged 2.8, 3, and 9 for the entire study area, respectively. Considering that outputs other than with crop harvests are minor, this means that Zn, Cu, and Ni (in particular Ni) stocks are rapidly building up in soils of some parts of the study region. Uncertainties in the livestock manure and crop removal data were the main sources of estimation uncertainty in this study

  18. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    Science.gov (United States)

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  19. Human footprints on greenhouse gas fluxes in cryogenic ecosystems

    Science.gov (United States)

    Karelin, D. V.; Goryachkin, S. V.; Zamolodchikov, D. G.; Dolgikh, A. V.; Zazovskaya, E. P.; Shishkov, V. A.; Kraev, G. N.

    2017-12-01

    Various human footprints on the flux of biogenic greenhouse gases from permafrost-affected soils in Arctic and boreal domains in Russia are considered. Tendencies of significant growth or suppression of soil CO2 fluxes change across types of human impact. Overall, the human impacts increase the mean value and variance of local soil CO2 flux. Human footprint on methane exchange between soil and atmosphere is mediated by drainage. However, all the types of human impact suppress the sources and increase sinks of methane to the land ecosystems. N2O flux grew under the considered types of human impact. Based on the results, we suggest that human footprint on soil greenhouse gases fluxes is comparable to the effect of climate change at an annual to decadal timescales.

  20. Micrometeorological, evapotranspiration, and soil-moisture data at the Amargosa Desert Research site in Nye County near Beatty, Nevada, 2006-11

    Science.gov (United States)

    Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.

    2012-01-01

    This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.

  1. Soil and gas and radon entry potentials for substructure surfaces

    International Nuclear Information System (INIS)

    Harrison, J.; Sextro, R.G.

    1990-01-01

    This paper reports on measurement techniques and parameters that describe the potential for areas of a building substructure to have high soil gas and radon entry rates which have been developed. Flows and pressures measured at test holes in substructure surfaces while the substructure was intentionally depressurized were used in a highly simplified electrical circuit to model the substructure/soil network. Data from four New Jersey houses indicate that the soil was a factor of two to six times more resistant to soil gas flow than substructure surfaces, concrete slab floors, including perimeter gaps, cracks, and other penetrations, were approximately five times more resistant to soil gas movement than hollow block walls, and radon entry potentials were highest for slab floors. These indices of entry potential may be useful for characterizing the relative leakiness of below-grade substructure surfaces and for determining the selection and placement of radon control systems

  2. Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model

    Directory of Open Access Journals (Sweden)

    X. Xiao

    2010-06-01

    Full Text Available Methyl chloride (CH3Cl is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. Large uncertainties in estimates of its source and sink magnitudes and temporal and spatial variations currently exist. GEIA inventories and other bottom-up emission estimates are used to construct a priori maps of the surface fluxes of CH3Cl. The Model of Atmospheric Transport and Chemistry (MATCH, driven by NCEP interannually varying meteorological data, is then used to simulate CH3Cl mole fractions and quantify the time series of sensitivities of the mole fractions at each measurement site to the surface fluxes of various regional and global sources and sinks. We then implement the Kalman filter (with the unit pulse response method to estimate the surface fluxes on regional/global scales with monthly resolution from January 2000 to December 2004. High frequency observations from the AGAGE, SOGE, NIES, and NOAA/ESRL HATS in situ networks and low frequency observations from the NOAA/ESRL HATS flask network are used to constrain the source and sink magnitudes. The inversion results indicate global total emissions around 4100 ± 470 Gg yr−1 with very large emissions of 2200 ± 390 Gg yr−1 from tropical plants, which turn out to be the largest single source in the CH3Cl budget. Relative to their a priori annual estimates, the inversion increases global annual fungal and tropical emissions, and reduces the global oceanic source. The inversion implies greater seasonal and interannual oscillations of the natural sources and sink of CH3Cl compared to the a priori. The inversion also reflects the strong effects of the 2002/2003 globally widespread heat waves and droughts on global emissions from tropical plants, biomass burning and salt marshes, and on the soil sink.

  3. Diagnosing Soil Moisture Anomalies and Neglected Soil Moisture Source/Sink Processes via a Thermal Infrared-based Two-Source Energy Balance Model

    Science.gov (United States)

    Hain, C.; Crow, W. T.; Anderson, M. C.; Yilmaz, M. T.

    2014-12-01

    Atmospheric processes, especially those that occur in the surface and boundary layer, are significantly impacted by soil moisture (SM). Due to the observational gaps in the ground-based monitoring of SM, methodologies have been developed to monitor SM from satellite platforms. While many have focused on microwave methods, observations of thermal infrared land surface temperature (LST) also provides a means of providing SM information. One particular TIR SM method exploits surface flux predictions retrieved from the Atmosphere Land Exchange Inverse (ALEXI) model. ALEXI uses a time-differential measurement of morning LST rise to diagnose the partitioning of net radiation into surface energy fluxes. Here an analysis will be presented to study relationships between three SM products during a multi-year period (2000-2013) from an active/passive microwave dataset (ECV), a TIR-based model (ALEXI), and a land surface model (Noah) over the CONUS. Additionally, all three will be compared against in-situ SM observations from the North American Soil Moisture Database. The second analysis will focus on the use of ALEXI towards diagnosing SM source/sink processes. Traditional soil water balance modeling is based on one-dimensional (vertical-only) water flow, free drainage at the bottom of the soil column, and neglecting ancillary inputs due to processes such as irrigation. However, recent work has highlighted the importance of secondary water source (e.g., irrigation, groundwater extraction, inland wetlands, lateral flows) and sink (e.g., tile drainage in agricultural areas) processes on the partitioning of evaporative and sensible heat fluxes. ALEXI offers a top-down approach for mapping areas where SM source/sink processes have a significant impact on the surface energy balance. Here we present an index, ASSET, that is based on comparisons between ALEXI latent heat flux (LE) estimates and LE predicted by a free-drainage prognostic LSM lacking irrigation, groundwater and tile

  4. Effect of soil surface management on radiocesium concentrations in apple orchard and fruit

    International Nuclear Information System (INIS)

    Kusaba, Shinnosuke; Matsuoka, Kaori; Abe, Kazuhiro

    2016-01-01

    We investigated the effect of soil surface management on radiocesium accumulation in an apple orchard in Fukushima Prefecture over 4 years after Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in mid-March 2011. Different types of soil surface management such as clean cultivation, intertillage management, intertillage with bark compost application, sod culture, and zeolite application were employed. The radiocesium concentrations in soil were higher in the surface layer (0–5 cm) than in the other layers. The radiocesium concentration in the surface layer soil with sod culture in 2014 increased non-significantly compared with that observed in 2011. The radiocesium concentration in the mid-layer soil (5–15 cm) managed with intertillage was higher than that in soil managed using other types of management. The radiocesium amount in the organic matter on the soil surface was the highest in sod culture, and was significantly lower in the management with intertillage. The radiocesium concentration in fruit decreased exponentially during the 4 years in each types of soil surface management. The decrease in radiocesium concentration showed similar trends with each type of soil surface management, even if the concentration in each soil layer varied according to the management applied. Furthermore, intertillage with bark compost application did not affect the radiocesium concentration in fruit. These results suggest that the soil surface management type that affected the radiocesium distribution in the soil or the compost application with conventional practice did not affect its concentration in fruit of apple trees for at least 4 years since the nuclear power plant accident, at a radiocesium deposition level similar to that recorded in Fukushima City. (author)

  5. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J. G.; Gerzabek, M. H.; Mueck, K.

    1994-01-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broadbean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broadbean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plants during the experimental period are 68 % and 32 % for broadbean 47 % and 53 % for ryegrass respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (author)

  6. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    Science.gov (United States)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for

  7. Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes.

    Science.gov (United States)

    Chen, T. H.; Henderson-Sellers, A.; Milly, P. C. D.; Pitman, A. J.; Beljaars, A. C. M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; Dai, Y.; Desborough, C. E.; Dickinson, R. E.; Dümenil, L.; Ek, M.; Garratt, J. R.; Gedney, N.; Gusev, Y. M.;  Kim, J.;  Koster, R.;  Kowalczyk, E. A.;  Laval, K.;  Lean, J.;  Lettenmaier, D.;  Liang, X.;  Mahfouf, J.-F.;  Mengelkamp, H.-T.;  Mitchell, K.;  Nasonova, O. N.;  Noilhan, J.;  Robock, A.;  Rosenzweig, C.;  Schaake, J.;  Schlosser, C. A.;  Schulz, J.-P.;  Shao, Y.;  Shmakin, A. B.;  Verseghy, D. L.;  Wetzel, P.;  Wood, E. F.;  Xue, Y.;  Yang, Z.-L.;  Zeng, Q.

    1997-06-01

    In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (±10 W m2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of30 W m2 and 25 W m2, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W m2 for sensible heat flux and 10 W m2 for latent heat flux). Actual

  8. Comparison of soil CO2 fluxes by eddy-covariance and chamber methods in fallow periods of a corn-soybean rotation

    Science.gov (United States)

    Soil carbon dioxide (CO2) fluxes are typically measured by eddy-covariance (EC) or chamber (Ch) methods, but a long-term comparison has not been undertaken. This study was conducted to assess the agreement between EC and Ch techniques when measuring CO2 flux during fallow periods of a corn-soybean r...

  9. Rhizosphere C flux from tree roots to soil: spatial and temporal differences between sugar maple and yellow birch saplings

    Science.gov (United States)

    Phillips, R. P.; Fahey, T. J.

    2003-12-01

    Rhizosphere carbon flux (RCF) has rarely been measured for intact root-soil systems. We measured RCF for eight year-old saplings of sugar maple (Acer saccharum) and yellow birch (Betula allegheniensis) collected from Hubbard Brook Experimental Forest and transplanted into 35 cm diameter pots with native soil horizons intact. We hypothesized birch roots which support ectomycorrhizal fungi would release more C to the rhizosphere than sugar maple roots which support vesicular-arbuscular mycorrhizal fungi. Saplings (n=5) were pulse-labeled with 13CO2 at ambient CO2 concentrations for 4-6 hours, and the label was chased through rhizosphere and bulk soil pools in organic and mineral horizons for 7 days. We observed immediate appearance of the label in rhizosphere soil, and there was a striking difference in the temporal pattern of 13C concentration between species. In maple, peak concentration of the label appeared at day 1 and declined over time whereas in birch the label increased in concentration over the 7 day chase period. As a result, total RCF was 2-3 times greater from birch roots. We estimate at least 5% and 10% of NPP may be released from this flux pathway in sugar maple and yellow birch saplings respectively. These results suggest that rhizosphere C flux likely represents a substantial proportion of NPP in northern hardwood forests, and may be influenced by trees species and mycorrhizal association.

  10. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  11. Soil greenhouse gas emissions from afforested organic soil croplands and cutaway peatlands

    International Nuclear Information System (INIS)

    Maekiranta, P.; Hytoenen, J.; Aro, L.

    2007-01-01

    The effects of land-use and land-use change on soil greenhouse gas (GHG) fluxes are of concern due to Kyoto Protocol requirements. To quantify the soil GHG-fluxes of afforested organic soils in Finland, chamber measurements of soil CO 2 , CH 4 and N 2 O fluxes were made during the years 2002 to 2005 on twelve organic soil cropland and six cutaway peatland sites afforested 9 to 35 years ago. The annual soil CO 2 effluxes were statistically modelled using soil temperature as the driving variable and the annual CH 4 and N 2 O fluxes were estimated using the average fluxes during the measurement period. Soil CO 2 effluxes on afforested organic soil croplands varied from 207 to 539 g CO 2 -C m -2 a -1 and on cutaway peatlands from 276 to 479 g CO 2 -C m -2 a -1 . Both the afforested organic soil cropland and cutaway peatland sites acted mainly as small sinks for CH 4 ; the annual flux ranged from -0.32 to 0.61 g CH 4 -C m -2 . Afforested organic croplands emitted more N 2 O (from 0.1 to over 3.0 g N 2 O-N m -2 a -1 ) than cutaway peatland sites (from 0.01 to 0.48 g N 2 O-N m -2 a -1 ). Due to the decrease in soil CO 2 efflux, and no change in CH 4 and N 2 O fluxes, afforestation of organic croplands appears to decrease the greenhouse impact of these lands. (orig.)

  12. Long-range alpha detection applied to soil surface monitoring

    International Nuclear Information System (INIS)

    Caress, R.W.; Allander, K.S.; Bounds, J.A.; Catlett, M.M.; MacArthur, D.W.; Rutherford, D.A.

    1992-01-01

    The long-range alpha detection (LRAD) technique depends on the detection of ion pairs generated by alpha particles losing energy in air rather than on detection of the alpha particles themselves. Typical alpha particles generated by uranium will travel less than 3 cm in air. In contrast, the ions have been successfully detected many inches or feet away from the contamination. Since LRAD detection systems are sensitive to all ions simultaneously, large LRAD soil surface monitors (SSMS) can be used to collect all of the ions from a large sample. The LRAD SSMs are designed around the fan-less LRAD detector. In this case a five-sided box with an open bottom is placed on the soil surface. Ions generated by alpha decays on the soil surface are collected on a charged copper plate within the box. These ions create a small current from the plate to ground which is monitored with a sensitive electrometer. The current measured is proportional to the number of ions in the box, which is, in turn, proportional to the amount of alpha contamination on the surface of the soil. This report includes the design and construction of a 1-m by 1-m SSM as well as the results of a study at Fernald, OH, as part of the Uranium in Soils Integrated Demonstration

  13. The Flux Database Concerted Action (invited paper)

    International Nuclear Information System (INIS)

    Mitchell, N.G.; Donnelly, C.E.

    2000-01-01

    The background to the IUR action on the development of a flux database for radionuclide transfer in soil-plant systems is summarised. The action is discussed in terms of the objectives, the deliverables and the progress achieved by the flux database working group. The paper describes the background to the current initiative, outlines specific features of the database and supporting documentation, and presents findings from the working group's activities. The aim of the IUR flux database working group is to bring together researchers to collate data from current experimental studies investigating aspects of radionuclide transfer in soil-plant systems. The database will incorporate parameters describing the time-dependent transfer of radionuclides between soil, plant and animal compartments. Work under the EC Concerted Action considers soil-plant interactions. This initiative has become known as the radionuclide flux database. It is emphasised that the word flux is used in this case simply to indicate the flow of radionuclides between compartments in time. (author)

  14. Quantification of chemical transport processes from the soil to surface runoff.

    Science.gov (United States)

    Tian, Kun; Huang, Chi-Hua; Wang, Guang-Qian; Fu, Xu-Dong; Parker, Gary

    2013-01-01

    There is a good conceptual understanding of the processes that govern chemical transport from the soil to surface runoff, but few studies have actually quantified these processes separately. Thus, we designed a laboratory flow cell and experimental procedures to quantify the chemical transport from soil to runoff water in the following individual processes: (i) convection with a vertical hydraulic gradient, (ii) convection via surface flow or the Bernoulli effect, (iii) diffusion, and (iv) soil loss. We applied different vertical hydraulic gradients by setting the flow cell to generate different seepage or drainage conditions. Our data confirmed the general form of the convection-diffusion equation. However, we now have additional quantitative data that describe the contribution of each individual chemical loading process in different surface runoff and soil hydrological conditions. The results of this study will be useful for enhancing our understanding of different geochemical processes in the surface soil mixing zone. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  16. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  17. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  18. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  19. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico.

    Science.gov (United States)

    Hongqing Wang; Joseph D. Cornell; Charles A.S. Hall; David P. Marley

    2002-01-01

    We developed a spatially-explicit version of the CENTURY soil model to characterize the storage and flux of soil organic carbon (SOC, 0–30 cm depth) in the Luquillo Experimental Forest (LEF), Puerto Rico as a function of climate, vegetation, and soils. The model was driven by monthly estimates of average air temperature, precipitation, and potential evapotranspiration...

  20. One year of continuous measurements of soil CH4 and CO2 fluxes in a Japanese cypress forest: Temporal and spatial variations associated with Asian monsoon rainfall

    OpenAIRE

    Sakabe, Ayaka; Kosugi, Yoshiko; Takahashi, Kenshi; Itoh, Masayuki; Kanazawa, Akito; Makita, Naoki; Ataka, Mioko

    2015-01-01

    We examined the effects of Asian monsoon rainfall on CH[4] absorption of water-unsaturated forest soil. We conducted a 1 year continuous measurement of soil CH[4] and CO[2] fluxes with automated chamber systems in three plots with different soil characteristics and water content to investigate how temporal variations in CH[4] fluxes vary with the soil environment. CH[4] absorption was reduced by the “Baiu” summer rainfall event and peaked during the subsequent hot, dry period. Although CH[4] ...