WorldWideScience

Sample records for surface fluorescence method

  1. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  2. Discrepancies over the onset of surfactant monomer aggregation interpreted by fluorescence, conductivity and surface tension methods

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Carvalho Costa

    1998-06-01

    Full Text Available Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac of polymer-surfactant complexes and the critical micellar concentration (cmc of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS mixtures, solutions containing poly(ethylene oxide-SDS, poly(vinylpyrrolidone-SDS and poly(acrylic acid-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.

  3. Comparison of visual, impedance spectroscopy and laser fluorescence methods in detecting early carious lesions on occlusal surfaces

    Directory of Open Access Journals (Sweden)

    Chalas Renata

    2014-06-01

    Full Text Available The diagnostic management is a very important and integral part of the entire treatment process and has a direct influence on the decision-taking on the choice of the most appropriate form of therapy consistent with current knowledge. Knowledge of the morphology of hard dental tissues lesions has led to the development of quantitative methods for diagnosis and monitoring of dental caries, which enabled the implementation of appropriate treatments aimed at repairing than replacing damaged tissue. The aim of the study was to compare selected diagnostic methods: visual (ICDAS, impedance spectroscopy (CarieScan PRO and laser fluorescence (Diagnodent Pen in detecting caries in grooves on the chewing surfaces of molars and premolars. The obtained results indicated a high concordance of measurements performed with the Diagnodent Pen with the results of visual examination and a lower compliance of visual examination with the results obtained using the CarieScan PRO. A combination of visual and tactile method with tests using advanced technology provides greater opportunity to confirm the diagnosis of carious lesions requiring medical intervention.

  4. The Impact of the Spectral Band Number and Width on the Oil Pollution Diagnostics on Earth Surface by Laser Fluorescence Method

    Directory of Open Access Journals (Sweden)

    Yu. V. Fedotov

    2017-01-01

    Full Text Available Using the remote sensing methods is the most promising for day-to-day control of oil pollution. The laser-induced fluorescence method provides efficient detection and classification of oil pollutions. To monitor oil pollutions on the earth surface is more complicated than on the water one because of lower fluorescence intensity and interfering fluorescence of natural objects available on the earth surface.Properties of oil pollution classifiers depend largely on the number and positions of spectral bands of fluorescence registration. Reducing the number of spectral bands allows us to diminish computation complexity and cost of equipment. In some cases the reduction increases classification accuracy. The number of spectral bands can be reduced through increasing their width.The paper presents mathematical modeling of oil pollution detection and classification. The experimentally obtained fluorescence spectra of oil pollutions on different substrates were used as input data. The k-nearest neighbors algorithm was used to detect and classify oil pollutions. Cross validation was applied in mathematical modeling.The mathematical modeling results have shown that for oil pollutions detection using over 8 spectral bands (band width less than 50 nm a classification error rate does not depend on the further increasing number of the spectral bands.As to the type classification of oil pollutions (4 classes, an increasing width of the spectral bands up to 60 nm (the number of spectral bands reduced up 7 does not lead to a significantly decreasing overall classification accuracy.In the case of the sort classification of oil pollutions (8 classes a local maximum of the overall accuracy has been observed at 25-30 nm width of the spectral band (14-16 spectral bands. The spectral resolution improvement (increasing the number of bands does give an essentially increasing accuracy.The paper has shown that to detect and classify oil pollutions on the earth surface

  5. Dependence of metal-enhanced fluorescence on surface roughness

    Science.gov (United States)

    François, Alexandre; Sciacca, Beniamino; Zuber, Agnieszka; Klantsataya, Elizaveta; Monro, Tanya M.

    2014-03-01

    Metal Enhanced Fluorescence (MEF) takes advantage of the coupling between surface plasmons, in either a metallic thin film or metallic nanoparticles, and fluorophores located in proximity of the metal, yielding an increase of the fluorophore emission. While MEF has been widely studied on metallic nanoparticles with the emphasis on creating brighter fluorescent labels, planar surfaces have not benefitted from the same attention. Here we investigate the influence of the surface roughness of a thin metallic film on the fluorescence enhancement. 50nm thick silver films were deposited on glass slides using either thermal evaporation with different evaporation currents or an electroless plating method based on the Tollens reaction to vary the surface roughness. Multiple layers of positively and negatively charged polyelectrolytes were deposited on top of the metallic coating to map out the enhancement factor as function of the gap between the metallic coating and fluorophore molecules covalently bound to the last polyelectrolyte layer. We show that fluorescence is enhanced by the presence of the metallic film, and in particular that the enhancement increases by a factor 3 to 40 for roughness ranging from 3 nm to 8 nm. Although these enhancement factors are modest compared to the enhancement produced by complex metallic nanoparticles or nano-patterned metallic thin films, the thin films used here are capable of supporting a plasmonic wave and offer the possibility of combining different techniques, such as surface plasmon resonance (with its higher refractive index sensitivity compared to localized plasmons) and MEF within a single device.

  6. Improved Method of Fluorescence Quantum Yield Determination.

    Science.gov (United States)

    Nawara, Krzysztof; Waluk, Jacek

    2017-09-05

    In the most widely used procedure for luminescence quantum yield determination, absorption and emission spectra are measured on two different instruments. This leads to errors caused by wavelength misalignment and different monochromator characteristics of the spectrophotometer and the spectrofluorometer. These errors can be avoided using a method for fluorescence quantum yield determination that relies on simultaneous absorption and fluorescence emission (SAFE) measurement using a single commercial spectrofluorometer. The method's performance is compared with the standard routinely used procedure for the relative quantum yield determination. The advantages of SAFE measurement are discussed. The proposed novel approach eliminates a number of potential errors in quantum yield determination protocol and provides higher accuracy.

  7. Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules.

    Science.gov (United States)

    Zhang, D G; Moh, K J; Yuan, X-C

    2010-06-07

    Surface plasmon-coupled emission from shaped PMMA films doped with randomly oriented fluorescence molecules was investigated. Experimental results show that for different shapes, such as triangle or circular structures, the SPCE ring displays different intensity patterns. For a given shape, it was observed that the relative position and polarization of an incident laser spot on the shaped PMMA can be used to adjust the fluorescence intensity distribution of the SPCE ring. The proposed method enables controlling the fluorescence emission in azimuthal direction in addition to the radial angle controlled by common SPCE, which will further enhances the fluorescence collection efficiency and has applications in fluorescence sensing, imaging and so on.

  8. Fluorescent multiplex cell flow systems and methods

    KAUST Repository

    Merzaban, Jasmeen

    2017-06-01

    Systems and methods are provided for simultaneously assaying cell adhesion or cell rolling for multiple cell specimens. One embodiment provides a system for assaying adhesion or cell rolling of multiple cell specimens that includes a confocal imaging system containing a parallel plate flow chamber, a pump in fluid communication with the parallel plate flow chamber via a flow chamber inlet line and a cell suspension in fluid communication with the parallel plate flow chamber via a flow chamber outlet line. The system also includes a laser scanning system in electronic communication with the confocal imaging system, and a computer in communication with the confocal imaging system and laser scanning system. In certain embodiments, the laser scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least seven cell specimens in the parallel plate flow chamber.

  9. X-ray Fluorescence Method for Trace Analysis and Imaging

    OpenAIRE

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as a conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide trace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and...

  10. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  11. Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tito Trindade

    2013-07-01

    Full Text Available Bimodal nanoprobes comprising both magnetic and optical functionalities have been prepared via a sequential two-step process. Firstly, magnetite nanoparticles (MNPs with well-defined cubic shape and an average dimension of 80 nm were produced by hydrolysis of iron sulfate and were then surface modified with silica shells by using the sol-gel method. The Fe3O4@SiO2 particles were then functionalized with the fluorophore, fluorescein isothiocyanate (FITC, mediated by assembled shells of the cationic polyelectrolyte, polyethyleneimine (PEI. The Fe3O4 functionalized particles were then preliminary evaluated as fluorescent and magnetic probes by performing studies in which neuroblast cells have been contacted with these nanomaterials.

  12. Compact surface plasmon-enhanced fluorescence biochip

    Czech Academy of Sciences Publication Activity Database

    Toma, K.; Vala, Milan; Adam, Pavel; Homola, Jiří; Knoll, W.; Dostálek, J.

    2013-01-01

    Roč. 21, č. 8 (2013), s. 10121-10132 ISSN 1094-4087 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Surface plasmons * Diffraction gratings * Biological sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013

  13. Fluorescent method for monitoring cheese starter permeabilization and lysis

    NARCIS (Netherlands)

    Bunthof, C.J.; Schalkwijk, van S.; Meijer, W.; Abee, T.; Hugenholtz, J.

    2001-01-01

    A fluorescence method to monitor lysis of cheese starter bacteria using dual staining with the LIVE/DEAD BacLight bacterial viability kit is described. This kit combines membrane-permeant green fluorescent nucleic acid dye SYTO 9 and membrane-impermeant red fluorescent nucleic acid dye propidium

  14. Improved method for fluorescence cytometric immunohematology testing.

    Science.gov (United States)

    Roback, John D; Barclay, Sheilagh; Hillyer, Christopher D

    2004-02-01

    A method for accurate immunohematology testing by fluorescence cytometry (FC) was previously described. Nevertheless, the use of vacuum filtration to wash RBCs and a standard-flow cytometer for data acquisition hindered efforts to incorporate this method into an automated platform. A modified procedure was developed that used low-speed centrifugation of 96-well filter plates for RBC staining. Small-footprint benchtop capillary cytometers (PCA and PCA-96, Guava Technologies, Inc.) were used for data acquisition. Authentic clinical samples from hospitalized patients were tested for ABO group and the presence of D antigen (n = 749) as well as for the presence of RBC alloantibodies (n = 428). Challenging samples with mixed-field reactions and weak antibodies were included. Results were compared to those obtained by column agglutination technology (CAT), and discrepancies were resolved by standard tube methods. Detailed investigations of FC sensitivity and reproducibility were also performed. The modified FC method with the PCA determined the correct ABO group and D type for 98.7 percent of 520 samples, compared to 98.8 percent for CAT (p > 0.05). No-type-determined (NTD) rates were 1.2 percent for both methods. In testing for unexpected alloantibodies, FC determined the correct result for 98.6 percent of 215 samples, compared to 96.3 percent for CAT (p > 0.05). When samples were automatically acquired in the 96-well plate format with the PCA-96, 98.7 percent of 229 samples had correct ABO group and D type determined by FC, compared to 97.4 percent for CAT (p > 0.05). NTD rates were 0.9 and 2.6 percent, respectively. Antibody screens were accurate for 99.1 percent of 213 samples with the PCA-96, compared to 99.5 percent for CAT (p > 0.05). Further investigations demonstrated that FC with the PCA-96 was better than CAT at detecting weak anti-A (p < 0.0001) and alloantibodies. An improved method for FC immunohematology testing has been described. This assay was comparable

  15. Assessment of efficiencies of electroporation and sonoporation methods by using fluorescence RGB imaging method

    Science.gov (United States)

    Jakovels, D.; Lihachev, A.; Spigulis, J.; Satkauskas, S.; Tamosiunas, M.; Lo, C. W.; Chen, W. S.

    2013-11-01

    Simple RGB method for fluorescence in vivo imaging is presented to assess efficiency of electroporation and sonoporation methods by measuring distribution and accumulation of green fluorescence protein (GFP) concentration. 20 laboratory measurements were performed on mice to test the method.

  16. Time-resolved fluorescence methods (IUPAC Technical Report)

    OpenAIRE

    Lemmetyinen, Helge; Tkachenko, Nikolai V.; Valeur, Bernard; Hotta, Jun-ichi; AMELOOT, Marcel; Ernsting, Nikolaus P.; Gustavsson, Thomas; Boens, Noel

    2014-01-01

    This IUPAC Technical Report describes and compares the currently applied methods for measuring and analyzing time-resolved fluorescence traces using phase-modulation fluorometry as well as pulse fluorometry (direct emission decay measurements, single-photon timing, streak camera measurements, fluorescence upconversion, and optical Kerr gating). The paper starts with a brief description of the basic principles for time and frequency domain fluorescence spectroscopy. The fundamental equations a...

  17. Fluorescence imaging preparation methods for tissue scaffolds implanted into a green fluorescent protein porcine model.

    Science.gov (United States)

    Smith, Sarah E; White, Richard A; Grant, David A; Grant, Sheila A

    2015-10-01

    Green fluorescent protein (GFP) animal models have become increasingly popular due to their potential to enhance in vivo imaging and their application to many fields of study. We have developed a technique to observe host tissue integration into scaffolds using GFP expressing swine and fluorescence imaging. Current fluorescence imaging preparation methods cannot be translated to a full GFP animal model due to several challenges and limitations that are investigated here. We have implanted tissue scaffolds into GFP expressing swine and have prepared explanted scaffolds for fluorescence imaging using four different methods including formalin fixation and paraffin embedding, vapor fixation, freshly prepared paraformaldehyde fixation, and fresh frozen tissue. Explanted scaffolds and tissue were imaged using confocal microscopy with spectral separation to evaluate the GFP animal model for visualization of host tissue integration into explanted scaffolds. All methods except fresh frozen tissue induced autofluorescence of the scaffold, preventing visualization of detail between host tissue and scaffold fibers. Fresh frozen tissue preparation allowed for the most reliable visualization of fluorescent host tissue integration into non-fluorescent scaffolds. It was concluded that fresh frozen tissue preparation is the best method for fluorescence imaging preparation when using scaffolds implanted into GFP whole animal models.

  18. Low auto-fluorescence fabrication methods for plastic nanoslits.

    Science.gov (United States)

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei; Xu, Shenbo

    2016-04-01

    Plastic nanofluidic devices are becoming increasingly important for biological and chemical applications. However, they suffer from high auto-fluorescence when used for on-chip optical detection. In this study, the auto-fluorescence problem of plastic nanofluidic devices was remedied by newly developed fabrication methods that minimise their auto-fluorescence: one by depositing a gold (Au) layer on them, the other by making them ultra-thin. In the first method, the Au layer [minimum thickness is 40 nm on 150 μm SU-8, 50 nm on 1 mm polyethylene terephthalate (PET), and 40 on 2 nm polymethyl methacrylate (PMMA)] blocks the auto-fluorescence of the polymer; in the second method, auto-fluorescence is minimised by making the chips ultra-thin, selected operating thickness of SU-8 is 20 μm, for PET it is 150 μm, and for PMMA it is 0.8 mm.

  19. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    Wildenberg, S.M.J.L.; Prevo, B.; Peterman, E.J.G.; Peterman, EJG; Wuite, GJL

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow

  20. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    van den Wildenberg, Siet M.J.L.; Prevo, Bram; Peterman, Erwin J.G.

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also

  1. High-resolution methods for fluorescence retrieval from space

    NARCIS (Netherlands)

    Mazzoni, M.; Falorni, P.; Verhoef, W.

    2010-01-01

    The retrieval from space of a very weak fluorescence signal was studied in the O2A and O2B oxygen atmospheric absorption bands. The accuracy of the method was tested for the retrieval of the chlorophyll fluorescence and reflectance terms contributing to the sensor signal. The radiance at the top of

  2. Fluorescent Method for Observing Intravascular Bonghan Duct

    Directory of Open Access Journals (Sweden)

    Byung-Cheon Lee

    2005-12-01

    Full Text Available Observation of intra-vascular threadlike structures in the blood vessels of rats is reported with the images by differential interference contrast microscope, and fluorescence inverted microscope of the acridine-orange stained samples. The confocal microscope image and the hematoxylin-eosin staining revealed the distinctive pattern of nuclei distribution that clearly discerned the threadlike structure from fibrin, capillary, small venule, arteriole, or lymph vessel. Physiological function of the intra-vascular thread in connection with acupuncture is discussed. Especially, this threadlike duct can be a circulation path for herb-liquid flow, which may provide the scientific mechanism for therapeutic effect of herbal acupuncture.

  3. Characterization of E coli biofim formations on baby spinach leaf surfaces using hyperspectral fluorescence imaging

    Science.gov (United States)

    Cho, Hyunjeong; Baek, Insuck; Oh, Mirae; Kim, Sungyoun; Lee, Hoonsoo; Kim, Moon S.

    2017-05-01

    Bacterial biofilm formed by pathogens on fresh produce surfaces is a food safety concern because the complex extracellular matrix in the biofilm structure reduces the reduction and removal efficacies of washing and sanitizing processes such as chemical or irradiation treatments. Therefore, a rapid and nondestructive method to identify pathogenic biofilm on produce surfaces is needed to ensure safe consumption of fresh, raw produce. This research aimed to evaluate the feasibility of hyperspectral fluorescence imaging for detecting Escherichia.coli (ATCC 25922) biofilms on baby spinach leaf surfaces. Samples of baby spinach leaves were immersed and inoculated with five different levels (from 2.6x104 to 2.6x108 CFU/mL) of E.coli and stored at 4°C for 24 h and 48 h to induce biofilm formation. Following the two treatment days, individual leaves were gently washed to remove excess liquid inoculums from the leaf surfaces and imaged with a hyperspectral fluorescence imaging system equipped with UV-A (365 nm) and violet (405 nm) excitation sources to evaluate a spectral-image-based method for biofilm detection. The imaging results with the UV-A excitation showed that leaves even at early stages of biofilm formations could be differentiated from the control leaf surfaces. This preliminary investigation demonstrated the potential of fluorescence imaging techniques for detection of biofilms on leafy green surfaces.

  4. Performance of spectral fitting methods for vegetation fluorescence quantification

    NARCIS (Netherlands)

    Meroni, M.; Busetto, D.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W.

    2010-01-01

    The Fraunhofer Line Discriminator (FLD) principle has long been considered as the reference method to quantify solar-induced chlorophyll fluorescence (F) from passive remote sensing measurements. Recently, alternative retrieval algorithms based on the spectral fitting of hyperspectral radiance

  5. In vivo cellular imaging using fluorescent proteins - Methods and Protocols

    Directory of Open Access Journals (Sweden)

    M. Monti

    2012-12-01

    Full Text Available The discovery and genetic engineering of fluorescent proteins has revolutionized cell biology. What was previously invisible to the cell often can be made visible with the use of fluorescent proteins. With this words, Robert M. Hoffman introduces In vivo Cellular Imaging Using Fluorescent proteins, the eighteen chapters book dedicated to the description of how fluorescence proteins have changed the way to analyze cellular processes in vivo. Modern researches aim to study new and less invasive methods able to follow the behavior of different cell types in different biological contexts: for example, how cancer cells migrate or how they respond to different therapies. Also, in vivo systems can help researchers to better understand animal embryonic development so as how fluorescence proteins may be used to monitor different processes in living organisms at the molecular and cellular level.

  6. System and method for measuring fluorescence of a sample

    Energy Technology Data Exchange (ETDEWEB)

    Riot, Vincent J

    2015-03-24

    The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing and storage.

  7. System and method for measuring fluorescence of a sample

    Energy Technology Data Exchange (ETDEWEB)

    Riot, Vincent J.

    2017-06-27

    The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing and storage.

  8. An optical method for reducing green fluorescence from urine during fluorescence-guided cystoscopy

    Science.gov (United States)

    Lindvold, Lars R.; Hermann, Gregers G.

    2016-12-01

    Photodynamic diagnosis (PDD) of bladder tumour tissue significantly improves endoscopic diagnosis and treatment of bladder cancer in rigid cystoscopes in the operating theatre and thus reduces tumour recurrence. PDD comprises the use of blue light, which unfortunately excites green fluorescence from urine. As this green fluorescence confounds the desired red fluorescence of the PDD, methods for avoiding this situation particularly in cystoscopy using flexible cystoscopes are desirable. In this paper we demonstrate how a tailor made high power LED light source at 525 nm can be used for fluorescence assisted tumour detection using both a flexible and rigid cystoscope used in the outpatient department (OPD) and operating room (OR) respectively. It is demonstrated both in vitro and in vivo how this light source can significantly reduce the green fluorescence problem with urine. At the same time this light source also is useful for exciting autofluorescence in healthy bladder mucosa. This autofluorescence then provides a contrast to the sensitized fluorescence (PDD) of tumours in the bladder.

  9. Development of laser excited atomic fluorescence and ionization methods

    International Nuclear Information System (INIS)

    Winefordner, J.D.

    1991-01-01

    Progress report: May 1, 1988 to December 31, 1991. The research supported by DE-FG05-88ER13881 during the past (nearly) 3 years can be divided into the following four categories: (1) theoretical considerations of the ultimate detection powers of laser fluorescence and laser ionization methods; (2) experimental evaluation of laser excited atomic fluorescence; (3) fundamental studies of atomic and molecular parameters in flames and plasmas; (4) other studies

  10. A fully robust PARAFAC method for analyzing fluorescence data

    DEFF Research Database (Denmark)

    Engelen, Sanne; Frosch, Stina; Jørgensen, Bo

    2009-01-01

    Parallel factor analysis (PARAFAC) is a widespread method for modeling fluorescence data by means of an alternating least squares procedure. Consequently, the PARAFAC estimates are highly influenced by outlying excitation–emission landscapes (EEM) and element-wise outliers, like for example Raman......, there still exists no robust method for handling fluorescence data encountering both outlying EEM landscapes and scatter. In this paper, we present an iterative algorithm where the robust PARAFAC method and the scatter identification tool are alternately performed. A fully automated robust PARAFAC method...

  11. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  12. Reference-free total reflection X-ray fluorescence analysis of semiconductor surfaces with synchrotron radiation.

    Science.gov (United States)

    Beckhoff, Burkhard; Fliegauf, Rolf; Kolbe, Michael; Müller, Matthias; Weser, Jan; Ulm, Gerhard

    2007-10-15

    Total reflection X-ray fluorescence (TXRF) analysis is a well-established method to monitor lowest level contamination on semiconductor surfaces. Even light elements on a wafer surface can be excited effectively when using high-flux synchrotron radiation in the soft X-ray range. To meet current industrial requirements in nondestructive semiconductor analysis, the Physikalisch-Technische Bundesanstalt (PTB) operates dedicated instrumentation for analyzing light element contamination on wafer pieces as well as on 200- and 300-mm silicon wafer surfaces. This instrumentation is also suited for grazing incidence X-ray fluorescence analysis and conventional energy-dispersive X-ray fluorescence analysis of buried and surface nanolayered structures, respectively. The most prominent features are a high-vacuum load-lock combined with an equipment front end module and a UHV irradiation chamber with an electrostatic chuck mounted on an eight-axis manipulator. Here, the entire surface of a 200- or a 300-mm wafer can be scanned by monochromatized radiation provided by the plane grating monochromator beamline for undulator radiation in the PTB laboratory at the electron storage ring BESSY II. This beamline provides high spectral purity and high photon flux in the range of 0.078-1.86 keV. In addition, absolutely calibrated photodiodes and Si(Li) detectors are used to monitor the exciting radiant power respectively the fluorescence radiation. Furthermore, the footprint of the excitation radiation at the wafer surface is well-known due to beam profile recordings by a CCD during special operation conditions at BESSY II that allow for drastically reduced electron beam currents. Thus, all the requirements of completely reference-free quantitation of TXRF analysis are fulfilled and are to be presented in the present work. The perspectives to arrange for reference-free quantitation using X-ray tube-based, table-top TXRF analysis are also addressed.

  13. Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins.

    Science.gov (United States)

    Nagy, Peter; Bene, László; Hyun, William C; Vereb, György; Braun, Manuela; Antz, Christof; Paysan, Jacques; Damjanovich, Sándor; Park, John W; Szöllősi, János

    2005-10-01

    The combination of fluorescence resonance energy transfer (FRET) and flow cytometry offers a statistically firm approach to study protein associations. Fusing green fluorescent protein (GFP) to a studied protein usually does not disturb the normal function of a protein, but quantitation of FRET efficiency calculated between GFP derivatives poses a problem in flow cytometry. We generated chimeras in which cyan fluorescent protein (CFP) was separated by amino acid linkers of different sizes from yellow fluorescent protein (YFP) and used them to calibrate the cell-by-cell flow cytometric FRET measurements carried out on two different dual-laser flow cytometers. Then, CFP-Kip1 was coexpressed in yeast cells with YFP and cyclin-dependent kinase-2 (Cdk2) and served as a positive control for FRET measurements, and CFP-Kip1 coexpressed with a random peptide fused to YFP was the negative control. We measured donor, direct, and sensitized acceptor fluorescence intensities and developed a novel way to calculate a factor (alpha) that characterized the fluorescence intensity of acceptor molecules relative to the same number of excited donor molecules, which is essential for quantifying FRET efficiency. This was achieved by calculating FRET efficiency in two different ways and minimizing the squared difference between the two results by changing alpha. Our method reliably detected the association of Cdk2 with its inhibitor, Kip1, whereas the nonspecific FRET efficiency between Cdk2 and a random peptide was negligible. We identified and sorted subpopulations of yeast cells showing interaction between the studied proteins. We have described a straightforward novel calibration method to accurately quantitate FRET efficiency between GFP derivatives in flow cytometry.

  14. Negligible water surface charge determined using Kelvin probe and total reflection X-ray fluorescence techniques.

    Science.gov (United States)

    Shapovalov, Vladimir L; Möhwald, Helmuth; Konovalov, Oleg V; Knecht, Volker

    2013-09-07

    The water surface charge has been extensively debated in recent decades. Electrophoretic mobilities of air bubbles in water and disjoining pressures between the surfaces of aqueous films suggest that the surface of water exhibits a significant negative charge. This is commonly attributed to a strong adsorption of hydroxide ions at the interface, though spectroscopic measurements and simulation studies suggest surface depletion of hydroxide ions. Alternatively, the negative surface charge could arise from surface contamination with trace charged surfactants. We have probed the variation in the surface charge of water with pH by measuring surface potentials using the Kelvin probe technique. Independently, the abundance in the interfacial layer of "reporter ions" (Rb(+) and Br(-)), which must be affected by a charged surface, has been monitored using the total reflection X-ray fluorescence (TRXF) technique. Special care was taken to prove the high sensitivity of this technique as well as to avoid surface contaminants. The magnitude of the surface charge was found to be below 1 e per 500 nm(2) (TRXF). No evidence of variations in the surface potential between pH 2-3 and pH 9-12 was detected within the accuracies of the methods (5 mV for Kelvin probe and 2 mV for TRXF). Hence, our findings suggest that the clean water surface exhibits negligible charge in a wide pH range.

  15. Monitoring of petroleum hydrocarbon pollution in surface waters by a direct comparison of fluorescence spectroscopy and remote sensing techniques

    Energy Technology Data Exchange (ETDEWEB)

    De Domenico, L.; Crisafi, E. (Consiglio Nazionale delle Ricerche, Messina (Italy). Thalassografic Inst.); Magazzu, G. (Lecce Univ. (Italy). Dept. of Biology); Puglisi, A. (Mediterranean Oceanological Centre (CEOM), Palermo (Italy)); La Rosa, A. (Air-Survey, Italy s.r.l., Catania (Italy))

    1994-10-01

    Oil pollution levels were estimated using simultaneous acquisition of data from remote sensing by helicopter and fluorescence spectroscopy on surface samples. Laboratory quantitative analysis of hydrocarbons was used to calibrate remotely sensed data. The data were treated using a computer to generate a colour-coded map not attainable with conventional methods representing seawater pollution. Results were in good agreement and indicated that remotely sensed data together with those achieved by fluorescence spectroscopy are applicable for monitoring hydrocarbon pollution. (author)

  16. Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes.

    Science.gov (United States)

    Shan, Feng; Zhang, Xiao-Yang; Fu, Xing-Chang; Zhang, Li-Jiang; Su, Dan; Wang, Shan-Jiang; Wu, Jing-Yuan; Zhang, Tong

    2017-07-28

    One of the main challenges for highly sensitive surface-enhanced Raman scattering (SERS) detection is the noise interference of fluorescence signals arising from the analyte molecules. Here we used three types of gold nanostars (GNSs) SERS probes treated by different surface modification methods to reveal the simultaneously existed Raman scattering enhancement and inhibiting fluorescence behaviors during the SERS detection process. As the distance between the metal nanostructures and the analyte molecules can be well controlled by these three surface modification methods, we demonstrated that the fluorescence signals can be either quenched or enhanced during the detection. We found that fluorescence quenching will occur when analyte molecules are closely contacted to the surface of GNSs, leading to a ~100 fold enhancement of the SERS sensitivity. An optimized Raman signal detection limit, as low as the level of 10 -11  M, were achieved when Rhodamine 6 G were used as the analyte. The presented fluorescence-free GNSs SERS substrates with plentiful hot spots and controllable surface plasmon resonance wavelengths, fabricated using a cost-effective self-assembling method, can be very competitive candidates for high-sensitive SERS applications.

  17. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization.

    Science.gov (United States)

    Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C

    2013-05-29

    Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.

  18. A NEW REVERSE PHASE HPLC METHOD WITH FLUORESCENT ...

    African Journals Online (AJOL)

    A sensitive reverse phase-high performance liquid chromatography (RP-HPLC) method with fluorescent detector (FLD) was developed and optimized for salbutamol sulfate (SS) determination in human plasma. In this regard, mobile phase specifications, extraction procedures and excitation and emission wavelengths were ...

  19. Modified Methods for the Synthesis of Triazinyl Fluorescent Brightener Intermediates

    Directory of Open Access Journals (Sweden)

    Ali Parach

    2003-03-01

    Full Text Available The production of triazinyl fluorescent brightener intermediates in high yields is described. The method involves a simplified work-up for the preparation of 4-nitro-toluene-2-sulfonic acid and the use of diethylene glycol instead of water in the preparation of 4,4'-dinitrostilbene-2,2'-disulfonic acid.

  20. Quantitative fluorescence in situ hybridization of Aureobasidium pullulans on microscope slides and leaf surfaces.

    Science.gov (United States)

    Li, S; Spear, R N; Andrews, J H

    1997-01-01

    A 21-mer oligonucleotide probe designated Ap665, directed at the 18S rRNA of Aureobasidium pullulans and labelled with five molecules of fluorescein isothiocyanate, was applied by fluorescence in situ hybridization (FISH) to populations of the fungus on slides and apple leaves from growth chamber seedlings and orchard trees. In specificity tests that included Ap665 and a similarly labelled universal probe and the respective complementary probes as controls, the hybridization signal was strong for Ap665 reactions with 12 A. pullulans strains but at or below background level for 98 other fungi including 82 phylloplane isolates. Scanning confocal laser microscopy was used to confirm that the fluorescence originated from the cytoplasmic matrix and to overcome limitations imposed on conventional microscopy by leaf topography. Images were recorded with a cooled charge-coupled device video camera and digitized for storage and manipulation. Image analysis was used to verify semiquantitative fluorescence ratings and to demonstrate how the distribution of the fluorescence signal in specific interactions (e.g., Ap665 with A. pullulans cells) could be separated at a given probability level from nonspecific fluorescence (e.g., in interactions of Ap665 with Cryptococcus laurentii cells) of an overlapping population. Image analysis methods were used also to quantify epiphytic A. pullulans populations based on cell number or percent coverage of the leaf surface. Under some conditions, leaf autofluorescence and the release of fluorescent compounds by leaves during the processing for hybridization decreased the signal-to-noise ratio. These effects were reduced by the use of appropriate excitation filter sets and fixation conditions. We conclude that FISH can be used to detect and quantify A. pullulans cells in the phyllosphere. PMID:9251214

  1. Fluorescent proteins as efficient tools for evaluating the surface PEGylation of silica nanoparticles

    Science.gov (United States)

    Zhang, Wei; Ma, Minyan; Zhang, Xiao-ai; Zhang, Ze-yu; Saleh, Sayed M.; Wang, Xu-dong

    2017-06-01

    Surface PEGylation is essential for preventing non-specific binding of biomolecules when silica nanoparticles are utilized for in vivo applications. Methods for installing poly(ethylene glycol) on a silica surface have been widely explored but varies from study to study. Because there is a lack of a satisfactory method for evaluating the properties of silica surface after PEGylation, the prepared nanoparticles are not fully characterized before use. In some cases, even non-PEGylated silica nanoparticles were produced, which is unfortunately not recognized by the end-user. In this work, a fluorescent protein was employed, which acts as a sensitive material for evaluating the surface protein adsorption properties of silica nanoparticles. Eleven different methods were systematically investigated for their reaction efficiency towards surface PEGylation. Results showed that both reaction conditions (including pH, catalyst) and surface functional groups of parent silica nanoparticles play critical roles in producing fully PEGylated silica nanoparticles. Great care needs to be taken in choosing the proper coupling chemistry for surface PEGylation. The data and method shown here will guarantee high-quality PEGylated silica nanoparticles to be produced and guide their applications in biology, chemistry, industry and medicine.

  2. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Directory of Open Access Journals (Sweden)

    Ting Lu

    Full Text Available MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs.Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye could firmly bind to the surface of adherent cells (Hela and suspended cells (K562 even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it.These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  3. SU-C-303-05: Photosensitizer Determination for PDT Using Interstitial and Surface Measurements of Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Finlay, J; Zhu, T [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Photosensitizer concentration during photodynamic therapy (PDT) is an important parameter for accurate dosimetry. Fluorescence signal can be used as a measure of photosensitizer concentration. Two methods of data acquisition were compared to an ex vivo study both for in vivo and phantom models. Methods: Fluorescence signal of commonly used photosensitizer benzoporphyrin derivative monoacid ring A (BPD) was obtained in phantoms and mouse tumors using an excitation light of 405 nm. Interstitial fluorescence signal was obtained using a side-cut fiber inserted into the tumor tissue of interest. Using a previously developed multi-fiber probe, tumor surface fluorescence measurements were also collected. Signals were calibrated according to optical phantoms with known sensitizer fluorescence. Optical properties for each sample were determined and the influence of different absorption and scattering properties on the fluorescence signals was investigated. Using single value decomposition of the spectra, the sensitizer concentration was determined using the two different measurement geometries. An ex vivo analysis was also performed for tumor samples to determine the sensitizer concentration. Results: The two fluorescence signals obtained from the surface multi-fiber probe and the interstitial measurements were compared and were corresponding for both phantoms and mouse models. The values obtained were comparable to the ex vivo measurements as well. Despite the difference in geometry, the surface probe measurements can still be used as a metric for determining the presence of sensitizer in small volume tumors. Conclusion: The multi-fiber contact probe can be used as a tool to measure fluorescence at the surface of the treatment area for PDT and predict sensitizer concentration throughout the tumor. This is advantageous in that the measurement does not damage any tissue. Future work will include investigating the dependence of these results on intratumor sensitizer

  4. Fluorescence and confocal microscopy studies of the ice surface - antifreeze protein interactions.

    Science.gov (United States)

    Pertaya, N.; Thomson, E.; Davies, P. L.; Braslavsky, I.

    2005-03-01

    Biomineralization is a phenomenon in which biological material influences mineral growth on the molecular level. A compelling example involves antifreeze proteins (AFPs) known to prevent fish and insects from freezing. AFPs have many potential applications in agriculture, biomedical science, and can be used as a model platform to understand biomineralization processes for future nanotechnology applications. Here we describe a new approach to study the interaction between AFPs and ice using fluorescence and confocal microscopy combined with a unique ice growth cell. After conjugating green fluorescent protein (GFP) to Type III AFP, we imaged the fluorescence signal around and inside of the ice crystals that emerged from the cooled AFP-GFP solution, and have observed an enhanced fluorescence signal at the edge of the ice crystal. In a second cell we observed a dramatic change in the ice growth morphology when AFPs were introduced into an initially pure system. Further developments of these methods will permit the direct imaging of the location and concentration of the AFPs on ice surfaces and enable a better understanding of their operation. Supported by CIHR, the Bosack and Kruger Foundation, Ohio and Yale Universities.

  5. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase.

    Science.gov (United States)

    Liu, Siyu; Zhao, Ning; Cheng, Zhen; Liu, Hongguang

    2015-04-21

    Amino-functionalized fluorescent carbon dots have been prepared by hydrothermal treatment of glucosamine with excess pyrophosphate. The produced carbon dots showed stabilized green emission fluorescence at various excitation wavelengths and pH environments. Herein, we demonstrate the surface energy transfer between the amino-functionalized carbon dots and negatively charged hyaluronate stabilized gold nanoparticles. Hyaluronidase can degrade hyaluronate and break down the hyaluronate stabilized gold nanoparticles to inhibit the surface energy transfer. The developed fluorescent carbon dot/gold nanoparticle system can be utilized as a biosensor for sensitive and selective detection of hyaluronidase by two modes which include fluorescence measurements and colorimetric analysis.

  6. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes--a review.

    Science.gov (United States)

    Nagl, Andreas; Hemelaar, Simon Robert; Schirhagl, Romana

    2015-10-01

    Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively charged nitrogen-vacancy (NV(-)) center, have gained much attention: The NV(-) center emits stable, nonbleaching fluorescence, and thus could be utilized in biolabeling, as a light source, or as a Förster resonance energy transfer donor. Even more remarkable are its spin properties: with the fluorescence intensity of the NV(-) center reacting to the presence of small magnetic fields, it can be utilized as a sensor for magnetic fields as small as the field of a single electron spin. However, a reproducible defect and surface and defect chemistry are crucial to all applications. In this article we review methods for using nanodiamonds for different imaging purposes. The article covers (1) dispersion of particles, (2) surface cleaning, (3) particle size selection and reduction, (4) defect properties, and (5) functionalization and attachment to nanostructures, e.g., scanning probe microscopy tips.

  7. Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles

    OpenAIRE

    Pinheiro, Paula C.; Daniel-da-Silva, Ana L.; Tavares, Daniela S.; Calatayud, M. Pilar; Goya, Gerardo F.; Trindade, Tito

    2013-01-01

    Bimodal nanoprobes comprising both magnetic and optical functionalities have been prepared via a sequential two-step process. Firstly, magnetite nanoparticles (MNPs) with well-defined cubic shape and an average dimension of 80 nm were produced by hydrolysis of iron sulfate and were then surface modified with silica shells by using the sol-gel method. The Fe3O4@SiO2 particles were then functionalized with the fluorophore, fluorescein isothiocyanate (FITC), mediated by assembled shells of the c...

  8. Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces

    OpenAIRE

    Parfenov, Alexandr; Gryczynski, Ignacy; Malicka, Joanna; Geddes, Chris D.; Lakowicz, Joseph R.

    2003-01-01

    Recent reports have shown enhanced fluorescence for fluorophores in close proximity to chemically deposited silver islands or colloids. To expand the usefulness of metal-enhanced fluorescence we tested fractal silver structures formed on, or near, silver electrodes by passage of electric currents. The emission intensity of fluorescein-labeled human serum albumin (FITC-HSA) was enhanced over 100-fold when adsorbed to the fractal silver structures as compared to glass. The amplitude-weighted li...

  9. Analysis of receptor clustering on cell surfaces by imaging fluorescent particles

    OpenAIRE

    Morrison, I.E.; Anderson, C.M.; Georgiou, G.N.; Stevenson, G.V.; Cherry, R.J.

    1994-01-01

    Fluorescently labeled low density lipoproteins (LDL) and influenza virus particles were bound to the surface of human fibroblasts and imaged with a cooled slow-scan CCD camera attached to a fluorescence microscope. Particles were also imaged after attachment to polylysine-coated microscope slides. The digital images were analyzed by fitting data points in the region of fluorescent spots by a two-dimensional Gaussian function, thus obtaining a measure of spot intensity with correction for loca...

  10. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.

    Science.gov (United States)

    Ding, Changqin; Zhu, Anwei; Tian, Yang

    2014-01-21

    Nanoparticles are promising scaffolds for applications such as imaging, chemical sensors and biosensors, diagnostics, drug delivery, catalysis, energy, photonics, medicine, and more. Surface functionalization of nanoparticles introduces an additional dimension in controlling nanoparticle interfacial properties and provides an effective bridge to connect nanoparticles to biological systems. With fascinating photoluminescence properties, carbon dots (C-dots), carbon-containing nanoparticles that are attracting considerable attention as a new type of quantum dot, are becoming both an important class of imaging probes and a versatile platform for engineering multifunctional nanosensors. In order to transfer C-dots from proof-of-concept studies toward real world applications such as in vivo bioimaging and biosensing, careful design and engineering of C-dot probes is becoming increasingly important. A comprehensive knowledge of how C-dot surfaces with various properties behave is essential for engineering C-dots with useful imaging properties such as high quantum yield, stability, and low toxicity, and with desirable biosensing properties such as high selectivity, sensitivity, and accuracy. Several reviews in recent years have reported preparation methods and properties of C-dots and described their application in biosensors, catalysis, photovoltatic cells, and more. However, no one has yet systematically summarized the surface engineering of C-dots, nor the use of C-dots as fluorescent nanosensors or probes for in vivo imaging in cells, tissues, and living organisms. In this Account, we discuss the major design principles and criteria for engineering the surface functionality of C-dots for biological applications. These criteria include brightness, long-term stability, and good biocompatibility. We review recent developments in designing C-dot surfaces with various functionalities for use as nanosensors or as fluorescent probes with fascinating analytical performance

  11. Laser induced uranium fluorescence as an analytical method

    International Nuclear Information System (INIS)

    Krutman, I.

    1985-01-01

    A laser induced fluorescence system was developed to measure uranium trace level amounts in aqueous solution with reliable and simple materials and electronics. A nitrogen pulsed laser was built with the storage energy capacitor directly coupled to laser tube electrodes as a transmission line device. This laser operated at 3Hz repetition rate with peak intensity around 21 Kw and temporal width of 4.5 x 10 -9 s. A sample compartment made of rigid PVC and a photomultiplier housing of aluminium were constructed and assembled forming a single integrated device. As a result of this prototype system we made several analytical measurements with U dissolved in nitric acid to obtain a calibration curve. We obtained a straight line from a plot of U concentration versus fluorescence intensity fitted by a least square method that produced a regression coefficient of 0.994. The lower limit of U determination was 30 ppb -+ 3.5%. (Author) [pt

  12. A Graphene Oxide-Based Fluorescent Method for the Detection of Human Chorionic Gonadotropin.

    Science.gov (United States)

    Xia, Ning; Wang, Xin; Liu, Lin

    2016-10-13

    Human chorionic gonadotropin (hCG) has been regarded as a biomarker for the diagnosis of pregnancy and some cancers. Because the currently used methods (e.g., disposable Point of Care Testing (POCT) device) for hCG detection require the use of many less stable antibodies, simple and cost-effective methods for the sensitive and selective detection of hCG have always been desired. In this work, we have developed a graphene oxide (GO)-based fluorescent platform for the detection of hCG using a fluorescein isothiocyanate (FITC)-labeled hCG-specific binding peptide aptamer (denoted as FITC-PPLRINRHILTR) as the probe, which can be manufactured cheaply and consistently. Specifically, FITC-PPLRINRHILTR adsorbed onto the surface of GO via electrostatic interaction showed a poor fluorescence signal. The specific binding of hCG to FITC-PPLRINRHILTR resulted in the release of the peptide from the GO surface. As a result, an enhanced fluorescence signal was observed. The fluorescence intensity was directly proportional to the hCG concentration in the range of 0.05-20 IU/mL. The detection limit was found to be 20 mIU/mL. The amenability of the strategy to hCG analysis in biological fluids was demonstrated by assaying hCG in the urine samples.

  13. Laplacian manifold regularization method for fluorescence molecular tomography

    Science.gov (United States)

    He, Xuelei; Wang, Xiaodong; Yi, Huangjian; Chen, Yanrong; Zhang, Xu; Yu, Jingjing; He, Xiaowei

    2017-04-01

    Sparse regularization methods have been widely used in fluorescence molecular tomography (FMT) for stable three-dimensional reconstruction. Generally, ℓ1-regularization-based methods allow for utilizing the sparsity nature of the target distribution. However, in addition to sparsity, the spatial structure information should be exploited as well. A joint ℓ1 and Laplacian manifold regularization model is proposed to improve the reconstruction performance, and two algorithms (with and without Barzilai-Borwein strategy) are presented to solve the regularization model. Numerical studies and in vivo experiment demonstrate that the proposed Gradient projection-resolved Laplacian manifold regularization method for the joint model performed better than the comparative algorithm for ℓ1 minimization method in both spatial aggregation and location accuracy.

  14. The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces

    Directory of Open Access Journals (Sweden)

    Jinliang Zhuang

    2012-08-01

    Full Text Available A metal–organic framework (MOF material, [Zn2(adc2(dabco] (adc = anthracene-9,10-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]­octane, the fluorescence of which depends on the loading of its nanopores, was synthesized in two forms: as free-flowing nanocrystals with different shapes and as surface-attached MOFs (SURMOFs. For the latter, we used self-assembled monolayers (SAMs bearing functional groups, such as carboxylate and pyridyl groups, capable of coordinating to the constituents of the MOF. It could be demonstrated that this directed coordination also orients the nanocrystals deposited at the surface. Using two different patterning methods, i.e., microcontact printing and electron-beam lithography, the lateral distribution of the functional groups could be determined in such a way that the highly localized deposition of the SURMOF films became possible.

  15. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  16. An ultrasensitive method for the determination of melamine using cadmium telluride quantum dots as fluorescence probes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiafei; Li, Jin; Kuang, Huiyan; Feng, Lei; Yi, Shoujun; Xia, Xiaodong; Huang, Haowen [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); Chen, Yong; Tang, Chunran [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Zeng, Yunlong, E-mail: yunlongzeng1955@126.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-11-13

    Graphical abstract: Melamine takes place of the TGA on the surface of TGA-CdTe QDs with negative charge to form melamine coated QDs changing the surface charge of the QDs, resulting the fluorescence quenched as the QDs aggregation occurred by electrostatic attraction of the two opposite charged nanocrystals. -- Highlights: •An ultrasensitive and selective method for the determination of melamine was developed at pH 11.0. •The selectivity of the method was improved. •The sensitivity of the method enhanced obviously as the CdTe QDs have higher QYs at pH 11. •The sensitivity and linear range for the analysis are size dependent using QDs PL probes. •Melamine takes the place of TGA resulting fluorescence quenched of QDs. -- Abstract: An ultrasensitive and simple method for the determination of melamine was developed based on the fluorescence quenching of thioglycolic acid (TGA) capped CdTe quantum dots (QDs) at pH 11.0. In strong alkaline aqueous solution, the selectivity of the method has been greatly improved due to most heavy metal ions show no interference as they are in the precipitation form or in their anion form. Furthermore, CdTe quantum dots have higher quantum yields at higher pH. The method has a wider concentration range and lower detection limit. The influence factors on the determination of melamine were investigated and the optimum conditions were determined. Under optimum conditions, the fluorescence intensity change of TGA coated CdTe quantum dots was linearly proportional to melamine over a concentration range from 1.0 × 10{sup −11} to 1.0 × 10{sup −5} mol L{sup −1} with a correlation coefficient of 0.9943 and a detection limit of 5 × 10{sup −12} mol L{sup −1}. The mechanism of fluorescence quenching of the QDs has been proposed based on the infrared spectroscopy information and electrophoresis experiments in presence of melamine under alkaline condition. The proposed method was employed to detect trace melamine in milk powder

  17. Fluorescence And Alternative Methods In Urine Drug Testing

    Science.gov (United States)

    Jain, Naresh C.

    1988-04-01

    Drug abuse has become-one of the most compelling realities _ ot contemporary society. It has penetrated every segment ot our population: trom schools to sports and trom organized crime to board rooms . Drugs in tie w9rkplace allegedly cost government agencies and business millions ot dollars each year in increased absenteeism,. poor work performance, thefts,accidents andwastedtime. The President's Commission on Organized Crime and the federal government are in tavor ot urine drug testing. In fact many employers are now resorting to urine drug testing on current and prospective employees. This presep.tation discusses different laboratory methods used in urine drug.testing, including immunoassays, fluorescence polarization, thin layer chromatography, high pressure liquid chromatography, gas chromatography and gas-chromatography-mass spectrometry.

  18. Surface decontamination compositions and methods

    Science.gov (United States)

    Wright,; Karen, E [Idaho Falls, ID; Cooper, David C [Idaho Falls, ID; Peterman, Dean R [Idaho Falls, ID; Demmer, Ricky L [Idaho Falls, ID; Tripp, Julia L [Pocatello, ID; Hull, Laurence C [Idaho Falls, ID

    2011-03-29

    Clay-based compositions capable of absorbing contaminants from surfaces or objects having surface faces may be applied to a surface and later removed, the removed clay-based compositions absorbing at least a portion of the contaminant from the surface or object to which it was applied.

  19. The delayed fluorescence kinetics as a method of biological tissue diagnostics

    Science.gov (United States)

    Letuta, Sergey N.; Maryakhina, Valeriya S.

    2011-03-01

    Delayed fluorescence kinetics of exogenous fluorophores in tumor and normal mice mammary tissue cells was researched. Delayed fluorescence kinetics of fluorophores in two types of cells was researched on in its specific features and regularities. The investigation results are discussed in the context of early fluorescent diagnostics method of tissue pathological states.

  20. Thickness dependence of polydopamine thin films on detection sensitivity of surface plasmon-enhanced fluorescence biosensors

    Science.gov (United States)

    Toma, Mana; Tawa, Keiko

    2018-03-01

    A bioinspired polydopamine (PDA) coating is a good candidate for the rapid and cheap chemical modification of biosensor surfaces. Herein, we report the effect of PDA thickness on the detection sensitivity of a fluorescence biosensor utilizing surface plasmon-enhanced fluorescence. The thickness of PDA films was tuned by the incubation time of the dopamine solution and varied from 1 to 17 nm. The detection sensitivity was evaluated as the limit of detection (LOD) of a fluorescently labelled target analyte by a model immunoassay. The LOD was determined to be 1.6 pM for the thickest PDA film and was improved to 1.0 pM by reducing the thickness to the range from 1 to 5 nm, corresponding to the incubation time of 10 to 60 min. The experimental results indicate that the PDA coating is suitable for the surface functionalization of biosensors in mass production as it does not require precise control of the incubation time.

  1. An optical method for reducing green fluorescence from urine during fluorescence-guided cystoscopy

    DEFF Research Database (Denmark)

    Lindvold, Lars René; Hermann, Gregers G

    2016-01-01

    Photodynamic diagnosis (PDD) of bladder tumour tissue significantly improves endoscopic diagnosis and treatment of bladder cancer in rigid cystoscopes in the operating theatre and thus reduces tumour recurrence. PDD comprises the use of blue light, which unfortunately excites green fluorescence...... this light source also is useful for exciting autofluorescence in healthy bladder mucosa. This autofluorescence then provides a contrast to the sensitized fluorescence (PDD) of tumours in the bladder....

  2. Chemical analysis of surface oxygenated moieties of fluorescent carbon nanoparticles

    Science.gov (United States)

    Huang, Jie; Deming, Christopher P.; Song, Yang; Kang, Xiongwu; Zhou, Zhi-You; Chen, Shaowei

    2012-01-01

    Water-soluble carbon nanoparticles were prepared by refluxing natural gas soot in concentrated nitric acid. The surface of the resulting nanoparticles was found to be decorated with a variety of oxygenated species, as suggested by spectroscopic measurements. Back potentiometric titration of the nanoparticles was employed to quantify the coverage of carboxylic, lactonic, and phenolic moieties on the particle surface by taking advantage of their vast difference of acidity (pKa). The results were largely consistent with those reported in previous studies with other carbonaceous (nano)materials. Additionally, the presence of ortho- and para-quinone moieties on the nanoparticle surface was confirmed by selective labelling with o-phenylenediamine, as manifested in X-ray photoelectron spectroscopy, photoluminescence, and electrochemical measurements. The results further supported the arguments that the surface functional moieties that were analogous to 9,10-phenanthrenequinone were responsible for the unique photoluminescence of the nanoparticles and the emission might be regulated by surface charge state, as facilitated by the conjugated graphitic core matrix.

  3. Chemical analysis of surface oxygenated moieties of fluorescent carbon nanoparticles.

    Science.gov (United States)

    Huang, Jie; Deming, Christopher P; Song, Yang; Kang, Xiongwu; Zhou, Zhi-You; Chen, Shaowei

    2012-02-07

    Water-soluble carbon nanoparticles were prepared by refluxing natural gas soot in concentrated nitric acid. The surface of the resulting nanoparticles was found to be decorated with a variety of oxygenated species, as suggested by spectroscopic measurements. Back potentiometric titration of the nanoparticles was employed to quantify the coverage of carboxylic, lactonic, and phenolic moieties on the particle surface by taking advantage of their vast difference of acidity (pK(a)). The results were largely consistent with those reported in previous studies with other carbonaceous (nano)materials. Additionally, the presence of ortho- and para-quinone moieties on the nanoparticle surface was confirmed by selective labelling with o-phenylenediamine, as manifested in X-ray photoelectron spectroscopy, photoluminescence, and electrochemical measurements. The results further supported the arguments that the surface functional moieties that were analogous to 9,10-phenanthrenequinone were responsible for the unique photoluminescence of the nanoparticles and the emission might be regulated by surface charge state, as facilitated by the conjugated graphitic core matrix. This journal is © The Royal Society of Chemistry 2012

  4. Noninvasive control of dental calculus removal: qualification of two fluorescence methods

    International Nuclear Information System (INIS)

    Gonchukov, S; Sukhinina, A; Bakhmutov, D; Biryukova, T

    2013-01-01

    The main condition of periodontitis prevention is the full calculus removal from the teeth surface. This procedure should be fulfilled without harming adjacent unaffected tooth tissues. Nevertheless the problem of sensitive and precise estimating of tooth-calculus interface exists and potential risk of hard tissue damage remains. In this work it was shown that fluorescence diagnostics during calculus removal can be successfully used for precise noninvasive detection of calculus-tooth interface. In so doing the simple implementation of this method free from the necessity of spectrometer using can be employed. Such a simple implementation of calculus detection set-up can be aggregated with the devices of calculus removing.

  5. Enhanced extraction efficiency of fluorescent SiC by surface nanostructuring

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Yakimova, Rositza

    2012-01-01

    Antireflective structures were fabricated on fluorescent 6H-SiC for white LEDs to enhance the extraction efficiency. Average surface reflectance decreased from 22.1% to 5.1% over a broad range, and luminescence intensity was enhanced by 41%.......Antireflective structures were fabricated on fluorescent 6H-SiC for white LEDs to enhance the extraction efficiency. Average surface reflectance decreased from 22.1% to 5.1% over a broad range, and luminescence intensity was enhanced by 41%....

  6. Comparison of Regularization Methods in Fluorescence Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Dianwen Zhu

    2014-04-01

    Full Text Available In vivo fluorescence molecular tomography (FMT has been a popular functional imaging modality in research labs in the past two decades. One of the major difficulties of FMT lies in the ill-posed and ill-conditioned nature of the inverse problem in reconstructing the distribution of fluorophores inside objects. The popular regularization methods based on L2, L1 and total variation (TV norms have been applied in FMT reconstructions. The non-convex Lq(0 < q < 1 semi-norm and Log function have also been studied recently. In this paper, we adopt a uniform optimization transfer framework for these regularization methods in FMT and compare their individual, as well as the combined effects on both small, localized targets, such as tumors in the early stage, and large targets, such as liver. Numerical simulation studies and phantom experiments have been carried out, and we found that Lq with q near 1/2 performs the best in reconstructing small targets, while joint L2 and Log performs the best for large targets.

  7. Analysis of root surface properties by fluorescence/Raman intensity ratio.

    Science.gov (United States)

    Nakamura, Shino; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Matsuo

    2017-11-01

    The aim of this study is to evaluate the existence of residual calculus on root surfaces by determining the fluorescence/Raman intensity ratio. Thirty-two extracted human teeth, partially covered with calculus on the root surface, were evaluated by using a portable Raman spectrophotometer, and a 785-nm, 100-mW laser was applied for fluorescence/Raman excitation. The collected spectra were normalized to the hydroxyapatite Raman band intensity at 960 cm -1 . Raman spectra were recorded from the same point after changing the focal distance of the laser and the target radiating angle. In seven teeth, the condition of calculus, cementum, and dentin were evaluated. In 25 teeth, we determined the fluorescence/Raman intensity ratio following three strokes of debridement. Raman spectra collected from the dentin, cementum, and calculus were different. After normalization, spectra values were constant. The fluorescence/Raman intensity ratio of calculus region showed significant differences compared to the cementum and dentin (p < 0.05). The fluorescence/Raman intensity ratio decreased with calculus debridement. For this analysis, the delta value was defined as the difference between the values before and after three strokes, with the final 2 delta values close to zero, indicating a gradual asymptotic curve and the change in intensity ratio approximating that of individual constants. Fluorescence/Raman intensity ratio was effectively used to cancel the angle- and distance-dependent fluctuations of fluorescence collection efficiency during measurement. Changes in the fluorescence/Raman intensity ratio near zero suggested that cementum or dentin was exposed, and calculus removed.

  8. The repeatability of three diagnostic methods (visual using ICDAS II, laser fluorescence, and radiographic) for early caries detection

    Science.gov (United States)

    Sukmasari, S.; Lestari, W.; Ko, B. B.; Noh, Z.; Asmail, N.; Yaacob, N.

    2017-08-01

    Newly introduced ICDAS II as a visual method, laser fluorescence as another technique that have ability to quantify early mineral loss of tooth structure and intra oral radiograph, are methods can be used in the clinic. To provide standardization for comprehensive caries management at an early stage, all methods supposed to be tested between users. The objective of this research is to evaluate the repeatability of each system. It is a comparative cross sectional study using 100 extracted permanent teeth without obvious cavitation (premolar & molar) that were collected and stored in thymol solution. The teeth were embedded on the wax block and labeled with numbers. All 5 surfaces were examined by 5 examiners using visual (ICDAS II), laser fluorescence (LF) and radiographic examination. The data were then analyzed to measure intra and inter examiner repeatability using Cronbach’s alpha and inter-item correlation matrix. Intra-examiner repeatability for all examiners was >0.7. Chronbach’s a value for inter-examiner repeatability for ICDAS II was >0.8 on 3 surfaces except on buccal and lingual. LF exhibit repeatability of >0.8 on all surfaces. Radiograph shows a low value of inter examiner repeatability (caries detection in daily clinical basis. Laser fluorescence exhibits the highest repeatability while the radiograph showed weak inter-examiner repeatability. Treatment decisions of ICDAS II propose more preventive treatment for early caries lesions compared to laser fluorescence.

  9. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII.

    Science.gov (United States)

    Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu

    2015-01-01

    DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    OpenAIRE

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2015-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP....

  11. Assessing the blinking state of fluorescent quantum dots in free solution by combining fluorescence correlation spectroscopy with ensemble spectroscopic methods.

    Science.gov (United States)

    Dong, Chaoqing; Liu, Heng; Ren, Jicun

    2014-11-04

    The current method for investigating the blinking behavior is to immobilize quantum dots (QDs) in the matrix and then apply a fluorescent technique to monitor the fluorescent trajectories of individual QDs. So far, no method can be used to directly assess the blinking state of ensemble QDs in free solution. In this study, a new method was described to characterize the blinking state of the QDs in free solution by combining single molecule fluorescence correlation spectroscopy (FCS) with ensemble spectroscopic methods. Its principle is based on the observation that the apparent concentration of bright QDs obtained by FCS is less than its actual concentration measured by ensemble spectroscopic method due to the QDs blinking. We proposed a blinking index (Kblink) for characterizing the blinking state of QDs, and Kblink is defined as the ratio of the actual concentration (Cb,actual) measured by the ensemble spectroscopic method to the apparent concentration (Cb,app) of QDs obtained by FCS. The effects of certain factors such as laser intensity, growth process, and ligands on blinking of QDs were investigated. The Kblink data of QDs obtained were successfully used to characterize the blinking state of QDs and explain certain experimental results.

  12. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    Science.gov (United States)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  13. Radiographic and laser fluorescence methods have no benefits for detecting caries in primary teeth.

    Science.gov (United States)

    Mendes, F M; Novaes, T F; Matos, R; Bittar, D G; Piovesan, C; Gimenez, T; Imparato, J C P; Raggio, D P; Braga, M M

    2012-01-01

    Clinical guidelines advise that dentists take radiographs in children to detect caries lesions missed by visual inspection; however, due to the current low caries prevalence in most countries, we hypothesized that the adjunct methods of caries detection would not significantly improve the detection of primary molar lesions in comparison to visual inspection alone. We evaluated the performance of visual inspection, alone or in combination with radiographic and laser fluorescence pen (LFpen) methods, in detecting occlusal and approximal caries lesions in primary molars. Two examiners evaluated children who had sought dental treatment with these diagnostic strategies. The reference standard involved the temporary separation of approximal and operative interventions for occlusal surfaces. The sensitivity, specificity, accuracy and utility of diagnostic strategies were calculated. Simultaneous combined strategies increased sensitivities but decreased specificities. Furthermore, no differences were observed in accuracy and utility, parameters more influenced by caries prevalence. In conclusion, adjunct radiographic and laser fluorescence methods offer no benefits to the detection of caries in primary teeth in comparison to visual inspection alone; hence, present clinical guidelines should be re-evaluated. Copyright © 2012 S. Karger AG, Basel.

  14. METHODS TO DEVELOP A TOROIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    DANAILA Ligia

    2017-05-01

    Full Text Available The paper work presents two practical methods to draw the development of a surface unable to be developed applying classical methods of Descriptive Geometry, the toroidal surface, frequently met in technical practice. The described methods are approximate ones; the development is obtained with the help of points. The accuracy of the methods is given by the number of points used when drawing. As for any other approximate method, when practically manufactured the development may need to be adjusted on site.

  15. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2017-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker. In order to minimise the amount of material in the detector, circuit boards with readout electronics will be glued on to the active area of the sensor. Several adhesives investigated to be used for the construction of detector modules were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high- radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By pointing the beam both inside the sensor and parallel to the sensor surface, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibility of silicon strip sensors to light contamination from fluorescent mate...

  16. Time efficient methods for scanning a fluorescent membrane with a fluorescent microscopic imager for the quality assurance of food

    Science.gov (United States)

    Lerm, Steffen; Holder, Silvio; Schellhorn, Mathias; Brückner, Peter; Linß, Gerhard

    2013-05-01

    An important part of the quality assurance of meat is the estimation of germs in the meat exudes. The kind and the number of the germs in the meat affect the medical risk for the consumer of the meat. State-of-the-art analyses of meat are incubator test procedures. The main disadvantages of such incubator tests are the time consumption, the necessary equipment and the need of special skilled employees. These facts cause in high inspection cost. For this reason a new method for the quality assurance is necessary which combines low detection limits and less time consumption. One approach for such a new method is fluorescence microscopic imaging. The germs in the meat exude are caught in special membranes by body-antibody reactions. The germ typical signature could be enhanced with fluorescent chemical markers instead of reproduction of the germs. Each fluorescent marker connects with a free germ or run off the membrane. An image processing system is used to detect the number of fluorescent particles. Each fluorescent spot should be a marker which is connected with a germ. Caused by the small object sizes of germs, the image processing system needs a high optical magnification of the camera. However, this leads to a small field of view and a small depth of focus. For this reasons the whole area of the membrane has to be scanned in three dimensions. To minimize the time consumption, the optimal path has to be found. This optimization problem is influenced by features of the hardware and is presented in this paper. The traversing range in each direction, the step width, the velocity, the shape of the inspection volume and the field of view have influence on the optimal path to scan the membrane.

  17. The Role of Light-Induced Fluorescence in the Treatment of Smooth Surface Carious Lesions with Icon Infiltration and the Results After 1 Year

    OpenAIRE

    Kabaktchieva R.; Gateva N.; Peycheva K.

    2014-01-01

    Caries infiltration is a novel technique that brings out immediate esthetic improvement in the opacity of the white spot lesions. Light-induced fluorescence method is a modern caries diagnostic method. In this study SoproLife camera (Acteon, France) was applied for diagnosing and follow-up of the results. The aims of this in vivo study are to test the role of light-induced fluorescence method (SoploLife camera) in the diagnosis of non-cavitated smooth surfaces carious lesions (ICDAS codes 1 a...

  18. Determination of paraquat in water samples using a sensitive fluorescent probe titration method.

    Science.gov (United States)

    Yao, Feihu; Liu, Hailong; Wang, Guangquan; Du, Liming; Yin, Xiaofen; Fu, Yunlong

    2013-06-01

    Paraquat (PQ), a nonselective herbicide, is non-fluorescent in aqueous solutions. Thus, its determination through direct fluorescent methods is not feasible. The supramolecular inclusion interaction of PQ with cucurbit[7]uril was studied by a fluorescent probe titration method. Significant quenching of the fluorescence intensity of the cucurbit[7]uril-coptisine fluorescent probe was observed with the addition of PQ. A new fluorescent probe titration method with high selectivity and sensitivity at the ng/mL level was developed to determine PQ in aqueous solutions with good precision and accuracy based on the significant quenching of the supramolecular complex fluorescence intensity. The proposed method was successfully used in the determination of PQ in lake water, tap water, well water, and ditch water in an agricultural area, with recoveries of 96.73% to 105.77%. The fluorescence quenching values (deltaF) showed a good linear relationship with PQ concentrations from 1.0 x 10(-8) to 1.2 x 10(-5) mol/L with a detection limit of 3.35 x 10(-9) mol/L. In addition, the interaction models of the supramolecular complexes formed between the host and the guest were established using theoretical calculations. The interaction mechanism between the cucurbit[7]uril and PQ was confirmed by 1H NMR spectroscopy.

  19. Some recent developments in the surface-analytical application of X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Gries, W.H.

    1987-01-01

    Standard depth profiles of an analyte deposited into (diffusion or ion implantation) or on (thin-film deposition) a plane surface can be analyzed for profile type and centroid depth or film thickness by means of a standardless method in which the matrix-attenuated signals of the fluorescing analyte measured at two different take-off angles are related to the mathematical distribution moments of the profile. For a binary thin film the element ratio can also be established. Results obtained on phosphorus profiles in silicon and on zinc sulphide optical coatings are referred to. The quantity or concentration level can be determined by use of a reference standard which may contain the analyte in an entirely different distribution. This simplifies the calibration of secondary reference standards. A good lateral resolution in the sub-millimeter range can be achieved with synchrotron radiation. A further improvement of lateral resolution is possible by direct excitation with electron microbeams, though at significantly inferior detection limits. (orig.)

  20. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-activated cell sorting.

    Science.gov (United States)

    Maesner, Claire C; Almada, Albert E; Wagers, Amy J

    2016-01-01

    Fluorescent-activated cell sorting (FACS) has enabled the direct isolation of highly enriched skeletal muscle stem cell, or satellite cell, populations from postnatal tissue. Several distinct surface marker panels containing different positively selecting surface antigens have been used to distinguish muscle satellite cells from other non-myogenic cell types. Because functional and transcriptional heterogeneity is known to exist within the satellite cell population, a direct comparison of results obtained in different laboratories has been complicated by a lack of clarity as to whether commonly utilized surface marker combinations select for distinct or overlapping subsets of the satellite cell pool. This study therefore sought to evaluate phenotypic and functional overlap among popular satellite cell sorting paradigms. Utilizing a transgenic Pax7 -zsGreen reporter mouse, we compared the overlap between the fluorescent signal of canonical paired homeobox protein 7 ( Pax7 ) expressing satellite cells to cells identified by combinations of surface markers previously published for satellite cells isolation. We designed two panels for mouse skeletal muscle analysis, each composed of markers that exclude hematopoietic and stromal cells (CD45, CD11b, Ter119, CD31, and Sca1), combined with previously published antibody clones recognizing surface markers present on satellite cells (β1-integrin/CXCR4, α7-integrin/CD34, and Vcam1). Cell populations were comparatively analyzed by flow cytometry and FACS sorted for functional assessment of myogenic activity. Consistent with prior reports, each of the commonly used surface marker schemes evaluated here identified a highly enriched satellite cell population, with 89-90 % positivity for Pax7 expression based on zsGreen fluorescence. Distinct surface marker panels were also equivalent in their ability to identify the majority of the satellite cell pool, with 90-93 % of all Pax7-zsGreen positive cells marked by each of the

  1. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces

    Directory of Open Access Journals (Sweden)

    Thomas E. Rams

    2017-10-01

    Conclusions: Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.

  2. A statistical strategy to assess cleaning level of surfaces using fluorescence spectroscopy and Wilks’ ratio

    DEFF Research Database (Denmark)

    Stoica, Iuliana-Madalina; Babamoradi, Hamid; van den Berg, Frans

    2017-01-01

    •A statistical strategy combining fluorescence spectroscopy, multivariate analysis and Wilks’ ratio is proposed.•The method was tested both off-line and on-line having riboflavin as a (controlled) contaminant.•Wilks’ ratio signals unusual recordings based on shifts in variance and covariance...

  3. Different size biomolecules anchoring on porous silicon surface: fluorescence and reflectivity pores infiltration comparative studies

    Energy Technology Data Exchange (ETDEWEB)

    Giovannozzi, Andrea M.; Rossi, Andrea M. [National Institute for Metrological Research, Thermodynamic Division, Strada delle Cacce 91, 10135 Torino (Italy); Renacco, Chiara; Farano, Alessandro [Ribes Ricecrhe Srl, Via Lavoratori Vittime del Col du Mont 24, 11100 Aosta (Italy); Derosas, Manuela [Biodiversity Srl, Via Corfu 71, 25124 Brescia (Italy); Enrico, Emanuele [National Institute for Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy)

    2011-06-15

    The performance of porous silicon optical based biosensors strongly depends on material nanomorphology, on biomolecules distribution inside the pores and on the ability to link sensing species to the pore walls. In this paper we studied the immobilization of biomolecules with different size, such as antibody anti aflatoxin (anti Aflatox Ab, {proportional_to}150 KDa), malate dehydrogenase (MDH, {proportional_to}36KDa) and metallothionein (MT, {proportional_to}6KDa) at different concentrations on mesoporous silicon samples ({proportional_to}15 nm pores diameter). Fluorescence measurements using FITC- labeled biomolecules and refractive index analysis based on reflectivity spectra have been employed together to detect the amount of proteins bound to the surface and to evaluate their diffusion inside the pores. Here we suggest that these two techniques should be used together to have a better understanding of what happens at the porous silicon surface. In fact, when pores dimensions are not perfectly tuned to the protein size a higher fluorescence signal doesn't often correspond to a higher biomolecules distribution inside the pores. When a too much higher concentration of biomolecule is anchored on the surface, steric crowd effects and repulsive interactions probably take over and hinder pores infiltration, inducing a small or absent shift in the fringe pattern even if a higher fluorescence signal is registered. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    Science.gov (United States)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  5. LED fluorescence microscopy: Novel method for malaria diagnosis compared with routine methods.

    Science.gov (United States)

    Hathiwala, Riddhi; Mehta, Preeti R; Nataraj, Gita; Hathiwala, Siddhi

    Rapid and accurate diagnosis of malaria is the need of hour for effective management and controlling drug resistance. The conventional and gold-standard method, Light microscopy (LM), is time-consuming, requires trained staff and well-maintained equipments. The newly developed, rapid diagnostic tests (RDT) are fast and reliable, but give only qualitative results, are expensive and have short shelf life. Light Emission Diode fluorescence microscopy (LED FM) may provide a reliable alternative which can be used for routine diagnosis. In order to assess the effectiveness of LED fluorescence microscopy in malaria diagnosis, a cross-sectional study was conducted at a tertiary care teaching hospital in Mumbai. 2-3ml of blood of 300 patients, who were clinically suspected of having malaria but were not on anti-malarial treatment, was collected in EDTA vials. These specimens were processed to diagnose malaria by three methods, namely-Peripheral smear examination with LM, Peripheral smear examination with LED FM and RDT. The results of all the 3 tests were compared, taking Light Microscopy as the gold standard method. Of the 300 specimens, LM, LED FM and RDT reported 111 (37%), 86 (28.67%) and 107 (35.67%), respectively, as positive. The sensitivity and specificity were respectively 71.2% and 96.3% for LED FM and 91% and 96.8% for RDT. Of the LM positive cases, 53 (47.75%) had parasitic index (PI) LED FM was found to be only moderately sensitive but highly specific in comparison to Light microscopy. In order to improve the performance of this technique, more precise training in fluorescence staining and reading of the slides, will be required. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. In vitro detection of secondary caries associated with composite restorations on approximal surfaces using laser fluorescence.

    Science.gov (United States)

    Rodrigues, Jonas A; Neuhaus, Klaus W; Hug, Isabel; Stich, Herman; Seemann, Rainer; Lussi, Adrian

    2010-01-01

    This study evaluated the performance of the DIAGNOdent pen laser fluorescence device (LFpen) in comparison with visual examination (VE), bitewing radiographs (BW) and visual examination combined with bitewing radiographs (VEBW) in detecting secondary approximal caries associated with composite restorations. In total, 60 approximal surfaces from 43 permanent molars with composite restorations were assessed twice by two examiners using the LFpen, VE, BW and VEBW. After histological preparation and hardness measurements, the sample was assigned to either a crown or root caries group, depending on the location of the lesions as the gold standard. For crown caries at D1, the highest values of specificity and sensitivity were observed for the LFpen at a cutoff value of 18 (1.00) and for the VEBW (0.89). At D3 (cutoff of 30), the LFpen showed the highest values of sensitivity and specificity. For root caries, the LFpen and VEBW showed the highest values of specificity (0.54), sensitivity (0.81) and accuracy (0.69). The Spearman rank correlation coefficients for crown/root caries with histology were 0.54/0.37 (LFpen), 0.29/0.10 (BW), 0.29/0.18 (VE) and 0.23/0.37 (VEBW). For the LFpen, the ICC varied from 0.80 (interexaminer) to 0.97 (intraexaminer B); the kappa value was 0.19 for BW and 0.35 for VE (interexaminer). Intraexaminer kappa values for BW were 0.25 (A) and 0.29 (B), and those for VE were 0.31 (A) and 0.32 (B). The LFpen device exhibited a performance comparable to that of conventional methods but with higher interexaminer reproducibility. Therefore, the LFpen should be considered an auxiliary method for the detection of secondary approximal caries associated with composite restorations.

  7. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2018-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker (ITk). In order to minimise the amount of material in the ITk, circuit boards with readout electronics will be glued onto the active area of the sensor. Several adhesives, investigated to be used for the construction of detector modules, were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high-radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By positioning the beam parallel to the sensor surfave and pointing it both inside the sensor and above the sensor surface inside the deposited glue, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibilit...

  8. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    Science.gov (United States)

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2009-04-14

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  9. Methods of decontaminating surfaces and related compositions

    Science.gov (United States)

    Demmer, Ricky L.; Crosby, Daniel; Norton, Christopher J.

    2016-11-22

    A composition of matter includes water, at least one acid, at least one surfactant, at least one fluoride salt, and ammonium nitrate. A method of decontaminating a surface includes exposing a surface to such a composition and removing the composition from the surface. Other compositions of matter include water, a fatty alcohol ether sulfate, nitrilotriacetic acid, at least one of hydrochloric acid and nitric acid, sodium fluoride, potassium fluoride, ammonium nitrate, and gelatin.

  10. Monte Carlo method for random surfaces

    International Nuclear Information System (INIS)

    Berg, B.

    1985-01-01

    Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)

  11. The evaluation of a novel method comparing quantitative light-induced fluorescence (QLF) with spectrophotometry to assess staining and bleaching of teeth

    NARCIS (Netherlands)

    Adeyemi, A.A.; Jarad, F.D.; de Josselin de Jong, E.; Pender, N.; Higham, S.M.

    2010-01-01

    This study reports the development and evaluation of a novel method using quantitative light-induced fluorescence (QLF), which enables its use for quantifying and assessing whole tooth surface staining and tooth whitening. The method was compared with a spectrophotometer to assess reliability. Two

  12. A visible-light-excited fluorescence method for imaging protein crystals without added dyes

    Science.gov (United States)

    Lukk, Tiit; Gillilan, Richard E.; Szebenyi, Doletha M. E.; Zipfel, Warren R.

    2016-01-01

    Fluorescence microscopy methods have seen an increase in popularity in recent years for detecting protein crystals in screening trays. The fluorescence-based crystal detection methods have thus far relied on intrinsic UV-inducible tryptophan fluorescence, nonlinear optics or fluorescence in the visible light range dependent on crystals soaked with fluorescent dyes. In this paper data are presented on a novel visible-light-inducible autofluorescence arising from protein crystals as a result of general stabilization of conjugated double-bond systems and increased charge delocalization due to crystal packing. The visible-light-inducible autofluorescence serves as a complementary method to bright-field microscopy in beamline applications where accurate crystal centering about the rotation axis is essential. Owing to temperature-dependent chromophore stabilization, protein crystals exhibit tenfold higher fluorescence intensity at cryogenic temperatures, making the method ideal for experiments where crystals are cooled to 100 K with a cryostream. In addition to the non-damaging excitation wavelength and low laser power required for imaging, the method can also serve a useful role for differentiating protein crystals from salt crystals in screening trays. PMID:26937240

  13. Quantification of variable functional-group densities of mixed-silane monolayers on surfaces via a dual-mode fluorescence and XPS label.

    Science.gov (United States)

    Fischer, Tobias; Dietrich, Paul M; Streeck, Cornelia; Ray, Santanu; Nutsch, Andreas; Shard, Alex; Beckhoff, Burkhard; Unger, Wolfgang E S; Rurack, Knut

    2015-03-03

    The preparation of aminated monolayers with a controlled density of functional groups on silica surfaces through a simple vapor deposition process employing different ratios of two suitable monoalkoxysilanes, (3-aminopropyl)diisopropylethoxysilane (APDIPES) and (3-cyanopropyl)dimethylmethoxysilane (CPDMMS), and advances in the reliable quantification of such tailored surfaces are presented here. The one-step codeposition process was carried out with binary silane mixtures, rendering possible the control over a wide range of densities in a single step. In particular, APDIPES constitutes the functional silane and CPDMMS the inert component. The procedure requires only small amounts of silanes, several ratios can be produced in a single batch, the deposition can be carried out within a few hours and a dry atmosphere can easily be employed, limiting self-condensation of the silanes. Characterization of the ratio of silanes actually bound to the surface can then be performed in a facile manner through contact angle measurements using the Cassie equation. The reliable estimation of the number of surface functional groups was approached with a dual-mode BODIPY-type fluorescence label, which allows quantification by fluorescence and XPS on one and the same sample. We found that fluorescence and XPS signals correlate over at least 1 order of magnitude, allowing for a direct linking of quantitative fluorescence analysis to XPS quantification. Employment of synchrotron-based methods (XPS; reference-free total reflection X-ray fluorescence, TXRF) made the traceable quantification of surface functional groups possible, providing an absolute reference for quantitative fluorescence measurements through a traceable measurement chain.

  14. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  15. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Brewer, Jonathan R.; Bagatolli, Luis

    2013-01-01

    -carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal......' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2...

  16. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  17. An environmentally-friendly fluorescent method for quantification of lipid contents in yeast

    DEFF Research Database (Denmark)

    Severo Poli, Jandora; Lützhøft, Hans-Christian Holten; Karakashev, Dimitar Borisov

    2014-01-01

    lipid and the calibration curve showed linearity (R2 = 0.994) between 0.50 and 25 mg/L. Compared with traditional gravimetric analysis, the developed method is much faster and uses less organic solvents. Lipid contents determined by fluorescence and gravimetry were the same for some strains......, but for other strains the lipid contents determined by fluorescence were less. This new method will therefore be suitable for fast screening purposes....... on fluorescence was demonstrated. Isopropanol and Nile red in concentrations of 5% (final volume%) and 500 μg/L, respectively, were added to washed cells suspended in potassium chloride phosphate buffered saline (PBSKCl). Fluorescence was measured after 10 min in the dark. Glyceryltrioleate was used as model...

  18. Application of the nuclear x-ray fluorescence method to prospecting for gold in-situ

    International Nuclear Information System (INIS)

    Zhang, Y.; Xie, T.; Zhou, S.; Ge, L.

    1989-01-01

    Arsenic and chalcophile elements are often associated with gold, and can be considered indicator elements when prospecting for gold deposits. The nuclear geophysics X-ray fluorescence method can be used to search for hidden gold deposits by measuring fluorescence intensities of the indicator elements in situ. The method can speed geologic investigation and reduce exploration cost. Three types of portable radioisotope X-ray fluorescence analyzers, designed and manufactured by Chengdu College of Geology and Chongqing Geological Instrument Factory, are briefly introduced. These analyzers are widely used in different stages of geologic investigation for gold in China. In the two case histories presented five anomalous zones of X-ray fluorescence intensity related to gold mineralization are located and one hidden gold deposit is discovered with gold content of 23 g/t

  19. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    Science.gov (United States)

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  20. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. © 2014 Wiley Periodicals, Inc.

  1. Analysis of receptor clustering on cell surfaces by imaging fluorescent particles.

    Science.gov (United States)

    Morrison, I E; Anderson, C M; Georgiou, G N; Stevenson, G V; Cherry, R J

    1994-09-01

    Fluorescently labeled low density lipoproteins (LDL) and influenza virus particles were bound to the surface of human fibroblasts and imaged with a cooled slow-scan CCD camera attached to a fluorescence microscope. Particles were also imaged after attachment to polylysine-coated microscope slides. The digital images were analyzed by fitting data points in the region of fluorescent spots by a two-dimensional Gaussian function, thus obtaining a measure of spot intensity with correction for local background. The intensity distributions for particles bound to polylysine slides were mainly accounted for by particle size distributions as determined by electron microscopy. In the case of LDL, the intensity distributions for particles bound to fibroblasts were considerably broadened, indicative of clustering. The on-cell intensity distributions were deconvolved into 1-particle, 2-particle, 3-particle, etc. components using the data obtained with LDL bound to polylysine-coated slides as an empirical measure of the single particle intensity distribution. This procedure yielded a reasonably accurate measure of the proportion of single particles, but large errors were encountered in the proportions of larger cluster sizes. The possibility of studying the dynamics of clustering was investigated by binding LDL to cells at 4 degrees C and observing changes in the intensity distribution with time after warming to 20 degrees C.

  2. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    International Nuclear Information System (INIS)

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C 4 H 4 S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact

  3. Directed self-assembly of fluorescence responsive nanoparticles and their use for real-time surface and cellular imaging.

    Science.gov (United States)

    Cheung, Shane; O'Shea, Donal F

    2017-12-01

    Directed self-assemblies in water are known as the most efficient means of forming complex higher ordered structures in nature. Here we show a straightforward and robust method for particle assembly which utilises the amphiphilic tri-block co-polymer poloxamer-188 and a hydrophobic fluorophore as the two designer components, which have a built-in ability to convey spatial and temporal information about their surroundings to an observer. Templating of particle self-assembly is attributed to interactions between the fluorophore and hydrophobic segment of the poloxamer. Particle fluorescence in water is quenched but can be induced to selectively switch on in response to temperature, surface adsorption and cellular uptake. The ability of the particles to dynamically modulate emission intensity can be exploited for selective labelling and real-time imaging of drug crystal surfaces, natural fibres and insulin fibrils, and cellular delivery. As particle solutions are easily prepared, further applications for this water-based NIR-fluorescent paint are anticipated.

  4. Simplified sample preparation using frame spotting method for direct counting of total bacteria by fluorescence microscopy.

    Science.gov (United States)

    Maruyama, Fumito; Yamaguchi, Nobuyasu; Kenzaka, Takehiko; Tani, Katsuji; Nasu, Masao

    2004-12-01

    A new preparation method for direct counting of bacteria in liquid samples with fluorescence microscope was developed using a glass slide coated with 3-aminopropyltriethoxy silane and ring-shaped polyester seal as a retainer. The experimental steps of this method were spotting samples onto the coated slides with the seal, drying under vacuum, staining with SYBR Green II, drying and covering with immersion oil and coverslip to allow counting. This simplified method provided consistent results when compared with the conventional filtration method for fluorescence microscopy, and is rapid, inexpensive and reproducible.

  5. Generalised empirical method for predicting surface subsidence

    International Nuclear Information System (INIS)

    Zhang, M.; Bhattacharyya, A.K.

    1994-01-01

    Based on a simplified strata parameter, i.e. the ratio of total thickness of the strong rock beds in an overburden to the overall thickness of the overburden, a Generalised Empirical Method (GEM) is described for predicting the maximum subsidence and the shape of a complete transverse subsidence profile due to a single completely extracted longwall panel. In the method, a nomogram for predicting the maximum surface subsidence is first developed from the data collected from subsidence measurements worldwide. Then, a method is developed for predicting the shapes of complete transfer subsidence profiles for a horizontal seam and ground surface and is verified by case studies. 13 refs., 9 figs., 2 tabs

  6. Planar integrated optical methods for examining thin films and their surface adlayers.

    Science.gov (United States)

    Plowman, T E; Saavedra, S S; Reichert, W M

    1998-03-01

    Thin film integrated optical waveguides (IOWs) have gained acceptance as a method for characterizing ultrathin dielectrical films and adlayers bound to the film surface. Here, we present the expressions that govern IOW methods as well as describe the common experimental configurations used in attenuated total reflection, fluorescence and Raman applications. The applications of these techniques to the study of adsorbed or surface-bound proteins to polymer and glass waveguides are reviewed.

  7. Comparison of fluorescence rejection methods of baseline correction and shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Cai, Zhijian; Zou, Wenlong; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been extensively used in biochemical tests, explosive detection, food additive and environmental pollutants. However, fluorescence disturbance brings a big trouble to the applications of portable Raman spectrometer. Currently, baseline correction and shifted-excitation Raman difference spectroscopy (SERDS) methods are the most prevailing fluorescence suppressing methods. In this paper, we compared the performances of baseline correction and SERDS methods, experimentally and simulatively. Through the comparison, it demonstrates that the baseline correction can get acceptable fluorescence-removed Raman spectrum if the original Raman signal has good signal-to-noise ratio, but it cannot recover the small Raman signals out of large noise background. By using SERDS method, the Raman signals, even very weak compared to fluorescence intensity and noise level, can be clearly extracted, and the fluorescence background can be completely rejected. The Raman spectrum recovered by SERDS has good signal to noise ratio. It's proved that baseline correction is more suitable for large bench-top Raman system with better quality or signal-to-noise ratio, while the SERDS method is more suitable for noisy devices, especially the portable Raman spectrometers.

  8. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses. PMID:27667721

  9. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.H., E-mail: nowak@ifg-adlershof.de [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Banaś, D. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Błchucki, W.; Cao, W.; Dousse, J.-Cl. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Hönicke, P. [Physikalisch-Technische Bundesanstalt (PTB), D-10587 Berlin (Germany); Hoszowska, J. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Jabłoński, Ł. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Kayser, Y. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Kubala-Kukuś, A.; Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Reinhardt, F. [Physikalisch-Technische Bundesanstalt (PTB), D-10587 Berlin (Germany); Savu, A.V. [Microsystems Laboratory (LMIS1), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Szlachetko, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2014-08-01

    Various 3-dimensional nano-scaled periodic structures with different configurations and periods deposited on the surface of silicon and silica substrates were investigated by means of the grazing incidence and grazing emission X-ray fluorescence techniques. Apart from the characteristics which are typical for particle- and layer-like samples, the measured angular intensity profiles show additional periodicity-related features. The latter could be explained by a novel theoretical approach based on simple geometrical optics (GO) considerations. The new GO-based calculations were found to yield results in good agreement with experiment, also in cases where other theoretical approaches are not valid, e.g., periodic particle distributions with an increased surface coverage.

  10. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces

    International Nuclear Information System (INIS)

    Nowak, S.H.; Banaś, D.; Błchucki, W.; Cao, W.; Dousse, J.-Cl.; Hönicke, P.; Hoszowska, J.; Jabłoński, Ł.; Kayser, Y.; Kubala-Kukuś, A.; Pajek, M.; Reinhardt, F.; Savu, A.V.; Szlachetko, J.

    2014-01-01

    Various 3-dimensional nano-scaled periodic structures with different configurations and periods deposited on the surface of silicon and silica substrates were investigated by means of the grazing incidence and grazing emission X-ray fluorescence techniques. Apart from the characteristics which are typical for particle- and layer-like samples, the measured angular intensity profiles show additional periodicity-related features. The latter could be explained by a novel theoretical approach based on simple geometrical optics (GO) considerations. The new GO-based calculations were found to yield results in good agreement with experiment, also in cases where other theoretical approaches are not valid, e.g., periodic particle distributions with an increased surface coverage

  11. A green method for the preparation of fluorescent hybrid structures of gold and corrole

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ângela S., E-mail: aspereira@ua.pt; Barata, Joana F. B. [University of Aveiro, CICECO – Chemistry Department, Aveiro Institute of Materials (Portugal); Vaz Serra, Vanda I. R. C. [University of Aveiro, QOPNA Chemistry Department (Portugal); Pereira, Sérgio; Trindade, Tito [University of Aveiro, CICECO – Chemistry Department, Aveiro Institute of Materials (Portugal)

    2015-10-15

    Gold/soap nanostructures were prepared by a green methodology using saponified household sunflower oil, as reducing and organic dispersing agent of auric acid. The incorporation of hydrophobic molecules on the novel water-soluble gold nanoparticles was followed by fluorescence lifetime imaging microscopy, using as model hydrophobic compound 5,10,15-tris-(pentafluorophenyl)corrolatogallium(III)(pyridine) (GaPFC), a highly fluorescent corrole. The results showed the hydrophobic GaPFC located between the organic bilayer surrounding several Au nanoparticles, which in turn were coated with fatty acids salts anchored by the double bond at the gold’s surface.

  12. Synchrotron radiation based micro X-ray fluorescence analysis of the calibration samples used in surface sensitive total reflection and grazing emission X-ray fluorescence techniques

    Science.gov (United States)

    Kubala-Kukuś, A.; Banaś, D.; Pajek, M.; Szlachetko, J.; Jagodziński, P.; Susini, J.; Salomé, M.

    2013-12-01

    Total reflection X-ray fluorescence (TXRF) and grazing emission X-ray fluorescence (GEXRF) are surface sensitive techniques and can be used for detailed surface studies of different materials, including ultra-low concentration contamination or the lateral and depth distributions of elements. The calibration procedure typically used involves placing a micro-droplet (˜μl) of the standard solution onto a silicon wafer (or quartz backing). After evaporation of the solvent, the residual amount of elements is used as a reference standard. Knowledge of the distribution of residue material on the substrate surface is crucial for precise quantification. In the present work the investigation of the lateral distribution of elements in the multielemental calibrating samples, containing the 23 most commonly studied elements, by using the synchrotron radiation based micro X-ray fluorescence is presented. The goal of this project was the study of a uniformity of the elemental distributions and determination of the residual elements morphology depending on the temperature of the drying process. The X-ray images were compared with optical and SEM images. Paper presents in details the experimental setup, sample preparation procedures, measurements and results. In the analysis of the X-ray images of the sample dried in high temperature the censoring approach was applied improving the quality of statistical analysis. The information on the elements distribution in the calibrating samples can be useful for developing more accurate calibration procedures applied in quantitative analysis of surface sensitive TXRF and GEXRF techniques.

  13. In Vitro assessment of dentin erosion after immersion in acidic beverages: surface profile analysis and energy-dispersive X-ray fluorescence spectrometry study

    OpenAIRE

    Caneppele, Taciana Marco Ferraz; Jeronymo, Raffaela Di Iorio; Di Nicoló, Rebeca; Araújo, Maria Amélia Máximo de; Soares, Luís Eduardo Silva

    2012-01-01

    The aim of this study was to investigate the effects of some acidic drinks on dentin erosion, using methods of surface profile (SP) analysis and energy-dispersive X-ray fluorescence spectrometry (EDXRF). One hundred standardized dentin slabs obtained from bovine incisor roots were used. Dentin slabs measuring 5x5 mm were ground flat, polished and half of each specimen surface was protected with nail polish. For 60 min, the dentin surfaces were immersed in 50 mL of 5 different drinks (Gatorade...

  14. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    Science.gov (United States)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  15. An environmentally-friendly fluorescent method for quantification of lipid contents in yeast.

    Science.gov (United States)

    Poli, Jandora Severo; Lützhøft, Hans-Christian Holten; Karakashev, Dimitar Borisov; Valente, Patricia; Angelidaki, Irini

    2014-01-01

    This study aimed at developing an efficient, fast and environmentally-friendly method to quantify neutral lipid contents in yeast. After optimising the fluorescence instrument parameters and influence of organic solvent concentrations, a new method to quantify neutral lipids in yeast based on fluorescence was demonstrated. Isopropanol and Nile red in concentrations of 5% (final volume%) and 500 μg/L, respectively, were added to washed cells suspended in potassium chloride phosphate buffered saline (PBSKCl). Fluorescence was measured after 10 min in the dark. Glyceryltrioleate was used as model lipid and the calibration curve showed linearity (R(2)=0.994) between 0.50 and 25 mg/L. Compared with traditional gravimetric analysis, the developed method is much faster and uses less organic solvents. Lipid contents determined by fluorescence and gravimetry were the same for some strains, but for other strains the lipid contents determined by fluorescence were less. This new method will therefore be suitable for fast screening purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Precision evaluation of pressed pastille preparation different methods for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Lima, Raquel Franco de Souza; Melo Junior, Germano; Sa, Jaziel Martins

    1997-01-01

    This work relates the comparison between the results obtained with the two different methods of preparing pressed pastilles from the crushed sample. In this study, the reproductivity is evaluated, aiming to define the method that furnishes a better analytic precision. These analyses were realized with a X-ray fluorescence spectrometer at the Geology Department of the Federal University of Rio Grande do Norte

  17. Comparison of Fluorescence Microscopy and Different Growth Media Culture Methods for Acanthamoeba Keratitis Diagnosis.

    Science.gov (United States)

    Peretz, Avi; Geffen, Yuval; Socea, Soergiu D; Pastukh, Nina; Graffi, Shmuel

    2015-08-01

    Acanthamoeba keratitis (AK), a potentially blinding infection of the cornea, is caused by a free-living protozoan. Culture and microscopic examination of corneal scraping tissue material is the conventional method for identifying Acanthamoeba. In this article, we compared several methods for AK diagnosis of 32 patients: microscopic examination using fluorescent dye, specific culture on growth media-non-nutrient agar (NNA), culture on liquid growth media-peptone yeast glucose (PYG), and TYI-S-33. AK was found in 14 patients. Thirteen of the specimens were found AK positive by fluorescence microscopic examination, 11 specimens were found AK positive on PYG growth media, and 9 specimens were found AK positive on TYI-S-33 growth media. Only five specimens were found AK positive on NNA growth media. Therefore, we recommend using fluorescence microscopy technique and culture method, especially PYG liquid media. © The American Society of Tropical Medicine and Hygiene.

  18. Evaluation of a fluorescence-based method for antibabesial drug screening.

    Science.gov (United States)

    Guswanto, Azirwan; Sivakumar, Thillaiampalam; Rizk, Mohamed Abdo; Elsayed, Shimaa Abd Elsalam; Youssef, Mohamed Ahmed; ElSaid, ElSaid El Shirbini; Yokoyama, Naoaki; Igarashi, Ikuo

    2014-08-01

    In vitro evaluation of chemotherapeutic agents against Babesia and Theileria parasites has become routine, and the effectiveness of these chemicals is usually determined by comparing the parasitemia dynamics of untreated and treated parasites. Although microscopy is widely used to calculate parasitemia, several disadvantages are associated with this technique. The present study evaluated a fluorescence-based method using SYBR green I stain (SG I) to screen antibabesial agents in in vitro cultures of Babesia bovis. The linearity between relative fluorescence units (RFU) and parasitemia was found to be well correlated with a 0.9944 goodness-of-fit (r(2)) value. Subsequently, 50% inhibitory concentration (IC50) values were calculated for 3 antiprotozoan agents, diminazene aceturate, nimbolide, and gedunin, by this method. For diminazene aceturate and nimbolide, the IC(50)s determined by the fluorescence-based method (408 nM and 8.13 μM, respectively) and microscopy (400.3 nM and 9.4 μM, respectively) were in agreement. Furthermore, the IC50 of gedunin determined by the fluorescence-based method (19 μM) was similar to the recently described microscopy-based value (21.7 μM) for B. bovis. Additionally, the Z' factor (0.80 to 0.90), signal-to-noise (S/N) ratio (44.15 to 87.64), coefficient of variation at the maximum signal (%CVmax) (0.50 to 2.85), and coefficient of variation at the minimum signal (%CVmin) (1.23 to 2.21) calculated for the fluorescence method using diminazene aceturate were comparable to those previously determined in malaria research for this assay. These findings suggest that the fluorescence-based method might be useful for antibabesial drug screening and may have potential to be developed into a high-throughput screening (HTS) assay. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals.

    Science.gov (United States)

    He, Kunshan; Chi, Chongwei; Kou, Deqiang; Huang, Wenhe; Wu, Jundong; Wang, Yabing; He, Lifang; Ye, Jinzuo; Mao, Yamin; Zhang, Guo-Jun; Wang, Jiandong; Tian, Jie

    2016-12-01

    Sentinel lymph node biopsy (SLNB) has become a standard of care to detect axillary lymph metastasis in early-stage breast cancer patients with clinically negative axillary lymph nodes. Current SLNB detection modalities comprising a blue dye, a radioactive tracer, or a combination of both have advantages as well as disadvantages. Thus, near-infrared fluorescence imaging using indocyanine green (ICG) has recently been regarded as a novel method that has generated interest for SLNB around the world. However, the lack of appropriate fluorescence imaging systems has hindered further research and wide application of this method. Therefore, we developed novel fluorescence image-guided resection equipment (FIRE) to detect sentinel lymph nodes (SLNs). Moreover, to compare the ICG fluorescence imaging method with the blue dye method and to explore the universal feasibility of the former, a different type of hospital study was conducted. Ninety-nine eligible patients participated in the study at 3 different types of hospitals. After subcutaneous ICG allergy testing, all the patients were subcutaneously injected with methylene blue and ICG into the subareolar area. Consequently, 276 SLNs (range 1-7) were identified in 98 subjects (detection rate: 99%) by using the ICG fluorescence imaging method. In contrast, the blue dye method only identified 202 SLNs (range 1-7) in 91 subjects (detection rate: 91.92%). Besides, the results of the fluorescence imaging method were similar in the 3 hospitals. Our findings indicate the universal feasibility of the ICG fluorescence imaging method for SLNB using the fluorescence image-guided resection equipment in early breast cancer detection. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Preparation of plasmonic platforms of silver wires on gold mirrors and their application to surface enhanced fluorescence.

    Science.gov (United States)

    Shtoyko, Tanya; Raut, Sangram; Rich, Ryan M; Sronce, Randy J; Fudala, Rafal; Mason, Rachel N; Akopova, Irina; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2014-01-01

    In this report we describe a preparation of silver wires (SWs) on gold mirrors and its application to surface enhanced fluorescence (SEF) using a new methodology. Silica protected gold mirrors were drop-coated with a solution of silver triangular nanoprisms. The triangular nanoprisms were slowly air-dried to get silver wires that self-assembled on the gold mirrors. Fluorescence enhancement was studied using methyl azadioxatriangulenium chloride (Me-ADOTA · Cl) dye in PVA spin-coated on a clean glass coverslip. New Plasmonic Platforms (PPs) were assembled by placing a mirror with SWs in contact with a glass coverslip spin-coated with a uniform Me-ADOTA · Cl film. It was shown that surface enhanced fluorescence is a real phenomenon, not just an enhancement of the fluorescence signal due to an accumulation of the fluorophore on rough nanostructure surfaces. The average fluorescence enhancement was found to be about 15-fold. The lifetime of Me-ADOTA · Cl dye was significantly reduced (∼ 4 times) in the presence of SWs. Moreover, fluorescence enhancement and lifetime did not show any dependence on the excitation light polarization.

  1. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2007-08-08

    The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

  2. Diagnosis of occlusal caries using laser fluorescence versus conventional methods in permanent posterior teeth: a clinical study.

    Science.gov (United States)

    Sinanoglu, Alper; Ozturk, Elif; Ozel, Emre

    2014-03-01

    The purpose of this in vivo study was to compare three different caries detection methods [laser fluorescence (LFE), visual examination (VE), and radiological examination (RE)] for the detection of occlusal caries in permanent posterior teeth. Early diagnosis of caries is critical in the management of dental caries. Two examiners assessed the occlusal surfaces of 217 teeth by visual, radiographic, and laser fluorescence (DIAGNOdent Pen) examination methods. After a 1 week interval, randomly selected patients were recalled. Each measurement was repeated by two examiners before the cases were selected for operative intervention to classify lesion depths. Statistical analysis of the data was performed using SPSS and Stata IC. The intra- and inter-examiner reliabilities and reproducibilities of the VE, RE, and LFE were calculated using Cohen's κ statistics. The sensitivities and specificities were plotted in receiver operating characteristic curves. The differences between LFE scores were analyzed using the nonparametric Mann-Whitney U and Wilcoxon tests (α=0.05). The VE method exhibited the highest sensitivity, accuracy, and κ values among the diagnostic groups in terms of inter-examiner agreement. With regard to the sensitivity, specificity, and likelihood ratios for the two examiners, significant differences were found between sensitivity and specificity for examiner 1, whereas no statistically significant differences were noted between sensitivity and specificity for examiner 2 for the LFE scores. The DIAGNOdent pen is useful for the detection of dentinal caries of occlusal surfaces in permanent posterior teeth. Combination with other diagnostic conventional methods may enhance the reliability of this tool.

  3. A method for thickness determination of thin films of amalgamable metals by total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Bennun, L.; Greaves, E.D.; Barros, H.; Diaz-Valdes, J.

    2009-01-01

    A method for thickness determination of thin amalgamable metallic films by total-reflection X-ray fluorescence (TXRF) is presented. The peak's intensity in TXRF spectra are directly related to the surface density of the sample, i.e. to its thickness in a homogeneous film. Performing a traditional TXRF analysis on a thin film of an amalgamated metal, and determining the relative peak intensity of a specific metal line, the layer thickness can be precisely obtained. In the case of gold thickness determination, mercury and gold peaks overlap, hence we have developed a general data processing scheme to achieve the most precise results.

  4. Fingerprint methods for suspended sediment transport processes by using X-ray fluorescence analysis

    Science.gov (United States)

    Nakayama, K.; Beitia, C.; Ohtsu, N.; Yamasaki, S.; Yasuyuki, M.; Yamane, M.

    2014-12-01

    Suspended sediment (SS) can have significant impacts on ecological system, and high SS concentration can have significant impacts on human life. In the previous studies, radionuclide analysis has been applied to evaluate the production of SS in the river basins, which demonstrated that the surface soil erosion can be estimated by using radionuclide Pb-210ex. However, radionuclide analysis cannot indicate the relative amounts of SS transported from each individual sub-basin to the downstream end. Thus, X-ray Fluorescence Analysis (XRF Analysis) can be considered as an alternative method to radionuclide analysis because the XRF Analysis can measure 21 chemical compositions, Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl, K2O, CaO, TiO2, Cr2O3, MnO, Fe2O3, Co2O3, NiO, CuO, ZnO, Rb2O, SrO, BaO, and Y2O3 by using X-ray Fluorescence Analyzer. In June of 2007, high turbidity, which is more than 10,000 (NTU), was measured in the Oromushi River basin of Hokkaido in Japan. Therefore, this study aims to clarify the mechanism of the transport of SS in the Oromushi River basin. We measured chemical compositions of soil with diameter less than 63 μm in the Oromushi River basin in order to pay attention to SS by using XRF. The Principal Component Analysis revealed that SiO2, Al2O3, Fe2O3, CaO and Na2O are the dominant chemical compositions. Although the predominant composition was the same in a river basin including the downstream end, significant differences were found in the pattern of chemical compositions. Therefore, by using the chemical compositions of SiO2, Al2O3, Fe2O3, CaO and Na2O, the Mixing Stable Isotope Analysis in R model (MixSIAR) based on Bayesian statistics was applied to estimate the transportation rate of SS from each sub-basin to the downstream end, which agreed with the field experiment results very well. As a result, spatial patterns of SS transportation rate are found to be strongly related to surface soil type.

  5. Miniaturized fluorescent RNA dot blot method for rapid quantitation of gene expression

    Directory of Open Access Journals (Sweden)

    Yadetie Fekadu

    2004-06-01

    Full Text Available Abstract Background RNA dot blot hybridization is a commonly used technique for gene expression assays. However, membrane based RNA dot/slot blot hybridization is time consuming, requires large amounts of RNA, and is less suited for parallel assays of more than one gene at a time. Here, we describe a glass-slide based miniaturized RNA dot blot (RNA array procedure for rapid and parallel gene expression analysis using fluorescently labeled probes. Results RNA arrays were prepared by simple manual spotting of RNA onto amino-silane coated microarray glass slides, and used for two-color fluorescent hybridization with specific probes labeled with Cy3 and 18S ribosomal RNA house-keeping gene probe labeled with Cy5 fluorescent dyes. After hybridization, arrays were scanned on a fluorescent microarray scanner and images analyzed using microarray image analysis software. We demonstrate that this method gives comparable results to Northern blot analysis, and enables high throughput quantification of transcripts from nanogram quantities of total RNA in hundreds of samples. Conclusion RNA array on glass slide and detection by fluorescently labeled probes can be used for rapid and parallel gene expression analysis. The method is particularly well suited for gene expression assays that involve quantitation of many transcripts in large numbers of samples.

  6. A Method to Reconstruct the Solar-Induced Canopy Fluorescence Spectrum from Hyperspectral Measurements

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2014-10-01

    Full Text Available A method for canopy Fluorescence Spectrum Reconstruction (FSR is proposed in this study, which can be used to retrieve the solar-induced canopy fluorescence spectrum over the whole chlorophyll fluorescence emission region from 640–850 nm. Firstly, the radiance of the solar-induced chlorophyll fluorescence (Fs at five absorption lines of the solar spectrum was retrieved by a Spectral Fitting Method (SFM. The Singular Vector Decomposition (SVD technique was then used to extract three basis spectra from a training dataset simulated by the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes. Finally, these basis spectra were linearly combined to reconstruct the Fs spectrum, and the coefficients of them were determined by Weighted Linear Least Squares (WLLS fitting with the five retrieved Fs values. Results for simulated datasets indicate that the FSR method could accurately reconstruct the Fs spectra from hyperspectral measurements acquired by instruments of high Spectral Resolution (SR and Signal to Noise Ratio (SNR. The FSR method was also applied to an experimental dataset acquired in a diurnal experiment. The diurnal change of the reconstructed Fs spectra shows that the Fs radiance around noon was higher than that in the morning and afternoon, which is consistent with former studies. Finally, the potential and limitations of this method are discussed.

  7. A New Method for the Determination of Potassium Sorbate Combining Fluorescence Spectra Method with PSO-BP Neural Network.

    Science.gov (United States)

    Wang, Shu-tao; Chen, Dong-ying; Wang, Xing-long; Wei, Meng; Wang, Zhi-fang

    2015-12-01

    In this paper, fluorescence spectra properties of potassium sorbate in aqueous solution and orange juice are studied, and the result.shows that in two solution there are many difference in fluorescence spectra of potassium sorbate, but the fluorescence characteristic peak exists in λ(ex)/λ(em) = 375/490 nm. It can be seen from the two dimensional fluorescence spectra that the relationship between the fluorescence intensity and the concentration of potassium sorbate is very complex, so there is no linear relationship between them. To determine the concentration of potassium sorbate in orange juice, a new method combining Particle Swarm Optimization (PSO) algorithm with Back Propagation (BP) neural network is proposed. The relative error of two predicted concentrations is 1.83% and 1.53% respectively, which indicate that the method is feasible. The PSO-BP neural network can accurately measure the concentration of potassium sorbate in orange juice in the range of 0.1-2.0 g · L⁻¹.

  8. Assimilation of remotely sensed chlorophyll fluorescence data into the land surface model CLM4

    Science.gov (United States)

    Wieneke, S.; Ahrends, H. E.; Rascher, U.; Schween, J.; Schickling, A.; Crewell, S.

    2013-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Therefore, the prediction of vegetation response to environmental conditions like increasing CO2 concentrations or plant stress is crucial for a reliable prediction of climate change. Photosynthesis is a complex physiological process that consists of numerous bio-physical sub-processes and chemical reactions. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions. Photosynthesis can be estimated using land-surface models, but, while state-of-the-art models often rely on Plant Functional Type (PFT) specific constants, they poorly simulate the dynamic adaptation of the physiological status of plant canopies in space and time. Remotely sensed sun-induced chlorophyll fluorescence (SICF) gives us now the possibility to estimate the diurnal dynamic vitality of the photosynthetic apparatus at both, the leaf and canopy levels. We installed within the framework of the Transregio32 project (www.tr32.de) automated hyperspectral fluorescence sensors at an agricultural site (winter wheat) in the Rur catchment area in West Germany at the end of July 2012. End of August, additional measurements of SIFC on nearby temperate grassland site (riparian meadow) and on a sugar beet field were performed. Spatial covering SICF data of the region were obtained during a measurement campaign using the newly developed air-borne hyperspectral sensor HyPlant on the 23 and 27 August 2012. SIFC data and data provided by eddy covariance measurements will be used to update certain model parameters that are normally set as constants. First model results demonstrate that the assimilation of SIFC into the Community Land Model 4 (CLM4) will result in a more realistic simulation of plant-specific adaptation strategies and therefore in a more realistic simulation of photosynthesis in space and time.

  9. An X-ray fluorescence method for the determination of metals thicknesses

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Leyt, D.V. de; Riveros, J.A.

    1987-01-01

    An absolute method for the determination of the thickness of a metal film deposited on a metallic substrate is described. The method is based on the measurement of fluorescent intensity ratios for two lines from the substrate element. Additionally, the proposed method can be employed to determine the density of the deposited material or the incident angle of primary radiation and take off angle, if the metal film thickness is known. (Author) [es

  10. A new screening method to detect proximal dental caries using fluorescence imaging.

    Science.gov (United States)

    Kim, Eun-Soo; Lee, Eun-Song; Kang, Si-Mook; Jung, Eun-Ha; de Josselin de Jong, Elbert; Jung, Hoi-In; Kim, Baek-Il

    2017-12-01

    This study aimed to assess the screening performance of the quantitative light-induced fluorescence (QLF) technology to detect proximal caries using both fluorescence loss and red fluorescence in a clinical situation. Moreover, a new simplified QLF score for the proximal caries (QS-Proximal) is proposed and its validity for detecting proximal caries was evaluated as well. This clinical study included 280 proximal surfaces, which were assessed by visual-tactile and radiographic examinations and scored by each scoring system according to lesion severity. The occlusal QLF images were analysed in two different ways: (1) a quantitative analysis producing fluorescence loss (ΔF) and red fluorescence (ΔR) parameters; and (2) a new QLF scoring index. For both quantitative parameters and QS-Proximal, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were calculated as a function of the radiographic scoring index at the enamel and dentine caries levels. Both ΔF and ΔR showed excellent AUROC values at the dentine caries level (ΔF=0.860, ΔR=0.902) whereas a relatively lower value was observed at the enamel caries level (ΔF=0.655, ΔR=0.686). The QS-Proximal also showed excellent AUROC ranged from 0.826 to 0.864 for detecting proximal caries at the dentine level. The QS-Proximal, which represents fluorescence changes, showed excellent performance in detecting proximal caries using the radiographic score as the gold standard. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The X-ray fluorescent method for determination of total sulphur in bituminous coals

    International Nuclear Information System (INIS)

    Widowska-Kusmierska, J.; Siess, K.

    1979-01-01

    The X-ray fluorescent technique for the determination of total sulphur covering concentrations from 0,1 to 10% has been applied for bituminous coals showing a great variability in qualitative and quantitative composition of mineral matter (ash). The described method is a quick one giving results during one hour. The obtained good accuracy of determinations gives prospects for wide industrial application. (author)

  12. Macromolecule biosynthesis assay and fluorescence spectroscopy methods to explore antimicrobial peptide mode(s) of action

    DEFF Research Database (Denmark)

    Jana, Bimal; Baker, Kristin Renee; Guardabassi, Luca

    2017-01-01

    the biosynthesis rate of macromolecules (e.g., DNA, RNA, protein, and cell wall) and the cytoplasmic membrane proton motive force (PMF) energy can help to unravel the diverse modes of action of AMPs. Here, we present an overview of macromolecule biosynthesis rate measurement and fluorescence spectroscopy methods...

  13. Fluorescent Properties of ZnO Nanostructures Fabricated by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Zhiwei Dong

    2012-01-01

    Full Text Available ZnO nanorods with mean diameter 200 nm on different substrates were fabricated by hydrothermal method. Fluorescent properties of fabricated ZnO nanorods were researched by both linear and nonlinear excitation using femtosecond lasers. The damage threshold of productions on Si substrate irradiated under intense femtosecond pulses was found much higher than that on Zn plate. Raman spectrum was also applied to investigate relative optical properties. The A1L optical mode was found to be important to the fluorescent properties of ZnO materials.

  14. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    Science.gov (United States)

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  15. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    Science.gov (United States)

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  16. Novel fluorescent nanoparticles for ultrasensitive identification of nucleic acids by optical methods

    DEFF Research Database (Denmark)

    Mulberg, Mads Westergaard; Taskova, Maria; Thomsen, Rasmus P.

    2017-01-01

    For decades, the detection of nucleic acids and their interactions at low abundances has been a challenging task. Present nucleic acid diagnostics are primarily based on enzymatic reactions including sequencing, polymerase-chain reaction and microarrays. However, the use of enzymatic amplification...... interferes with the initial biomolecular system, is limited to in vitro assays, often time consuming and rather expensive. Therefore, there is interest in new amplification-free detection methods. A tremendous progress has been made in fluorescence based optical detection of biomolecules. In this work, we...... aimed at developing efficient tools for amplification-free nucleic acid detection. The result of simple and inexpensive polymerization in the presence of fluorescent dyes and additional functionalization reagents was ultra-bright fluorescent nanoparticles modified with additional groups...

  17. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  18. Clinical performance of fluorescence-based methods for detection of occlusal caries lesions in primary teeth

    Directory of Open Access Journals (Sweden)

    Laura Regina Antunes PONTES

    2017-11-01

    Full Text Available Abstract We aimed to investigate the performance of fluorescence-based methods (FBMs, compared to visual inspection after histological validation, in detecting and assessing the activity status of occlusal carious lesions in primary teeth. One examiner evaluated 50 primary molars close to exfoliation in 24 children. Teeth were assessed using quantitative light-induced fluorescence (QLF and pen-type laser fluorescence (LFpen. After exfoliation, histological validation was performed. Teeth were cut and sections were evaluated for lesion depth and activity status (after utilization of a pH indicator under a stereomicroscope. Parameters related to the performance of the methods in detecting caries lesions at two thresholds (initial and dentin lesions were calculated. Regarding the activity status, lesions were classified into sound+inactive or active, and the area under the ROC curve and the diagnostic odds ratio values of the methods were calculated and compared. Evaluation of red fluorescence using QLF presented higher sensitivity but lower specificity than visual inspection in detecting dentin caries lesions. However, QLF considering different parameters and LFpen had similar performance to that obtained with visual inspection. Regarding activity assessment, all FBMs and visual inspection also presented similar performance. In conclusion, FBMs did not prove advantageous for the detection and activity assessment of occlusal caries lesions in primary molars when compared to visual inspection.

  19. Clinical performance of fluorescence-based methods for detection of occlusal caries lesions in primary teeth.

    Science.gov (United States)

    Pontes, Laura Regina Antunes; Novaes, Tatiane Fernandes; Moro, Bruna Lorena Pereira; Braga, Mariana Minatel; Mendes, Fausto Medeiros

    2017-11-06

    We aimed to investigate the performance of fluorescence-based methods (FBMs), compared to visual inspection after histological validation, in detecting and assessing the activity status of occlusal carious lesions in primary teeth. One examiner evaluated 50 primary molars close to exfoliation in 24 children. Teeth were assessed using quantitative light-induced fluorescence (QLF) and pen-type laser fluorescence (LFpen). After exfoliation, histological validation was performed. Teeth were cut and sections were evaluated for lesion depth and activity status (after utilization of a pH indicator) under a stereomicroscope. Parameters related to the performance of the methods in detecting caries lesions at two thresholds (initial and dentin lesions) were calculated. Regarding the activity status, lesions were classified into sound+inactive or active, and the area under the ROC curve and the diagnostic odds ratio values of the methods were calculated and compared. Evaluation of red fluorescence using QLF presented higher sensitivity but lower specificity than visual inspection in detecting dentin caries lesions. However, QLF considering different parameters and LFpen had similar performance to that obtained with visual inspection. Regarding activity assessment, all FBMs and visual inspection also presented similar performance. In conclusion, FBMs did not prove advantageous for the detection and activity assessment of occlusal caries lesions in primary molars when compared to visual inspection.

  20. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  1. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  2. Exploring the Leishmania Hydrophilic Acylated Surface Protein B (HASPB) Export Pathway by Live Cell Imaging Methods.

    Science.gov (United States)

    MacLean, Lorna; Price, Helen; O'Toole, Peter

    2016-01-01

    Leishmania major is a human-infective protozoan parasite transmitted by the bite of the female phlebotomine sand fly. The L. major hydrophilic acylated surface protein B (HASPB) is only expressed in infective parasite stages suggesting a role in parasite virulence. HASPB is a "nonclassically" secreted protein that lacks a conventional signal peptide, reaching the cell surface by an alternative route to the classical ER-Golgi pathway. Instead HASPB trafficking to and exposure on the parasite plasma membrane requires dual N-terminal acylation. Here, we use live cell imaging methods to further explore this pathway allowing visualization of key events in real time at the individual cell level. These methods include live cell imaging using fluorescent reporters to determine the subcellular localization of wild type and acylation site mutation HASPB18-GFP fusion proteins, fluorescence recovery after photobleaching (FRAP) to analyze the dynamics of HASPB in live cells, and live antibody staining to detect surface exposure of HASPB by confocal microscopy.

  3. Pen-type laser fluorescence device versus bitewing radiographs for caries detection on approximal surfaces.

    Science.gov (United States)

    Bizhang, M; Wollenweber, N; Singh-Hüsgen, P; Danesh, G; Zimmer, S

    2016-11-04

    The accurate detection of approximal caries is generally difficult. The aim of this study was to assess the ability of the pen-type laser fluorescence device (LF pen) to detect approximal carious lesions in comparison to bitewing radiographs (BW). Three hundred forty-one tooth surfaces were diagnosed in 20 patients with an average age of 26.70 (±2.82) years. Each test tooth was sequentially assessed by a single calibrated examiner using visual inspection, BW, and the LF pen. Radiographs were used as the gold standard to calculate an appropriate cut-off. Sensitivity, specificity and accuracy values for cut-off limits of 15, measured by the LF pen were compared using the chi 2 test (McNemar test). For approximal caries at D3 level, the highest values of specificity and sensitivity were observed for the LF pen at a cut-off value of 15 (96.8 and 83.0 %) and for visual inspection (99.3 and 4.3 %). Within the limitations of this study, dentin caries on approximal surfaces could be detected equally well by the LF pen as by the bitewing radiographs. Therefore, the LF pen can be recommended as an alternative to radiographs for the detection of approximal caries in a regular dental practice setting. DRKS00004817 on DRKS on 12 th March 2013.

  4. Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting.

    Directory of Open Access Journals (Sweden)

    David J Kahler

    Full Text Available Current methods to derive induced pluripotent stem cell (iPSC lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS to isolate single cells expressing the cell surface marker signature CD13(NEGSSEA4(POSTra-1-60(POS on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral or non- integrating (Sendai virus reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.

  5. Fast, versatile x-ray fluorescence method for measuring tin in impregnated wood

    DEFF Research Database (Denmark)

    Drabæk, I.; Christensen, Leif Højslet

    1985-01-01

    The present paper describes an energy-dispersive x-ray fluorescence method for measuring tin in bis(tri-n-butyl)tin-oxide impregnated wood. The proposed method is of the backscatter/fundamental parameter type. Its versatility, precision, and accuracy is demonstrated by analyses of eleven samples...... of sapwood of Baltic Redwood. The results obtained are compared with those from neutron activation analysis....

  6. APPLICATION OPTIMIZATION METHODS ARAS AND COPRAS IN THE CHOICE COMPACT FLUORESCENT LIGHT BULB

    Directory of Open Access Journals (Sweden)

    Ivana Zdravković

    2014-01-01

    Full Text Available Multicriteria methods are widely used for comparative evaluation of complicated technological and socio-economic processes, as well as to determine what is the best among a available options and ranking of alternatives based on their importance for a particular purpose. The methods of multi-criteria analysis can be improved decision-making in all sectors of the economy, because today, problems of decision solved on the basis of quantitative analysis. The paper discusses the election of fluorescent compact bulb using the method of multiple criteria decision, in this particular case method ARAS and method COPRAS.

  7. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles.

    Science.gov (United States)

    Wang, Wei; Nallathamby, Prakash D; Foster, Carmen M; Morrell-Falvey, Jennifer L; Mortensen, Ninell P; Doktycz, Mitchel J; Gu, Baohua; Retterer, Scott T

    2013-11-07

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or "free" surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.

  8. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism

    Directory of Open Access Journals (Sweden)

    Fengmei Li

    2015-12-01

    Full Text Available Dissolved oxygen (DO is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  9. An Intelligent Optical Dissolved Oxygen Measurement Method Based on a Fluorescent Quenching Mechanism.

    Science.gov (United States)

    Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu

    2015-12-09

    Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.

  10. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    Science.gov (United States)

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Terbium-sensitized fluorescence method for the determination of deferasirox in biological fluids and tablet formulation.

    Science.gov (United States)

    Manzoori, Jamshid L; Jouyban, Abolghasem; Amjadi, Mohammad; Panahi-Azar, Vahid; Tamizi, Elnaz; Vaez-Gharamaleki, Jalil

    2011-01-01

    A novel, rapid and sensitive spectroflurimetric method was developed and validated for the determination of deferasirox in urine, serum and tablet samples based on sensitization of terbium fluorescence. The excitation and emission wavelengths were 328 and 545 nm, respectively. The optimum conditions for the determination of deferasirox were investigated considering the effects of various parameters. The method was quantitatively evaluated in terms of linearity, recovery, reproducibility and limit of detection. Under the optimal conditions, the fluorescence intensities were linear with the concentration of deferasirox in the range of 5 × 10(-9) to 5×10(-6) mol L(-1) , with a detection limit of 1.5 × 10(-9) mol L(-1) and a relative standard deviation of 1.1-2.3%. Linearity, reproducibility, recovery and limit of detection made the method suitable for determination of deferasirox in urine, serum and tablets samples. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Past, present and future roles of the x-ray fluorescence method for materials characterization

    International Nuclear Information System (INIS)

    Jenkins, R.

    1988-01-01

    The use of X-ray methods for materials characterisation include Wavelength and Energy Dispersive Spectrometry, Powder and Single Crystal Diffractometry, plus various types of absorptionmetry. Over the recent years X-ray fluorescence spectrometry has become one of the most valuable methods for the quantitative and qualitative analysis of materials. In particular, the speed, accuracy and versatility of X-ray fluorescence are the most important features amoung the many which have made it the method of choice in over 15 000 laboratories all over the world. Included within the category of speciality spectrometers are Total Reflection Spectrometers (TRXRF), Synchrotron Source Spectrometers (SSXRF), and Proton induced X-ray Emission (PIXE). One thing that each of these three special systems have in common is a very high sensitivity and ability to work with extremely low concentrations and/or small specimens

  13. The Role of Light-Induced Fluorescence in the Treatment of Smooth Surface Carious Lesions with Icon Infiltration and the Results After 1 Year

    Directory of Open Access Journals (Sweden)

    Kabaktchieva R.

    2014-12-01

    Full Text Available Caries infiltration is a novel technique that brings out immediate esthetic improvement in the opacity of the white spot lesions. Light-induced fluorescence method is a modern caries diagnostic method. In this study SoproLife camera (Acteon, France was applied for diagnosing and follow-up of the results. The aims of this in vivo study are to test the role of light-induced fluorescence method (SoploLife camera in the diagnosis of non-cavitated smooth surfaces carious lesions (ICDAS codes 1 and 2 of primary and permanent teeth and in the follow-up period immediately after application, 6 months and 1 year after applying ICON material (DMG. Teeth: n = 90; primary teeth: 6 kids; n = 40 teeth; permanent teeth: 6 patients; n = 50 teeth. Visual examination by ICDAS without probe, dry for 10 s with 3-in-1 syringe using lightening; SoproLife camera (450 nm, digital photos. LIF method applied with SoproLife camera (Diagnostic mode with day light and blue light is more accurate than visual examination only when applied for single tooth diagnose. Moreover, LIF method for single tooth is more accurate in following up the effect of non-operative treatment of smooth surfaces lesions than using digital images. ICON is a material that stops the progression of non-cavitated smooth surfaces carious lesions in both primary and permanent teeth and make the aesthetic result better up to 1 year following the procedure.

  14. "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene.

    Science.gov (United States)

    Fu, Xiuli; Lou, Tingting; Chen, Zhaopeng; Lin, Meng; Feng, Weiwei; Chen, Lingxin

    2012-02-01

    A novel platform for effective "turn-on" fluorescence sensing of lead ions (Pb(2+)) in aqueous solution was developed based on gold nanoparticle (AuNP)-functionalized graphene. The AuNP-functionalized graphene exhibited minimal background fluorescence because of the extraordinarily high quenching ability of AuNPs. Interestingly, the AuNP-functionalized graphene underwent fluorescence restoration as well as significant enhancement upon adding Pb(2+), which was attributed to the fact that Pb(2+) could accelerate the leaching rate of the AuNPs on graphene surfaces in the presence of both thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Consequently, this could be utilized as the basis for selective detection of Pb(2+). With the optimum conditions chosen, the relative fluorescence intensity showed good linearity versus logarithm concentration of Pb(2+) in the range of 50-1000 nM (R = 0.9982), and a detection limit of 10 nM. High selectivity over common coexistent metal ions was also demonstrated. The practical application had been carried out for determination of Pb(2+) in tap water and mineral water samples. The Pb(2+)-specific "turn-on" fluorescence sensor, based on Pb(2+) accelerated leaching of AuNPs on the surface of graphene, provided new opportunities for highly sensitive and selective Pb(2+) detection in aqueous media.

  15. Evaluation of laser fluorescence in monitoring non-cavitated caries lesion progression on smooth surfaces in vitro.

    Science.gov (United States)

    Rodrigues, J A; Sarti, C S; Assunção, C M; Arthur, R A; Lussi, A; Diniz, M B

    2017-11-01

    The aim of this study was to evaluate the performance of a pen-type laser fluorescence (LF) device (LFpen: DIAGNOdent pen) to detect and monitor the progression of caries-like lesions on smooth surfaces. Fifty-two bovine enamel blocks were submitted to three different demineralisation cycles for caries-like lesion induction using Streptococcus mutans, Lactobacillus casei and Actinomyces naeslundii. At baseline and after each cycle, the enamel blocks were analysed under Knoop surface micro-hardness (SMH) and an LFpen. One enamel block after each cycle was randomly chosen for Raman spectroscopy analysis. Cross-sectional micro-hardness (CSMH) was performed at different depths (20, 40, 60, 80 and 100 μm) in 26 enamel blocks after the second cycle and 26 enamel blocks after the third cycle. Average values of SMH (± standard deviation (SD)) were 319.3 (± 21.5), 80.5 (± 31.9), 39.8 (± 12.7), and 29.77 (± 10.34) at baseline and after the first, second and third cycles, respectively. Statistical significant difference was found among all periods (p  0.05). One sample of each cycle was characterised through Raman spectroscopy analysis. It can be concluded that LF was effective in detecting the first demineralisation on enamel; however, the method did not show any effect in monitoring lesion progression after three cycles of in vitro demineralisation.

  16. Synchrotron Radiation Total Reflection X-ray Fluorescence Spectroscopy for Microcontamination Analysis on Silicon Wafer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Takaura, Norikatsu

    1997-10-01

    As dimensions in state-of-the-art CMOS devices shrink to less than 0.1 pm, even low levels of impurities on wafer surfaces can cause device degradation. Conventionally, metal contamination on wafer surfaces is measured using Total Reflection X-Ray Fluorescence Spectroscopy (TXRF). However, commercially available TXRF systems do not have the necessary sensitivity for measuring the lower levels of contamination required to develop new CMOS technologies. In an attempt to improve the sensitivity of TXRF, this research investigates Synchrotron Radiation TXRF (SR TXRF). The advantages of SR TXRF over conventional TXRF are higher incident photon flux, energy tunability, and linear polarization. We made use of these advantages to develop an optimized SR TXRF system at the Stanford Synchrotron Radiation Laboratory (SSRL). The results of measurements show that the Minimum Detection Limits (MDLs) of SR TXRF for 3-d transition metals are typically at a level-of 3x10{sup 8} atoms/cm{sup 2}, which is better than conventional TXRF by about a factor of 20. However, to use our SR TXRF system for practical applications, it was necessary to modify a commercially available Si (Li) detector which generates parasitic fluorescence signals. With the modified detector, we could achieve true MDLs of 3x10{sup 8} atoms/cm{sup 2} for 3-d transition metals. In addition, the analysis of Al on Si wafers is described. Al analysis is difficult because strong Si signals overlap the Al signals. In this work, the Si signals are greatly reduced by tuning the incident beam energy below the Si K edge. The results of our measurements show that the sensitivity for Al is limited by x-ray Raman scattering. Furthermore, we show the results of theoretical modeling of SR TXRF backgrounds consisting of the bremsstrahlung generated by photoelectrons, Compton scattering, and Raman scattering. To model these backgrounds, we extended conventional theoretical models by taking into account several aspects particular

  17. Plasmonic nanostructures for surface enhanced spectroscopic methods.

    Science.gov (United States)

    Jahn, Martin; Patze, Sophie; Hidi, Izabella J; Knipper, Richard; Radu, Andreea I; Mühlig, Anna; Yüksel, Sezin; Peksa, Vlastimil; Weber, Karina; Mayerhöfer, Thomas; Cialla-May, Dana; Popp, Jürgen

    2016-02-07

    A comprehensive review of theoretical approaches to simulate plasmonic-active metallic nano-arrangements is given. Further, various fabrication methods based on bottom-up, self-organization and top-down techniques are introduced. Here, analytical approaches are discussed to investigate the optical properties of isotropic and non-magnetic spherical or spheroidal particles. Furthermore, numerical methods are introduced to research complex shaped structures. A huge variety of fabrication methods are reviewed, e.g. bottom-up preparation strategies for plasmonic nanostructures to generate metal colloids and core-shell particles as well as complex-shaped structures, self-organization as well as template-based methods and finally, top-down processes, e.g. electron beam lithography and its variants as well as nanoimprinting. The review article is aimed at beginners in the field of surface enhanced spectroscopy (SES) techniques and readers who have a general interest in theoretical modelling of plasmonic substrates for SES applications as well as in the fabrication of the desired structures based on methods of the current state of the art.

  18. Histological validation of cone-beam computed tomography versus laser fluorescence and conventional diagnostic methods for occlusal caries detection.

    Science.gov (United States)

    Ozturk, Elif; Sinanoglu, Alper

    2015-02-01

    The purpose of this study was to compare the validity of visual (VE), radiological (RE), cone beam computed tomography (CBCT), and laser fluorescence (LFE) examination methods for the detection of the occlusal noncavitated caries in permanent posterior teeth. Two examiners assessed 121 selected sites on the occlusal surfaces of 44 molar teeth by visual (International Caries Assessment and Detection System II [ICDAS]), radiographic (bite-wing projection) cone-beam computed tomography, and laser fluorescence (DIAGNOdent Pen) examination methods. After a 1-week interval, each measurement was repeated by two examiners. Then, the teeth were sectioned, and histological evaluation was performed, which serves as the gold standard. The lesion depths were classified and correlated with the methods evaluated for validation. The intra- and inter-examiner reliability (sensitivity, specificity) and reproducibility of all examination methods were calculated using a weighted Cohen's κ statistic. The correlation between the examination methods was determined using receiver operating characteristic (ROC) analysis indicating the area under the curve (AUC). CBCT exhibited excellent intra-examiner (0.76 for examiner 1, 0.78 for examiner 2) and fair to good inter-examiner (0.63 for the first, 0.64 for the second measurements) reproducibility. The intra-examiner reproducibility was excellent for the LFE method according to the weighted κ values of examiners 1 (0.90) and 2 (0.79). Among the combined methods, the highest AUC values (0.81-0.95) were obtained for the CBCT examination method performed by the two examiners at both the first and second measurements. Cone beam computed tomography showed better performance than other diagnostic methods.

  19. Abstracts of the 8th Conference on total reflection x-ray fluorescence analysis and related methods

    International Nuclear Information System (INIS)

    Wobrauschek, P.

    2000-01-01

    The 8. conference on total reflection x-ray fluorescence analysis and related methods held from 25.9 to 29.9.2000 contains 79 abstracts about x-ray fluorescence analysis (XRFA) as a powerful tool used for industrial production, geological prospecting and for environmental control. Total reflection x-ray fluorescence spectroscopy is also a tool used for chemical analysis in medicine, industry and research. (E.B.)

  20. A Novel Analytical Method for Trace Ammonium in Freshwater and Seawater Using 4-Methoxyphthalaldehyde as Fluorescent Reagent

    OpenAIRE

    Liang, Ying; Pan, Yingming; Guo, Qing; Hu, Hongzhi; Wu, Chancui; Zhang, Qian

    2015-01-01

    A novel fluorescent reagent for determination of ammonium, 4-methoxyphthalaldehyde (MOPA), was successfully synthesized in this study. Under alkaline conditions, MOPA could reacted with ammonium rapidly at room temperature, producing fluorescent substance which had maximum excitation at 370 nm and emission wavelength at 454 nm. Based on this, a novel fluorescence analysis method was established for the determination of trace ammonium in natural water. Experimental parameters including reagent...

  1. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods.

    Science.gov (United States)

    Bloksgaard, Maria; Brewer, Jonathan; Bagatolli, Luis A

    2013-12-18

    This mini-review reports on applications of particular multiphoton excitation microscopy-based methodologies employed in our laboratory to study skin. These approaches allow in-depth optical sectioning of the tissue, providing spatially resolved information on specific fluorescence probes' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal excised skin, including applications of fluctuation correlation spectroscopy on transdermal penetration of liposomes are presented and discussed. The data from the different studies reported reveal the intrinsic heterogeneity of skin and also prove these strategies to be powerful noninvasive tools to explore structural and dynamical aspects of the tissue. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A fluorescence anisotropy method for measuring protein concentration in complex cell culture media.

    Science.gov (United States)

    Groza, Radu Constantin; Calvet, Amandine; Ryder, Alan G

    2014-04-22

    The rapid, quantitative analysis of the complex cell culture media used in biopharmaceutical manufacturing is of critical importance. Requirements for cell culture media composition profiling, or changes in specific analyte concentrations (e.g. amino acids in the media or product protein in the bioprocess broth) often necessitate the use of complicated analytical methods and extensive sample handling. Rapid spectroscopic methods like multi-dimensional fluorescence (MDF) spectroscopy have been successfully applied for the routine determination of compositional changes in cell culture media and bioprocess broths. Quantifying macromolecules in cell culture media is a specific challenge as there is a need to implement measurements rapidly on the prepared media. However, the use of standard fluorescence spectroscopy is complicated by the emission overlap from many media components. Here, we demonstrate how combining anisotropy measurements with standard total synchronous fluorescence spectroscopy (TSFS) provides a rapid, accurate quantitation method for cell culture media. Anisotropy provides emission resolution between large and small fluorophores while TSFS provides a robust measurement space. Model cell culture media was prepared using yeastolate (2.5 mg mL(-1)) spiked with bovine serum albumin (0 to 5 mg mL(-1)). Using this method, protein emission is clearly discriminated from background yeastolate emission, allowing for accurate bovine serum albumin (BSA) quantification over a 0.1 to 4.0 mg mL(-1) range with a limit of detection (LOD) of 13.8 μg mL(-1). Copyright © 2014. Published by Elsevier B.V.

  3. One for all--a highly efficient and versatile method for fluorescent immunostaining in fish embryos.

    Directory of Open Access Journals (Sweden)

    Daigo Inoue

    Full Text Available BACKGROUND: For the detection and sub-cellular (co-localization of proteins in the context of the tissue or organism immunostaining in whole mount preparations or on sections is still the best approach. So far, each antibody required its own fixation and antigen retrieval protocol so that optimizing immunostaining turned out to be tedious and time consuming. METHODOLOGY/PRINCIPAL FINDING: Here we present a novel method to efficiently retrieve the antigen in a widely applicable standard protocol, facilitating fluorescent immunostaining of both cryosections and whole mount preparations in zebrafish (Danio rerio and medaka (Oryzias latipes. CONCLUSIONS/SIGNIFICANCE: Our method overcomes the loss of sections and damage of tissue and cell morphology, and allows parallel immunostaining in multiple colors, co-immunostaining with fluorescent proteins in transgenic fish lines and in combination with whole mount in situ hybridization.

  4. Diagnostics of Susabi-nori (Porphyra Yezoensis) by Laser-Induced Fluorescence Method

    Science.gov (United States)

    Okamoto, Tamotsu; Nakamura, Yuki; Takahashi, Kunio; Kaneko, Shohei; Shimada, Yuji

    Susabi-nori (Porphyra yezoensis) was diagnosed by means of laser-induced fluorescence (LIF) method. Fluorescence peaks located at approximately 580, 660, 685 and 720 nm were observed in the LIF spectra of Susabi-nori. In the spectrum of the sample infected with the red rot disease, the intensity of 580 nm peak was relatively high as compared with that of the control sample. On the other hand, the intensities of 580 nm and 660 nm peaks drastically decreased by the influence of the chytrid disease. Furthermore, the intensity of the 580 nm peak increased by dipping into fresh water. These results indicate that LIF spectra of Susabi-nori are affected by the diseases and the stress of fresh water and that the diseases and the stress of Susabi-nori can be diagnosed by the LIF method.

  5. Determining the fate of fluorescent quantum dots on surface of engineered budding S. cerevisiae cell molecular landscape.

    Science.gov (United States)

    Chouhan, Raghuraj S; Qureshi, Anjum; Niazi, Javed H

    2015-07-15

    In this study, we surface engineered living S. cerevisiae cells by decorating quantum dots (QDs) and traced the fate of QDs on molecular landscape of single mother cell through several generation times (progeny cells). The fate of QDs on cell-surface was tracked through the cellular division events using confocal microscopy and fluorescence emission profiles. The extent of cell-surface QDs distribution among the offspring was determined as the mother cell divides into daughter cells. Fluorescence emission from QDs on progeny cells was persistent through the second-generation time (~240min) until all of the progeny cells lost their cell-bound QDs during the third generation time (~360min). The surface engineered yeast cells were unaffected by the QDs present on their molecular landscapes and retained their normal cellular growth, architecture and metabolic activities as confirmed by their viability, scanning electron microscopy (SEM) examinations and cytotoxicity tests, respectively. Our results demonstrated that QDs on mother cell landscape tend to distribute among its progeny cells that accompanied with concomitant reduction in QDs' fluorescence, which can be quantified. We suggest that surface engineered cells with QDs will enable investigating the cellular behavior and monitoring cell growth patterns as nanobiosensors for screening of drugs/chemicals at single cell level with fewer side effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A method for the rapid generation of nonsequential light-response curves of chlorophyll fluorescence.

    Science.gov (United States)

    Serôdio, João; Ezequiel, João; Frommlet, Jörg; Laviale, Martin; Lavaud, Johann

    2013-11-01

    Light-response curves (LCs) of chlorophyll fluorescence are widely used in plant physiology. Most commonly, LCs are generated sequentially, exposing the same sample to a sequence of distinct actinic light intensities. These measurements are not independent, as the response to each new light level is affected by the light exposure history experienced during previous steps of the LC, an issue particularly relevant in the case of the popular rapid light curves. In this work, we demonstrate the proof of concept of a new method for the rapid generation of LCs from nonsequential, temporally independent fluorescence measurements. The method is based on the combined use of sample illumination with digitally controlled, spatially separated beams of actinic light and a fluorescence imaging system. It allows the generation of a whole LC, including a large number of actinic light steps and adequate replication, within the time required for a single measurement (and therefore named "single-pulse light curve"). This method is illustrated for the generation of LCs of photosystem II quantum yield, relative electron transport rate, and nonphotochemical quenching on intact plant leaves exhibiting distinct light responses. This approach makes it also possible to easily characterize the integrated dynamic light response of a sample by combining the measurement of LCs (actinic light intensity is varied while measuring time is fixed) with induction/relaxation kinetics (actinic light intensity is fixed and the response is followed over time), describing both how the response to light varies with time and how the response kinetics varies with light intensity.

  7. Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer

    Science.gov (United States)

    Kwok, Pui-Yan; Chen, Xiangning

    1999-01-01

    A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.

  8. Fluorescence Techniques for Measuring Kinetics of Specific Binding of Hormone to Cell Surface Receptors.

    Science.gov (United States)

    Hellen, Edward Herbert

    This thesis presents theoretical calculations and technical advances relevant to total internal reflection/ fluorescence photobleaching recovery (tir/fpr), and results from experiments using tir/fpr to measure the dissociation rate constant of epidermal growth factor (egf) hormone interacting with its receptor molecule on A431 cells. The classical electromagnetic calculations describe fluorescence emission from fluorophores near an interface (possibly metal coated). It is well known that an interface alters the emission properties of nearby fluorophores. Most previous classical calculations model the fluorophore as a fixed-amplitude dipole oscillator. However, for fluorophores under steady illumination, a fixed-power dipole is more appropriate. This modification corresponds to normalizing the fixed-amplitude dipole's intensity by its total dissipated power. The results for the fixed-power model differ nontrivially from the fixed-amplitude model. The observation-angle -dependent intensity as a function of the fluorophore's orientation and distance from the surface is calculated. General expressions are derived for the emission power as observed through a circular-aperture collection system located on either side of the interface. A system for maintaining long-term focus of samples under high-magnification quantitative observation in an epi-illumination optical microscope is described. Focus -dependent changes in the backreflection of an off-axis HeNe laser generate negative feedback signals which drive a dc motor coupled to the fine-focus knob of the microscope. This system has several advantages: (1) it is compatible and nonobstructive with concurrent data acqusition of sample intensities; (2) it requires no alteration of the sample, stage, or objective; (3) it monitors the position of sample areas very near to those under observation; (4) it is inexpensive. The system can hold a glass coverslip sample to within 0.5 μm of its preset focus position. Prismless tir

  9. The application of trend surface analysis to a portion of the Apollo 15 X-ray fluorescence data

    Science.gov (United States)

    Podwysocki, M. H.; Weidner, J. R.; Andre, C. G.; Bickel, A. L.; Lum, R. S.; Adler, I.; Trombka, J. I.

    1974-01-01

    X-ray fluorescence data for 8 and 16 second time integrals gathered by Apollo 15 in circum lunar orbit were analyzed to determine the capability for chemical mapping of relatively small lunar features in a portion of Tranquillitatis and Serenitatis basins. Spatial mapping using trend surface analysis demonstrated that a useable signal could be extracted from Al/Si intensity ratios calculated for 8 second time spans. Reliability of the Al/Si ratio was enhanced when 16 second data were compiled using a sliding average technique. Residual anomalies from the trend surface mapping were identified and correlated with relatively small lunar surface features.

  10. Experimentally studied laser fluorescence method for remote sensing of plant stress situation induced by improper plants watering

    Directory of Open Access Journals (Sweden)

    Yu. V. Fedotov

    2014-01-01

    Full Text Available Stressful situations of plants can be caused by a lack of nutrients; mechanical damages; diseases; low or high temperatures; lack of illumination; insufficient or excess humidity of the soil; soil salinization; soil pollution by oil products or heavy metals; the increased acidity of the soil; use of pesticides, herbicides, insecticides, etc.At early stages it is often difficult to detect seemingly that the plants are in stressful situations caused by adverse external factors. However, the fluorescent analysis potentially allows detection of the stressful situations of plants by deformation of laser-induced fluorescence spectra. The paper conducts experimental investigations to learn the capabilities of the laser fluorescent method to monitor plant situations at 532nm wavelength of fluorescence excitation in the stressful situations induced by improper watering (at excess of moisture in the soil and at a lack of moisture.Researches of fluorescence spectra have been conducted using a created laboratory installation. As a source to excite fluorescence radiation the second harmonica of YAG:Nd laser is used. The subsystem to record fluorescence radiation is designed using a polychromator and a highly sensitive matrix detector with the amplifier of brightness.Experimental investigations have been conducted for fast-growing and unpretentious species of plants, namely different sorts of salad.Experimental studies of laser-induced fluorescence spectra of plants for 532nm excitement wavelength show that the impact of stressful factors on a plant due to the improper watering, significantly distorts a fluorescence spectrum of plants. Influence of a stressful factor can be shown as a changing profile of a fluorescence spectrum (an identifying factor, here, is a relationship of fluorescence intensities at two wavelengths, namely 685 nm and 740 nm or (and as a changing level of fluorescence that can be the basis for the laser method for monitoring the plant

  11. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    Science.gov (United States)

    Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor); Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  12. Fluorescence methods for estimation of post-fire response of pine needles

    Directory of Open Access Journals (Sweden)

    Gette Irina G.

    2017-12-01

    Full Text Available Forest fire represents one of the most serious abiotic stress factors that influence the function and productivity of ecosystems globally. Siberian pine forests are often exposed to forest fires, but they are not always harmful to them. This paper discusses the possibility of using fluorescent methods to assess the thermal effects on the assimilation apparatus of Scots pine (Pinus sylvestris L. needles. The assimilation apparatus of pine needles was reestablished after exposure to convective, simulating the effect of ground fire heat flow, though the recovery rate depends on the impact force. The analysis of fast and delayed fluorescence characteristics revealed differences in the thermostability of the Scots pine needles showing certain modification of physiological processes in plants under the influence of stress factors with a positive acclimation effect. The Scots pine needles grown after ground fire are more resistant to the recurrent sublethal temperature, and this effect is maintained during the next growing season. This paper suggests that reforestation planning, particularly burning (low-intensity fire, will result in improved tree physiology that will lead to an increase in Scotch pine survival rate due to repeated heat stresses. Furthermore, the fluorescence method can be used to diagnose the thermic resilience of pine needle and assess high-temperature effects.

  13. [Commercial orange juice beverages detection by fluorescence spectroscopy combined with PCA-ED and PLSR methods].

    Science.gov (United States)

    Hu, Yang-jun; Zhu, Chun; Chen, Guo-qing; Zhang, Yong; Kong, Fan-biao; Li, Run; Zhu, Zhuo-wei; Wang, Xu; Gao, Shu-mei

    2014-08-01

    In order to classify the orange juiice beverages effectively, the fluorescence character differences of two kinds of orange juice beverages including 100% orange juice and orange drink were analyzed and compared, principal component analysis combined with Euclidean distance was adopted to classify two kinds of orange juice beverages, and ideal classification results were obtained. Meanwhile, the orange juice content estimation model was established by using fluorescence spectroscopy combined with partial least squares regression method, and the correlation coefficient R, root mean square error of calibration RMSEC and root mean square error of prediction RMSEP were 0.997, 0.87% and 2.05%, respectively. The experimental results indicate that the calibration model offers comparatively accurate content estimation, which reflect the actual orange juice content in the commercial orange juice beverages. The exploration to classify orange juice beverages was carried out from two aspects of qualitative and quantitative analysis by employing fluorescence spectroscopy combined with chemometrics method, which can provide a new idea for the classification and adulteration detection of commercial orange juice beverages, and also can give certain reference basis for the quality control of orange juice raw material.

  14. X-ray measurements from the cathode surface of glow discharge tube used as a compact X-ray fluorescence instrument

    International Nuclear Information System (INIS)

    Tsuji, K.; Wagatsuma, K.; Yamaguchi, S.; Nagata, S.; Hirokawa, K.

    1998-01-01

    As previously reported, when a high-voltage is applied to a Grimm glow discharge tube, high-energy electrons emitted from the cathode surface bombard the glass window, leading to X-ray emissions from the window. In this study, we have applied an energy-dispersive X-ray analysis to detect X-rays from the cathode which are excited by X-rays emitted from the glass window. Thus, we have proposed to utilize this glow discharge tube as a compact X-ray fluorescence instrument, to which both the X-ray emission source and the sample are directly attached. This compact X-ray fluorescence instrument has the same advantages of easy maintenance, exchangeable target and sample, and simple construction. The quantitative determination of Si, Ti, and Mn in Fe-Si, Fe-Ti, and Fe-Mn alloys was demonstrated with the detection limits of 21, 150 and 420 ppm, respectively. The X-ray measurement form the cathode is a useful method to directly monitor the cathode surface during the glow discharge process. This would be applied to understand and control the glow discharge processes. Moreover, the X-ray diffraction peaks as well as the fluorescent X-ray peaks were observed, indicating that the structure analysis of the cathode material would also be possible. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. A new screening method for flunitrazepam in vodka and tequila by fluorescence spectroscopy.

    Science.gov (United States)

    Leesakul, Nararak; Pongampai, Sirintip; Kanatharana, Proespichaya; Sudkeaw, Pravit; Tantirungrotechai, Yuthana; Buranachai, Chittanon

    2013-01-01

    A new screening method for flunitrazepam in colourless alcoholic beverages based on a spectroscopic technique is proposed. Absorption and steady-state fluorescence of flunitrazepam and its protonated form with various acids were investigated. The redshift of the wavelength of maximum absorption was distinctively observed in protonated flunitrazepam. An emissive fluorescence at 472 nm was detected in colourless spirits (vodka and tequila) at room temperature. 2-M perchloric acid was the most appropriated proton source. By using electron ionization mass spectrometry and time-dependent density functional theory calculations, the possible structure of protonated flunitrazepam was identified to be 2-nitro-N-methylacridone, an acridone derivative as opposed to 2-methylamino-5-nitro-2'-fluorobenzophenone, a benzophenone derivative. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Comparison of the modified fluorescent method and conventional Ziehl-Neelsen method in the detection of acidfast bacilli in lymphnode aspirates

    Directory of Open Access Journals (Sweden)

    Annam Vamseedhar

    2009-01-01

    Full Text Available Objectives: The objectives were to correlate the modified fluorescent method with the conventional Ziehl-Neelsen (ZN method for the detection of acid-fast bacilli (AFB and, also to study the efficacy and advantages of using the auramine-rhodamine stain on lymph node aspirates under fluorescent microscopy. Methods: In 108 consecutive patients with a clinical suspicion of tuberculosis (TB presenting with lymphadenopathy, fine needle aspirations were performed. Smears from the aspirates were processed for routine cytology, the conventional ZN method, and the modified fluorescent method. The significance of the modified fluorescent method over the conventional ZN method was analyzed using the chi-square test. Results: Out of 108 aspirates, 102 were studied and remaining 6 were excluded from the study due to diagnosis of malignancy in 4.04% (4/6 and inadequate aspiration in 2.02% (2/6. Among the 102 aspirates, 44.11% (45/102 were positive for AFB on the conventional ZN method, 58.9% (60/102 were indicative of TB on cytology, while the smear positive increased to 81.37% (83/102 on the modified fluorescent method. Conclusions: Fluorescent microscopy has the advantage of speed and ease of screening, and reduces observer fatigue. The modified fluorescent method was found to be more advantageous than routine cytology and conventional ZN method, particularly in paucibacillary cases. The bacillary positivity rates were higher in the modified fluorescent method than in the ZN method. Hence, the modified fluorescent method can be an adjuvant when used with routine cytology for the identification of AFB.

  17. Method for Imaging Live-Cell RNA Using an RNA Aptamer and a Fluorescent Probe.

    Science.gov (United States)

    Sato, Shin-Ichi; Yatsuzuka, Kenji; Katsuda, Yousuke; Uesugi, Motonari

    2018-01-01

    Live-cell imaging of mRNA dynamics is increasingly important to understanding spatially restricted gene expression. We recently developed a convenient and versatile method that uses a gene-specific RNA aptamer and a fluorescent probe to enable spatiotemporal imaging of endogenous mRNAs in living cells. The method was validated by live-cell imaging of the endogenous mRNA of β-actin. The new RNA-imaging technology might be useful for live-cell imaging of any RNA molecules.

  18. Method for surface treatment by electron beams

    International Nuclear Information System (INIS)

    Panzer, S.; Doehler, H.; Bartel, R.; Ardenne, T. von.

    1985-01-01

    The invention has been aimed at simplifying the technology and saving energy in modifying surfaces with the aid of electron beams. The described beam-object geometry allows to abandon additional heat treatments. It can be used for surface hardening

  19. Assimilation of Remotely Sensed Fluorescence Data into the Land-Surface Model CLM4

    Science.gov (United States)

    Wieneke, S.; Ahrends, H. E.; Rascher, U.; Schickling, A.; Schween, J.; Crewell, S.

    2012-12-01

    The most important exchange process of CO2 between the atmosphere and the land-surface is photosynthesis. Therefore, the prediction of vegetation response to increasing atmospheric CO2 concentrations is crucial for a reliable prediction of climate change. Photosynthesis is a complex physiological process that consists of numerous bio-physical sub-processes and chemical reactions. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions. Photosynthesis can be estimated using land-surface models, but, while state-of-the-art models often rely on plant specific constants, they poorly simulate the dynamic adaptation of the physiological status of plant canopies. Another way to estimate photosynthesis is the measurement of sun-induced chlorophyll fluorescence (SICF). Several studies over the last decade have demonstrated that SICF is a promising proxy to estimate the diurnal dynamic vitality of the photosynthetic apparatus at both the leaf and canopy levels. Recent studies have shown, that the weak SICF signal is also detectable from air- and space-borne sensors. Time series of SICF can already be derived from ground based measurements and first spatial maps from air- and space-borne sensors are available. It is expected that in the preparation of the European satellite mission FLEX further spatial and temporal data sets will become available. Although, it is not possible to derive data sets that have a diurnal and spatial resolution at the same time, spatial data sets could be used to update certain model parameters that are normally set as constants. This will result in a better simulation of plant-specific adaptation strategies. In this study we focus on the retrieval of the maximum rate of carboxylation (Vcmax), by implementing the SICF signal into the photosynthesis module of the Community Land Model 4 (CLM4; http://www.cgd.ucar.edu/tss/clm), which is based on the Farquhar

  20. The influence of PVC wrapping on the performance of two laser fluorescence devices on occlusal surfaces in vitro.

    Science.gov (United States)

    Rodrigues, Jonas de Almeida; Hug, Isabel; Lussi, Adrian

    2009-06-01

    The aim of this study was to determine the influence of polyvinyl chloride (PVC) wrapping on the performance of two laser fluorescence devices (LF and LFpen) by assessing tooth occlusal surfaces. Protection of their tips may influence LF measurements. To date there are no studies evaluating the influence of this protection on the performance of the LFpen on permanent teeth, or comparing it to the original LF device. One hundred nineteen permanent molars were assessed by two experienced dentists using the LF and the LFpen devices, both with and without PVC wrapping. The teeth were histologically prepared and assessed for caries extension. The LF values with and without PVC wrapping were significantly different. For both LF devices, the sensitivity and accuracy were lower when the PVC wrapping was used. The specificity was statistically significantly higher for the LFpen with PVC. No difference was found between the areas under the ROC curves with and without PVC wrapping. The ICC showed excellent interexaminer agreement. The Bland and Altman method showed a range between the upper and the lower limits of agreement of 63.4 and 57.8 units for the LF device, and 49.4 and 74.2 for the LFpen device, with and without PVC wrapping, respectively. We found an influence of the PVC wrapping on the performance of the LF and LFpen devices. However, since its influence on detection of occlusal caries lesions is considered for, the use of one PVC layer is suggested to avoid cross-contamination in clinical practice.

  1. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for analysis of mineralogical composition of regolith,...

  2. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  3. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes-a review

    NARCIS (Netherlands)

    Nagl, Andreas; Hemelaar, Simon Robert; Schirhagl, Romana

    2015-01-01

    Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively

  4. Whole-surface analysis of semiconductor wafers by accumulating short-time mapping data of total-reflection X-ray fluorescence spectrometry.

    Science.gov (United States)

    Mori, Yoshihiro; Uemura, Kenichi; Lizuka, Yoshinori

    2002-03-01

    Total-reflection X-ray fluorescence (TXRF) spectrometry with no chemical preconcentration, often called "straight-TXRF", is now widely used in the semiconductor industry. The small detection area of TXRF enablesmapping measurement of contamination of the semiconductor surface, which is very useful in process characterization. However, the small detection area had been believed to limit rapid whole-surface analysis. Contrary to this general understanding, in this study we demonstrated that a new method, called "sweeping-TXRF", which is essentially short-time multipoint mapping by straight-TXRF, can rapidly provide an average concentration. A considerable problem of this method is the contribution of errors in glancing angle and areal element distribution to the fluorescence. Using statistics, we examined the errors and demonstrated that most of them are canceled and are not significant in actual semiconductor applications. The results of an experiment that measured localized 6 x 10(10) atoms cm(-2) nickel contamination supported the above conclusion. Applying sweeping-TXRF to existing TXRF instruments is easy-the only requirement is a small software modification. We believe that sweeping-TXRF will be utilized for rapid whole-surface analysis in many fields, especially in the semiconductor industry.

  5. Quantification of total phosphorothioate in bacterial DNA by a bromoimane-based fluorescent method.

    Science.gov (United States)

    Xiao, Lu; Xiang, Yu

    2016-06-01

    The discovery of phosphorothioate (PT) modifications in bacterial DNA has challenged our understanding of conserved phosphodiester backbone structure of cellular DNA. This exclusive DNA modification in bacteria is not found in animal cells yet, and its biological function in bacteria is still poorly understood. Quantitative information about the bacterial PT modifications is thus important for the investigation of their possible biological functions. In this study, we have developed a simple fluorescence method for selective quantification of total PTs in bacterial DNA, based on fluorescent labeling of PTs and subsequent release of the labeled fluorophores for absolute quantification. The method was highly selective to PTs and not interfered by the presence of reactive small molecules or proteins. The quantification of PTs in an E. coli DNA sample was successfully achieved using our method and gave a result of about 455 PTs per million DNA nucleotides, while almost no detectable PTs were found in a mammalian calf thymus DNA. With this new method, the content of phosphorothioate in bacterial DNA could be successfully quantified, serving as a simple method suitable for routine use in biological phosphorothioate related studies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A sensitive fluorescence quenching method for the detection of tartrazine with acriflavine in soft drinks.

    Science.gov (United States)

    Yang, Huan; Ran, Guihua; Yan, Jingjing; Zhang, Hui; Hu, Xiaoli

    2018-03-01

    In this work, a simple, rapid, sensitive, selective spectrofluorimetric method was applied to detect tartrazine. The fluorescence of acriflavine could be efficiently quenched by tartrazine. The method manifested real time response as well as presented satisfied linear relationship to tartrazine. The linear response range of tartrazine (R 2 = 0.9995) was from 0.056 to 5 μmol L -1 . The detection limit (3σ/k) was 0.017 μmol L -1 , indicating that this method could be applied to detect traces of tartrazine. The accuracy and precision of the method was further assured by recovery studies via a standard addition method, with percentage recoveries in the range of 96.0% to 103.0%. Moreover, a quenching mechanism was investigated systematically by the linear plots at varying temperatures based on the Stern-Volmer equation, fluorescence lifetime and UV-visible absorption spectra, all of which proved to be static quenching. This sensitive, selective assay possessed a great application prospect for the food industry owing to its simplicity and rapidity for the detection of tartrazine. Copyright © 2017 John Wiley & Sons, Ltd.

  7. [Bovine serum albumin in the presence of zinc (II) by fluorescence method].

    Science.gov (United States)

    Wu, Gen-Hua; Wang, Jie; Chen, Jin-Long; Guo, Chang; Wang, Pei-San; Wang, Dong-Xiang; Wang, Zhu-Qing

    2008-04-01

    The interaction between norfloxacin and bovine serum albumin, and the influence of Zinc (II) on the system of norfloxacin and bovine serum albumin was studied under physiological condition by fluorescence method. It was shown that norfloxacin has a powerful ability to quench the BSA fluorescence via a nonradiative energy transfer mechanism. The fluorescence quenching data were analyzed according to Stern-Volmer equation and double-reciprocal equation, and the binding constant (K) and the binding sites (n) were obtained. In the system of binary complex of NFLX and BSA, K = 6.80 x 10(5) and n = 1.21. There is a strong combination between NFLX and BSA, which offers the condition for the serum protein to be deposited and transported in vivo. Besides, the combination between NFLX and BSA becomes stronger in the presence of Zinc (II). According to Stern-Volmer equation and double-reciprocal equation, the concentration of Znic (II) is denser, and the binding constant (K) and the binding sites (n) are bigger. By studying the binding interaction between Zinc (II), norfloxacin and BSA, the mechanism of the interaction among norfloxacin, Zinc (II) and protein in organism, is furtherly discussed.

  8. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum

    Directory of Open Access Journals (Sweden)

    Pan Liu

    2017-05-01

    Full Text Available This paper presents a wavelet-based Gaussian method (WGM for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF. The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  9. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-06-12

    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  10. Semi-quantitative analysis on the content of berberine hydrochloride in compound berberine tablets with the fluorescence spectral imaging method

    Directory of Open Access Journals (Sweden)

    Lan Liang

    2016-03-01

    Full Text Available The content of berberine hydrochloride (BH in compound berberine tablets (CBTs is subject to strict requirements. Its content is usually measured based on chemical analysis. In this paper, the fluorescence spectral imaging method was used to study the relative content of BH from a physics perspective. By comparing the relative fluorescence intensity of self-made CBTs with different mass percentages of BH, a linear positive relationship was observed between the BH content and the relative fluorescence intensity, and accordingly the quality of CBTs of different brands was evaluated. The results indicate that the fluorescence spectral imaging method can be a simple, fast and nondestructive semi-quantitative analysis method to determine the content of BH in CBTs, and this method has great potential in the quality control of CBTs.

  11. Determination of Cancer Cell-Based pH-Sensitive Fluorescent Carbon Nanoparticles of Cross-Linked Polydopamine by Fluorescence Sensing of Alkaline Phosphatase Activity on Coated Surfaces and Aqueous Solution.

    Science.gov (United States)

    Kang, Eun Bi; Choi, Cheong A; Mazrad, Zihnil Adha Islamy; Kim, Sung Han; In, Insik; Park, Sung Young

    2017-12-19

    The tumor-specific sensitive fluorescence sensing of cellular alkaline phosphatase (ALP) activity on the basis of host-guest specific and pH sensitivity was conducted on coated surfaces and aqueous states. Cross-linked fluorescent nanoparticles (C-FNP) consisting of β-cyclodextrin (β-CD)/boronic acid (BA) and fluorescent hyaluronic acid [FNP(HA)] were conjugated to fluorescent polydopamine [FNP(pDA)]. To determine the quenching effect of this system, hydrolysis of 4-nitrophenyl phosphate (NPP) to 4-nitrophenol (NP) was performed in the cavity of β-CD in the presence of ALP activated photoinduced electron transfer (PET) between NP and C-FNP. At an ALP level of 30-1000 U/L, NP caused off-emission of C-FNP because of their specific host-guest recognition. Fluorescence can be recovered under pH shock due to cleavage of the diol bond between β-CD and BA, resulting in release of NP from the fluorescent system. Sensitivity of the assays was assessed by confocal imaging not only in aqueous states, but also for the first time on coated surfaces in MDAMB-231 and MDCK cells. This novel system demonstrated high sensitivity to ALP through generation of good electron donor/acceptor pair during the PET process. Therefore, this fluorescence sensor system can be used to enhance ALP monitoring and cancer diagnosis on both coated surfaces and in aqueous states in clinical settings.

  12. [Measurement of effective energy and entrance surface dose using fluorescent glass dosimeter in interventional radiology procedures: make of half-value layer measurement instrument and IVR-phantom].

    Science.gov (United States)

    Iida, Hiroji; Noto, Kimiya; Takata, Tadanori; Chabatake, Mitsuhiro; Yamamoto, Tomoyuki

    2010-05-20

    In interventional radiology (IVR) procedures, automatic brightness control (ABC) is helpful in maintaining good image quality by adjusting kV and/or mA based on the subject's thickness. However, it was difficult to measure effective energy using half-value layer (HVL). We investigated the usefulness of measuring effective energy and entrance surface dose using a fluorescent glass dosimeter in IVR procedures, and we made an HVL folder and IVR-phantom for that purpose. Effective energy measured using the HVL folder correlated well with reference ionization dosimeter (y=0.992x, r=0.963). The result indicated that the present method using an HVL folder and IVR-phantom provides accurate measurements of effective energy and entrance surface dose in IVR procedures. In conclusion, the present measurement method may be useful for quality control of IVR equipment. In addition, the development of this measurement technique may be useful for comparisons of exposure levels in different hospitals.

  13. Methods for the analysis of complex fluorescence decays: sum of Becquerel functions versus sum of exponentials

    International Nuclear Information System (INIS)

    Menezes, Filipe; Fedorov, Alexander; Baleizão, Carlos; Berberan-Santos, Mário N; Valeur, Bernard

    2013-01-01

    Ensemble fluorescence decays are usually analyzed with a sum of exponentials. However, broad continuous distributions of lifetimes, either unimodal or multimodal, occur in many situations. A simple and flexible fitting function for these cases that encompasses the exponential is the Becquerel function. In this work, the applicability of the Becquerel function for the analysis of complex decays of several kinds is tested. For this purpose, decays of mixtures of four different fluorescence standards (binary, ternary and quaternary mixtures) are measured and analyzed. For binary and ternary mixtures, the expected sum of narrow distributions is well recovered from the Becquerel functions analysis, if the correct number of components is used. For ternary mixtures, however, satisfactory fits are also obtained with a number of Becquerel functions smaller than the true number of fluorophores in the mixture, at the expense of broadening the lifetime distributions of the fictitious components. The quaternary mixture studied is well fitted with both a sum of three exponentials and a sum of two Becquerel functions, showing the inevitable loss of information when the number of components is large. Decays of a fluorophore in a heterogeneous environment, known to be represented by unimodal and broad continuous distributions (as previously obtained by the maximum entropy method), are also measured and analyzed. It is concluded that these distributions can be recovered by the Becquerel function method with an accuracy similar to that of the much more complex maximum entropy method. It is also shown that the polar (or phasor) plot is not always helpful for ascertaining the degree (and kind) of complexity of a fluorescence decay. (paper)

  14. Parallel ion flow velocity measurement using laser induced fluorescence method in an electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Okamoto, Atsushi; Terasaka, Kenichiro; Ogiwara, Kohei; Tanaka, Masayoshi Y.; Aramaki, Mitsutoshi

    2010-01-01

    Parallel ion flow velocity along a magnetic field has been measured using a laser induced fluorescence (LIF) method in an electron cyclotron resonance (ECR) argon plasma with a weakly-diverging magnetic field. To measure parallel flow velocity in a cylindrical plasma using the LIF method, the laser beam should be injected along device axis; however, the reflection of the incident beam causes interference between the LIF emission of the incident and reflected beams. Here we present a method of quasi-parallel laser injection at a small angle, which utilizes the reflected beam as well as the incident beam to obtain the parallel ion flow velocity. Using this method, we observed an increase in parallel ion flow velocity along the magnetic field. The acceleration mechanism is briefly discussed on the basis of the ion fluid model. (author)

  15. Fluorescence and Raman spectra on surface of K9 glass by high fluence ultraviolet laser irradiation at 355 nm

    Science.gov (United States)

    Zhang, Zhen; Huang, Jin; Geng, Feng; Zhou, Xiaoyan; Feng, Shiquan; Ren, Dahua; Cheng, Xinlu; Jiang, Xiaodong; Wu, Weidong; Zheng, Wanguo; Tang, Yongjian

    2013-11-01

    In order to explore the damage mechanisms of K9 glass irradiated by high energy density ultraviolet laser, laser-induced fluorescence and Raman spectra were investigated. Compared the fluorescence spectra of damaged area, undamaged area and sub-damaged area, it can be conclude that the fluorescence spectrum of sub-damaged area is different from the structure of the other two areas. Especially, the main peak of the spectra at 415 nm reveals the unique characteristics of K9 glass. The structure at the sub-damaged area enhances intensity of the Raman scattering spectra. Three peaks of the spectra at about 500 nm and two characteristic peaks at about 550 nm exhibit the characterization of damaged area. A peak of the Raman scattering spectra at 350 nm which related to water can be observed. The relationship between intensity of Raman scattering and laser intensity at 355 nm is investigated by confocal Raman microscopy. At sub-damage area, signal of Raman scattering is rather high and decreased dramatically with respect to energy density. The major band at about 1470 cm-1 sharpened and moved to higher frequency with densification. These phenomena demonstrate that the structure of sub-damaged area has some characterization compared with the damaged area. The investigation of defect induced fluorescence and Raman spectra on surface of K9 glass is important to explore the damage mechanisms of optical materials irradiated by ultraviolet laser irradiation at 355 nm.

  16. Field Observations with Laser-Induced Fluorescence Transient (LIFT Method in Barley and Sugar Beet

    Directory of Open Access Journals (Sweden)

    Anna R. Raesch

    2014-05-01

    Full Text Available The laser-induced fluorescence transient (LIFT method is a non-invasive remote sensing technique for measurement of photosynthetic performance of plants under laboratory and field conditions. We report here a long-term comparative study to monitor the performance of different cultivars of barley and sugar beet during the growth season of these crops. The LIFT measurements provided useful results about photosynthetic light use efficiency on selected leaves in the canopy of the studied crops. The different canopy architectures, with different optical properties, influenced the LIFT measurements.

  17. Surface Imaging Skin Friction Instrument and Method

    Science.gov (United States)

    Brown, James L. (Inventor); Naughton, Jonathan W. (Inventor)

    1999-01-01

    A surface imaging skin friction instrument allowing 2D resolution of spatial image by a 2D Hilbert transform and 2D inverse thin-oil film solver, providing an innovation over prior art single point approaches. Incoherent, monochromatic light source can be used. The invention provides accurate, easy to use, economical measurement of larger regions of surface shear stress in a single test.

  18. A method of determining surface runoff by

    Science.gov (United States)

    Donald E. Whelan; Lemuel E. Miller; John B. Cavallero

    1952-01-01

    To determine the effects of watershed management on flood runoff, one must make a reliable estimate of how much the surface runoff can be reduced by a land-use program. Since surface runoff is the difference between precipitation and the amount of water that soaks into the soil, such an estimate must be based on the infiltration capacity of the soil.

  19. Confocal laser induced fluorescence with comparable spatial localization to the conventional method

    Science.gov (United States)

    Thompson, Derek S.; Henriquez, Miguel F.; Scime, Earl E.; Good, Timothy N.

    2017-10-01

    We present measurements of ion velocity distributions obtained by laser induced fluorescence (LIF) using a single viewport in an argon plasma. A patent pending design, which we refer to as the confocal fluorescence telescope, combines large objective lenses with a large central obscuration and a spatial filter to achieve high spatial localization along the laser injection direction. Models of the injection and collection optics of the two assemblies are used to provide a theoretical estimate of the spatial localization of the confocal arrangement, which is taken to be the full width at half maximum of the spatial optical response. The new design achieves approximately 1.4 mm localization at a focal length of 148.7 mm, improving on previously published designs by an order of magnitude and approaching the localization achieved by the conventional method. The confocal method, however, does so without requiring a pair of separated, perpendicular optical paths. The confocal technique therefore eases the two window access requirement of the conventional method, extending the application of LIF to experiments where conventional LIF measurements have been impossible or difficult, or where multiple viewports are scarce.

  20. Computational method for calculating fluorescence intensities within three-dimensional structures in cells.

    Science.gov (United States)

    Caster, Amanda H; Kahn, Richard A

    2012-10-01

    The use of fluorescence microscopy is central to cell biology in general, and essential to many fields (e.g., membrane traffic) that rely upon it to identify cellular locations of molecules under study and the extent to which they co-localize with others. Rigorous localization or co-localization data require quantitative image analyses that can vary widely between fields and laboratories. While most published data use two-dimensional images, there is an increasing appreciation for the advantages of collecting three-dimensional data sets. These include the ability to evaluate the entire cell and avoidance of focal plane bias. This is particularly important when imaging and quantifying changes in organelles with irregular borders and which vary in appearance between cells in a population, e.g., the Golgi. We describe a method developed for quantifying changes in signal intensity of one protein within any three-dimensional structure, defined by the presence of a different marker. We use as examples of this method the quantification of adaptor recruitment to transmembrane protein cargos at the Golgi though it can be directly applied to any site in the cell. Together, these advantages facilitate rigorous statistical testing of differences between conditions, despite variations in organelle structure, and we believe that this method of quantification of fluorescence data can be productively applied to a wide array of experimental questions.

  1. Development of a fluorescent method for simultaneous measurement of glucose concentrations in interstitial fluid and blood

    International Nuclear Information System (INIS)

    Shi, Ting; Li, Dachao; Li, Guoqing; Xu, Kexin; Chen, Limin; Lin, Yuan; Lu, Luo

    2013-01-01

    Continuous blood glucose monitoring is of great clinical significance to patients with diabetes. One of the effective methods to monitor blood glucose is to measure glucose concentrations of interstitial fluid (ISF). However, a time-delay problem exists between ISF and blood glucose concentrations, which results in difficulty in indicating real-time blood glucose concentrations. Therefore, we developed a fluorescent method to verify the accuracy and reliability of simultaneous ISF and blood glucose measurement, especially incorporating it into research on the delay relationship between blood and ISF glucose changes. This method is based on a competitive reaction among borate polymer, alizarin and glucose. When glucose molecules combine with borate polymers in alizarin–borate polymer competitively, changes in fluorescence intensity demonstrate changes in glucose concentrations. By applying the measured results to the blood and ISF glucose delay relationship, we were able to calculate the time delay as an average of 2.16 ± 2.05 min for ISF glucose changes with reference to blood glucose concentrations. (paper)

  2. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Rufeng Li

    2017-11-01

    Full Text Available This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1 Gaussian filtering to remove the noise of overall fluorescent targets, (2 a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3 an red maximizing inter-class variance thresholding method (OTSU to segment the enhanced image for getting the binary map of the overall micro-droplets, (4 a circular Hough transform (CHT method to detect overall micro-droplets and (5 an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  3. Micro-Droplet Detection Method for Measuring the Concentration of Alkaline Phosphatase-Labeled Nanoparticles in Fluorescence Microscopy.

    Science.gov (United States)

    Li, Rufeng; Wang, Yibei; Xu, Hong; Fei, Baowei; Qin, Binjie

    2017-11-21

    This paper developed and evaluated a quantitative image analysis method to measure the concentration of the nanoparticles on which alkaline phosphatase (AP) was immobilized. These AP-labeled nanoparticles are widely used as signal markers for tagging biomolecules at nanometer and sub-nanometer scales. The AP-labeled nanoparticle concentration measurement can then be directly used to quantitatively analyze the biomolecular concentration. Micro-droplets are mono-dispersed micro-reactors that can be used to encapsulate and detect AP-labeled nanoparticles. Micro-droplets include both empty micro-droplets and fluorescent micro-droplets, while fluorescent micro-droplets are generated from the fluorescence reaction between the APs adhering to a single nanoparticle and corresponding fluorogenic substrates within droplets. By detecting micro-droplets and calculating the proportion of fluorescent micro-droplets to the overall micro-droplets, we can calculate the AP-labeled nanoparticle concentration. The proposed micro-droplet detection method includes the following steps: (1) Gaussian filtering to remove the noise of overall fluorescent targets, (2) a contrast-limited, adaptive histogram equalization processing to enhance the contrast of weakly luminescent micro-droplets, (3) an red maximizing inter-class variance thresholding method (OTSU) to segment the enhanced image for getting the binary map of the overall micro-droplets, (4) a circular Hough transform (CHT) method to detect overall micro-droplets and (5) an intensity-mean-based thresholding segmentation method to extract the fluorescent micro-droplets. The experimental results of fluorescent micro-droplet images show that the average accuracy of our micro-droplet detection method is 0.9586; the average true positive rate is 0.9502; and the average false positive rate is 0.0073. The detection method can be successfully applied to measure AP-labeled nanoparticle concentration in fluorescence microscopy.

  4. System and method for free-boundary surface extraction

    KAUST Repository

    Algarni, Marei

    2017-10-26

    A method of extracting surfaces in three-dimensional data includes receiving as inputs three-dimensional data and a seed point p located on a surface to be extracted. The method further includes propagating a front outwardly from the seed point p and extracting a plurality of ridge curves based on the propagated front. A surface boundary is detected based on a comparison of distances between adjacent ridge curves and the desired surface is extracted based on the detected surface boundary.

  5. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    Science.gov (United States)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  6. A distance correction method for improving the accuracy of particle coal online X-ray fluorescence analysis - Part 2: Method and experimental investigation

    Science.gov (United States)

    Zhang, Yan; Jia, Wen Bao; Gardner, Robin; Shan, Qing; Zhang, Xin Lei; Hou, Guojing; Chang, Hao Ping

    2017-12-01

    The distance from X-Ray Fluorescence (XRF) spectrometer to sample surface always changes with the different coal's particle sizes, resulting in the inaccuracy of online XRF measurement. To improve the accuracy of particle coal online XRF analysis, a distance correction method was established elaborated by iteration, which was based on the relationship between the XRF intensity and the distance. In order to verify the effectiveness of this method, five different particle size coal samples with same components have been measured by the online XRF analyzer directly above the conveyor belt, in the meanwhile, the distances between XRF spectrometer and samples' surface were obtained by a laser rangefinder. The results showed that the average distances are decreased with decreasing the particle size. By comparing the results of before and after applying the distance correction method, we demonstrated that the measurement accuracy of online XRF analysis for particle coal can be significantly increased. The distance correction method can be used for the development of online XRF analysis techniques applicable for real-time industrial processes.

  7. The performance of conventional and fluorescence-based methods for occlusal caries detection: an in vivo study with histologic validation.

    Science.gov (United States)

    Diniz, Michele B; Boldieri, Thalita; Rodrigues, Jonas A; Santos-Pinto, Lourdes; Lussi, Adrian; Cordeiro, Rita C L

    2012-04-01

    The authors conducted an in vivo study to determine clinical cutoffs for a laser fluorescence (LF) device, an LF pen and a fluorescence camera (FC), as well as to evaluate the clinical performance of these methods and conventional methods in detecting occlusal caries in permanent teeth by using the histologic gold standard for total validation of the sample. One trained examiner assessed 105 occlusal surfaces by using the LF device, LF pen, FC, International Caries Detection and Assessment System (ICDAS) criteria and bitewing (BW) radiographic methods. After tooth extraction, the authors assessed the teeth histologically. They determined the optimal clinical cutoffs by means of receiver operating characteristic curve analysis. The specificities and sensitivities for enamel and dentin caries detection versus only dentin caries detection thresholds were 0.60 and 0.93 and 0.77 and 0.52 (ICDAS), 1.00 and 0.29 and 0.97 and 0.44 (BW radiography), 1.00 and 0.85 and 0.77 and 0.81 (LF device), 0.80 and 0.89 and 0.71 and 0.85 (LF pen) and 0.80 and 0.74 and 0.49 and 0.85 (FC), respectively. The accuracy values were higher for ICDAS, the LF device and the LF pen than they were for BW radiography and the FC. The clinical cutoffs for sound teeth, enamel carious lesions and dentin carious lesions were, respectively, 0 through 4, 5 through 27 and 28 through 99 (LF device); 0 through 4, 5 through 32 and 33 through 99 (LF pen); and 0 through 1.2, 1.3 and 1.4 through 5.0 (FC). The ICDAS, the LF device and the LF pen demonstrated good performance in helping detect occlusal caries in vivo. The ICDAS did not seem to perform as well at the D(3) threshold (histologic scores 3 and 4) as at the D(1) threshold (histologic scores 1-4). BW radiography and the FC had the lowest performances in helping detect lesions at the D(1) and D(3) thresholds, respectively. Occlusal caries detection should be based primarily on visual inspection. Fluorescence-based methods may be used to provide a second

  8. A simple, rapid method for evaluation of transfection efficiency based on fluorescent dye.

    Science.gov (United States)

    Peng, Lin; Xiong, Wendian; Cai, Yanfei; Chen, Yun; He, Yang; Yang, Jianfeng; Jin, Jian; Li, Huazhong

    2017-05-04

    Enhanced transfection efficiency of transient gene expression (TGE) and electroporation is a useful approach for improvement of recombinant therapeutic proteins in mammalian cells. A novel method is described here in which CHO cells expressing recombinant FVII (rFVII) were labeled with fluorescent dye and analyzed by confocal microscopy. Cells with or without rFVII encoding gene were detectable by flow cytometry. Thus, we were able to distinguish positive cells (with rFVII encoding gene) and quantify their percentages. We evaluated the effects of varying electroporation conditions (voltage, number of repetitions, plasmid amount, carrier DNA) in order to optimize transfection efficiency. The highest transfection efficiency achieved was ∼86%. The method described here allows rapid evaluation of transfection efficiency without co-expression of reporter genes. In combination with appropriate antibodies, the method can be extended to evaluation of transfection efficiency in cells expressing other recombinant proteins.

  9. A rapid and cost-effective fluorescence detection in tube (FDIT method to analyze protein phosphorylation

    Directory of Open Access Journals (Sweden)

    Xiao Jin

    2016-11-01

    Full Text Available Abstract Background Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. Results Here we adapted Pro-Q® Diamond (Pro-Q® Diamond Phosphoprotein Gel Stain, a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1 on a thylakoid ascorbate peroxidase (tAPX, an established phosphorylation target in our earlier study. Conclusion The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.

  10. A volume-based method for denoising on curved surfaces

    KAUST Repository

    Biddle, Harry

    2013-09-01

    We demonstrate a method for removing noise from images or other data on curved surfaces. Our approach relies on in-surface diffusion: we formulate both the Gaussian diffusion and Perona-Malik edge-preserving diffusion equations in a surface-intrinsic way. Using the Closest Point Method, a recent technique for solving partial differential equations (PDEs) on general surfaces, we obtain a very simple algorithm where we merely alternate a time step of the usual Gaussian diffusion (and similarly Perona-Malik) in a small 3D volume containing the surface with an interpolation step. The method uses a closest point function to represent the underlying surface and can treat very general surfaces. Experimental results include image filtering on smooth surfaces, open surfaces, and general triangulated surfaces. © 2013 IEEE.

  11. A Novel Method for Imaging Apoptosis Using a Caspase-1 Near-Infrared Fluorescent Probe

    Directory of Open Access Journals (Sweden)

    Shanta M. Messerli

    2004-03-01

    Full Text Available Here we describe a novel method for imaging apoptosis in cells using a near-infrared fluorescent (NIRF probe selective for caspase-1 (interleukin β-converting enzyme, ICE. This biocompatible, optically quenched ICE-NIRF probe incorporates a peptide substrate, which can be selectively cleaved by caspase-1, resulting in the release of fluorescence signal. The specificity of this probe for caspase-1 is supported by various lines of evidence: 1 activation by purified caspase-1, but not another caspase in vitro; 2 activation of the probe by infection of cells with a herpes simplex virus amplicon vector (HGC-ICE-IacZ expressing a catalytically active caspase-1-IacZ fusion protein; 3 inhibition of HGC-ICE-IacZ vector-induced activation of the probe by coincubation with the caspase-1 inhibitor YVAD-cmk, but not with a caspase-3 inhibitor; and 4 activation of the probe following standard methods of inducing apoptosis with staurosporine, ganciclovir, or ionizing radiation in culture. These results indicate that this novel ICE-NIRF probe can be used in monitoring endogenous and vector-expressed caspase-1 activity in cells. Furthermore, tumor implant experiments indicate that this ICE-NIRF probe can be used to detect caspase-1 activity in living animals. This novel ICE-NIRF probe should prove useful in monitoring endogenous and vector-expressed caspase-1 activity, and potentially apoptosis in cell culture and in vivo.

  12. Modification of equine sperm chromatin decondensation method to use fluorescence in situ hybridization (FISH.

    Directory of Open Access Journals (Sweden)

    Zofia Jabłońska

    2010-05-01

    Full Text Available Fluorescence in situ hybridization (FISH is widely used in the study of chromosome structure and organization. Cytogenetic evaluation of chromosomes using FISH technique plays an increasingly important role in diagnosing karyotype changes in both somatic and reproductive cells. The aim of the study was to optimize the conditions of stallion sperm decondensation, which have a significant effect on the results of fluorescence in situ hybridization. Appropriate type and time of decondensation was chosen for the sperm of every stallion. It was found that decondensation performed using a preparation incubated in DTT solution for 1.5 minutes and in SDS solution for 10 seconds proved effective for stallions no. 1 and 2. An alternative decondensation method performed in an Eppendorf tube, with incubation in DTT solution for 1 minute and in SDS solution for 5 seconds proved effective for stallions no. 3 and 4. Decondensation using DTT and papain solution, a method successfully used for bull spermatozoa, proved inadequate for horse spermatozoa.

  13. Stepwise multiphoton activation fluorescence reveals a new method of melanin detection

    Science.gov (United States)

    Lai, Zhenhua; Kerimo, Josef; Mega, Yair; DiMarzio, Charles A.

    2013-06-01

    The stepwise multiphoton activated fluorescence (SMPAF) of melanin, activated by a continuous-wave mode near infrared (NIR) laser, reveals a broad spectrum extending from the visible spectra to the NIR and has potential application for a low-cost, reliable method of detecting melanin. SMPAF images of melanin in mouse hair and skin are compared with conventional multiphoton fluorescence microscopy and confocal reflectance microscopy (CRM). By combining CRM with SMPAF, we can locate melanin reliably. However, we have the added benefit of eliminating background interference from other components inside mouse hair and skin. The melanin SMPAF signal from the mouse hair is a mixture of a two-photon process and a third-order process. The melanin SMPAF emission spectrum is activated by a 1505.9-nm laser light, and the resulting spectrum has a peak at 960 nm. The discovery of the emission peak may lead to a more energy-efficient method of background-free melanin detection with less photo-bleaching.

  14. Novel fluorescent nanoparticles for ultrasensitive identification of nucleic acids by optical methods

    DEFF Research Database (Denmark)

    Mulberg, Mads Westergaard; Taskova, Maria; Thomsen, Rasmus P.

    2017-01-01

    aimed at developing efficient tools for amplification-free nucleic acid detection. The result of simple and inexpensive polymerization in the presence of fluorescent dyes and additional functionalization reagents was ultra-bright fluorescent nanoparticles modified with additional groups...

  15. Development of glancing-incidence and glancing-take-off X-ray fluorescence apparatus for surface and thin-film analyses

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Wagatsuma, Kazuaki; Yamada, Takashi; Utaka, Tadashi

    1997-01-01

    We have studied X-ray fluorescence analysis under glancing incidence and glancing take-off conditions. Recently, we have developed a third apparatus for detecting glancing-incidence and take-off X-ray fluorescence, which makes it possible to measure the incident-angle dependence, the take-off-angle dependence. X-ray reflectivity, and X-ray diffraction. Primarily, we have measured the take-off angular dependence of X-ray fluorescence using this apparatus. Glancing take-off X-ray fluorescence has some advantages in comparison with glancing-incidence X-ray fluorescence. The surface density and the absolute angles were determined by analysing the take-off angle dependence of the fluorescent X-rays emitted from identical atoms with the aid of the reciprocity theorem. (Author)

  16. Relationship of intertidal surface sediment chlorophyll concentration to hyper-spectral reflectance and chlorophyll fluorescence

    NARCIS (Netherlands)

    Kromkamp, J.C.; Morris, E.P.; Forster, R.M.; Honeywill, C.; Hagerthey, S.; Paterson, D.M.

    2006-01-01

    Estimating biomass of microphytobenthos (MPB) on intertidal mud flats is extremely difficult due to their patchy occurrence, especially at the scale of an entire mud flat. We tested two optical approaches that can be applied in situ: spectral reflectance and chlorophyll fluorescence. These two

  17. Validation of the chlorophyll fluorescence imaging method (CFI for early detection of herbicide resistance in weeds

    Directory of Open Access Journals (Sweden)

    Menegat, Alexander

    2014-02-01

    Full Text Available The increasing number of herbicide tolerant weed populations is illustrating the increasing demand for reliable methods for an accelerated detection of herbicide tolerance compared to greenhouse studies. Several methods for resistance quick detection have been published in previous years. One of the recent methods is the Chlorophyll Fluorescence Imaging Method (CFI. For this method changes in photosynthetic activity of the target organisms, caused by herbicides, are determined. General assumption of this method in terms of herbicide resistance detection is that each herbicidal compound, independent of the mode of action, will cause changes within the photosynthetic apparatus of the target organisms. This effect already could be confirmed for several modes of action (PSII, ALS, ACCase, EPSPS, synth. Auxins. Aim of this study is to validate this novel method on the basis of greenhouse experiments and single nucleotide polymorphisms (SNP analysis. The resistance profiles of 10 black-grass populations (Alopecurus myosuroides Huds. have been determined in greenhouse herbicide efficacy trials and constitutive SNP analyses of the survivors. With the CFI-method it was possible to detect the resistance profile as well as the resistance frequency within the populations. The results from the greenhouse experiments could be reproduced with conformity of 94%. This result is valid for the tested herbicides mesosulfuron, pyroxsulam as well as clodinafop and pinoxaden.

  18. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  19. Surface control alloy substrates and methods of manufacture therefor

    Energy Technology Data Exchange (ETDEWEB)

    Fritzemeier, Leslie G. (Mendon, MA); Li, Qi (Marlborough, MA); Rupich, Martin W. (Framingham, MA); Thompson, Elliott D. (Coventry, RI); Siegal, Edward J. (Malden, MA); Thieme, Cornelis Leo Hans (Westborough, MA); Annavarapu, Suresh (Brookline, MA); Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  20. Bioanalysis of captopril : Two sensitive high-performance liquid chromatographic methods with pre- or postcolumn fluorescent labeling

    NARCIS (Netherlands)

    Kok, R.J; Visser, Jan; Moolenaar, Frits; de Zeeuw, D; Meijer, D.K F

    1997-01-01

    This study describes the development and comparison of two HPLC methods for the analysis of the antihypertensive drug captopril. The first method is based on a precolumn derivatization of captopril with the fluorescent label monobromobimane (MBB). The second method is based on a postcolumn reaction

  1. Bioananalysis of captopril: two sensitive high-performance liquid chromatographic method with pre- or postcolumn fluorescent labeling

    NARCIS (Netherlands)

    Kok, Robbert J.; Visser, Jan; Moolenaar, Frits; de Zeeuw, Dick; Meijer, Dirk K.F.

    1997-01-01

    This study describes the development and comparison of two HPLC methods for the analysis of the antihypertensive drug captopril. The first method is based on a precolumn derivatization of captopril with the fluorescent label monobromobimane (MBB), The second method is based on a postcolumn reaction

  2. Development of a fluorescent antibody method for the detection of Enterococcus faecium and its potential for coastal aquatic environment monitoring.

    Science.gov (United States)

    Caruso, Gabriella; Monticelli, L S; Caruso, R; Bergamasco, A

    2008-02-01

    A direct, microscopic fluorescent antibody method was developed to detect the occurrence of Enterococcus faecium in coastal aquatic environments and was compared with the conventional membrane filtering method. The "in situ" application of the antibody-based protocol in the analysis of water samples collected from coastal polyhaline habitats demonstrated good sensitivity and ease of implementation. Data obtained with the microscopic technique were in agreement with those obtained from culture counts. The fluorescent antibody method proved to be a rapid and reliable technique for the detection of E. faecium. The advantages and limitations intrinsic to the method are discussed, highlighting the potential of this new technique for monitoring coastal aquatic environments.

  3. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesis and Characterization of Surface Modified, Fluorescent and Biocompatible ZnS Nanoparticles with a Hydrophobic Chitosan Derivative.

    Science.gov (United States)

    Jothimani, B; Sureshkumar, S; Venkatachalapathy, B

    2017-07-01

    The introduction of a hydrophobic moiety on chitosan enhances the self-assembling properties, mucoadhesion, the permeability of the macromolecule and aids in target specific delivery. Our group synthesized a hydrophobic trans N-(6,6-Dimethyl-2-hepten-4-ynyl)chitosan derivative (CSD) and studied the surface modification of ZnS nanoparticles in a single pot reaction. X-ray diffraction studies and FESEM imaging confirms the nano size and morphology of the surface modified Zinc sulfide nanoparticles (ZnS-CSD NPs). The proposed ZnS-CSD NPs showed excellent emission at 457 nm. Photostability studies indicate that the surface modified ZnS-CSD NPs possess better photostability than Rhodamine B and FITC. Cell viability tests confirmed the biocompatibility of the modified nanoparticles. All these features of ZnS- CSD NPs makes these candidates an excellent choice in a wide range of in vitro or in vivo studies as fluorescent biological labels.

  5. The development of methods of analysis of documents on the basis of the methods of Raman spectroscopy and fluorescence analysis

    Science.gov (United States)

    Gorshkova, Kseniia O.; Tumkin, Ilya I.; Kirillova, Elizaveta O.; Panov, Maxim S.; Kochemirovsky, Vladimir A.

    2017-05-01

    The investigation of natural aging of writing inks printed on paper using Raman spectroscopy was performed. Based on the obtained dependencies of the Raman peak intensities ratios on the exposure time, the dye degradation model was proposed. It was suggested that there are several competing bond breaking and bond forming reactions corresponding to the characteristic vibration frequencies of the dye molecule that simultaneously occur during ink aging process. Also we propose a methodology based on the study of the optical properties of paper, particularly changes in the fluorescence of optical brighteners included in its composition as well as the paper reflectivity using spectrophotometric methods. These results can be implemented to develop the novel and promising method of criminology.

  6. Heavy metals analysis in fishes by the X-ray fluorescence method

    International Nuclear Information System (INIS)

    Perez Novara, Ana Ma.

    1986-04-01

    Among the sources of contamination in human beings we find ingestion of heavy metals. As it is common practice to pour industrial wastes in waters where fishes feed, some toxic elements present in water may pass to human beings through ingestion. It is therefore important to determine the concentrations of heavy metals present in fishes, mainly in those living in waters close to industrial zones or villages. Concentrations of heavy metals in tissue of fishes amount to ppm, hence making necessary the use of very sensitive analytical techniques which do not require a too complex preparation of the sample in order to avoid the loss or contamination of interesting elements of analysis while handling them, thus falsifying the results. The X-Ray Fluorescence method covers these requirements and is not destructive nor multi-elemental. The development of the technique of element analysis in fishes by X-Ray Fluorescence comprised several aspects. from sampling and storage to quantification, specially stressing the preparation of samples. The work was carried out with a Si-Li detector/monitor for solid state and associated electronic equipment. Cd-109 and Pu-238 sources were used to produce excitation, detection limits near 1 ppm were obtained in the majority of elements the technique attained for the analysis of this kind of samples fulfills the celerity, precision, accuracy, and sensitivity requirements. (author)

  7. Simple, rapid and inexpensive quantitative fluorescent PCR method for detection of microdeletion and microduplication syndromes.

    Directory of Open Access Journals (Sweden)

    Martin Stofanko

    Full Text Available Because of economic limitations, the cost-effective diagnosis of patients affected with rare microdeletion or microduplication syndromes is a challenge in developing countries. Here we report a sensitive, rapid, and affordable detection method that we have called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR. Our procedure is based on the finding of genomic regions with high homology to segments of the critical microdeletion/microduplication region. PCR amplification of both using the same primer pair, establishes competitive kinetics and relative quantification of amplicons, as happens in microsatellite-based Quantitative Fluorescence PCR. We used patients with two common microdeletion syndromes, the Williams-Beuren syndrome (7q11.23 microdeletion and the 22q11.2 microdeletion syndromes and discovered that MQF-PCR could detect both with 100% sensitivity and 100% specificity. Additionally, we demonstrated that the same principle could be reliably used for detection of microduplication syndromes, by using patients with the Lubs (MECP2 duplication syndrome and the 17q11.2 microduplication involving the NF1 gene. We propose that MQF-PCR is a useful procedure for laboratory confirmation of the clinical diagnosis of microdeletion/microduplication syndromes, ideally suited for use in developing countries, but having general applicability as well.

  8. Dual x-ray fluorescence spectrometer and method for fluid analysis

    Science.gov (United States)

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  9. Fluorescent method for detection of cleaved collagens using O-phthaldialdehyde (OPA).

    Science.gov (United States)

    Go, Katrina; Horikawa, Yousuke; Garcia, Ricardo; Villarreal, Francisco J

    2008-04-24

    Analysis of collagen degradation remains an important but cumbersome task. Traditional methods with dansyl chloride derivatization of collagen have been used to quantify collagen damage. Fluorescent labeling reagents have been developed that offer advantages such as greater solubility in water and low background emission. One such reagent is o-phthalaldehyde (OPA). In this study, we used OPA as a means of detecting small amounts of degraded collagen. Collagen samples isolated from skin or heart were used for OPA conjugation to exposed amino termini ("opalation"). Experiments utilizing small samples aliquoted in microtiter plates were performed to evaluate effects of increasing concentrations of OPA, varying concentrations of collagen, and effects of matrix metalloproteinase (MMP) digestion. Results indicate that within 10 min of reaction, OPA can be used to detect relative differences in cleaved vs. uncleaved collagen from skin or heart. Heart samples obtained from regions of high MMP activity correlated with increased OPA fluorescence relative to tissue with lower MMP activity. On the basis of these results, we conclude that OPA has valuable practical advantages for analytical use in detecting cleaved collagen in small tissue samples.

  10. A sensitive fluorescence method for detection of E. Coli using rhodamine 6G dyeing.

    Science.gov (United States)

    Wang, Yaohui; Jiang, Caina; Wen, Guiqing; Zhang, Xinghui; Luo, Yanghe; Qin, Aimiao; Liang, Aihui; Jiang, Zhiliang

    2016-06-01

    Negatively charged bacteria combined with positively charged alkaline dye rhodamine 6G (Rh6G) in NaH2 PO4 -Na2 HPO4 buffer solution pH 7.4, by electrostatic interaction. The dyed bacteria exhibited a strong fluorescence peak at 552 nm and fluorescence intensity was directly linear to Escherichia coli (E. coli), Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) concentrations in the range of 7.06 × 10(4) to 3.53 × 10(7) , 4.95 × 10(5) to 2.475 × 10(8) and 32.5 to 16250 colony forming unit/mL (cfu/mL) respectively, with detection limits of 3.2 × 10(4) cfu/mL E. coli, 2.3 × 10(5) cfu/mL B. subtilis and 16 cfu/mL S. aureus, respectively. Samples were cultured for 12 h, after which the linear detection range for E. coli was 2 to 88 cfu/mL. This simple, rapid and sensitive method was used for the analysis of water and drinking samples. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. X-ray fluorescence methods for investigations of lipid/protein membrane models.

    Science.gov (United States)

    Novikova, Natalia N; Yurieva, Eleonora A; Zheludeva, Svetlana I; Kovalchuk, Michail V; Stepina, Nina D; Tolstikhina, Alla L; Gaynutdinov, Ratmir V; Urusova, Dariya V; Matkovskaya, Tatiana A; Rubtsov, Alexandr M; Lopina, Olga D; Erko, Alexsey I; Konovalov, Oleg V

    2005-07-01

    The protective effect of the bisphosphonate drug xydiphone (K,Na-ethidronate) on membrane-bound enzyme damaged by lead ions has been studied. A protein/lipid film of Ca-ATPase/phosphatedylethanolamine deposited on a silicon substrate was used as a model system. The position of lead ions within the molecular film before and after the xydiphone treatment was determined using the total-reflection X-ray fluorescence method. This technique is based on the simultaneous measurement of the X-ray reflection and the yield of the fluorescence radiation excited by X-ray inelastic scattering. The possibility of directly locating lead ions is the main advantage of this approach. Xydiphone has been found to effectively eliminate lead ions that have been incorporated into Ca-ATPase molecules during a preliminary incubation in lead acetate solution. The lead ions that were bound at the sites of the Ca-ATPase attachment to the phospholipid monolayer have proved to be inaccessible for xydiphone. A preliminary incubation of Ca-ATPase in the xydiphone solution precluded the incorporation of lead ions into the protein.

  12. A Novel Analytical Method for Trace Ammonium in Freshwater and Seawater Using 4-Methoxyphthalaldehyde as Fluorescent Reagent.

    Science.gov (United States)

    Liang, Ying; Pan, Yingming; Guo, Qing; Hu, Hongzhi; Wu, Chancui; Zhang, Qian

    2015-01-01

    A novel fluorescent reagent for determination of ammonium, 4-methoxyphthalaldehyde (MOPA), was successfully synthesized in this study. Under alkaline conditions, MOPA could reacted with ammonium rapidly at room temperature, producing fluorescent substance which had maximum excitation at 370 nm and emission wavelength at 454 nm. Based on this, a novel fluorescence analysis method was established for the determination of trace ammonium in natural water. Experimental parameters including reagent concentration, pH, reaction equilibrium time, and metal ions masking agent were optimized. The results showed that the optimized MOPA concentration was 0.12 g/L, pH was in the range of 11.2-12.0, and sulfite concentration was 0.051 g/L, respectively. Metal ions masking agent had no obvious effect on the fluorescence signal. With the reaction time of 15 minutes, linear range of this method was between 0.025 and 0.300 μmol/L, and the method detecting limit was 0.0058 μmol/L. The matrix recovery of the proposed method was in the range of 93.6-108.1%. Compared with the OPA method, this method was much more sensitive and rapid without the interference of background peak and would be more suitable for developing a portable fluorescence detection system.

  13. A Novel Analytical Method for Trace Ammonium in Freshwater and Seawater Using 4-Methoxyphthalaldehyde as Fluorescent Reagent

    Directory of Open Access Journals (Sweden)

    Ying Liang

    2015-01-01

    Full Text Available A novel fluorescent reagent for determination of ammonium, 4-methoxyphthalaldehyde (MOPA, was successfully synthesized in this study. Under alkaline conditions, MOPA could reacted with ammonium rapidly at room temperature, producing fluorescent substance which had maximum excitation at 370 nm and emission wavelength at 454 nm. Based on this, a novel fluorescence analysis method was established for the determination of trace ammonium in natural water. Experimental parameters including reagent concentration, pH, reaction equilibrium time, and metal ions masking agent were optimized. The results showed that the optimized MOPA concentration was 0.12 g/L, pH was in the range of 11.2–12.0, and sulfite concentration was 0.051 g/L, respectively. Metal ions masking agent had no obvious effect on the fluorescence signal. With the reaction time of 15 minutes, linear range of this method was between 0.025 and 0.300 μmol/L, and the method detecting limit was 0.0058 μmol/L. The matrix recovery of the proposed method was in the range of 93.6–108.1%. Compared with the OPA method, this method was much more sensitive and rapid without the interference of background peak and would be more suitable for developing a portable fluorescence detection system.

  14. OPTIMIZATION OF LAMBLIASIS MICROSCOPIC DIAGNOSTICS BY THE METHOD OF POLARIZED FLUORESCENCE FOR PATIENTS WITH ROSACEA AND URTICARIAL

    Directory of Open Access Journals (Sweden)

    Maryana Kovalchuk

    2013-07-01

    Full Text Available Introduction: There is little information about diagnosis of concurrent lambliasis in patients with rosacea and urticaria. We used method of polarized fluorescence to diagnose liambliasis, taking into account belonging of macromolecular structures of unicellular parasites Giardia lamblia to the optically active substances with the properties of liquid crystals. Material and Methods: Lambliasis was diagnosed on the basis of feces parasitological research and duodenal contents by methods of light and optic microscopy and polarized fluorescence in 105 patients with rosacea and urticaria. Research results were processed by the method of variation statistics in the Statgraf program by using Student’s criterion. Results: Search results of lamblia in patients with rosacea and urticaria depended on the conditions of its holding, patients’ preparation and from the previously received basic therapy if it consisted absorbents. Due to the fact that the fluorescence polarization as a physical method does not require the use of any generally toxic, dye- fluorochromes, qualitative cyto fluorescent analysis of lamblia in greeting microdrugs enables to distinguish vegetative forms of cysts. Conclussions: Polarized fluorescence method allows optimize the microscopic diagnosis of lambliasis, increasing its sensitivity. Previous preparation for the laboratory examination of Giardia lamblia is needed for the best exposure of vermin for patients with rosacea and urticaria.

  15. Influence of the condition of the adjacent tooth surface on fluorescence measurements for the detection of approximal caries.

    Science.gov (United States)

    Lussi, A; Zimmerli, B; Hellwig, E; Jaeggi, T

    2006-12-01

    The aim of this study was to test whether the status of the adjacent tooth surface has an influence on the signal of a new laser fluorescence (LF) device for the detection of approximal caries. Seventy-eight teeth were selected from a pool of extracted permanent human molars, frozen at -20 degrees C until use. Before being measured the teeth were defrosted, cleaned, and any calculus removed. As a control, a defined approximal surface of each tooth was measured with the LF device holding the tip with the detecting- and the reverse-side on it, but without a neighboring tooth contacting the surface. The proximal site under examination was then placed adjacent to a tooth, which had deep dentinal caries, a composite restoration, a provisional ZnO-Eugenol restoration, or a ceramic restoration. The adjacent tooth with the ZnO-Eugenol restoration, the composite restoration, and the dentinal caries all demonstrated a statistically significant increase of LF readings on sound tooth surfaces. Teeth with enamel or dentinal caries were only slightly (and not statistically significantly) influenced by the different types of neighboring surfaces compared with the control LF readings. It can be concluded that caries detection of approximal tooth surfaces with the new LF system might be influenced by the condition of the adjacent tooth surface.

  16. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    Science.gov (United States)

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  17. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces.

    Science.gov (United States)

    Rams, Thomas E; Alwaqyan, Abdulaziz Y

    2017-10-01

    intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.

  18. A Versatile Star PEG Grafting Method for the Generation of Nonfouling and Nonthrombogenic Surfaces

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Thalla

    2013-01-01

    Full Text Available Polyethylene glycol (PEG grafting has a great potential to create nonfouling and nonthrombogenic surfaces, but present techniques lack versatility and stability. The present work aimed to develop a versatile PEG grafting method applicable to most biomaterial surfaces, by taking advantage of novel primary amine-rich plasma-polymerized coatings. Star-shaped PEG covalent binding was studied using static contact angle, X-ray photoelectron spectroscopy (XPS, and quartz crystal microbalance with dissipation monitoring (QCM-D. Fluorescence and QCM-D both confirmed strong reduction of protein adsorption when compared to plasma-polymerized coatings and pristine poly(ethyleneterephthalate (PET. Moreover, almost no platelet adhesion was observed after 15 min perfusion in whole blood. Altogether, our results suggest that primary amine-rich plasma-polymerized coatings offer a promising stable and versatile method for PEG grafting in order to create nonfouling and nonthrombogenic surfaces and micropatterns.

  19. Trainable Methods for Surface Natural Language Generation

    OpenAIRE

    Ratnaparkhi, Adwait

    2000-01-01

    We present three systems for surface natural language generation that are trainable from annotated corpora. The first two systems, called NLG1 and NLG2, require a corpus marked only with domain-specific semantic attributes, while the last system, called NLG3, requires a corpus marked with both semantic attributes and syntactic dependency information. All systems attempt to produce a grammatical natural language phrase from a domain-specific semantic representation. NLG1 serves a baseline syst...

  20. Multielemental analysis of surface sediments in Havana bay (Cuba) using X-ray fluorescence

    International Nuclear Information System (INIS)

    Gelen, A.; Corrales, Y.; Lopez, N.; Manso Guevara, M. V.; Casanova, A. O.; Alessandro, K. D'; Diaz, O.; Espen, P. Van; Beltran, J.; Soto, J.

    2006-01-01

    Multielemental Analysis was performed in Superficial Sediments in Havana Bay. Twenty one samples were analysed by Dispersive Energy X- Ray Fluorescence using an spectrometer based on Si (Li) semiconductor detector an a 109 Cd source. The results showed a similar behaviour in the levels of contamination related with neutron activation analysis. The data suggest that an anthropogenic input into the bay from domestic sewage and industries occurred. (Full text)

  1. Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule

    Science.gov (United States)

    Galloway, Justin F.

    To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically

  2. X-ray fluorescence analysis of strontium in environmental water by using barium carbonate coprecipitation method

    International Nuclear Information System (INIS)

    Nishioka, Hiroshi; Yoneda, Akio; Maeda, Yoshimichi; Azumi, Takatugu

    1986-01-01

    Determination of strontium in environmental water was studied by a coprecipitation method with barium carbonate and the subsequent X-ray fluorescence analysis. Fifty mg of barium ion and 1 g of sodium carbonate were added to sample water, which was then mixed for one hour by a magnetic stirrer. Precipitate was gathered onto a membrane filter paper to measure its XF intensity. The amount of strontium from 2 to 150 μg could be repeatedly determined by means of the calibration curve method, and the limit of detection was found to be 0.6 μg of strontium. A large amount of calcium and magnesium ions was found to interfere with the coprecipitation of strontium ion. However, this interference could be eliminated by using a small amount of sample water. Strontium in several environmental waters was determined by the above method. The results obtained from the calibration curve method and the standard addition method agreed with each other, and also agreed with those from the atomic absorption spectrometry. (author)

  3. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence.

    Science.gov (United States)

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-07

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  4. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    Directory of Open Access Journals (Sweden)

    Martin Stofanko

    2013-01-01

    Full Text Available Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations.

  5. Forensic classification of counterfeit banknote paper by X-ray fluorescence and multivariate statistical methods.

    Science.gov (United States)

    Guo, Hongling; Yin, Baohua; Zhang, Jie; Quan, Yangke; Shi, Gaojun

    2016-09-01

    Counterfeiting of banknotes is a crime and seriously harmful to economy. Examination of the paper, ink and toners used to make counterfeit banknotes can provide useful information to classify and link different cases in which the suspects use the same raw materials. In this paper, 21 paper samples of counterfeit banknotes seized from 13 cases were analyzed by wavelength dispersive X-ray fluorescence. After measuring the elemental composition in paper semi-quantitatively, the normalized weight percentage data of 10 elements were processed by multivariate statistical methods of cluster analysis and principle component analysis. All these paper samples were mainly classified into 3 groups. Nine separate cases were successfully linked. It is demonstrated that elemental composition measured by XRF is a useful way to compare and classify papers used in different cases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Study of fluorescence interaction and conformational changes of bovine serum albumin with histamine H₁ -receptor--drug epinastine hydrochloride by spectroscopic and time-resolved fluorescence methods.

    Science.gov (United States)

    Ariga, Girish G; Naik, Praveen N; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2015-11-01

    The fluorescence, ultraviolet (UV) absorption, time resolved techniques, circular dichroism (CD), and infrared spectral methods were explored as tools to investigate the interaction between histamine H1 drug, epinastine hydrochloride (EPN), and bovine serum albumin (BSA) under simulated physiological conditions. The experimental results showed that the quenching of the BSA by EPN was static quenching mechanism and also confirmed by lifetime measurements. The value of n close to unity indicated that one molecule of EPN was bound to protein molecule. The binding constants (K) at three different temperatures were calculated (7.1 × 10(4), 5.5 × 10(4), and 3.9 × 10(4) M(-1)). Based on the thermodynamic parameters (ΔH(0), ΔG(0), and ΔS(0)), the nature of binding forces operating between drug and protein was proposed. The site of binding of EPN in the protein was proposed to be Sudlow's site I based on displacement experiments using site markers viz, warfarin, ibuprofen, and digitoxin. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (BSA) and acceptor (EPN) was evaluated and found to be 4.48 nm. The UV-visible, synchronous fluorescence, CD, and three-dimensional fluorescence spectral results revealed the changes in secondary structure of the protein upon its interaction with EPN. © 2015 Wiley Periodicals, Inc.

  7. A SIMPLE FLUORESCENT LABELING METHOD FOR STUDIES OF PROTEIN OXIDATION, PROTEIN MODIFICATION, AND PROTEOLYSIS

    Science.gov (United States)

    Pickering, Andrew. M.; Davies, Kelvin. J. A.

    2014-01-01

    Proteins are sensitive to oxidation, and oxidized proteins are excellent substrates for degradation by proteolytic enzymes such as the Proteasome and the mitochondrial Lon protease. Protein labeling is required for studies of protein turnover. Unfortunately, most labeling techniques involve 3H or 14C methylation which is expensive, exposes researchers to radioactivity, generates large amounts of radioactive waste, and allows only single-point assays because samples require acid-precipitation. Alternative labeling methods, have largely proven unsuitable, either because the probe itself is modified by the oxidant(s) being studied, or because the alternative labeling techniques are too complex or too costly for routine use. What is needed is a simple, quick, and cheap labeling technique that uses a non-radioactive marker, that binds strongly to proteins, is resistant to oxidative modification, and emits a strong signal. We have devised a new reductive method for labeling free carboxyl groups of proteins with the small fluorophore 7-amino-4-methycoumarin (AMC). When bound to target proteins, AMC fluoresces very weakly but when AMC is released by proteinases, proteases, or peptidases, it fluoresces strongly. Thus, without acid-precipitation, the proteolysis of any target protein can be studied continuously, in multiwell plates. In direct comparisons, 3H-labeled proteins and AMC-labeled proteins exhibited essentially identical degradation patterns during incubation with trypsin, cell extracts, and purified proteasome. AMC-labeled proteins are well-suited to study increased proteolytic susceptibility following protein modification, since the AMC-protein bond is resistant to oxidizing agents such as hydrogen peroxide and peroxynitrite, and is stable over time and to extremes of pH, temperature (even boiling), freeze-thawing, mercaptoethanol, and methanol. PMID:21988844

  8. Surface renewal method for estimating sensible heat flux | Mengistu ...

    African Journals Online (AJOL)

    For short canopies, latent energy flux may be estimated using a shortened surface energy balance from measurements of sensible and soil heat flux and the net irradiance at the surface. The surface renewal (SR) method for estimating sensible heat, latent energy, and other scalar fluxes has the advantage over other ...

  9. Method for treatment of a surface area of steel

    NARCIS (Netherlands)

    Bhowmik, S.; Aaldert, P.J.

    2009-01-01

    The invention relates to a method for treatment of a surface area of steel by polishing said surface area and performing a plasma treatment of said surface area wherein the plasma treatment is performed at at least atmospheric conditions and wherein the plasma treatment is carried out at a power of

  10. Application of x-ray fluorescence (XRF) absolute analysis method for silica refractories

    International Nuclear Information System (INIS)

    Asakura, Hideo; Yamada, Yasujiro; Kansai, Kouhei; Tomatsu, Ichirou; Murata, Mamoru

    2015-01-01

    X-ray fluorescence (XRF) analysis is a rapid and precise quantitative analytical method for the determination of major and trace elements in many industries and academics. XRF analytical values are relative due to the use of the calibration curves calculated from measuring the reference standard materials such as Japanese Refractory Reference Materials (JRRM) series with certified values determined by wet chemical analysis. The development of the XRF analytical method from relative to absolute analysis will help much to determine the absolute values of samples from the fields where reference standard samples have not been prepared, and thus can be applied widely in many industries. The implement of the absolute XRF analysis for silica refractories requires high purity reagents and/or reference standard solution for the binary basic calibration curve, and theoretical matrix correction coefficients for the multi-components silica refractories analysis. The reproducibility and repeatability of this method for Al 2 O 3 5 mass% sample were 0.009 and 0.006 mass% in Al 2 O 3 and showed better values that those of ICP-AES recognized as an absolute method in JIS R 2212-2, which yielded 0.028 and 0.031 mass%, respectively. The XRF absolute analysis for JRRM 200 series, 201a and 205a does not show a bias but coincides with their certified values. (author)

  11. Comparison of fluorescence microscopy and solid-phase cytometry methods for counting bacteria in water

    Science.gov (United States)

    Lisle, John T.; Hamilton, Martin A.; Willse, Alan R.; McFeters, Gordon A.

    2004-01-01

    Total direct counts of bacterial abundance are central in assessing the biomass and bacteriological quality of water in ecological and industrial applications. Several factors have been identified that contribute to the variability in bacterial abundance counts when using fluorescent microscopy, the most significant of which is retaining an adequate number of cells per filter to ensure an acceptable level of statistical confidence in the resulting data. Previous studies that have assessed the components of total-direct-count methods that contribute to this variance have attempted to maintain a bacterial cell abundance value per filter of approximately 106 cells filter-1. In this study we have established the lower limit for the number of bacterial cells per filter at which the statistical reliability of the abundance estimate is no longer acceptable. Our results indicate that when the numbers of bacterial cells per filter were progressively reduced below 105, the microscopic methods increasingly overestimated the true bacterial abundance (range, 15.0 to 99.3%). The solid-phase cytometer only slightly overestimated the true bacterial abundances and was more consistent over the same range of bacterial abundances per filter (range, 8.9 to 12.5%). The solid-phase cytometer method for conducting total direct counts of bacteria was less biased and performed significantly better than any of the microscope methods. It was also found that microscopic count data from counting 5 fields on three separate filters were statistically equivalent to data from counting 20 fields on a single filter.

  12. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    Science.gov (United States)

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  13. Fluorescence anisotropy measurements in solution: Methods and reference materials (IUPAC Technical Report)

    OpenAIRE

    AMELOOT, Marcel; Van de Ven, Martin; Ulises Acuna, A.; Valeur, Bernard

    2013-01-01

    After recalling the basic relations relevant to both steady-state and time-resolved fluorescence polarization, it is shown how the values of steady-state polarized intensities recorded experimentally usually need to be corrected for systematic effects and errors, caused by instrumentation and sample properties. A list of selected reference values of steady-state fluorescence anisotropy and polarization is given. Attention is also paid to analysis of time-resolved fluorescence anisotropy data ...

  14. A simple and sensitive surface molecularly imprinted polymers based fluorescence sensor for detection of λ-Cyhalothrin.

    Science.gov (United States)

    Liu, Chunbo; Song, Zhilong; Pan, Jianming; Yan, Yongsheng; Cao, Zhijing; Wei, Xiao; Gao, Lin; Wang, Juan; Dai, Jiangdong; Meng, Minjia; Yu, Ping

    2014-07-01

    In this study, surface molecularly imprinted YVO4:Eu(3+) nanoparticles with molecular recognitive optosensing activity were successfully prepared by precipitation polymerization using λ-Cyhalothrin (LC) as template molecules, methacrylic acid and ethylene glycol dimethacrylate as the polymerization precursors which could complex with template molecules, and the material has been characterized by SEM, TEM, FT-IR, XRD, TGA and so on. Meanwhile, the as-prepared core-shell structured nanocomposite (YVO4:Eu(3+)@MIPs), which was composed of lanthanide doped YVO4:Eu(3+) as fluorescent signal and surface molecular imprinted polymers as molecular selective recognition sites, could selectively and sensitively optosense the template molecules. After the experimental conditions were optimized, two linear relationship were obtained covering the concentration range of 2.0-10.0 μM and 10.0-90.0 μM, and the limit of detection (LOD) for LC was found to be 1.76 μM. Furthermore, a possible mechanism was put forward to explain the fluorescence quenching of YVO4:Eu(3+)@MIPs. More importantly, the obtained sensor was proven to be suitable for the detection of residues of LC in real examples. And the excellent performance of this sensor will facilitate future development of rapid and high-efficiency detection of LC. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Development of a silicon drift detector array: an x-ray fluorescence spectrometer for remote surface mapping

    Science.gov (United States)

    Gaskin, Jessica A.; Carini, Gabriella A.; Chen, Wei; De Geronimo, Gianluigi; Elsner, Ronald F.; Keister, Jeffrey W.; Kramer, Georgiana; Li, Zheng; Ramsey, Brian D.; Rehak, Pavel; Siddons, D. Peter

    2009-08-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  16. Development of a Silicon Drift Detector Array: An X-ray Fluorescence Spectrometer for Remote Surface Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Gaskin, J.A.; De Geronimo, G.; Carini, G.A.; Chen, W.; Elsner, R.F.; Kramer, G.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-09-11

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  17. Development of a Silicon Drift Detector Array: An X-ray Fluorescence Spectrometer for Remote Surface Mapping

    International Nuclear Information System (INIS)

    Gaskin, J.A.; De Geronimo, G.; Carini, G.A.; Chen, W.; Elsner, R.F.; Kramer, G.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-01-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang'e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  18. Experimental Research of Reliability of Plant Stress State Detection by Laser-Induced Fluorescence Method

    Directory of Open Access Journals (Sweden)

    Yury Fedotov

    2016-01-01

    Full Text Available Experimental laboratory investigations of the laser-induced fluorescence spectra of watercress and lawn grass were conducted. The fluorescence spectra were excited by YAG:Nd laser emitting at 532 nm. It was established that the influence of stress caused by mechanical damage, overwatering, and soil pollution is manifested in changes of the spectra shapes. The mean values and confidence intervals for the ratio of two fluorescence maxima near 685 and 740 nm were estimated. It is presented that the fluorescence ratio could be considered a reliable characteristic of plant stress state.

  19. In vivo study of the human skin by the method of laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Borisova, E.; Avramov, L.

    2000-01-01

    The goals of this study are to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced auto-fluorescence spectroscopy (LIAFS) for human skin and optimize of detection and diagnosis of hollow organs and skin. In recent years, there has been growing interest in the use of laser-induced fluorescence to discriminate disease from normal surrounding tissue. The most fluorescence studies have used exogenous fluorophores of this discrimination. The laser-induced auto-fluorescence which is used for diagnosis of tissues in the human body avoids administration of any drugs. In this study a technique for optical biopsy of in vivo human skin is presented. The auto-fluorescence characterization of tissue relies on different spectral properties of tissues. It was demonstrated a differentiation between normal skin and skin with vitiligo. Two main endogenous fluorophores in the human skin account for most of the cellular auto-fluorescence for excitation wavelength 337 nm reduced from of nicotinamide adenine dinucleotide and collagen. The auto-fluorescence spectrum of human skin depend on main internal absorbers which are blood and melanin. In this study was described the effect caused by blood and melanin content on the shape of the auto-fluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. (authors)

  20. Surface capped fluorescent semiconductor nanoparticles: radiolytic synthesis and some of its biological applications

    International Nuclear Information System (INIS)

    Saha, A.

    2006-01-01

    Semiconductor nanocrystals or colloidal quantum dots (QD's) have generated great research interest because of their unusual properties arising out of quantum confinement effects. Many researchers in the field of nanotechnology focus on the 'high quality' semiconductor quantum dots. A good synthetic route should yield nanoparticles with narrow size distribution, good crystallinity, high photostability, desired surface properties and high photoluminescence quantum efficiency. In the domain of colloidal chemistry, reverse micellar synthesis, high temperature thermolysis using organometallic precursors and synthesis in aqueous media using polyphosphates or thiols as stabilizers are the most prominent ones. In contrast, γ-radiation assisted synthesis can offer a simplified approach to prepare size-controlled nanoparticles at room temperature. Syntheses of thiol-capped II-VI nanoparticles by radiolytic method, its characterization and some of its luminescence-based applications of biological relevance will be presented. The versatility of thiols (RSH) can be emphasized here as changing the R-group imparts different functionality to the particles and thus chemical behavior of the particles can be manipulated according to the application intended for. (authors)

  1. Application of fluorescent microscopy and cascade filtration methods for analysis of soil microbial community

    Science.gov (United States)

    Ivanov, Konstantin; Pinchuk, Irina; Gorodnichev, Roman; Polyanskaya, Lubov

    2016-04-01

    Methods establishment of soil microbial cells size estimation called from the importance of current needs of research in microbial ecology. Some of the methods need to be improved for more detailed view of changes happen in microbiome of terrestrial ecosystems. The combination of traditional microscopy methods, fluorescence and filtration in addition to cutting-edge DNA analysis gives a wide range of the approaches for soil microbial ecologists in their research questions. In the most of the cases the bacterial cells size is limited of the natural conditions such as lack of nutrients or stress factors due to heterogeneity of soil system. In the samples of soils, lakes and rivers sediments, snow and rain water the bacterial cells were detected minimally of 0.2 microns. We established the combination of the cascade filtration and fluorescent microscopy for complex analysis of different terrestrial ecosystems and various soil types. Our modification based on the use of successively filtered soil suspension for collection of microbes by the membrane pores decrease. Combination with fluorescence microscopy and DNA analysis via FISH method gave the presentation of microbial interactions and review of ecological strategies of soil microorganisms. Humus horizons of primitive arctic soil were the most favorable for bacterial growth. Quantified biomass of soil bacteria depends on the dominance of cells with specific dimensions caused of stress factors. The average bacterial size of different soil varied from 0.23 to 0.38 microns, however in humus horizons of arctic soil we detected the contrast dominance of the bigger bacterial cells sized of 1.85 microns. Fungi in this case contributed to increase the availability of organic matter for bacteria because the fungal mycelium forms the appreciable part of microbial biomass of primitive arctic soil. The dominant content of bigger bacterial cells in forest and fallow soil as well as the opposite situation in arable soils caused

  2. Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods.

    Science.gov (United States)

    Pishkar, Leila; Taheri, Saba; Makarem, Somayeh; Alizadeh Zeinabad, Hojjat; Rahimi, Arash; Saboury, Ali Akbar; Falahati, Mojtaba

    2017-02-01

    In this study, a novel method to probe molecular interactions and binding of human hemoglobin (Hb) with nanodiamond (ND) was introduced based on the surface tension measurement. This method complements conventional techniques, which are basically done by zeta potential and dynamic light scattering (DLS) measurements, near and far circular dichroism (CD) spectroscopy, intrinsic and extrinsic fluorescence spectroscopy. Addition of ND to Hb solution increased the surface tension value of Hb-ND complex relative to those of Hb and ND molecules. The zeta potential values reveled that Hb and ND provide identical charge distribution at pH 7.5. DLS measurements demonstrated that Hb, ND, and ND-Hb complex have hydrodynamic radiuses of 98.37 ± 4.57, 122.07 ± 7.88 nm and 62.27 ± 3.70 at pH of 7.5 respectively. Far and near UV-CD results indicated the loss of α-helix structure and conformational changes of Hb, respectively. Intrinsic fluorescence data demonstrated that the fluorescence quenching of Hb by ND was the result of the static quenching. The hydrophobic interaction plays a pivotal role in the interaction of ND with Hb. Fluorescence intensity changes over time revealed conformational change of Hb continues after the mixing of the components (Hb-ND) till 15 min, which is indicative of the denaturation of the Hb relative to the protein control. Extrinsic fluorescence data showed a considerable enhancement of the ANS fluorescence intensity of Hb-ND system relative to the Hb till 60 nM of ND, likely persuaded by greater exposure of nonpolar residues of Hb hydrophobic pocket. The remarkable decrease in T m value of Hb in Hb-ND complex exhibits interaction of Hb with ND conducts to conformational changes of Hb. This study offers consequential discrimination into the interaction of ND with proteins, which may be of significance for further appeal of these nanoparticles in biotechnology prosecution.

  3. Magnetic core-shell fluorescent pH ratiometric nanosensor using a Stoeber coating method

    Energy Technology Data Exchange (ETDEWEB)

    Lapresta-Fernandez, A., E-mail: lapresta@ugr.es [Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Lessingstrasse 10, 07743 Jena (Germany); Instituto de Ciencia de Materiales de Sevilla, centro mixto CSIC-Univ. Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain); Doussineau, T. [Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Lessingstrasse 10, 07743 Jena (Germany); Universite Lyon 1, CNRS, UMR 5579, LASIM, F-69622 Villeurbanne (France); Moro, A.J. [Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Lessingstrasse 10, 07743 Jena (Germany); REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dutz, S. [Institute of Photonic Technology, Department of Nano Biophotonics, Jena (Germany); Steiniger, F. [Center for Electron Microscopy of the Medical Faculty, Jena (Germany); Mohr, G.J. [Fraunhofer Research Institution for Modular Solid State Technologies, Department of Polytronic Systems, Workgroup Sensor Materials, Josef-Engert-Strasse 13, D-93053 Regensburg (Germany)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Architecture combination of magnetic core with two fluorescence silica shells. Black-Right-Pointing-Pointer Both shells properly functionalized which develops ratiometric pH measurements. Black-Right-Pointing-Pointer Reference dye does not change significantly ({approx}1.9%) by modifying the pH. Black-Right-Pointing-Pointer Sensitivity range between 2.0% and 4.9% and a few seconds of response time. Black-Right-Pointing-Pointer One month stability with a signal variation of 4.3%. - Abstract: We describe the use of a modified Stoeber method for coating maghemite ({gamma}-Fe{sub 2}O{sub 3}) nanocrystals with silica shells in order to built magnetic fluorescent sensor nanoparticles in the 50-70 nm diameter range. In detail, the magnetic cores were coated by two successive silica shells embedding two fluorophores (two different silylated dye derivatives), which allows for ratiometric pH-measurements in the pH range 5-8. Silica coated magnetic nanoparticles were prepared using maghemite nanocrystals as cores (5-10 nm in diameter) coated by tetraethoxyorthosilicate via hydrolysis/condensation in ethanol, catalyzed by ammonia. In the inner shell was covalently attached a sulforhodamine B, which was used as a reference dye; while a pH-sensitive fluorescein was incorporated into the outer shell. Once synthesized, the particles were characterized in terms of morphology, size, composition and magnetization, using dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). TEM analysis showed the nanoparticles to be very uniform in size. Wide-angle X-ray diffractograms showed, for uncoated as well as coated nanoparticles, typical peaks for the spinel structure of maghemite at the same diffraction angle, with no structural changes after coating. When using VSM, we obtained the magnetization curves of the resulting nanoparticles and the typical magnetization

  4. Applying isotope methods in flowing surface waters

    International Nuclear Information System (INIS)

    Mook, W.G.

    1976-01-01

    The most frequent application of natural or environmental isotopes to investigate surface water is as tracer. Especially the natural variations in the 18 O/ 16 O ratio in rainfall are traced in streams and rivers. The isotopes deuterium, 13 C and 14 C enable refined applications such as the investigation of geochemical processes in waters. 18 O analyses are fairly fast (20 samples per day can be carried out) and require little water (1 to 10 ml). Therefore, the natural variations in the 18 O/ 16 O ratio of water are treated. There is a certain connection between the 18 O/ 16 O and D/H ratios in rainfall waters. 18 O analyses are somewhat easier to perform so that this technique is generally preferred. Additional D analyses are of great use in detecting geochemical processes, e.g. evaporation. Although tritium is still an important agent in hydrological studies, the concentration variations in nature are now lower than for 18 O compared to the usual experimental error. Furthermore, they are not so important geochemically. Accurate tritium measurements require relatively much time (1 or 2 analyses per day), are expensive (50 DM to 150 DM) and require more material (10 to 500 ml water), depending on the desired accuracy. The stable and radioactive carbon isotopes are mainly used in special cases to study certain geochemical processes. (orig./HK) [de

  5. Direct reconstruction of pharmacokinetic parameters in dynamic fluorescence molecular tomography by the augmented Lagrangian method

    Science.gov (United States)

    Zhu, Dianwen; Zhang, Wei; Zhao, Yue; Li, Changqing

    2016-03-01

    Dynamic fluorescence molecular tomography (FMT) has the potential to quantify physiological or biochemical information, known as pharmacokinetic parameters, which are important for cancer detection, drug development and delivery etc. To image those parameters, there are indirect methods, which are easier to implement but tend to provide images with low signal-to-noise ratio, and direct methods, which model all the measurement noises together and are statistically more efficient. The direct reconstruction methods in dynamic FMT have attracted a lot of attention recently. However, the coupling of tomographic image reconstruction and nonlinearity of kinetic parameter estimation due to the compartment modeling has imposed a huge computational burden to the direct reconstruction of the kinetic parameters. In this paper, we propose to take advantage of both the direct and indirect reconstruction ideas through a variable splitting strategy under the augmented Lagrangian framework. Each iteration of the direct reconstruction is split into two steps: the dynamic FMT image reconstruction and the node-wise nonlinear least squares fitting of the pharmacokinetic parameter images. Through numerical simulation studies, we have found that the proposed algorithm can achieve good reconstruction results within a small amount of time. This will be the first step for a combined dynamic PET and FMT imaging in the future.

  6. Determination of rare earth elements in pure solutions by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Kuada, T.A.

    1984-01-01

    An X-ray fluorescence method for the determination of rare earth elements in pure solutions is described. The thin film sample preparation technique, by dropping the solution on filter paper as supporting material, has been utilized. The best conditions for X-ray spectrometer operation have been stablished. The analytical lines and internal standard have been selected, defining measurement conditions for each rare earth elements. With the settled parameters, the rare earth elements in pure solutions were determined. The concentration range during the runs was from 0,05 to 5 gRE/L, depending on the element. The standard deviation was less than 10% and the accuracy was between 0,2 to 10% as a function of the concentration. The main interfering lines of others lanthanides were studied for each element, and the method was also applied to fission products represented by the rare earth alements. The method is suitable for individual rare earth element determination in presence of some lanthanides. However, in solutions containing a mixture of all rare earth elements, the X-ray emission spectrum is very complex, making it difficult to get accurated measurements. In relation to fission products represented by rare earth elements, only Ce, Pr, Nd and Sm could be analised in presence of uranium and other fission products. (Author) [pt

  7. A simple HPLC-fluorescence method for quantitation of curcuminoids and its application to turmeric products.

    Science.gov (United States)

    Zhang, Junwei; Jinnai, Sakie; Ikeda, Rie; Wada, Mitsuhiro; Hayashida, Shinjiro; Nakashima, Kenichiro

    2009-03-01

    An HPLC method using fluorescence detection for the quantitation of curcuminoids, such as curcumin (C), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) in turmeric products is described. This method involves a simple ultrasonic extraction with methanol as a pretreatment of turmeric products. The separation of curcuminoids and 2,5-xylenol (internal standard) was achieved within 30 min on a Cadenza CD-C(18) column (250 x 4.6 mm; i.d., 3 microm) with a mixture of acetate buffer and CH(3)CN. The calibration curves of standard curcuminoids showed good linearities of more than 0.993 of the correlation coefficient. The instrumental detection limits for C, DMC and BDMC (signal-to-noise ratio = 3) were 1.5, 0.9 and 0.09 ng mL(-1), respectively. The relative standard deviations of intra-and inter-day assays by curcuminoids spiked to turmeric powder were less than 6.1%. The proposed method was successfully applied to determine curcuminoids in commercial turmeric products, such as turmeric powders, a tablet, a dressing, a beverage, tea, and crude drugs.

  8. Development of a facile and sensitive HPLC-FLD method via fluorescence labeling for triterpenic acid bioavailability investigation.

    Science.gov (United States)

    You, Jinmao; Wu, Di; Zhao, Mei; Li, Guoliang; Gong, Peiwei; Wu, Yueyue; Guo, Yu; Chen, Guang; Zhao, Xianen; Sun, Zhiwei; Xia, Lian; Wu, Yongning

    2017-06-01

    Triterpenic acids are widely distributed in many fruits and are known for their medicinal benefits. The study of bioavailability has been an important task for a better understanding of the triterpenic acids. Although many methods based on fluorescence labeling for triterpenic acid determination have been established, these reported methods needed anhydrous conditions, which are not suitable for the convenient study of triterpenic acid bioavailability. Inspired by that, a versatile method, which overcomes the difficulty of the reported methods, has been first developed in this study. The novel method using 2-[12-benzo[b]acridin-5- (12H)-yl]-acetohydrazide (BAAH) as the fluorescence labeling reagent coupled with high-performance liquid chromatography with fluorescence detection was first developed for the study of triterpenic acid bioavailability. Furthermore, the labeling conditions have been optimized in order to achieve the best fluorescence labeling yield. Under the optimal conditions, the quantitative linear range of analytes was 2-1000 ng mL -1 , and the correlation coefficients were >0.9998. The detection limits for all triterpenic acid derivatives were achieved within the range of 0.28-0.29 ng mL -1 . The proposed method was successfully applied to the study of triterpenic acid bioavailability with excellent applicability and good reproducibility. Copyright © 2016 John Wiley & Sons, Ltd.

  9. phiFLIM: a new method to avoid aliasing in frequency domain fluorescence lifetime imaging microscopy.

    NARCIS (Netherlands)

    van Munster, E.B.; Gadella, Th.W.J.

    2004-01-01

    In conventional wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM), excitation light is intensity-modulated at megahertz frequencies. Emitted fluorescence is recorded by a CCD camera through an image intensifier, which is modulated at the same frequency. From images recorded

  10. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija [University of Ljubljana, Faculty of Pharmacy (Slovenia); Romih, Rok [University of Ljubljana, Faculty of Medicine, Institute of Cell Biology (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics (Slovenia); Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2012-10-15

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 {mu}g/cm{sup 3} in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  11. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Science.gov (United States)

    Kralj, Slavko; Rojnik, Matija; Romih, Rok; Jagodič, Marko; Kos, Janko; Makovec, Darko

    2012-10-01

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 μg/cm3 in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  12. Chemical method for producing smooth surfaces on silicon wafers

    Science.gov (United States)

    Yu, Conrad

    2003-01-01

    An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).

  13. Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method

    International Nuclear Information System (INIS)

    Zang, Zhigang; Tang, Xiaosheng

    2015-01-01

    Highlights: • A dual phase hydrothermal method was developed to synthesize ZnO nanoparticles. • ZnO nanoparticles show a stability and solubility in the aqueous environment. • ZnO nanoparticles with a blue emission wavelength at around 420 nm and small size (30 nm). • ZnO nanoparticles as biological labeling agent was also shown. - Abstract: A facile synthesis method for the formation of ZnO nanoparticles by using a double-phase reaction was demonstrated in this paper. The morphology of the synthesized ZnO nanoparticles shows a flower-shape. Hydrogen peroxide was used as a unique oxygenic source to promote the formation of ZnO in the presence of organic zinc precursor. The as-synthesized ZnO nanoparticles also show a stability and solubility in the aqueous environment. The structure and properties of ZnO nanoparticles were investigated by the transmission electron microscopy (TEM) and X-ray diffraction (XRD) as well as UV–vis and photoluminescence spectroscopy. The as-prepared hydrophobic colloidal ZnO nanoparticles could be modified to become water-soluble via ligand exchange with amineothanethiol⋅HCl while retaining the photoluminescence properties. In addition, the potential application for biological label of water-soluble ZnO nanoparticles were also demonstrated. These results not only have applications towards using colloidal ZnO nanoparticles effectively in biological fluorescence imaging, but also promote its application in the field of targeted drug delivery

  14. A Model System for Concurrent Detection of Antigen and Antibody Based on Immunological Fluorescent Method

    Directory of Open Access Journals (Sweden)

    Yuan-Cheng Cao

    2015-01-01

    Full Text Available This paper describes a combined antigen/antibody immunoassay implemented in a 96-well plate using fluorescent spectroscopic method. First, goat anti-human IgG was used to capture human IgG (model antigen; goat anti-human IgG (Cy3 or FITC was used to detect the model antigen; a saturating level of model antigen was then added followed by unlabelled goat anti-human IgG (model antibody; finally, Cy3 labelled rabbit anti-goat IgG was used to detect the model antibody. Two approaches were applied to the concomitant assay to analyze the feasibility. The first approach applied FITC and Cy3 when both targets were present at the same time, resulting in 50 ng/mL of the antibody detection limit and 10 ng/mL of antigen detection limit in the quantitative measurements of target concentration, taking the consideration of FRET efficiency of 68% between donor and acceptor. The sequential approach tended to lower the signal/noise (S/N ratio and the detection of the model antigen (lower than 1 ng/mL had better sensitivity than the model antibody (lower than 50 ng/mL. This combined antigen/antibody method might be useful for combined detection of antigens and antibodies. It will be helpful to screen for both antigen and antibody particularly in the situations of the multiserotype and high-frequency mutant virus infections.

  15. Enumeration of extracellular vesicles by a new improved flow cytometric method is comparable to fluorescence mode nanoparticle tracking analysis.

    Science.gov (United States)

    Pasalic, Leonardo; Williams, Rebekka; Siupa, Agnieszka; Campbell, Heather; Henderson, Michelle J; Chen, Vivien M Y

    2016-05-01

    Extracellular vesicles (EVs) play a role in a variety of physiological and pathological processes. However, use of EVs as biomarkers has been hampered by limitations of current detection and enumeration methods. We compared fluorescence-threshold flow cytometry (FT-FC) to nanoparticle tracking analysis (NTA) for enumeration of cell culture-derived EVs. FT-FC and NTA utilising fluorescence mode (F-NTA) enumerated similar numbers of EVs stained with a membrane dye PKH67. Both methods were sufficiently sensitive to detect cell-derived EVs above the background of culture medium. Light scatter NTA (LS-NTA) detected 10-100× more particles than either fluorescence-based method but demonstrated poor specificity. F-NTA appeared to have better sensitivity for vesicles, however, the FT-FC method combined direct enumeration of EVs with high sensitivity and specificity in the >100nm range. Due to wider availability and higher degree of automation and standardisation, FT-FC is a reasonable surrogate to F-NTA for quantification of EVs. Extracellular vesicles are small particles, which can act as tools for intercellular communication. One recent area of interest in EVs is their potentials as biomarkers. In this article, the authors investigated and compared fluorescence-threshold flow cytometry (FT-FC) to nanoparticle tracking analysis (NTA) for the detection of EVs and showed that FT- FC method could be more advantageous. This technique should provide a new alternative for the future. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. ROUGHNESS ON WOOD SURFACES AND ROUGHNESS MEASUREMENT METHODS

    Directory of Open Access Journals (Sweden)

    İsmail Aydın

    2003-04-01

    Full Text Available Some visual characteristics of wood such as color, pattern and texture determine the quality of manufactured products. Surface properties of wood material are important both in production and marketing after production. Initial studies related to the roughness of wood surface were begun in early 1950’s. However, no general agreed standardization can not have been developed for wood surfaces. Surface roughness of wood is function of the production process, product type and the natural anatomical properties of wood. Contact and non-contact tracing methods are used to measure of wood surface roughness. Surface roughness also affects the gluability and wettability of wood surfaces. The success in finishing also depends on the surface roughness of wood.

  17. An X-ray fluorescence method for the determination of small quantities el elements collected on filters

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.

    1981-01-01

    An X-ray fluorescence method for the determination of As, Ba, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, U, V and Zn collected on P.V.C. filters in concentration ranges from 0,6 to 1000μg, depending on the element, is described. A sequential automatic spectrometer with a chromium tube is used for tho Ba determination, while As, Hg, Pb, Se and U are bottler determined with a molybdenum one. For the rest of the elements a tungsten target is preferred. The interferences between AsK α 1 ,2- PbL α 1 ,2 and CrK α 1 ,2-Vkβ 1 ,3 lines are corrected by applying specific coefficients. The radial variation of the primary X-ray beam intensity on the irradiated surface has been specially studied with chromium, gold, molybdenum and tungsten tubes. For that purpose different x-ray wavelengths in the range 9,89 A to 0,56 A have been selected. The curves obtained show a rather high heterogeneity for the excitation source. This conclusion implies the need for an homogeneous distribution of elements on the filter. (Author) 7 refs

  18. Use of fluorescence to probe the surface dynamics during disorder-to-order transition and cluster formation in dihalonaphthalene-water thin films on Al2O3(0001)

    International Nuclear Information System (INIS)

    Evans, M.A.; Hoss, D.R.; Howard, K.E.; Louie, A.D.; Bishop, A.J.; Martin, K.A.; Nishimura, A.M.

    2006-01-01

    Amorphous dihalonaphthalenes that are prepared by vacuum deposition onto a cold Al 2 O 3 surface form electronically excited dimers when optically pumped, and their emission is characteristically red-shifted, broad and featureless compared to the monomeric fluorescence. If the surface is heated, the adlayer undergoes a disorder-to-order transition at a temperature characteristic of the molecule. Since pure crystalline dihalonaphthalenes typically fluoresce and do not exhibit excimeric features, the transition was studied by taking advantage of the changes in the spectral characteristics of the adlayer. These included transmittance, and emission from fluorescence and excimer. The combination of these methods allowed a close look at the surface dynamics of molecules on the surface of Al 2 O 3 as the adlayer was heated from the deposition temperature to desorption. If a bilayer is formed by depositing water onto the surface with the organic adlayer on top, water, with its lower desorption energy, can be made to percolate into the organic layer. The optical probes indicate that the water clearly associates with the organic molecules while the excess water desorbs. By varying the coverage of either the water or the dihalonaphthalene, the stoichiometric composition of the cluster can be determined and are reported here

  19. Formation of Reflecting Surfaces Based on Spline Methods

    Science.gov (United States)

    Zamyatin, A. V.; Zamyatina, E. A.

    2017-11-01

    The article deals with problem of reflecting barriers surfaces generation by spline methods. The cases of reflection when a geometric model is applied are considered. The surfaces of reflecting barriers are formed in such a way that they contain given points and the rays reflected at these points and hit at the defined points of specified surface. The reflecting barrier surface is formed by cubic splines. It enables a comparatively simple implementation of proposed algorithms in the form of software applications. The algorithms developed in the article can be applied in architecture and construction design for reflecting surface generation in optics and acoustics providing the geometrical model of reflex processes is used correctly.

  20. System and method for extracting a sample from a surface

    Science.gov (United States)

    Van Berkel, Gary; Covey, Thomas

    2015-06-23

    A system and method is disclosed for extracting a sample from a sample surface. A sample is provided and a sample surface receives the sample which is deposited on the sample surface. A hydrophobic material is applied to the sample surface, and one or more devices are configured to dispense a liquid on the sample, the liquid dissolving the sample to form a dissolved sample material, and the one or more devices are configured to extract the dissolved sample material from the sample surface.

  1. Determination of flavonoids in pharmaceutical preparations using Terbium sensitized fluorescence method

    Directory of Open Access Journals (Sweden)

    M Shaghaghi

    2009-12-01

    Full Text Available "nBackground and the Purpose of the Study: The aim of this study was development and validation of a simple, rapid and sensitive spectrofluorimetric method for determination of total flavonoids in two topical formulations of Calendula officinalis, Ziziphus Spina-christi and an oral drop of Hypiran perforatum L. The proposed method is based on the formation of terbium (Tb3+ "n-flavonoids (quercetin as a reference standard complex at pH 7.0, which has fluorescence intensely with maximum emission at 545 nm when excited at 310 nm. "nMethod "n: For ointments masses of topical formulations were weighed and added to ethanol-aqueous buffer (pH 10.0 and the resulting mixtures were shaken and then two phases were separated by centrifugation. Aqueous phases were filtered and then diluted with water. For Hypiran drops an appropriate portion was diluted with ethanol and then aliquots of sample or standard solutions were determined according to the experimental procedure. "nResults "n: Under the optimum conditions, total concentrations of flavonoids (as quercetin equivalent in three tested formulations were found to be 0.204 mg/g (for Dermatin cream, 0.476 mg/g (for Calendula ointment and 13.50 μg/ml (for Hypiran drops. Analytical recoveries from samples spiked with different amounts of quercetin were 96.1-104.0 % with RSD % of less than 3.5. Conclusion : The proposed method which requires a simple dissolution step without any matrix interferences provided high sensitivity and selectivity and was easily applied to determine total flavonoids in real samples of three investigated formulations with excellent reproducibility.

  2. Quantitative analysis of concrete using portable x-ray fluorescence: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Washington, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Narrows, William [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Msgwood, Leroy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-27

    During Decommissioning and Demolition (D&D) activities at SRS, it is important that the building be screened for radionuclides and heavy metals to ensure that the proper safety and disposal metrics are in place. A major source of contamination at DOE facilities is the accumulation of mercury contamination, from nuclear material processing and Liquid Waste System (LWS). This buildup of mercury could possibly cause harm to any demolition crew or the environment should this material be released. The current standard method is to take core samples in various places in the facility and use X-ray fluorescence (XRF) to detect the contamination. This standard method comes with a high financial value due to the security levels of these sample facilities with unknown contamination levels. Here in we propose the use of portable XRF units to detect for this contamination on-site. To validate this method, the instrument has to be calibrated to detect the heavy metal contamination, be both precise with the known elemental concentrations and consistent with its actual results of a sample concrete and pristine contaminant, and be able to detect changes in the sample concrete’s composition. After receiving the various concrete samples with their compositions found by a XRF wave-dispersive method, the calibration factor’s linear regressions were adjusted to give the baseline concentration of the concrete with no contamination. Samples of both concrete and concrete/flyash were evaluated; their standard deviations revealed that the measurements were consistent with the known composition. Finally, the samples were contaminated with different concentrations of sodium tungsten dihydrate, allowed to air dry, and measured. When the contaminated samples were analyzed, the heavy metal contamination was seen within the spectrum of the instrument, but there was not a trend of quantification based on the concentration of the solution.

  3. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  4. A NEW METHOD FOR IN-VIVO QUANTIFICATION OF CHANGES IN INITIAL ENAMEL CARIES WITH LASER FLUORESCENCE

    NARCIS (Netherlands)

    DEJONG, EDJ; SUNDSTROM, F; WESTERLING, H; TRANAEUS, S; TENBOSCH, JJ; ANGMARMANSSON, B

    1995-01-01

    A new method for the in vivo assessment of changes in initial enamel caries lesions was developed and tested. A CCD camera equipped with a high-pass filter (lambda > 520 nm) collects the fluorescence image of carious teeth, illuminated intraorally with diffuse laser light (lambda = 488 nm).

  5. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); Moricz, Agnes M. [L. Eoetvoes University, Department of Chemical Technology and Environmental Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Kroepfl, Krisztina [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Szikora, Szilvia [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Parra, Lue Meru Marco [Universidad Centro-occidental Lisandro Alvarado, Decanato de Agronomia, Departamento de Quimica y Suelos Unidad de Analisis Instrumental, Apartado Postal 4076, Cabudare 3023 (Venezuela); Zaray, Gyula [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary) and Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary) and L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary)]. E-mail: zaray@ludens.elte.hu

    2006-11-15

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods.

  6. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    Science.gov (United States)

    Mihucz, Victor G.; Móricz, Ágnes M.; Kröpfl, Krisztina; Szikora, Szilvia; Tatár, Enikő; Parra, Lué Merú Marcó; Záray, Gyula

    2006-11-01

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods.

  7. Method 445.0 In Vitro Determination of Chlorophyll a and Pheophytin ain Marine and Freshwater Algae by Fluorescence

    Science.gov (United States)

    This method provides a procedure for low level determination of chlorophyll a (chl a) and its magnesium free derivative, pheophytin a (pheo a), in marine and freshwater phytoplankton using fluorescence detection.(1,2) Phaeophorbides present in the sample are determined collective...

  8. High sensitivity fluorescent single particle and single molecule detection apparatus and method

    Science.gov (United States)

    Mathies, Richard A.; Peck, Konan; Stryer, Lubert

    1990-01-01

    Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

  9. Alternative methods to model frictional contact surfaces using NASTRAN

    Science.gov (United States)

    Hoang, Joseph

    1992-01-01

    Elongated (slotted) holes have been used extensively for the integration of equipment into Spacelab racks. In the past, this type of interface has been modeled assuming that there is not slippage between contact surfaces, or that there is no load transfer in the direction of the slot. Since the contact surfaces are bolted together, the contact friction provides a load path determined by the normal applied force (bolt preload) and the coefficient of friction. Three alternate methods that utilize spring elements, externally applied couples, and stress dependent elements are examined to model the contacted surfaces. Results of these methods are compared with results obtained from methods that use GAP elements and rigid elements.

  10. Determinations of silicon and phosphorus in Pepperbush standard reference material by neutron activation and x-ray fluorescence methods

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Nishio, Hirofumi; Hayashi, Takeshi; Kusakabe, Toshio; Iwata, Shiro.

    1987-01-01

    Silicon and phosphorus contents in Pepperbush standard reference material were determined by neutron activation and X-ray fluorescence methods. In neutron activation analysis, β-ray spectra of 32 P produced by 31 P(n,γ) 32 P reaction on Pepperbush and standard samples were measured by a low background β-ray spectrometer. In X-ray fluorescence analysis, the standard samples were prepared by mixing the Pepperbush powder with silicon dioxide and diammonium hydrogenphosphate. Characteristic X-rays from the samples were analyzed by a wavelength dispersive X-ray fluorescence spectrometer. From the β and X-ray intensities, silicon and phosphorus contents in Pepperbush were determined to be 1840 ± 80 and 1200 ± 50 μg g -1 , respectively. (author)

  11. Investigation of Intracellular Free Ca2+ Concentration Dynamics with Fluorescence Methods

    Directory of Open Access Journals (Sweden)

    Figen Cicek

    2016-09-01

    Full Text Available Most of the extracellular stimulus arrive to the cell membrane result with the increase in cytoplasmic free Ca2+ concentration [Ca2+]i. Because of the huge Ca2+ concentration differences between the cytoplasm ( and #8776;10-7 M and extracellular fluid and endoplasmic reticulum (ER - which is the major Ca2+ storage organelle in especially non electrically excitable cells ( and #8776;10-3 M, a large electro-chemical gradient repel Ca2+ to the plasma or ER. Therefore a signal which temporarily opens Ca2+ channels, induce a fast influx of Ca2+ through the cytosol and increase the its concentration about 10-20 fold. At this organization free Ca2+ functions as a intracellular signalling molecule and a second messenger. In this way many intracellular signalling proteins activated and cellular functions like gene expression, secretion, cell proliferation and division, apoptosis, and also myocyte contraction, endocrine cell degranulation and neuronal transmission are regulated. Thus, the key role of Ca2+ in many intracellular process, makes the dynamic measurements necessary for an understanding of the signalling mechanisms. Fluorescence imaging techniques make possible of monitoring the spatiotemporal Ca2+ response patterns in cytoplasm. In the last decades, especially their ease of loading, and minimum manipulations to the cell homeostasis, make these techniques unique with respect to the other methods. [Archives Medical Review Journal 2016; 25(3.000: 319-334

  12. Size-controlled fluorescent nanodiamonds: A facile method of fabrication and color-center counting

    KAUST Repository

    Mahfouz, Remi

    2013-01-01

    We present a facile method for the production of fluorescent diamond nanocrystals (DNCs) of different sizes and efficiently quantify the concentration of emitting defect color centers (DCCs) of each DNC size. We prepared the DNCs by ball-milling commercially available micrometer-sized synthetic (high pressure, high temperature (HPHT)) diamonds and then separated the as-produced DNCs by density gradient ultracentrifugation (DGU) into size-controlled fractions. A protocol to enhance the uniformity of the nitrogen-vacancy (NV) centers in the diamonds was devised by depositing the DNCs as a dense monolayer on amino-silanized silicon substrates and then subjecting the monolayer to He+ beam irradiation. Using a standard confocal setup, we analyzed the average number of NV centers per crystal, and obtained a quantitative relationship between the DNC particle size and the NV number per crystal. This relationship was in good agreement with results from previous studies that used more elaborate setups. Our findings suggest that nanocrystal size separation by DGU may be used to control the number of defects per nanocrystal. The efficient approaches described herein to control and quantify DCCs are valuable to researchers as they explore applications for color centers and new strategies to create them. © 2013 The Royal Society of Chemistry.

  13. Size-controlled fluorescent nanodiamonds: a facile method of fabrication and color-center counting

    Science.gov (United States)

    Mahfouz, Remi; Floyd, Daniel L.; Peng, Wei; Choy, Jennifer T.; Loncar, Marko; Bakr, Osman M.

    2013-11-01

    We present a facile method for the production of fluorescent diamond nanocrystals (DNCs) of different sizes and efficiently quantify the concentration of emitting defect color centers (DCCs) of each DNC size. We prepared the DNCs by ball-milling commercially available micrometer-sized synthetic (high pressure, high temperature (HPHT)) diamonds and then separated the as-produced DNCs by density gradient ultracentrifugation (DGU) into size-controlled fractions. A protocol to enhance the uniformity of the nitrogen-vacancy (NV) centers in the diamonds was devised by depositing the DNCs as a dense monolayer on amino-silanized silicon substrates and then subjecting the monolayer to He+ beam irradiation. Using a standard confocal setup, we analyzed the average number of NV centers per crystal, and obtained a quantitative relationship between the DNC particle size and the NV number per crystal. This relationship was in good agreement with results from previous studies that used more elaborate setups. Our findings suggest that nanocrystal size separation by DGU may be used to control the number of defects per nanocrystal. The efficient approaches described herein to control and quantify DCCs are valuable to researchers as they explore applications for color centers and new strategies to create them.

  14. Fluorescent particle tracers in surface hydrology: a proof of concept in a semi-natural hillslope

    Directory of Open Access Journals (Sweden)

    F. Tauro

    2012-08-01

    Full Text Available In this paper, a proof of concept experiment is conducted to assess the feasibility of tracing overland flow on an experimental hillslope plot via a novel fluorescent particle tracer. Experiments are performed by using beads of diameters ranging from 75 to 1180 μm. Particles are sensed through an experimental apparatus comprising a light source and a video acquisition unit. Runoff on the experimental plot is artificially simulated by using a custom-built rainfall system. Particle transits are detected through supervised methodologies requiring the presence of operators and unsupervised procedures based on image analysis techniques. Average flow velocity estimations are executed based on travel time measurements of the particles as they are dragged by the overland flow on the hillslope. Velocities are compared to flow measurements obtained using rhodamine dye. Experimental findings demonstrate the potential of the methodology for understanding overland flow dynamics in complex natural settings. In addition, insights on the optimization of particle size are presented based on the visibility of the beads and their accuracy in flow tracing.

  15. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein.

    Science.gov (United States)

    Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A

    2017-04-01

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low

  16. Surface-activated joining method for surveillance coupon reconstitution

    International Nuclear Information System (INIS)

    Kaihara, Shoichiro; Nakamura, Terumi

    1993-01-01

    As nuclear power plants approach the end of their license periods and license renewal is contemplated, there is an increasing need to expand the data base of mechanical properties obtainable from archival surveillance specimens. A new joining method for reconstituting broken Charpy specimens is being developed, the objective being to retain the original properties of the material in the process. The new method is called surface-activated joining (SAJ). It is designed to obtain a good junction without applying extra heating and deformation. In particular, the purpose of SAJ is to minimize the width of the heat-affected zone (HAZ) and to decrease the maximum temperature experienced by the specimen during reconsolidation of the two pieces. Generally, machined metal surfaces are contaminated with films of oxide, adsorbed gas, oil, or other vapors that impede bonding of surfaces during joining. However, if surface contamination is removed and the two surfaces are mated as closely as possible, joining can be achieved at low temperatures and modest stress levels. In order to apply the SAJ method, the following requirements must be met: (1) inert atmosphere to protect the surfaces from atmospheric gases and oxidation; (2) removal of the existing contamination layers to activate the surfaces; and (3) method for bringing the two surfaces into very intimate contact prior to joining

  17. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  18. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, California 90095 (United States); Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2015-11-15

    Purpose: To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). Methods: The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. Results: On phantom point clouds, their method

  19. A method for the measurement of in line pistachio aflatoxin concentration based on the laser induced fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paghaleh, Soodeh Jamali [Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Askari, Hassan Ranjbar; Marashi, Seyed Mohammad Bagher [Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Rahimi, Mojtaba, E-mail: m_rahimi@vru.ac.ir [Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Bahrampour, Ali Reza [Physics Department of Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2015-05-15

    Contamination of pistachio nuts with aflatoxin is one of the most significant issues related to pistachio health and expert. A fast pistachio aflatoxin concentration measurement method based on the laser induced fluorescence spectroscopy (LIFS) is proposed. The proposed method from theoretical and experimental points of view is analyzed. In our experiments XeCl Excimer laser is employed as an Ultra Violet (UV) source (λ=308 nm) and a UV–visible (UV–vis) spectrometer is used for fluorescent emission detection. Our setup is employed to measure the concentration of different type of Aflatoxins in pistachio nuts. Measurements results obtained by the LIFS method are compared with those are measured by the standard HPLC method. Aflatoxins concentrations are in good agreement with those are obtained by the HPLC method. The proposed laser induced fluorescence spectroscopy can be used as an in line aflatoxins concentrations measurement instrument for industrial applications. - Highlights: • XeCl Excimer laser is employed as an UV source for measurement of AFs in pistachio nuts. • Results are compared with those are measured by the standard HPLC method. • LIFS is an online AFs concentration measurement method for industrial applications.

  20. Referencing techniques for high-speed confocal fluorescence lifetime imaging microscopy (FLIM) based on analog mean-delay (AMD) method

    Science.gov (United States)

    Kim, Byungyeon; Lee, Minsuk; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2017-02-01

    Analog mean-delay (AMD) method is a new powerful alternative method in determining the lifetime of a fluorescence molecule for high-speed confocal fluorescence lifetime imaging microscopy (FLIM). Even though the photon economy and the lifetime precision of the AMD method are proven to be as good as the state-of-the-art time-correlated single photon counting (TC-SPC) method, there have been some speculations and concerns about the accuracy of this method. In the AMD method, the temporal waveform of an emitted fluorescence signal is directly recorded with a slow digitizer whose bandwidth is much lower than the temporal resolution of lifetime to be measured. We found that the drifts and the fluctuations of the absolute zero position in a measured temporal waveform are the major problems in the AMD method. As a referencing technique, we already proposed dual-channel waveform measurement scheme that may suppress these errors. In this study, we have demonstrated real-time confocal AMD-FLIM system with dual-channel waveform measurement technique.

  1. A method for the measurement of in line pistachio aflatoxin concentration based on the laser induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Paghaleh, Soodeh Jamali; Askari, Hassan Ranjbar; Marashi, Seyed Mohammad Bagher; Rahimi, Mojtaba; Bahrampour, Ali Reza

    2015-01-01

    Contamination of pistachio nuts with aflatoxin is one of the most significant issues related to pistachio health and expert. A fast pistachio aflatoxin concentration measurement method based on the laser induced fluorescence spectroscopy (LIFS) is proposed. The proposed method from theoretical and experimental points of view is analyzed. In our experiments XeCl Excimer laser is employed as an Ultra Violet (UV) source (λ=308 nm) and a UV–visible (UV–vis) spectrometer is used for fluorescent emission detection. Our setup is employed to measure the concentration of different type of Aflatoxins in pistachio nuts. Measurements results obtained by the LIFS method are compared with those are measured by the standard HPLC method. Aflatoxins concentrations are in good agreement with those are obtained by the HPLC method. The proposed laser induced fluorescence spectroscopy can be used as an in line aflatoxins concentrations measurement instrument for industrial applications. - Highlights: • XeCl Excimer laser is employed as an UV source for measurement of AFs in pistachio nuts. • Results are compared with those are measured by the standard HPLC method. • LIFS is an online AFs concentration measurement method for industrial applications

  2. Interferometric method for measuring high velocities of diffuse surfaces

    International Nuclear Information System (INIS)

    Maron, Y.

    1978-01-01

    An interferometric method for measuring the displacement of diffuse surfaces moving with velocities of a few microsecond is presented. The method utilizes the interference between two light beams reflected from a constant area of the moving surface at two different angles. It enables the detection of high rate velocity variations. Light source of a fairly low temporal coherence and power around 100mW is needed. (author)

  3. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter

  4. DigiWarp: a method for deformable mouse atlas warping to surface topographic data

    International Nuclear Information System (INIS)

    Joshi, Anand A; Shattuck, David W; Toga, Arthur W; Chaudhari, Abhijit J; Li Changqing; Cherry, Simon R; Dutta, Joyita; Leahy, Richard M

    2010-01-01

    For pre-clinical bioluminescence or fluorescence optical tomography, the animal's surface topography and internal anatomy need to be estimated for improving the quantitative accuracy of reconstructed images. The animal's surface profile can be measured by all-optical systems, but estimation of the internal anatomy using optical techniques is non-trivial. A 3D anatomical mouse atlas may be warped to the estimated surface. However, fitting an atlas to surface topography data is challenging because of variations in the posture and morphology of imaged mice. In addition, acquisition of partial data (for example, from limited views or with limited sampling) can make the warping problem ill-conditioned. Here, we present a method for fitting a deformable mouse atlas to surface topographic range data acquired by an optical system. As an initialization procedure, we match the posture of the atlas to the posture of the mouse being imaged using landmark constraints. The asymmetric L 2 pseudo-distance between the atlas surface and the mouse surface is then minimized in order to register two data sets. A Laplacian prior is used to ensure smoothness of the surface warping field. Once the atlas surface is normalized to match the range data, the internal anatomy is transformed using elastic energy minimization. We present results from performance evaluation studies of our method where we have measured the volumetric overlap between the internal organs delineated directly from MRI or CT and those estimated by our proposed warping scheme. Computed Dice coefficients indicate excellent overlap in the brain and the heart, with fair agreement in the kidneys and the bladder.

  5. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence.

    Science.gov (United States)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ∼100 μm scale and ∼20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (∼ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ∼3%.

  6. Surface treatment and protection method for cadmium zinc telluride crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-01-01

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water.

  7. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  8. Comparison study of intraoperative surface acquisition methods for surgical navigation.

    Science.gov (United States)

    Simpson, Amber L; Burgner, Jessica; Glisson, Courtenay L; Herrell, S Duke; Ma, Burton; Pheiffer, Thomas S; Webster, Robert J; Miga, Michael I

    2013-04-01

    Soft-tissue image-guided interventions often require the digitization of organ surfaces for providing correspondence from medical images to the physical patient in the operating room. In this paper, the effect of several inexpensive surface acquisition techniques on target registration error and surface registration error (SRE) for soft tissue is investigated. A systematic approach is provided to compare image-to-physical registrations using three different methods of organ spatial digitization: 1) a tracked laser-range scanner (LRS), 2) a tracked pointer, and 3) a tracked conoscopic holography sensor (called a conoprobe). For each digitization method, surfaces of phantoms and biological tissues were acquired and registered to CT image volume counterparts. A comparison among these alignments demonstrated that registration errors were statistically smaller with the conoprobe than the tracked pointer and LRS (pconoscopic holography) of digitizing surfaces for clinical usage. The tracked conoscopic holography device outperforms LRS acquisitions with respect to registration accuracy.

  9. Laser method of acoustical emission control from vibrating surfaces

    Science.gov (United States)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  10. A GPU-based mipmapping method for water surface visualization

    Science.gov (United States)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  11. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method

    Science.gov (United States)

    Fugit, Kyle D.; Jyoti, Amar; Upreti, Meenakshi; Anderson, Bradley D.

    2014-01-01

    A non-invasive fluorescence method was developed to monitor liposomal release kinetics of the anticancer agent topotecan (TPT) in physiological fluids and subsequently used to explore the cause of accelerated release in plasma. Analyses of fluorescence excitation spectra confirmed that unencapsulated TPT exhibits a red shift in its spectrum as pH is increased. This property was used to monitor TPT release from actively loaded liposomal formulations having a low intravesicular pH. Mathematical release models were developed to extract reliable rate constants for TPT release in aqueous solutions monitored by fluorescence and release kinetics obtained by HPLC. Using the fluorescence method, accelerated TPT release was observed in plasma as previously reported in the literature. Simulations to estimate the intravesicular pH were conducted to demonstrate that accelerated release correlated with alterations in the low intravesicular pH. This was attributed to the presence of ammonia in plasma samples rather than proteins and other plasma components generally believed to alter release kinetics in physiological samples. These findings shed light on the critical role that ammonia may play in contributing to the preclinical/clinical variability and performance seen with actively-loaded liposomal formulations of TPT and other weakly-basic anticancer agents. PMID:25456833

  12. Research on testing instrument and method for correction of the uniformity of image intensifier fluorescence screen brightness

    Science.gov (United States)

    Qiu, YaFeng; Chang, BenKang; Qian, YunSheng; Fu, RongGuo

    2011-09-01

    To test the parameters of image intensifier screen is the precondition for researching and developing the third generation image intensifier. The picture of brightness uniformity of tested fluorescence screen shows bright in middle and dark at edge. It is not so direct to evaluate the performance of fluorescence screen. We analyze the energy and density distribution of the electrons, After correction, the image in computer is very uniform. So the uniformity of fluorescence screen brightness can be judged directly. It also shows the correction method is reasonable and close to ideal image. When the uniformity of image intensifier fluorescence screen brightness is corrected, the testing instrument is developed. In a vacuum environment of better than 1×10-4Pa, area source electron gun emits electrons. Going through the electric field to be accelerated, the high speed electrons bombard the screen and the screen luminize. By using testing equipment such as imaging luminance meter, fast storage photometer, optical power meter, current meter and photosensitive detectors, the screen brightness, the uniformity, light-emitting efficiency and afterglow can be tested respectively. System performance are explained. Testing method is established; Test results are given.

  13. Rapid screening and identification of dominant B cell epitopes of HBV surface antigen by quantum dot-based fluorescence polarization assay

    Science.gov (United States)

    Meng, Zhongji; Song, Ruihua; Chen, Yue; Zhu, Yang; Tian, Yanhui; Li, Ding; Cui, Daxiang

    2013-03-01

    A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.

  14. [Artificial Cysteine Bridges on the Surface of Green Fluorescent Protein Affect Hydration of Its Transition and Intermediate States].

    Science.gov (United States)

    Melnik, T N; Nagibina, G S; Surin, A K; Glukhova, K A; Melnik, B S

    2018-01-01

    Studying the effect of cysteine bridges on different energy levels of multistage folding proteins will enable a better understanding of the process of folding and functioning of globular proteins. In particular, it will create prospects for directed change in the stability and rate of protein folding. In this work, using the method of differential scanning microcalorimetry, we have studied the effect of three cysteine bridges introduced in different structural elements of the green fluorescent protein on the denaturation enthalpies, activation energies, and heat-capacity increments when this protein passes from native to intermediate and transition states. The studies have allowed us to confirm that, with this protein denaturation, the process hardly damages the structure initially, but then changes occur in the protein structure in the region of 4-6 beta sheets. The cysteine bridge introduced in this region decreases the hydration of the second transition state and increases the hydration of the second intermediate state during the thermal denaturation of the green fluorescent protein.

  15. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein.

    Science.gov (United States)

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering.

  16. Comparison of three fluorescence labeling and tracking methods of endothelial progenitor cells in laser-injured retina

    Directory of Open Access Journals (Sweden)

    Hui Shi

    2018-04-01

    Full Text Available AIM: To compare three kinds of fluorescent probes for in vitro labeling and in vivo tracking of endothelial progenitor cells (EPCs in a mouse model of laser-induced retinal injury. METHODS: EPCs were isolated from human umbilical cord blood mononuclear cells and labeled with three different fluorescent probes: 5-(and-6-carboxyfluorescein diacetate succinimidyl ester (CFSE, 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate linked acetylated low-density lipoprotein (DiI-AcLDL, and green fluorescent protein (GFP. The fluorescent intensity of EPCs was examined by confocal microscopy. Survival rate of labeled EPCs was calculated with trypan blue staining, and their adhesive capability was assessed. A mouse model of retinal injury was induced by laser, and EPCs were injected into the vitreous cavity. Frozen section and fluorescein angiography on flat-mounted retinal samples was employed to track the labeled EPCs in vivo. RESULTS: EPCs labeled with CFSE and DiI-AcLDL exhibited an intense green and red fluorescence at the beginning; the fluorescence intensity decreased gradually to 20.23% and 49.99% respectively, after 28d. On the contrary, the florescent intensity of GFP-labeled EPCs increased in a time-dependent manner. All labeled EPCs showed normal morphology and no significant change in survival and adhesive capability. In the mouse model, transplantation of EPCs showed a protective effect against retinal injury. EPCs labeled with CFSE and DiI-AcLDL were successfully tracked in mice during the development of retinal injury and repair; however, GFP-labeled EPCs were not detected in the laser-injured mouse retina. CONCLUSION: The three fluorescent markers used in this study have their own set of advantages and disadvantages. CFSE and DiI-AcLDL are suitable for short-term EPC-labeling, while GFP should be used for long-term labeling. The choice of fluorescent markers should be guided by the purpose of the study.

  17. A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism.

    Directory of Open Access Journals (Sweden)

    Bruno L Bozaquel-Morais

    Full Text Available In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4, type 2A phosphatase and its related regulator (pph21 and sap185, type 2C protein phosphatases (ptc1, ptc4, ptc7 and dual phosphatases (pps1, msg5 were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190 were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.

  18. Application of Ultrasonic Sensors in Road Surface Condition Distinction Methods

    Directory of Open Access Journals (Sweden)

    Shota Nakashima

    2016-10-01

    Full Text Available The number of accidents involving elderly individuals has been increasing with the increase of the aging population, posing increasingly serious challenges. Most accidents are caused by reduced judgment and physical abilities, which lead to severe consequences. Therefore, studies on support systems for elderly and visually impaired people to improve the safety and quality of daily life are attracting considerable attention. In this study, a road surface condition distinction method using reflection intensities obtained by an ultrasonic sensor was proposed. The proposed method was applied to movement support systems for elderly and visually impaired individuals to detect dangerous road surfaces and give an alarm. The method did not perform well in previous studies of puddle detection, because the alert provided by the method did not enable users to avoid puddles. This study extended the method proposed by previous studies with respect to puddle detection ability. The findings indicate the effectiveness of the proposed method by considering four road surface conditions. The proposed method could detect puddle conditions. The effectiveness of the proposed method was verified in all four conditions, since users could differentiate between road surface conditions and classify the conditions as either safe or dangerous.

  19. METHOD FOR FABRICATING NANOSCALE PATTERNS ON A SURFACE

    DEFF Research Database (Denmark)

    2000-01-01

    A novel method to fabricate nanoscale pits on Au(111) surfaces in contact with aqueous solution is claimed. The method uses in situ electrochemical scanning tunnelling microscopy with independent electrochemical substrate and tip potential control and very small bias voltages. This is significantly...

  20. Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods

    Science.gov (United States)

    Blatter, D. B.; Ray, A.; Key, K.

    2017-12-01

    Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.

  1. Dual fluorescence labeling of surface-exposed and internal proteins in erythrocytes infected with the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Bengtsson, Dominique C; Sowa, Kordai M P; Arnot, David E

    2008-01-01

    There is a need for improved methods for in situ localization of surface proteins on Plasmodium falciparum-infected erythrocytes to help understand how these antigens are trafficked to, and positioned within, the host cell membrane. This protocol for confocal immunofluorescence microscopy combines...... is discussed here in the context of malaria parasite-infected cells, it can also be modified to visualize the membrane and intracellular distribution of surface and internal proteins in other eukaryotic cells....

  2. Enzymatic methods for choline-containing water soluble phospholipids based on fluorescence of choline oxidase: Application to lyso-PAF.

    Science.gov (United States)

    Sanz-Vicente, Isabel; Domínguez, Andrés; Ferrández, Carlos; Galbán, Javier

    2017-02-15

    In this paper we present methods to determine water soluble phospholipids containing choline (wCh-PL). The analytes were hydrolyzed by the enzyme phospholipase D and the choline formed was oxidized by the enzyme Choline Oxidase (ChOx); the fluorescence changes of the ChOx are followed during the enzymatic reaction, avoiding the necessity of an indicating step. Both reactions (hydrolysis and oxidation) can be combined in two different ways: 1) a two-step process (TSP) in which the hydrolysis reaction takes place during an incubation time and then the oxidation reaction is carried out, the analytical signal being provided by the intrinsic fluorescence of ChOx due to tryptophan; 2) a one-step process (OSP) in which both enzymatic reactions are carried out simultaneously in the same test; in this case the analytical signal is provided by the ChOx extrinsic fluorescence due to a fluorescent probe (Ru (II) chelate) linked to the enzyme (ChOx-RuC). The analytical capabilities of these methods were studied using 1,2-dioctanoyl-sn-glycero-3-phosphocholine (C 8 PC), a water soluble short alkyl chain Ch-PL as a substrate, and 1-O-hexadecyl-sn-glyceryl-3-phosphorylcholine (lyso-PAF). The analytical features of merit for both analytes using both methods were obtained. The TSP gave a 10-fold sensitivity and lower quantification limit (1.0*10 -5  M for lyso-PAF), but OSP reduced the determination time and permitted to use the same enzyme aliquot for several measurements. Both methods gave similar precision (RSD 7%, n = 5). The TSP was applied to the determination of C 8 PC and lyso-PAF in spiked synthetic serum matrix using the standard addition method. The application of this methodology to PLD activity determination is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A flexible fluorescence correlation spectroscopy based method for quantification of the DNA double labeling efficiency with precision control

    International Nuclear Information System (INIS)

    Hou, Sen; Tabaka, Marcin; Sun, Lili; Trochimczyk, Piotr; Kaminski, Tomasz S; Kalwarczyk, Tomasz; Zhang, Xuzhu; Holyst, Robert

    2014-01-01

    We developed a laser-based method to quantify the double labeling efficiency of double-stranded DNA (dsDNA) in a fluorescent dsDNA pool with fluorescence correlation spectroscopy (FCS). Though, for quantitative biochemistry, accurate measurement of this parameter is of critical importance, before our work it was almost impossible to quantify what percentage of DNA is doubly labeled with the same dye. The dsDNA is produced by annealing complementary single-stranded DNA (ssDNA) labeled with the same dye at 5′ end. Due to imperfect ssDNA labeling, the resulting dsDNA is a mixture of doubly labeled dsDNA, singly labeled dsDNA and unlabeled dsDNA. Our method allows the percentage of doubly labeled dsDNA in the total fluorescent dsDNA pool to be measured. In this method, we excite the imperfectly labeled dsDNA sample in a focal volume of <1 fL with a laser beam and correlate the fluctuations of the fluorescence signal to get the FCS autocorrelation curves; we express the amplitudes of the autocorrelation function as a function of the DNA labeling efficiency; we perform a comparative analysis of a dsDNA sample and a reference dsDNA sample, which is prepared by increasing the total dsDNA concentration c (c > 1) times by adding unlabeled ssDNA during the annealing process. The method is flexible in that it allows for the selection of the reference sample and the c value can be adjusted as needed for a specific study. We express the precision of the method as a function of the ssDNA labeling efficiency or the dsDNA double labeling efficiency. The measurement precision can be controlled by changing the c value. (letter)

  4. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy.

    Science.gov (United States)

    Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi

    2017-11-01

    We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP  < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Optical description and design method with annularly stitched aspheric surface.

    Science.gov (United States)

    Cheng, De-Wen; Chen, Xue-Jiao; Xu, Chen; Hu, Yuan; Wang, Yong-Tian

    2015-12-01

    The relentless pressure for designs with new optical functions, small volume, and light weight has greatly increased the importance of aspheric surfaces. In this paper, we propose an annularly stitched aspheric surface (ASAS) description method to increase the freedom and flexibility of imaging system design. The rotationally symmetric ASAS consists of a circular central zone and one or more annular zones. Two neighboring zones are constrained to have the same derivatives on their joint curve, and this means the ASAS is C1 continuous. This finding is proved and verified by the mathematical deduction of the surface formulas. Two optimization strategies and two design methods with the C1 continuous constraints are also discussed. This surface can greatly facilitate the design and even achieve some previously impossible designs without increasing the fabrication difficulty. Two different systems with the proposed ASAS are optimized and the results are presented. The design results verified the practicability of the ASAS.

  6. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  7. On stream radioisotope X-ray fluorescence analyser and a method for the determination of copper in slurry

    International Nuclear Information System (INIS)

    Holynska, B.; Lankosz, M.; Lacki, E.; Ostachowicz, J.; Baran, W.; Owsiak, T.

    1975-01-01

    The paper presents an ''on stream'' analyser and a radioisotope X-ray fluorescence method for the continuous determination of copper content in feed 0.5-2.5% Cu, concentrates 15-25% Cu and tailings 0.01-0.03% Cu. The analyser consists essentially of a radioisotope X-ray fluorescence measuring head, γ-density gauge, electronic unit, analog processor and recorders. The method is based on the measurement of the characteristic radiation of Cu series, selected by nickel-cobalt filters. The total relative error (1s) of the determination of copper in feed is 6-8%, in concentrates 5-7% and in tailings about 18%. The ''on stream'' analyser has been succesfully operated in a pilot plant. (author)

  8. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    , there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions.......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms...

  9. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  10. SmartFluo: A Method and Affordable Adapter to Measure Chlorophyll a Fluorescence with Smartphones

    NARCIS (Netherlands)

    Friedrichs, Anna; Busch, Julia; van der Woerd, H.J.; Zielinski, Oliver

    2017-01-01

    In order to increase the monitoring capabilities of inland and coastal waters, there is a need for new, affordable, sensitive and mobile instruments that could be operated semi-automatically in the field. This paper presents a prototype device to measure chlorophyll a fluorescence: the SmartFluo.

  11. Absorption spectrum of the Green Fluorescent Protein chromphore: A difficult case for ab into methods?

    NARCIS (Netherlands)

    Filippi, Claudia; Zaccheddu, Maurizio; Buda, Francesco

    2009-01-01

    We perform a thorough comparative investigation of the excitation energies of the anionic and neutral forms of the green fluorescent protein (GFP) chromophore in the gas phase using a variety of first-principle theoretical approaches commonly used to access excited state properties of photoactive

  12. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  13. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Chen, Jiayi; Liang, Qiaowen [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Wu, Dudu [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); Zeng, Yuaner, E-mail: zengyuaner@126.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Jiang, Bin, E-mail: gzjiangbin@hotmail.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China)

    2014-01-15

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10{sup −7} mol L{sup −1}. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K{sub q} (1.02×10{sup 13} L mol{sup −1} s{sup −1}). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure.

  14. Noise robustness of interferometric surface topography evaluation methods. Correlogram correlation

    Science.gov (United States)

    Kiselev, Ilia; Kiselev, Egor I.; Drexel, Michael; Hauptmannl, Michael

    2017-12-01

    Different surface height estimation methods are differently affected by interferometric noise. From a theoretical analysis we obtain height variance estimators for the methods. The estimations allow us to rigorously compare the noise robustness of popular evaluation algorithms. The envelope methods have the highest variances and hence the lowest noise resistances. The noise robustness improves from the envelope to the phase methods, but a technique involving the correlation of correlograms is superior even to the latter. We dwell on some details of this correlogram correlation method and the range of its application.

  15. A dual-responsive fluorescence method for the detection of clenbuterol based on BSA-protected gold nanoclusters.

    Science.gov (United States)

    Cao, Xueling; Li, Hongwei; Lian, Lili; Xu, Na; Lou, Dawei; Wu, Yuqing

    2015-04-29

    The illegal feeding of clenbuterol (CLB) to domestic animals and the potential harm of it to human health lead an urgent requirement for the efficient detection of CLB, especially in the edible meat. In this paper we reported a new fluorescence method for the detection of trace amount of CLB by using the BSA-protected gold nanoclusters (AuNCs@BSA). Under the excitation of either 280 or 500 nm the emission of AuNCs@BSA was quenched obviously by diazotized CLB, supplying a dual-responsive fluorescence method to detect CLB in aqueous solution. In addition, the linear response of the fluorescence intensity of AuNCs@BSA to diazotized CLB allowed the quantitative detection of CLB in a range of 4.0 nM-300 μM upon excitation at two wavelength, and the limit of detection for CLB was 3.0 nM upon 280 nm excitation and 1.6 nM upon 500 nm excitation, respectively. In addition, the dual-responsive mechanism of AuNCs@BSA to CLB was investigated in detail by using several CLB analogues and reference compounds. Particularly, the proposed method was successfully applied to detect CLB in pork mince and the results were validated well by HPLC, illustrating it could be used as a reliable, rapid, and cost-effective technique for the determination of CLB residues in real samples. Copyright © 2015. Published by Elsevier B.V.

  16. Optimization of the Analytical Method Using HPLC with Fluorescence Detection to Determine Selected Polycyclic Aromatic Compounds in Clean Water Samples

    International Nuclear Information System (INIS)

    Garcia Alonso, S.; Perez Pastor, R. M.

    2013-01-01

    A study on the comparison and evaluation of 3 miniaturized extraction methods for the determination of selected PACs in clear waters is presented. Three types of liquid-liquid extraction were used for chromatographic analysis by HPLC with fluorescence detection. The main objective was the optimization and development of simple, rapid and low cost methods, minimizing the use of extracting solvent volume. The work also includes a study on the scope of the methods developed at low and high levels of concentration and intermediate precision. (Author)

  17. Fluorescence and absorption properties of chromophoric dissolved organic matter (CDOM in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhône River

    Directory of Open Access Journals (Sweden)

    J. Para

    2010-12-01

    Full Text Available Seawater samples were collected monthly in surface waters (2 and 5 m depths of the Bay of Marseilles (northwestern Mediterranean Sea; 5°17'30" E, 43°14'30" N during one year from November 2007 to December 2008 and studied for total organic carbon (TOC as well as chromophoric dissolved organic matter (CDOM optical properties (absorbance and fluorescence. The annual mean value of surface CDOM absorption coefficient at 350 nm [aCDOM(350] was very low (0.10 ± 0.02 m−1 in comparison to values usually found in coastal waters, and no significant seasonal trend in aCDOM(350 could be determined. By contrast, the spectral slope of CDOM absorption (SCDOM was significantly higher (0.023 ± 0.003 nm−1 in summer than in fall and winter periods (0.017 ± 0.002 nm−1, reflecting either CDOM photobleaching or production in surface waters during stratified sunny periods. The CDOM fluorescence, assessed through excitation emission matrices (EEMs, was dominated by protein-like component (peak T; 1.30–21.94 QSU and marine humic-like component (peak M; 0.55–5.82 QSU, while terrestrial humic-like fluorescence (peak C; 0.34–2.99 QSU remained very low. This reflected a dominance of relatively fresh material from biological origin within the CDOM fluorescent pool. At the end of summer, surface CDOM fluorescence was very low and strongly blue shifted, reinforcing the hypothesis of CDOM photobleaching. Our results suggested that unusual Rhône River plume eastward intrusion events might reach Marseilles Bay within 2–3 days and induce local phytoplankton blooms and subsequent fluorescent CDOM production (peaks M and T without adding terrestrial fluorescence signatures (peaks C and A. Besides Rhône River plumes, mixing events of the entire water column injected relative aged (peaks C and M CDOM from the bottom into the surface and thus appeared also as an important source

  18. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  19. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques

    International Nuclear Information System (INIS)

    Romano, F.P.; Garraffo, S.; Pappalardo, L.; Rizzo, F.

    2012-01-01

    The compositional analysis of archeological metals performed with the X-ray Fluorescence technique (XRF) provides information on the ancient technology. One of the most interesting case-study concerns the techniques used by Romans for silvering the surface of coins. Different metallurgical processes have been suggested in previous studies. Recently the investigation has been addressed to the mercury-silvering and to its possible use in the mass-production of coins minted during the late period (after 294 AD). In the present paper the non-destructive investigation of the silvering process used for manufacturing the Roman nummi – the important typology of coin introduced by Diocletian in his monetary reform – is approached by the combined use of the standard X-Ray Fluorescence (XRF) and the low energy micro-X-Ray Fluorescence (LE-μXRF) portable methods. The research was focused on the systematic determination of the mercury presence in a large number of samples and on its correlation with silver in the surface of the coins. 1041 Roman nummi belonging to the Misurata Treasure were analyzed in situ, at the Leptis Magna Museum (Al Khums, Libya). The treasure, composed of about 108 thousand silvered coins, gives the unique opportunity to study the Roman coinage in a wide interval of time (about 40 years in the period 294–333 AD) and in almost all the imperial mints operating in the Roman world. - Highlights: ► Custom-building of a high energy broad-beam and a low energy micro-beam XRF ► In situ analysis of the silvering methods in late Roman nummi with plated surfaces ► The broad-beam XRF was applied for the detection of mercury traces in the coin alloy. ► The low energy micro-XRF was used to scan the surface patina of the coins. ► The correlation between mercury and silver at the coin surface was evidenced.

  20. Fluorescent nanoparticles for intracellular sensing: A review

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria J.; Walters, Jamie D.; Orte, Angel; Hall, Elizabeth A.H.

    2012-01-01

    Highlights: ► Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. ► Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. ► Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  1. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  2. investigating acid production by Streptococcus mutans with a surface-displayed pH-sensitive green fluorescent protein.

    Directory of Open Access Journals (Sweden)

    Lihong Guo

    Full Text Available Acidogenicity and aciduricity are the main virulence factors of the cavity-causing bacterium Streptococcus mutans. Monitoring at the individual cell level the temporal and spatial distribution of acid produced by this important oral pathogen is central for our understanding of these key virulence factors especially when S. mutans resides in multi-species microbial communities. In this study, we explored the application of pH-sensitive green fluorescent proteins (pHluorins to investigate these important features. Ecliptic pHluorin was functionally displayed on the cell surface of S. mutans as a fusion protein with SpaP. The resulting strain (O87 was used to monitor temporal and spatial pH changes in the microenvironment of S. mutans cells under both planktonic and biofilm conditions. Using strain O87, we revealed a rapid pH drop in the microenviroment of S. mutans microcolonies prior to the decrease in the macro-environment pH following sucrose fermentation. Meanwhile, a non-uniform pH distribution was observed within S. mutans biofilms, reflecting differences in microbial metabolic activity. Furthermore, strain O87 was successfully used to monitor the S. mutans acid production profiles within dual- and multispecies oral biofilms. Based on these findings, the ecliptic pHluorin allows us to investigate in vivo and in situ acid production and distribution by the cariogenic species S. mutans.

  3. Fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    1982-01-01

    Studies are reported in these areas: double resonance in fluorescent and Raman scattering; surface enhanced Raman scattering; fluorescence by molecules embedded in small particles; fluorescence by a liquid droplet; and fluorescence by conical pits in surfaces

  4. Catalog of total excitation-emission and total synchronous fluorescence maps with synchronous fluorescence spectra of homologated fluorescent pesticides in large use in Morocco: development of a spectrometric low cost and direct analysis as an alert method in case of massive contamination of soils and waters by fluorescent pesticides.

    Science.gov (United States)

    Foudeil, S; Hassoun, H; Lamhasni, T; Ait Lyazidi, S; Benyaich, F; Haddad, M; Choukrad, M; Boughdad, A; Bounakhla, M; Bounouira, H; Duarte, R M B O; Cachada, A; Duarte, A C

    2015-05-01

    The purpose of this research is to develop a direct spectrometric approach to monitor soils and waters, at a lower cost than the widely used chromatographic techniques; a spectrometric approach that is effective, reliable, fast, easy to implement, and without any use of organic solvents whose utilization is subject to law limitation. It could be suitable at least as an alert method in case of massive contamination. Here, we present for the first time a catalog of excitation-emission and total synchronous fluorescence maps that may be considered as fingerprints of a series of homologated pesticides, in large use in Morocco, aiming at a direct detection of their remains in agricultural soils and neighboring waters. After a large survey among farmers, agricultural workers and product distributors in two important agricultural regions of Morocco (Doukkala-Abda and Sebou basin), 48 commercial pesticides, which are fluorescent, were chosen. A multi-component spectral database of these targeted commercial pesticides was elaborated. For each pesticide, dissolved in water at the lowest concentration giving a no-noise fluorescence spectrum, the total excitation-emission matrix (TEEM), the total synchronous fluorescence matrix (TSFM) in addition to synchronous fluorescence spectra (SFS) at those offsets giving the highest fluorescence intensity were recorded. To test this preliminary multi-component database, two real soil samples, collected at a wheat field and at a vine field in the region of Doukkala, were analyzed. Remains of the commercial Pirimor (Carbamate) and Atlantis (Sulfonylurea) were identified by comparison of the recorded TEEM, TSFM, and SFS to those of the preliminary catalog at one hand, and on the basis of the results of a field pre-survey. The developed approach seems satisfactory, and the fluorimetric fingerprint database is under extension to a higher number of fluorescent pesticides in common use among the Moroccan agricultural regions.

  5. Feasibility of Using Fluorescence Spectrophotometry to Develop a Sensitive Dye Immersion Method for Container Closure Integrity Testing of Prefilled Syringes.

    Science.gov (United States)

    Lu, Xujin; Lloyd, David K; Klohr, Steven E

    2016-01-01

    A feasibility study was conducted for a sensitive and robust dye immersion method for the measurement of container closure integrity of unopened prefilled syringes using fluorescence spectrophotometry as the detection method. A Varian Cary Eclipse spectrofluorometer was used with a custom-made sample holder to position the intact syringe in the sample compartment for fluorescence measurements. Methylene blue solution was initially evaluated as the fluorophore in a syringe with excitation at 607 nm and emission at 682 nm, which generated a limit of detection of 0.05 μg/mL. Further studies were conducted using rhodamine 123, a dye with stronger fluorescence. Using 480 nm excitation and 525 nm emission, the dye in the syringe could be easily detected at levels as low as 0.001 μg/mL. The relative standard deviation for 10 measurements of a sample of 0.005 μg/mL (with repositioning of the syringe after each measurement) was less than 1.1%. A number of operational parameters were optimized, including the photomultiplier tube voltage, excitation, and emission slit widths. The specificity of the testing was challenged by using marketed drug products and a protein sample, which showed no interference to the rhodamine detection. Results obtained from this study demonstrated that using rhodamine 123 for container closure integrity testing with in-situ (in-syringe) fluorescence measurements significantly enhanced the sensitivity and robustness of the testing and effectively overcame limitations of the traditional methylene blue method with visual or UV-visible absorption detection. Ensuring container closure integrity of injectable pharmaceutical products is necessary to maintain quality throughout the shelf life of a sterile drug product. Container closure integrity testing has routinely been used to evaluate closure integrity during product development and production line qualification of prefilled syringes, vials, and devices. However, container closure integrity testing

  6. Correction of surface aberration in strain scanning method with analyzer

    International Nuclear Information System (INIS)

    Shobu, Takahisa; Mizuki, Junichiro; Suzuki, Kenji; Akiniwa, Yoshiaki; Tanaka, Keisuke

    2006-01-01

    When a gauge volume sank below a specimen surface, the diffraction angle shifts. Thus, it is required to correct the surface aberration. For the annealed specimen of S45C, the shift in the diffraction angle was investigated using a strain scanning method with Ge (111) analyzer. This phenomenon was caused by the difference in the centroid between the geometric and the instrumental gauge volumes. This difference is explained by the following factors; 1) the change in the gauge volume by the divergence of the analyzer, 2) the X-ray penetration depth, 3) the gap of the centre line between the double receiving slits due to mis-setting the analyzer. As a result, the correcting method considered into these factors was proposed. For the shot-peened specimens of S45C, the diffraction angles were measured and corrected by our method. The distribution of the residual stress agreed with that obtained by the removal method. (author)

  7. A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulan [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); Zhu, Yonggang [Microfluidics and Fluid Dynamics Laboratory, CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria, 3168 (Australia); Li, Xie [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); Guo, Xuhong [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 (China); Zhang, Bo [Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000 (China); Jia, Xin, E-mail: jiaxin@shzu.edu.cn [School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003 (China); and others

    2016-11-09

    A simple, fast and low-cost method for dopamine (DA) detection based on turn-on fluorescence using resorcinol is developed. The rapid reaction between resorcinol and DA allows the detection to be performed within 5 min, and the reaction product (azamonardine) with high quantum yield generates strong fluorescence signal for sensitive optical detection. The detection exhibits a high sensitivity to DA with a wide linear range of 10 nM–20 μM and the limit of detection is estimated to be 1.8 nM (S/N = 3). This approach has been successfully applied to determine DA concentrations in human urine samples with satisfactory quantitative recovery of 97.84%–103.50%, which shows great potential in clinical diagnosis. - Highlights: • A turn-on fluorescence technique is developed for dopamine detection by using one-step selective reaction between resorcinol and dopamine. • The limit of detection is 1.8 nM (S/N = 3). • This detection could be completed within 5 min. • The method has been demonstrated to successfully detect dopamine in human urine samples with high recovery ratio of 97.84%–103.50%.

  8. A simple and sensitive method for L-cysteine detection based on the fluorescence intensity increment of quantum dots

    International Nuclear Information System (INIS)

    Huang Shan; Xiao Qi; Li Ran; Guan Hongliang; Liu Jing; Liu Xiaorong; He Zhike; Liu Yi

    2009-01-01

    In this contribution, a simple and sensitive method for L-cysteine detection was established based on the increment of the fluorescence intensity of mercaptoacetic acid-capped CdSe/ZnS quantum dots (QDs) in aqueous solution. Meanwhile, the fluorescence characteristics and the optimal conditions were investigated in detail. Under the optimized conditions, the linear range of QDs fluorescence intensity versus the concentration of L-cysteine was 10-800 nmol L -1 , with a correlation coefficient (R) of 0.9969 and a limit of detection (3σ black) of 3.8 nmol L -1 . The relative standard deviation (R.S.D.) for 0.5 μmol L -1 L-cysteine was 1.1% (n = 5). There was no interference to coexisting foreign substances including common ions, carbohydrates, nucleotide acids and other 19 amino acids. The proposed method possessed the advantages of simplicity, rapidity and sensitivity. Synthetic amino acid samples, medicine sample together with human urine samples were analyzed by the methodology and the results were satisfying.

  9. A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction

    International Nuclear Information System (INIS)

    Zhang, Xiulan; Zhu, Yonggang; Li, Xie; Guo, Xuhong; Zhang, Bo; Jia, Xin

    2016-01-01

    A simple, fast and low-cost method for dopamine (DA) detection based on turn-on fluorescence using resorcinol is developed. The rapid reaction between resorcinol and DA allows the detection to be performed within 5 min, and the reaction product (azamonardine) with high quantum yield generates strong fluorescence signal for sensitive optical detection. The detection exhibits a high sensitivity to DA with a wide linear range of 10 nM–20 μM and the limit of detection is estimated to be 1.8 nM (S/N = 3). This approach has been successfully applied to determine DA concentrations in human urine samples with satisfactory quantitative recovery of 97.84%–103.50%, which shows great potential in clinical diagnosis. - Highlights: • A turn-on fluorescence technique is developed for dopamine detection by using one-step selective reaction between resorcinol and dopamine. • The limit of detection is 1.8 nM (S/N = 3). • This detection could be completed within 5 min. • The method has been demonstrated to successfully detect dopamine in human urine samples with high recovery ratio of 97.84%–103.50%.

  10. A conformation-induced fluorescence method for microRNA detection

    DEFF Research Database (Denmark)

    Aw, Sherry S; Tang, Melissa Xm; Teo, Yin Nah

    2016-01-01

    MicroRNAs play important roles in a large variety of biological systems and processes through their regulation of target mRNA expression, and show promise as clinical biomarkers. However, their small size presents challenges for tagging or direct detection. Innovation in techniques to sense...... and quantify microRNAs may aid research into novel aspects of microRNA biology and contribute to the development of diagnostics. By introducing an additional stem loop into the fluorescent RNA Spinach and altering its 3' and 5' ends, we have generated a new RNA, Pandan, that functions as the basis for a micro......RNA sensor. Pandan contains two sequence-variable stem loops that encode complementary sequence for a target microRNA of interest. In its sensor form, it requires the binding of a target microRNA in order to reconstitute the RNA scaffold for fluorophore binding and fluorescence. Binding of the target micro...

  11. Method and Apparatus for Creating a Topography at a Surface

    Science.gov (United States)

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  12. Multi-phase-field method for surface tension induced elasticity

    Science.gov (United States)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  13. Temperature sensitive surfaces and methods of making same

    Science.gov (United States)

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  14. Localized surface plasmon resonance mercury detection system and methods

    Science.gov (United States)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  15. Improved method for efficient imaging of intracellular Cl(-) with Cl-Sensor using conventional fluorescence setup.

    Science.gov (United States)

    Friedel, Perrine; Bregestovski, Piotr; Medina, Igor

    2013-01-01

    Chloride (Cl(-)) homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl(-) concentration ([Cl(-)]i) and changes in the efficacy of Cl(-) extrusion are involved in numerous neurological disorders. Therefore, there is a strong need for studies of the dynamics of [Cl(-)]i in different cell types under physiological conditions and during pathology. Several previous works reported having successfully achieved recording of [Cl(-)]i using genetically encoded Cl-Sensor that is composed of the cyan fluorescent protein (CFP) and Cl(-)-sensitive mutant of the yellow fluorescent protein (YFPCl). However, all reported works were performed using specially designed setups with ultra-sensitive CCD cameras. Our multiple attempts to monitor Cl(-)-dependent fluorescence of Cl-Sensor using conventional epifluorescence microscopes did not yield successful results. In the present work, we have analysed the reason of our failures and found that they were caused by a strong inactivation of the YFPCl component of Cl-Sensor during excitation of the CFP with 430 nm light. Based on the obtained results, we reduced 20-fold the intensity of the 430 nm excitation and modified the recording protocol that allows now stable long-lasting ratiometric measurements of Cl-Sensor fluorescence in different cell types including cultured hippocampal neurons and their tiny dendrites and spines. Simultaneous imaging and patch clamp recording revealed that in mature neurons, the novel protocol allows detection of as little as 2 mM changes of [Cl(-)]i from the resting level of 5-10 mM. We demonstrate also a usefulness of the developed [Cl(-)]i measurement procedure for large scale screening of the activity of exogenously expressed potassium-chloride co-transporter KCC2, a major neuronal Cl(-) extruder that is implicated in numerous neurological disorders and is a target for novel therapeutical treatments.

  16. Improved method for efficient imaging of intracellular Cl- with Cl-Sensor using conventional fluorescence setup

    Directory of Open Access Journals (Sweden)

    Perrine eFriedel

    2013-04-01

    Full Text Available Chloride (Cl- homeostasis is known to be fundamental for central nervous system functioning. Alterations in intracellular Cl- concentration ([Cl-]i and changes in the efficacy of Cl- extrusion are involved in numerous neurological disorders. Therefore there is a strong need for studies of the dynamics of [Cl-]i in different cell types under physiological conditions and during pathology. Several previous works reported having successfully achieved recording of [Cl-]i using genetically encoded Cl-Sensor that is composed of the cyan fluorescent protein (CFP and Cl--sensitive mutant of the yellow fluorescent protein (YFPCl. However all reported works were performed using specially designed setups with ultra-sensitive CCD cameras. Our multiple attempts to monitor Cl--dependent fluorescence of Cl-Sensor using conventional epifluorescence microscopes did not yield successful results. In the present work, we have analysed the reason of our failures and found that they were caused by a strong inactivation of the YFPCl component of Cl-Sensor during excitation of the CFP with 430 nm light. Based on the obtained results, we reduced 20-fold the intensity of the 430 nm excitation and modified the recording protocol that allows now stable long-lasting ratiometric measurements of Cl-Sensor fluorescence in different cell types including cultured hippocampal neurons and their tiny dendrites and spines. Simultaneous imaging and patch clamp recording revealed that in mature neurons, the novel protocol allows detection of as little as 2 mM changes of [Cl-]i from the resting level of 5-10 mM. We demonstrate also a usefulness of the developed [Cl-]i measurement procedure for large scale screening of the activity of exogenously expressed potassium-chloride co-transporter KCC2, a major neuronal Cl- extruder, that is implicated in numerous neurological disorders and is a target for novel therapeutical treatments.

  17. Preparation of the Water-Soluble Pyrene-Containing Fluorescent Polymer by One-Pot Method

    Directory of Open Access Journals (Sweden)

    Xiaomeng Li

    2015-12-01

    Full Text Available A new water-soluble pyrene-containing fluorescent polymer, 1-{3′-S-[poly(acryloyl ethylene diamine hydrochloride-2′-methyl propionic acid]}propionyloxy hexyloxy pyrene (P3 with defined structure, was designed and synthesized using the click reaction between thiol and a carbon-carbon double bond. The intermediate products P1 (S-1-dodecyl-S′-[poly(N-Boc-acryloyl ethylene diamine-2′-methyl propionic acid]trithiocarbonate and AHP (1-(acryloyloxy hexyloxypyrene were prepared via reversible addition fragmentation chain transfer (RAFT polymerization and Williamson synthesis, respectively. Conjugating AHP with P1, P2 (1-{3′-S-[poly(N-butoxycarbonyl-acryloyl ethylene diamine-2″-methyl propionic acid]} propionyloxy hexyloxy pyrene was synthesized, adopting both the reduction reaction of a trithioester bond of P1 to thiol and the click reaction between thiol and the carbon-carbon double bond of AHP simultaneously. P3 was obtained by the deprotection of the resulting Boc-protected polymer (P2 with aqueous HCl. The experiment results showed that P2 exhibited a bright blue-violet emission band at approximately 387–429 nm. After deprotection, P3 displayed good solubility in water and not only exhibited a blue-violet fluorescence emission band at approximately 387–429 nm in aqueous solution but also had the similar photoluminescent spectra to those of AHP and P2 in dichloromethane. The fluorescence quantum yields of P2 in dilute tetrahydrofuran and P3 in a dilute aqueous solution were 0.44 and 0.39, respectively. This experiment provided a novel insight into the study of water-soluble fluorescent polymers.

  18. Criteria to stablish an absolute semiquantitative analytic method by x-ray fluorescence

    International Nuclear Information System (INIS)

    Echeverria, Fernando.

    1990-01-01

    This work had been developed by fluorescence x-ray laboratory of Nuclear Studies Centre form Ecuador, it pretent to stablish an appropiate discernement of a FRX spectrum to know the concentration range form sample elements, minerals principaly, submit to a FRX. The study tries to stablish the best way to calibration the instruments like the adecuate samples preparation to do the analysis by FRX

  19. A novel method for the absolute fluorescence yield measurement by AIRFLY

    Czech Academy of Sciences Publication Activity Database

    Ave, M.; Boháčová, Martina; Buonomo, B.; Hrabovský, Miroslav; Nožka, Libor; Palatka, Miroslav; Řídký, Jan; Schovánek, Petr

    2008-01-01

    Roč. 597, č. 1 (2008), s. 55-60 ISSN 0168-9002 R&D Projects: GA MŠk LC527; GA MŠk(CZ) LA08016; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : fluorescence * cosmic rays Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.019, year: 2008

  20. Performance of laser fluorescence for the detection of enamel caries in non-cavitated occlusal surfaces: clinical study with total validation of the sample.

    Science.gov (United States)

    Abalos, Camilo; Mendoza, Asunción; Jimenez-Planas, Amparo; Guerrero, Elena; Chaparro, Antonio; Garcia-Godoy, Franklin

    2012-02-01

    To evaluate the clinical performance of a laser fluorescence device in detecting enamel caries in non-cavitated occlusal surfaces. The sample included 96 first and second permanent molars, selected according to the criteria of Ekstrand: 44 not suspected of having dentin caries (score: 0-2) and 52 under suspicion (score: 3-4). Once measured by laser fluorescence, all teeth were validated by fissurotomy (gold standard). To avoid ethical questions, the 44 teeth (score: 0-2) used were to serve as abutments for a fixed dental prostheses. Following fissurotomy, the 52 teeth with suspected caries were treated with resin composite restorations. Kruskall-Wallis statistical analysis (PLaser fluorescence showed an area under the Receiver Operating Characteristic (ROC) curve of Az = 0.803 for enamel caries. The cut-off point with the highest sensitivity and specificity was 15, with a sensitivity and specificity of 0.97 and 0.63, respectively. Values under 10 indicated healthy teeth.

  1. Gold Nanoparticle-Based Detection of Hg(II) in an Aqueous Solution: Fluorescence Quenching and Surface-Enhanced Raman Scattering Study

    International Nuclear Information System (INIS)

    Ganbold, Erdene Ochir; Park, Jin Ho; Ock, Kwang Su; Joo, Sang Woo

    2011-01-01

    We studied the detection of the Hg(II) concentration in an aqueous solution using rhodamine dyes on citrate-reduced Au nanoparticles (NPs). The quenching effect from Au NPs was found to decrease as the Hg(II) concentration increased under our experimental conditions. As the fluorescence signals intensified, the surface-enhanced Raman scattering (SERS) intensities reduced on the contrary due to less rhodamine dyes on Au NPs as the Hg(II) concentration increased. The rhodamine 6G (Rh6G) and rhodamine 123 (Rh123) dyes were examined via fluorescence and SERS measurements depending on Hg(II) concentrations. Fast and easy fluorescence detection of an Hg (II) concentration as low as a few ppm could be achieved by naked eye using citrate-reduced Au NPs

  2. SmartFluo: A Method and Affordable Adapter to Measure Chlorophyll a Fluorescence with Smartphones.

    Science.gov (United States)

    Friedrichs, Anna; Busch, Julia Anke; van der Woerd, Hendrik Jan; Zielinski, Oliver

    2017-03-25

    In order to increase the monitoring capabilities of inland and coastal waters, there is a need for new, affordable, sensitive and mobile instruments that could be operated semi-automatically in the field. This paper presents a prototype device to measure chlorophyll a fluorescence: the SmartFluo. The device is a combination of a smartphone offering an intuitive operation interface and an adapter implying a cuvette holder, as well as a suitable illumination source. SmartFluo is based on stimulated fluorescence of water constituents such as chlorophyll a . The red band of the digital smartphone camera is sensitive enough to detect quantitatively the characteristic red fluorescence emission. The adapter contains a light source, a strong light emitting diode and additional filters to enhance the signal-to-noise ratio and to suppress the impact of scattering. A novel algorithm utilizing the red band of the camera is provided. Laboratory experiments of the SmartFluo show a linear correlation (R 2 = 0.98) to the chlorophyll a concentrations measured by reference instruments, such as a high-performance benchtop laboratory fluorometer (LS 55, PerkinElmer).

  3. Radiation ray discrimination method using photo-stimulated luminescence fluorescent material

    International Nuclear Information System (INIS)

    Atsumi, Yoshihiro; Takebe, Masahiro; Abe, Ken.

    1996-01-01

    An IP (imaging plate) using PSL (photo-stimulated luminescence fluorescent material) is formed by coating a photo-stimulated luminescence fluorescent material on a thin plastic plate. A predetermined colorants is added to the PSL material. A colorant which absorbs a light having a wavelength of about 600nm is preferred. After irradiating various kinds of radiation rays to the IP, and then irradiating a white light thereto for a predetermined period of time, lights at several kinds of wavelength specific to several kinds of radiation rays to be measured are successively irradiated to the IP. The ratios between the luminance intensity of the fluorescent light emitted from the IP in this case and that emitted when a light of one specific wavelength is irradiated are successively calculated. The light of the specific wavelength preferably has a wavelength of 600nm. With such procedures, the kinds of the several radiation rays which are irradiated to the IP can be discriminated. (I.N.)

  4. Method and apparatus for aligning laser reflective surfaces

    International Nuclear Information System (INIS)

    Caruolo, A.B.; Davis, J.W.; Walch, A.P.

    1975-01-01

    Methods and apparatus used in the alignment of high power laser systems to obtain optimum performance are disclosed. An external source of visible radiation provides an alignment beam which is reflected along the axis of a resonator. Reflecting surfaces of the resonator are aligned with respect to the axis located by the visible beam

  5. An alternative safer and cost effective surface sterilization method for ...

    African Journals Online (AJOL)

    Regardless of its serious health effect, mercury chloride is frequently utilized for surface sterilization to mitigate microbial contamination in sugarcane tissue culture. The current study aimed at finding an alternative safer and cost effective sterilization method to substitute mercury chloride. In the study, sugarcane shoot tip ...

  6. Response surface method to optimize the low cost medium for ...

    African Journals Online (AJOL)

    A protease producing Bacillus sp. GA CAS10 was isolated from ascidian Phallusia arabica, Tuticorin, Southeast coast of India. Response surface methodology was employed for the optimization of different nutritional and physical factors for the production of protease. Plackett-Burman method was applied to identify ...

  7. Surface sterilization method for reducing microbial contamination of ...

    African Journals Online (AJOL)

    An effective disinfection method for strawberry (Fragaria x ananassa Duch.) cv. Senga Sengana micropropagation using runner tips and nodal segments as explants was developed. The explants were surface sterilized with different sterilants for different durations. The present studies on the effect of different regimes of ...

  8. Assessment methods of injection moulded nano-patterned surfaces

    DEFF Research Database (Denmark)

    Menotti, S.; Bisacco, G.; Hansen, H. N.

    2014-01-01

    algorithm for feature recognition. To compare the methods, the mould insert and a number of replicated nano-patterned surfaces, injection moulded with an induction heating aid, were measured on nominally identical locations by means of an atomic force microscope mounted on a manual CMM....

  9. An alternative safer and cost effective surface sterilization method for ...

    African Journals Online (AJOL)

    user

    2013-10-30

    Oct 30, 2013 ... Regardless of its serious health effect, mercury chloride is frequently utilized for surface sterilization to mitigate microbial contamination in sugarcane tissue culture. The current study aimed at finding an alternative safer and cost effective sterilization method to substitute mercury chloride. In the study,.

  10. Comparison of surface sampling methods for virus recovery from fomites.

    Science.gov (United States)

    Julian, Timothy R; Tamayo, Francisco J; Leckie, James O; Boehm, Alexandria B

    2011-10-01

    The role of fomites in infectious disease transmission relative to other exposure routes is difficult to discern due, in part, to the lack of information on the level and distribution of virus contamination on surfaces. Comparisons of studies intending to fill this gap are difficult because multiple different sampling methods are employed and authors rarely report their method's lower limit of detection. In the present study, we compare a subset of sampling methods identified from a literature review to demonstrate that sampling method significantly influences study outcomes. We then compare a subset of methods identified from the review to determine the most efficient methods for recovering virus from surfaces in a laboratory trial using MS2 bacteriophage as a model virus. Recoveries of infective MS2 and MS2 RNA are determined using both a plaque assay and quantitative reverse transcription-PCR, respectively. We conclude that the method that most effectively recovers virus from nonporous fomites uses polyester-tipped swabs prewetted in either one-quarter-strength Ringer's solution or saline solution. This method recovers a median fraction for infective MS2 of 0.40 and for MS2 RNA of 0.07. Use of the proposed method for virus recovery in future fomite sampling studies would provide opportunities to compare findings across multiple studies.

  11. SNP analysis of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP gene by a fluorescence-adapted SSCP method

    Directory of Open Access Journals (Sweden)

    Taniyama Matsuo

    2002-07-01

    Full Text Available Abstract Background Single-nucleotide polymorphisms (SNPs are considered to be useful polymorphic markers for genetic studies of polygenic traits. Single-stranded conformational polymorphism (SSCP analysis has been widely applied to detect SNPs, including point mutations in cancer and congenital diseases. In this study, we describe an application of the fluorescent labeling of PCR fragments using a fluorescent-adapted primer for SSCP analysis as a novel method. Methods Single-nucleotide polymorphisms (SNPs of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP gene were analyzed using a fluorescence-adapted SSCP method. The method was constructed from two procedures: 1 a fluorescent labeling reaction of PCR fragments using fluorescence-adapted primers in a single tube, and 2 electrophoresis on a non-denaturing polyacrylamide gel. Results This method was more economical and convenient than the single-stranded conformational polymorphism (SSCP methods previously reported in the detection of the labeled fragments obtained. In this study, eight SNPs of the IHRP gene were detected by the fluorescence-adapted SSCP. One of the SNPs was a new SNP resulting in an amino acid substitution, while the other SNPs have already been reported in the public databases. Six SNPs of the IHRP were associated with two haplotypes. Conclusions The fluorescence-adapted SSCP was useful for detecting and genotyping SNPs.

  12. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces

    Science.gov (United States)

    Lee, Myoungjin; Kim, Heejin; Seo, Jiae; Kang, Minji; Kang, Sunah; Jang, Joomyung; Lee, Yan; Seo, Ji-Hun

    2018-01-01

    In this study, we conducted surface zwitterionization of hydroxyapatite (HA) surfaces by immersing them in the zwitterionic polymer solutions to provide anti-bacterial properties to the HA surface. Three different monomers containing various zwitterionic groups, i.e., phosphorylcholine (PC), sulfobetaine (SB), and carboxybetaine (CB), were copolymerized with the methacrylic monomer containing a Ca2+-binding moiety, using the free radical polymerization method. As a control, functionalization of the copolymer containing the Ca2+-binding moiety was synthesized using a hydroxy group. The stable immobilization of the zwitterionic functional groups was confirmed by water contact angle analysis and X-ray photoelectron spectroscopy (XPS) measurement conducted after the sonication process. The zwitterionized HA surface showed significantly decreased protein adsorption, whereas the hydroxyl group-coated HA surface showed limited efficacy. The anti-bacterial adhesion property was confirmed by conducting Streptococcus mutans (S. mutans) adhesion tests for 6 h and 24 h. When furanone C-30, a representative anti-quorum sensing molecule for S. mutans, was used, only a small amount of bacteria adhered after 6 h and the population did not increase after 24 h. In contrast, zwitterionized HA surfaces showed almost no bacterial adhesion after 6 h and the effect was retained for 24 h, resulting in the lowest level of oral bacterial adhesion. These results confirm that surface zwitterionization is a promising method to effectively prevent oral bacterial adhesion on HA-based materials.

  13. Provenance studies of archaeological ceramics from Mar-Takla (Ain-Minin, Syria) using radioisotope X-ray fluorescence method

    International Nuclear Information System (INIS)

    Bakraji, E.H.; Othman, I.; Karajou, J.

    2001-01-01

    The radioisotope X-ray fluorescence method was applied to studies of the provenance of the ceramics fragments originated from the Mar-Takla site in Syria. The samples were irradiated 1000s by a 109 Cd radioisotope source and 13 elements (Ca, Ti, Mn, Fe, Zn, Ga, As, Rb, Sr, Y, Zr and Pb) were determined in 35 samples. The data were subjected to two multivariate statistical methods, cluster and principal components analysis (PCA). It was shown from the combination of the statistical techniques and the determination of elemental composition of the samples that 94% of the ceramic samples analyzed can be considered to be manufactured using two sources of raw materials

  14. Provenance studies of archaeological ceramics from Mar-Takla (Ain-Minin, Syria) using radioisotope x-ray fluorescence method

    International Nuclear Information System (INIS)

    Bakraji, E. H.; Karajou, J.; Othman, I.

    2002-01-01

    The radioisotope x-ray fluorescence method was applied to provenance studies of ceramics fragments originated from the Mar-Takla site in Syria. 35 samples were analyzed, where each sample was irradiated 1000 s by sup 1 sup 0 sup 9 Cd radioisotope source and the elements (As, Ca, fe, Ga, Nb, Mn, Pb, Rb, Sr, Ti, Y, Zn, and Zr) were determined. The data were subjected to two multivariate statistical methods, cluster and principal component analysis (PCA). The study show that 94% of the samples can be considered to be manufactured using two sources of raw materials. (Authors)

  15. A novel test method for quantifying surface tack of polypropylene compound surfaces

    Directory of Open Access Journals (Sweden)

    2011-11-01

    Full Text Available While adhesiveness is required for polymer surfaces in special applications, tacky surfaces are generally undesirable in many applications like automotive interior parts. The tackiness of polymer surface results from a combination of composition and additivation, and it can change significantly in natural or accelerated ageing. Since there is no established, uniform method to characterize surface tack, the major focus of the present work was on the development of an objective quantification method. A setup having a soft die tip attached to a standard tensile tester was developed aiming for correlation to the human sense of touch. Three different model thermoplastic polyolefin (TPO compound formulations based on a high-impact isotactic polypropylene (iPP composition with varying amounts and types of anti-scratch additives were used for these investigations. As the surface tack phenomenon is related to ageing and weathering, the material’s examination was also performed after various intervals of weathering. The developed method allows a fast assessment of the effect of polymer composition variations and different additive formulations on surface tack and gives identical rankings as the standardized haptic panel.

  16. Traceable Quantitative Raman Microscopy and X-ray Fluorescence Analysis as Nondestructive Methods for the Characterization of Cu(In,Ga)Se2 Absorber Films.

    Science.gov (United States)

    Zakel, Sabine; Pollakowski, Beatrix; Streeck, Cornelia; Wundrack, Stefan; Weber, Alfons; Brunken, Stefan; Mainz, Roland; Beckhoff, Burckhardt; Stosch, Rainer

    2016-02-01

    The traceability of measured quantities is an essential condition when linking process control parameters to guaranteed physical properties of a product. Using Raman spectroscopy as an analytical tool for monitoring the production of Cu(In1-xGax)Se2 thin-film solar cells, proper calibration with regard to chemical composition and lateral dimensions is a key prerequisite. This study shows how the multiple requirements of calibration in Raman microscopy might be addressed. The surface elemental composition as well as the integral elemental composition of the samples is traced back by reference-free X-ray fluorescence analysis. Reference Raman spectra are then generated for the relevant Cu(In1-xGax)Se2 related compounds. The lateral dimensions are calibrated with the help of a novel dimensional standard whose regular structures have been traced back to the International System of Units by metrological scanning force microscopy. On this basis, an approach for the quantitative determination of surface coverage values from lateral Raman mappings is developed together with a complete uncertainty budget. Raman and X-ray spectrometry have here been proven as complementary nondestructive methods combining surface sensitivity and in-depth information on elemental and species distribution for the reliable quality control of Cu(In1-xGax)Se2 absorbers and Cu(In1-xGax)3Se5 surface layer formation. © The Author(s) 2016.

  17. Macromolecular competition titration method accessing thermodynamics of the unmodified macromolecule-ligand interactions through spectroscopic titrations of fluorescent analogs.

    Science.gov (United States)

    Bujalowski, Wlodzimierz; Jezewska, Maria J

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand-macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein-nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein-nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein-nucleic acid interactions, it can generally be applied to any ligand-macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Macromolecular Competition Titration Method: Accessing Thermodynamics of the Unmodified Macromolecule–Ligand Interactions Through Spectroscopic Titrations of Fluorescent Analogs

    Science.gov (United States)

    Bujalowski, Wlodzimierz; Jezewska, Maria J.

    2011-01-01

    Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand–macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein–nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids. The MCT method is not limited to the specific size of the reference nucleic acid. Particularly, a simple analysis of the competition titration experiments is described in which the fluorescent, short fragment of nucleic acid, spanning the exact site-size of the protein–nucleic acid complex, and binding with only a 1:1 stoichiometry to the protein, is used as a reference macromolecule. Although the MCT method is predominantly discussed as applied to studying protein–nucleic acid interactions, it can generally be applied to any ligand–macromolecule system by monitoring the association reaction using the spectroscopic signal originating from the reference macromolecule in the presence of the competing macromolecule, whose interaction parameters with the ligand are to be determined. PMID:21195223

  19. Advances in calibration methods for micro- and nanoscale surfaces

    Science.gov (United States)

    Leach, R. K.; Giusca, C. L.; Coupland, J. M.

    2012-04-01

    Optical surface topography measuring instrument manufacturers often quote accuracies of the order of nanometres and claim that the instruments can reliably measure a range of surfaces with structures on the micro- to nanoscale. However, for many years there has been debate about the interpretation of the data from optical surface topography measuring instruments. Optical artefacts in the output data and a lack of a calibration infrastructure mean that it can be difficult to get optical instruments to agree with contact stylus instruments. In this paper, the current situation with areal surface topography measurements is discussed along with the ISO specification standards that are in draft form. An infrastructure is discussed whereby the ISO-defined metrological characteristics of optical instruments can be determined, but these characteristics do not allow the instrument to measure complex surfaces. Current research into methods for determining the transfer function of optical instruments is reviewed, which will allow the calibration of optical instruments to measure complex surfaces, at least in the case of weak scattering. The ability of some optical instruments to measure outside the spatial bandwidth limitation of the numerical aperture is presented and some general outlook for future work given.

  20. Optical triangulation method for height measurements on water surfaces

    Science.gov (United States)

    Maas, Hans-Gerd; Hentschel, Bernd; Schreiber, Frank

    2003-01-01

    Optical triangulation methods based on a laser light sheet and a camera are frequently used as a surface measurement technique in a wide range of applications. They allow for the fast accurate determination of height profiles, based on relatively simple hardware and software configurations. Moreover, they can be implemented very efficiently and are especially suited for measurements on moving objects such as products on an assembly line. The study presented in the paper describes the adaptation of laser light sheet optical triangulation techniques to the task of water level profile measurements in hydromechanics experimental facilities. The properties of water surfaces necessitate several modifications of optical triangulation techniques to make them applicable: The mirror-like reflection properties of water surfaces form a contradiction to the assumption of diffuse reflection, on which standard light sheet triangulation techniques are based; this problem can be circumvented by using a diffuse reflecting projection plane to capture the mirror-like reflection of the laser line from the water surface. Due to the angle of incidence law, however, water surface tilts caused by waves will usually cause a strong degradation of the quality of the results when using reflected light; this effect can largely be compensated by processing max-store images derived from short image sequences rather than single images. These extensions of optical triangulation turned out to be crucial for the applicability of the method on water surfaces. Besides the theoretical concept and a sensitivity analysis of the method, a system configuration is outlined, and the results of a number of practical experiments are shown and discussed.

  1. Sensitive and selective turn-on fluorescence method for cetyltrimethylammonium bromide determination based on acridine orange-polystyrene sulfonate complex.

    Science.gov (United States)

    Li, Na; Hao, Xia; Kang, Bei Hua; Li, Nian Bing; Luo, Hong Qun

    2016-06-01

    This work proposed a rapid and novel fluorescence-sensing system using a complex of acridine orange (AO) and polystyrene sulfonate (PSS) to sensitively recognize and monitor cetyltrimethylammonium bromide (CTAB) in an aqueous medium. AO can interact with PSS and a complex is formed via electrostatic attraction and hydrophobic interaction. The fluorescence of AO is greatly quenched after the introduction of PSS. Upon its subsequent addition, CTAB can interact and form a complex with PSS because the electrostatic attraction between CTAB and PSS is much stronger than that between AO and PSS, which results in significant fluorescence recovery. Interestingly, the proposed method can be applied for the discrimination and detection of surfactants with different hydrocarbon chain lengths due to their different binding affinity toward PSS. The detection limit for CTAB is as low as 0.2 µg/mL and the linear range is from 0.5 to 3.5 µg/mL. Moreover, we applied the sensor to the successful detection of CTAB in water samples. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. The Determination of Composite Elements in Zircaloy-2 by X-Ray Fluorescence and Emission Spectrometry Method

    International Nuclear Information System (INIS)

    Dian Anggraini; Rosika Kriswarini; Yusuf N

    2007-01-01

    Analysis of composing elements in zircaloy-2 has been done by Emission Spectrometry method and X-Ray Fluorescence (XRF). The aim of the analysis is to verify conformity between composing elements in zircaloy-2 and the material certificate. Spectrometry Emission method has higher sensitivity in element determination of a material than that of XRF method, so can be estimated that emission spectrometry method has higher accuracy than that of XRF method. The result of qualitative analysis by Emission Spectrometry indicate that the composing elements in zircaloy-2 were Sn, Cr and Ni. However, the qualitative analysis result by XRF method indicated that the composing elements in zircaloy 2 were Sn, Cr, Ni and Fe. Fe element can not be analysed by Emission Spectrometry method because Emission Spectrometer did not equipped with Fe detector. The quantitative analysis result of the composing elements in the material with both methods showed that Sn, Cr and Ni concentration of zircaloy 2 existed in concentration ranges of the material certificate. Result of statistical test (F and t-test) of analysis result of both methods can be used for analyzing composing elements in zircaloy 2. Emission Spectrometry method was more sensitive and accurate for determining Cr and Ni element in zircaloy 2 than that of emission Spectrometry method but both methods had same accuracy. The precision of measurement of Sn, Cr and Ni element using XRF method was better than that of Emission spectrometry method. (author)

  3. Non-invasive tryptophan fluorescence measurements as a novel method of grading cataract.

    Science.gov (United States)

    Erichsen, Jesper Høiberg; Mensah, Aurore; Kessel, Line

    2017-12-01

    Development of non-invasive treatments for cataract calls for a sensitive diagnostic assay. We conducted a study to test whether the ratio of folded tryptophan to non-tryptophan fluorescence emission (F-factor) may be used for grading cataracts in human lenses. The F-factor was measured on aspirated lens material from eyes undergoing femtosecond laser assisted cataract surgery (FLACS) and was compared to a preoperative optical grading of cataract using Scheimpflug imaging. The preoperative optical grading allocated the cataracts to 1 of 4 categories according to the density of the cataract. All cataracts were age-related. Lens material from 16 eyes of 14 patients was included in the study. Cataracts were preoperatively graded in categories 1, 2 and 3. No lenses were category 4. For nuclear cataracts mean values of F-factor were 52.9 (SD 12.2), 61.7 (SD 5.3) and 75.7 (SD 8.9) for categories 1, 2 and 3 respectively. Linear regression on F-factor as a function of preoperative grading category showed increasing values of F-factor with increasing preoperative grading category, R 2  = 0.515. Our experiment showed that preoperative optical grading of cataracts by Scheimpflug imaging may correlate to measures of tryptophan and non-tryptophan fluorescence in human lenses. Based on our results we find that measuring the ratio between tryptophan- and non-tryptophan fluorescence may be a future tool for grading cataracts, but further research is needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  5. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods

    DEFF Research Database (Denmark)

    Mulberg, Mads Westergaard; Taskova, Maria; Thomsen, Rasmus P.

    2017-01-01

    derivatives have higher photostability, brighter fluorescence and hence dramatically lower limits of target detection than the individual organic dyes. These properties make them useful in approaches directed towards ultrasensitive detection of nucleic acids, in particular for imaging and in vitro diagnostics......For decades the detection of nucleic acids and their interactions at low abundances has been a challenging task that has thus far been solved by enzymatic target amplification. In this work we aimed at developing efficient tools for amplification-free nucleic acid detection, which resulted...

  6. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    Science.gov (United States)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  7. Heavy metals analysis in blood by the X-ray fluorescence method

    International Nuclear Information System (INIS)

    Perez Novara, Ana Ma.

    1988-05-01

    The analytical procedure for determination of heavy metals in blood is described. Blood was taken from active smelter workers, samples were stored in special flasks at 2 grades C. After freeze drying, dried samples was analyzed using X-ray fluorescence, sources excited: Pu-238 and Cd-109 was used. Br in Pb interferences were corrected. The agreement of the results with values in similar workers is satisfactory Median Pb level was 42.6 micro grams/100 ml (total blood), Cu was less 2.5 micro grams/g (dry blood) and Zn was 11 micro grams/g (dry blood). (author)

  8. Investigation of metal ion accumulation in Euglena gracilis by fluorescence methods

    Science.gov (United States)

    Shen, H.; Ren, Q. G.; Mi, Y.; Shi, X. F.; Yao, H. Y.; Jin, C. Z.; Huang, Y. Y.; He, W.; Zhang, J.; Liu, B.

    2002-04-01

    Single cell synchrotron X-ray fluorescence (SXRF) microprobe measurements as well as X-ray absorption near edge structure experiments have been done at Beijing Synchrotron Radiation Facility on Euglena Gracilis cells. Concentrations of the metal ions Mn 2+, Nd 3+, Ce 3+ and other trace elements, such as Ca, Fe, Zn, etc. have been measured both by single cell SXRF and bulk PIXE technique. It was found that the content of Ca, Fe and Zn was lower after the uptake of rare earths or Mn by the cells, while the valence states of Mn 2+, Ce 3+ and Nd 3+ were unaltered. The results related to cytochemistry are also discussed.

  9. Separation of substandard tin ores by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Kotler, N.I.; Konovalov, V.M.; Kamenskij, Yu.V.; Neverov, A.D.; Ogorodnikov, Yu.V.

    1987-01-01

    Analysis of pure tin ores on X-ray fluorescence separation (XFS) is carried out. The volumes of lump sampling are substantiated; several variants of technical and economical efficiency of XFS application have been calculated. It is shown that at XFS of -400+25 mm classes conditional as to tin content intermediate product with high efficiency factor may be prepared. Separation of -25+10 mm class is unsuitable, as it doesn't allow to increase tin content to conditional, and the process efficiency is low

  10. Method for Reduction of Silver Biocide Plating on Metal Surfaces

    Science.gov (United States)

    Steele, John; Nalette, Timothy; Beringer, Durwood

    2013-01-01

    Silver ions in aqueous solutions (0.05 to 1 ppm) are used for microbial control in water systems. The silver ions remain in solution when stored in plastic containers, but the concentration rapidly decreases to non-biocidal levels when stored in metal containers. The silver deposits onto the surface and is reduced to non-biocidal silver metal when it contacts less noble metal surfaces, including stainless steel, titanium, and nickel-based alloys. Five methods of treatment of contact metal surfaces to deter silver deposition and reduction are proposed: (1) High-temperature oxidation of the metal surface; (2) High-concentration silver solution pre-treatment; (3) Silver plating; (4) Teflon coat by vapor deposition (titanium only); and (5) A combination of methods (1) and (2), which proved to be the best method for the nickel-based alloy application. The mechanism associated with surface treatments (1), (2), and (5) is thought to be the development of a less active oxide layer that deters ionic silver deposition. Mechanism (3) is an attempt to develop an equilibrium ionic silver concentration via dissolution of metallic silver. Mechanism (4) provides a non-reactive barrier to deter ionic silver plating. Development testing has shown that ionic silver in aqueous solution was maintained at essentially the same level of addition (0.4 ppm) for up to 15 months with method (5) (a combination of methods (1) and (2)), before the test was discontinued for nickel-based alloys. Method (1) resulted in the maintenance of a biocidal level (approximately 0.05 ppm) for up to 10 months before that test was discontinued for nickel-based alloys. Methods (1) and (2) used separately were able to maintain ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for stainless steel alloys. Method (3) was only utilized for titanium alloys, and was successful at maintaining ionic silver in aqueous solution at

  11. Methods to study microbial adhesion on abiotic surfaces

    Directory of Open Access Journals (Sweden)

    Ana Meireles

    2015-09-01

    Full Text Available Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is very important to understand and characterize microbial adhesion to a surface. This study presents an overview of predictive and experimental methods used for the study of bacterial adhesion. Evaluation of surface physicochemical properties have a limited capacity in describing the complex adhesion process. Regarding the experimental methods, there is no standard method or platform available for the study of microbial adhesion and a wide variety of methods, such as colony forming units counting and microscopy techniques, can be applied for quantification and characterization of the adhesion process.

  12. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    Science.gov (United States)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  13. Facile stamp patterning method for superhydrophilic/superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Sungnam, E-mail: blueden@postech.ac.kr; Hwang, Woonbong, E-mail: whwang@postech.ac.kr [Department of Mechanical Engineering, POSTECH, Pohang 680-749 (Korea, Republic of)

    2015-11-16

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

  14. Scattering of surface waves modelled by the integral equation method

    Science.gov (United States)

    Lu, Laiyu; Maupin, Valerie; Zeng, Rongsheng; Ding, Zhifeng

    2008-09-01

    The integral equation method is used to model the propagation of surface waves in 3-D structures. The wavefield is represented by the Fredholm integral equation, and the scattered surface waves are calculated by solving the integral equation numerically. The integration of the Green's function elements is given analytically by treating the singularity of the Hankel function at R = 0, based on the proper expression of the Green's function and the addition theorem of the Hankel function. No far-field and Born approximation is made. We investigate the scattering of surface waves propagating in layered reference models imbedding a heterogeneity with different density, as well as Lamé constant contrasts, both in frequency and time domains, for incident plane waves and point sources.

  15. Response-Surface Methods in R, Using rsm

    Directory of Open Access Journals (Sweden)

    Russell V. Lenth

    2009-10-01

    Full Text Available This article describes the recent package rsm, which was designed to provide R support for standard response-surface methods. Functions are provided to generate central-composite and Box-Behnken designs. For analysis of the resulting data, the package provides for estimating the response surface, testing its lack of fit, displaying an ensemble of contour plots of the fitted surface, and doing follow-up analyses such as steepest ascent, canonical analysis, and ridge analysis. It also implements a coded-data structure to aid in this essential aspect of the methodology. The functions are designed in hopes of providing an intuitive and effective user interface. Potential exists for expanding the package in a variety of ways.

  16. Exploration on Kerf-angle and Surface Roughness in Abrasive Waterjet Machining using Response Surface Method

    Science.gov (United States)

    Babu, Munuswamy Naresh; Muthukrishnan, Nambi

    2017-05-01

    Abrasive waterjet machining is a mechanical based unconventional cutting process which uses a mixture of abrasives and pressurized water as an intermediate to cut the material. The present paper focuses in analyzing the effect process parameters like feed rate, water pressure, standoff distance and abrasive flow rate on the surface roughness and kerf-angle of AISI 1018 mild steel experimentally. The experiments were performed under Taguchi's L27 orthogonal array. Moreover, the optimal parameter that significantly reduces the surface roughness and kerf-angle were calculated through response surface method. The most dominating process parameter that affects the responses was calculated by the Analysis of variance. In addition, machined surfaces are further subjected to scanning electron microscope (SEM) and atomic force microscope (AFM) for detailed study on the texture developed.

  17. Surface partitioning studies of N-methylcarbamate-treated post-harvest crops using SFE-HPLC-postcolumn reaction-fluorescence.

    Science.gov (United States)

    Stuart, I A; Ansell, R O; MacLachlan, J; Bather, P A

    1999-03-01

    The partitioning characteristics of selected carbamate insecticides (carbaryl, aldicarb, bendiocarb and pirimicarb) on five fruit and vegetable types were investigated. Post-harvest samples were surface-saturated with a methanolic-aqueous mixed carbamate spiking solution for a number of time periods. Samples were taken at 3, 7, 10 and 14 d, and extracted using supercritical CO2 at pressure = 300 atm modified with 10% dimethyl sulfoxide. Extracts were analysed by HPLC-postcolumn reaction-fluorescence detection at lambda ex = 330 nm and lambda em = 450 nm for N-methylcarbamates and at lambda ex = 315 nm and lambda em = 380 nm for pirimicarb. The relative partitioning of each insecticide between sample skin and flesh was investigated. This included the determination of both half-life and normalised matrix metabolic rate studies with respect to each carbamate. Multilinear regression (MLR) was applied to a number of insecticide and matrix-based variables to develop regression models for carbamate partitioning for each matrix type studied. Experimentally derived carbamate half-lives ranged from 3.6 d (carbaryl in pear flesh) to 8.0 d (bendiocarb in banana skin). Determinations of normalised metabolic rates were based on calculating the time period from the point of sampling through to the point where carbamate concentration was reduced to 5% of its initial value. These values ranged from 16.2 d (bendiocarb in potato skin) to 34.7 d (bendiocarb in banana skin). Although no practicable MLR partitioning models were obtained, it was found that the models created indicated that carbamate solubility in water (and hence log P) and the number of days in contact with the spiking solution were the most important parameters in model construction.

  18. Vapor phase treatment–total reflection X-ray fluorescence for trace elemental analysis of silicon wafer surface

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Hikari, E-mail: hikari@rigaku.co.jp [Rigaku Corp., 14-8 Akaoji-cho, Takatsuki, Osaka 569-1146 (Japan); Mori, Yoshihiro [Horiba Ltd., 2 Miyanohigashi, Kisshoin, Minami-ku, Kyoto 601-8510 (Japan); Shibata, Harumi [SUMCO Corporation, Seavance North, 1-2-1 Shibaura, Minato-ku, Tokyo 105-8634 (Japan); Shimazaki, Ayako [Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Shabani, Mohammad B. [Mitsubishi Material Corporation, 1-297, Kitabukuro-cho, Omiya-ku, Saitama 330-8508 (Japan); Yamagami, Motoyuki [Rigaku Corp., 14-8 Akaoji-cho, Takatsuki, Osaka 569-1146 (Japan); Yabumoto, Norikuni [Analysis Atelier Co., 4-36-4, Yoyogi, Shibuya-ku, Tokyo 151-0053 (Japan); Nishihagi, Kazuo [Horiba Ltd., 2 Miyanohigashi, Kisshoin, Minami-ku, Kyoto 601-8510 (Japan); Gohshi, Yohichi [Tsukuba University, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2013-12-01

    Vapor phase treatment (VPT) was under investigation by the International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) to improve the detection limit of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis of silicon wafers. Round robin test results have confirmed that TXRF intensity increased by VPT for intentional contamination with 5 × 10{sup 9} and 5 × 10{sup 10} atoms/cm{sup 2} Fe and Ni. The magnification of intensity enhancement varied greatly (1.2–4.7 in VPT factor) among the participating laboratories, though reproducible results could be obtained for average of mapping measurement. SEM observation results showed that various features, sizes, and surface densities of particles formed on the wafer after VPT. The particle morphology seems to have some impact on the VPT efficiency. High resolution SEM observation revealed that a certain number of dots with SiO{sub 2}, silicate and/or carbon gathered to form a particle and heavy metals, Ni and Fe in this study were segregated on it. The amount and shape of the residue should be important to control VPT factor. - Highlights: • This paper presents a summary of study results of VPT–TXRF using ISO/TC201/WG2. • Our goal is to analyze the trace metallic contamination on silicon wafer with concentrations below 1 × 10{sup 10} atoms/cm{sup 2}. • The efficiency and mechanism of VPT are discussed under several round robin tests and systematic studies.

  19. Analysis of total and dissolved heavy metals in surface water of a Mexican polluted river by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila-Perez, P.; Tejeda, S.; Barcelo-Quintal, I.; Martinez, T.

    2006-01-01

    The present area of study is located in the Upper Course of the Lerma River (UCLR). The Lerma is one of the most important rivers of Mexico, where it drains highly populated and industrialized regions. The aim of the present study is to determine the heavy metal concentration of Cr, Mn, Fe, Cu and Pb in dissolved and total phases of the UCLR by means of Total Reflection X-ray Fluorescence Spectrometry (TXRF). The surface water samples were collected at 8 sites distributed following the stream flow direction of the river. Four sampling campaigns were carried out in each site in a 1-year period. A sample preparation method was applied in order to obtain the total and dissolved fraction and to destroy the organic matter. The total heavy metal average concentration decrease in the following order: Fe (2566 μg/L) > Mn (300 μg/L) > Cu (66 μg/L) > Cr (21 μg/L) > Pb (15 μg/L). In general, the heavy metal concentrations in water of the UCLR are below the maximum permissible limits

  20. A new method for x-ray fluorescence analysis of contaminated material. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Grodzins, Lee; Niland, John

    2002-05-23

    Niton has successfully completed the objectives of the Phase II program to build a hand-held, x-ray fluorescent analyzer optimized for DOE decontamination and decommissioning activities in the field. A two-pound x-ray fluorescence analyzer was developed that contains 3 radioactive sources, emitting 3 widely spaced monochromatic x-rays, to give the lowest detection limits for the full range of toxic elements, from chromium to plutonium. A rapid, fundamental- parameters algorithm was developed that yields quantitative results in less than 1 second. High-resolution silicon drift detectors and silicon PIN diodes give excellent efficiency and speed. These results from Phase II have been introduced into the XL 300, 700 and 800 commercial products series. More than 800 of these instruments, yielding revenues of more than $20 million dollars, have been sold since the first 3-source instrument was introduced in 1998. A direct consequence of the Phase II funding has been the growth of Niton from 20 people to its present size of 60.

  1. A new method for x-ray fluorescence analysis of contaminated material. Final Report

    International Nuclear Information System (INIS)

    Grodzins, Lee; Niland, John

    2002-01-01

    Niton has successfully completed the objectives of the Phase II program to build a hand-held, x-ray fluorescent analyzer optimized for DOE decontamination and decommissioning activities in the field. A two-pound x-ray fluorescence analyzer was developed that contains 3 radioactive sources, emitting 3 widely spaced monochromatic x-rays, to give the lowest detection limits for the full range of toxic elements, from chromium to plutonium. A rapid, fundamental- parameters algorithm was developed that yields quantitative results in less than 1 second. High-resolution silicon drift detectors and silicon PIN diodes give excellent efficiency and speed. These results from Phase II have been introduced into the XL 300, 700 and 800 commercial products series. More than 800 of these instruments, yielding revenues of more than $20 million dollars, have been sold since the first 3-source instrument was introduced in 1998. A direct consequence of the Phase II funding has been the growth of Niton from 20 people to its present size of 60

  2. X-ray fluorescence-based method for the quantitative determination of uranium in the aqueous solutions

    Science.gov (United States)

    Dubrovka, S.; Chursin, S.; Verkhoturova, V.

    2017-01-01

    Currently, one of the important issues in the field of nuclear technology is providing special handling with respect to nuclear materials, due to their energy and commercial significancy, as well as their potential radiation contamination threat. There is a necessity to have information about the full qualitative and quantitative composition of the sample as a part of special handling with nuclear materials. Spectrometric methods solve this problem effectively. One of these methods is the X-ray fluorescence analysis, which is fast, nondestructive and environmentally friendly with a high accuracy and reproducibility of the results. Development of uranium quantitative determination method in aqueous solutions to solve the problems of accounting and control of nuclear materials is the subject of research in this article. The development of the uranium concentration determination method in the aqueous solutions of uranyl nitrate UO2(NO3)2 was carried out using Spectroscan MAKC-G - wavelength dispersive crystal diffraction XRF spectrometer.

  3. [Research on the Relationship between Surface Structure and Fluorescence Intensity of Ca(1-x)Al2Si2O8 : Eu(x)].

    Science.gov (United States)

    He, Xiao; Zhang, Li-sheng; Zu, En-dong; Yang, Xiao-yun; Dong, Kun

    2016-01-01

    Ca(1-x)Al2Si2O8 : Eu(x)(x = 0, 0.01, 0.05, 0.15) were synthesized by solid-state reaction respectively at 1 150, 1 250 1350 and 1 450 degrees C. With X-ray diffraction(XRD), Raman spectroscopy(Raman), photoluminescence spectroscopy(PL) and X-ray fluorescence spectrometer(XRF), the relationship between surface structure and fluorescence intensity of Ca(1-x) Al2Si2O8: Eu(x) were studied. XRD and Raman results show that, CaAl2Si2O8 anorthite single-phase has formed gradually along with the temperature rising in the process of synthesis. Raman spectroscopy is clear that when the Eu doping amount is the same, Si-O amorphous phase disappear gradually and the CaAl2Si2O8 phase form gradually with the temperature increases. As the temperature increases, vibration peaks position silicon oxygen tetrahedron shift to lower wave number. When 1 450 degrees C, the temperature is too high to destroy the structure of silicon oxygen tetrahedron. At the same time, there is a broadening amorphous peak appears in Raman spectroscopy. The procedure of Al to replace Si is hindered with Eu doped in. It is the result that the peak at 1 620 cm(-1) decreases after the first increases. The change of surface structure associated with the scattering amount of Eu. PL and XRF results show that: as the temperature increases, the amount of Eu atom scattering on the material surface increases gradually, this change lead to the fluorescence intensity raise. Therefore, there is proportional relationship between the fluorescence intensity of the samples and the number of samples per unit surface area of Eu atoms.

  4. Study of an X-ray fluorescence thin film method for the determination of uranium in low activity solutions

    International Nuclear Information System (INIS)

    Diaz-Guerra, J. P.

    1980-01-01

    The application of the X-ray fluorescence thin film technique to the uranium determination in nitric solutions for a concentration range from 1 g/l to 100 g/l and activity levels under 5 mCi/ml is studied. The most suited excitation and measurement conditions are also studied and the uranium matrix effect correction, which is performed through the double dilution, α U U interaction coefficient calculation and internal standard methods, is discussed. The specimen preparation is satisfactorily accomplished by using P.V.C. filters fixed on aluminium supports. (Author) 18 refs

  5. An automated and highly efficient method for counting and measuring fluorescent foci in rod-shaped bacteria.

    Science.gov (United States)

    Nielsen, H J; Hansen, F G

    2010-09-01

    Direct measurements of cells from photo micrographs are becoming increasingly used when investigating the position and/or distribution of chromosomal loci in bacteria. In general, these measurements have been done manually, and without clear definition of how they are made. Here we present a procedure for standardizing the measurement of cell properties from phase contrast images. Furthermore, we present a program using these standardized methods that can measure the intracellular positions of fluorescent foci in bacterial cells faster and with more precision than manual measurement.

  6. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  7. Comparison of optical methods for surface roughness characterization

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul Erik; Pilny, Lukas

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler...... of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal...

  8. A sensitive fluorescence anisotropy method for detection of lead (II) ion by a G-quadruplex-inducible DNA aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dapeng [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Yin, Lei; Meng, Zihui [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yu, Anchi [Department of Chemistry, Renmin University of China, Beijing, 100872 (China); Guo, Lianghong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Wang, Hailin, E-mail: hlwang@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2014-02-17

    Graphical abstract: -- Highlights: •A fluorescence anisotropy approach for detection of Pb{sup 2+} was developed. •The strategy was based on binding-induced allosteric conformational change of aptamer probe. •The sensing mechanism was established by testing the photoinduced electron transfer interaction. -- Abstract: Sensitive and selective detection of Pb{sup 2+} is of great importance to both human health and environmental protection. Here we propose a novel fluorescence anisotropy (FA) approach for sensing Pb{sup 2+} in homogeneous solution by a G-rich thrombin binding aptamer (TBA). The TBA labeled with 6-carboxytetramethylrhodamine (TMR) at the seventh thymine nucleotide was used as a fluorescent probe for signaling Pb{sup 2+}. It was found that the aptamer probe had a high FA in the absence of Pb{sup 2+}. This is because the rotation of TMR is restricted by intramolecular interaction with the adjacent guanine bases, which results in photoinduced electron transfer (PET). When the aptamer probe binds to Pb{sup 2+} to form G-quadruplex, the intramolecular interaction should be eliminated, resulting in faster rotation of the fluorophore TMR in solution. Therefore, FA of aptamer probe is expected to decrease significantly upon binding to Pb{sup 2+}. Indeed, we observed a decrease in FA of aptamer probe upon Pb{sup 2+} binding. Circular dichroism, fluorescence spectra, and fluorescence lifetime measurement were used to verify the reliability and reasonability of the sensing mechanism. By monitoring the FA change of the aptamer probe, we were able to real-time detect binding between the TBA probe and Pb{sup 2+}. Moreover, the aptamer probe was exploited as a recognition element for quantification of Pb{sup 2+} in homogeneous solution. The change in FA showed a linear response to Pb{sup 2+} from 10 nM to 2.0 μM, with 1.0 nM limit of detection. In addition, this sensing system exhibited good selectivity for Pb{sup 2+} over other metal ions. The method is simple

  9. Standard test methods for chemical analysis of ceramic whiteware materials using wavelength dispersive X-Ray fluorescence spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover the determination of ten major elements (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, MnO, and LOI in ceramic whitewares clays and minerals using wavelength dispersive X-ray fluorescence spectrometry (WDXRF). The sample is first ignited, then fused with lithium tetraborate and the resultant glass disc is introduced into a wavelength dispersive X-ray spectrometer. The disc is irradiated with X-rays from an X-ray tube. X-ray photons emitted by the elements in the samples are counted and concentrations determined using previously prepared calibration standards. (1) In addition to 10 major elements, the method provides a gravimetric loss-on-ignition. Note 1—Much of the text of this test method is derived directly from Major element analysis by wavelength dispersive X-ray fluorescence spectrometry, included in Ref (1). 1.2 Interferences, with analysis by WDXRF, may result from mineralogical or other structural effects, line overlaps, and matrix effects. The structure of the...

  10. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-photoemission spectroscopy measurements. This comparison shows that the modified Delta SCF method gives results in close agreement with experiment, significantly closer than the comparable methods. For N2 adsorbed on ruthenium (0001) we map out a two-dimensional part of the potential energy surfaces in the ground state...

  11. TWO METHODS FOR REMOTE ESTIMATION OF COMPLETE URBAN SURFACE TEMPERATURE

    Directory of Open Access Journals (Sweden)

    L. Jiang

    2017-09-01

    Full Text Available Complete urban surface temperature (TC is a key parameter for evaluating the energy exchange between the urban surface and atmosphere. At the present stage, the estimation of TC still needs detailed 3D structure information of the urban surface, however, it is often difficult to obtain the geometric structure and composition of the corresponding temperature of urban surface, so that there is still lack of concise and efficient method for estimating the TC by remote sensing. Based on the four typical urban surface scale models, combined with the Envi-met model, thermal radiant directionality forward modeling and kernel model, we analyzed a complete day and night cycle hourly component temperature and radiation temperature in each direction of two seasons of summer and winter, and calculated hemispherical integral temperature and TC. The conclusion is obtained by examining the relationship of directional radiation temperature, hemispherical integral temperature and TC: (1 There is an optimal angle of radiation temperature approaching the TC in a single observation direction when viewing zenith angle is 45–60°, the viewing azimuth near the vertical surface of the sun main plane, the average absolute difference is about 1.1 K in the daytime. (2 There are several (3–5 times directional temperatures of different view angle, under the situation of using the thermal radiation directionality kernel model can more accurately calculate the hemispherical integral temperature close to TC, the mean absolute error is about 1.0 K in the daytime. This study proposed simple and effective strategies for estimating TC by remote sensing, which are expected to improve the quantitative level of remote sensing of urban thermal environment.

  12. Two Methods for Remote Estimation of Complete Urban Surface Temperature

    Science.gov (United States)

    Jiang, L.; Zhan, W.; Zou, Z.

    2017-09-01

    Complete urban surface temperature (TC) is a key parameter for evaluating the energy exchange between the urban surface and atmosphere. At the present stage, the estimation of TC still needs detailed 3D structure information of the urban surface, however, it is often difficult to obtain the geometric structure and composition of the corresponding temperature of urban surface, so that there is still lack of concise and efficient method for estimating the TC by remote sensing. Based on the four typical urban surface scale models, combined with the Envi-met model, thermal radiant directionality forward modeling and kernel model, we analyzed a complete day and night cycle hourly component temperature and radiation temperature in each direction of two seasons of summer and winter, and calculated hemispherical integral temperature and TC. The conclusion is obtained by examining the relationship of directional radiation temperature, hemispherical integral temperature and TC: (1) There is an optimal angle of radiation temperature approaching the TC in a single observation direction when viewing zenith angle is 45-60°, the viewing azimuth near the vertical surface of the sun main plane, the average absolute difference is about 1.1 K in the daytime. (2) There are several (3-5 times) directional temperatures of different view angle, under the situation of using the thermal radiation directionality kernel model can more accurately calculate the hemispherical integral temperature close to TC, the mean absolute error is about 1.0 K in the daytime. This study proposed simple and effective strategies for estimating TC by remote sensing, which are expected to improve the quantitative level of remote sensing of urban thermal environment.

  13. System and method for controlling depth of imaging in tissues using fluorescence microscopy under ultraviolet excitation following staining with fluorescing agents

    Science.gov (United States)

    Demos, Stavros; Levenson, Richard

    2017-04-18

    The present disclosure relates to a method for analyzing tissue specimens. In one implementation the method involves obtaining a tissue sample and exposing the sample to one or more fluorophores as contrast agents to enhance contrast of subcellular compartments of the tissue sample. The tissue sample is illuminated by an ultraviolet (UV) light having a wavelength between about 200 nm to about 400 nm, with the wavelength being selected to result in penetration to only a specified depth below a surface of the tissue sample. Inter-image operations between images acquired under different imaging parameters allow for improvement of the image quality via removal of unwanted image components. A microscope may be used to image the tissue sample and provide the image to an image acquisition system that makes use of a camera. The image acquisition system may create a corresponding image that is transmitted to a display system for processing and display.

  14. The relative-intensity method of X-ray fluorescence analysis and its application to soils and rocks

    International Nuclear Information System (INIS)

    Childs, C.W.; Furkert, R.J.

    1974-01-01

    The relative-intensity X-ray fluorescence method of analysis of rock and soil samples has been investigated and compared with the net-intensity method. Strong, coherently scattered radiation originating from the X-ray tube is shown to be preferable to background radiation as an internal standard, and scattered radiation measured at one wavelength can usefully be applied in the determination of several elements. When the concentrations of an element in two soil samples of different composition (for example concretions and the soil adjacent to them) are compared, the ratio of the relative intensities may be different from the ratio of net intensities by a factor of about two. The concentrations of manganese in thirteen standard rock samples determined by the relative-intensity method are within or very close to the ranges of values reported previously

  15. Non thermal plasma surface cleaner and method of use

    KAUST Repository

    Neophytou, Marios

    2017-09-14

    Described herein are plasma generation devices and methods of use of the devices. The devices can be used for the cleaning of various surfaces and/or for inhibiting or preventing the accumulation of particulates, such as dust, or moisture on various surfaces. The devices can be used to remove dust and other particulate contaminants from solar panels and windows, or to avoid or minimize condensation on various surfaces. In an embodiment a plasma generation device is provided. The plasma generation device can comprise: a pair of electrodes (1,2) positioned in association with a surface of a dielectric substrate (3). The pair of electrodes (1,2) can comprise a first electrode (1) and a second electrode (2). The first electrode and second electrode can be of different sizes, one of the electrodes being smaller than the other of the electrodes. The first electrode and second electrode can be separated by a distance and electrically connected to a voltage source (4,5).

  16. Physical and chemical characterization methods of surfaces and interfaces; Methodes de caracterisation physico-chimique des surfaces et des interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Barthes-Labrousse, M.G. [Centre d`Etudes de Chimie Metallurgique, 94 - Vitry-sur-Seine (France)

    1997-12-31

    The main physical and chemical characterization techniques of surfaces and interfaces are presented. There are: Auger electron spectroscopy, photoelectron spectroscopies (XPS and UPS), secondary ions mass spectroscopy (SIMS), infrared and Raman spectroscopies, electron energy loss spectroscopy (EELS and HREELS) and atomic force microscopy (AFM). For each method is given the theoretical principle, the apparatus and the main uses of the techniques. (O.M.) 27 refs.

  17. Surface charge method for molecular surfaces with curved areal elements I. Spherical triangles

    Science.gov (United States)

    Yu, Yi-Kuo

    2018-03-01

    Parametrizing a curved surface with flat triangles in electrostatics problems creates a diverging electric field. One way to avoid this is to have curved areal elements. However, charge density integration over curved patches appears difficult. This paper, dealing with spherical triangles, is the first in a series aiming to solve this problem. Here, we lay the ground work for employing curved patches for applying the surface charge method to electrostatics. We show analytically how one may control the accuracy by expanding in powers of the the arc length (multiplied by the curvature). To accommodate not extremely small curved areal elements, we have provided enough details to include higher order corrections that are needed for better accuracy when slightly larger surface elements are used.

  18. Fluorescent optical position sensor

    Science.gov (United States)

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  19. P-Glycoprotein-Activity Measurements in Multidrug Resistant Cell Lines: Single-Cell versus Single-Well Population Fluorescence Methods

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2013-01-01

    Full Text Available Background. P-gp expression has been linked to the efflux of chemotherapeutic drugs in human cancers leading to multidrug resistance. Fluorescence techniques have been widely applied to measure the P-gp activity. In this paper, there is a comparison between the advantages of two fluorescence approaches of commonly available and affordable instruments: the microplate reader (MPR and the flow cytometer to detect the P-gp efflux activity using calcein-AM. Results. The selectivity, sensibility, and reproducibility of the two methods have been defined. Our results showed that the MPR is more powerful for the detection of small inhibition, whereas the flow cytometry method is more reliable at higher concentrations of the inhibitors. We showed that to determine precisely the inhibition efficacy the flow cytometry is better; hence, to get the correct Emax and EC50 values, we cannot only rely on the MPR. Conclusion. Both techniques can potentially be used extensively in the pharmaceutical industry for high-throughput drug screening and in biology laboratories for academic research, monitoring the P-gp efflux in specific assays.

  20. Development and Application of a Label-Free Fluorescence Method for Determining the Composition of Gold Nanoparticle–Protein Conjugates

    Science.gov (United States)

    Sotnikov, Dmitriy V.; Zherdev, Anatoly V.; Dzantiev, Boris B.

    2014-01-01

    A method was developed for determining the composition of the conjugates between gold nanoparticles and proteins based on the intrinsic fluorescence of unbound protein molecules. The fluorescence was evaluated after separation of the conjugates from the reaction mixture by centrifugation. Gold nanoparticles obtained using the citrate technique (average diameter 24 nm) were conjugated at pH 5.4 with the following four proteins: human immunoglobulin G (IgG), bovine serum albumin (BSA), recombinant streptococcal protein G (protein G), and Kunitz-type soybean trypsin inhibitor (STI). The compositions of these conjugates were determined using the developed method. The conjugate compositions were dependent on the concentration of the added protein, and in all cases reached saturation. The equilibrium dissociation constants of the gold nanoparticle conjugates with IgG, BSA, protein G, STI in the initial section of the concentration dependence curve were 4, 6, 10, and 15 nM, respectively. Close to saturation, the corresponding values were 25, 76, 175, and 100 nM, respectively. The maximal binding capacities of a single gold nanoparticle for IgG, BSA, Protein G, and STI were 52, 90, 500, and 550, respectively, which agrees well with the hypothesis of monolayer immobilization. PMID:25561238

  1. Fluorescence cytology with 5-aminolevulinic acid in EUS-guided FNA as a method for differentiating between malignant and benign lesions (with video).

    Science.gov (United States)

    Ikeura, Tsukasa; Takaoka, Makoto; Uchida, Kazushige; Shimatani, Masaaki; Miyoshi, Hideaki; Kato, Kota; Ohe, Chisato; Uemura, Yoshiko; Kaibori, Masaki; Kwon, A-Hon; Okazaki, Kazuichi

    2015-01-01

    EUS-guided FNA (EUS-FNA) has been increasingly performed to obtain specimens for the pathological evaluation of patients with GI and pancreaticobiliary masses as well as lymphadenopathies of unknown origin. Photodynamic diagnosis by using 5-aminolebulinic acid (ALA) has been reported to be useful for enabling the visual differentiation between malignant and normal tissue in various cancers. To evaluate the diagnostic accuracy of fluorescence cytology with ALA in EUS-FNA. A prospective study. A single center. A total of 28 consecutive patients who underwent EUS-FNA for the pathological diagnosis of a pancreaticobiliary mass lesion or intra-abdominal lymphadenopathy of unknown origin. Patients were orally administered ALA 3 to 6 hours before EUS-FNA. The sample was obtained via EUS-FNA for fluorescence cytology and conventional cytology. A single gastroenterologist performed the fluorescence cytology by using fluorescence microscopy after the procedure, independently of the conventional cytology by pathologists. The accuracy of fluorescence cytology with ALA in the differentiation between benign and malignant lesions by comparing the results of fluorescence cytology with the final diagnosis. Of the 28 patients included in the study, 22 were considered as having malignant lesions and 6 patients as having benign lesions. Fluorescence cytology could correctly discriminate between benign and malignant lesions in all patients. Therefore, both the sensitivity and specificity of fluorescence cytology were 100% in our study. Fluorescence cytology was performed by only 1 gastroenterologist with a small number of patients. Fluorescence cytology with ALA in EUS-FNA may be an effective and simple method for differentiating between benign and malignant lesions. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  2. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  3. A new method for patterning azopolymer thin film surfaces

    Science.gov (United States)

    Sorkhabi, Sh. Golghasemi; Barille, R.; Ahmadi-Kandjani, S.; Zielinska, S.; Ortyl, E.

    2017-04-01

    We present a simple bottom-up approach via an incoherent unpolarized illumination and the choice of a solvent-droplet-induced-dewetting method to photoinduce nano doughnuts on the surface of azopolymer thin films. We demonstrate that doughnut-shaped nanostructures can be formed and tailored with a wide range of typical sizes, thus providing a rich field of applications using surface photo-patterning. Furthermore, due to the presence of highly photoactive azobenzene derivative in the material, illumination of these nanostructures by a polarized laser light shows the possibility of a further growth and reshaping opening the way for fundamental studies of size-dependent scaling laws of optical properties and possible fabrication of nano-reactor or nano-trap patterns.

  4. Economic method for helical gear flank surface characterisation

    Science.gov (United States)

    Koulin, G.; Reavie, T.; Frazer, R. C.; Shaw, B. A.

    2018-03-01

    Typically the quality of a gear pair is assessed based on simplified geometric tolerances which do not always correlate with functional performance. In order to identify and quantify functional performance based parameters, further development of the gear measurement approach is required. Methodology for interpolation of the full active helical gear flank surface, from sparse line measurements, is presented. The method seeks to identify the minimum number of line measurements required to sufficiently characterise an active gear flank. In the form ground gear example presented, a single helix and three profile line measurements was considered to be acceptable. The resulting surfaces can be used to simulate the meshing engagement of a gear pair and therefore provide insight into functional performance based parameters. Therefore the assessment of the quality can be based on the predicted performance in the context of an application.

  5. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  6. Development of a biosensor protein bullet as a fluorescent method for fast detection of Escherichia coli in drinking water.

    Science.gov (United States)

    Gutiérrez-Del-Río, Ignacio; Marín, Laura; Fernández, Javier; Álvarez San Millán, María; Ferrero, Francisco Javier; Valledor, Marta; Campo, Juan Carlos; Cobián, Natalia; Méndez, Ignacio; Lombó, Felipe

    2018-01-01

    Drinking water can be exposed to different biological contaminants from the source, through the pipelines, until reaching the final consumer or industry. Some of these are pathogenic bacteria and viruses which may cause important gastrointestinal or systemic diseases. The microbiological quality of drinking water relies mainly in monitoring three indicator bacteria of faecal origin, Escherichia coli, Enterococcus faecalis and Clostridium perfringens, which serve as early sentinels of potential health hazards for the population. Here we describe the analysis of three chimeric fluorescent protein bullets as biosensor candidates for fast detection of E. coli in drinking water. Two of the chimeric proteins (based on GFP-hadrurin and GFP-pb5 chimera proteins) failed with respect to specificity and/or sensitivity, but the GFP-colS4 chimera protein was able to carry out specific detection of E. coli in drinking water samples in a procedure encompassing about 8 min for final result and this biosensor protein was able to detect in a linear way between 20 and 103 CFU of this bacterium. Below 20 CFU, the system cannot differentiate presence or absence of the target bacterium. The fluorescence in this biosensor system is provided by the GFP subunit of the chimeric protein, which, in the case of the better performing sensor bullet, GFP-colS4 chimera, is covalently bound to a flexible peptide bridge and to a bacteriocin binding specifically to E. coli cells. Once bound to the target bacteria, the excitation step with 395 nm LED light causes emission of fluorescence from the GFP domain, which is amplified in a photomultiplier tube, and finally this signal is converted into an output voltage which can be associated with a CFU value and these data distributed along mobile phone networks, for example. This method, and the portable fluorimeter which has been developed for it, may contribute to reduce the analysis time for detecting E. coli presence in drinking water.

  7. Development of a biosensor protein bullet as a fluorescent method for fast detection of Escherichia coli in drinking water.

    Directory of Open Access Journals (Sweden)

    Ignacio Gutiérrez-Del-Río

    Full Text Available Drinking water can be exposed to different biological contaminants from the source, through the pipelines, until reaching the final consumer or industry. Some of these are pathogenic bacteria and viruses which may cause important gastrointestinal or systemic diseases. The microbiological quality of drinking water relies mainly in monitoring three indicator bacteria of faecal origin, Escherichia coli, Enterococcus faecalis and Clostridium perfringens, which serve as early sentinels of potential health hazards for the population. Here we describe the analysis of three chimeric fluorescent protein bullets as biosensor candidates for fast detection of E. coli in drinking water. Two of the chimeric proteins (based on GFP-hadrurin and GFP-pb5 chimera proteins failed with respect to specificity and/or sensitivity, but the GFP-colS4 chimera protein was able to carry out specific detection of E. coli in drinking water samples in a procedure encompassing about 8 min for final result and this biosensor protein was able to detect in a linear way between 20 and 103 CFU of this bacterium. Below 20 CFU, the system cannot differentiate presence or absence of the target bacterium. The fluorescence in this biosensor system is provided by the GFP subunit of the chimeric protein, which, in the case of the better performing sensor bullet, GFP-colS4 chimera, is covalently bound to a flexible peptide bridge and to a bacteriocin binding specifically to E. coli cells. Once bound to the target bacteria, the excitation step with 395 nm LED light causes emission of fluorescence from the GFP domain, which is amplified in a photomultiplier tube, and finally this signal is converted into an output voltage which can be associated with a CFU value and these data distributed along mobile phone networks, for example. This method, and the portable fluorimeter which has been developed for it, may contribute to reduce the analysis time for detecting E. coli presence in drinking

  8. Roman sophisticated surface modification methods to manufacture silver counterfeited coins

    Science.gov (United States)

    Ingo, G. M.; Riccucci, C.; Faraldi, F.; Pascucci, M.; Messina, E.; Fierro, G.; Di Carlo, G.

    2017-11-01

    By means of the combined use of X-ray photoelectron spectroscopy (XPS), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) the surface and subsurface chemical and metallurgical features of silver counterfeited Roman Republican coins are investigated to decipher some aspects of the manufacturing methods and to evaluate the technological ability of the Roman metallurgists to produce thin silver coatings. The results demonstrate that over 2000 ago important advances in the technology of thin layer deposition on metal substrates were attained by Romans. The ancient metallurgists produced counterfeited coins by combining sophisticated micro-plating methods and tailored surface chemical modification based on the mercury-silvering process. The results reveal that Romans were able systematically to chemically and metallurgically manipulate alloys at a micro scale to produce adherent precious metal layers with a uniform thickness up to few micrometers. The results converge to reveal that the production of forgeries was aimed firstly to save expensive metals as much as possible allowing profitable large-scale production at a lower cost. The driving forces could have been a lack of precious metals, an unexpected need to circulate coins for trade and/or a combinations of social, political and economic factors that requested a change in money supply. Finally, some information on corrosion products have been achieved useful to select materials and methods for the conservation of these important witnesses of technology and economy.

  9. Methods on estimation of the evaporation from water surface

    International Nuclear Information System (INIS)

    Trajanovska, Lidija; Tanushevska, Dushanka; Aleksovska, Nina

    2001-01-01

    The whole world water supply on the Earth is in close dependence on hydrological cycle connected with water circulation at Earth-Atmosphere route through evaporation, precipitation and water runoff. Evaporation exists worldwide where the atmosphere is unsatiated of water steam (when there is humidity in short supply) and it depends on climatic conditions in some regions. The purpose of this paper is to determine a method for estimation of evaporation of natural water surface in our areas, that means its determination as exact as possible. (Original)

  10. Determination of mercury in seawater by total reflection x-ray fluorescence spectrometry after an electrochemical preconcentration method

    International Nuclear Information System (INIS)

    Ritschel, A.; Chinea Cano, E.; Wobrauschek, P.; Kuntner, C.; Durakbasa, M.N.

    2000-01-01

    A new combined method of electrodeposition of trace elements on metallic plates with subsequent total-reflection x-ray fluorescence spectrometry (TXRF) is proposed for the determination of trace metals in natural waters. The elements of interest are electroplated on highly polished niobium discs which are used as sample carriers for the TXRF measurement. The electrochemical preconcentration is performed in a flow cell under a controlled working electrode potential. The preconcentration step involves only very little manipulation which minimizes the risk of contamination of the sample. The method was investigated by analyzing inorganic mercury in sea water. A detection limit of 7 ngl -1 could be achieved for mercury in a 40 ml sea water sample. (author)

  11. Comprehensive approach to the validation of the standard method for total reflection X-ray fluorescence analysis of water.

    Science.gov (United States)

    Borgese, Laura; Dalipi, Rogerta; Riboldi, Alessandro; Bilo, Fabjola; Zacco, Annalisa; Federici, Stefania; Bettinelli, Maurizio; Bontempi, Elza; Depero, Laura Eleonora

    2018-05-01

    In this work, we present the validation of the chemical method for total reflection X-ray fluorescence (TXRF) analysis of water, proposed as a standard to the International Standard Organization. The complete experimental procedure to define the linear calibration range, elements sensitivities, limits of detection and quantification, precision and accuracy is presented for a commercial TXRF spectrometer equipped with Mo X-ray tube. Least squares linear regression, including all statistical tests is performed separately for each element of interest to extract sensitivities. Relative sensitivities with respect to Ga, as internal standard, are calculated. Accuracy and precision of the quantification procedure using Ga as internal standard is evaluated with reference water samples. A detailed discussion on the calibration procedure and the limitation of the use of this method for quantitative analysis of water is presented. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Non-invasive tryptophan fluorescence measurements as a novel method of grading cataract

    DEFF Research Database (Denmark)

    Erichsen, Jesper Høiberg; Mensah, Aurore; Kessel, Line

    2017-01-01

    . All cataracts were age-related. Lens material from 16 eyes of 14 patients was included in the study. Cataracts were preoperatively graded in categories 1, 2 and 3. No lenses were category 4. For nuclear cataracts mean values of F-factor were 52.9 (SD 12.2), 61.7 (SD 5.3) and 75.7 (SD 8.......9) for categories 1, 2 and 3 respectively. Linear regression on F-factor as a function of preoperative grading category showed increasing values of F-factor with increasing preoperative grading category, R2 = 0.515. Our experiment showed that preoperative optical grading of cataracts by Scheimpflug imaging may......Development of non-invasive treatments for cataract calls for a sensitive diagnostic assay. We conducted a study to test whether the ratio of folded tryptophan to non-tryptophan fluorescence emission (F-factor) may be used for grading cataracts in human lenses. The F-factor was measured...

  13. New method for preparing a liquid crystal polymer that exhibits linearly polarized white fluorescence

    International Nuclear Information System (INIS)

    Zheng Shijun; Kun, Wang; Kobayashi, Takaomi

    2011-01-01

    With the aim of developing a single-chain white-light-emitting polymer, liquid crystal (LC) polymers with a shish-kebab-type moiety on their cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s main chain were synthesized by Gilch polymerization. They were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and polarizing optical microscopy (POM). 1 H-NMR indicated that the polymers had a shish-kebab structure, which strongly suppressed the formation of structural defects in the polymers. DSC revealed that the polymers had thermotropic LC properties, indicating that the LC polymers were enantiotropic. XRD showed that the polymers had a mesophase, which implies that they were in a smectic LC phase. A polymer with 'kebabs' of 2,5-bis(4'-alkoxyphenyl)benzene was combined with an aligned polyimide film with orientated microgrooves. The polymer main chain was aligned due to the orientation of the 'kebabs' of the uniform cross-conjugated structure. It lay between the kebabs and the 'shish' of the polymer main chains. The aligned polymer main chain emitted yellow light while and the oriented LC side chains emitted blue light emission. These two emissions resulted in linearly polarized white fluorescence.

  14. A Comparison of Second-Order Calibration Methods Applied to Excitation-Emission Matrix Fluorescence Data

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2014-01-01

    Full Text Available Due to the variety of second-order data being generated by modern instruments and various mathematical algorithms being available for analysis purposes, second-order calibration is gaining widespread acceptance by analytical community. It has the so-called second-order advantage; that is, it enables concentration and spectral profiles of sample components to be extracted even in the presence of unexpected interferences. A comprehensive performance comparison of alternating trilinear decomposition (ATLD and its two variants, that is, alternating penalty trilinear decomposition (APTLD and self-weighted trilinear decomposition (SWATLD, was presented in this paper. The experiment was based on the simultaneous determination of three dihydroxybenzenes, that is, catechol, hydroquinone, and resorcinol, by excitation-emission matrix fluorescence (EEMF spectroscopy. Two special measures, that is, the consistency (COS between the resolved and actual profiles and the mean of recovery, were used for evaluation. The optimal result was obtained by the APTLD model with five components. No perceptible difference on the speed of convergence was found. It indicates that EEMF linked with the APTLD algorithm can serve as a potential tool of quantifying dihydroxybenzenes simultaneously in environmental samples.

  15. Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications

    Science.gov (United States)

    Pfeiffer, Simon A.; Nagl, Stefan

    2015-09-01

    Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics. After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed. Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.

  16. A simple, rapid method to isolate salt glands for three-dimensional visualization, fluorescence imaging and cytological studies

    Directory of Open Access Journals (Sweden)

    Lim Tit-Meng

    2010-10-01

    Full Text Available Abstract Background Some plants inhabiting saline environment remove salts via the salt glands embedded in the epidermal tissues. Cytological studies of salt glands will provide valuable information to our understanding of the secretory process. Previous studies on salt gland histology relied mainly on two-dimensional microscopic observations of microtome sections. Optical sectioning properties of confocal laser scanning microscope offer alternative approach for obtaining three-dimensional structural information of salt glands. Difficulty in light penetration through intact leaves and interference from neighbouring leaf cells, however, impede the acquiring of good optical salt gland sections and limit its applications in salt gland imaging. Freeing the glands from adjacent leaf tissues will allow better manipulations for three-dimensional imaging through confocal laser scanning microscopy. Results Here, we present a simple and fast method for the isolation of individual salt glands released from the interference of neighbouring cells. About 100-200 salt glands could be isolated from just one cm2 of Avicennia officinalis leaf within hours and microscopic visualization of isolated salt glands was made possible within a day. Using these isolated glands, confocal laser scanning microscopic techniques could be applied and better resolution salt gland images could be achieved. By making use of their intrinsic fluorescent properties, optical sections of the gland cells could be acquired without the use of fluorescent probes and the corresponding three-dimensional images constructed. Useful cytological information of the salt gland cells could also be obtained through the applications of fluorescent dyes (e.g., LysoTracker® Red, FM®4-64, Texas Red®. Conclusions The study of salt glands directly at the glandular level are made possible with the successful isolation of these specialized structures. Preparation of materials for subsequent microscopic

  17. Evaluation of surface renewal and flux-variance methods above agricultural and forest surfaces

    Science.gov (United States)

    Fischer, M.; Katul, G. G.; Noormets, A.; Poznikova, G.; Domec, J. C.; Trnka, M.; King, J. S.

    2016-12-01

    Measurements of turbulent surface energy fluxes are of high interest in agriculture and forest research. During last decades, eddy covariance (EC), has been adopted as the most commonly used micrometeorological method for measuring fluxes of greenhouse gases, energy and other scalars at the surface-atmosphere interface. Despite its robustness and accuracy, the costs of EC hinder its deployment at some research experiments and in practice like e.g. for irrigation scheduling. Therefore, testing and development of other cost-effective methods is of high interest. In our study, we tested performance of surface renewal (SR) and flux variance method (FV) for estimates of sensible heat flux density. Surface renewal method is based on the concept of non-random transport of scalars via so-called coherent structures which if accurately identified can be used for the computing of associated flux. Flux variance method predicts the flux from the scalar variance following the surface-layer similarity theory. We tested SR and FV against EC in three types of ecosystem with very distinct aerodynamic properties. First site was represented by agricultural wheat field in the Czech Republic. The second site was a 20-m tall mixed deciduous wetland forest on the coast of North Carolina, USA. The third site was represented by pine-switchgrass intercropping agro-forestry system located in coastal plain of North Carolina, USA. Apart from solving the coherent structures in a SR framework from the structure functions (representing the most common approach), we applied ramp wavelet detection scheme to test the hypothesis that the duration and amplitudes of the coherent structures are normally distributed within the particular 30-minutes time intervals and so just the estimates of their averages is sufficient for the accurate flux determination. Further, we tested whether the orthonormal wavelet thresholding can be used for isolating of the coherent structure scales which are associated with

  18. Comparison of dimensionality reduction methods for wood surface inspection

    Science.gov (United States)

    Niskanen, Matti; Silven, Olli

    2003-04-01

    Dimensionality reduction methods for visualization map the original high-dimensional data typically into two dimensions. Mapping preserves the important information of the data, and in order to be useful, fulfils the needs of a human observer. We have proposed a self-organizing map (SOM)- based approach for visual surface inspection. The method provides the advantages of unsupervised learning and an intuitive user interface that allows one to very easily set and tune the class boundaries based on observations made on visualization, for example, to adapt to changing conditions or material. There are, however, some problems with a SOM. It does not address the true distances between data, and it has a tendency to ignore rare samples in the training set at the expense of more accurate representation of common samples. In this paper, some alternative methods for a SOM are evaluated. These methods, PCA, MDS, LLE, ISOMAP, and GTM, are used to reduce dimensionality in order to visualize the data. Their principal differences are discussed and performances quantitatively evaluated in a few special classification cases, such as in wood inspection using centile features. For the test material experimented with, SOM and GTM outperform the others when classification performance is considered. For data mining kinds of applications, ISOMAP and LLE appear to be more promising methods.

  19. Protein Profile study of clinical samples using Laser Induced Fluorescence as the detection method

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Raja, Sujatha N.; Rai, Lavanya

    2009-01-01

    by using hard and Fuzzy clustering methods. The study was performed to test the utility of the HPLC-LIF protein profiling method for classification of tissue samples as well as to establish a complementary method for histopathology for clinical diagnosis of the tissue as normal or malignant.  ...

  20. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F.

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  1. A new surface resistance measurement method with ultrahigh sensitivity

    International Nuclear Information System (INIS)

    Liang, Changnian.

    1993-01-01

    A superconducting niobium triaxial cavity has been designed and fabricated to study residual surface resistance of planar superconducting materials. The edge of a 25.4 mm or larger diameter sample in the triaxial cavity is located outside the strong field region. Therefore, the edge effects and possible losses between the thin film and the substrate have been minimized, ensuring that induced RF losses are intrinsic to the test material. The fundamental resonant frequency of the cavity is the same as the working frequency of CEBAF cavities. The cavity has a compact size compared to its TE 011 counterpart, which makes it more sensitive to the sample's loss. For even higher sensitivity, a calorimetry method has been used to measure the RF losses on the superconducting sample. At 2 K, a 2 μK temperature change can be resolved by using carbon resistor sensors. The temperature distribution caused by RF heating is measured by 16 carbon composition resistor sensors. A 0.05 μW heating power can be detected as such a resolution, which translates to a surface resistance of 0.02 nΩ at a surface magnetic field of 52 Oe. This is the most sensitive device for surface resistance measurements to date. In addition, losses due to the indium seal, coupling probes, field emission sites other than the sample, and all of the high field resonator surface, are excluded in the measurement. Surface resistance of both niobium and high-Tc superconducting thin films has been measured. A low R s of 35.2 μΩ was measured for a 25.4 mm diameter YBa 2 Cu 3 O 7 thin film at 1.5 GHz and at 2 K. The measurement result is the first result for a large area epitaxially grown thin film sample at such a low RF frequency. The abrupt disappearance of multipacting between two parallel plates has been observed and monitored with the 16 temperature mapping sensors. Field emission or some field dependent anomalous RF losses on the niobium plate have also been observed

  2. A method for evaluating the host range of bacteriophages using phages fluorescently labeled with 5-ethynyl-2'-deoxyuridine (EdU).

    Science.gov (United States)

    Ohno, Sayaka; Okano, Hironori; Tanji, Yasunori; Ohashi, Akiyoshi; Watanabe, Kazuya; Takai, Ken; Imachi, Hiroyuki

    2012-08-01

    The evaluation of bacteriophage (phage) host range is a significant issue in understanding phage and prokaryotic community interactions. However, in conventional methods, such as plaque assay, target host strains must be isolated, although almost all environmental prokaryotes are recalcitrant to cultivation. Here, we introduce a novel phage host range evaluation method using fluorescently labeled phages (the FLP method), which consists of the following four steps: (i) Fluorescently labeled phages are added to a microbial consortium, and host cells are infected and fluorescently labeled. (ii) Fluorescent cells are sorted by fluorescence-activated cell sorting. (iii) 16S rRNA gene sequences retrieved from sorted cells are analyzed, and specific oligonucleotide probes for fluorescence in situ hybridization (FISH) are designed. (iv) Cells labeled with both fluorescently labeled phage and FISH probe are identified as host cells. To verify the feasibility of this method, we used T4 phage and Escherichia coli as a model. We first used nucleic acid stain reagents for phage labeling; however, the reagents also stained non-host cells. Next, we employed the Click-iT EdU (5-ethynyl-2'-deoxyuridine) assay kit from Invitrogen for phage labeling. Using EdU-labeled T4 phage, we could specifically detect E. coli cells in a complex microbial consortium from municipal sewage. We also confirmed that FISH could be applied to the infected E. coli cells. These results suggest that this FLP method using the EdU assay kit is a useful method for evaluating phage host range and may have a potential application for various types of phages, even if their prokaryotic hosts are currently unculturable.

  3. Three-dimensional particle tracking in concave structures made by ultraviolet nanoimprint via total internal reflection fluorescence microscopy and refractive-index-matching method

    Science.gov (United States)

    Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi

    2018-03-01

    Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x-y-z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.

  4. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements

    Science.gov (United States)

    Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  5. Influence of cross-infection control methods on performance of pen-type laser fluorescence in detecting occlusal caries lesions in primary teeth.

    Science.gov (United States)

    Matos, Ronilza; Novaes, Tatiane Fernandes; Reyes, Alessandra; De Benedetto, Monique Saveriano; Mendes, Fausto Medeiros; Braga, Mariana Minatel

    2013-01-01

    The aim of this in vitro study was to determine the influence of cross-infection control methods, as probe tip autoclaving and polyvinyl chloride (PVC) wrapping, on the performance of laser fluorescence device (DIAGNOdent pen--LFpen) on occlusal surfaces of primary molars. One experienced examiner carried out all examinations (n = 78). For the probe tip autoclaving study, 62 sites (sample A, 40 teeth) were used. The sites were assessed with LFpen using tips in six different conditions: without autoclaving and after autoclaving for 10, 20, 30, 40, and 50 cycles of 10 min. For the PVC wrapping study, we selected other 58 sites (sample B, 38 teeth). The sites were assessed with the LFpen device in two conditions: with and without PVC wrapping. The teeth were sectioned and histologically assessed for caries depth. LFpen values, sensitivity, and specificity were compared among the different conditions. The LF readings were slightly higher after successive examinations, independently of autoclaving. In both studies, no statistical differences in the sensitivity and specificity were observed for all conditions. In conclusion, probe tip autoclaving and PVC wrapping do not influence the performance of LFpen device on occlusal surfaces of primary molars.

  6. The effect of surface defects in early caries assessment using quantitative light-induced fluorescence (QLF) and micro-digital-photography (MDP).

    Science.gov (United States)

    Meharry, M R; Dawson, D; Wefel, J S; Harless, J D; Kummet, C M; Xiao, X

    2012-11-01

    The purpose of this study was to consider the impact of surface defects on quantitative light-induced fluorescence (QLF) and micro-digital-photography (MDP) measures, in relationship to lesion depth. Simulated enamel carious lesions were developed on 45 extracted human teeth. Images of each tooth were captured with both QLF and MDP. The teeth were sectioned and lesion depth was measured with polarized light microscopy (PLM). Pearson correlations were computed using data from the 27 lesions which did not have surface loss, and then separately based upon the 18 lesions which did display surface loss. MDP variables ΔR and ΔX measure reflected light, whereas QLF variables ΔF and ΔQ measure fluorescence. A strong correlation was identified between lesion depth and ΔF (r=-0.765, pMDP measures. QLF measures ΔF and ΔQ were strongly correlated with lesion depth in lab-simulated lesions with no surface loss, but not among lesions with surface defects. The two MDP-associated measures, ΔR and ΔX, could not be said to differ significantly when lesions with and without surface defects were compared with lesion depth. Because intact lesions can be remineralized, accurate assessment of their status is imperative for caries treatment. Dental caries is still widely prevalent today. We now know that with early stage detection, remineralization can be accomplished. Being able to identify dental caries in its reversible stage (before physical surface loss) is paramount for the clinician to be able to treat the disease non-invasively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Evaluation of single-cell force spectroscopy and fluorescence microscopy to determine cell interactions with femtosecond-laser microstructured titanium surfaces.

    Science.gov (United States)

    Aliuos, Pooyan; Fadeeva, Elena; Badar, Muhammad; Winkel, Andreas; Mueller, Peter P; Warnecke, Athanasia; Chichkov, Boris; Lenarz, Thomas; Reich, Uta; Reuter, Guenter

    2013-04-01

    One goal in biomaterials research is to limit the formation of connective tissue around the implant. Antiwetting surfaces are known to reduce ability of cells to adhere. Such surfaces can be achieved by special surface structures (lotus effect). Aim of the study was to investigate the feasibility for creating antiwetting surface structures on titanium and to characterize their effect on initial cell adhesion and proliferation. Titanium microstructures were generated using femtosecond- (fs-) laser pulses. Murine fibroblasts served as a model for connective tissue cells. Quantitative investigation of initial cell adhesion was performed using atomic force microscopy. Fluorescence microscopy was used for the characterization of cell-adhesion pattern, cell morphology, and proliferation. Water contact angle (WCA) measurements evinced antiwetting properties of laser-structured surfaces. However, the WCA was decreased in serum-containing medium. Initial cell adhesion to microstructured titanium was significantly promoted when compared with polished titanium. Microstructures did not influence cell proliferation on titanium surfaces. However, on titanium microstructures, cells showed a flattened morphology, and the cell orientation was biased according to the surface topography. In conclusion, antiwetting properties of surfaces were absent in the presence of serum and did not hinder adhesion and proliferation of NIH 3T3 fibroblasts. Copyright © 2012 Wiley Periodicals, Inc.

  8. Fluorescent nanoparticles for intracellular sensing: a review.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Walters, Jamie D; Orte, Angel; Hall, Elizabeth A H

    2012-11-02

    Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  10. A plateau-valley separation method for multifunctional surfaces characterization

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, A.; De Chiffre, Leonardo

    2012-01-01

    Turned multifunctional surfaces are a new typology of textured surfaces presenting a flat plateau region and deterministically distributed lubricant reservoirs. Existing standards are not suitable for the characterization of such surfaces, providing at times values without physical meaning. A new...

  11. Surface-enhanced fluorescence and surface-enhanced Raman scattering of ultrathin layers of bichromophoric antenna systems adsorbed on silver nanoisland films

    International Nuclear Information System (INIS)

    Del Rosso, Tommaso; Giorgetti, Emilia; Cicchi, Stefano; Muniz-Miranda, Maurizio; Margheri, Giancarlo; Giusti, Anna; Rindi, Alessio; Ghini, Giacomo; Sottini, Stefano; Marcelli, Agnese; Foggi, Paolo

    2009-01-01

    We investigated a novel bichromophoric antenna system, characterized by energy transfer between a naphthalene group acting as the donor and a benzofurazane group acting as the acceptor. We studied the spectroscopic properties (infrared, Raman, UV-vis and fluorescence) of self-assembled monolayers of this molecular antenna on Ag nanoisland films and the energy-transfer process upon irradiation at 300 nm.

  12. Micellar Enhanced Three-Dimensional Excitation-Emission Matrix Fluorescence for Rapid Determination of Antihypertensives in Human Plasma with Aid of Second-Order Calibration Methods

    Directory of Open Access Journals (Sweden)

    Hai-Yan Fu

    2015-01-01

    Full Text Available A highly sensitive three-dimensional excitation-emission fluorescence method was proposed to determine antihypertensives including valsartan and amlodipine besylate in human plasma with the aid of second-order calibration methods based on parallel factor analysis (PARAFAC and alternating trilinear decomposition (ATLD algorithms. Antihypertensives with weak fluorescent can be transformed into a strong fluorescent property by changing microenvironment in samples using micellar enhanced surfactant. Both the adopted algorithms with second-order advantage can improve the resolution and directly attain antihypertensives concentration even in the presence of potential strong intrinsic fluorescence from human plasma. The satisfactory results can be achieved for valsartan and amlodipine besylate in complicated human plasma. Furthermore, some statistical parameters and figures of merit were evaluated to investigate the performance of the proposed method, and the accuracy and precision of the proposed method were also validated by the elliptical joint confidence region (EJCR test and repeatability analysis of intraday and interday assay. The proposed method could not only light a new avenue to directly determine valsartan or amlodipine besylate in human plasma, but also hold great potential to be extended as a promising alternative for more practical applications in the determination of weak fluorescent drugs.

  13. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    DEFF Research Database (Denmark)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.

    2017-01-01

    effects could be exploited, traditional compressive-sensing methods cannot be directly applied as the system matrix in FMT is highly coherent. To overcome these issues, we propose and assess a three-step reconstruction method. First, truncated singular value decomposition is applied on the data to reduce...... considerable promise and will be tested using more realistic simulations and experimental setups....

  14. A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles

    International Nuclear Information System (INIS)

    Ayaz Ahmed, Khan Behlol; P, Suresh Kumar; Veerappan, Anbazhagan

    2016-01-01

    Herein, we report a laboratory convenient method for the preparation of blue color emitting fluorescent carbon dots (C-dots) in 60 min by boiling the alkaline solution of pectin. The C-dots derived from pectin detects selectively silver ion by forming silver nanoparticles (AgNPs) without any irradiation or heating or additional reducing agents. As prepared AgNPs appears yellow in color and showed the characteristic surface plasmon resonance maximum at 410 nm. Transmission electron microscopy (TEM) revealed crystalline, spherical AgNPs with size range from 10–15 nm. Cyclic voltammetry study revealed that the lower reduction potential of C-dots than that of silver ion favors the reduction of Ag + to Ag°. Electrochemical impedance spectroscopy showed the charge transfer value for the redox reaction of C-dots as 200 Ωcm 2 . In the presence of Ag + , C-dots fluorescence emission was turned from blue to cyan to green to colorless, accompanying the quenching and red shift in emission maximum at 450 nm. Interference study clearly showed that the C-dots have high preference for Ag + ion than the other interfering metal ions. The proposed sensor system selectively senses Ag + ion in water at micromolar concentration and also offers an easy procedure to prepare AgNPs in the presence of other interfering metal ions. - Highlights: • Blue color emitting C-dots was prepared by boiling alkaline pectin solution. • C-dots sense silver ion at micromolar concentration. • C-dots recognize silver ion in the presence of interfering metal ions. • Reduction potential of C-dots was estimated by cyclic voltammeter as – 0.2 V.

  15. Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods

    Science.gov (United States)

    Nečemer, Marijan; Kump, Peter; Rajčevič, Marija; Jačimović, Radojko; Budič, Bojan; Ponikvar, Maja

    2003-07-01

    Sulfur and chlorine are essential elements in the metabolic processes of ruminants, and correct planning strategy of ruminant nutrition should provide a sufficient content of S and Cl in the animal's body. S and Cl can be found in various types of animal fodder in the form of organic compounds and minerals. In this work, the Cl and S content in forage was determined by X-ray fluorescence spectrometry (XRF), and its performance was then compared in parallel analyses by instrumental neutron activation analysis (INAA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and potentiometric methods. The results were compared and critically evaluated in order to assess the performance and capability of the XRF technique in analysis of animal fodder.

  16. Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Necemer, Marijan; Kump, Peter; Rajcevic, Marija; Jacimovic, Radojko; Budic, Bojan; Ponikvar, Maja

    2003-07-18

    Sulfur and chlorine are essential elements in the metabolic processes of ruminants, and correct planning strategy of ruminant nutrition should provide a sufficient content of S and Cl in the animal's body. S and Cl can be found in various types of animal fodder in the form of organic compounds and minerals. In this work, the Cl and S content in forage was determined by X-ray fluorescence spectrometry (XRF), and its performance was then compared in parallel analyses by instrumental neutron activation analysis (INAA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and potentiometric methods. The results were compared and critically evaluated in order to assess the performance and capability of the XRF technique in analysis of animal fodder.

  17. A detection method for Legionella spp in (cooling) water: fluorescent in situ hybridisation (FISH) on whole bacteria.

    Science.gov (United States)

    Declerck, P; Verelst, L; Duvivier, L; Van Damme, A; Ollevier, F

    2003-01-01

    Although traditional culture methods are appropriate for detection of Legionella species, such culture takes several days. Rapid detection (FISH) on whole bacteria. Water samples were filtered and the concentrated bacteria were immediately detected (without culture) with a fluorescence microscope following appropriate labelling. The detection level was very high and quantification was possible. For the detection of all Legionella spp. the probe LEG705 was used, complementary to a 16S rRNA sequence conserved in all Legionella spp. For specific detection of L. pneumophila the probe LEGPNE1 was used. This probe is designed against a variable domain of the 16S rRNA sequence from L. pneumophila. CY3 and FLUOS labels were tested and CY3 showed clearly detectable bacteria with minimum background staining. This FISH technique is very sensitive, fast, reliable and individual bacteria are easily detected.

  18. Biological methods used to assess surface water quality

    Directory of Open Access Journals (Sweden)

    Szczerbiñska Natalia

    2015-12-01

    Full Text Available In accordance with the guidelines of the Water Framework Directive 2000/60 (WFD, both ecological and chemical statuses determine the assessment of surface waters. The profile of ecological status is based on the analysis of various biological components, and physicochemical and hydromorphological indicators complement this assessment. The aim of this article is to present the biological methods used in the assessment of water status with a special focus on bioassay, as well as to provide a review of methods of monitoring water status. Biological test methods include both biomonitoring and bioanalytics. Water biomonitoring is used to assess and forecast the status of water. These studies aim to collect data on water pollution and forecast its impact. Biomonitoring uses organisms which are characterized by particular vulnerability to contaminants. Bioindicator organisms are algae, fungi, bacteria, larval invertebrates, cyanobacteria, macroinvertebrates, and fish. Bioanalytics is based on the receptors of contaminants that can be biologically active substances. In bioanalytics, biosensors such as viruses, bacteria, antibodies, enzymes, and biotests are used to assess degrees of pollution.

  19. Noneffervescent Method for Catalysis-Based Palladium Detection with Color or Fluorescence.

    Science.gov (United States)

    Nieberding, Matthew; Tracey, Matthew P; Koide, Kazunori

    2017-11-22

    Palladium is a highly valuable metal in automobile, chemical, and pharmaceutical industries. The metal is generally quantified by atomic absorption spectrometry or inductively coupled plasma mass spectrometry. These techniques are tedious and require expensive instruments that are operated mostly off site. As cost-effective and user-friendly alternatives to these techniques, we previously reported two practical fluorometric or colorimetric methods to quantify palladium. Both methods rely on the use of NaBH 4 , which cannot be stored in solution for more than 10 days. Commercially available solutions of NaBH 4 are partially or fully degraded to di- or triborohydride species and cannot be used for palladium(0)-catalyzed allylic C-O bond cleavage for quantification purposes. Here, we report a new method that replaces NaBH 4 with NH 2 NH 2 for the palladium-catalyzed deallylation of fluorogenic and colorimetric chemodosimeter resorufin allyl ether. This method is slower but as sensitive as the most recent method from our laboratory. The method is selective for palladium and depends on the presence of tri(2-furyl)phosphine as a palladium ligand and NH 2 NH 2 as a palladium-reducing reagent.

  20. Integral methods for shallow free-surface flows with separation

    DEFF Research Database (Denmark)

    Watanabe, S.; Putkaradze, V.; Bohr, Tomas

    2003-01-01

    eddy and separated flow. Assuming a variable radial velocity profile as in Karman-Pohlhausen's method, we obtain a system of two ordinary differential equations for stationary states that can smoothly go through the jump. Solutions of the system are in good agreement with experiments. For the flow down...... an inclined plane we take a similar approach and derive a simple model in which the velocity profile is not restricted to a parabolic or self-similar form. Two types of solutions with large surface distortions are found: solitary, kink-like propagating fronts, obtained when the flow rate is suddenly changed......, and stationary jumps, obtained, for instance, behind a sluice gate. We then include time dependence in the model to study the stability of these waves. This allows us to distinguish between sub- and supercritical flows by calculating dispersion relations for wavelengths of the order of the width of the layer....

  1. Method for producing high surface area chromia materials for catalysis

    Science.gov (United States)

    Gash, Alexander E [Brentwood, CA; Satcher, Joe [Patterson, CA; Tillotson, Thomas [Tracy, CA; Hrubesh, Lawrence [Pleasanton, CA; Simpson, Randall [Livermore, CA

    2007-05-01

    Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.

  2. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    Science.gov (United States)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  3. Evaluation of cavitated and non-cavitated carious lesions using the WHO basic methods, ICDAS-II and laser fluorescence measurements

    Directory of Open Access Journals (Sweden)

    Mridula Goswami

    2015-01-01

    Full Text Available Aim: This study was aimed to compare the diagnostic outcome of the WHO criteria, ICDAS-II criteria and laser fluorescence measurements in measuring the caries ratings of children. Settings and Design: Cross-sectional study. Materials and Methods: The study involved 31 children between 3 and 14 years of age, attending the Department of Pedodontics at Maulana Azad College of Dental Sciences, New Delhi. The surface-related caries status was registered according to the WHO basic method criteria (1997. Additionally, the ICDAS-II visual criteria and the DIAGNOdent readings were documented. Statistical analysis used: The data were analysed with ezANOVA and Excel 2000 (Microsoft Corporation, Redmond, WA, USA. Results: The mean ICDAS-II values amounted to 8.76 ± 0.72. The mean values for DMFS/def were 7.67 ± 0.91, whereas for DIAGNOdent it amounted to 4.00 ± 0.62. Conclusions: In conclusion, this study showed the diagnostic potential of the ICDAS-II criteria in comparison to the traditional WHO criteria by means of the non-cavitated caries lesions additionally detected. The DIAGNOdent use in field studies that already apply detailed visual criteria seems to bring limited additional information.

  4. Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Ebrahim Najafzadeh

    2012-09-01

    Full Text Available Introduction Non-invasive Fluorescent Reflectance Imaging (FRI is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical setup in reflectance mode were developed. The algorithm of multispectral imaging method was then written in Matlab environment. The setup included the diode-pumped solid-state lasers at 479 nm, 533 nm, and 798 nm, achromatic telescopic, mirror, high pass and low pass filters, and EMCCD camera. The FRI images were acquired by a CCD camera using band pass filter centered at 600 nm and high pass max at 615 nm for the first region and high pass filter max at 810 nm for the second region. The SVD and Jacobi SVD algorithms were written in Matlab environment and compared with a Non-negative Matrix Factorization (NMF and applied to the obtained images. Results PSNR, SNR, CNR of SVD, and NMF methods were obtained as 39 dB, 30.1 dB, and 0.7 dB, respectively. The results showed that the difference of Jacobi SVD PSNR with PSNR of NMF and modified NMF algorithm was significant (p

  5. Development and validation of a sensitive method for tetracycline in gingival crevicular fluid by HPLC using fluorescence detection.

    Science.gov (United States)

    Vienneau, D S; Kindberg, C G

    1997-09-01

    Increased interest in the clinical use of antibiotics for periodontal therapy required the development of a sensitive assay for the quantitation of tetracycline in gingival crevicular fluid (GCF). An HPLC method was developed and validated for tetracycline which separates and identifies the degradation component epi-tetracycline. The HPLC assay employs a C18 reversed-phase Hypersil column with a mobile phase composed of methanol and sodium acetate buffer containing CaCl2 and EDTA disodium salt. The chromatographic separation was monitored by a fluorescent detector with an excitation wavelength of 375 nm and an emission wavelength of 512 nm. Tetracycline was extracted from GCF collected on Periopapers by addition of a methanol solution containing the internal standard, doxycycline, and the mobile phase buffer (25:75, v/v). The mean percent recovery for the extraction method was 107.8% with all the % R.S.D. below 7.5%. The mean inter- and intra-batch accuracy was 104.1 and 105.3%, respectively with a coefficient of variation of less than 9.5%. The lower limit of detection was 2.5 ng on the Periopapers. The typical GCF volumes collected were 0.1-1 microliter. The method was validated for the linear concentration range 2.5-1000 ng of tetracycline on the Periopaper. This assay for tetracycline was shown to be an accurate, precise and rugged method.

  6. Modified surface testing method for large convex aspheric surfaces based on diffraction optics.

    Science.gov (United States)

    Zhang, Haidong; Wang, Xiaokun; Xue, Donglin; Zhang, Xuejun

    2017-12-01

    Large convex aspheric optical elements have been widely applied in advanced optical systems, which have presented a challenging metrology problem. Conventional testing methods cannot satisfy the demand gradually with the change of definition of "large." A modified method is proposed in this paper, which utilizes a relatively small computer-generated hologram and an illumination lens with certain feasibility to measure the large convex aspherics. Two example systems are designed to demonstrate the applicability, and also, the sensitivity of this configuration is analyzed, which proves the accuracy of the configuration can be better than 6 nm with careful alignment and calibration of the illumination lens in advance. Design examples and analysis show that this configuration is applicable to measure the large convex aspheric surfaces.

  7. Super-resolution method for arbitrary retrospective sampling in fluorescence tomography with raster scanning photodetectors.

    Science.gov (United States)

    Zhang, Xiaofeng

    2013-03-22

    Dense spatial sampling is required in high-resolution optical imaging and many other biomedical optical imaging methods, such as diffuse optical imaging. Arrayed photodetectors, in particular charge coupled device cameras are commonly used mainly because of their high pixel count. Nonetheless, discrete-element photodetectors, such as photomultiplier tubes, are often desirable in many performance-demanding imaging applications. However, utilization of the discrete-element photodetectors typically requires raster scan to achieve arbitrary retrospective sampling with high density. Care must be taken in using the relatively large sensitive areas of discrete-element photodetectors to densely sample the image plane. In addition, off-line data analysis and image reconstruction often require full-field sampling. Pixel-by-pixel scanning is not only slow but also unnecessary in diffusion-limited imaging. We propose a super-resolution method that can recover the finer features of an image sampled with a coarse-scale sensor. This generalpurpose method was established on the spatial transfer function of the photodetector-lens system, and achieved super-resolution by inversion of this linear transfer function. Regularized optimization algorithms were used to achieve optimized deconvolution. Compared to the uncorrected blurred image, the proposed super-resolution method significantly improved image quality in terms of resolution and quantitation. Using this reconstruction method, the acquisition speed with a scanning photodetector can be dramatically improved without significantly sacrificing sampling density or flexibility.

  8. Development of fluorescent, oscillometric and photometric methods to determine absorbed dose in irradiated fruits and nuts

    International Nuclear Information System (INIS)

    Kovacs, A.; Foeldiak, G.; Hargittai, P.; Miller, S.D.

    2001-01-01

    To ensure suitable quality control at food irradiation technologies and for quarantine authorities, simple routine dosimetry methods are needed for absorbed dose control. Taking into account the requirements at quarantine locations these methods would require nondestructive analysis for repeated measurements. Different dosimetry systems with different analytical evaluation methods have been tested and/or developed for absorbed dose measurements in the dose range of 0.1-10 kGy. In order to use the well accepted ethanolmonochlorobenzene dosimeter solution and the recently developed aqueous alanine solution in small volume sealed vials, a new portable, digital, and programmable oscillometric reader was developed. To make use of the availability of the very sensitive fluorimetric evaluation method, liquid and solid inorganic and organic dosimetry systems were developed for dose control using a new routine, portable, and computer controlled fluorimeter. Absorption or transmission photometric methods were also applied for dose measurements of solid or liquid phase dosimeter systems containing radiochromic dye agents, which change colour upon irradiation. (author)

  9. An analysis method for flavan-3-ols using high performance liquid chromatography coupled with a fluorescence detector

    Directory of Open Access Journals (Sweden)

    Liuqing Wang

    2017-07-01

    Full Text Available Procyanidins belong to a family of flavan-3-ols, which consist of monomers, (+-catechin and (−-epicatechin, and their oligomers and polymers, and are distributed in many plant-derived foods. Procyanidins are reported to have many beneficial physiological activities, such as antihypertensive and anticancer effects. However, the bioavailability of procyanidins is not well understood owing to a lack of convenient and high-sensitive analysis methods. The aim of this study was to develop an improved method for determining procyanidin content in both food materials and biological samples. High performance liquid chromatography (HPLC coupled with a fluorescence detector was used in this study. The limits of detection (LODs of (+-catechin, (−-epicatechin, procyanidin B2, procyanidin C1, and cinnamtannin A2 were 3.0×10−3 ng, 4.0×10−3 ng, 14.0×10−3 ng, 18.5×10−3 ng, and 23.0×10−3 ng, respectively; the limits of quantification (LOQs were 10.0×10−3 ng, 29.0×10−3 ng, 28.5×10−3 ng, 54.1×10−3 ng, and 115.0×10−3 ng, respectively. The LOD and LOQ values indicated that the sensitivity of the fluorescence detector method was around 1000 times higher than that of conventional HPLC coupled with a UV-detector. We applied the developed method to measure procyanidins in black soybean seed coat extract (BE prepared from soybeans grown under three different fertilization conditions, namely, conventional farming, basal manure application, and intertillage. The amount of flavan-3-ols in these BEs decreased in the order intertillage > basal manure application > conventional farming. Commercially available BE was orally administered to mice at a dose of 250 mg/kg body weight, and we measured the blood flavan-3-ol content. Data from plasma analysis indicated that up to the tetramer oligomerization, procyanidins were detectable and flavan-3-ols mainly existed in conjugated forms in the plasma. In conclusion, we developed a highly

  10. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  11. Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy.

    Science.gov (United States)

    Monzó, J; van der Vliet, D F; Yanson, A; Rodriguez, P

    2016-08-10

    In this study, we report a methodology which enables the determination of the degradation mechanisms responsible for catalyst deterioration under different accelerated stress protocols (ASPs) by combining measurements of the electrochemical surface area (ECSA) and Pt content (by X-ray fluorescence). The validation of this method was assessed on high surface area unsupported Pt nanoparticles (Pt-NPs), Pt nanoparticles supported on TaC (Pt/TaC) and Pt nanoparticles supported on Vulcan carbon (Pt/Vulcan). In the load cycle protocol, the degradation of Pt-NPs and Pt/Vulcan follows associative processes (e.g. agglomeration) in the first 2000 cycles, however, in successive cycles the degradation goes through dissociative processes such as Pt dissolution, as is evident from a similar decay of ECSA and Pt content. In contrast, the degradation mechanism for Pt nanoparticles dispersed on TaC occurs continuously through the dissociative processes (e.g. Pt dissolution or particle detachment), with similar decay rates of both Pt content and ECSA. In the start-up/shut-down protocol, high surface area Pt-NPs follow associative processes (e.g. Ostwald ripening) in the first 4000 cycles, after which the degradation continues through dissociative processes. On the other hand, dissociative mechanisms always govern the degradation of Pt/TaC under start-up/shut-down protocol conditions. Finally, we report that Pt nanoparticles supported on TaC exhibit the highest catalytic activity and long term durability of the three nanoparticle systems tested. This makes Pt/TaC a potentially valuable catalyst system for application in polymer electrolyte fuel cell cathodes.

  12. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  13. A novel method of identification of high-yield crop cultivars using correlation between delayed fluorescence and photosynthesis capacity

    Science.gov (United States)

    Wang, Junsheng; Xu, Wenhai; Li, Ying; Zhang, Lingrui

    2008-12-01

    Crop breeding and variety analysis play the important role in the national economy. A lot of sample data and typical probability distribution are needed in the conventional methods to evaluate the high-yield crop cultivars such as correlation analysis, regression analysis and grey relational grade analysis etc, which are difficult to be realized. Delayed fluorescence (DF) can be used to evaluate plant photosynthesis. The current investigation has revealed that there is a good linear correlation between DF and photosynthesis capacity. More importantly, the slopes of linear fit of the correlationship for different yield varieties are different. Four known yield crop cultivars from each of the two different species (Maize and Soybean) are selected as samples to be analyzed. The statistical results show that the slope of high-yield variety is smaller than that of low-yield. We thus conclude that the slope of linear fit of correlation between DF and photosynthesis capacity is an excellent marker for high-yield crop cultivars identification. Compared with the conventional methods, the presented method needs less samples and it's fast and easy to be measured.

  14. Standard test method for determination of low concentrations of uranium in oils and organic liquids by X-ray fluorescence

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers the steps necessary for the preparation and analysis by X-ray fluorescence (XRF) of oils and organic solutions containing uranium. Two different preparation techniques are described. 1.2 The procedure is valid for those solutions containing 20 to 2000 μg uranium per mL as presented to the spectrometer for the solution technique and 200 to 50 000 μg uranium per g for the pellet technique. 1.3 This test method requires the use of an appropriate internal standard. Care must be taken to ascertain that samples analyzed by this test method do not contain the internal standard or that this contamination, whenever present, has been corrected for mathematically. Such corrections are not addressed in this procedure. Care must be taken that the internal standard and sample medium are compatible; that is, samples must be miscible with tri-n-butyl phosphate (TBP) and must not remove the internal standard from solution. Alternatively, a scatter line may be used as the internal standard. 1....

  15. Using the geometric mean fluorescence intensity index method to measure ZAP-70 expression in patients with chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Wu YJ

    2016-02-01

    Full Text Available Yu-Jie Wu, Hui Wang, Jian-Hua Liang, Yi Miao, Lu Liu, Hai-Rong Qiu, Chun Qiao, Rong Wang, Jian-Yong Li Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People’s Republic of China Abstract: Expression of ζ-chain-associated protein kinase 70 kDa (ZAP-70 in chronic lymphocytic leukemia (CLL is associated with more aggressive disease and can help differentiate CLL from cases expressing mutated or unmutated immunoglobulin heavy chain variable region (IgHV genes. However, standardizing ZAP-70 expression by flow cytometric analysis has proved unsatisfactory. The key point is that ZAP-70 is weakly expressed with a continuous expression pattern rather than a clear discrimination between positive and negative CLL cells, which means that the resulting judgment is subjective. Thus, in this study, we aimed at assessing the reliability and repeatability of ZAP-70 expression using the geometric mean fluorescence intensity (geo MFI index method based on flow cytometry with 256-channel resolution in a series of 402 CLL patients and to compare ZAP-70 with other biological and clinical prognosticators. According to IgHV mutational status, we were able to confirm that the optimal cut-off point for the geo MFI index was 3.5 in the test set. In multivariate analyses that included the major clinical and biological prognostic markers for CLL, the prognostic impact of ZAP-70 expression appeared to have stronger discriminatory power when the geo MFI index method was applied. In addition, we found that ZAP-70-positive patients according to the geo MFI index method had shorter time to first treatment or overall survival (P=0.0002, P=0.0491. This is the first report showing that ZAP-70 expression can be evaluated by a new approach, the geo MFI index, which could be a useful prognostic method as it is more reliable, less subjective, and therefore better associated with improvement of CLL prognostication

  16. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Antonio; Golosio, Bruno [Universita degli Studi di Sassari, Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell' Informazione, Sassari (Italy); Melis, Maria Grazia [Universita degli Studi di Sassari, Dipartimento di Storia, Scienze dell' Uomo e della Formazione, Sassari (Italy); Mura, Stefania [Universita degli Studi di Sassari, Dipartimento di Agraria e Nucleo di Ricerca sulla Desertificazione, Sassari (Italy)

    2014-11-08

    X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed. (orig.)

  17. An Image Analysis Method for the Precise Selection and Quantitation of Fluorescently Labeled Cellular Constituents

    Science.gov (United States)

    Agley, Chibeza C.; Velloso, Cristiana P.; Lazarus, Norman R.

    2012-01-01

    The accurate measurement of the morphological characteristics of cells with nonuniform conformations presents difficulties. We report here a straightforward method using immunofluorescent staining and the commercially available imaging program Adobe Photoshop, which allows objective and precise information to be gathered on irregularly shaped cells. We have applied this measurement technique to the analysis of human muscle cells and their immunologically marked intracellular constituents, as these cells are prone to adopting a highly branched phenotype in culture. Use of this method can be used to overcome many of the long-standing limitations of conventional approaches for quantifying muscle cell size in vitro. In addition, wider applications of Photoshop as a quantitative and semiquantitative tool in immunocytochemistry are explored. PMID:22511600

  18. Validation of the X-ray fluorescence analysis method for coffee grain testing

    International Nuclear Information System (INIS)

    Samaniego, Carlos

    1992-01-01

    Trace elements were qualitatively and quantitatively searched for in coffee samples for analysis were prepared in tablet from before irradiation, this latter having been performed with a Cd 109 radioactive source and with an X-ray tube; with ZnO as the secondary target. Several spectra were obtained. The areas of the spectral peaks were adjusted with the aid of AXIL computer program wich is based on the least squares method. Further on, elemental concentrations were determined by means of sensitivity and regression curves (intensity vs. concentration), methods that demanded the use of pertinent standards, concentration in organic standard certified samples furthermore, atomic absorption was also used to perform comparative checks on results

  19. Method for Qualification of Coatings Applied to Wet Surfaces

    Science.gov (United States)

    2009-12-16

    The field application of a pipeline repair or rehabilitation coating usually cannot wait until ambient conditions become optimal. In a humid environment, water can condense on the pipe surface because the pipe surface is usually cooler than the ambie...

  20. Response Surface Methods For Spatially-Resolved Optical Measurement Techniques

    Science.gov (United States)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.

  1. ROUGHNESS ON WOOD SURFACES AND ROUGHNESS MEASUREMENT METHODS

    OpenAIRE

    İsmail Aydın; Gürsel Çolakoğlu

    2003-01-01

    Some visual characteristics of wood such as color, pattern and texture determine the quality of manufactured products. Surface properties of wood material are important both in production and marketing after production. Initial studies related to the roughness of wood surface were begun in early 1950’s. However, no general agreed standardization can not have been developed for wood surfaces. Surface roughness of wood is function of the production process, product type and the natural anatomic...

  2. ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kanyuk M. I.

    2014-07-01

    Full Text Available The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

  3. Standard test method for uranium analysis in natural and waste water by X-ray fluorescence

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method applies for the determination of trace uranium content in waste water. It covers concentrations of U between 0.05 mg/L and 2 mg/L. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. Establishment of insect cell lines expressing green fluorescent protein on cell surface based on AcMNPV GP64 membrane fusion characteristic.

    Science.gov (United States)

    Qi, Ben-Xiang; Chen, Ying-Jian; Su, Rui; Li, Yi-Fei; Zheng, Gui-Ling; Li, Chang-You

    2017-10-01

    Displaying a protein on the surface of cells has been provided a very successful strategy to function research of exogenous proteins. Based on the membrane fusion characteristic of Autographa californica multiple nucleopolyhedrovirus envelope protein GP64, we amplified and cloned N-terminal signal peptide and C-terminal transmembrane domain as well as cytoplasmic tail domain of gp64 gene into vector pIZ/V5-His with multi-cloning sites to construct the cell surface expression vector pIZ/V5-gp64. To verify that the vector can be used to express proteins on the membrane of insect cells, a recombinant plasmid pIZ/V5-gp64-GFP was constructed by introducing the PCR amplified green fluorescent protein (GFP) gene and transfected into insect cell lines Sf9 and H5. The transected cells were screened with zeocin and cell cloning. PCR verification results showed that the GFP gene was successfully integrated into these cells. Green fluorescence in Sf9-GFP and H5-GFP cells was observed by using confocal laser scanning microscopy and immunofluorescence detection indicated that GFP protein was located on the cell membrane. Western blot results showed that a fusion protein GP64-GFP of about 40 kDa was expressed on the membrane of Sf9-GFP and H5-GFP cells. The expression system constructed in this paper can be used for localization and continuous expression of exogenous proteins on insect cell membrane.

  5. Preferential affinity of calcium ions to charged phosphatidic acid surface from a mixed calcium/barium solution: X-ray reflectivity and fluorescence studies.

    Science.gov (United States)

    Bu, Wei; Flores, Kevin; Pleasants, Jacob; Vaknin, David

    2009-01-20

    X-ray reflectivity and fluorescence near total reflection experiments were performed to examine the affinities of divalent ions (Ca(2+) and Ba(2+)) from aqueous solution to a charged phosphatidic acid (PA) surface. A phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphate, DMPA), spread as a monolayer at the air/water interface, was used to form and control the charge density at the interface. We find that, for solutions of the pure salts (i.e., CaCl(2) and BaCl(2)), the number of bound ions per DMPA at the interface is saturated at concentrations that exceed 10(-3) M. For 1:1 Ca(2+)/Ba(2+) mixed solutions, we find that the bound Ca(2+)/Ba(2+) ratio at the interface is 4:1. If the only property determining charge accumulation near PA were the ionic charges, the concentration of mixed Ca(2+)/Ba(2+) at the interface would equal that of the bulk. Our results show a clear specific affinity of PA for Ca compared to Ba. We provide some discussion on this issue as well as some implications for biological systems. Although our results indicate an excess of counterion charge with respect to the surface charge, that is, charge inversion, the analysis of both reflectivity and fluorescence do not reveal an excess of co-ions (namely, Cl(-) or I(-)).

  6. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  7. Innovative instrumentation for mineralogical and elemental analyses of solid extraterrestrial surfaces: The Backscatter Moessbauer Spectrometer/X Ray Fluorescence analyzer (BaMS/XRF)

    Science.gov (United States)

    Shelfer, T. D.; Morris, Richard V.; Nguyen, T.; Agresti, D. G.; Wills, E. L.

    1994-01-01

    We have developed a four-detector research-grade backscatter Moessbauer spectrometer (BaMS) instrument with low resolution x-ray fluorescence analysis (XRF) capability. A flight-qualified instrument based on this design would be suitable for use on missions to the surfaces of solid solar-system objects (Moon, Mars, asteroids, etc.). Target specifications for the flight instrument are as follows: mass less than 500 g; volumes less than 300 cu cm; and power less than 2 W. The BaMS/XRF instrument would provide data on the oxidation state of iron and its distribution among iron-bearing mineralogies and elemental composition information. This data is a primary concern for the characterization of extraterrestrial surface materials.

  8. A New Method Based on TOPSIS and Response Surface Method for MCDM Problems with Interval Numbers

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2015-01-01

    Full Text Available As the preference of design maker (DM is always ambiguous, we have to face many multiple criteria decision-making (MCDM problems with interval numbers in our daily life. Though there have been some methods applied to solve this sort of problem, it is always complex to comprehend and sometimes difficult to implement. The calculation processes are always ineffective when a new alternative is added or removed. In view of the weakness like this, this paper presents a new method based on TOPSIS and response surface method (RSM for MCDM problems with interval numbers, RSM-TOPSIS-IN for short. The key point of this approach is the application of deviation degree matrix, which ensures that the DM can get a simple response surface (RS model to rank the alternatives. In order to demonstrate the feasibility and effectiveness of the proposed method, three illustrative MCMD problems with interval numbers are analysed, including (a selection of investment program, (b selection of a right partner, and (c assessment of road transport technologies. The contrast of ranking results shows that the RSM-TOPSIS-IN method is in good agreement with those derived by earlier researchers, indicating it is suitable to solve MCDM problems with interval numbers.

  9. A facile method for simulating randomly rough membrane surface associated with interface behaviors

    Science.gov (United States)

    Qu, Xiaolu; Cai, Xiang; Zhang, Meijia; Lin, Hongjun; Leihong, Zhao; Liao, Bao-Qiang

    2018-01-01

    Modeling rough surfaces has emerged as a distinct discipline of considerable research interest in interface behaviors including membrane fouling. In this paper, a facile method was proposed to simulate rough membrane surface morphology. Natural membrane surface was found to be randomly rough, and its height distribution obeys Gaussian distribution. A new method which combines spectrum method, Gaussian distribution and Fourier transform technique was deduced. Simulation of the rough membrane surface showed high similarity in terms of statistical roughness and height distribution between the simulated surface and the real membrane surface, indicating feasibility of the new method. It was found that, correlation length (l) and the number of superposed ridges (N) are key parameters affecting the simulated membrane surface morphology. This new method has evident advantages over conventional modeling methods The proposed method for randomly rough membrane surface modeling could be potentially used to quantify the interfacial interactions between two rough surfaces, giving implications for membrane fouling mitigation.

  10. Analysis of Dental Enamel Surface Submitted to Fruit Juice Plus Soymilk by Micro X-Ray Fluorescence: In Vitro Study

    Directory of Open Access Journals (Sweden)

    Janaína Salmos Brito

    2016-01-01

    Full Text Available Objective. This paper aimed to analyze the in vitro industrialized fruit juices effect plus soy to establish the erosive potential of these solutions. Materials and Methods. Seventy bovine incisors were selected after being evaluated under stereomicroscope. Their crowns were prepared and randomly divided into 7 groups, using microhardness with allocation criteria. The crowns were submitted to the fruit juice plus soy during 15 days, twice a day. The pH values, acid titration, and Knoop microhardness were recorded and the specimens were evaluated using X-ray microfluorescence (µXRF. Results. The pH average for all juices and after 3 days was significantly below the critical value for dental erosion. In average, the pH value decreases 14% comparing initial time and pH after 3 days. Comparing before and after, there was a 49% microhardness decrease measured in groups (p<0.05. Groups G1, G2, G5, and G6 are above this average. The analysis by μXRF showed a decrease of approximately 7% Ca and 4% P on bovine crowns surface. Florida (FL statistical analysis showed a statistically significant 1 difference between groups. Thus, a tooth chance to suffer demineralization due to industrialized fruit juices plus soy is real.

  11. An improved method for estimating antibody titers in microneutralization assay using green fluorescent protein.

    Science.gov (United States)

    Yang, Hongmei; Baker, Steven F; González, Mario E; Topham, David J; Martínez-Sobrido, Luis; Zand, Martin; Holden-Wiltse, Jeanne; Wu, Hulin

    2016-01-01

    Viruses that express reporter genes upon infection have been recently used to evaluate neutralizing antibody responses, where a lack of reporter expression indicates specific virus inhibition. The traditional model-based methods using standard outcome of percent neutralization could be applied to the data from the assays to estimate antibody titers. However, the data produced are sometimes irregular, which can yield meaningless outcomes of percent neutralization that do not fit the typical curves for immunoassays, making automated or semi-high throughput antibody titer estimation unreliable. We developed a type of new outcomes model, which is biologically meaningful and fits typical immunoassay curves well. Our simulation study indicates that the new response approach outperforms the traditional response approach regardless of the data variability. The proposed new response approach can be used in similar assays for other disease models.

  12. Early Detection of Diabetic Retinopathy in Fluorescent Angiography Retinal Images Using Image Processing Methods

    Directory of Open Access Journals (Sweden)

    Meysam Tavakoli

    2010-12-01

    Full Text Available Introduction: Diabetic retinopathy (DR is the single largest cause of sight loss and blindness in the working age population of Western countries; it is the most common cause of blindness in adults between 20 and 60 years of age. Early diagnosis of DR is critical for preventing vision loss so early detection of microaneurysms (MAs as the first signs of DR is important. This paper addresses the automatic detection of MAs in fluorescein angiography fundus images, which plays a key role in computer assisted diagnosis of DR, a serious and frequent eye disease. Material and Methods: The algorithm can be divided into three main steps. The first step or pre-processing was for background normalization and contrast enhancement of the image. The second step aimed at detecting landmarks, i.e., all patterns possibly corresponding to vessels and the optic nerve head, which was achieved using a local radon transform. Then, MAs were extracted, which were used in the final step to automatically classify candidates into real MA and other objects. A database of 120 fluorescein angiography fundus images was used to train and test the algorithm. The algorithm was compared to manually obtained gradings of those images. Results: Sensitivity of diagnosis for DR was 94%, with specificity of 75%, and sensitivity of precise microaneurysm localization was 92%, at an average number of 8 false positives per image. Discussion and Conclusion: Sensitivity and specificity of this algorithm make it one of the best methods in this field. Using local radon transform in this algorithm eliminates the noise sensitivity for microaneurysm detection in retinal image analysis.

  13. Application of a wavelet-Galerkin method to the forward problem resolution in fluorescence diffuse optical tomography.

    Science.gov (United States)

    Landragin-Frassati, Anne; Bonnet, Stéphane; Da Silva, Anabela; Dinten, Jean-Marc; Georges, Didier

    2009-10-12

    Fluorescence diffuse optical tomography is a powerful tool for the investigation of molecular events in studies for new therapeutic developments. Here, the emphasis is put on the mathematical problem of tomography, which can be formulated in terms of an estimation of physical parameters appearing as a set of Partial Differential Equations (PDEs). The standard polynomial Finite Element Method (FEM) is a method of choice to solve the diffusion equation because it has no restriction in terms of neither the geometry nor the homogeneity of the system, but it is time consuming. In order to speed up computation time, this paper proposes an alternative numerical model, describing the diffusion operator in orthonormal basis of compactly supported wavelets. The discretization of the PDEs yields to matrices which are easily computed from derivative wavelet product integrals. Due to the shape of the wavelet basis, the studied domain is included in a regular fictitious domain. A validation study and a comparison with the standard FEM are conducted on synthetic data.

  14. Standard test method for analysis of uranium and thorium in soils by energy dispersive X-Ray fluorescence spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers the energy dispersive X-ray fluorescence (EDXRF) spectrochemical analysis of trace levels of uranium and thorium in soils. Any sample matrix that differs from the general ground soil composition used for calibration (that is, fertilizer or a sample of mostly rock) would have to be calibrated separately to determine the effect of the different matrix composition. 1.2 The analysis is performed after an initial drying and grinding of the sample, and the results are reported on a dry basis. The sample preparation technique used incorporates into the sample any rocks and organic material present in the soil. This test method of sample preparation differs from other techniques that involve tumbling and sieving the sample. 1.3 Linear calibration is performed over a concentration range from 20 to 1000 μg per gram for uranium and thorium. 1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units in parentheses are for information only. 1.5 This standard...

  15. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  16. [Construction of RNA-containing virus-like nanoparticles expression vector with cysteine residues on surface and fluorescent decoration].

    Science.gov (United States)

    Cheng, Yang-Jian; Liang, Ji-Xuan; Li, Qing-Ge

    2005-08-01

    Site-directed mutagenesis was performed at the codon 15 of the MS2 bacteriophage coat protein gene,which had been cloned to the virus-like particles expression vector containing non-self RNA fragment. The produced expression vector,termed pARSC, was transformed to E. coli DH5alpha. The positive clones were selected and proliferated. The harvested cells were treated with sonication and the supernatant was then subjected to linear sucrose density gradients centrifugation (15% to 60%) at 32000 r/min for 4 h at 4 degrees C. The virus-like particles, VLP-Cy, were collected at 35% sucrose density. The particles were examined by transmission electron microscopy and the spherical viral particles of approximately 27 nm in diameter were found. The thiolated VLP-Cy was then chemically modified with fluorescein -5'-maleimide. The covalent fluorescent labeling was confirmed by absorption analysis, SDS-PAGE and MALDI-TOF mass spectroscopy. This is the first report of preparation of RNA-containing natural fluorescent nanoparticles. The study highlight the versatility of MS2 bacteriophage capsids as building blocks for functional nanomaterials construction for a variety of application purposes.

  17. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  18. Labelling of silica microspheres with fluorescent lanthanide-doped LaF3 nanocrystals

    International Nuclear Information System (INIS)

    Zhang Yong; Lu Meihua

    2007-01-01

    Fluorescent microspheres have been demonstrated to be useful in a variety of biological applications. Fluorescent silica or polymer microspheres have been produced by incorporation of chromophores into the microspheres, which usually produces microspheres with nonuniform sizes and reduced fluorescence. Here we present a simple and straightforward method to produce silica microspheres with fluorescent lanthanide-doped LaF 3 nanocrystals grown on the surface. LaF 3 nanocrystals are in situ grown on silica microspheres of different sizes to form a raspberry-like structure. The microspheres exhibit strong fluorescence and the colour could be altered by changing the lanthanide ions doped in LaF 3 nanocrystals

  19. Model and methods to assess hepatic function from indocyanine green fluorescence dynamical measurements of liver tissue.

    Science.gov (United States)

    Audebert, Chloe; Vignon-Clementel, Irene E

    2018-03-30

    The indocyanine green (ICG) clearance, presented as plasma disappearance rate is, presently, a reliable method to estimate the hepatic "function". However, this technique is not instantaneously available and thus cannot been used intra-operatively (during liver surgery). Near-infrared spectroscopy enables to assess hepatic ICG concentration over time in the liver tissue. This article proposes to extract more information from the liver intensity dynamics by interpreting it through a dedicated pharmacokinetics model. In order to account for the different exchanges between the liver tissues, the proposed model includes three compartments for the liver model (sinusoids, hepatocytes and bile canaliculi). The model output dependency to parameters is studied with sensitivity analysis and solving an inverse problem on synthetic data. The estimation of model parameters is then performed with in-vivo measurements in rabbits (El-Desoky et al. 1999). Parameters for different liver states are estimated, and their link with liver function is investigated. A non-linear (Michaelis-Menten type) excretion rate from the hepatocytes to the bile canaliculi was necessary to reproduce the measurements for different liver conditions. In case of bile duct ligation, the model suggests that this rate is reduced, and that the ICG is stored in the hepatocytes. Moreover, the level of ICG remains high in the blood following the ligation of the bile duct. The percentage of retention of indocyanine green in blood, which is a common test for hepatic function estimation, is also investigated with the model. The impact of bile duct ligation and reduced liver inflow on the percentage of ICG retention in blood is studied. The estimation of the pharmacokinetics model parameters may lead to an evaluation of different liver functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface...