WorldWideScience

Sample records for surface film densification

  1. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  2. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  3. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  4. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    International Nuclear Information System (INIS)

    Wang, Fuyuan; Cheng, Laifei; Zhang, Qing; Zhang, Litong

    2014-01-01

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density

  5. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fuyuan, E-mail: wangfy1986@gmail.com; Cheng, Laifei; Zhang, Qing, E-mail: zhangqing@nwpu.edu.cn; Zhang, Litong

    2014-09-15

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density.

  6. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms

    Science.gov (United States)

    Shahtahmassebi, Amir Reza; Song, Jie; Zheng, Qing; Blackburn, George Alan; Wang, Ke; Huang, Ling Yan; Pan, Yi; Moore, Nathan; Shahtahmassebi, Golnaz; Sadrabadi Haghighi, Reza; Deng, Jing Song

    2016-04-01

    A substantial body of literature has accumulated on the topic of using remotely sensed data to map impervious surfaces which are widely recognized as an important indicator of urbanization. However, the remote sensing of impervious surface growth has not been successfully addressed. This study proposes a new framework for deriving and summarizing urban expansion and re-densification using time series of impervious surface fractions (ISFs) derived from remotely sensed imagery. This approach integrates multiple endmember spectral mixture analysis (MESMA), analysis of regression residuals, spatial statistics (Getis_Ord) and urban growth theories; hence, the framework is abbreviated as MRGU. The performance of MRGU was compared with commonly used change detection techniques in order to evaluate the effectiveness of the approach. The results suggested that the ISF regression residuals were optimal for detecting impervious surface changes while Getis_Ord was effective for mapping hotspot regions in the regression residuals image. Moreover, the MRGU outputs agreed with the mechanisms proposed in several existing urban growth theories, but importantly the outputs enable the refinement of such models by explicitly accounting for the spatial distribution of both expansion and re-densification mechanisms. Based on Landsat data, the MRGU is somewhat restricted in its ability to measure re-densification in the urban core but this may be improved through the use of higher spatial resolution satellite imagery. The paper ends with an assessment of the present gaps in remote sensing of impervious surface growth and suggests some solutions. The application of impervious surface fractions in urban change detection is a stimulating new research idea which is driving future research with new models and algorithms.

  7. Solid-state densification of spun-cast self-assembled monolayers for use in ultra-thin hybrid dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Hutchins, Daniel O.; Acton, Orb [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); Weidner, Tobias [Department of Bioengineering, University of Washington, Seattle, WA 98195 (United States); Cernetic, Nathan [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); Baio, Joe E. [Department of Chemical Engineering, University of Washington, Seattle, WA 98195 (United States); Castner, David G. [Department of Bioengineering, University of Washington, Seattle, WA 98195 (United States); Department of Chemical Engineering, University of Washington, Seattle, WA 98195 (United States); Ma, Hong, E-mail: hma@uw.edu [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); Jen, Alex K.-Y., E-mail: ajen@uw.edu [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 (United States); Department of Chemistry, University of Washington, Seattle, WA 98195 (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Rapid processing of SAM in ambient conditions is achieved by spin coating. Black-Right-Pointing-Pointer Thermal annealing of a bulk spun-cast molecular film is explored as a mechanism for SAM densification. Black-Right-Pointing-Pointer High-performance SAM-oxide hybrid dielectric is obtained utilizing a single wet processing step. - Abstract: Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlO{sub x} (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7 Multiplication-Sign 10{sup -8} A cm{sup -2} and capacitance density of 0.62 {mu}F cm{sup -2} at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to

  8. Effect of boric acid sintering aid on densification of barium ferrite

    Indian Academy of Sciences (India)

    Unknown

    Physical properties like density and porosity have been studied for all compositions. The phase identification and microstructural investigation on the fractured surface have been carried out to understand the effect of sintering aid on the densification characteristics. Keywords. Barium ferrite; sintering aid; densification. 1.

  9. Chemical decontamination and melt densification of chop-leach fuel hulls

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    This paper reports on decontamination and densification studies of chop-leach fuel hull residues designed to minimize the transuranic element (TRU) contaminated waste stream. Decontamination requirements have been established from studies of TRU element distribution in the fuel hull residues. Effective surface decontamination of Zircaloy requires removal of zirconium oxide corrosion products. Good decontamination factors have been achieved with aqueous solutions following high temperature HF conditioning of oxide films. Molten fluoride salt mixtures are effective decontaminants, but pose problems in metal loss and salt dragout. Molten metal decontamination methods are highly preliminary, but may be required to reduce TRU originating from tramp uranium in Zircaloy. Low melting (1300 0 C) alloy of Zircaloy, stainless steel, and Inconel have been prepared in induction heated graphite crucibles. High quality ingots of Zircaloy-2 have been prepared directly from short sections of descaled fuel clad tubing using the Inductoslag process. This material is readily capable of refabrication. Inductoslag melts have also been prepared from heavily oxidized Zircaloy tubing demonstrating melt densification without prior decontamination is technically feasible. Hydrogen absorption kinetics have been demonstrated with cast Zircaloy-2 and cast Zircaloy-stainless steel-Inconel alloys. Metallic fuel hull residues have been proposed as a storage medium for tritium released from fuel during reprocessing. (author)

  10. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics.

    Science.gov (United States)

    Hutchins, Daniel O; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E; Castner, David G; Ma, Hong; Jen, Alex K-Y

    2012-11-15

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlO x (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10 -8 A cm -2 and capacitance density of 0.62 µF cm -2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm 2 V -1 s -1 .

  11. Task 4 supporting technology. Densification requirements definition and test objectives. Propellant densification requirements definition

    Science.gov (United States)

    Lak, Tibor; Weeks, D. P.

    1995-01-01

    The primary challenge of the X-33 CAN is to build and test a prototype LO2 and LH2 densification ground support equipment (GSE) unit, and perform tank thermodynamic testing within the 15 month phase 1 period. The LO2 and LH2 propellant densification system will be scaled for the IPTD LO2 and LH2 tank configurations. The IPTD tanks were selected for the propellant technology demonstration because of the potential benefits to the phase 1 plan: tanks will be built in time to support thermodynamic testing; minimum cost; minimum schedule risk; future testing at MSFC will build on phase 1 data base; and densification system will be available to support X-33 and RLV engine test at IPTD. The objective of the task 1 effort is to define the preliminary requirements of the propellant densification GSE and tank recirculation system. The key densification system design parameters to be established in Task 1 are: recirculation flow rate; heat exchanger inlet temperature; heat exchanger outlet temperature; maximum heat rejection rate; vent flow rate (GN2 and GH2); densification time; and tank pressure level.

  12. Sol-gel synthesis and densification of aluminoborosilicate powders. Part 2: Densification

    Science.gov (United States)

    Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel

    1992-01-01

    Aluminoborosilicate (ABS) powders, high in alumina content, were synthesized by the sol-gel process utilizing four different methods of synthesis. The effect of these methods on the densification behavior of ABS powder compacts was studied. Five regions of shrinkage in the temperature range 25-1184 C were identified. In these regions, the greatest shrinkage occurred between the gel-to-glass transition temperature (T sub g approximately equal to 835 C) and the crystallization transformation temperature (T sub t approximately equal 900 C). The dominant mechanism of densification in this range was found to be viscous sintering. ABS powders were amorphous to x-rays up to T sub t at which a multiphasic structure crystallized. No 2Al2O3.B2O3 was found in these powders as predicted in the phase diagram. Above T sub t, densification was the result of competing mechanisms including grain growth and boria fluxed viscous sintering. Apparent activation energies for densification in each region varied according to the method of synthesis.

  13. Analysis of fuel densification

    International Nuclear Information System (INIS)

    Meyer, R.O.

    1976-06-01

    A chronology is given of NRC reviews of analytical models that are used by U.S. fuel manufacturers for the analysis of fuel densifications. A new NRC densification model, which is based on a 1700 0 C-24 hr resintering test and non-instantaneous kinetics, is also described. Statistical methods are presented for applying the model to production quantities of fuel. The NRC densification model is being used in licensing activities, but it was not developed with the intention of replacing approved vendor models

  14. Study of UO2 radioinduced densification

    International Nuclear Information System (INIS)

    Stora, J.P.; Bruet, M.

    1975-01-01

    Measurements of radioinduced densification were performed on UO 2 DCN (intergranular fine porosity) and UO 2 DCI (interaggregate coarse porosity) in the Anemone device. The densification kinetics was followed by measuring the shrinkage of the oxide column on neutron radiographic plates. UO 2 DCI was found stable in regard to densification. At power near 450Wcm -1 , densification is hitten by restructuring phenomena [fr

  15. Constitutive law for the densification of fused silica with applications in polishing and microgrinding

    Science.gov (United States)

    Lambropoulos, John C.; Fang, Tong; Xu, Su; Gracewski, Sheryl M.

    1995-09-01

    We discuss a constitutive model describing the permanent densification of fused silica under large applied pressures and shear stresses. The constitutive law is assumed to be rate- independent, and uses a yield function coupling hydrostatic pressure and shear stress, a flow rule describing the evolution of permanent strains after initial densification, and a hardening rule describing the dependence of the incremental densification on the levels of applied stresses. The constitutive law accounts for multiaxial states of stress, since during polishing and grinding operations complex stress states occur in a thin surface layer due to the action of abrasive particles. Due to frictional and other abrasive forces, large shear stresses are present near the surface during manufacturing. We apply the constitutive law in estimating the extent of the densified layer during the mechanical interaction of an abrasive grain and a flat surface.

  16. A Technical Review on Biomass Processing: Densification, Preprocessing, Modeling and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Christopher T. Wright

    2010-06-01

    It is now a well-acclaimed fact that burning fossil fuels and deforestation are major contributors to climate change. Biomass from plants can serve as an alternative renewable and carbon-neutral raw material for the production of bioenergy. Low densities of 40–60 kg/m3 for lignocellulosic and 200–400 kg/m3 for woody biomass limits their application for energy purposes. Prior to use in energy applications these materials need to be densified. The densified biomass can have bulk densities over 10 times the raw material helping to significantly reduce technical limitations associated with storage, loading and transportation. Pelleting, briquetting, or extrusion processing are commonly used methods for densification. The aim of the present research is to develop a comprehensive review of biomass processing that includes densification, preprocessing, modeling and optimization. The specific objective include carrying out a technical review on (a) mechanisms of particle bonding during densification; (b) methods of densification including extrusion, briquetting, pelleting, and agglomeration; (c) effects of process and feedstock variables and biomass biochemical composition on the densification (d) effects of preprocessing such as grinding, preheating, steam explosion, and torrefaction on biomass quality and binding characteristics; (e) models for understanding the compression characteristics; and (f) procedures for response surface modeling and optimization.

  17. Anisotropic densification of reference steel

    International Nuclear Information System (INIS)

    Garner, F.A.; Bates, J.F.; Gilbert, E.R.

    1975-09-01

    A correlation is presented for the densification expected during neutron irradiation of 20 percent CW 316 stainless steel cladding of FTR specification. The densification is known to be a function of time, prior heat treatment, cold work level, irradiation temperature and minor element composition. For FTR fuel pin use, the temperature and carbon composition were chosen as the only relevant variables on which to base the correlation. The densification of FTR cladding is expected to be slightly anisotropic, leading to a diameter change somewhat less than that predicted by the isotropic relationship ΔD = -D 0 /3

  18. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting

    Science.gov (United States)

    Li, Ruidi; Shi, Yusheng; Wang, Zhigang; Wang, Li; Liu, Jinhui; Jiang, Wei

    2010-04-01

    The densification during selective laser melting (SLM) process is an important factor determining the final application of SLM-part. In the present work, the densifications under different processing conditions were investigated and the densification mechanisms were elucidated. It was found that the higher laser power, lower scan speed, narrower hatch spacing and thinner layer thickness could enable a much smoother melting surface and consequently a higher densification. The gas atomized powder possessed better densification than water atomized powder, due to the lower oxygen content and higher packing density of gas atomized powder. A large number of regular-shaped pores can be generated at a wider hatch spacing, even if the scanning track is continuous and wetted very well. The densification mechanisms were addressed and the methods for building dense metal parts were also proposed as follows: inhibiting the balling phenomenon, increasing the overlap ratio of scanning tracks and reducing the micro-cracks.

  19. Babcock and Wilcox model for predicting in-reactor densification

    International Nuclear Information System (INIS)

    Buescher, B.J.; Pegram, J.W.

    1975-06-01

    The B and W fuel densification model is used to describe the extent and kinetics of in-reactor densification in B and W production fuel. The model and approach are qualified against an extensive data base available through B and W's participation in the EEI Fuel Densification Program. Out-of-reactor resintering tests on representative pellets from each batch of fuel are used to provide input parameters to the B and W densification model. The B and W densification model predicts in-reactor densification very accurately for pellets operated at heat rates above 5 kW/ft and with considerable conservation for pellets operated at heat rates less than 5 kW/ft. This model represents a technically rigorous and conservative basis for predicting the extent and kinetics of in-reactor densification. 9 references. (U.S.)

  20. Babcock and Wilcox model for predicting in-reactor densification

    International Nuclear Information System (INIS)

    Buescher, B.J.; Pegram, J.W.

    1977-07-01

    The B and W densification model is based on a correlation between in-reactor densification and a thermal resintering test. The densification model has been found to predict in-reactor densification with a remarkable degree of accuracy for fuel pellets operated at heat rates above 5 kW/ft and with considerable conservatism for pellelts operating at heat rates below 5 kW/ft

  1. Densification of silica glass at ambient pressure

    International Nuclear Information System (INIS)

    Zheng Lianqing; An Qi; Fu Rongshan; Ni Sidao; Luo, S.-N.

    2006-01-01

    We show that densification of silica glass at ambient pressure as observed in irradiation experiments can be attributed to defect generation and subsequent structure relaxation. In our molecular dynamics simulations, defects are created by randomly removing atoms, by displacing atoms from their nominal positions in an otherwise intact glass, and by assigning certain atom excess kinetic energy (simulated ion implantation). The former forms vacancies; displacing atoms and ion implantation produce both vacancies and 'interstitials'. Appreciable densification is induced by these defects after equilibration of the defective glasses. The structural and vibrational properties of the densified glasses are characterized, displaying resembling features regardless of the means of densification. These results indicate that relaxation of high free-energy defects into metastable amorphous structures enriched in atomic coordination serves as a common mechanism for densification of silica glass at ambient pressure

  2. Densification of zirconia films by coevaporation with silica

    International Nuclear Information System (INIS)

    Feldman, A.; Farabaugh, E.N.

    1985-04-01

    Optical films of zirconia have been receiving considerable attention because of their potential use as the high-index layer in multilayer optical coatings for the ultraviolet portion of the spectrum. Several problems are associated with electron-beam deposited zirconia films, including index instability and index inhomogeneity. The index instability is caused by the adsorption and the desorption of water in the porous columnar structure of the zirconia films. Index inhomogeneity is due to the inhomogeneous structure in the films. Recent work has shown that the first several tens of nanometers of a film possess a cubic structure, whereas the outmost layers possess a monoclinic structure. One approach for producing bulk-like zirzonia films that is receiving considerable attention at present is ion-assisted electron-beam deposition. This is because the method has successfully produced zirconia films having bulk-like densities and refractive indices that show insignificant sensitivity to water adsorption. In this paper a similar effect is demonstrated when mixed zirconia:silica films are produced by coevaporation from independent electron-beam sources, and, in particular, it is shown that the admixture of a small amount of silica with the zirconia produces a film possessing a higher refractive index than a pure zirconia film

  3. Densification characteristics of corn cobs

    Energy Technology Data Exchange (ETDEWEB)

    Kaliyan, Nalladurai; Morey, R. Vance [Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108 (United States)

    2010-05-15

    Corn cobs are potential feedstocks for producing heat, power, fuels, and chemicals. Densification of corn cobs into briquettes/pellets would improve their bulk handling, transportation, and storage properties. In this study, densification characteristics of corn cobs were studied using a uniaxial piston-cylinder densification apparatus. With a maximum compression pressure of 150 MPa, effects of particle size (0.85 and 2.81 mm), moisture content (10 and 20% w.b.), and preheating temperature (25 and 85 C) on the density and durability of the corn cob briquettes (with diameter of about 19.0 mm) were studied. It was found that the durability (measured using ASABE tumbling can method) of corn cob briquettes made at 25 C was 0%. At both particle sizes, preheating of corn cob grinds with about 10% (w.b.) moisture content to 85 C produced briquettes with a unit density of > 1100 kg m{sup -3} and durability of about 90%. (author)

  4. Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting

    Science.gov (United States)

    Wang, Lin-zhi; Wang, Sen; Wu, Jiao-jiao

    2017-11-01

    Effects of laser energy density (LED) on densities and surface roughness of AlSi10Mg samples processed by selective laser melting were studied. The densification behaviors of the SLM manufactured AlSi10Mg samples at different LEDs were characterized by a solid densitometer, an industrial X-ray and CT detection system. A field emission scanning electron microscope, an automatic optical measuring system, and a surface profiler were used for measurements of surface roughness. The results show that relatively high density can be obtained with the point distance of 80-105 μm and the exposure time of 140-160 μs. The LED has an important influence on the surface morphology of the forming part, too high LED may lead to balling effect, while too low LED tends to produce defects, such as porosity and microcrack, and then affect surface roughness and porosities of the parts finally.

  5. Effect of plasma energy on enhancing biocompatibility and hemocompatibility of diamond-like carbon film with various titanium concentrations

    International Nuclear Information System (INIS)

    Cheng, H.-C.; Chiou, S.-Y.; Liu, C.-M.; Lin, M.-H.; Chen, C.-C.; Ou, K.-L.

    2009-01-01

    This investigation develops and explores a new method for depositing a DLC film containing titanium. A bioactive DLC film with titanium dopant (Ti-DLC) was formed by co-sputtering. To determine the properties of DLC films with and without Ti, the specimens were evaluated by material analyses and cell culture. The multilayered nanocrystal TiC was embedded in the amorphous DLC matrix. Microtwins were present between TiC and Ti-DLC. They relaxed residual stress and improved the adhesion of Ti-DLC to the TiC film. The Ti-DLC film proliferates more effectively than Ti or DLC, revealing that the biocompatibility of Ti-DLC clearly exceeds that of DLC, Ti and TiC films. The Ti-DLC film proliferates more effectively than Ti, TiC or DLC film, revealing that the biocompatibility of Ti-DLC clearly exceeds that of DLC and Ti film. In addition, the higher deposited plasma energies were, more densification the films were. It is believed that high plasma energy enhanced the film densification, and then improves surface contact area of adsorbing proteins. It is believed that enhancing cell attachment and subsequently inducing cell proliferation and cell differentiation is related with plasma energy during deposition of Ti-DLC films.

  6. Densification and crystallization behaviour of colloidal cordierite-type gels

    Directory of Open Access Journals (Sweden)

    LJILJANA KOSTIC-GVOZDENOVIC

    2001-05-01

    Full Text Available Three cordierite-type gels were prepared from an aqueous solution of Mg(NO32, a boehmite sol and silica sols of very small particle sizes. The effect of varying the silica particle size on the crystallization and densification behaviour was studied. Phase development was examined by thermal analysis and X-ray diffraction, while the densification behaviour was characterized by measuring the linear shrinkage of pellets. The activation energy of densification by viscous flow was determined using the Franckel model for non-isothermal conditions and a constant heating rate. The results show that spinel crystallizes from the colloidal gels prior to cristobalite, and their reaction gives a-cordierite, which is specific for three-phase gels. Decreasing the silica particles size lowers the cristobalite crystallization temperature and the a-cordierite formation temperature. The activation energy of densification by viscous flow is lower and the densification more efficient, the smaller the silica particles are.

  7. Matrix densification of SiC composites by sintering process

    International Nuclear Information System (INIS)

    Kim, Young-Wook; Jang, Doo-Hee; Eom, Jung-Hye; Chun, Yong-Seong

    2007-02-01

    The objectives of this research are to develop a process for dense SiC fiber-SiC composites with a porosity of 5% or less and to develop high-strength SiC fiber-SiC composites with a strength of 500 MPa or higher. To meet the above objectives, the following research topics were investigated ; new process development for the densification of SiC fiber-SiC composites, effect of processing parameters on densification of SiC fiber-SiC composites, effect of additive composition on matrix microstructure, effects of additive composition and content on densification of SiC fiber-SiC composites, mechanical properties of SiC fiber-SiC composites, effect of fiber coating on densification and strength of SiC fiber-SiC composites, development of new additive composition. There has been a great deal of progress in the development of technologies for the processing and densification of SiC fiber-SiC composites and in better understanding of additive-densification-mechanical property relations as results of this project. Based on the progress, dense SiC fiber-SiC composites (≥97%) and high strength SiC fiber-SiC composites (≥600 MPa) have been developed. Development of 2D SiC fiber-SiC composites with a relative density of ≥97% and a strength of ≥600 MPa can be counted as a notable achievement

  8. An empirical firn-densification model comprising ice-lences

    DEFF Research Database (Denmark)

    Reeh, Niels; Fisher, D.A.; Koerner, R.M.

    2005-01-01

    a suitable value of the surface snow density. In the present study, a simple densification model is developed that specifically accounts for the content of ice lenses in the snowpack. An annual layer is considered to be composed of an ice fraction and a firn fraction. It is assumed that all meltwater formed...... changes reflect a volume change of the ice sheet with no corresponding change of mass, i.e. a volume change that does not influence global sea level....

  9. Densification studies of Synroc D for high-level defense waste

    International Nuclear Information System (INIS)

    Hoenig, C.; Otto, R.; Campbell, J.

    1983-01-01

    Small- to medium-scale densification experiments were conducted on Synroc D using graphite dies and metal canisters. Pressures at elevated temperatures were applied both isostatically (HIP) and unidirectionally (HUP). Spray-dried/calcined powders formulated for composite or average sludge compositions exhibited initial packing densities of about 25% theoretical. Final densities were in the range of 95 to 99% theoretical, depending on applied pressure and temperature. In final-stage HUP densification, we have found that porosity varies exponentially with time acording to the well-known expression P + P 0 exp(-K 0 t). The rate constant (K 0 ) has the Arrhenius form K 0 = Asigma exp(-E/RT) which includes a stress or pressure term. Rate constants are calculated from approximately 20 densification experiments conducted under a wide range of conditions; activation energies in the range of 20 to 35 kcal/mole were calculated for the densification process. HIP densification and leaching results are reported for experiments with a wide range of variables: pressure (3 to 30 ksi), temperature (900 to 1200 0 C), redox calcination method, powder fill density and metal canister material. The results support the conclusion that HUP and HIP densification parameters are very similar and that Synroc-D leaching behavior is essentially independent of density in the range of 90 to 100% theoretical.The densification of Synroc D in a collapsible metal-bellows canister has been simulated by means of modeling calculations. Radial buckling tendencies were also evaluated. Results from large-scale HIP experiments are also reported. Up to 50 kg of Synroc D was densified to greater than 99% theoretical density in a metal-bellows canister 36 cm diameter by 24 cm in height. These data were used as a guide to make recommendations for the full-scale HIP densification of Synroc D using metal-bellows canisters

  10. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure.

    Science.gov (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela

    2017-09-19

    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  11. Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Lam, Yeng Ming; Schou, Jørgen

    can be carried out in order to isolate the desired particle sizes, and films will be deposited through wet-chemical means. Mixing large NPs with small NPs can also improve the film-quality as a result of densification at the optimal packing density. The films are characterized by scanning electron...... microscopy (SEM) as well as other surface characterization techniques. Our first photovoltaic device consisting of soda lime glass/Mo/CZTS/CdS/ZnO has been built from doctor blading of approx. 20 nm Cu2ZnSnS4 NPs in octanethiol, and annealed in Se-atmosphere. It had an efficiency of 1.4%....

  12. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  13. Densification kinetics and structure formation during the high-pressure sintering of Al2O3-TiN powder systems

    Energy Technology Data Exchange (ETDEWEB)

    Neshpor, V.S.; Barashkov, G.A.; Nikitiuk, A.F.

    1986-04-01

    Specimens of alumina of varying specific surface and a composite material containing 80 pct alpha-Al2O3 and 20 pct TiN were sintered at 5 GPa for 30-480 s in the temperature range 1650-1750 K. It is found that the densification process is particularly intensive during the first 30-60 s. Under the conditions investigated, alpha-Al2O3 powder exhibits higher densification rates and final density (100 percent) than the ultradisperse TiN powder, whose final density is 96 percent. The results of the study suggest that densification is achieved through particle fragmentation and slip. Noticeable grain growth is observed for alumina only when the sintering time exceeds 2 min. 7 references.

  14. Influences of the RF power ratio on the optical and electrical properties of GZO thin films by DC coupled RF magnetron sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yao, Tingting, E-mail: yaott0815@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China); Yang, Yong; Zhang, Kuanxiang; Jiang, Jiwen; Jin, Kewu; Li, Gang; Cao, Xin; Xu, Genbao; Wang, Yun [State Key Laboratory of Advanced Technology for Float Glass, Bengbu 233018 (China); Bengbu Design & Research Institute for Glass Industry, Bengbu 233018 (China)

    2016-12-15

    Ga-doped zinc oxide (GZO) thin films were deposited by closed field unbalanced DC coupled RF magnetron sputtering system at room temperature. The RF sputtering power ratio was adjusted from 0% to 100%. The crystal structure, surface morphology, transmittance and electrical resistivity of GZO films mainly influenced by RF sputtering power ratio were investigated by X-ray diffractometer, scanning electronic microscope, ultraviolet-visible spectrophotometer and Hall effect measurement. The research results indicate that the increasing RF power ratio can effectively reduce the discharge voltage of system and increase the ionizing rate of particles. Meanwhile, the higher RF power ratio can increase the carrier mobility in GZO thin film and improve the optical and electrical properties of GZO thin film significantly. Within the optimal discharge voltage window, the film deposits at 80% RF power ratio exhibits the lowest resistivity of 2.6×10{sup −4} Ω cm. We obtain the GZO film with the best average optical transmittance is approximately 84% in the visible wavelength. With the increasing RF power ratio, the densification of GZO film is enhanced. The densification of GZO film is decrease when the RF power ratio is 100%.

  15. Differences between pressure-induced densification of LiCl-H2O glass and polyamorphic transition of H2O

    International Nuclear Information System (INIS)

    Suzuki, Yoshiharu; Mishima, Osamu

    2009-01-01

    We perform volumetric measurements of LiCl aqueous solution up to 1.00 GPa in the 100-170 K range, examine the pressure-induced vitrification and densification, and draw the pressure-temperature-volume surface. The pressure-induced vitrification of the solution corresponds to the cooling-induced vitrification of the liquid. We found that the volumetric decrease of glassy solution during the densification is continuous and this behavior depends on the glassy state before the compression. Raman profiles of the glassy solutions before and after the densification are similar. In contrast, the polyamorphic transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is discontinuous and their Raman profile before and after the transition is distinct. These results suggest that the densification relates to the structural relaxation and differs intrinsically from the polyamorphic transition. Furthermore, the densification of HDA is observed under high pressure, suggesting that very high-density amorphous ice (VHDA) may be the densified HDA. In order to recognize a polyamorphic transition under a non-equilibrium condition correctly, evidence of not only large volume change but also some distinct structural changes in glassy state is necessary.

  16. Molecular dynamics simulation of temperature effects on deposition of Cu film on Si by magnetron sputtering

    Science.gov (United States)

    Zhu, Guo; Sun, Jiangping; Zhang, Libin; Gan, Zhiyin

    2018-06-01

    The temperature effects on the growth of Cu thin film on Si (0 0 1) in the context of magnetron sputtering deposition were systematically studied using molecular dynamics (MD) method. To improve the comparability of simulation results at varying temperatures, the initial status data of incident Cu atoms used in all simulations were read from an identical file via LAMMPS-Python interface. In particular, crystalline microstructure, interface mixing and internal stress of Cu thin film deposited at different temperatures were investigated in detail. With raising the substrate temperature, the interspecies mixed volume and the proportion of face-centered cubic (fcc) structure in the deposited film both increased, while the internal compressive stress decreased. It was found that the fcc structure in the deposited Cu thin films was 〈1 1 1〉 oriented, which was reasonably explained by surface energy minimization and the selectivity of bombardment energy to the crystalline planes. The quantified analysis of interface mixing revealed that the diffusion of Cu atoms dominated the interface mixing, and the injection of incident Cu atoms resulted in the densification of phase near the film-substrate interface. More important, the distribution of atomic stress indicated that the compressive stress was mainly originated from the film-substrate interface, which might be attributed to the densification of interfacial phase at the initial stage of film deposition.

  17. Blast densification trials for oilsands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Port, A. [Klohn Crippen Berger Ltd., Vancouver, BC (Canada); Martens, S. [Klohn Crippen Berger Ltd., Calgary, AB (Canada); Eaton, T. [Shell Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    The Shell Canada Muskeg River Mine External Tailings Facility (ETF) is an upstream constructed tailings facility located near Fort McMurray, Alberta. Raises have incrementally stepped out over the beach since construction of the starter dam and deposition within standing water has left some parts of the beach in a loose state. In order to assess the effectiveness of blast densification, a blast densification trial program that was conducted in 2006 at the ETF. The primary purpose of the test program was to determine the effectiveness of blast densification in tailings containing layers and zones of bitumen. The paper described the site characterization and explosive compaction trial program, with particular reference to test layout; drilling methodology; and blasting and timing sequence. The paper also described the instrumentation, including the seismographs; high pressure electric piezometers; low pressure electric piezometers; vibrating wire piezometers; inclinometers; settlement gauges; and surveys. Trial observations and post-trial observations were also presented. It was concluded that controlled blasting techniques could be used to safely induce liquefaction in localized areas within the tailings deposit, with a resulting increase in the tailings density. 5 refs., 1 tab., 14 figs.

  18. Aerosol Combustion Synthesis of Nanopowders and Processing to Functional Thin Films

    Science.gov (United States)

    Yi, Eongyu

    In this dissertation, the advantages of liquid-feed flame spray pyrolysis (LF-FSP) process in producing nanoparticles (NPs) as well as processing the produced NPs to ceramic/polymer nanocomposite films and high density polycrystalline ceramic films are demonstrated. The LF-FSP process aerosolizes alcohol solutions of metalloorganic precursors by oxygen and combusts them at > 1500 °C. The combustion products are rapidly quenched ( 10s of ms) to green and potentially lower cost alternative. We then show the versatility of NPs in formulating flexible ceramic/polymer nanocomposites (BaTiO3/epoxy) with superior properties. Volume fractions of the BaTiO3 filler and composite film thicknesses were controlled to adjust the net dielectric constant and the capacitance. Measured net dielectric constants further deviated from theory, with increasing solids loadings, due to NP agglomeration. Wound nanocomposite capacitors showed ten times higher capacitance compared to the commercial counterpart. Following series of studies explore the use of flame made NPs in processing Li+ conducting membranes. Systematic doping studies were conducted in the LiTi2(PO4)3 system to modify the lattice constant, conduction channel width, and sintering behavior by introducing Al3+ and Si4+ dopants. Excess Li2O content was also adjusted to observe its effect on final microstructures and phase compositions. Improved densification rates were found in Li1.7 Al0.3Ti1.7Si0.4P2.6O 12 composition and thin films (52+/-1 microm) with conductivities of 0.3-0.5 mS cm-1 were achieved. Li6.25M0.25La3Zr2O12 (M = Al3+, Ga3+) thin films (25-28 microm) with conductivities of 0.2-1.3 mS cm-1 were also successfully processed using flame made NPs, overcoming processing challenges extant, resulting in significantly reduced energy input required for densification. Heating schedules, sintering atmospheres, and types of substrates were controlled to observe their effect on the sintering behavior. Furthermore, green film

  19. Periodic nanostructures imprinted on high-temperature stable sol–gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Back, Franziska [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany); Bockmeyer, Matthias; Rudigier-Voigt, Eveline [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Löbmann, Peer [Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany)

    2014-07-01

    Nanostructured sol–gel films with high-temperature stability are used in the area of electronics, photonics or biomimetic materials as light-trapping architectures in solar cells, displays, waveguides or as superhydrophobic surfaces with a lotus effect. In this work, high-temperature stable 2-μm nanostructured surfaces were prepared by ultraviolet-based nanoimprint lithography using an alkoxysilane binder incorporating modified silica nanoparticles. Material densification during thermal curing and microstructural evolution which are destined for a high structural fidelity of nanostructured films were investigated in relation to precursor chemistry, particle morphology and particle content of the imprint resist. The mechanism for densification and shrinkage of the films was clarified and correlated with the structural fidelity to explain the influence of the geometrical design on the optical properties. A high internal coherence of the microstructure of the nanostructured films results in a critical film thickness of > 5 μm. The structured glassy layers with high inorganic content show thermal stability up to 800 °C and have a high structural fidelity > 90% with an axial shrinkage of 16% and a horizontal shrinkage of 1%. This material allows the realization of highly effective light-trapping architectures for polycrystalline silicon thin-film solar cells on glass but also for the preparation of 2D photonic crystals for telecommunication wavelengths. - Highlights: • Fundamental research • Hybrid sol–gel material with high-temperature stability and contour accuracy • Ensuring of cost-efficient and industrially feasible processing • Application in photonic and photovoltaic.

  20. Surface self-organization in multilayer film coatings

    Science.gov (United States)

    Shuvalov, Gleb M.; Kostyrko, Sergey A.

    2017-12-01

    It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.

  1. Towards a framework for the densification of urbanising areas in ...

    African Journals Online (AJOL)

    It is argued that densification will help in achieving sustainable development by increasing gross residential densities and focusing development around built-up areas and transit routes, while discouraging further outward growth. The paper proposes smart growth strategies to encourage the densification of urbanising ...

  2. Densification of zirconia-hematite nanopowders

    NARCIS (Netherlands)

    Raming, T.P.; Winnubst, Aloysius J.A.; van Zyl, W.E.; Verweij, H.

    2003-01-01

    The densification of dual-phase yttria-doped tetragonal zirconia polycrystals (Y-TZP) and -Fe2O3 (hematite) composite powders is described. Different powder synthesis methods, different forms of dry compaction processes, and two sinter methods (pressureless sintering and sinterforging) were

  3. Improving the Conventional Pelletization Process to Save Energy during Biomass Densification

    Directory of Open Access Journals (Sweden)

    Zhongjia Chen

    2015-08-01

    Full Text Available A pellet mill is currently the most frequently used method for producing pellets using either a ring die or a flat die. In the densification process, a great amount of energy is required to avoid spring-back and to overcome the friction between the material and the channel surface of the die. However, extra energy is unnecessarily consumed because of friction between the roller and densified material and the pressure between the roller and die, where there are no opening channels. The aim of this work was to attempt to eliminate a portion of the frictional and compaction energy consumption based on an improved method of densification using a ring die. An upgraded pellet mill was designed and manufactured with rams on its roller. When the die and the roller rotate in a fixed transmission ratio, the rams precisely press raw material into opening channels on the die. Experimental tests on its feasibility were carried out. The results showed that the pellet mill, with this improvement, worked without wear on the surface of either the ring die or the roller; furthermore, the density and mechanical durability of pellets were the same as those produced using the traditional method.

  4. Effect of Power Characteristics on the Densification of Sintered Alumina

    International Nuclear Information System (INIS)

    Al-Sarraj, Z.S.A.; Noor, S.S.

    2011-01-01

    The effect of particle size distribution, soaking time and sintering temperatures on the densification behaviors of α-Al 2 O 3 was investigated. Two different average particle sizes of 36 and 45μ were examined as a variable to analyze the difference in density, radial and axial shrinkage, densification, and microstructure developments. Conventional powder technology route was used to prepare disc-shaped green pellets sintered at 1200-1600 0 C for different periods. Density measurements for both green and sintered compacts allow for the refinement of processing parameters to obtain dense sintered bodies. Compacts with particle size of 36 μm were noticed to attain higher relative densities as compared with those of 45μm. Densification parameter (ΔP) calculations clearly reveals the presence of definite temperatures and times in which limited densification retardation occurred, which permits the suggesting of suitable sintering schemes for this material. Scanning electron micrographs analysis revealed a pore structure assist the observed behaviours for the different schemes. (author)

  5. Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD)

    International Nuclear Information System (INIS)

    Penilla, E.H.; Kodera, Y.; Garay, J.E.

    2012-01-01

    Highlights: ► We report a method for the synthesis of transparent and PL bulk polycrystalline Ce:YAG using CAPAD. ► The process uses γ-Al 2 O 3 , Y 2 O 3 , and CeO 2 nanopowders, reacted and densified simultaneously. ► The synthesis/densification kinetics are faster than those reported previously. ► Optical measurements show good transparency in the visible and photoluminescence (PL) in the Ce:YAG. ► The PL peak is broad and appears white when excited using blue light. - Abstract: We report a method for the synthesis and processing of transparent bulk polycrystalline yttrium aluminum garnet (YAG) and photoluminescent Ce-doped YAG ceramics via solid-state reactive-current activated pressure assisted densification (CAPAD). The process uses commercially available γ-Al 2 O 3 , Y 2 O 3 , and CeO 2 nanopowders. The nanopowders were reacted and densified simultaneously at temperatures between 850 °C and 1550 °C and at a maximum pressure of 105 MPa. The solid-state reaction to phase pure YAG occurs in under 4 min at processing temperatures 1100 °C which is significantly faster (on the order of tens of hours) and occurs at much lower temperatures (∼600 °C) compared to conventional reaction sintering. We found that the reaction significantly improves densification – the shrinkage rate of reaction-produced YAG was three times higher than that of YAG using pre-reacted powder. The Ce additions were found to retard the reaction driven shrinkage kinetics by a factor ∼3, but are still faster (by a factor ∼1.6) than those associated with direct densification (no synthesis). Densities >99% were achieved in both pure YAG and Ce doped YAG (Ce:YAG). Results of optical measurements show good transparency in the visible and photoluminescence (PL) in the Ce:YAG. The PL peak is broad and appears white when excited using blue light confirming that the ceramics can be used in solid state lighting to produce white light.

  6. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    Science.gov (United States)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  7. Differences between pressure-induced densification of LiCl-H{sub 2}O glass and polyamorphic transition of H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshiharu; Mishima, Osamu [Polyamorphism Group, Advanced Nano Materials Laboratory, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044 (Japan)], E-mail: SUZUKI.Yoshiharu@nims.go.jp

    2009-04-15

    We perform volumetric measurements of LiCl aqueous solution up to 1.00 GPa in the 100-170 K range, examine the pressure-induced vitrification and densification, and draw the pressure-temperature-volume surface. The pressure-induced vitrification of the solution corresponds to the cooling-induced vitrification of the liquid. We found that the volumetric decrease of glassy solution during the densification is continuous and this behavior depends on the glassy state before the compression. Raman profiles of the glassy solutions before and after the densification are similar. In contrast, the polyamorphic transition from low-density amorphous ice (LDA) to high-density amorphous ice (HDA) is discontinuous and their Raman profile before and after the transition is distinct. These results suggest that the densification relates to the structural relaxation and differs intrinsically from the polyamorphic transition. Furthermore, the densification of HDA is observed under high pressure, suggesting that very high-density amorphous ice (VHDA) may be the densified HDA. In order to recognize a polyamorphic transition under a non-equilibrium condition correctly, evidence of not only large volume change but also some distinct structural changes in glassy state is necessary.

  8. Radiographic film: surface dose extrapolation techniques

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW; Currie, M.

    2004-01-01

    Full text: Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate 2 dimensional map of surface dose if required. Results have shown that surface % dose can be estimated within ±3% of parallel plate ionisation chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10cm, 20cmand 30cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. Corresponding parallel plate ionisation chamber measurement are 16%, 27% and 37% respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  9. Shape-forming and densification of ceramic superconductors

    International Nuclear Information System (INIS)

    Prakash, Om; Thomas, C.A.; Magadum, A.P.; Anklekar, R.M.; Khosla, N.K.; Kumar, Sunil; Chaudhuri, B.; Ramesh, M.; Rao, B.T.; Rama Mohan, T.R.

    1991-01-01

    Processing studies on varied shape-forming and densification of bulk ceramic superconductor, YBa 2 Cu 3 Osub(7-δ), are reported in this paper. Polyvinyl butyral-polyethylene glycol-trichloroethylene has been found to be the best binder-plasticizer-solvent system in plastic shape-forming. The effect of initial particle morphology on final densification has been the most sensitive single parameter as compared to compaction pressure and final sintering durations at ∼930degC. 1-2-3 powders of mean particle size ∼1.94μm have yielded sintered densities ∼92%T.D. albeit with lower oxygen intake Osub(6.7). (author). 8 refs., 8 figs

  10. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  11. Chemical decontamination and melt densification

    International Nuclear Information System (INIS)

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  12. Surface acoustic wave propagation in graphene film

    International Nuclear Information System (INIS)

    Roshchupkin, Dmitry; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-01-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals

  13. Preparation of transparent BN films with superhydrophobic surface

    International Nuclear Information System (INIS)

    Li Guoxing; Liu Yi; Wang Bo; Song Xuemei; Li Er; Yan Hui

    2008-01-01

    A novel approach was investigated to obtain the superhydrophobicity on surfaces of boron nitride films. In this method boron nitride films were deposited firstly on Si(1 0 0) and quartz substrate using a radio frequency (RF) magnetron sputtering system, and then using CF 4 plasma treatment, the topmost surface area can be modified systematically. The results have shown that the water contact angle on such surfaces can be tuned from 67 deg. to 159 deg. The films were observed to be uniform. The surfaces of films consist of micro-features, which were confirmed by Atomic Force Micrograph. The chemical bond states of the films were determined by Fourier Transform Infrared (FTIR) Spectroscopy, which indicate the dominance of B-N binding. According to the X-ray Photoelectron Spectroscopy analysis, the surface of film is mainly in BN phase. The micro-feature induced surface roughness is responsible for the observed superhydrophobic nature. The water contact angles measured on these surfaces can be modeled by the Cassie's formulation

  14. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  15. Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD)

    Energy Technology Data Exchange (ETDEWEB)

    Penilla, E.H.; Kodera, Y. [Mechanical Engineering Dept., Materials Science and Engineering Program, University of California, Riverside (United States); Garay, J.E., E-mail: jegaray@engr.ucr.edu [Mechanical Engineering Dept., Materials Science and Engineering Program, University of California, Riverside (United States)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer We report a method for the synthesis of transparent and PL bulk polycrystalline Ce:YAG using CAPAD. Black-Right-Pointing-Pointer The process uses {gamma}-Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, and CeO{sub 2} nanopowders, reacted and densified simultaneously. Black-Right-Pointing-Pointer The synthesis/densification kinetics are faster than those reported previously. Black-Right-Pointing-Pointer Optical measurements show good transparency in the visible and photoluminescence (PL) in the Ce:YAG. Black-Right-Pointing-Pointer The PL peak is broad and appears white when excited using blue light. - Abstract: We report a method for the synthesis and processing of transparent bulk polycrystalline yttrium aluminum garnet (YAG) and photoluminescent Ce-doped YAG ceramics via solid-state reactive-current activated pressure assisted densification (CAPAD). The process uses commercially available {gamma}-Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, and CeO{sub 2} nanopowders. The nanopowders were reacted and densified simultaneously at temperatures between 850 Degree-Sign C and 1550 Degree-Sign C and at a maximum pressure of 105 MPa. The solid-state reaction to phase pure YAG occurs in under 4 min at processing temperatures 1100 Degree-Sign C which is significantly faster (on the order of tens of hours) and occurs at much lower temperatures ({approx}600 Degree-Sign C) compared to conventional reaction sintering. We found that the reaction significantly improves densification - the shrinkage rate of reaction-produced YAG was three times higher than that of YAG using pre-reacted powder. The Ce additions were found to retard the reaction driven shrinkage kinetics by a factor {approx}3, but are still faster (by a factor {approx}1.6) than those associated with direct densification (no synthesis). Densities >99% were achieved in both pure YAG and Ce doped YAG (Ce:YAG). Results of optical measurements show good transparency in the visible and

  16. Factors influencing surface roughness of polyimide film

    International Nuclear Information System (INIS)

    Yao Hong; Zhang Zhanwen; Huang Yong; Li Bo; Li Sai

    2011-01-01

    The polyimide (PI) films of pyromellitic dianhydride-oxydiamiline (PMDA-ODA) were fabricated using vapor deposition polymerization (VDP) method under high vacuum pressure of 10-4 Pa level. The influence of equipment, substrate temperature, the process of heating and deposition ratio of monomers on the surface roughness of the PI films was investigated. The surface topography of films was measured by interferometer microscopy and scanning electron microscopy(SEM), and the surface roughness was probed with atomic force microscopy(AFM). The results show that consecutive films can be formed when the distance from steering flow pipe to substrate is 74 cm. The surface roughnesses are 291.2 nm and 61.9 nm respectively for one-step heating process and multi-step heating process, and using fine mesh can effectively avoid the splash of materials. The surface roughness can be 3.3 nm when the deposition rate ratio of PMDA to ODA is 0.9:1, and keeping the temperature of substrate around 30 degree C is advantageous to form a film with planar micro-surface topography. (authors)

  17. Surface characteristics of PLA and PLGA films

    Energy Technology Data Exchange (ETDEWEB)

    Paragkumar N, Thanki [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France); Edith, Dellacherie [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France); Six, Jean-Luc [Laboratoire de Chimie-Physique Macromoleculaire (LCPM), UMR CNRS-INPL 7568, Groupe ENSIC, 1 rue Grandville, B.P. 20451, 54001 Nancy Cedex (France)]. E-mail: Jean-Luc.Six@ensic.inpl-nancy.fr

    2006-12-30

    Surface segregation and restructuring in polylactides (poly(D,L-lactide) and poly(L-lactide)) and poly(D,L-lactide-co-glycolide) (PLGA) films of various thicknesses were investigated using both attenuated total reflection FTIR (ATR-FTIR) and contact angle relaxation measurements. In case of poly(D,L-lactide) (DLPLA), it was observed that the surface segregation and the surface restructuring of methyl side groups are influenced by the polymer film thickness. This result has been confirmed by X-ray photoelectron spectroscopy (XPS). In the same way, PLGA thick films were also characterized by an extensive surface segregation of methyl side groups. Finally, surface restructuring was investigated by dynamic contact angle measurements and it was observed when film surface comes into contact with water. In parallel, we also found that poly(L-lactide) (PLLA) thin and clear films with thickness {approx}15 {mu}m undergo conformational changes on the surface upon solvent treatment with certain solvents. The solvent treated surface of PLLA becomes hazy and milky white and its hydrophobicity increases compared to untreated surface. FTIR spectroscopic analysis indicated that polymer chains at the surface undergo certain conformational changes upon solvent treatment. These changes are identified as the restricted motions of C-O-C segments and more intense and specific vibrations of methyl side groups. During solvent treatment, the change in water contact angle and FTIR spectrum of PLLA is well correlated.

  18. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  19. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  20. Surface dose extrapolation measurements with radiographic film

    International Nuclear Information System (INIS)

    Butson, Martin J; Cheung Tsang; Yu, Peter K N; Currie, Michael

    2004-01-01

    Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)

  1. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  2. Phenomenological analysis of densification mechanism during spark plasma sintering of MgAl2O4

    Science.gov (United States)

    Bernard-Granger, Guillaume; Benameur, Nassira; Addad, Ahmed; Nygren, Mats; Guizard, Christian; Deville, Sylvain

    2009-05-01

    Spark plasma sintering (SPS) of MgAl2O4 powder was investigated at temperatures between 1200 and 1300{\\deg}C. A significant grain growth was observed during densification. The densification rate always exhibits at least one strong minimum, and resumes after an incubation period. Transmission electron microscopy investigations performed on sintered samples never revealed extensive dislocation activity in the elemental grains. The densification mechanism involved during SPS was determined by anisothermal (investigation of the heating stage of a SPS run) and isothermal methods (investigation at given soak temperatures). Grain-boundary sliding, accommodated by an in-series {interface-reaction/lattice diffusion of the O$^2$-anions} mechanism controlled by the interface-reaction step, governs densification. The zero-densification-rate period, detected for all soak temperatures, arise from the difficulty of annealing vacancies, necessary for the densification to proceed. The detection of atomic ledges at grain boundaries and the modification of the stoichiometry of spinel during SPS could be related to the difficulty to anneal vacancies at temperature soaks.

  3. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  4. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  5. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: Modeling and optimization

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh A.

    2014-01-01

    Full Text Available An investigation has been made to use response surface methodology and central composite rotatable design for modeling and optimizing the effect of sintering variables on densification of prealloyed Cu28Zn brass powder during supersolidus liquid phase sintering. The mathematical equations were derived to predict sintered density, densification parameter, porosity percentage and volumetric change of samples using second order regression analysis. As well as the adequacy of models was evaluated by analysis of variance technique at 95% confidence level. Finally, the influence and interaction of sintering variables, on achieving any desired properties was demonstrated graphically in contour and three dimensional plots. In order to better analyze the samples, microstructure evaluation was carried out. It was concluded that response surface methodology based on central composite rotatable design, is an economical way to obtain arbitrary information with performing the fewest number of experiments in a short period of time.

  6. Surface energy of amorphous carbon films containing iron

    International Nuclear Information System (INIS)

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  7. A nonsteady-state firn-densification model for the percolation zone of a glacier

    DEFF Research Database (Denmark)

    Reeh, Niels

    2008-01-01

    A simple steady state firn-densification model is modified to account for short-term time variations of accumulation rate and surface temperature. The temporal surface-elevation- and mass changes at two sites in the percolation zone of an ice sheet in response to various climate histories...... are determined. It is shown that a straight-forward translation of observed short-term ice-sheet surface-elevation variations into mass changes may be completely misleading, particularly for the percolation zone of the ice sheet, where temperature driven variations of melting/re-freezing rates have a strong...... impact on near surface density. In the lower percolation zone, the mass change associated with a temperature anomaly in respect to the mean climate may for example amount to as little as 10 percent of the observed, simultaneous surface elevation change. Moreover, significant surface elevation change may...

  8. Surface smoothening effects on growth of diamond films

    Science.gov (United States)

    Reshi, Bilal Ahmad; Kumar, Shyam; Kartha, Moses J.; Varma, Raghava

    2018-04-01

    We have carried out a detailed study of the growth dynamics of the diamond film during initial time on diamond substrates. The diamond films are deposited using Microwave Plasma Chemical Vapor Deposition (MPCVD) method for different times. Surface morphology and its correlation with the number of hours of growth of thin films was invested using atomic force microscopy (AFM). Diamond films have smooth interface with average roughness of 48.6873nm. The initial growth dynamics of the thin film is investigated. Interestingly, it is found that there is a decrease in the surface roughness of the film. Thus a smoothening effect is observed in the grown films. The film enters into the growth regime in the later times. Our results also find application in building diamond detector.

  9. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  10. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    Science.gov (United States)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  11. Thermal and in-reactor densification of UO2; mechanism and experimental results

    International Nuclear Information System (INIS)

    Assmann, H.; Stehle, H.

    1980-01-01

    Suggested is a generalized model of UO 2 densification kinetics under irradiation in a reactor which takes into account the peculiarities of small and large pores behaviour in four temperature ranges (450 deg C, 450-750 deg C; 750-1300 deg C; 1300 deg C ) determining the process. It is pointed out that one of the most important parameters influencing the speed of densification is an initial distribution of pores according to dimensions. Summary VO 2 volume change under irradiation is shown to be obtained from decreasing the volume at the expense of pore shrinkage and matrix swelling. The model also takes into account such parameters as irradiation time and temperature, burning, and initial fuel density. The densification model suggested is confirmed by many experimental data

  12. Surface microtopography of thin silver films

    Science.gov (United States)

    Costa, Manuel F. M.; Almeida, Jose B.

    1991-01-01

    The authors present ne applications for the recently developed nori-contact optical inicrotopographer emphasizing the results of topographic inspections of thin silver films edges. These films were produced by sputtering of silver through different masks, using a planar magnetron source. The results show the influence ot the thickness and position of the masks on the topography of the film near its edge. Topographic information is obtained from the horizontal shift incurred by the bright spot on an horizontal surface, which is displaced vertically, when this is illuminated by an oblique collimated laser beam. The laser beam is focused onto the surface into a diffraction limited spot and is made to sweep the surface to be examined.. The horizontal position of the bright spot is continuously imaged onto a light detector array and the information about individual detectors that are activated is used to compute the corresponding horizontal shift on the reference plane. Simple trignometric calculations are used to relate the horizontal shift to the distance between the surface and a reference plane at each sampling point and thus a map of the surface topography can be built.

  13. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mariño, Mariana [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Rieu, Mathilde, E-mail: rieu@emse.fr [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Viricelle, Jean-Paul [École Nationale Supérieure des Mines, SPIN-EMSE, CNRS: UMR 5307, LGF, F-42023 Saint-Étienne (France); Garrelie, Florence [Université Jean Monnet, Laboratoire Hubert Curien, CNRS: UMR 5516, 42000 Saint-Etienne (France)

    2016-06-30

    Graphical abstract: - Highlights: • CGO surface densifications were induced by UV and IR laser irradiations. • Grain growth or densified cracked surfaces were observed by SEM. • UV laser treatments allow a decrease of gas permeation through electrolyte layer. • Electrical conductivity of the electrolyte was modified by laser treatments. • Grain growth of electrolyte induced by UV laser improved cell performances. - Abstract: In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface.

  14. Densification effects on solution-processed indium-gallium-zinc-oxide films and their thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Rim, You Seung; Kim, Hyun Jae [School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2014-09-15

    We report the effects of high-pressure annealing (HPA) on solution-processed InGaZnO (IGZO) thin-film transistors (TFTs). HPA increased the density of IGZO films. In particular, annealing in O{sub 2} at 1.0 MPa and 350 C resulted in a high-density and low-porosity IGZO film, as characterized using X-ray reflectivity (XRR) and ellipsometry measurements. This was attributed to the oxidative and compressive effects on the oxygen-deficient solution-processed IGZO film. TFTs annealed in O{sub 2} at 1.0 MPa and 350 C exhibited an increase in the field-effect mobility by a factor of approximately five compared with TFTs annealed in air at 0.1 MPa and 350 C. Furthermore, improvements in reliability under negative and positive bias stresses were also observed following HPA. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  16. Firn thickness variations across the Northeast Greenland Ice Stream margins indicating nonlinear densification rates

    Science.gov (United States)

    Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.

    2013-12-01

    Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more

  17. Densification of Y2O3 by HIP

    International Nuclear Information System (INIS)

    Valin, F.; Maire, P.; Boncoeur, M.

    1986-11-01

    Densification of Y 2 O 3 by HIP was investigated in the range 1250 0 C-1550 0 C at a pressure of 150 MPa. Runs were made in metallic capsules with 200 g of powder. The powder under investigation is 99.9% purity, supplied by RHONE-POULENC. The study reveals the importance of residual gases in the HIP technique of powder densification. The density of the final product is in the range 93% to 100% of theoretical density depending on pretreatment (or outgassing) of the powder. Residual gases have been identified. Final products have been characterized by microscopy (grain size, porosity, microhardness). Porosity and grain size depend on pretreatment conditions. In particular a 1200 0 C pretreatment results in zero porosity and significant decrease of grain size. 4 tables, 11 figs, 16 refs

  18. Densification of ∼5 nm-thick SiO_2 layers by nitric acid oxidation

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Joo, Soyeong; Park, Tae Joo; Kim, Woo-Byoung

    2017-01-01

    Highlights: • Leakage current density of the commercial PECVD grown ∼5 nm SiO_2 layer has been decreased about three orders of magnitude by densification. • The densification of SiO_2 layer is achieved by high oxidation ability of O·. • Densities of suboxide, fixed charge (N_f) and defect state (N_d) in SiO_2/Si interface are decreased by NAOS and PMA. • Tunneling barrier height (Φ_t) is increased because of the increase of atomic density in SiO_2 layer. - Abstract: Low-temperature nitric acid (HNO_3) oxidation of Si (NAOS) has been used to improve the interface and electrical properties of ∼5 nm-thick SiO_2/Si layers produced by plasma-enhanced chemical vapor deposition (PECVD). Investigations of the physical properties and electrical characteristics of these thin films revealed that although their thickness is not changed by NAOS, the leakage current density at a gate bias voltage of −1 V decreases by about two orders of magnitude from 1.868 × 10"−"5 A/cm"2. This leakage current density was further reduced by post-metallization annealing (PMA) at 250 °C for 10 min in a 5 vol.% hydrogen atmosphere, eventually reaching a level (5.2 × 10"−"8 A/cm"2) approximately three orders of magnitude less than the as-grown SiO_2 layer. This improvement is attributed to a decrease in the concentration of suboxide species (Si"1"+, Si"2"+ and Si"3"+) in the SiO_2/Si interface, as well as a decrease in the equilibrium density of defect sites (N_d) and fixed charge density (N_f). The barrier height (Φ_t) generated by a Poole-Frenkel mechanism also increased from 0.205 to 0.371 eV after NAOS and PMA. The decrease in leakage current density is therefore attributed to a densification of the SiO_2 layer in combination with the removal of OH species and increase in interfacial properties at the SiO_2/Si interface.

  19. Densification of porous bodies in a granular pressure-transmitting medium

    International Nuclear Information System (INIS)

    Olevsky, E.A.; Ma, J.; LaSalvia, J.C.; Meyers, M.A.

    2007-01-01

    Densification is a critical step in the manufacture of near-net-shaped components via powder processing. A non-isostatic stress state will in general result in shape distortion in addition to densification. In the quasi-isostatic pressing (QIP) process the green body is placed into a granular pressure-transmitting medium (i.e. PTM), which is itself contained in a rigid die. Upon the application of a uniaxial load, the PTM redistributes the tractions on the green body, thereby creating a stress state that is quasi-isostatic. The character of the deformation of the PTM is studied using model experiments on pressing of the PTM in a rigid die and a scanning electron microscopy analysis of the PTM powder. An important problem of the optimization of the PTM chemical composition enabling the maximum densification of a porous specimen with the minimum possible shape distortion is solved. The results of modeling agree satisfactorily with the experimental data on cold QIPing Ti and Ni powder samples and hot QIPing TiC-TiNi cermet composites

  20. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  1. Rupture of thin liquid films on structured surfaces.

    Science.gov (United States)

    Ajaev, Vladimir S; Gatapova, Elizaveta Ya; Kabov, Oleg A

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  2. Research of interaction between technological and material parameters during densification of sunflower hulls

    Science.gov (United States)

    Križan, Peter; Matúš, Miloš; Beniak, Juraj; Šooš, Ľubomír

    2018-01-01

    During the biomass densification can be recognized various technological variables and also material parameters which significantly influences the final solid biofuels (pellets) quality. In this paper, we will present the research findings concerning relationships between technological and material variables during densification of sunflower hulls. Sunflower hulls as an unused source is a typical product of agricultural industry in Slovakia and belongs to the group of herbaceous biomass. The main goal of presented experimental research is to determine the impact of compression pressure, compression temperature and material particle size distribution on final biofuels quality. Experimental research described in this paper was realized by single-axis densification, which was represented by experimental pressing stand. The impact of mentioned investigated variables on the final briquettes density and briquettes dilatation was determined. Mutual interactions of these variables on final briquettes quality are showing the importance of mentioned variables during the densification process. Impact of raw material particle size distribution on final biofuels quality was also proven by experimental research on semi-production pelleting plant.

  3. In situ ion-beam analysis and modification of sol-gel zirconia thin films

    International Nuclear Information System (INIS)

    Levine, T.E.; Mayer, J.W.

    1995-01-01

    We report the investigation of ion-beam-induced densification of sol-gel zirconia thin films via in situ ion backscattering spectrometry. We have irradiated three regions of a sample with neon, argon, and krypton ions. For each ion species, a series of irradiation and analysis steps were performed using an interconnected 3 MV tandem accelerator. The technique offers the advantages of minimizing the variation of experimental parameters and sequentially monitoring the densification phenomenon with increasing ion dose

  4. The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics

    International Nuclear Information System (INIS)

    Laasri, S.; Taha, M.; Laghzizil, A.; Hlil, E.K.; Chevalier, J.

    2010-01-01

    This paper reports the effects of processing densification on the mechanical properties of hydroxyapatite bioceramics. Densification of synthetic hydroxyapatite is conducted in the range 1000-1300 o C. X-ray diffraction and SEM microscopy are used to check the microstructure transformations. Vickers hardness, toughness and Young's modulus are analyzed versus the density and grain size. The sintering temperature and the particle size influence strongly the densification and the resulting mechanical properties. In addition, the critical sintering temperature appears around 1200 o C and the declined strength at the temperature up to 1200 o C is found sensitive to the dehydroxylation process of hydroxyapatite.

  5. Modification of microstructure and electrical conductivity of plasma-sprayed YSZ deposit through post-densification process

    International Nuclear Information System (INIS)

    Ning Xianjin; Li Chengxin; Li Changjiu; Yang Guanjun

    2006-01-01

    4.5 mol% yttria-stabilized zirconia (YSZ) coating was deposited by atmospheric plasma spraying (APS) as an electrolyte for solid oxide fuel cells (SOFCs) applications. The post treatment was employed using zirconium and yttrium nitrate solution infiltration to densify the coating microstructure for improvement of gas permeability. The deposition of YSZ through nitrate in voids of the coating was examined. Microstructure of the as-sprayed and densified coatings was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of infiltrating treatment on coating microstructure and electrical conductivity was examined. The electrical conductivity of APS-sprayed YSZ coating at the direction perpendicular to coating surface was much lower than that of bulk materials. Post-densification treatment improved the electrical conductivity of YSZ coating by about 25% compared with as-sprayed coating. It was found that the deposition of YSZ resulting from decomposition of nitrate in the lamellar interface gaps was different from that in vertical cracks in lamella owing to the orthogonal feature of those two types of gaps. The nanopores were formed in the deposited YSZ in nonbonded interface gaps while large pores were residued in vertical cracks in splats. The microstructural examination suggests that nanopores in the deposited YSZ in nonbonded interfaces in the coating were isolated from each other, which led to the significant reduction of gas permeability after densification. Moreover, the nanocontacts between lamellae resulted in high contact resistance and limit improvement of electrical conductivity of the coating after densification

  6. Thermal and in-pile densification of MOX fuels: Some recent results

    International Nuclear Information System (INIS)

    Caillot, L.; Malgouyres, P.P.; Souchon, F.; Gotta, M.J.; Warin, D.; Chotard, A.; Couty, J.C.

    1997-01-01

    In-pile densification of PWR fuels is one of the main phenomena which determine the evolution of the pellet-clad gap during the first stage of the irradiation, and thus has consequences onto the thermo-mechanical behaviours of fuel rods. It can be predicted using the results of resintering tests and appropriate correlations. In this context, CEA, FRAMATOME and EDF have undertaken a joint research programme aiming to characterize the densification of MOX fuels. Different fuels were prepared by the MIMAS process using different UO 2 powders as matrix. After a detailed characterization, fuel pellets were submitted to isothermal resintering tests and analytical irradiations. Correlations between in-pile and thermal densification were established. This paper presents the results obtained with two types of MOX fuel: one fabricated wit the AUC UO 2 powder (ammonium uranyl carbonate conversion process) and another one fabricated with the SFEROX powder (peroxide conversion process). 8 refs, 8 figs

  7. Surface Morphology Diagram for Cylinder-Forming Block Copolymer Thin Films

    International Nuclear Information System (INIS)

    Zhang, Xiaohua; Berry, Brian C.; Yager, Kevin G.; Kim, Sangcheol; Jones, Ronald L.; Satija, Sushil; Pickel, Deanna L.; Douglas, Jack F.; Karim, Alamgir

    2008-01-01

    We investigate the effect of annealing temperature (T), film thickness (hf) on the surface morphology of flow coated films of a cylinder forming block copolymer, poly (styrene-block-methyl methacrylate) (PS-b-PMMA). Surface morphology transitions from a perpendicular to a parallel cylinder orientation with respect to the substrate with increasing hf are observed in these model 'frustrated-interaction' films where the substrate interaction is preferential for one of the blocks (PMMA) and nearly neutral for the other interface (polymer-air). In these films a transition occurs from cylinders oriented parallel to the substrate to a mixed or 'hybrid' state where the two orientations coexist followed by a transition to cylinders oriented perpendicularly to the polymer-air interface for larger hf. The characteristic values of hf defining these surface morphological transitions depend on T and we construct a surface morphology diagram as a function of hf and T. The surface morphology diagram is found to depend on the method of film formation (flow coated versus spun cast films) so non-equilibrium effects evidently have a large effect on the surface pattern morphology. In particular, the residual solvent within the film (quantified by neutron reflectivity measurements) in the context of physics of glass-formation can have a large effect on the surface morphology diagram

  8. Ellipsometry of functional organic surfaces and films

    CERN Document Server

    Hinrichs, Karsten

    2013-01-01

    Ellipsometry is the method of choice to determin the properties of surfaces and thin films. It provides comprehensive and sensitive characterization in a contactless and non-invasive measurements. This book gives a state-of-the-art survey of ellipsometric investigations of organic films and surfaces, from laboratory to synchrotron applications, with a special focus on in-situ use in processing environments and at solid-liquid interfaces.

  9. Instability of confined water films between elastic surfaces

    NARCIS (Netherlands)

    de Beer, Sissi; 't Mannetje, Dieter; Zantema, Sietske; Mugele, Friedrich

    2010-01-01

    We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a

  10. Conciliating surface superhydrophobicities and mechanical strength of porous silicon films

    Science.gov (United States)

    Wang, Fuguo; Zhao, Kun; Cheng, Jinchun; Zhang, Junyan

    2011-01-01

    Hydrophobic surfaces on Mechanical stable macroporous silicon films were prepared by electrochemical etching with subsequent octadecyltrichlorosilane (OTS) modification. The surface morphologies were controlled by current densities and the mechanical properties were adjusted by their corresponding porosities. Contrast with the smooth macroporous silicon films with lower porosities (34.1%) and microporous silicon with higher porosities (97%), the macroporous film with a rough three-dimension (3D) surface and a moderate pore to cross-section area ratio (37.8%, PSi2‧) exhibited both good mechanical strength (Yong' modulus, shear modulus and collapse strength are 64.2, 24.1 and 0.32 GPa, respectively) and surface superhydrophobicity (water contact angle is 158.4 ± 2° and sliding angle is 2.7 ± 1°). This result revealed that the surface hydrophobicities (or the surface roughness) and mechanical strength of porous films could be conciliated by pore to cross-section area ratios control and 3D structures construction. Thus, the superhydrophobic surfaces on mechanical stable porous films could be obtained by 3D structures fabrication on porous film with proper pore to cross-section area ratios.

  11. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  12. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  13. The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Laasri, S.; Taha, M. [Laboratoire de Thermodynamique Metallurgie et Rheologie des Materiaux, Universite Ibn Zohr, Faculte des sciences, BP8106 Cite Dakhla, Agadir (Morocco); Laghzizil, A., E-mail: laghzizi@fsr.ac.ma [Laboratoire de Chimie Physique Generale, Universite Mohammed V Rabat BP1014 (Morocco); Hlil, E.K. [Institut Neel MCMF, CNRS, BP 166, 38042 Grenoble Cedex 9 (France); Chevalier, J. [Universite de Lyon, INSA-Lyon, MATEIS UMR CNRS 5510, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2010-10-15

    This paper reports the effects of processing densification on the mechanical properties of hydroxyapatite bioceramics. Densification of synthetic hydroxyapatite is conducted in the range 1000-1300 {sup o}C. X-ray diffraction and SEM microscopy are used to check the microstructure transformations. Vickers hardness, toughness and Young's modulus are analyzed versus the density and grain size. The sintering temperature and the particle size influence strongly the densification and the resulting mechanical properties. In addition, the critical sintering temperature appears around 1200 {sup o}C and the declined strength at the temperature up to 1200 {sup o}C is found sensitive to the dehydroxylation process of hydroxyapatite.

  14. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  15. In-pile intragranular densification of oxide fuels (AWBA Development Program)

    International Nuclear Information System (INIS)

    Dollins, C.C.; Nichols, F.A.

    1977-10-01

    This report proposes a model to describe in-pile densification of oxide fuels, by both vacancy boil-off due to thermal excitation and vacancy knockout by the passage of fission fragments through the pores. The model includes the migration rates of both vacancies and interstitials to pores and the production of vacancy-rich damage cascades by fission fragments. It has been coupled with a previously reported swelling and gas release model so that it can predict the total dimensional changes of the fuel as well as predicting intragranular densification for both ThO 2 and UO 2 fuels for advanced water breeder reactor applications development effort

  16. Wavelet-fractal approach to surface characterization of nanocrystalline ITO thin films

    International Nuclear Information System (INIS)

    Raoufi, Davood; Kalali, Zahra

    2012-01-01

    In this study, indium tin oxide (ITO) thin films were prepared by electron beam deposition method on glass substrates at room temperature (RT). Surface morphology characterization of ITO thin films, before and after annealing at 500 °C, were investigated by analyzing the surface profile of atomic force microscopy (AFM) images using wavelet transform formalism. The wavelet coefficients related to the thin film surface profiles have been calculated, and then roughness exponent (α) of the films has been estimated using the scalegram method. The results reveal that the surface profiles of the films before and after annealing process have self-affine nature.

  17. Fractal and multifractal analysis of LiF thin film surface

    International Nuclear Information System (INIS)

    Yadav, R.P.; Dwivedi, S.; Mittal, A.K.; Kumar, M.; Pandey, A.C.

    2012-01-01

    Highlights: ► Fractal and multifractal analysis of surface morphologies of the LiF thin films. ► Complexity and roughness of the LiF thin films increases as thickness increases. ► LiF thin films are multifractal in nature. ► Strength of the multifractality increases with thickness of the film. - Abstract: Fractal and multifractal analysis is performed on the atomic force microscopy (AFM) images of the surface morphologies of the LiF thin films of thickness 10 nm, 20 nm, and 40 nm, respectively. Autocorrelation function, height–height correlation function, and two-dimensional multifractal detrended fluctuation analysis (MFDFA) are used for characterizing the surface. It is found that the interface width, average roughness, lateral correlation length, and fractal dimension of the LiF thin film increase with the thickness of the film, whereas the roughness exponent decreases with thickness. Thus, the complexity and roughness of the LiF thin films increases as thickness increases. It is also demonstrated that the LiF thin films are multifractal in nature. Strength of the multifractality increases with thickness of the film.

  18. Densification Behavior of BN-added UO2

    International Nuclear Information System (INIS)

    Rhee, Young Woo; Kim, Keonsik; Kim, Dong Joo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho

    2013-01-01

    Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed. Boron is commercially used as a neutron absorber fuel. A neutron absorber fuel is burned out or depleted during reactor operation. Westinghouse have been produced the Integral Fuel Burnable Absorber (IFBA) which is enriched UO 2 fuel pellets with a thin coating of zirconium diboride (ZrB 2 ) on the outer surface. Standard sintered fuel pellets are sputter coated with ZrB 2 . It is known that IFBA fuel can incur 20% to 30% additional fabrication costs. Boron-dispersed UO 2 fuel pellet made by the conventional pressing and sintering process of a powder mixture of UO 2 and B compound might be more cost-effective than IFBAs. M. G. Andrew et al. tried to sinter boron-dispersed UO 2 green pellet. However, they reported that boron-dispersed UO 2 fuel pellet is very difficult to be fabricated with a sufficient level of boron retention and high sintered density (greater than 90 % of theoretical density) because of the volatilization of boron oxide. We have investigated the densification behavior of mixtures of UO 2 and various boron compounds, such as B 4 C, BN, TiB 2 , ZrB 2 , SiB 6 , and HfB 2 . Boron compounds seemed to act as a sintering additive for UO 2 at a certain low temperature range. In this study, the densification behavior of BN-added UO 2 pellet has been investigated by sintering green pellets of a mixture of UO 2 powder and BN powder in H 2 atmosphere. A high density BN-added UO 2 pellet can be fabricated after sintering at 1200 .deg. C for more than 1 h in a H 2 atmosphere. The sintered density of BN-added UO 2 pellet can be increased up to about 95 %TD

  19. Process comparison for fracture-induced formation of surface structures on polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan (China); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-01-01

    Using three different splitting approaches such as point-load splitting, tension-splitting and peeling–splitting, different surface ripples were produced on poly(methyl methacrylate) (PMMA)-based polymer films. Independent of the splitting approaches, the spatial wavelength of the surface structures is a linear function of the film thickness with the approximately same differential ratio of the spatial wavelength to the film thickness. The apparent surface residual stress was calculated from the thickness dependence of the spatial frequency, and the magnitude of the apparent surface stress increased with the increase of the film thickness. After exposing the aged PMMA-based photoresist at liquid state to gamma-irradiation, the effects of aging and the gamma-irradiation were investigated on the splitting-induced formation of surface structures. For the peeling–splitting process, the differential ratio of the spatial wavelength to the film thickness for the aged samples is larger than that for non-aged samples. The point-load splitting could not produce any surface pattern on the gamma-irradiated films. None of the splitting approaches could form surface structures for polymer films exposed to irradiation of high dose. Both the spatial wavelength and the apparent surface stress increased with the film thickness for the irradiated polymer films. - Highlights: • Using splitting processes, surface ripples were formed on polymer films. • The surface ripples were induced by compressively apparent surface stress. • The spatial wavelength of the ripples is a linear function of the film thickness. • The spatial wavelength of the ripples is affected by gamma-ray irradiation. • The spatial wavelength of the ripples is affected by aging.

  20. Improvement of mechanical strength of sintered Mo alloyed steel by optimization of sintering and cold-forging processes with densification

    Science.gov (United States)

    Kamakoshi, Y.; Shohji, I.; Inoue, Y.; Fukuda, S.

    2017-10-01

    Powder metallurgy (P/M) materials have been expected to be spread in automotive industry. Generally, since sintered materials using P/M ones contain many pores and voids, mechanical properties of them are inferior to those of conventional wrought materials. To improve mechanical properties of the sintered materials, densification is effective. The aim of this study is to improve mechanical strength of sintered Mo-alloyed steel by optimizing conditions in sintering and cold-forging processes. Mo-alloyed steel powder was compacted. Then, pre-sintering (PS) using a vacuum sintering furnace was conducted. Subsequently, coldforging (CF) by a backward extrusion method was conducted to the pre-sintered specimen. Moreover, the cold-forged specimen was heat treated by carburizing, tempering and quenching (CQT). Afterwards, mechanical properties were investigated. As a result, it was found that the density of the PS specimen is required to be more than 7.4 Mg/m3 to strengthen the specimen by heat treatment after CF. Furthermore, density and the microstructure of the PS specimen are most important factors to make the high density and strength material by CF. At the CF load of 1200 kN, the maximum density ratio reached approximately 99% by the use of the PS specimen with proper density and microstructure. At the CF load of 900 kN, although density ratio was high like more than 97.8%, transverse rupture strength decreased sharply. Since densification caused high shear stress and stress concentration in the surface layer, microcracks occurred by the damages of inter-particle sintered connection of the surface layer. On the contrary, in case of the CF load of 1200 kN, ultra-densification of the surface layer occurred by a sufficient plastic flow. Such sufficient compressed specimens regenerated the sintered connections by high temperature heat treatment and thus the high strength densified material was obtained. These processes can be applicable to near net shape manufacturing

  1. Densification and properties of HfB2 based materials

    International Nuclear Information System (INIS)

    Sonber, J.K.; Ch Murthy, T.S.R.; Bedse, R.D.; Subramanian, C.; Kumar, Sunil; Fotedar, R.K.; Krishnamurthy, N.; Suri, A.K.

    2011-01-01

    This paper presents the results of investigation carried out on densification and properties of HfB 2 based materials. Densification study of HfB 2 with and without sinter additive was carried out by hot pressing. TiSi 2 and CrSi 2 were used as sinter additive. Monolithic HfB 2 was densified to only 80%ρ th at 1850 deg C with a pressure of 35 MPa. Addition of 10 wt% TiSi 2 resulted in a density of 95% TD at a relatively low temperature of 1650 deg C and a low pressure of 20 MPa. Addition of 10% CrSi 2 resulted in a density of 99% TD at the same operating conditions. All the samples were characterized by SEM/EDS and mechanical property measurement. (author)

  2. Theory of bulk-surface coupling in topological insulator films

    Science.gov (United States)

    Saha, Kush; Garate, Ion

    2014-12-01

    We present a quantitative microscopic theory of the disorder- and phonon-induced coupling between surface and bulk states in doped topological insulator films. We find a simple mathematical structure for the surface-to-bulk scattering matrix elements and confirm the importance of bulk-surface coupling in transport and photoemission experiments, assessing its dependence on temperature, carrier density, film thickness, and particle-hole asymmetry.

  3. Direct observation of densification and grain growth in a W--Ni alloy

    International Nuclear Information System (INIS)

    Riegger, H.; Pask, J.A.; Exner, H.E.

    1979-04-01

    Densification and grain growth in a tungsten--nickel alloy containing 32 vol % of liquid at 1550 0 C were studied by conventional methods aided by hot stage scanning electron microscopy and cinematography. This technique yields important additional qualitative information on the mechanisms. Two stages can be discerned. In stage 1, essentially complete pore elimination, rapid grain growth and adjustment of microstructural geometry take place. In the second stage, microstructure coarsening occurs which is characterized by geometric similarity. Columnar grain growth at the surface is observed due to squeezing out of Ni--W liquid, flooding of surface grains and fast evaporation of the Ni. The driving forces for these processes are discussed showing that a high ratio of grain boundary energy to liquid surface energy is essential. A W--Cu alloy with 32 vol % liquid at 1100 0 C did not show any grain growth due to essentially no solubility of W in Cu at this temperature

  4. Reducing Friction with a Liquid Film on the Body Surface

    Directory of Open Access Journals (Sweden)

    Nikolay Klyuev

    2018-03-01

    Full Text Available A flow of a thin layer of liquid is simulated on a flat surface of a body located in a stream of air. Liquid film on the surface of the body reduces frictional resistance and can be used as a boundary layer control element. The paper presents a mathematical model of the film flow on a half-plane, located at an angle to the horizon. The fluid flow is determined by the force of gravity and friction from the external air current. A model of an incompressible viscous fluid is used in the boundary-layer approximation. The terms of the motion equation are averaged over the film thickness according to the Leibniz rule. In the cross section of the film, a quadratic law is adopted for the distribution of the longitudinal velocity, taking into account friction on the film surface. An analytical solution of the problem is obtained in the form of series in powers of the small parameter for determining the film thickness and the average longitudinal velocity along the length of the plate. It is shown that the friction decreases with flow around a half-plane with a film of liquid on the surface.

  5. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  6. Enhanced Densification of White Cast Iron Powders by Cyclic Phase Transformations under Stress.

    Science.gov (United States)

    1981-08-01

    Little or no significant enhancement in densification was reported in these cases where no applied stresses were used. Kohara [9) extended this work...enhancement of densification observed by Kohara , although limited, was attributed to the occurrence of transformation superplasticity. As will be shown... Kohara : Metall. Trans., 1976, vol. 7, p. 1239. 10. Y. Oshida, J. Jpn. Soc, Powder and Powder Metall., 1975, vol. 22, p. 147. 11. M. de Jong and G. W

  7. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Science.gov (United States)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  8. Sebum/Meibum Surface Film Interactions and Phase Transitional Differences.

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Gerlach, Dylan; Yappert, Marta C

    2016-05-01

    Sebum may contribute to the composition of the tear film lipid layer naturally or as a contaminant artifact from collection. The aims of this study were to determine: if sebum changes the rheology of meibum surface films; if the resonance near 5.2 ppm in the 1H-NMR spectra of sebum is due to squalene (SQ); and if sebum or SQ, a major component of sebum, interacts with human meibum. Human meibum was collected from the lid margin with a platinum spatula. Human sebum was collected using lipid absorbent tape. Langmuir trough technology was used to measure the rheology of surface films. Infrared spectroscopy was used to measure lipid conformation and phase transitions. We used 1H-NMR to measure composition and confirm the primary structure of SQ. The NMR resonance near 5.2 ppm in the spectra of human sebum was from SQ which composed 28 mole percent of sebum. Both sebum and SQ lowered the lipid order of meibum. Sebum expanded meibum films at lower concentrations and condensed meibum films at higher concentrations. Sebum caused meibum to be more stable at higher pressures (greater maximum surface pressure). Physiological levels of sebum would be expected to expand or fluidize meibum making it spread better and be more surface active (qualities beneficial for tear film stability). Sebum would also be expected to stabilize the tear film lipid layer, which may allow it to withstand the high shear pressure of a blink.

  9. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  10. Growth of organic films on indoor surfaces

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2017-01-01

    predictions indicate that film growth would primarily be influenced by the gas-phase concentration of SVOCs with octanol-air partitioning (Koa) values in the approximate range 10≤log Koa≤13. Within the relevant range, SVOCs with lower values will equilibrate with the surface film more rapidly. Over time...

  11. Surface preparation for the heteroepitactic growth of ceramic thin films

    International Nuclear Information System (INIS)

    Norton, M.G.; Summerfelt, S.R.; Carter, C.B.

    1990-01-01

    The morphology, composition, and crystallographic orientation of the substrate influence the nucleation and growth of deposited thin films. A method for the preparation of controlled, characteristic surfaces is reported. The surfaces are suitable for the heteroepitactic growth of thin films. When used in the formation of electron-transparent thin foils, the substrates can be used to investigate the very early stages of film growth using transmission electron microscopy. The substrate preparation involves the cleaning and subsequent annealing to generate a surface consisting of a series of steps. The step terraces are formed on the energetically stable surface, and controlled nucleation and growth of films at step edges is found. The substrate materials prepared using this technique include (001) MgO, (001) SrTiO 3 , and (001) LaAlO 3

  12. A Highly Thermostable In2O3/ITO Thin Film Thermocouple Prepared via Screen Printing for High Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Yantao Liu

    2018-03-01

    Full Text Available An In2O3/ITO thin film thermocouple was prepared via screen printing. Glass additives were added to improve the sintering process and to increase the density of the In2O3/ITO films. The surface and cross-sectional images indicate that both the grain size and densification of the ITO and In2O3 films increased with the increase in annealing time. The thermoelectric voltage of the In2O3/ITO thermocouple was 53.5 mV at 1270 °C at the hot junction. The average Seebeck coefficient of the thermocouple was calculated as 44.5 μV/°C. The drift rate of the In2O3/ITO thermocouple was 5.44 °C/h at a measuring time of 10 h at 1270 °C.

  13. Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering

    Directory of Open Access Journals (Sweden)

    Aslam Muhammad

    2014-07-01

    Full Text Available Effects of admixed titanium on powder water atomized (PWA and powder gas atomized (PGA 316L stainless steel (SS have been investigated in terms of densification. PGA and PWA powders, having different shapes and sizes, were cold pressed and sintered in argon atmosphere at 1300°C. The admixed titanium compacts of PGA and PWA have shown significant effect on densification through formation of intermetallic compound and reducing porosity during sintering process. PWA, having particle size 8 μm, blended with 1wt% titanium has exhibited higher sintered density and shrinkage as compared to gas atomized powder compacts. Improved densification of titanium blended PGA and PWA 316L SS at sintering temperature 1300°C is probably due to enhanced diffusion kinetics resulting from stresses induced by concentration gradient in powder compacts.

  14. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  15. Surface qualities after chemical-mechanical polishing on thin films

    International Nuclear Information System (INIS)

    Fu, Wei-En; Lin, Tzeng-Yow; Chen, Meng-Ke; Chen, Chao-Chang A.

    2009-01-01

    Demands for substrate and film surface planarizations significantly increase as the feature sizes of Integrated Circuit (IC) components continue to shrink. Chemical Mechanical Polishing (CMP), incorporating chemical and mechanical interactions to planarize chemically modified surface layers, has been one of the major manufacturing processes to provide global and local surface planarizations in IC fabrications. Not only is the material removal rate a concern, the qualities of the CMP produced surface are critical as well, such as surface finish, defects and surface stresses. This paper is to examine the CMP produced surface roughness on tungsten or W thin films based on the CMP process conditions. The W thin films with thickness below 1000 nm on silicon wafer were chemical-mechanical polished at different down pressures and platen speeds to produce different surface roughness. The surface roughness measurements were performed by an atomic force microscope (DI D3100). Results show that the quality of surface finish (R a value) is determined by the combined effects of down pressures and platen speeds. An optimal polishing condition is, then, possible for selecting the down pressures and platen speeds.

  16. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  17. Epitaxial growth of fcc Ti films on Al(001) surfaces

    International Nuclear Information System (INIS)

    Saleh, A.A.; Shutthanandan, V.; Shivaparan, N.R.; Smith, R.J.; Tran, T.T.; Chambers, S.A.

    1997-01-01

    High-energy ion scattering (HEIS), x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction (XPD) were used to study the growth of thin Ti films on Al(001) surfaces. The Al surface peak area in the backscattered ion spectrum of MeV He + ions, incident along the [00 bar 1] direction, was used to monitor the atomic structure of the Ti films during growth. An initial decrease in the area was observed indicating epitaxial film growth. This decrease continued up to a critical film thickness of about 5.5 ML, after which point the structure of the film changed. Titanium films 3, 5, and 9 ML thick were characterized using XPD in the same chamber. Both the HEIS and XPD results show that the Ti films grow with an fcc structure on Al(001). A tetragonal distortion of 2.4% in the fcc Ti film was measured using ions incident along the [10 bar 1] direction. Although there is a general similarity of fcc Ti growth on both Al(001) and Al(110), the submonolayer growth regime does show differences for the two surfaces. copyright 1997 The American Physical Society

  18. The effect of radiosterilization on surface properties of polyurethane film

    International Nuclear Information System (INIS)

    Sheikh, N.

    2003-01-01

    In this paper the effect of sterilization method by gamma-ray on structure and cytotoxicity of polyurethane film surface has been investigated. For this purpose reactive urethan prepolymer was synthesized by the reaction between Tdi with a mixture of Peg and castro oil (50/50, w/w). The cured prepolymer films were prepared due to the reaction of reactive prepolymer with air moister under ambient conditions. The polyurethane films were sterilized by gamma-ray (25 kGy). The surface of sterilized polyurethane film was observed by Sem and compared to that of the unsterilized film. Also, the in vitro interaction of fibroblast L 929 cells and sterilized polyurethane film was evaluated. Results showed no signs of cell toxicity

  19. Sebum/Meibum Surface Film Interactions and Phase Transitional Differences

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Gerlach, Dylan; Yappert, Marta C.

    2016-01-01

    Purpose Sebum may contribute to the composition of the tear film lipid layer naturally or as a contaminant artifact from collection. The aims of this study were to determine: if sebum changes the rheology of meibum surface films; if the resonance near 5.2 ppm in the 1H-NMR spectra of sebum is due to squalene (SQ); and if sebum or SQ, a major component of sebum, interacts with human meibum. Methods Human meibum was collected from the lid margin with a platinum spatula. Human sebum was collected using lipid absorbent tape. Langmuir trough technology was used to measure the rheology of surface films. Infrared spectroscopy was used to measure lipid conformation and phase transitions. We used 1H-NMR to measure composition and confirm the primary structure of SQ. Results The NMR resonance near 5.2 ppm in the spectra of human sebum was from SQ which composed 28 mole percent of sebum. Both sebum and SQ lowered the lipid order of meibum. Sebum expanded meibum films at lower concentrations and condensed meibum films at higher concentrations. Sebum caused meibum to be more stable at higher pressures (greater maximum surface pressure). Conclusions Physiological levels of sebum would be expected to expand or fluidize meibum making it spread better and be more surface active (qualities beneficial for tear film stability). Sebum would also be expected to stabilize the tear film lipid layer, which may allow it to withstand the high shear pressure of a blink. PMID:27145473

  20. Surface Chemistry Interactions of Cationorm with Films by Human Meibum and Tear Film Compounds

    Directory of Open Access Journals (Sweden)

    Georgi As. Georgiev

    2017-07-01

    Full Text Available Cationorm® (CN cationic nanoemulsion was demonstrated to enhance tear film (TF stability in vivo possibly via effects on tear film lipid layer (TFLL. Therefore the interactions of CN with human meibum (MGS and TFLL in vitro and in vivo deserve special study. MGS and CN were spread at the air/water interface of a Langmuir surface balance to ensure a range of MGS/CN oil phase ratios: 20/1, 10/1, 5/1, 3/1, 2/1 and 1/1. The films capability to reorganize during dynamic area changes was evaluated via the surface pressure-area compression isotherms and step/relaxation dilatational rheology studies. Films structure was monitored with Brewster angle microscopy. CN/TFLL interactions at the ocular surface were monitored with non-contact specular microscopy. The in vitro studies of MGS/CN layers showed that (i CN inclusion (at fixed MGS content increased film elasticity and thickness and that (ii CN can compensate for moderate meibum deficiency in MGS/CN films. In vivo CN mixed with TFLL in a manner similar to CN/MGS interactions in vitro, and resulted in enhanced thickness of TFLL. In vitro and in vivo data complement each other and facilitated the study of the composition-structure-function relationship that determines the impact of cationic nanoemulsions on TF.

  1. Densification rate and interfacial adhesion of bilayer cemented tungsten carbide and steel

    Energy Technology Data Exchange (ETDEWEB)

    Ojo-kupoluyi, Oluwatosin Job; Tahir, Suraya Mohd; Ariff, Azmah Hanim Mohamed; Baharudin, B.T. Hang Tuah [Univ. Putra Malaysia, Selangor (Malaysia). Dept. of Mechanical and Manufacturing Engineering; Matori, Khamirul Amin [Univ. Putra Malaysia, Selangor (Malaysia). Dept. of Physics; Univ. Putra Malaysia, Selangor (Malaysia). Inst. of Advanced Technology (ITMA); Shamsul Anuar, Mohd [Univ. Putra Malaysia, Selangor (Malaysia). Dept. of Process and Food Engineering

    2017-12-15

    Manufacturing tailored materials is commonly faced with the challenge of shrinkage mismatch between layers resulting in delamination. The effects of sintering temperature and carbon variation on the densification and interfacial bond strength of bilayer cemented tungsten carbide and steel processed through powder metallurgy are analyzed. It is revealed through field-emission scanning electron microscopy images that inter-layer diffusion induced by liquid-phase sintering plays a major role in the densification and bonding of layers. Through dimensional analysis of sintered bilayer specimens, the strain rate of cemented tungsten carbide is observed to surpass that of steel. An enhanced densification rate of 6.1 % and M{sub 6}C (eta carbide) reduction with increased carbon level results in strong interfacial bonding in specimens sintered at 1 280 C. At 1 295 C, diffusion accelerates and the axial and radial shrinkage increase by 14.05 % and 13.35 %, respectively, in 93.8 wt.% WC - 6 wt.% Fe - 0.2 wt.% C and 93.2 wt.% Fe - 6 wt.% WC - 0.8 wt.% C, thereby increasing the tendency for complete delamination.

  2. Densification rate and interfacial adhesion of bilayer cemented tungsten carbide and steel

    International Nuclear Information System (INIS)

    Ojo-kupoluyi, Oluwatosin Job; Tahir, Suraya Mohd; Ariff, Azmah Hanim Mohamed; Baharudin, B.T. Hang Tuah; Shamsul Anuar, Mohd

    2017-01-01

    Manufacturing tailored materials is commonly faced with the challenge of shrinkage mismatch between layers resulting in delamination. The effects of sintering temperature and carbon variation on the densification and interfacial bond strength of bilayer cemented tungsten carbide and steel processed through powder metallurgy are analyzed. It is revealed through field-emission scanning electron microscopy images that inter-layer diffusion induced by liquid-phase sintering plays a major role in the densification and bonding of layers. Through dimensional analysis of sintered bilayer specimens, the strain rate of cemented tungsten carbide is observed to surpass that of steel. An enhanced densification rate of 6.1 % and M 6 C (eta carbide) reduction with increased carbon level results in strong interfacial bonding in specimens sintered at 1 280 C. At 1 295 C, diffusion accelerates and the axial and radial shrinkage increase by 14.05 % and 13.35 %, respectively, in 93.8 wt.% WC - 6 wt.% Fe - 0.2 wt.% C and 93.2 wt.% Fe - 6 wt.% WC - 0.8 wt.% C, thereby increasing the tendency for complete delamination.

  3. Surface electronic properties of discontinuous Pd films during hydrogen exposure

    International Nuclear Information System (INIS)

    Zhao, Ming; Nagata, Shinji; Shikama, Tatsuo; Inouye, Aichi; Yamamoto, Shunya; Yoshikawa, Masahito

    2011-01-01

    This paper explored the change in the surface resistance of the discontinuous palladium (Pd) films during hydrogen exposure. In our experiments, we observed a remarkable rise in the electrical resistance of the discontinuous film which consists of nano-sized particles, when it was exposed to thin hydrogen. By studying the resistance change ratio before and after hydrogen exposure, we have found that it demonstrates an inverse exponential relationship with the ratio of on-film particle radius to the inter island separation. This suggests that the change in the film resistance under hydrogen exposure is primarily associated with the variation of surface work function which is caused by the hydrogen absorption on the Pd surface. (author)

  4. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    International Nuclear Information System (INIS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O_2 or C_3F_8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  5. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup, E-mail: kssong10@kumoh.ac.kr

    2016-01-15

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O{sub 2} or C{sub 3}F{sub 8} gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  6. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  7. Social mixing through densification? The struggle over the Little Mountain public housing complex in Vancouver

    Directory of Open Access Journals (Sweden)

    Rosol, Marit

    2015-09-01

    Full Text Available In times of peak-oil and the on-going ‘urban renaissance’ (Porter and Shaw 2009, urban densification becomes increasingly more important. Densification is promoted not only for environmental reasons – in the sense of developing more compact and thus more sustainable cities – but also, as is the case in Vancouver, in the name of ‘social mixing’. Taking the conflict over “Little Mountain” – the oldest public housing complex in the province of British Columbia, Canada – as example, the article shows the conflicts that can arise in the process of densification. Despite the protests of residents and their supporters and without any concrete plans for redevelopment, almost all of the once 224 social housing units were demolished in 2009 to make room for at least 1,400 market condos (besides the 1-for-1 replacement of the social units. The example shows that densification processes that lack social measures for securing tenure for long-time residents lead to the displacement of poorer people, and to increased socio-spatial disparities. Furthermore, densification will not alleviate the affordability crisis but intensify it, if all the additionally created housing units will be market-housing only. Based on this example, the article shows that a purported social-mix policy is mainly motivated by recapturing prime real-estate, and identifies the rhetoric of ‘social mixing’ as ‘gentrification by stealth’ (Bridge et al. 2012.

  8. Surface chemistry and electronic structure of nonpolar and polar GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, T.C. Shibin; Aggarwal, Neha; Gupta, Govind, E-mail: govind@nplindia.org

    2015-08-01

    Highlights: • Surface chemistry and electronic structure of polar and nonpolar GaN is reported. • Influence of polarization on electron affinity of p & np GaN films is investigated. • Correlation between surface morphology and polarity has been deduced. - Abstract: Photoemission and microscopic analysis of nonpolar (a-GaN/r-Sapphire) and polar (c-GaN/c-Sapphire) epitaxial gallium nitride (GaN) films grown via RF-Molecular Beam Epitaxy is reported. The effect of polarization on surface properties like surface states, electronic structure, chemical bonding and morphology has been investigated and correlated. It was observed that polarization lead to shifts in core level (CL) as well as valence band (VB) spectra. Angle dependent X-ray Photoelectron Spectroscopic analysis revealed higher surface oxide in polar GaN film compared to nonpolar GaN film. On varying the take off angle (TOA) from 0° to 60°, the Ga−O/Ga−N ratio varied from 0.11–0.23 for nonpolar and 0.17–0.36 for polar GaN film. The nonpolar film exhibited N-face polarity while Ga-face polarity was perceived in polar GaN film due to the inherent polarization effect. Polarization charge compensated surface states were observed on the polar GaN film and resulted in downward band bending. Ultraviolet photoelectron spectroscopic measurements revealed electron affinity and ionization energy of 3.4 ± 0.1 eV and 6.8 ± 0.1 eV for nonpolar GaN film and 3.8 ± 0.1 eV and 7.2 ± 0.1 eV for polar GaN film respectively. Field Emission Scanning Electron Microscopy measurements divulged smooth morphology with pits on polar GaN film. The nonpolar film on the other hand showed pyramidal structures having facets all over the surface.

  9. Hydrophobicity of electron beam modified surface of hydroxyapatite films

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, M., E-mail: gregor@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Tofail, S.A.M. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Zahoran, M.; Truchly, M. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Vargova, M. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Laffir, F. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Plesch, G. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Kus, P.; Plecenik, A. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2015-05-15

    Highlights: • Surface potential of hydroxyapatite films were modified by focused electron beam. • Micron-sized domains of modified surface potential were created. • Wettability and surface free energy of the irradiated areas was studied. • Possible mechanisms of increased surface hydrophobicity are discussed. - Abstract: Arrays of micron-sized domains of modified surface potential were created on hydroxyapatite films by mid-energy (20 keV) electron beam irradiation available in a laboratory scanning electron microscope. The dosage of electron beam was varied between 10{sup −3} and 10{sup 3} μC/cm{sup 2} to inject charge into the film surface. Contrary to the conventional electrowetting theory, the dosage of injected charge used in creating such microdomains caused a gradual increase of the water contact angle from 57° to 93° due to the elimination of the polar component of the surface free energy. Surface contamination by carbonaceous species can be held only partially responsible for such behavior at lower dosage of electron beam. A transfer of free surface charge to water and an electron beam induced disruption of polar orientation of OH ions have been attributed to be influencial factors in the overall dewetting behavior.

  10. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  11. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  12. Estimation of Back-Surface Flaw Depth by Laminated Piezoelectric Highpolymer Film

    Directory of Open Access Journals (Sweden)

    Akinobu YAMAMOTO

    2009-08-01

    Full Text Available Piezoelectric thin films have been used to visualize back surface flaws in plates. If the plate with a surface flaw is deformed, the strain distribution appears on the other surface reflecting the location and the shape of the flaw. Such surface strain distribution can be transformed into the electric potential distribution on the piezoelectric film mounted on the plate surface. This paper deals with a NDE technique to estimate the depth of a back-surface flaw from the electric potential distribution on a laminated piezoelectric thin film. It is experimentally verified that the flaw depth can be exactly estimated by the peak height of the electric potential distribution.

  13. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces.

    Science.gov (United States)

    Tsai, Hui-Jung; Lee, Yuh-Lang

    2007-12-04

    A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.

  14. Radiochromic film as a radiotherapy surface-dose detector

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; Wollongong Univ., NSW; Mathur, J.N.

    1996-01-01

    Radiochromic film is shown to be a useful surface-dose detector for radiotherapy x-ray beams. Central-axis percentage surface-dose results as measured by Gafchromic film for a 6 MVp x-ray beam produced by a Varian 2100C Linac at 100 cm SSD are 16%, 25%, 35%, 41% for 10, 20, 30 and 40 cm square field sizes, respectively. Using a simple, uniform light source and a CCD camera connected to an image analysis system, quantitative 3D surface doses are accurately attainable in real time as either numerical data, a black-and-white image or a colour-enhanced image. (Author)

  15. Commissioning of a continuous melt densification system for plastic waste. Contributed Paper PE-05

    International Nuclear Information System (INIS)

    Anji Reddy, D.; Chennakeshavalu, G.; Ramesh Babu, B.; Subba Rao, V.; Coelho, G.J.M.; Rao, S.V.S.; Paul, Biplob

    2014-01-01

    Volume reduction of radioactive solid wastes is carried out with an aim to maximize the utilization of disposal space. Cellulosic combustible solid wastes like cotton, paper etc. are treated by incineration and the plastic wastes are volume reduced by baling. Compaction of plastic wastes gives volume reduction factors in the range of 3 to 5. With a view to achieve higher volume reduction factors, a melt-densification process was developed indigenously at CWMF for reducing the volume of plastic wastes before disposal. Based on laboratory results, a pilot plant scale batch Melt Densification Unit was designed and operated. 120 M 3 of Category-I polythene waste was melted and the Volume Reduction Factors (VRF) obtained were up to 20. To meet the future needs and increasing the throughput, a continues-feed, PLC controlled, advanced Melt Densification System was commissioned recently. (author)

  16. Densification of ∼5 nm-thick SiO{sub 2} layers by nitric acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jaeyoung [Department of Energy Engineering, Dankook University, Cheonan 311-16 (Korea, Republic of); Joo, Soyeong [Institute for Advanced Engineering (IAE), Advanced Materials & Processing Center, Youngin 449-863 (Korea, Republic of); Park, Tae Joo [Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Kim, Woo-Byoung, E-mail: woo7838@dankook.ac.kr [Department of Energy Engineering, Dankook University, Cheonan 311-16 (Korea, Republic of)

    2017-08-15

    Highlights: • Leakage current density of the commercial PECVD grown ∼5 nm SiO{sub 2} layer has been decreased about three orders of magnitude by densification. • The densification of SiO{sub 2} layer is achieved by high oxidation ability of O·. • Densities of suboxide, fixed charge (N{sub f}) and defect state (N{sub d}) in SiO{sub 2}/Si interface are decreased by NAOS and PMA. • Tunneling barrier height (Φ{sub t}) is increased because of the increase of atomic density in SiO{sub 2} layer. - Abstract: Low-temperature nitric acid (HNO{sub 3}) oxidation of Si (NAOS) has been used to improve the interface and electrical properties of ∼5 nm-thick SiO{sub 2}/Si layers produced by plasma-enhanced chemical vapor deposition (PECVD). Investigations of the physical properties and electrical characteristics of these thin films revealed that although their thickness is not changed by NAOS, the leakage current density at a gate bias voltage of −1 V decreases by about two orders of magnitude from 1.868 × 10{sup −5} A/cm{sup 2}. This leakage current density was further reduced by post-metallization annealing (PMA) at 250 °C for 10 min in a 5 vol.% hydrogen atmosphere, eventually reaching a level (5.2 × 10{sup −8} A/cm{sup 2}) approximately three orders of magnitude less than the as-grown SiO{sub 2} layer. This improvement is attributed to a decrease in the concentration of suboxide species (Si{sup 1+}, Si{sup 2+} and Si{sup 3+}) in the SiO{sub 2}/Si interface, as well as a decrease in the equilibrium density of defect sites (N{sub d}) and fixed charge density (N{sub f}). The barrier height (Φ{sub t}) generated by a Poole-Frenkel mechanism also increased from 0.205 to 0.371 eV after NAOS and PMA. The decrease in leakage current density is therefore attributed to a densification of the SiO{sub 2} layer in combination with the removal of OH species and increase in interfacial properties at the SiO{sub 2}/Si interface.

  17. Mercury adsorption to gold nanoparticle and thin film surfaces

    Science.gov (United States)

    Morris, Todd Ashley

    Mercury adsorption to gold nanoparticle and thin film surfaces was monitored by spectroscopic techniques. Adsorption of elemental mercury to colloidal gold nanoparticles causes a color change from wine-red to orange that was quantified by UV-Vis absorption spectroscopy. The wavelength of the surface plasmon mode of 5, 12, and 31 nm gold particles blue-shifts 17, 14, and 7.5 nm, respectively, after a saturation exposure of mercury vapor. Colorimetric detection of inorganic mercury was demonstrated by employing 2.5 nm gold nanoparticles. The addition of low microgram quantities of Hg 2+ to these nanoparticles induces a color change from yellow to peach or blue. It is postulated that Hg2+ is reduced to elemental mercury by SCN- before and/or during adsorption to the nanoparticle surface. It has been demonstrated that surface plasmon resonance spectroscopy (SPRS) is sensitive to mercury adsorption to gold and silver surfaces. By monitoring the maximum change in reflectivity as a function of amount of mercury adsorbed to the surface, 50 nm Ag films were shown to be 2--3 times more sensitive than 50 nm Au films and bimetallic 15 nm Au/35 nm Ag films. In addition, a surface coverage of ˜40 ng Hg/cm2 on the gold surface results in a 0.03° decrease in the SPR angle of minimum reflectivity. SPRS was employed to follow Hg exposure to self-assembled monolayers (SAMs) on Au. The data indicate that the hydrophilic or hydrophobic character of the SAM has a significant effect on the efficiency of Hg penetration. Water adsorbed to carboxylic acid end group of the hydrophilic SAMs is believed to slow the penetration of Hg compared to methyl terminated SAMs. Finally, two protocols were followed to remove mercury from gold films: immersion in concentrated nitric acid and thermal annealing up to 200°C. The latter protocol is preferred because it removes all of the adsorbed mercury from the gold surface and does not affect the morphology of the gold surface.

  18. A study of surface films formed during maraging

    International Nuclear Information System (INIS)

    Khan, M.A.; Haq, A.U.; Khan, A.Q.; Waris, J.; Suleman, M.

    1993-01-01

    A study was carried out on thin films produced during maraging at 480 deg. 0 C for 3 hours in vacuum (of the order of 10/sup -4/ torr) and in N/ sub 2/ atmosphere. These surface films have been analyzed by Auger electron spectroscopy. Depth profiling for chemical analysis was performed after Ar /sup +/ ion sputtering to predict the compounds formed on the sample surface under prevailing conditions. It was noted that O/sub 2/N/sub 2/ and C are the main constituents of the top layers. These are considered as impurities in the films. Depth profiling showed a smooth interface between the N/sub 2/ and Ti and formation of Titanium nitride is predicted. (author)

  19. Surface tension in soap films: revisiting a classic demonstration

    International Nuclear Information System (INIS)

    Behroozi, F

    2010-01-01

    We revisit a classic demonstration for surface tension in soap films and introduce a more striking variation of it. The demonstration shows how the film, pulling uniformly and normally on a loose string, transforms it into a circular arc under tension. The relationship between the surface tension and the string tension is analysed and presented in a useful graphical form. (letters and comments)

  20. Surface tension in soap films: revisiting a classic demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, F [Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614 (United States)], E-mail: behroozi@uni.edu

    2010-01-15

    We revisit a classic demonstration for surface tension in soap films and introduce a more striking variation of it. The demonstration shows how the film, pulling uniformly and normally on a loose string, transforms it into a circular arc under tension. The relationship between the surface tension and the string tension is analysed and presented in a useful graphical form. (letters and comments)

  1. Antibacterial effects of the artificial surface of nanoimprinted moth-eye film.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Minoura

    Full Text Available The antibacterial effect of a nanostructured film, known as "moth-eye film," was investigated. The moth-eye film has artificially formed nano-pillars, consisting of hydrophilic resin with urethane acrylate and polyethylene glycol (PEG derivatives, all over its surface that replicates a moth's eye. Experiments were performed to compare the moth-eye film with a flat-surfaced film produced from the same materials. The JIS Z2801 film-covering method revealed that the two films produced a decrease in Staphylococcus aureus and Esherichia coli titers of over 5 and 3 logs, respectively. There was no marked difference in the antibacterial effects of the two surfaces. However, the antibacterial effects were reduced by immersion of the films in water. These results indicated that a soluble component(s of the resin possessed the antibacterial activity, and this component was identified as PEG derivatives by time-of-flight secondary ion mass spectrometry (TOF-SIMS and Fourier transform infrared spectroscopy (FT-IR. When a small volume of bacterial suspension was dropped on the films as an airborne droplet model, both films showed antibacterial effects, but that of the moth-eye film was more potent. It was considered that the moth-eye structure allowed the bacteria-loaded droplet to spread and allow greater contact between the bacteria and the film surface, resulting in strong adherence of the bacteria to the film and synergistically enhanced bactericidal activity with chemical components. The antibacterial effect of the moth-eye film has been thus confirmed under a bacterial droplet model, and it appears attractive due to its antibacterial ability, which is considered to result not only from its chemical make-up but also from physical adherence.

  2. Coarsening-densification transition temperature in sintering of uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Narasimha Murty, B.; Chakraborthy, K.P.; Jayaraj, R.N.; Ganguly, C.

    2001-01-01

    The concept of coarsening-densification transition temperature (CDTT) has been proposed to explain the experimental observations of the study of sintering undoped uranium dioxide and niobia-doped uranium dioxide powder compacts in argon atmosphere in a laboratory tubular furnace. The general method for deducing CDTT for a given material under the prevailing conditions of sintering and the likely variables that influence the CDTT are described. Though the present work is specific in nature for uranium dioxide sintering in argon atmosphere, the concept of CDTT is fairly general and must be applicable to sintering of any material and has immense potential to offer advantages in designing and/or optimizing the profile of a sintering furnace, in the diagnosis of the fault in the process conditions of sintering, and so on. The problems of viewing the effect of heating rate only in terms of densification are brought out in the light of observing the undesirable phenomena of coring and bloating and causes were identified and remedial measures suggested

  3. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R., E-mail: ricardo.serra@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Oliveira, V. [ICEMS-Instituto de Ciência e Engenharia de Materiais e Superfícies, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Oliveira, J.C. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal); Kubart, T. [The Ångström Laboratory, Solid State Electronics, P.O. Box 534, SE-751 21 Uppsala (Sweden); Vilar, R. [Instituto Superior de Engenharia de Lisboa, Avenida Conselheiro Emídio Navarro no 1, 1959-007 Lisbon (Portugal); Instituto Superior Técnico, Avenida Rovisco Pais no 1, 1049-001 Lisbon (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra (Portugal)

    2015-03-15

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm{sup 2}. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under

  4. Large-area homogeneous periodic surface structures generated on the surface of sputtered boron carbide thin films by femtosecond laser processing

    International Nuclear Information System (INIS)

    Serra, R.; Oliveira, V.; Oliveira, J.C.; Kubart, T.; Vilar, R.; Cavaleiro, A.

    2015-01-01

    Highlights: • Large-area LIPSS were formed by femtosecond laser processing B-C films surface. • The LIPSS spatial period increases with laser fluence (140–200 nm). • Stress-related sinusoidal-like undulations were formed on the B-C films surface. • The undulations amplitude (down to a few nanometres) increases with laser fluence. • Laser radiation absorption increases with surface roughness. - Abstract: Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm 2 . Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different

  5. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  6. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films

    Science.gov (United States)

    Sledge, Samiyyah M.; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria; Michael, Heidi; Dennis, Emily K.; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-01-01

    Purpose The inhibition of the rate of evaporation (Revap) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit Revap. Methods Revap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11–24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. Results The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 µm2. All of the surface lipids were ordered. Revap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. Revap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence Revap over an estimated average thickness range of 0.69 to >6.9 µm. Revap of human tears and buffer with and without human meibum (34.4 µm thick) was not significantly different. Revap of human tears was not significantly different from buffer. Conclusions Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit Revap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit Revap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits Revap of tears. PMID:27395776

  7. Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

    Directory of Open Access Journals (Sweden)

    Nina J. Blumenstein

    2015-08-01

    Full Text Available We present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film. This, in turn, is a key property influencing other film properties such as conductivity, piezoelectric activity and the mechanical properties. A very pronounced contrast is observed between areas with an underlying fluorinated, low energy template surface, showing a much more (almost two orders of magnitude coarse-grained film with a typical agglomerate size of around 75 nm. In contrast, amino-functionalized surface areas induce the growth of a very smooth, fine-grained surface with a roughness of around 1 nm. The observed influence of the template on the resulting clear contrast in morphology of the growing film could be explained by a contrast in surface adhesion energies and surface diffusion rates of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate.

  8. Chemical structural analysis of diamondlike carbon films: I. Surface growth model

    Science.gov (United States)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.

  9. Properties of Al- and Ga-doped thin zinc oxide films treated with UV laser radiation

    Science.gov (United States)

    Al-Asedy, Hayder J.; Al-Khafaji, Shuruq A.; Bakhtiar, Hazri; Bidin, Noriah

    2018-03-01

    This paper reports the Nd:YAG laser irradiation treated modified properties of aluminum (Al) and gallium (Ga) co-doped zinc oxide (ZnO) (AGZO) films prepared on Si-substrate via combined sol-gel and spin-coating method. The impact of varying laser energy (150-200 mJ) on the structure, morphology, electrical and optical properties of such AGZO films were determined. Laser-treated samples were characterized using various analytical tools. Present techniques could achieve a high-quality polycrystalline films compared with those produced via conventional high temperature processing. AGZO films irradiated with third harmonics UV radiation (355 nm) from Nd:YAG laser source revealed very low resistivity of 4.02 × 10- 3 Ω cm. The structural properties grain size was calculated firm the X-ray diffraction spectra using the Scherrer equation that increased from 12.7 to 22.5 nm as the annealing laser energy increased from (150-200) mJ. The differences in crystallinity and orientation are explained in terms of the thermal effect caused by laser irradiation. (FESEM) images have been demonstrated that Nd:YAG laser annealing can significantly improve the crystallinity level, densification, and surface flatness of sol-gel derived AGZO thin films that occurred as a result of laser processing. Synthesized AGZO films displayed favorable growth orientation along (101) lattice direction. AGZO films with energy band gap of 3.37-3.41 eV were obtained. Results on the crystallinity, surface morphology, roughness, bonding vibration, absorption, photoluminescence, and resistivity of the laser-irradiated films were analyzed and discussed.

  10. Densification and Strengthening of Aerogels by Sintering Heat Treatments or Plastic Compression

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2018-01-01

    Full Text Available Due to their broad range of porosity, aerogels are suited to various applications. The advantages of a broad range of porosity are used directly, for example, in thermal and acoustic insulation, as materials for space applications or in catalysers. However, an overly high pore volume can also be a drawback, for example, in a glass precursor and host matrix. Fortunately, aerogel porosity can be tailored using sintering or isostatic compression. Sets of silica aerogels—sintered and compressed aerogels—have been studied with the objective of comparing these different densification mechanisms. We focus on the mechanical changes during the two processes of densification.

  11. Skating on a Film of Air: Drops Impacting on a Surface

    Science.gov (United States)

    Kolinski, John M.; Rubinstein, Shmuel M.; Mandre, Shreyas; Brenner, Michael P.; Weitz, David A.; Mahadevan, L.

    2012-02-01

    The commonly accepted description of drops impacting on a surface typically ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air breaks down as the fluid wets the surface via a spinodal-like mechanism. Our results show that the dynamics of impacting drops are much more complex than previously thought, with a rich array of unexpected phenomena that require rethinking classic paradigms.

  12. Surface dynamics of micellar diblock copolymer films

    Science.gov (United States)

    Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh

    2011-03-01

    We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).

  13. Surface plasmon—polaritons on ultrathin metal films

    International Nuclear Information System (INIS)

    Quan Jun; Zhang Jun; Shao Le-Xi; Tian Ying

    2011-01-01

    We discuss the surface plasmon—polaritons used for ultrathin metal films with the aid of linear response theory and make comparisons with the known result given by Economou E N. In this paper we consider transverse electromagnetic fields and assume that the electromagnetic field in the linear response formula is the induced field due to the current of the electrons. It satisfies the Maxwell equation and thus we replace the current (charge) term in the Maxwell equation with the linear response expectation value. Finally, taking the external field to be zero, we obtain the dispersion relation of the surface plasmons from the eigenvalue equation. In addition, the charge-density and current-density in the z direction on the surface of ultrathin metal films are also calculated. The results may be helpful to the fundamental understanding of the complex phenomenon of surface plasmon-polaritons. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Observation of weak superconductivity in electrons localized on a film surface

    International Nuclear Information System (INIS)

    Fogel', N.Y.; Kolin'ko, A.E.

    1984-01-01

    We have observed anomalous abrupt resistance changes in thick vanadium films [d>>xi(T)]. We have also observed a number of anomalies in the H--T phase diagrams for these films; these anomalies are most clearly seen when the field is parallel to, or at low angles of incidence with respect to, the film surface. We explain our results by assuming that there are two different electron systems present in the film. One of them is composed of electrons localized near a natural planar defect, the film surface. This subsystem is characterized by extremely small values of the critical current

  15. Composition, structure and properties of SiN x films fabricated by pulsed reactive closed-field unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Yao, Zh.Q.; Yang, P.; Huang, N.; Sun, H.; Wan, G.J.; Leng, Y.X.; Chen, J.Y.

    2005-01-01

    Silicon nitride (SiN x ) thin films are of special interest in both scientific research and industrial applications due to their remarkable properties such as high thermal stability, chemical inertness, high hardness and good dielectric properties. In this work, SiN x films were fabricated by pulsed reactive closed-field unbalanced magnetron sputtering of high purity single crystal silicon targets in an Ar-N 2 mixture. The effect of N 2 partial pressure on the film composition, chemical bonding configurations, surface morphology, surface free energy, optical and mechanical properties were investigated. We showed that with increased N 2 partial pressure, the N to Si ratio (N/Si) in the film increased and N atoms are preferentially incorporated in the NSi 3 stoichiometric configuration. It leads the Si-N network a tendency to chemical order. Films deposited at a high N 2 fraction were consistently N-rich. The film surface transformed from a loose granular structure with microporosity to a homogeneous, continuous, smooth and dense structure. A progressive densification of the film microstructure occurs as the N 2 fraction is increased. The reduced surface roughness and the increased N incorporation in the film give rise to the increased contact angle with double-distilled water from 24 o to 49.6 o . To some extent, the SiN x films deposited by pulsed magnetron sputtering are hydrophilic in nature. The as-deposited SiN x films exhibit good optical transparency in the visible region and the optical band gap E opt can be varied from 1.68 eV for a-Si to 3.62 eV for SiN x films, depending on the synthesis parameters. With the increase of the N/Si atomic ratio, wear resistance of the SiN x films was improved, a consequence of increased hardness and elastic modulus. The SiN x films have lower friction coefficient and better wear resistance than 316L stainless steel under dry sliding friction, where the SiN x films experienced only fatigue wear

  16. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    International Nuclear Information System (INIS)

    Wang Rui; Guo Li-Xin; Wang An-Qi; Wu Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional (1D) rough sea surface with the Pierson—Moskowitz (PM) spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic (EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments. (fundamental areas of phenomenology(including applications))

  17. Phase transitions of ferromagnetic Ising films with amorphous surfaces

    International Nuclear Information System (INIS)

    Saber, M.; Ainane, A.; Dujardin, F.; Stebe, B.

    1997-08-01

    The critical behavior of a ferromagnetic Ising film with amorphous surfaces is studied within the framework of the effective field theory. The dependence of the critical temperature on exchange interaction strength ratio, film thickness, and structural fluctuation parameter is presented. It is found that an order-disorder magnetic transition occurs by varying the thickness of the film. Such a result is in agreement with experiments performed recently on Fe-films. (author). 39 refs, 4 figs

  18. Interactions of hydroxyapatite surfaces: conditioning films of human whole saliva.

    Science.gov (United States)

    Cárdenas, Marité; Valle-Delgado, Juan José; Hamit, Jildiz; Rutland, Mark W; Arnebrant, Thomas

    2008-07-15

    Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.

  19. Interferometer for measuring the dynamic surface topography of a human tear film

    Science.gov (United States)

    Primeau, Brian C.; Greivenkamp, John E.

    2012-03-01

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  20. Effects of surface modification on the critical behaviour in multiple-surface-layer ferroelectric thin films

    International Nuclear Information System (INIS)

    Lu, Z X

    2013-01-01

    Using the usual mean-field theory approximation, the critical behaviour (i.e. the Curie temperature T c and the critical surface transverse field Ω sc ) in a multiple-surface-layer ferroelectric thin film is studied on the basis of the spin- 1/2 transverse Ising model. The dependence of the Curie temperature T c on the surface transverse field Ω s and the surface layer number N s are discussed in detail. Meanwhile the dependence of the critical surface transverse field Ω sc on the surface layer number N s is also examined. The numerical results indicate that the critical behaviour of ferroelectric thin films is obviously affected by modifications of the surface transverse field Ω s and surface layer number N s .

  1. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Magnfält, D., E-mail: danma@ifm.liu.se; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Fillon, A.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Boyd, R. D.; Helmersson, U. [Plasma and Coatings Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-02-07

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  2. Surface roughness of sputtered ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y S [Department of Materials Science and Engineering, National Dong Hwa University, 1, Sec. 2, Da Hsueh Rd. Shou-Feng, Hualien, Taiwan (China); Hsu, K C [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu, Taiwan (China); Huang, Y M [Institute of Electronics Engineering, Southern Taiwan University of Technology, 1 Nan-Tai Street, Taiwan (China)

    2006-09-01

    ZnO films are grown on Si and glass substrates by radio-frequency (RF) magnetron sputtering. The crystalline structures are investigated by x-ray diffraction (XRD). Moreover, the roughness characteristics of the films are examined by atomic force microscopy (AFM) and field-emission scanning electron microscopy (FE-SEM). All films exhibit strong (002) preferential orientation. The influence of the RF power and target-to-substrate distance (D{sub ts}) on the properties of ZnO is studied. Under the optimized conditions of the RF power and D{sub ts}, root-mean-square (RMS) surface roughnesses of <0.8 nm are achieved.

  3. Surface roughness of sputtered ZnO films

    International Nuclear Information System (INIS)

    Lin, Y S; Hsu, K C; Huang, Y M

    2006-01-01

    ZnO films are grown on Si and glass substrates by radio-frequency (RF) magnetron sputtering. The crystalline structures are investigated by x-ray diffraction (XRD). Moreover, the roughness characteristics of the films are examined by atomic force microscopy (AFM) and field-emission scanning electron microscopy (FE-SEM). All films exhibit strong (002) preferential orientation. The influence of the RF power and target-to-substrate distance (D ts ) on the properties of ZnO is studied. Under the optimized conditions of the RF power and D ts , root-mean-square (RMS) surface roughnesses of <0.8 nm are achieved

  4. Landau-de Gennes theory of surface-enhanced ordering in smectic films.

    Science.gov (United States)

    Shalaginov, A N; Sullivan, D E

    2001-03-01

    A Landau theory for surface-enhanced ordering in smectic-A free-standing films is described, based on a generalization of de Gennes' model for a "presmectic" fluid confined between two walls. According to the theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film thickness. It also predicts that a continuous transition from (N+1)- to N-layer films is impossible without an external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds which exhibit a bulk smectic-A to nematic phase transition. Possible origins of the intrinsic surface contribution are discussed.

  5. Orienting Block Copolymer Thin Films via Entropy and Surface Plasma Treatment

    Science.gov (United States)

    Ho, Rong-Ming; Lu, Kai-Yuan; Lo, Ting-Ya; Dehghan, Ashkan; Shi, An-Chang; Prokopios, Georgopanos; Avgeropoulos, Apostolos

    Controlling the orientation of nanostructured thin films of block copolymers (BCPs) is essential for next generation lithography. In the thin-film state, how to achieve the perpendicular orientation of the nanostructured microdomains remains challenging due to the interfacial effects from the air and also the substrate, especially for the blocks with silicon containing segments which usually have different surface energies, favoring parallel microdomain orientation. Here, we show that entropic effect can be used to control the orientation of BCP thin films. Specifically, we used the architecture of star-block copolymers consisting of polystyrene (PS) and poly(dimethylsiloxane) (PDMS) blocks to regulate the entropic contribution to the self-assembled nanostructures. Moreover, we aim to achieve the formation of perpendicular orientation from the air surface via surface plasma treatment to neutralize the interfacial energy difference. By combining the architecture effect (entropy effect) on BCP self-assembly and the surface plasma treatment (enthalpy effect), well-defined perpendicular PDMS microdomains in the PS-b-PDMS thin film can be formed from the bottom of non-neutral substrate and the top of the thin film surface, giving great potential for lithographic applications.

  6. Corrosion control of aluminum surfaces by polypyrrole films: influence of electrolyte

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2007-06-01

    Full Text Available Polypyrrole (PPy films were galvanostatically deposited on 99.9 wt. (% aluminum electrodes from aqueous solutions containing each carboxylic acid: tartaric, oxalic or citric. Scanning Electron Microscopy (SEM was used to analyze the morphology of the aluminum surfaces coated with the polymeric films. It was observed that the films deposited from tartaric acid medium presented higher homogeneity than those deposited from oxalic and citric acid. Furthermore, the corrosion protection of aluminum surfaces by PPy films was also investigated by potentiodynamic polarization experiments.

  7. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  8. Thickened boundary layer theory for air film drag reduction on a van body surface

    Science.gov (United States)

    Xie, Xiaopeng; Cao, Lifeng; Huang, Heng

    2018-05-01

    To elucidate drag reduction mechanism on a van body surface under air film condition, a thickened boundary layer theory was proposed and a frictional resistance calculation model of the van body surface was established. The frictional resistance on the van body surface was calculated with different parameters of air film thickness. In addition, the frictional resistance of the van body surface under the air film condition was analyzed by computational fluid dynamics (CFD) simulation and different air film states that influenced the friction resistance on the van body surface were discussed. As supported by the CFD simulation results, the thickened boundary layer theory may provide reference for practical application of air film drag reduction on a van body surface.

  9. Surface Properties of a Novel Poly(vinyl alcohol Film Prepared by Heterogeneous Saponification of Poly(vinyl acetate Film

    Directory of Open Access Journals (Sweden)

    Seong Baek Yang

    2017-10-01

    Full Text Available Almost general poly(vinyl alcohol (PVA films were prepared by the processing of a PVA solution. For the first time, a novel poly(vinyl alcohol (PVA film was prepared by the saponification of a poly(vinyl acetate (PVAc film in a heterogenous medium. Under the same saponification conditions, the influence of saponification time on the degree of saponification (DS was studied for the preparation of the saponified PVA film, and it was found that the DS varied with time. Optical microscopy was used to confirm the characteristics and surface morphology of the saponified PVA film, revealing unusual black globules in the film structure. The contact angle of the films was measured to study the surface properties, and the results showed that the saponified PVA film had a higher contact angle than the general PVA film. To confirm the transformation of the PVAc film to the PVA film, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction measurements, differential scanning calorimetry, and Fourier-transform infrared spectroscopy were employed.

  10. Characterization of CVI densification of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Stock, S.R.; Lee, S. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-01

    Ceramic matrix composites promise higher operating temperature and better thermodynamic efficiency in many enregy conversion systems. In particular, composites fabricated by the chemical vapor infiltration (CVI) process have excellent mechanical properties and, using the forced flow-thermal gradient variation, good processing economics in small scale demonstrations. Scale-up to larger, more complex shapes requires understanding of gas flow through the fiber preform and of the relationship between fiber architecture and densification behavior. This understanding is needed for design of preforms for optimum infiltration. The objective of this research is to observe the deposition of matrix material in the pores of a ceramic fiber preform at various stages of the CVI process. These observations allow us to relate local deposition rates in various regions of the composite to the connectivity of the surrounding network of porosity and to better model the relationship between gas transport and fiber architecture in CVI preforms. Our observation of the CVI process utilizes high resolution X-ray tomographic microscopy (XTM) in collaboration with Dr. John Kinney at Lawrence Livermore National Laboratory with repeated imaging of a small preform specimens after various processing times. We use these images to determine geometry and dimensions of channels between and through layers in cloth lay-up preform during CVI densification and relate these to a transport model.

  11. Molecular insight into nanoscale water films dewetting on modified silica surfaces.

    Science.gov (United States)

    Zhang, Jun; Li, Wen; Yan, Youguo; Wang, Yefei; Liu, Bing; Shen, Yue; Chen, Haixiang; Liu, Liang

    2015-01-07

    In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.

  12. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior

    International Nuclear Information System (INIS)

    Wei, Pei; Wei, Zhengying; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong

    2017-01-01

    Highlights: • The thermal behavior of AlSi10Mg molten pool was analyzed. • The SLM-processed sample with a relatively low surface roughness was obtained. • Effects of parameters on surface topography of scan track were investigated. • Effects of parameters on microstructure of parts were investigated. • Optimum processing parameters for AlSi10Mg SLM was obtained. - Abstract: This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.

  13. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Pei; Wei, Zhengying, E-mail: zywei@mail.xjtu.edu.cn; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong

    2017-06-30

    Highlights: • The thermal behavior of AlSi10Mg molten pool was analyzed. • The SLM-processed sample with a relatively low surface roughness was obtained. • Effects of parameters on surface topography of scan track were investigated. • Effects of parameters on microstructure of parts were investigated. • Optimum processing parameters for AlSi10Mg SLM was obtained. - Abstract: This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.

  14. Surface structure of ultrathin metal films deposited on copper single crystals

    International Nuclear Information System (INIS)

    Butterfield, M.T.

    2000-04-01

    Ultrathin films of Cobalt, Iron and Manganese have been thermally evaporated onto an fcc Copper (111) single crystal substrate and investigated using a variety of surface structural techniques. The small lattice mismatch between these metals and the Cu (111) substrate make them an ideal candidate for the study of the phenomena of pseudomorphic film growth. This is important for the understanding of the close relationship between film structure and magnetic properties. Growing films with the structure of their substrate rather than their bulk phase may provide an opportunity to grow materials with novel physical and magnetic properties, and hence new technological applications. Both Cobalt and Iron have been found to initially maintain a registry with the fcc Cu (111) surface in a manner consistent with pseudomorphic growth. This growth is complicated by island rather than layer by layer growth in the initials stages of the film. In both cases a change in the structure of the film seems to occur at a point where the coalescence of islands in the film may be expected to occur. When the film does change structure they do not form a perfect overlayer with the structure of their bulk counterpart. The films do contain a number of features representative of the bulk phase but also contain considerable disorder and possibly remnants of fcc (111) structure. The order present in these films can be greatly improved by annealing. Manganese appears to grow with an fcc Mn (111) lattice spacing and there is no sign of a change in structure in films of up to 4.61 ML thick. The gradual deposition and annealing of a film to 300 deg. C, with a total deposition time the same as that for a 1 ML thick film, causes a surface reconstruction to occur that is apparent in a R30 deg. (√3 x √3) LEED pattern. This is attributed to the formation of a surface alloy, which is also supported by the local expansion of the Cu lattice in the (111) direction. (author)

  15. Densification and state transition across the Missouri Ozarks landscape

    Science.gov (United States)

    Brice B. Hanberry; John M. Kabrick; Hong S. He

    2014-01-01

    World-wide, some biomes are densifying, or increasing in dense woody vegetation, and shifting to alternative stable states. We quantified densification and state transition between forests ecosystems in historical (ca. 1815-1850) and current (2004-2008) surveys of the Missouri Ozark Highlands, a 5-million ha landscape in southern Missouri, USA. To estimate density of...

  16. Gas sensing of ruthenium implanted tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tesfamichael, T., E-mail: t.tesfamichael@qut.edu.au [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia); Ahsan, M. [William A. Cook Australia, 95 Brandl Street Eight Mile Plains, Brisbane, QLD 4113 (Australia); Notarianni, M. [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia); Groß, A.; Hagen, G.; Moos, R. [University of Bayreuth, Faculty of Engineering Science, Department of Functional Materials, Universitätsstr. 30, 95440 Bayreuth (Germany); Ionescu, M. [ANSTO, Institute for Environmental Research, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bell, J. [Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000 (Australia)

    2014-05-02

    Different amounts of Ru were implanted into thermally evaporated WO{sub 3} thin films by ion implantation. The films were subsequently annealed at 600 °C for 2 h in air to remove defects generated during the ion implantation. The Ru concentrations of four samples have been quantified by Rutherford Backscattering Spectrometry as 0.8, 5.5, 9 and 11.5 at.%. The un-implanted WO{sub 3} films were highly porous but the porosity decreased significantly after ion implantation as observed by Transmission Electron Microscopy and Scanning Electron Microscopy. The thickness of the films also decreased with increasing Ru-ion dose, which is mainly due to densification of the porous films during ion implantation. From Raman Spectroscopy two peaks at 408 and 451 cm{sup −1} (in addition to the typical vibrational peaks of the monoclinic WO{sub 3} phase) associated with Ru were observed. Their intensity increased with increasing Ru concentration. X-ray Photoelectron Spectroscopy showed a metallic state of Ru with binding energy of Ru 3d{sub 5/2} at 280.1 eV. This peak position remained almost unchanged with increasing Ru concentration. The resistances of the Ru-implanted films were found to increase in the presence of NO{sub 2} and NO with higher sensor response to NO{sub 2}. The effect of Ru concentration on the sensing performance of the films was not explicitly observed due to reduced film thickness and porosity with increasing Ru concentration. However, the results indicate that the implantation of Ru into WO{sub 3} films with sufficient film porosity and film thickness can be beneficial for NO{sub 2} sensing at temperatures in the range of 250 °C to 350 °C. - Highlights: • Densification of WO{sub 3} thin films has occurred after Ru ion implantation. • Thickness and porosity of the films decrease with increasing Ru ion dose. • The amount of oxygen vacancies and defects increases with increasing Ru ion dose. • Ru has shown a crucial role in enhancing sensor response

  17. Densification and Mechanical Properties of ZrN-Nb Composites

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2018-02-01

    Full Text Available Densification of zirconium nitride (ZrN ceramics was investigated by vacuum hot pressing at temperatures range from 1500℃to 2000℃with Nb as sintering additive. Densification was enhanced with Nb addition. ZrN with 5mol% Nb addition achieved a relative density of 98.5% at 1600℃.XRD and lattice parameter measurements indicated that there were structural differences between samples sintered in different temperatures. It was likely that due to the presence of point defects by changes in stoichiometry, the kinetics of mass transport enhanced. As a result, the relative density of the zirconium nitride (ZrN ceramics have been improved, thus the fully densed ZrN ceramics can be prepared in a relative low temperature. The density, the room-temperature mechanical properties of ZrN ceramics are increased after the addition of Nb. Zirconium nitride (ZrNdoped with Nb sintered at 1600℃ are measured and obtained elasticity modulus of 238 GPa, flexural strength of 463.3 MPa, fracture toughness of 7.0 MPa·m1/2 and hardness of 10.7 GPa.

  18. Influence of crystal habit on the compression and densification mechanism of ibuprofen

    Science.gov (United States)

    Di Martino, Piera; Beccerica, Moira; Joiris, Etienne; Palmieri, Giovanni F.; Gayot, Anne; Martelli, Sante

    2002-08-01

    Ibuprofen was recrystallized from several solvents by two different methods: addition of a non-solvent to a drug solution and cooling of a drug solution. Four samples, characterized by different crystal habit, were selected: sample A, sample E and sample T, recrystallized respectively from acetone, ethanol and THF by addition of water as non-solvent and sample M recrystallized from methanol by temperature decrease. By SEM analysis, sample were characterized with the respect of their crystal habit, mean particle diameter and elongation ratio. Sample A appears stick-shaped, sample E acicular with lamellar characteristics, samples T and M polyhedral. DSC and X-ray diffraction studies permit to exclude a polymorphic modification of ibuprofen during crystallization. For all samples micromeritics properties, densification behaviour and compression ability was analysed. Sample M shows a higher densification tendency, evidenciated by its higher apparent and tapped particle density. The ability to densificate is also pointed out by D0' value of Heckel's plot, which indicate the rearrangement of original particles at the initial stage of compression. This fact is related to the crystal habit of sample M, which is characterized by strongly smoothed coins. The increase in powder bed porosity permits a particle-particle interaction of greater extent during the subsequent stage of compression, which allows higher tabletability and compressibility.

  19. Colloidal CuInSe2 nanocrystals thin films of low surface roughness

    International Nuclear Information System (INIS)

    Kergommeaux, Antoine de; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter

    2013-01-01

    Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe 2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. (paper)

  20. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments

    International Nuclear Information System (INIS)

    Dai, Donghua; Gu, Dongdong

    2014-01-01

    Highlights: • Thermal behavior and densification activity during SLM of composites are simulated. • Temperature distributions and melt pool dimensions during SLM are disclosed. • Motion behaviors of gaseous bubbles in laser induced melt pool are elucidated. • Simulation results show good agreement with the obtained experimental results. - Abstract: Simulation of temperature distribution and densification process of selective laser melting (SLM) WC/Cu composite powder system has been performed, using a finite volume method (FVM). The transition from powder to solid, the surface tension induced by temperature gradient, and the movement of laser beam power with a Gaussian energy distribution are taken into account in the physical model. The effect of the applied linear energy density (LED) on the temperature distribution, melt pool dimensions, behaviors of gaseous bubbles and resultant densification activity has been investigated. It shows that the temperature distribution is asymmetric with respect to the laser beam scanning area. The center of the melt pool does not locate at the center of the laser beam but slightly shifts towards the side of the decreasing X-axis. The dimensions of the melt pool are in sizes of hundreds of micrometers and increase with the applied LED. For an optimized LED of 17.5 kJ/m, an enhanced efficiency of gas removal from the melt pool is realized, and the maximum relative density of laser processed powder reaches 96%. As the applied LED surpasses 20 kJ/m, Marangoni flow tends to retain the entrapped gas bubbles. The flow pattern has a tendency to deposit the gas bubbles at the melt pool bottom or to agglomerate gas bubbles by the rotating flow in the melt pool, resulting in a higher porosity in laser processed powder. The relative density and corresponding pore size and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation

  1. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  2. Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction

    International Nuclear Information System (INIS)

    Ryu, Hyun Seok; Lee, Sung Chul; Kim, Ki Tae

    2002-01-01

    Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The cap model with constraint factors was implemented into a finite element program(ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the cap model with constraint factors were good

  3. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  4. Surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide film observed by surface profiler

    International Nuclear Information System (INIS)

    Oo, T.N.; Iwata, T.; Kimura, M.; Akahane, T.

    2005-01-01

    The investigation of the surface alignment of liquid crystal (LC) multilayers evaporated on a photoaligned polyimide vertical alignment (PI-VA) film was carried out by means of a novel three-dimensional (3-D) surface profiler. The photoinduced anisotropy of the partially UV-exposed PI-VA film can be visualized as a topological image of LC multilayers. It seems that the topology of LC multilayers is indicating the orientational distribution of LC molecules on the treated film. Moreover, it was shown that the surface profiler can be used to produce non-contact images with high vertical resolution (∼ 0.01 nm). Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  5. Surface and sub-surface thermal oxidation of ruthenium thin films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    For next generation Extreme UV photolithography, multilayer coatings may require protective capping layers against surface contamination. Ruthenium, as a low-oxidation metal, is often used as a reference material. The oxidation behaviour of Ru thin films has been studied using X-ray reflectometry

  6. The effects of surface roughness on low haze ultrathin nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Kanniah, Vinod [Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506 (United States); Tru Vue, Inc. 9400 West, 55th St, McCook, IL 60525 (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Chemical and Materials Engineering, 177 F. Paul Anderson Tower, University of Kentucky, Lexington, KY 40506 (United States); Druffel, Thad [Vision Dynamics LLC, 1950 Production Court, Louisville, KY 40299 (United States); Conn Center for Renewable Energy Research, University of Louisville, Ernst Hall Room 102A, Louisville, KY 40292 (United States)

    2013-07-31

    Control of surface roughness in optical applications can have a large impact on haze. This work compares surface roughness and haze for self-assembled experimental surface structures as well as simulated surface structures for ultrathin nanocomposite films. Ultrathin nanocomposite films were synthesized from an acrylate monomer as the continuous phase with monodisperse or bidisperse mixtures of silica nanoparticles as the dispersed phase. An in-house spin coating deposition technique was used to make thin nanocomposite films on hydrophilic (glass) and hydrophobic (polycarbonate) substrates. Manipulating the size ratios of the silica nanoparticle mixtures generated multimodal height distributions, varied the average surface roughness (σ) and changed lateral height–height correlations (a). For the simulated surfaces, roughness was estimated from their morphologies, and haze was calculated using simplified Rayleigh scattering theory. Experimental data for haze and morphologies of nanocomposite films corresponded well to these properties for simulated tipped pyramid surfaces. A correlation based on simple Rayleigh scattering theory described our experimental data well, but the exponent on the parameter, σ/λ (λ is the wavelength of incident light), does not have the expected value of 2. A scalar scattering model and a prior Monte Carlo simulation estimated haze values similar to those of our experimental samples. - Highlights: • Bidisperse nanoparticle mixtures created structured surfaces on thin films. • Monodisperse discrete phases created unimodal structure distributions. • Bidisperse discrete phases created multimodal structure distributions. • Multimodal structures had maximum heights ≤ 1.5 D{sub large} over our variable range. • Simplified Rayleigh scattering theory linked roughness to haze and contact angle.

  7. Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field

    International Nuclear Information System (INIS)

    Wang Changquan; Zhang Guixin; Wang Xinxin; Chen Zhiyu

    2012-01-01

    Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in air at atmospheric pressure. The surface properties of the PP films before and after a DBD treatment are studied by using contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of treatment time on the surface modification with and without a magnetic field is investigated. It is found that the hydrophilic improvement depends on the treatment time and magnetic field. It is also found that surface roughness and oxygen-containing groups are introduced onto the PP film surface after the DBD treatment. Surface roughness and oxygen-containing polar functional groups of the PP films increase with the magnetic induction density. The functional groups are identified as C-O, C=O and O-C=O by using XPS analysis. It is concluded that the hydrophilic improvement of PP films treated with a magnetic field is due to a greater surface roughness and more oxygen-containing groups. (plasma technology)

  8. Control of surface ripple amplitude in ion beam sputtered polycrystalline cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Institute of Nanoscience, Nanotechnology and Molecular Materials, University of Castilla-La Mancha, Campus de la Fabrica de Armas, Toledo 45071 (Spain); Arranz, Miguel A. [Facultad de Ciencias Quimicas, University of Castilla-La Mancha, Ciudad Real 13071 (Spain)

    2011-02-15

    We have grown both polycrystalline and partially textured cobalt films by magnetron sputter deposition in the range of thickness (50-200 nm). Kinetic roughening of the growing film leads to a controlled rms surface roughness values (1-6 nm) increasing with the as-grown film thickness. Ion erosion of a low energy 1 keV Ar+ beam at glancing incidence (80{sup o}) on the cobalt film changes the surface morphology to a ripple pattern of nanometric wavelength. The wavelength evolution at relatively low fluency is strongly dependent on the initial surface topography (a wavelength selection mechanism hereby confirmed in polycrystalline rough surfaces and based on the shadowing instability). At sufficiently large fluency, the ripple wavelength steadily increases on a coarsening regime and does not recall the virgin surface morphology. Remarkably, the use of a rough virgin surface makes the ripple amplitude in the final pattern can be controllably increased without affecting the ripple wavelength.

  9. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  10. Surface correlation behaviors of metal-organic Langmuir-Blodgett films on differently passivated Si(001) surfaces

    Science.gov (United States)

    Bal, J. K.; Kundu, Sarathi

    2013-03-01

    Langmuir-Blodgett films of standard amphiphilic molecules like nickel arachidate and cadmium arachidate are grown on wet chemically passivated hydrophilic (OH-Si), hydrophobic (H-Si), and hydrophilic plus hydrophobic (Br-Si) Si(001) surfaces. Top surface morphologies and height-difference correlation functions g(r) with in-plane separation (r) are obtained from the atomic force microscopy studies. Our studies show that deposited bilayer and trilayer films have self-affine correlation behavior irrespective of different passivations and different types of amphiphilic molecules, however, liquid like correlation coexists only for a small part of r, which is located near the cutoff length (1/κ) or little below the correlation length ξ obtained from the liquid like and self-affine fitting, respectively. Thus, length scale dependent surface correlation behavior is observed for both types of Langmuir-Blodgett films. Metal ion specific interactions (ionic, covalent, etc.,) in the headgroup and the nature of the terminated bond (polar, nonpolar, etc.,) of Si surface are mainly responsible for having different correlation parameters.

  11. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  12. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  13. Effect of passive film on electrochemical surface treatment for indium tin oxide

    International Nuclear Information System (INIS)

    Wu, Yung-Fu; Chen, Chi-Hao

    2013-01-01

    Highlights: ► Oxalic, tartaric, and citric acid baths accompanying with applied voltages were used to treat the ITO surface. ► We investigated the changes in ITO surfaces by examining the potentiodynamic behavior of ITO films. ► AFM analysis showed the formation of a passive layer could assist to planarize surface. ► XPS analysis indicated this passive layer was mainly composed of SnO 2. ► A better planarization was obtained by treating in 3.0 wt.% tartaric acid at 0.5 V due to weak complexation strength. - Abstract: Changes in indium tin oxide (ITO) film surface during electrochemical treatment in oxalic acid, tartaric acid, and citric acid were investigated. Controlling the voltage applied on ITO film allows the formation of a passive layer, effectively protecting the film surface. X-ray photoelectron spectrometry showed that the passive layer composition was predominantly SnO 2 in tartaric acid, while a composite of tin oxide and tin carboxylate in citric or oxalic acid. Even though the passive films on ITO surface generated in these organic acids, the indium or tin could complex with the organic acid anions, enhancing the dissolution of ITO films. The experimental results show that the interaction between the dissolution and passivation could assist to planarize the ITO surface. We found that the optimal treatment at 0.5 V in 3 wt.% tartaric acid could provide the ITO surface with root-mean-squared roughness less than 1.0 nm, due to the weak complexing characteristics of tartaric acid.

  14. Wettability control of micropore-array films by altering the surface nanostructures.

    Science.gov (United States)

    Chang, Chi-Jung; Hung, Shao-Tsu

    2010-07-01

    By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.

  15. Surface properties of UV irradiated PC–TiO{sub 2} nanocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Jaleh, B., E-mail: bkjaleh@yahoo.com; Shahbazi, N.

    2014-09-15

    Highlights: • Production of PC–TiO{sub 2} nanocomposite films. • Fully characterization of PC–TiO{sub 2} nanocomposite films. • Influence of UV irradiation on surface properties and hardness of PC–TiO{sub 2} nanocomposite film. - Abstract: In this work, polycarbonate–TiO{sub 2} nanocomposite films were prepared with two different percentages. The structure of samples were studied by X-ray diffraction. Thermal stability of the nanocomposites was studied by thermogravimetric analysis (TGA). The polycarbonate and polycarbonate–TiO{sub 2} nanocomposite films were exposed by UV light at different irradiation times. The effects of UV irradiation on the surface properties of samples have been studied by different characterization techniques, viz. scanning electron microscopy (SEM), FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), contact angle measurement and Vickers microhardness tester. Hydrophilicity and surface energy of UV treated samples varied depending on UV irradiation time. TGA curves showed that nanocomposite films have higher resistance to thermal degradation compared to polycarbonate. XPS analysis shows that surface of samples become more oxidized due to UV irradiation. For nanocomposite film, the smallest contact angle was observed in association with the longest UV irradiation time. The contact angle significantly decreased from 90° to 12° after 15 h of UV irradiation. It is observed that the hardness of the nanocomposite films increases after UV irradiation.

  16. Nondestructive characterization of surface chemical wear films via X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Hershberger, J.; Ajayi, O.O.; Fenske, G.R

    2004-01-15

    This work describes and demonstrates a suite of techniques for the non-destructive examination of surface films formed from oil additives. X-Ray diffraction, reflectivity and fluorescence have been used in grazing-incidence geometry to provide information on the thickness, roughness, density, structure and composition of the layers that compose reaction films. The lubricating oils were not rinsed off the surfaces of the samples before analysis. Films were formed from neat polyalphaolefin (PAO) oil and PAO with chloroform, dimethyl disulfide, or zinc or molybdenum dialkyl dithiophosphate additive. A thick layer of crystalline FeO formed during wear lubricated by neat PAO.

  17. Effect of Surface Roughness on MHD Couple Stress Squeeze-Film Characteristics between a Sphere and a Porous Plane Surface

    Directory of Open Access Journals (Sweden)

    M. Rajashekar

    2012-01-01

    Full Text Available The combined effects of couple stress and surface roughness on the MHD squeeze-film lubrication between a sphere and a porous plane surface are analyzed, based upon the thin-film magnetohydrodynamic (MHD theory. Using Stoke’s theory to account for the couple stresses due to the microstructure additives and the Christensen’s stochastic method developed for hydrodynamic lubrication of rough surfaces derives the stochastic MHD Reynolds-type equation. The expressions for the mean MHD squeeze-film pressure, mean load-carrying capacity, and mean squeeze-film time are obtained. The results indicate that the couple stress fluid in the film region enhances the mean MHD squeeze-film pressure, load-carrying capacity, and squeeze-film time. The effect of roughness parameter is to increase (decrease the load-carrying capacity and lengthen the response time for azimuthal (radial roughness patterns as compared to the smooth case. Also, the effect of porous parameter is to decrease the load-carrying capacity and increase the squeeze-film time as compared to the solid case.

  18. Influence of calcium and lithium on the densification and electrical conductivity of gadolinia-doped ceria

    International Nuclear Information System (INIS)

    Porfirio, Tatiane Cristina

    2011-01-01

    In this work, the use of calcium and lithium as sintering aid to gadolinia-doped ceria was systematically investigated. The main purpose was to verify the influence of these additives on the densification and electrical conductivity of sintered ceramics. Powder compositions containing up to 1.5 mol% (metal basis) of calcium or lithium were prepared by both solid state reaction and oxalate coprecipitation methods. The main characterization techniques were thermal analyses, X-ray diffraction, scanning electron microscopy and electrical conductivity by impedance spectroscopy. Both additives promoted densification of gadolinia-doped ceria. The densification increases with increasing the additive content. Different effects on microstructure and electrical conductivity result from the method of preparation, e.g., solid state reaction or coprecipitation. Calcium addition greatly enhances the grain growth compared to lithium addition. The electrical conductivity of specimens containing a second additive is lower than that of pure gadolinia-doped ceria. Both additives influence the intergranular conductivity and favor the exudation of gadolinium out of the solid solution. (author)

  19. Micro-strain, dislocation density and surface chemical state analysis of multication thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jayaram, P., E-mail: jayarampnair@gmail.com [Department of Physics, MES Ponnani College Ponnani, Kerala (India); Pradyumnan, P.P. [Department of Physics, University of Calicut, Kerala 673 635 (India); Karazhanov, S.Zh. [Department for Solar Energy, Institute for Energy Technology, Kjeller (Norway)

    2016-11-15

    Multication complex metal oxide thin films are rapidly expanding the class of materials with many technologically important applications. Herein this work, the surface of the pulsed laser deposited thin films of Zn{sub 2}SnO{sub 4} and multinary compounds obtained by substitution/co-substitution of Sn{sup 4+} with In{sup 3+} and Ga{sup 3+} are studied by X-ray photoelectron emission spectroscopy (X-PES) method. Peaks corresponding to the elements of Zn, Sn, Ga, In and O on the film surface has been identified and contribution of the elements has been studied by the computer aided surface analysis (CASA) software. Binding energies, full-width at half maximum (FWHM), spin-orbit splitting energies, asymmetric peak-shape fitting parameters and quantification of elements in the films are discussed. Studies of structural properties of the films by x-ray diffraction (XRD) technique showed inverse spinel type lattice with preferential orientation. Micro-strain, dislocation density and crystallite sizes in the film surface have been estimated.

  20. Numerical simulation of liquid film flow on revolution surfaces with momentum integral method

    International Nuclear Information System (INIS)

    Bottoni Maurizio

    2005-01-01

    The momentum integral method is applied in the frame of safety analysis of pressure water reactors under hypothetical loss of coolant accident (LOCA) conditions to simulate numerically film condensation, rewetting and vaporization on the inner surface of pressure water reactor containment. From the conservation equations of mass and momentum of a liquid film arising from condensation of steam upon the inner of the containment during a LOCA in a pressure water reactor plant, an integro-differential equation is derived, referring to an arbitrary axisymmetric surface of revolution. This equation describes the velocity distribution of the liquid film along a meridian of a surface of revolution. From the integro-differential equation and ordinary differential equation of first order for the film velocity is derived and integrated numerically. From the velocity distribution the film thickness distribution is obtained. The solution of the enthalpy equation for the liquid film yields the temperature distribution on the inner surface of the containment. (authors)

  1. Colloidal CuInSe2 nanocrystals thin films of low surface roughness

    Science.gov (United States)

    de Kergommeaux, Antoine; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter

    2013-03-01

    Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.

  2. Deuteriding of thin titanium films: the effect of carbon monoxide surface contamination

    International Nuclear Information System (INIS)

    Malinowski, M.W.

    1976-02-01

    The effect of adsorbed CO on the deuteriding of thin titanium films at room temperature was measured at D 2 pressures between 10 to 25 mtorr on films contaminated with CO exposures ranging between approximately 10 -8 torr-seconds (''clean'') to 10 -4 torr-seconds. In all measurements, for deuterium/titanium atom ratios greater than .2, the deuteriding appeared to be initally limited by the sticking of D 2 on the clean or contaminated titanium deuteride surface; the effective sticking coefficient on a clean titanium deuteride surface was approximately 3 x 10 -3 , while on a surface contaminated with 10 -4 torr-seconds of CO, the coefficient was reduced to approximately, 2 x 10 -4 . The pumping speeds of Ti films were dramatically different when the films were evaporated over TiD 2 . These changes were attributed to the presence of deuterium which diffused from the substrate film into the overlayer film

  3. Surface Plasmon Waves on Thin Metal Films.

    Science.gov (United States)

    Craig, Alan Ellsworth

    Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.

  4. Influence of metallic surface states on electron affinity of epitaxial AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2017-06-15

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6–1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2–3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  5. Na-assisted grain growth in CZTS nanoparticle thin films for solar cell applications

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Crovetto, Andrea; Hansen, Ole

    2017-01-01

    signal increased by a factor of 200 after Na-inclusion. Without Na, the grains were very difficult to sinter, the film was porous, and the photoluminescence was low. A concentration of Na/(Cu+Zn+Sn)=30% was necessary for the densification of the absorber, which is significantly higher than that used...

  6. Spin ice Thin Film: Surface Ordering, Emergent Square ice, and Strain Effects

    Science.gov (United States)

    Jaubert, L. D. C.; Lin, T.; Opel, T. S.; Holdsworth, P. C. W.; Gingras, M. J. P.

    2017-05-01

    Motivated by recent realizations of Dy2 Ti2 O7 and Ho2 Ti2 O7 spin ice thin films, and more generally by the physics of confined gauge fields, we study a model spin ice thin film with surfaces perpendicular to the [001] cubic axis. The resulting open boundaries make half of the bonds on the interfaces inequivalent. By tuning the strength of these inequivalent "orphan" bonds, dipolar interactions induce a surface ordering equivalent to a two-dimensional crystallization of magnetic surface charges. This surface ordering may also be expected on the surfaces of bulk crystals. For ultrathin films made of one cubic unit cell, once the surfaces have ordered, a square ice phase is stabilized over a finite temperature window. The square ice degeneracy is lifted at lower temperature and the system orders in analogy with the well-known F transition of the 6-vertex model. To conclude, we consider the addition of strain effects, a possible consequence of interface mismatches at the film-substrate interface. Our simulations qualitatively confirm that strain can lead to a smooth loss of Pauling entropy upon cooling, as observed in recent experiments on Dy2 Ti2 O7 films.

  7. Microwave effective surface impedance of structures including a high-Tc superconducting film

    International Nuclear Information System (INIS)

    Hartemann, P.

    1992-01-01

    The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs

  8. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  9. Polysulfobetaine films prepared by electrografting technique for reduction of biofouling on electroconductive surfaces

    International Nuclear Information System (INIS)

    Stach, Marek; Kronekova, Zuzana; Kasak, Peter; Kollar, Jozef; Pentrak, Martin; Micusik, Matej; Chorvat, Dusan; Nunney, Tim S.; Lacik, Igor

    2011-01-01

    The sulfobetaine films were prepared on stainless steel and golden surfaces. In the first step, the poly(2-(dimethylamino)ethyl methacrylate) film was created by employing the electrografting polymerization technique. In the second step, this film was modified to polysulfobetaine, i.e. the polymer film bearing the zwitterionic groups. The presence of the electrografted film and its modification were determined by contact angle measurements, infrared spectroscopy in reflectance mode and X-ray photoelectron spectroscopy. The prepared films were homogeneous with the thickness from about 5 to 26 nm as determined by X-ray photoelectron spectroscopy. The atomic force microscopy measurements showed the increase of surface roughness upon the surface coating. In vitro tests using adherent RAT-2 fibroblast cells and fluorescently labelled bovine serum albumin proteins showed that prepared polysulfobetaine films can be used in applications requiring the resistance against cell attachment and biofouling.

  10. Response of human corneal fibroblasts on silk film surface patterns.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  11. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Science.gov (United States)

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  12. Tunable surface wettability and water adhesion of Sb2S3 micro-/nanorod films

    International Nuclear Information System (INIS)

    Zhong, Xin; Zhao, Huiping; Yang, Hao; Liu, Yunling; Yan, Guoping; Chen, Rong

    2014-01-01

    Antimony sulfide (Sb 2 S 3 ) films were successfully prepared by spin coating Sb 2 S 3 micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb 2 S 3 micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb 2 S 3 films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb 2 S 3 micro-/nanorod. Sb 2 S 3 film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, “Gecko” state and Cassie's state for Sb 2 S 3 film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb 2 S 3 films.

  13. The prospects for urban densification: a place-based study

    International Nuclear Information System (INIS)

    Schmidt-Thomé, Kaisa; Haybatollahi, Mohammad; Kyttä, Marketta; Korpi, Jari

    2013-01-01

    Study of the environmental outcomes of urban densification is a highly context-dependent task. Our study shows that collecting and processing place-based survey data by means of the softGIS method is clearly helpful here. With the map-based internet questionnaire each response remains connected to both the physical environment and the everyday life of the respondent. In our study of the Kuninkaankolmio area (located in the Helsinki metropolitan region) the survey data were combined with urban density variables calculated from register-based data on the existing built environment. The regression analysis indicated that the participants in the survey preferred the same density factors for their future residence as they enjoyed in their current neighbourhood. In the second analysis we related the densities of planned infill developments with the interest respondents had shown in these projects. The results show that new and even quite dense infill developments have been found to be rather attractive, with them often being viewed as interesting supplements to the current urban texture. These findings contribute to the ongoing scientific discussion on the feasibility of densification measures and encourage the Kuninkaankolmio planners to proceed, albeit carefully, with the planned infill developments. (letter)

  14. Development of a flexible nanocomposite TiO{sub 2} film as a protective coating for bioapplications of superelastic NiTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Aun, Diego Pinheiro, E-mail: diegoaun@yahoo.com.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil); Houmard, Manuel, E-mail: mhoumard@ufmg.br [Department of Materials and Construction Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil); Mermoux, Michel, E-mail: michel.mermoux@lepmi.grenoble-inp.fr [LEPMI, Grenoble INP, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Latu-Romain, Laurence, E-mail: laurence.latu-romain@simap.grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Joud, Jean-Charles, E-mail: jean-charles.joud@grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Berthomé, Gregory, E-mail: gregory.berthome@simap.grenoble-inp.fr [SIR Team, Science et Ingénierie des Matériaux et Procédés, Grenoble INP, 1130, rue de la Piscine—BP75 38402, Saint Martin d' Hères (France); Buono, Vicente Tadeu Lopes, E-mail: vbuono@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 30270-901 Belo Horizonte, MG (Brazil)

    2016-07-01

    Highlights: • A NiTi alloy was coated with a flexible TiO{sub 2} protective layer via the sol–gel method. • Maximum flexibility was obtained with a nanocomposite crystalline/amorphous film. • The film reduces the Ni surface content, possibly improving the biocompatibility. - Abstract: An experimental procedure to coat superelastic NiTi alloys with flexible TiO{sub 2} protective nanocomposite films using sol–gel technology was developed in this work to improve the metal biocompatibility without deteriorating its superelastic mechanical properties. The coatings were characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and glazing incidence X-ray diffraction. The elasticity of the film was tested in coated specimens submitted to three-point bending tests. A short densification by thermal treatment at 500 °C for 10 min yielded a bilayer film consisting of a 50 nm-thick crystallized TiO{sub 2} at the inner interface with another 50-nm-thick amorphous oxide film at the outer interface. This bilayer could sustain over 6.4% strain without cracking and could thus be used to coat biomedical instruments as well as other devices made with superelastic NiTi alloys.

  15. Deposition of a thin electro-polymerized organic film on iron surface

    International Nuclear Information System (INIS)

    Lecayon, Gerard

    1980-01-01

    We use an electrochemical method to prepare a polymerized thin film, obtained from acrylonitrile in a solution of acetonitrile and tetraethylammonium perchlorate. The films are deposited on oxidized iron electrodes, with a surface area varying from a few mm to several cm, their thickness ranges from ten A to thousand A. This result is obtained by controlling the evolution of reactions: duplication, hydrogenation, polymerization which occur during the electrochemical reduction of acrylonitrile. The choice of suitable experimental conditions enhances the polymerization and increases the adherence of the polymer on the electrode. The usual methods of surface studies: S.E.M., A.E.S., S.I.M.S., permit the characterization of the electrode surface and the chemical composition of the deposit films. The molecular structure of polymer, and its evolution under aging or heating was studied by infrared multi-reflection spectroscopy. Very good correlation exists between the electrochemical characteristic: I = f(t), the initial surface state of the electrodes, and the homogeneity of the electro-polymerized films. Diagrams corresponding to mechanisms of different stages of electro-polymerization are proposed. (author) [fr

  16. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.

    Science.gov (United States)

    Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae

    2018-01-10

    One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.

  17. Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films

    International Nuclear Information System (INIS)

    Smith, Archie P.; Douglas, Jack F.; Meredith, J. Carson; Amis, Eric J.; Karim, Alamgir

    2001-01-01

    Surface pattern formation in diblock copolymer films is investigated as a function of film thickness h and molecular mass M . Smooth films are observed for certain h ranges centered about multiples of the lamellar thickness L 0 , and we attribute this effect to an increase in the surface chain density with h in the outer brushlike copolymer layer. We also observe apparently stable labyrinthine surface patterns for other h ranges, and the average size of these patterns is found to scale as λ∼L -2.5 0 . Hole and island patterns occur for h ranges between those of the labyrinthine patterns and the smooth regions, and their size similarly decreases with L 0 and M

  18. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  19. Surface magnetic canting in a nonuniform film

    International Nuclear Information System (INIS)

    Pini, M.G.; Rettori, A.; Pappas, D.P.; Anisimov, A.V.; Popov, A.P.

    2004-01-01

    The zero temperature equilibrium configuration of a nonuniform system made of a ferromagnetic (FM) monolayer on top of a semi-infinite FM film is calculated using a nonlinear mapping formulation of mean-field theory, where the surface is taken into account via an appropriate boundary condition. The analytical criterion for the existence of surface magnetic canting, previously obtained by Popov and Pappas, is also recovered

  20. Method for preparing microstructure arrays on the surface of thin film material

    KAUST Repository

    Wang, Peng; Tang, Bo; Zhang, Lianbin

    2017-01-01

    Methods are provided for growing a thin film of a nanoscale material. Thin films of nanoscale materials are also provided. The films can be grown with microscale patterning. The method can include vacuum filtration of a solution containing the nanostructured material through a porous substrate. The porous substrate can have a pore size that is comparable to the size of the nanoscale material. By patterning the pores on the surface of the substrate, a film can be grown having the pattern on a surface of the thin film, including on the top surface opposite the substrate. The nanoscale material can be graphene, graphene oxide, reduced graphene oxide, molybdenum disulfide, hexagonal boron nitride, tungsten diselenide, molybdenum trioxide, or clays such as montmorillonite or lapnotie. The porous substrate can be a porous organic or inorganic membrane, a silicon stencil membrane, or similar membrane having pore sizes on the order of microns.

  1. Method for preparing microstructure arrays on the surface of thin film material

    KAUST Repository

    Wang, Peng

    2017-02-09

    Methods are provided for growing a thin film of a nanoscale material. Thin films of nanoscale materials are also provided. The films can be grown with microscale patterning. The method can include vacuum filtration of a solution containing the nanostructured material through a porous substrate. The porous substrate can have a pore size that is comparable to the size of the nanoscale material. By patterning the pores on the surface of the substrate, a film can be grown having the pattern on a surface of the thin film, including on the top surface opposite the substrate. The nanoscale material can be graphene, graphene oxide, reduced graphene oxide, molybdenum disulfide, hexagonal boron nitride, tungsten diselenide, molybdenum trioxide, or clays such as montmorillonite or lapnotie. The porous substrate can be a porous organic or inorganic membrane, a silicon stencil membrane, or similar membrane having pore sizes on the order of microns.

  2. Developing densification technology to facilitate briquetting of coal fines

    Energy Technology Data Exchange (ETDEWEB)

    Shi, R. [Ministry of Metallurgy (China). Anshan Thermal Energy Research Institute

    1997-01-01

    This paper introduces the densification technology in coal processing and the research of increasing the caking power of coal and its application. By exploiting the inherent caking property of coal, it is hoped to advance the briquetting technology so that coal fines is converted into high quality coke or briquette. This will produce very good social, economical and environmental benefit. 3 figs., 5 tabs.

  3. A nonlinear model for surface segregation and solute trapping during planar film growth

    International Nuclear Information System (INIS)

    Han, Xiaoying; Spencer, Brian J.

    2007-01-01

    Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth

  4. Densification of sintered molybdenum during hot upsetting: experiments and modelling

    International Nuclear Information System (INIS)

    Parteder, E.; Kopp, R.

    1999-01-01

    The densification behaviour of sintered molybdenum is investigated experimentally and by modelling using a pressure dependent plasticity model. Therefore the yield condition of Gurson, extended by Tvergaard is used. The uniaxial compression test is applied to determine the evolution of the density as well as the stress-strain curves for the porous metal. Powder metallurgical molybdenum exhibits closed porosity after consolidation due to sintering with nearly spherical shaped pores. The experimental results show that the densification, especially during the first stage of deformation, is different from that of powder compacts or partially consolidated powder materials with open porosity. During hot upsetting, the pores change their size and shape. This behaviour strongly affects the densification rate. For an accurate prediction of the evolution of the density using Gurson's model, the parameters q 1 and q 2 introduced by Tvergaard, will be defined as internal variables. The use of internal variables is justified by the fact that the pores change their shape during deformation, although the link between the internal variables and the pore shape is not explicitly established in this paper. If the loading is proportional (which means that the ratio of the stress-components does not change with plastic strain), the pore shape can be associated with the applied plastic strain. With this association the parameters q i can be defined as a function from the invariant quantity equivalent plastic strain, which can be used as the internal variable in the finite element simulation. The influence of the porosity on the flow stress at different levels of plastic strain will also be investigated and is used as a second information to fit both parameters q 1 and q 2 . (orig.)

  5. Microstructure and surface morphology of YSZ thin films deposited by e-beam technique

    International Nuclear Information System (INIS)

    Laukaitis, G.; Dudonis, J.; Milcius, D.

    2008-01-01

    In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO 2 ), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material

  6. Investigation on cell biocompatible behaviors of polyaniline film fabricated via electroless surface polymerization

    International Nuclear Information System (INIS)

    Liu Sheng; Wang Jinqing; Zhang Dong; Zhang Puliang; Ou Junfei; Liu Bin; Yang Shengrong

    2010-01-01

    Considering for the potential application in tissue engineering, polyaniline (PANi) film was fabricated via a two-step route: a self-assembled monolayer of C 6 H 5 NHC 3 H 6 Si(OMe) 3 was firstly formed on the single-crystal Si substrate; the conducting PANi film was then prepared through electroless surface polymerization of the aniline molecules on the aniline monolayer-bearing silane surface in an acidic aqueous solution. The formation of PANi film on Si surface was confirmed by characterizations of X-ray photoelectron spectroscope (XPS) and specular reflectance Fourier transform infrared (SR-FTIR) spectrum, etc. At last, the proliferation behaviors of PC-12 cells on the PANi film surface were studied by the [3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assays, acridine orange fluorometric staining, and scanning electron microscope (SEM) observation, etc. The results demonstrate that the as-prepared PANi film provides high ability for cell proliferation, exhibiting promising potentials as surface coating to cultivate neuronal cells for applications in the tissue engineering.

  7. Stability of thin liquid films containing surface active particles

    Science.gov (United States)

    Umashankar, Hariharan; Kalpathy, Sreeram; Dixit, Harish

    2017-11-01

    The stability and dynamics of thin liquid films(industrial settings like coating and printing processes and extraction of oil from porous rocks. In this study a hydrodynamic model is introduced to capture the long term evolution of a Newtonian liquid film containing insoluble surfaceactive particles.We consider here the possibility of four distinct interaction regimes based on the surface rheological effects of the particles, such that either, both or neither of Marangoni and surface viscosity effects would be present at the leading order in the governing equations. The liquid film is bounded by a rigid impermeable solid below and covered by passive air phase above.A standard linear stability analysis and nonlinear simulations are performed on the set of highly coupled partial differential evolution equations. Linear stability analysis gives insights on whether a particular imposed perturbationwavenumber will grow or decay in time and also evaluating the fastest growing wavenumber. Parametric studies for all four regimes provides a strong confirmation that surface viscosity and Marangoni effects are indeed rupture delaying effects.

  8. Surface engineering of Ti-O films by photochemical immobilization of gelatin

    International Nuclear Information System (INIS)

    Weng, Y.J.; Ren, J.R.; Huang, N.; Wang, J.; Chen, J.Y.; Leng, Y.X.; Liu, H.Q.

    2008-01-01

    Crystalline Ti-O films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 3-aminopropylphosphonic acid (APP) was first introduced on the Ti-O films by self-assembling. The stability of the APP on Ti-O films was confirmed by XPS and FTIR analysis. Simultaneously, azido group was introduced in gelatin molecule to act as photoreactive point. The derivated gelatin was spin-coated onto the self-assembled layer and immobilized by UV irradiating. Chemical patterned surface was obtained by using a photomask when irradiating and confirmed by sirius red staining and surface profile analysis. Measured by surface profilometer, the thickness of the immobilized gelatin was about 5-20 nm. The adhering of human endothelial EVC304 cells on APP modified surface was enhanced in the cell culture test. Moreover, the adherence and growth of cells were prior on gelatin-immobilized region visually seen on the patterned surface. This result indicated gelatin-immobilized Ti-O surface can serve as a biocompatible biomaterial for endothelialization

  9. Interface air-mer : aspects écologiques du microneuston dans le film de surface

    OpenAIRE

    De Souza Lima, Yolanda

    1982-01-01

    The sea surface microlayer (upper 100 pm) was sampled using Harvey's rotating drum collector. Greater amounts of nutrients, particulate organic carbon and living material occurred in the surface film than in samples taken at 0,50m. Neuston displayed a greater level of absolute production, but assimilation numbers were usually lower in the films than at a depth of 0,50m. Algal phytoplankton also occurred in much higher densities in sea-surface films than in subsurface waters. Individual specie...

  10. Synthesis and characterization of thin-transparent nanostructured films for surface protection

    Science.gov (United States)

    Veltri, S.; Sokullu, E.; Barberio, M.; Gauthier, M. A.; Antici, P.

    2017-01-01

    This work demonstrates that very thin and optically transparent nanocomposite films can be conveniently applied on surface materials, displaying potent antibacterial properties without affecting the aesthetics of the underlying material. In our approach we propose new composite materials, which ensure the surface protection by inactivating the bacteria before a biofilm can be formed. The films contain very small loadings of TiO2, graphene, or fullerene, and can easily be applied on large surfaces using conventional brushes or air-brushes. These nanocomposite films are very promising candidates for the preservation of statues, mosaics, floors, buildings, and other objects that are exposed to challenging environmental conditions such as Architectonical Heritage or building materials (materials featuring stone, pigments, bronze, granite, marble, and glass).

  11. Thermal Molding of Organic Thin-Film Transistor Arrays on Curved Surfaces.

    Science.gov (United States)

    Sakai, Masatoshi; Watanabe, Kento; Ishimine, Hiroto; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Kudo, Kazuhiro

    2017-12-01

    In this work, a thermal molding technique is proposed for the fabrication of plastic electronics on curved surfaces, enabling the preparation of plastic films with freely designed shapes. The induced strain distribution observed in poly(ethylene naphthalate) films when planar sheets were deformed into hemispherical surfaces clearly indicated that natural thermal contraction played an important role in the formation of the curved surface. A fingertip-shaped organic thin-film transistor array molded from a real human finger was fabricated, and slight deformation induced by touching an object was detected from the drain current response. This type of device will lead to the development of robot fingers equipped with a sensitive tactile sense for precision work such as palpation or surgery.

  12. Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces

    International Nuclear Information System (INIS)

    Alami, J.; Persson, P.O.A.; Music, D.; Gudmundsson, J. T.; Bohlmark, J.; Helmersson, U.

    2005-01-01

    We have synthesized Ta thin films on Si substrates placed along a wall of a 2-cm-deep and 1-cm-wide trench, using both a mostly neutral Ta flux by conventional dc magnetron sputtering (dcMS) and a mostly ionized Ta flux by high-power pulsed magnetron sputtering (HPPMS). Structure of the grown films was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The Ta thin film grown by HPPMS has a smooth surface and a dense crystalline structure with grains oriented perpendicular to the substrate surface, whereas the film grown by dcMS exhibits a rough surface, pores between the grains, and an inclined columnar structure. The improved homogeneity achieved by HPPMS is a direct consequence of the high ion fraction of sputtered species

  13. Surface Modification of Polyethylene Films using Atmospheric

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    An atmospheric-pressure plasma jet (APPJ) is used to increase the wettability of ... contact angle between the water droplet and the polymer surface. The polymer films used in this ... W of RF power from the generator. The distance between ...

  14. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  15. Spreading of oil films on water in the surface tension regime

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D.W.

    1985-01-01

    Surface tension forces will cause an oil to spread over water if the tension of the oil film (the summed surface and interfacial tensions for bulk oil films, or the equilibrium spreading tension for monomolecular films) is less than the surface tension of water. For oil films spreading in a 40 cm long channel, measurements are made of leading edge position and lateral profiles of film thickness, velocity, and tension as a function of time. Measurements of the tension profiles, important for evaluating proposed theories, is made possible by the development of a new technique based on the Wilhelmy method. The oils studied were silicones, fatty acids and alcohols, and mixtures of surfactants in otherwise nonspreading oils. The single-component oils show an acceleration zone connecting a slow-moving inner region with a fast-moving leading monolayer. The dependence of film tension on film thickness for spreading single-component oils often differs from that at equilibrium. The mixtures show a bulk oil film configuration which extends to the leading edge and have velocity profiles which increase smoothly. The theoretical framework, similarity transformation, and asymptotic solutions of Foda and Cox for single-component oils were shown to be valid. An analysis of spreading surfactant-oil mixtures is developed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows them to be treated under this framework. An easily-used semi-empirical model is proposed which allows accurate prediction of detailed spreading behavior for any spreading oil.

  16. Retrograde densification in Bi2Sr2CaCu2O8 superconductors

    International Nuclear Information System (INIS)

    Johnson, D.W. Jr.; Rhodes, W.W.

    1989-01-01

    Bi 2 Sr 2 CaCu 2 O 8 was prepared using the mixed oxide-carbonate method and sintered at temperatures ranging from 850 degrees to 911 degrees C. The samples were characterized for density, mechanical strength, phase composition, microstructure, and superconducting transition temperatures. A unique retrograde densification characteristic is demonstrated in the temperature range 850 degrees to 890 degrees C whereby the material first becomes less dense as the sintering temperature is raised, and only in a narrow temperature range from 900 degrees to 905 degrees C does the material densify then with the formation of a liquid phase. This retrograde densification, coupled with a narrow sintering range overlapping the melting temperature, makes this compound a difficult one to process

  17. Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces

    Directory of Open Access Journals (Sweden)

    Suzan Biran Ay

    2015-01-01

    Full Text Available Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.

  18. Tuning Nanocrystal Surface Depletion by Controlling Dopant Distribution as a Route Toward Enhanced Film Conductivity

    Science.gov (United States)

    Staller, Corey M.; Robinson, Zachary L.; Agrawal, Ankit; Gibbs, Stephen L.; Greenberg, Benjamin L.; Lounis, Sebastien D.; Kortshagen, Uwe R.; Milliron, Delia J.

    2018-05-01

    Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data shows electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and, in agreement with variable temperature conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.

  19. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    International Nuclear Information System (INIS)

    Saario, T.; Paine, J.P.N.

    1995-01-01

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique

  20. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    International Nuclear Information System (INIS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Doering, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2 , and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96 deg. to 30-37 deg. and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy

  1. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Qu, Haiyun; Wang, Juntao; Liu, Jiao; Dai, Jiawei; Zhou, Zhiwei; Liu, Binglong; Kou, Huamin; Shi, Yun; Wang, Zheng; Pan, Yubai; Gao, Qingsong; Guo, Jingkun

    2016-10-01

    The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5-20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.

  2. Experimental investigation of densification of powdered A15 phase in the system Nb--Al--Ge

    International Nuclear Information System (INIS)

    Modi, D.P.

    1976-02-01

    An investigation of the densification of precompounded powder of the A15 phase Nb 3 (Al,Ge) was made. The influence of various parameters such as additives, temperature, pressure and time in sintering of this material was studied. Since cold pressing followed by sintering did not produce sufficient density, the hot pressing technique was used. By hot pressing at 1450 0 C for 1 / 2 hour under 6 ksi pressure, about 95 percent densification was achieved. Results provide information that could lead to the development of a viable process for producing superconductors based on this compound. 14 figures, 17 references

  3. Study of fine films nature on the surface of copper band by photoelectron spectroscopy method

    International Nuclear Information System (INIS)

    Reznichenko, K.N.; Fedorov, V.N.; Shevakin, Yu.F.

    1983-01-01

    The composition of surface films formed on the copper band of industrial production under atmospheric conditions, its changes in thickness and determination of chemical state of the above films are studied. It has been found by the methods of X-ray photoelectronic and Auger-spectroscopy that defect formations on the surface of the copper band of industrial production represent copper oxides in the form of fine films, their change in colour from blue to dark blue probably is determined by different thickness of these defects. The said films on copper have practically identical chemical composition characterized by the presence of unequally valent copper, oxygen in various states (adsorbed and in the form of oxides), carbon and iron. By means of chemical shifts of the line Cu 2psub(3/2) and Ol s the presence in the external part of the film of CuO copper oxide is established and nearer to the interface surface film-metal-of Cu 2 O cuprous oxide which indicates a two-layer surface film structure. The presence of adsorbed carbon and iron in the film composition is a result of surface contamination

  4. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  6. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  7. Cell surface engineering with polyelectrolyte multilayer thin films.

    Science.gov (United States)

    Wilson, John T; Cui, Wanxing; Kozlovskaya, Veronika; Kharlampieva, Eugenia; Pan, Di; Qu, Zheng; Krishnamurthy, Venkata R; Mets, Joseph; Kumar, Vivek; Wen, Jing; Song, Yuhua; Tsukruk, Vladimir V; Chaikof, Elliot L

    2011-05-11

    Layer-by-layer assembly of polyelectrolyte multilayer (PEM) films represents a bottom-up approach for re-engineering the molecular landscape of cell surfaces with spatially continuous and molecularly uniform ultrathin films. However, fabricating PEMs on viable cells has proven challenging owing to the high cytotoxicity of polycations. Here, we report the rational engineering of a new class of PEMs with modular biological functionality and tunable physicochemical properties which have been engineered to abrogate cytotoxicity. Specifically, we have discovered a subset of cationic copolymers that undergoes a conformational change, which mitigates membrane disruption and facilitates the deposition of PEMs on cell surfaces that are tailorable in composition, reactivity, thickness, and mechanical properties. Furthermore, we demonstrate the first successful in vivo application of PEM-engineered cells, which maintained viability and function upon transplantation and were used as carriers for in vivo delivery of PEMs containing biomolecular payloads. This new class of polymeric film and the design strategies developed herein establish an enabling technology for cell transplantation and other therapies based on engineered cells. © 2011 American Chemical Society

  8. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  9. The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films

    International Nuclear Information System (INIS)

    Csete, M.; Hild, S.; Plettl, A.; Ziemann, P.; Bor, Zs.; Marti, O.

    2004-01-01

    Poly-carbonate films containing different types of original surface roughness were illuminated by a polarized ArF excimer laser beam having a fluence of 4 mJ/cm 2 . Atomic force microscopy was applied to study the laser-induced periodic surface structure formation process at 0 deg. , 30 deg. and 45 deg. angles of incidence. The effect of initial surface structures on the intensity distribution was investigated in cases of: (a) grains on oriented and amorphous thick films; (b) holes on thin spin-coated films; and (c) nanoparticles arranged along micrometer long sides of hexagons below the spin-coated films. The presence of the scattering objects caused symmetry breaking, if the samples were illuminated by oblique incident 's' polarized beam. The Fourier analysis of the AFM pictures has shown the competition of structures having different periods. The characteristic of the permanent surface patterns proved that the interference of the incoming beam and the beams scattered on previously existing structures is the LIPSS generating feedback process. Ring-shaped structures having 228 nm diameter were produced

  10. Quantum effects on propagation of bulk and surface waves in a thin quantum plasma film

    International Nuclear Information System (INIS)

    Moradi, Afshin

    2015-01-01

    The propagation of bulk and surface plasma waves in a thin quantum plasma film is investigated, taking into account the quantum effects. The generalized bulk and surface plasma dispersion relation due to quantum effects is derived, using the quantum hydrodynamic dielectric function and applying appropriate additional boundary conditions. The quantum mechanical and film geometric effects on the bulk and surface modes are discussed. It is found that quantum effects become important for a thin film of small thickness. - Highlights: • New bulk and surface plasma dispersion relations due to quantum effects are derived, in a thin quantum plasma film. • It is found that quantum effects become important for a thin quantum film of small thickness

  11. π-Donors microstructuring on surface of polymer film by their noncovalent interactions with iodine

    Energy Technology Data Exchange (ETDEWEB)

    Traven, Valerii F., E-mail: valerii.traven@gmail.com [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Ivanov, Ivan V.; Dolotov, Sergei M. [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Veciana, Jaume Miro; Lebedev, Victor S. [Institut de Ciencia de Materials de Barcelona–CSIC, Campus de la UAB, 08193, Bellaterra (Spain); Shulga, Yurii M.; Khasanov, Salavat S. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Acad. N.N. Semenov Prosp., 1, Chernogolovka, 142432 (Russian Federation); Medvedev, Michael G. [A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Vavilova str., 28 (Russian Federation); Laukhina, Elena E. [The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, ICMAB-CSIC, Bellaterra, 08193 (Spain)

    2015-06-15

    Noncovalent (charge transfer) interaction between perylene and iodine in polycarbonate film provides formation of microstructured perylene layer on the polymer surface upon exposure of polymer film which contains dissolved perylene to solvent + iodine vapors. The prepared bilayer film possesses a sensing effect to iodine vapors which can be observed by both fluorescence and electrical conductivity changes. Similar bilayer films have been prepared also with anthracene and phenothiazine as π-donors with use of different polymer matrixes. Interaction of iodine with polycyclic aromatic hydrocarbons (PAH) has also been studied by the M06-2x DFT calculations for better understanding of phenomenon of π-donors microstructuring on surface of polymer film. - Highlights: • Preparation of bilayer polymer films with π-donors on surface for the first time. • π-Donor phase purity is confirmed by XRD, IR spectroscopy, SEM. • Perylene bilayer polymer films possess fluorescence. • Perylene bilayer polymer films loss fluorescence under iodine vapors. • Perylene bilayer polymer films possess electrical conductivity when treated by iodine vapors.

  12. Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma

    International Nuclear Information System (INIS)

    Zheng Zhiwen; Ren Li; Feng Wenjiang; Zhai Zhichen; Wang Yingjun

    2012-01-01

    In order to study the surface characterization and protein adhesion behavior of polyethylene terephthalate film, low temperature ammonia plasma was used to modify the film. Effects of plasma conditions of the surface structures and properties were investigated. Results indicated that surface hydrophilicity of polyethylene terephthalate was significantly improved by ammonia plasma treatment. Ammonia plasma played the role more important than air treatment in the process of modification. Furthermore, by Fourier Transform Infrared spectra some new bonds such as -N=O and N-H which could result in the improvement of the surface hydrophilicity were successfully grafted on the film surface. Atom force microscope experiments indicated that more protein adsorbed on hydrophobic surfaces than hydrophilic ones, and the blobs arranged in a straight line at etching surface by plasma. Modified membrane after ammonia plasma treatment had a good cell affinity and could be effective in promoting the adhesion and growth of cells on the material surface. Timeliness experiments showed that the plasma treatment gave the material a certain performance only in a short period of time and the hydrophobicity recovered after 12 days.

  13. Effect of Carbon Content on the Properties of Iron-Based Powder Metallurgical Parts Produced by the Surface Rolling Process

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2018-01-01

    Full Text Available In recent years, the rolling densification process has become increasingly widely used to strengthen powder metallurgy parts. The original composition of the rolled powder metallurgy blank has a significant effect on the rolling densification technology. The present work investigated the effects of different carbon contents (0 wt. %, 0.2 wt. %, 0.45 wt. %, and 0.8 wt. % on the rolling densification. The selection of the raw materials in the surface rolling densification process was analyzed based on the pore condition, structure, hardness, and friction performance of the materials. The results show that the 0.8 wt. % carbon content of the surface rolling material can effectively improve the properties of iron-based powder metallurgy parts. The samples with 0.8 wt. % carbon have the highest surface hardness (340 HV0.1 and the lowest surface friction coefficient (0.35. Even if the dense layer depth is 1.13 mm, which is thinner than other samples with low carbon content, it also meets the requirements for powder metallurgy parts such as gears used in the auto industry.

  14. Surface morphology study on chromium oxide growth on Cr films by Nd-YAG laser oxidation process

    International Nuclear Information System (INIS)

    Dong Qizhi; Hu Jiandong; Guo Zuoxing; Lian Jianshe; Chen Jiwei; Chen Bo

    2002-01-01

    Grain sized (60-100 nm) Cr 2 O 3 thin films were prepared on Cr thin film surfaces by Nd-YAG laser photothermal oxidation process. Surface morphology study showed crack-free short plateau-like oxide films formed. Increase of dislocation density after pulsed laser irradiation was found. Thin film external surfaces, grain boundaries and dislocations are main paths of laser surface oxidation. Pinning and sealing of grain boundary was the reason that deeper oxidation did not produce. Grain growth and agglomeration of Cr sub-layer yielded tensile stress on the surface Cr 2 O 3 thin film. It was the reason that short plateau-like surface morphology formed and cracks appeared sometimes. In oxygen annealing at 700 deg. C, grain boundaries were considered not to be pinned at the surface, mixture diffusion was main mechanism in growth of oxide. Compression stress development in whole film led to extrusion of grains that was the reason that multiple appearances such as pyramid-like and nutshell-like morphology formed

  15. Fermi surface and quantum well states of V(110) films on W(110)

    International Nuclear Information System (INIS)

    Krupin, Oleg; Rotenberg, Eli; Kevan, S D

    2007-01-01

    Using angle-resolved photoemission spectroscopy, we have measured the Fermi surface of V(110) films epitaxially grown on a W(110) substrate. We compare our results for thicker films to existing calculations and measurements for bulk vanadium and find generally very good agreement. For thinner films, we observe and analyse a diverse array of quantum well states that split and distort the Fermi surface segments. We have searched unsuccessfully for a thickness-induced topological transition associated with contact between the zone-centre jungle gym and zone-boundary hole ellipsoid Fermi surface segments. We also find no evidence for ferromagnetic splitting of any bands on this surface

  16. Fermi surface and quantum well states of V(110) films on W(110)

    Energy Technology Data Exchange (ETDEWEB)

    Krupin, Oleg [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rotenberg, Eli [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kevan, S D [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2007-09-05

    Using angle-resolved photoemission spectroscopy, we have measured the Fermi surface of V(110) films epitaxially grown on a W(110) substrate. We compare our results for thicker films to existing calculations and measurements for bulk vanadium and find generally very good agreement. For thinner films, we observe and analyse a diverse array of quantum well states that split and distort the Fermi surface segments. We have searched unsuccessfully for a thickness-induced topological transition associated with contact between the zone-centre jungle gym and zone-boundary hole ellipsoid Fermi surface segments. We also find no evidence for ferromagnetic splitting of any bands on this surface.

  17. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    Science.gov (United States)

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  18. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    Science.gov (United States)

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of 82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

  19. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  20. Hydrogen content and density in nanocrystalline carbon films of a predominant diamond character

    International Nuclear Information System (INIS)

    Hoffman, A.; Heiman, A.; Akhvlediani, R.; Lakin, E.; Zolotoyabko, E.; Cyterman, C.

    2003-01-01

    Nanocrystalline carbon films possessing a prevailing diamond or graphite character, depending on substrate temperature, can be deposited from a methane hydrogen mixture by the direct current glow discharge plasma chemical vapor deposition method. While at a temperature of ∼880 deg. C, following the formation of a thin precursor graphitic film, diamond nucleation occurs and a nanodiamond film grows, at higher and lower deposition temperatures the films maintain their graphitic character. In this study the hydrogen content, density and nanocrystalline phase composition of films deposited at various temperatures are investigated. We aim to elucidate the role of hydrogen in nanocrystalline films with a predominant diamond character. Secondary ion mass spectroscopy revealed a considerable increase of the hydrogen concentration in the films that accompanies the growth of nanodiamond. It correlates with near edge x-ray adsorption spectroscopy measurements, that showed an appearance of spectroscopic features associated with the diamond structure, and with a substantial increase of the film density detected by x-ray reflectivity. Electron energy loss spectroscopy showed that nanocrystalline diamond films can be deposited from a CH 4 /H 2 mixture with hydrogen concentration in the 80%-95% range. For a deposition temperature of 880 deg. C, the highest diamond character of the films was found for a hydrogen concentration of 91% of H 2 . The deposition temperature plays an important role in diamond formation, strongly influencing the content of adsorbed hydrogen with an optimum at 880 deg. C. It is suggested that diamond nucleation and growth of the nanodiamond phase is driven by densification of the deposited graphitic films which results in high local compressive stresses. Nanodiamond formation is accompanied by an increase of hydrogen concentration in the films. It is suggested that hydrogen retention is critical for stabilization of nanodiamond crystallites. At lower

  1. Multi-scale characterization of surface blistering morphology of helium irradiated W thin films

    International Nuclear Information System (INIS)

    Yang, J.J.; Zhu, H.L.; Wan, Q.; Peng, M.J.; Ran, G.; Tang, J.; Yang, Y.Y.; Liao, J.L.; Liu, N.

    2015-01-01

    Highlights: • Multi-scale blistering morphology of He irradiated W film was studied. • This complex morphology was first characterized by wavelet transform approach. - Abstract: Surface blistering morphologies of W thin films irradiated by 30 keV He ion beam were studied quantitatively. It was found that the blistering morphology strongly depends on He fluence. For lower He fluence, the accumulation and growth of He bubbles induce the intrinsic surface blisters with mono-modal size distribution feature. When the He fluence is higher, the film surface morphology exhibits a multi-scale property, including two kinds of surface blisters with different characteristic sizes. In addition to the intrinsic He blisters, film/substrate interface delamination also induces large-sized surface blisters. A strategy based on wavelet transform approach was proposed to distinguish and extract the multi-scale surface blistering morphologies. Then the density, the lateral size and the height of these different blisters were estimated quantitatively, and the effect of He fluence on these geometrical parameters was investigated. Our method could provide a potential tool to describe the irradiation induced surface damage morphology with a multi-scale property

  2. The structure of ultrathin iron films on tungsten single-crystal surfaces

    International Nuclear Information System (INIS)

    Gardiner, T.M.

    1983-01-01

    Ultrathin iron films vapour deposited onto the surface of a cylindrical tungsten single crystal are discussed. Results from work function change, Auger electron spectroscopic and low energy electron diffraction techniques are combined for a comparison of the initial stages of film growth on four low index planes. Advantage is taken of the opportunity to evaporate onto and simultaneously to make measurements on all surface orientations of the zone. (Auth.)

  3. Application of mathematical modelling when determining the parameters effect of biomass densification process on solid biofuels quality

    Directory of Open Access Journals (Sweden)

    Križan Peter

    2018-01-01

    Full Text Available The main aim of this paper is to present the design of experiment (DOE and evaluation methodology for this experimental plan in order to determine the parameters effect of biomass densification process on final solid biofuels quality. One of the recovery possibilities for waste biomass raw materials is production of solid biofuels. Using a variety combination of influencing variables can be improve the final quality of solid biofuels. Raw biomass material variables influence, especially (type of raw material, particle size, moisture content, compression pressure and compression temperature can be recognized during the production of solid biofuels. Their effect can be seen through the quality indicators; especially mentioned variables significantly influence the mechanical quality indicators of solid biofuels. In this experimental research authors would like to investigate properties and behaviour of wood raw waste biomass during densification. This contribution discusses the analysis and design of experimental process, its individual steps and their subsequent DOE leading to the development of a mathematical model that will describe this process. This paper also presents the research findings regarding the effect of influencing variables on final density of solid biofuels during densification. Aim of the experimental process is to determine the mutual interaction between solid biofuels density and influencing variables during densification. Effect of compression pressure, compression temperature, moisture content and particle size on solid biofuels density from wood sawdust was determined.

  4. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films.

    Science.gov (United States)

    Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2018-05-02

    Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding

  5. Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering

    International Nuclear Information System (INIS)

    Auger, M. A.; Vazquez, L.; Sanchez, O.; Cuerno, R.; Castro, M.; Jergel, M.

    2006-01-01

    We study surface kinetic roughening of TiN films grown on Si(100) substrates by dc reactive sputtering. The surface morphology of films deposited for different growth times under the same experimental conditions were analyzed by atomic force microscopy. The TiN films exhibit intrinsic anomalous scaling and multiscaling. The film kinetic roughening is characterized by a set of local exponent values α loc =1.0 and β loc =0.39, and global exponent values α=1.7 and β=0.67, with a coarsening exponent of 1/z=0.39. These properties are correlated to the local height-difference distribution function obeying power-law statistics. We associate this intrinsic anomalous scaling with the instability due to nonlocal shadowing effects that take place during thin-film growth by sputtering

  6. Preparation and characterization of soy protein films with a durable water resistance-adjustable and antimicrobial surface.

    Science.gov (United States)

    Li, Shuzhao; Donner, Elizabeth; Xiao, Huining; Thompson, Michael; Zhang, Yachuan; Rempel, Curtis; Liu, Qiang

    2016-12-01

    A water resistant surface was first obtained by immobilizing hydrophobic copolymers, poly (styrene-co-glycidyl methacrylate) (PSG), with functional groups on soy protein isolate (SPI) films. XPS and AFM results showed that PSG copolymers were immobilized on the film by chemical bonding, and formed a rough surface with some bumps because of the segregation of two different phases on PSG copolymers. Water resistance of the modified films could be adjusted dramatically by further immobilizing different amounts of guanidine-based antimicrobial polymers, poly (hexamethylene guanidine hydrochloride) (PHMG) on the resulting hydrophobic surface. The introduction of hydrophilic PHMG on the resulting surface generated many micropores, which potentially increased the water uptake of the modified films. Furthermore, the modified SPI films showed higher thermostability compared to native SPI film and broad-spectrum antimicrobial activity by contact killing, attributed to the presence of PHMG on the surface. The modified SPI film with a multi-functional surface showed potential for applications in the packaging and medical fields. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  7. Effect of particle breakage on cyclic densification of ballast: A DEM approach

    International Nuclear Information System (INIS)

    Thakur, P K; Vinod, J S; Indraratna, B

    2010-01-01

    In this paper, an attempt has been made to investigate the effect of particle breakage on densification behaviour of ballast under cyclic loading using Discrete Element Method (DEM). Numerical simulations using PFC 2D have been carried out on an assembly of angular particles with and without incorporation of particle breakage. Two-dimensional projection of angular ballast particles were simulated using clusters of bonded circular particles. Degradation of the bonds within a cluster was considered to represent particle breakage. Clump logic was used to make the cluster of particles unbreakable. DEM simulation results highlight that the particle breakage has a profound influence on the cyclic densification behaviour of ballast. The deformation behaviour exhibited by the assembly with breakage is in good agreement with the laboratory experiments. In addition, the evolution of particle displacement vectors clearly explains the breakage mechanism and associated deformations during cyclic loading.

  8. Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization

    International Nuclear Information System (INIS)

    Avens, Heather J.; Chang, Erin L.; May, Allison M.; Berron, Brad J.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.

  9. Tear film and ocular surface assessment in psoriasis.

    Science.gov (United States)

    Aragona, Emanuela; Rania, Laura; Postorino, Elisa Imelde; Interdonato, Alberto; Giuffrida, Roberta; Cannavò, Serafinella Patrizia; Puzzolo, Domenico; Aragona, Pasquale

    2018-03-01

    Psoriasis is a skin disease with also systemic involvement: its impact on the eye is not well established and often clinically underestimated. Aim of this study was to investigate the presence of ocular discomfort symptoms and of ocular surface changes in a population of patients with psoriasis. For this cross-sectional, comparative study, 66 patients with psoriasis were subdivided according to the presence of arthritis and to the use of biological therapy. All patients underwent clinical evaluation with the following tests: Ocular Surface Disease Index Questionnaire, Tearscope examination, meibometry, tear film breakup time, corneal and conjunctival fluorescein staining, Schirmer I test, corneal aesthesiometry, meibomian gland dysfunction (MGD) assessment and conjunctival impression cytology. 28 healthy subjects were also enrolled and treated with the same clinical tests. A statistical analysis of the results was performed. Patients with psoriasis showed a significant deterioration of the ocular surface tests, if compared with healthy subjects, demonstrated by tear film lipid layer alteration, tear film instability, corneal and conjunctival epithelial suffering and mild squamous metaplasia at impression cytology. No differences were found in ocular surface test results of the psoriatic group when patients were divided according to the presence of arthritis, whereas the anti-inflammatory treatment with biological drugs demonstrated a significant improvement of corneal stain and MGD. Our findings suggest that the ocular surface involvement in patients with psoriasis indicates the need of periodic ophthalmological examinations to diagnose the condition and allow a proper treatment, so contributing to the amelioration of patients' quality of life. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Surface structure deduced differences of copper foil and film for graphene CVD growth

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junjun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Hu, Baoshan, E-mail: hubaoshan@cqu.edu.cn [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wei, Zidong; Jin, Yan [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Zhengtang [Department of Chemical and Biomolecular Engineering, The Hongkong University of Science and Technology, Kowloon (Hong Kong); Xia, Meirong [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Pan, Qingjiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080 (China); Liu, Yunling [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2014-05-01

    Highlights: • We demonstrate the significant differences between Cu foil and film in the surface morphology and crystal orientation distribution. • The different surface structure leads to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. • Nucleation densities and growth rate differences at the initial growth stages on the Cu foil and film were investigated and discussed. Abstract: Graphene was synthesized on Cu foil and film by atmospheric pressure chemical vapor deposition (CVD) with CH₄ as carbon source. Electron backscattered scattering diffraction (EBSD) characterization demonstrates that the Cu foil surface after the H₂-assisted pre-annealing was almost composed of Cu(1 0 0) crystal facet with larger grain size of ~100 μm; meanwhile, the Cu film surface involved a variety of crystal facets of Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0), with the relatively small grain size of ~10 μm. The different surface structure led to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. Further data demonstrate that the Cu foil enabled more nucleation densities and faster growth rates at the initial growth stages than the Cu film. Our results are beneficial for understanding the relationship between the metal surface structure and graphene CVD growth.

  11. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces.

    Science.gov (United States)

    Shimizu, Michiko; Saito, Tsuguyuki; Fukuzumi, Hayaka; Isogai, Akira

    2014-11-10

    Hydrophobic, ductile, and transparent nanocellulose films were prepared by casting and drying aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibrils (TOCNs) with quaternary alkylammoniums (QAs) as counterions for the surface carboxylate groups. TOCN films with tetramethylammonium and tetraethylammonium carboxylates showed high optical transparencies, strain-to-failure values (14-22%), and work-of-fracture values (20-27 MJ m(-3)). The ductility of these films was likely caused by the alkyl chains of the QA groups densely covering the TOCN surfaces and being present at the interfaces between the TOCN elements in the films. The water contact angle of the TOCN-QA films increased to ∼100° by introducing tetra(n-butyl)ammonium groups as counterions. Thus, TOCN film properties can be controlled by changing the chemical structure of the counterions from Na to QAs. The hydrophilic TOCN surfaces can be changed to hydrophobic simply and efficiently by the conversion from TOCN-Na to TOCN-QA, when TOCNs are used as nanofillers in hydrophobic polymer matrices.

  12. Surface free energy of CrN x films deposited using closed field unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Sun, C.-C.; Lee, S.-C.; Dai, S.-B.; Fu, Y.-S.; Wang, Y.-C.; Lee, Y.-H.

    2006-01-01

    CrN x thin films have attracted much attention for semiconductor IC packaging molding dies and forming tools due to their excellent hardness, thermal stability and non-sticking properties (low surface free energy). However, few data has been published on the surface free energy (SFE) of CrN x films at temperatures in the range 20-170 deg. C. In this study CrN x thin films with CrN, Cr(N), Cr 2 N (and mixture of these phases) were prepared using closed field unbalanced magnetron sputtering at a wide range of Cr +2 emission intensity. The contact angles of water, di-iodomethane and ethylene glycol on the coated surfaces were measured at temperatures in the range 20-170 deg. C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the CrN x films and their components (e.g., dispersion, polar) were calculated using the Owens-Wendt geometric mean approach. The influences of CrN x film surface roughness and microstructure on the surface free energy were investigated by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. The experimental results showed that the lowest total SFE was obtained corresponding to CrN at temperature in 20 deg. C. This is lower than that of Cr(N), Cr 2 N (and mixture of these phases). The total SFE, dispersive SFE and polar SFE of CrN x films decreased with increasing surface temperature. The film roughness has an obvious effect on the SFE and there is tendency for the SFE to increase with increasing film surface roughness

  13. Powder densification maps in Selective Laser Sintering

    International Nuclear Information System (INIS)

    Bourell, D.; Wohlert, M.; Harlan, N.; Beaman, J.; Das, S.

    2002-01-01

    Selective Laser Sintering (SLS) is a manufacturing process in which a part is produced without the need for part-specific tooling. It competes effectively with other manufacturing processes when part geometry is complex and the production run is not large. Traditionally, this was limited to prototype production, although tooling applications are now appearing. This paper describes several applications of powder densification maps to advance solutions in direct SLS of metallic and ceramic powders. Time-dependent plasticity issues arise in pre-processing of powder to make it suitable for SLS and in post-processing of SLS parts to obtain desired density. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  14. Activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Gopalakrishnan, N.; Balasubramanian, T.

    2013-01-01

    Highlights: ► Room temperature ferromagnetism (RTFM) is observed in surface functionalized ZnO films. ► Surface functionalization is a new approach to make ZnO as ferromagnetic. ► The RTFM is attributed to the interaction between the adsorbates and the surface of ZnO. ► The oxygen vacancies are passivated upon surface functionalization. - Abstract: In this paper, we report the activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine. The pure and surface functionalized ZnO films have been examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements. XRD measurements show that all the films have single phase and (0 0 2) preferred orientation. The chemical bonding of ZnO with thiol and amine molecules has been confirmed by XPS measurements. The quenching of visible emission in PL spectra indicates that the surface defects are passivated by functionalization with thiol and amine. Surface functionalization of ZnO films with thiol and amine induces robust room temperature ferromagnetism in ZnO films as evidenced from VSM measurements. It is concluded that the observed ferromagnetic behavior in functionalized ZnO films is attributed to the different electronegativity of the atom in the thiol (or amine) and the surface of ZnO.

  15. Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Siró, Istvan; Kusano, Yukihiro; Norrman, Kion

    2013-01-01

    of atmospheric pressure plasma treatment, the water contact angle of NFC films increased and the values were comparable with those of PLA films. On the other hand, surface chemical characterization revealed inhomogeneity of the plasma treatment and limited improvement in adhesion between NFC and PLA films...

  16. Study on the early surface films formed on Mg-Y molten alloy in different atmospheres

    Directory of Open Access Journals (Sweden)

    A.R. Mirak

    2015-09-01

    Full Text Available In the present study, the non-isothermal early stages of surface oxidation of liquid Mg-1%Y alloy during casting were studied under UPH argon, dry air, and air mixed with protective fluorine-bearing gases. The chemistry and morphology of the surface films were characterized by SEM and EDX analyses. The results indicate a layer of smooth and tightly coherent oxidation film composed of MgO and Y2O3 formed on the molten Mg-Y alloy surface with 40–60 nm thickness under dry air. A dendritic/cellular microstructure is clearly visible with Y-rich second phases gathered in surface of the melt and precipitated along the grain/cell boundaries under all gas conditions. Under fluorine-bearing gas mixtures, the surface film was a mixed oxide and fluoride and more even; a flat and folded morphology can be seen under SF6 with oxide as dominated phase and under 1, 1, 1, 2-tetra-fluoroethane, a smooth and compact surface film uniformly covering the inner surface of the bubble with equal oxide and fluoride thickness, which results in a film without any major defects. MgF2 phase appears to be the key characteristic of a good protective film.

  17. Characterization of poly(Sodium Styrene Sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces

    Science.gov (United States)

    Zorn, Gilad; Baio, Joe E.; Weidner, Tobias; Migonney, Veronique; Castner, David G.

    2011-01-01

    Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multi-technique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9±0.2nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO2 layer that was at least 10nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules were successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings. PMID:21892821

  18. The evolution of droplet impacting on thin liquid film at superhydrophilic surface

    Science.gov (United States)

    Li, Yun; Zheng, Yi; Lan, Zhong; Xu, Wei; Ma, Xuehu

    2017-12-01

    Thin films are ubiquitous in nature, and the evolution of a liquid film after droplet impact is critical in many industrial processes. In this paper, a series of experiments and numerical simulations are conducted to investigate the distribution and evolution features of local temperature as the droplet impacts a thin film on the superhydrophilic surface by the thermal tracing method. A cold area is formed in the center after droplet impacts on heated solid surfaces. For the droplet impact on thin heated liquid film, a ring-shaped low temperature zone is observed in this experiment. Meanwhile, numerical simulation is adopted to analyze the mechanism and the interaction between the droplet and the liquid film. It is found that due to the vortex velocity distribution formed inside the liquid film after the impact, a large part of the droplet has congested. The heating process is not obvious in the congested area, which leads to the formation of a low-temperature area in the results.

  19. Swift heavy ion induced surface and microstructural evolution in metallic glass thin films

    International Nuclear Information System (INIS)

    Thomas, Hysen; Thomas, Senoy; Ramanujan, Raju V.; Avasthi, D.K.; Al- Omari, I.A.; Al-Harthi, Salim; Anantharaman, M.R.

    2012-01-01

    Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au 9+ beam with fluences ranging from 3 × 10 11 to 3 × 10 13 ions/cm 2 . The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion.

  20. Effect of chemisorbed surface species on the photocatalytic activity of TiO2 nanoparticulate films

    International Nuclear Information System (INIS)

    Cao Yaan; Yang Wensheng; Chen Yongmei; Du Hui; Yue, Polock

    2004-01-01

    TiO 2 sols prepared in acidic and basic medium were deposited into films by a spin coating method. Photodegradation experiments showed that photocatalytic activity of the films prepared from acidic sol was much higher than that from basic sol. It is identified that there are more chemisorbed species of CO 2 on the surface of the TiO 2 films from the basic sol than on the surface of the TiO 2 films from the acidic sol. The chemisorbed species of CO 2 reduce the concentration of active species such as hydroxyl group and bridging oxygen on surface of the TiO 2 film and contribute to the formation of surface electron traps in the band gap which are detrimental to charge separation, thus lowering the photocatalytic activity

  1. Scaling of surface roughness in sputter-deposited ZnO:Al thin films

    International Nuclear Information System (INIS)

    Mohanty, Bhaskar Chandra; Choi, Hong-Rak; Cho, Yong Soo

    2009-01-01

    We have studied surface roughness scaling of ZnO:Al thin films grown by rf magnetron sputtering of a compound target within framework of the dynamic scaling theory using atomic force microscopy. We have observed a crossover in scaling behavior of surface roughness at a deposition time of 25 min. Both the regimes are characterized by power-law dependence of local surface width w(r,t) on deposition time for small r, typical of anomalous scaling. The scaling exponents for the first regime indicate the existence of a new dynamics. For t≥25 min, the films follow super-rough scaling behavior with global exponents α=1.5±0.2 and β=1.03±0.01, and local exponents α local =1 and β local =0.67±0.05. The anomaly in the scaling behavior of the films is discussed in terms of the shadowing instability and bombardment of energetic particles during growth of the films.

  2. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V.; Kotov, V.A.; Balabanov, D.E.; Sharay, I.V.; Salyuk, O.Y.; Vasiliev, M.; Golub, V.O.

    2014-01-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd 3 Ga 5 O 12 substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi 2.8 Y 0.2 Fe 5 O 12 was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar + ion beams is a result of the substrate surface amorphization caused by the ion bombardment

  3. Surface and electron emission properties of hydrogen-free diamond-like carbon films investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Dongping; Zhang, Sam; Ong, S.-E.; Benstetter, Guenther; Du Hejun

    2006-01-01

    In this study, we have deposited hydrogen-free diamond-like carbon (DLC) films by using DC magnetron sputtering of graphite target at various r.f. bias voltages. Surface and nanoscale emission properties of these DLC films have been investigated using a combination of atomic force microscopy (AFM)-based nanowear tests and conducting-AFM, by simultaneously measuring the topography and the conductivity of the samples. Nanowear tests show that these DLC films are covered with the thin (1.5-2.0 nm) graphite-like layers at surfaces. Compared to the film bulk structure, the graphite-like surface layers are more conductive. The graphite-like surface layers significantly influence the electron emission properties of these films. Low-energy carbon species can be responsible for the formation of graphite-like surface layers. Nanoscale electron emission measurements have revealed the inhomogeneous emission nature of these films. The low-field emission from these films can be attributed to the existence of sp 2 -configured nanoclusters inside the films

  4. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Miyata, Toshihiro; Uozaki, Ryousuke; Sai, Hitoshi; Koida, Takashi

    2016-01-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film

  5. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Miyata, Toshihiro, E-mail: tmiyata@neptune.kanazawa-it.ac.jp [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Uozaki, Ryousuke [Optoelectronic Device System R& D Center, Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501 (Japan); Sai, Hitoshi; Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-09-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film.

  6. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Science.gov (United States)

    Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing

    2017-08-01

    Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.

  7. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  8. Thin-film limit formalism applied to surface defect absorption.

    Science.gov (United States)

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  9. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    Science.gov (United States)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  10. Formation of mixed and patterned self-assembled films of alkylphosphonates on commercially pure titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudzka, Katarzyna; Sanchez Treviño, Alda Y.; Rodríguez-Valverde, Miguel A., E-mail: marodri@ugr.es; Cabrerizo-Vílchez, Miguel A.

    2016-12-15

    Highlights: • Chemically-tailored titanium surfaces were prepared by self-assembly of alkylphosphonates. • Mixed self-assembled films were prepared with aqueous mixtures of two alkylphosphonates. • Single self-assembled films were altered by laser abrasion. • Mixed and patterned self-assembled films on titanium may guide the bone-like formation. - Abstract: Titanium is extensively employed in biomedical devices, in particular as implant. The self-assembly of alkylphosphonates on titanium surfaces enable the specific adsorption of biomolecules to adapt the implant response against external stimuli. In this work, chemically-tailored cpTi surfaces were prepared by self-assembly of alkylphosphonate molecules. By bringing together attributes of two grafting molecules, aqueous mixtures of two alkylphosphonates were used to obtain mixed self-assembled films. Single self-assembled films were also altered by laser abrasion to produce chemically patterned cpTi surfaces. Both mixed and patterned self-assembled films were confirmed by AFM, ESEM and X-ray photoelectron spectroscopy. Water contact angle measurements also revealed the composition of the self-assembly films. Chemical functionalization with two grafting phosphonate molecules and laser surface engineering may be combined to guide the bone-like formation on cpTi, and the future biological response in the host.

  11. Regional Densification of a Global VTEC Model Based on B-Spline Representations

    Science.gov (United States)

    Erdogan, Eren; Schmidt, Michael; Dettmering, Denise; Goss, Andreas; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.; Bothmer, Volker; Hinrichs, Johannes; Mrotzek, Niclas

    2017-04-01

    The project OPTIMAP is a joint initiative of the Bundeswehr GeoInformation Centre (BGIC), the German Space Situational Awareness Centre (GSSAC), the German Geodetic Research Institute of the Technical University Munich (DGFI-TUM) and the Institute for Astrophysics at the University of Göttingen (IAG). The main goal of the project is the development of an operational tool for ionospheric mapping and prediction (OPTIMAP). Two key features of the project are the combination of different satellite observation techniques (GNSS, satellite altimetry, radio occultations and DORIS) and the regional densification as a remedy against problems encountered with the inhomogeneous data distribution. Since the data from space-geoscientific mission which can be used for modeling ionospheric parameters, such as the Vertical Total Electron Content (VTEC) or the electron density, are distributed rather unevenly over the globe at different altitudes, appropriate modeling approaches have to be developed to handle this inhomogeneity. Our approach is based on a two-level strategy. To be more specific, in the first level we compute a global VTEC model with a moderate regional and spectral resolution which will be complemented in the second level by a regional model in a densification area. The latter is a region characterized by a dense data distribution to obtain a high spatial and spectral resolution VTEC product. Additionally, the global representation means a background model for the regional one to avoid edge effects at the boundaries of the densification area. The presented approach based on a global and a regional model part, i.e. the consideration of a regional densification is called the Two-Level VTEC Model (TLVM). The global VTEC model part is based on a series expansion in terms of polynomial B-Splines in latitude direction and trigonometric B-Splines in longitude direction. The additional regional model part is set up by a series expansion in terms of polynomial B-splines for

  12. Process Parameter Identification in Thin Film Flows Driven by a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Satyananda Panda

    2014-01-01

    Full Text Available The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009 who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.

  13. Chemical formation of palladium-free surface-nickelized polyimide film for flexible electronics

    International Nuclear Information System (INIS)

    Hsiao, Y.-S.; Whang, W.-T.; Wu, S.-C.; Chuang, Kuen-Ru

    2008-01-01

    Flexible polyimide (PI) films for flexible electronics were surface-nickelized using a fully solution-based process and excellent adhesion between the nickel and polyimide phases was observed. Polyimide substrates were modified by alkaline hydrolysis, ion exchange, reduction and nickel electroless deposition without palladium. Atomic force microscopy and field emission scanning electron microscopy were used to follow the growth of nickel nanoparticles (Ni-NPs) and nickel layers on the polyimide surface. The surface resistances of the Ni-NPs/PI films and Ni/PI films, measured using a four-point probe, were 1.6 x 10 7 and 0.83 Ω/cm 2 , respectively. The thicknesses of Ni-NPs and the Ni layer on the polyimide surface were 82 nm and 382 nm, respectively, as determined by transmission electron microscopy, and the Ni layer adhered well to PI, as determined by the adhesive tape testing method

  14. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    International Nuclear Information System (INIS)

    Liu Ai-Ping; Liu Min; Yu Jian-Can; Qian Guo-Dong; Tang Wei-Hua

    2015-01-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. (paper)

  15. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.

    Science.gov (United States)

    Efthimiadis, Jim; Neil, Wayne C; Bunter, Andrew; Howlett, Patrick C; Hinton, Bruce R W; MacFarlane, Douglas R; Forsyth, Maria

    2010-05-01

    The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg-Zn-Rare Earth (RE)-Zr, nominal composition approximately 4 wt % Zn, approximately 1.7 wt % RE (Ce), approximately 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P(6,6,6,14)][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of -200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

  16. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    Science.gov (United States)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  17. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures.

    Science.gov (United States)

    Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan

    2016-08-10

    The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting

  18. Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)

    Science.gov (United States)

    Krantz, Timothy Lewis

    2013-01-01

    The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.

  19. Surface reactivity and layer analysis of chemisorbed reaction films in ...

    Indian Academy of Sciences (India)

    Administrator

    Surface reactivity and layer analysis of chemisorbed reaction films in ... in the nitrogen environment. Keywords. Surface reactivity ... sium (Na–K) compounds in the coating or core of the ..... Barkshire I R, Pruton M and Smith G C 1995 Appl. Sur.

  20. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  1. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  2. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  3. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  4. The ocular surface and tear film and their dysfunction in dry eye disease.

    Science.gov (United States)

    Rolando, M; Zierhut, M

    2001-03-01

    The ocular surface, tear film, lacrimal glands, and eyelids act as a functional unit to preserve the quality of the refractive surface of the eye and to resist injury and protect the eye against changing bodily and environmental conditions. Events that disturb the homeostasis of this functional unit can result in a vicious cycle of ocular surface disease. The tear film is the most dynamic structure of the functional unit, and its production and turnover is essential to maintaining the health of the ocular surface. Classically, the tear film is reported to be composed of three layers: the mucin, aqueous, and lipid layers. The boundaries and real thickness of such layers is still under discussion. A dysfunction of any of these layers can result in dry eye disease.

  5. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    Science.gov (United States)

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging

  6. Effect of surface density silver nanoplate films toward surface-enhanced Raman scattering enhancement for bisphenol A detection

    Science.gov (United States)

    Bakar, N. A.; Salleh, M. M.; Umar, A. A.; Shapter, J. G.

    2018-03-01

    This paper reports a study on surface-enhanced Raman scattering (SERS) phenomenon of triangular silver nanoplate (NP) films towards bisphenol A (BPA) detection. The NP films were prepared using self-assembly technique with four different immersion times; 1 hour, 2 hours, 5 hours, and 8 hours. The SERS measurement was studied by observing the changes in Raman spectra of BPA after BPA absorbed on the NP films. It was found that the Raman intensity of BPA peaks was enhanced by using the prepared SERS substrates. This is clearly indicated that these SERS silver substrates are suitable to sense industrial chemical and potentially used as SERS detector. However, the rate of SERS enhancement is depended on the distribution of NP on the substrate surface.

  7. Studies on Gas Sensing Performance of Pure and Surface Chrominated Indium Oxide Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    D. N. CHAVAN

    2010-12-01

    Full Text Available The thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performance of thick film was tested for various gases. It showed maximum gas response to ethanol vapor at 350 oC for 80 ppm. To improve the gas response and selectivity of the film towards a particular gas, In2O3 thick films were modified by dipping them in an aqueous solution of 0.1 M CrO3 for different intervals of time. The surface chrominated (20 min In2O3 thick film showed maximum response to H2S gas (40 ppm than pure In2O3 thick film at 250 oC. Chromium oxide on the surface of the film shifts the gas response from ethanol vapor to H2S gas. A systematic study of sensing performance of the sensor indicates the key role played by chromium oxide on the surface of thick film. The selectivity, gas response and recovery time of the sensor were measured and presented.

  8. Effects of surface and bulk transverse fields on critical behaviour of ferromagnetic films

    International Nuclear Information System (INIS)

    Saber, A.; Lo Russo, S.; Mattei, G.

    2002-02-01

    The influence of surface and bulk transverse fields on the critical behaviour of a ferromagnetic Ising film is studied using the effective field theory based on a single-site cluster method. Surface exchange enhancement is considered and a critical value is obtained. The dependence of the critical uniform transverse field on film thickness, phase diagrams in the fields, critical surface transverse field versus the bulk one, and exchange coupling ratio are presented. (author)

  9. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    Science.gov (United States)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  10. Nanoscale mechanical and tribological properties of fluorocarbon films grafted onto plasma-treated low-density polyethylene surfaces

    International Nuclear Information System (INIS)

    Cheng, Q; Komvopoulos, K

    2012-01-01

    Fluorocarbon (FC) films were grafted onto Ar plasma-treated low-density polyethylene (LDPE) surfaces by plasma polymerization and deposition. The evolution of the surface morphology of the grafted FC films was investigated at different scales with an atomic force microscope. Nanoscale sliding experiments performed with a surface force microscope provided insight into the nanotribological properties of Ar plasma-treated LDPE, with and without grafted FC films, in terms of applied normal load and number of sliding cycles. The observed trends are explained in the context of microstructure models accounting for morphological and structure changes at the LDPE surface due to the effects of plasma treatment (e.g., selective etching of amorphous phase, chain crosslinking and FC film grafting) and surface sliding (e.g., crystalline lamellae alignment along the sliding direction). Nanoindentation experiments elucidated the effect of plasma treatment on surface viscoelasticity and global contact stiffness. The results of this study demonstrate that plasma-assisted grafting of FC films is an effective surface modification method for tuning the nanomechanical/tribological properties of polymers. (paper)

  11. Surface Properties of Squalene/Meibum Films and NMR Confirmation of Squalene in Tears

    Directory of Open Access Journals (Sweden)

    Slavyana Ivanova

    2015-09-01

    Full Text Available Squalene (SQ possesses a wide range of pharmacological activities (antioxidant, drug carrier, detoxifier, hydrating, emollient that can be of benefit to the ocular surface. It can come in contact with human meibum (hMGS; the most abundant component of the tear film lipid layer as an endogenous tear lipid or from exogenous sources as eyelid sebum or pharmaceuticals. The aims of this study were to determine (i if SQ is in tear lipids and (ii its influence on the surface properties of hMGS films. Heteronuclear single quantum correlation NMR confirmed 7 mol % SQ in Schirmer’s strips extracts. The properties of SQ/hMGS pseudo-binary films at the air/water interface were studied with Langmuir surface balance, stress-relaxation dilatational rheology and Brewster angle microscopy. SQ does not possess surfactant properties. When mixed with hMGS squalene (i localized over the layers’ thinner regions and (ii did not affect the film pressure at high compression. Therefore, tear SQ is unlikely to instigate dry eye, and SQ can be used as a safe and “inert” ingredient in formulations to protect against dry eye. The layering of SQ over the thinner film regions in addition to its pharmacological properties could contribute to the protection of the ocular surface.

  12. Synthesis and densification of Cu-coated Ni-based amorphous composite powders

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Byoung-Kee; Kim, Jin-Chun

    2007-01-01

    Spherical Ni 57 Zr 20 Ti 16 Si 2 Sn 3 (numbers indicate at.%) amorphous powders were produced by the gas atomization process, and ductile Cu phase was coated on the Ni-based amorphous powders by the spray drying process in order to increase the ductility of the consolidated amorphous alloy. The characteristics of the as-prepared powders and the consolidation behaviors of Cu-coated Ni-based amorphous composite powders were investigated. The atomization was conducted at 1450 deg. C under the vacuum of 10 -2 mbar. The Ni-based amorphous powders and Cu nitrate solution were mixed and sprayed at temperature of 130 deg. C. After spray drying and reduction treatment, the sub-micron size Cu powders were coated successfully on the surface of the atomized Ni amorphous powders. The spark plasma sintering process was applied to study the densification behavior of the Cu-coated composite powders. Thickness of the Cu layer was less than 1 μm. The compacts obtained by SPS showed high relative density of over 98% and its hardness was over 800 Hv

  13. Densification of Silica Spheres: A New Pathway to Nano-Dimensioned Zeolite-Based Catalysts.

    Science.gov (United States)

    Machoke, Albert Gonche Fortunatus; Apeleo Zubiri, Benjamin; Leonhardt, Rainer; Marthala, Venkata Ramana Reddy; Schmiele, Martin; Unruh, Tobias; Hartmann, Martin; Spiecker, Erdman; Schwieger, Wilhelm

    2017-08-16

    Nanosized materials are expected to play a unique role in the development of future catalytic processes. Herein, pre-prepared and geometrically well-defined amorphous silica spheres are densified into silica-rich zeolites with nanosized dimensions. After the densification, the obtained nanosized zeolites exhibit the same spherical morphology like the starting precursor but characterized by a drastically reduced size, higher density, and high crystallinity. The phase transformation into crystalline zeolite material and the densification effect are achieved through a well-controlled steam-assisted treatment of the larger precursor particles so that the transformation process proceeds always towards the center of the spheres, just like a shrinking process. Furthermore, this procedure is applicable also to commercially available silica particles, as well as aluminum-containing systems (precursors) leading to acidic nano-catalysts with improved catalytic performance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V. [Taurida National V.I. Vernadsky University, Vernadsky Avenue, 4, Simferopol, 95007 (Ukraine); Kotov, V.A. [V.A. Kotelnikov Institute of Radio Engineering and Electronics, RAS, 11 Mohovaya Street, Moscow, 125009 (Russian Federation); Balabanov, D.E. [Moscow Institute of Physics and Technology, Dolgoprudny, 141700 (Russian Federation); Sharay, I.V.; Salyuk, O.Y. [Institute of Magnetism, NAS of Ukraine, 03142, Kiev (Ukraine); Vasiliev, M. [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027 (Australia); Golub, V.O., E-mail: v_o_golub@yahoo.com [Institute of Magnetism, NAS of Ukraine, 03142, Kiev (Ukraine)

    2014-07-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd{sub 3}Ga{sub 5}O{sub 12} substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar{sup +} ion beams is a result of the substrate surface amorphization caused by the ion bombardment.

  15. Study and modelling of the in-pile densification of the UO{sub 2} and MO{sub x} nuclear oxides; Etude et modelisation de la densification en pile des oxydes nucleaires UO{sub 2} et MO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Boulore, A

    2001-03-01

    Amongst the many phenomena which take place in the course of the irradiation of UO{sub 2} or (U, Pu)O{sub 2} nuclear fuels, one of them involves the elimination of a fraction of the as-fabricated porosity. In-pile densification or sintering can reach 2.5%, i.e. approximately half the initial volume of pores is likely to disappear. Our literature survey indicates that the amplitude and kinetics of the phenomenon are both heavily dependent on the initial fuel microstructure. Micro-structural characterisation techniques of oxide fuels have therefore been developed in conjunction with quantitative image analysis methods. The ensuing methodology enables a quantitative comparison of micro-structural features in different fuels and has been applied to ascertaining the influence of the local fission rate and temperature on in-pile densification. It is thus revealed that in-pile operation eliminates a significant fraction of pores smaller than 3 microns in diameter. The experimental data generated has been used to set up a semi-empirical and a mechanistic model. The former is based on experimental results and is not essentially predictive. The inability of this model to predict the in-pile densification of oxide fuels is illustrated by the fact that the maximum fraction of pores that disappears is proportional to an empirical function of fission rate, and temperature. The proportionality factor appears to be difficult to correlate quantitatively to any given micro-structural feature. The model has however been applied to the interpretation of an in-pile densification experiment carried out in the Halden reactor (Norway). The latter model is mechanistic, i.e. it is based on the solution to a set of equations that describe the coupled temperature and radiation induced phenomena which occur in-pile. These can broadly be broken down into three categories: the fission fragment-pore interaction, the creation of point defects as the fission fragments slow down, and the diffusion

  16. Tunable surface wettability and water adhesion of Sb{sub 2}S{sub 3} micro-/nanorod films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xin; Zhao, Huiping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Yang, Hao, E-mail: hyangwit@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Liu, Yunling [State Key laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yan, Guoping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China)

    2014-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) films were successfully prepared by spin coating Sb{sub 2}S{sub 3} micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb{sub 2}S{sub 3} micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb{sub 2}S{sub 3} films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb{sub 2}S{sub 3} micro-/nanorod. Sb{sub 2}S{sub 3} film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, “Gecko” state and Cassie's state for Sb{sub 2}S{sub 3} film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb{sub 2}S{sub 3} films.

  17. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    International Nuclear Information System (INIS)

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-01-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF 4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF 4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic

  18. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seung Yun [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Eung-Sam [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Jeon, Gumhye [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Choi, Kwan Yong, E-mail: kchoi@postech.ac.kr [School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Kim, Jin Kon, E-mail: jkkim@postech.ac.kr [National Creative Research Center for Block Copolymer Self-Assembly, Departments of Environmental Science and Engineering and Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF{sub 4} and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF{sub 4} plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ∼ 11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Highlights: ► New approach based on plasma treatment to independently control the surface topography and wettability ► The adhesion of human fetal osteoblast (hFOB) was enhanced on a surface with an average roughness of ∼ 11 nm. ► The adhesion and proliferation of hFOB was maximized when nanotextured surface became highly hydrophilic.

  19. Surface modification of polyethylene films using atmospheric ...

    African Journals Online (AJOL)

    An atmospheric-pressure plasma jet (APPJ) is used to increase the wettability of polyethylene polymer films. Reduction in contact angle from 94.32 to 58.33 degrees was measured for treatment times of 1 - 5 seconds. Contact angle reductions of PE as a function of treatment time with APPJ and PE surface at various oxygen ...

  20. Surface modification of parylene-N films for the culture of osteoblast-like cells (MG-63)

    Energy Technology Data Exchange (ETDEWEB)

    Liaqat, Usman [Graduate Program of Nano Science and Technology, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Ko, Hyuk [Department of Materials Science and Engineering, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Suh, Hwal [Graduate Program of Nano Science and Technology, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Department of Medical Engineering, College of Medicine, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Lee, Misu [Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 406-772 (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50-Yonsei Ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2016-08-15

    Highlights: • Osteoblast-like cells (MG-63) was cultured on differently modified surfaces of parylene films. • Proliferation of MG-63 was observed to be far increased on UV-treated parylene-N film. • The influences of UV-treatment were found out on cell viability, proliferation rate and cell cycle. • The influence was estimated to be negligible on the protein synthesis, cell differentiation. • The UV-treated parylene-N was demonstrated to be effectively used for the culture of MG-63. - Abstract: The influence of microenvironments on the culture of osteoblast-like cells (MG-63) has been investigated using parylene films with different surfaces, such as parylene-N film, UV-modified parylene-N film, functional parylene film with amine groups (parylene-A), and UV-modified parylene-A film. In this work, parylene-N film was found to induce dramatic changes in cell adhesion and cell viability before and after UV-treatment with respect to the culture of osteoblast-like cells (MG-63). The influences of such a chemical environment on cell culture were investigated in relation to the cell proliferation (viability and proliferation rate) and the cell physiology (cell cycle, protein synthesis, and differentiation) of cells grown on parylene-N film, UV-modified parylene-N film, parylene-A film, and UV-modified parylene-A film in comparison with cells grown on a polystyrene surface.

  1. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  2. SIRGAS: ITRF densification in Latin America and the Caribbean

    Science.gov (United States)

    Brunini, C.; Costa, S.; Mackern, V.; Martínez, W.; Sánchez, L.; Seemüller, W.; da Silva, A.

    2009-04-01

    The continental reference frame of SIRGAS (Sistema de Referencia Geocéntrico para las Américas) is at present realized by the SIRGAS Continuously Operating Network (SIRGAS-CON) composed by about 200 stations distributed over all Latin America and the Caribbean. SIRGAS member countries are qualifying their national reference frames by installing continuously operating GNSS stations, which have to be consistently integrated into the continental network. As the number of these stations is rapidly increasing, the processing strategy of the SIRGAS-CON network was redefined during the SIRGAS 2008 General Meeting in May 2008. The new strategy relies upon the definition of two hierarchy levels: a) A core network (SIRGAS-CON-C) with homogeneous continental coverage and stabile site locations ensures the long-term stability of the reference frame and provides the primary link to the ITRS. Stations belonging to this network have been selected so that each country contributes with a number of stations defined according to its surface and guarantying that the selected stations are the best in operability, continuity, reliability, and geographical coverage. b) Several densification sub-networks (SIRGAS-CON-D) improve the accessibility to the reference frame. The SIRGAS-CON-D sub-networks shall correspond to the national reference frames, i.e., as an optimum there shall be as many sub-networks as countries in the region. The goal is that each country processes its own continuously stations following the SIRGAS processing guidelines, which are defined in accordance with the IERS and IGS standards and conventions. Since at present not all of the countries are operating a processing centre, the existing stations are classified in three densification networks (a Northern, a middle, and a Southern one), which are processed by three local processing centres until new ones are installed. As SIRGAS is defined as a densification of the ITRS, stations included in the core network, as

  3. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  4. Interfacial slippage effect on the surface instability of a thin elastic film under van der Waals force

    International Nuclear Information System (INIS)

    Pan Xiahui; Yu Shouwen; Feng Xiqiao; Huang Shiqing

    2009-01-01

    This paper studies the surface instability of an elastic thin solid film lying on a rigid substrate and subjected to van der Waals-like surface interactions. The effect of film-substrate interfacial slippage is accounted for by using a simplified linear cohesive interface model. It is found that the interfacial slippage generally plays a destabilizing role in the surface instability of the thin film. For highly compressible films with Poisson's ratio smaller than 0.25, the surface wrinkling behaviour previously inconceivable in the case of a perfectly bonded interface is now feasible if film-substrate interface slipping is permitted. In addition, our linear perturbation analysis shows that the critical conditions for the onset of surface instability can be modulated by adjusting the slippery stiffness of the interface. The result might be helpful for developing novel techniques to create micro-/nanosized surface patterns.

  5. Improved antibacterial behavior of titanium surface with torularhodin–polypyrrole film

    International Nuclear Information System (INIS)

    Ungureanu, Camelia; Popescu, Simona; Purcel, Gabriela; Tofan, Vlad; Popescu, Marian; Sălăgeanu, Aurora; Pîrvu, Cristian

    2014-01-01

    The problem of microorganisms attaching and proliferating on implants and medical devices surfaces is still attracting interest in developing research on different coatings based on antibacterial agents. The aim of this work is centered on modifying titanium (Ti) based implants surfaces through incorporation of a natural compound with antimicrobial effect, torularhodin (T), by means of a polypyrrole (PPy) film. This study tested the potential antimicrobial activity of the new coating against a range of standard bacterial strains: Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and Pseudomonas aeruginosa. The morphology, physical and electrochemical properties of the synthesized films were assessed by SEM, AFM, UV–Vis, FTIR and cyclic voltammetry. In addition, biocompatibility of this new coating was evaluated using L929 mouse fibroblast cells. The results showed that PPy–torularhodin composite film acts as a corrosion protective coating with antibacterial activity and it has no harmful effect on cell viability. - Highlights: • Modification of titanium surfaces by incorporating a natural compound • new PPy - torularhodin corrosion protective composite coatings • antibacterial activity for the new PPy - torularhodin coating • cytocompatibility of new coating was demonstrated using mouse fibroblast cells

  6. Improved antibacterial behavior of titanium surface with torularhodin–polypyrrole film

    Energy Technology Data Exchange (ETDEWEB)

    Ungureanu, Camelia; Popescu, Simona; Purcel, Gabriela [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania); Tofan, Vlad [“Cantacuzino” National Institute of Research-Development for Microbiology and Immunology, 103 Splaiul Independentei, Sector 5, 050096 Bucharest (Romania); Popescu, Marian [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania); National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190 Bucharest (Romania); Sălăgeanu, Aurora [“Cantacuzino” National Institute of Research-Development for Microbiology and Immunology, 103 Splaiul Independentei, Sector 5, 050096 Bucharest (Romania); Pîrvu, Cristian, E-mail: c_pirvu@chim.pub.ro [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania)

    2014-09-01

    The problem of microorganisms attaching and proliferating on implants and medical devices surfaces is still attracting interest in developing research on different coatings based on antibacterial agents. The aim of this work is centered on modifying titanium (Ti) based implants surfaces through incorporation of a natural compound with antimicrobial effect, torularhodin (T), by means of a polypyrrole (PPy) film. This study tested the potential antimicrobial activity of the new coating against a range of standard bacterial strains: Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and Pseudomonas aeruginosa. The morphology, physical and electrochemical properties of the synthesized films were assessed by SEM, AFM, UV–Vis, FTIR and cyclic voltammetry. In addition, biocompatibility of this new coating was evaluated using L929 mouse fibroblast cells. The results showed that PPy–torularhodin composite film acts as a corrosion protective coating with antibacterial activity and it has no harmful effect on cell viability. - Highlights: • Modification of titanium surfaces by incorporating a natural compound • new PPy - torularhodin corrosion protective composite coatings • antibacterial activity for the new PPy - torularhodin coating • cytocompatibility of new coating was demonstrated using mouse fibroblast cells.

  7. Free surface entropic lattice Boltzmann simulations of film condensation on vertical hydrophilic plates

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir

    2015-01-01

    A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall. It is sh......A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall...

  8. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  9. Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods

    Directory of Open Access Journals (Sweden)

    Jorge Nicolás Cabrera

    2017-08-01

    Full Text Available Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs and magnetic cobalt ferrites (CoFe2O4 prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field H. The chemical method was based on exposing the films to bromine vapours and then UV-irradiating. The characterizing techniques included scanning electron microscopy (SEM, energy-dispersive spectroscopy (EDS, Fourier transform infrared (FTIR spectroscopy, optical microscopy, atomic force microscopy (AFM and magnetic force microscopy (MFM. The surface roughness was quantitatively analyzed by AFM. In the physical method, the random dispersion of MWCNTs (1% w/w and magnetic nanoparticles (2% w/w generated a roughness increase of about 200% (with respect to PDMS films without any treatment, but that change was 400% for films cured in the presence of H perpendicular to the surface. SEM, AFM and MFM showed that the magnetic particles always remained attached to the carbon nanotubes, and the effect on the roughness was interpreted as being due to a rupture of dispersion randomness and a possible induction of structuring in the direction of H. In the chemical method, the increase in roughness was even greater (1000%. Wells were generated with surface areas that were close to 100 μm2 and depths of up to 500 nm. The observations of AFM images and FTIR spectra were in agreement with the hypothesis of etching by Br radicals generated by UV on the polymer chains. Both methods induced important changes in the surface roughness (the chemical method generated the greatest changes due to the formation of surface wells, which are of great importance in superficial technological processes.

  10. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  11. Optical properties and surface topography of CdCl2 activated CdTe thin films

    Science.gov (United States)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  12. Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process

    International Nuclear Information System (INIS)

    Kim, Sung Hoon

    2001-01-01

    Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices

  13. Study of surface cleaning methods and pyrolysis temperatures on nanostructured carbon films using x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kerber, Pranita; Porter, Lisa M.; McCullough, Lynne A.; Kowalewski, Tomasz; Engelhard, Mark; Baer, Donald [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Chemistry Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2012-11-15

    Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of diblock copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, 177 (2009)]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of diblock copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) at two different temperatures were carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % nitrogen was present in the films pyrolyzed at 600 Degree-Sign C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration decreased significantly for films pyrolyzed at 900 Degree-Sign C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen subpeaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic clusters, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 Degree-Sign C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.

  14. ITO-MgF2 Film Development for PowerSphere Polymer Surface Protection

    Science.gov (United States)

    Hambourger, Paul D.; Kerslake, Thomas W.; Waters, Deborah L.

    2004-01-01

    Multi-kilogram class microsatellites with a PowerSphere electric power system are attractive for fulfilling a variety of potential NASA missions. However, PowerSphere polymer surfaces must be coated with a film that has suitable electrical sheet resistivity for electrostatic discharge control, be resistant to atomic oxygen attack, be transparent to ultraviolet light for composite structure curing and resist ultraviolet light induced darkening for efficient photovoltaic cell operation. In addition, the film must be tolerant of polymer layer folding associated with launch stowage of PowerSphere inflatable structures. An excellent film material candidate to meet these requirements is co-sputtered, indium oxide (In2O3) - tin oxide (SnO2), known as 'ITO', and magnesium fluoride (MgF2). While basic ITO-MgF2 film properties have been the subject of research over the last decade, further research is required in the areas of film durability for space-inflatable applications and precise film property control for large scale commercial production. In this paper, the authors present film durability results for a folded polymer substrate and film resistance to vacuum UV darkening. The authors discuss methods and results in the area of film sheet resistivity measurement and active control, particularly dual-channel, plasma emission line measurement of ITO and MgF2 plasma sources. ITO-MgF2 film polymer coupon preparation is described as well as film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed microscopically and electrically. Results show that an approx. 500A ITO-18vol% MgF2 film is a promising candidate to protect PowerSphere polymer surfaces for Earth orbit missions. Preliminary data also indicate that in situ film measurement methods are promising for active film resistivity control in future large scale production. Future film research plans are also

  15. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    International Nuclear Information System (INIS)

    Liu, Yang; Ren, Li; Wang, Yingjun

    2014-01-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair

  16. A novel collagen film with micro-rough surface structure for corneal epithelial repair fabricated by freeze drying technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Ren, Li, E-mail: psliren@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang, Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2014-05-01

    Highlights: • Collagen film with micro-rough surface is fabricated by freeze drying technique. • The film has suitable water uptake capability and toughness performance. • The film has good optical performance. • Human corneal epithelial cells studies confirmed the biocompatibility of the film. - Abstract: Corneal epithelial defect is a common disease and keratoplasty is a common treatment method. A collagen film with micro-rough surface was fabricated through a simple freeze drying technique in this study. Compared with the air-dried collagen film (AD-Col), this freeze-dried collagen film (FD-Col) has a more suitable water uptake capability (about 85.5%) and toughness performance. Both of the two films have good optical properties and the luminousness of them is higher than 80%. Besides, the adhesion and proliferation rate of human corneal epithelial cells on the micro-rough surface of FD-Col film is higher than that on the smooth surface of AD-Col film. The results indicate that this FD-Col film may have potential applications for corneal epithelial repair.

  17. Surface resistance of RE123 films with artificial pinning centers

    International Nuclear Information System (INIS)

    Mukaida, M.; Saito, A.; Kita, R.; Matsumoto, K.; Ichinose, A.; Yoshida, Y.; Horii, S.; Yamada, K.; Mori, N.

    2006-01-01

    Effects of artificial pinning centers (APCs) into ErBa 2 Cu 3 O 7-δ films are discussed. The APCs used in this paper is BaZrO 3 and Zn which are mixed into ErBa 2 Cu 3 O 7-δ ceramic targets. The targets with various contents of APCs are ablated and films are grown on substrates with the APCs. X-ray diffraction patterns show there are no other phases than ErBa 2 Cu 3 O 7-δ and APCs. Transmission electron microscopy (TEM) shows the BaZrO 3 APSs grow along the c-axis of the films. The introduction of APCs decreases surface resistance (R S ) of ErBa 2 Cu 3 O 7-δ films and increases critical current density (J C ) of the films. R S measurements revealed that the ErBa 2 Cu 3 O 7-δ films with APCs showed a lower R S than that of the ErBa 2 Cu 3 O 7-δ films without APCs

  18. Optical properties of WO3 thin films using surface plasmon resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay; Tomar, Monika

    2014-01-01

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO 3 thin films. WO 3 thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO 3 thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO 3 thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO 3 /Au/prism structure were utilized to estimate the dielectric properties of WO 3 thin films at optical frequency (λ = 633 nm). As the thickness of WO 3 thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO 3 film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light

  19. Fuel densification study about uranium- 7% nanostructured gadolinium (Gd2O3)

    International Nuclear Information System (INIS)

    Serafim, Antonio da Costa

    2016-01-01

    The sintering process of UO 2 -Gd 2 O 3 pellets has been investigated in this work for its importance in the nuclear industry and for its complex behavior during sintering. Sintering blockage occurs from 1300 deg C upwards, when densification is shifted toward higher temperatures and the final density obtained is decreased. This research includes the development of nuclear fuel for power reactors in order to increase its efficiency inside the reactor core by raising the burnup. The use of nanosized Gd 2 O 3 was studied in the range from 10 to 30nm, which was added to UO 2 , trying to verify the occurrence of characteristic sintering blockage due to Kirkendall sintering effect observed in previous research. The samples were produced by dry mechanical mixture of UO 2 powder and 7% Gd 2 O 3 (macro- and nanostructured). The powders were compacted and the pellets were sintered at 1700 deg C under H 2 atmosphere. These results indicate that the characteristic blockage during sintering in macrostructured system UO 2 -Gd 2 O 3 occurred in the temperature range of 1300-1500 deg C, which slows down the densification. It was observed a less intense effect when using the nanostructured Gd 2 O 3 ; it took place at the temperature of 900 deg C, then facilitating to get an additional densification. The dilatometric tests indicated shrinkage of 22, 18 and 20% respectively in UO 2 pellets, macrostructured UO 2 -7% Gd 2 O 3 and nanostructured UO 2 -7%Gd 2 O 3 . We detected 2% higher shrinkage, when nanostructured Gd 2 O 3 was used instead of macrostructured Gd 2 O 3 , which is used commercially. Then, the nanostructured results showed more adequate density for nuclear fuel usage. (author)

  20. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was emp...

  1. Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates.

    Science.gov (United States)

    Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J

    2017-11-01

    Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.

  2. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Shen, Xin; Zhou, Huan [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Graphical abstract: - Highlights: • Chitosan film was modified by surface grafting of citric acid. • The modified film has good hydrophilicity and moisture-retaining capacity. • The citric acid grafting treatment significantly promote the biomineralization. • MC3T3-E1 osteoblasts research confirms the biocompatibility of the film. - Abstract: We develop a novel chitosan–citric acid film (abbreviated as CS–CA) suitable for biomedical applications in this study. In this CS–CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS–CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS–CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS–CA film. This CS–CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  3. The Formation Mechanism of Cu(In0.7Ga0.3Se2 Nanoparticles and the Densification Trajectory of the Se-Rich Quaternary Target by Hot Pressing

    Directory of Open Access Journals (Sweden)

    Qiang Ma

    2018-03-01

    Full Text Available In this paper, a method to obtain the CuInGaSe2 (CIGS absorber layer with an appropriate selenium content is put forward, in which a Se-rich target is used to deposit a CIGS thin-film and this film is annealed in a Se-free inert atmosphere. The key issue of this method is the preparation of a Se-rich target with a homogeneous composition and a high-density. The formation mechanism of CuInSe2 and CuGaSe2 is investigated and the results point to the intermediate phase Cu2−xSe playing a role of a nucleation core. The sintering densification trajectory of the target with the addition of extra selenium is researched. Additionally, an effective way to avoid the sintering defects is proposed. Finally, a conversion efficiency of 11.2% for the CIGS solar cell is reached by sputtering from the obtained Se-rich target.

  4. Incompressible flows of superfluid films on multiply-connected surfaces

    International Nuclear Information System (INIS)

    Corrada-Emmanuel, A.

    1989-01-01

    The theory of Riemann surfaces is applied to the problem of constructing quantized vortex flows in closed surfaces of arbitrary but finite genus. An in principle procedure for obtaining the lowest energy flow is presented. It is shown that quantized vortices in non-zero genus surfaces are, in general, not isomorphic to a Coulomb gas. This failure has a geometrical origin: the appearance in non-zero genus surfaces of closed curves that are not the boundary of any area. A theorem of Riemann is applied to the genus one surface, the torus, to show quantitatively how to construct the quantized vortices. Because of the breakdown in the isomorphism between quantized vortices and charges, a novel effect is possible: the violation of Earnshaw's theorem. On a torus a single vortex can be placed in local stable equilibrium. The uniform flows around the holes of the torus also lead to a new result: a non-vortex mechanism for the destruction of superfluidity in the film. An explicit formula is derived showing this effect by considering the response of a helium film to a rotation of the torus. The author predicts that torii of dissimilar proportions will exhibit different superfluid densities at the same temperature

  5. Surface modification and adhesion improvement of PTFE film by ion beam irradiation

    International Nuclear Information System (INIS)

    Lee, S.W.; Hong, J.W.; Wye, M.Y.; Kim, J.H.; Kang, H.J.; Lee, Y.S.

    2004-01-01

    The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2 + ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2 + ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and -CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the C-O complex and -CF-radical with mechanical interlocking. The C-O complex and -CF-radical in O 2 + ion irradiated surface contributed to the adhesion

  6. Sub-Saharan Africa’s rail freight transport system: Potential impact of densification on cost

    Directory of Open Access Journals (Sweden)

    Anneke de Bod

    2010-11-01

    Full Text Available The main response to sub-Saharan Africa’s (SSA challenges has been foreign aid. Yet, despite the large amounts received, the challenges remain. There is an opportunity to consider a different model with less focus on aid and more on investment. In the transport sector specifically, investment decisions should be informed by a longterm optimal balance between different transport modes. The research presented in this paper highlights the significant cost reduction opportunities possible through the densification of rail freight, especially over longer distances, with concomitant implications for increased profitability for rail operators. The densification opportunity should also place a core focus on transport corridors being developed throughout the region. SSA countries themselves can play a critical role in unlocking this potential through, inter alia, simplifying regional economic communities and taking the lead in structuring agreements with the international community.

  7. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    International Nuclear Information System (INIS)

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-01-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique

  8. Absence of surface stress change during pentacene thin film growth on the Si(111)-(7 x 7) surface: a buried reconstruction interface

    International Nuclear Information System (INIS)

    Kury, P; Horn von Hoegen, M; Heringdorf, F-J Meyer zu; Roos, K R

    2008-01-01

    We use high-resolution surface stress measurements to monitor the surface stress during the growth of pentacene (C 22 H 14 ) on the (7x7) reconstructed silicon (111) surface. No significant change in the surface stress is observed during the pentacene growth. Compared to the changes in the surface stress observed for Si and Ge deposition on the Si(111)-(7x7) surface, the insignificant change in the surface stress observed for the pentacene growth suggests that the pentacene molecules of the first adsorbate layer, although forming strong covalent bonds with the Si adatoms, do not alter the structure of the (7x7) reconstruction. The (7x7) reconstruction remains intact and, with subsequent deposition of pentacene, eventually becomes buried under the growing film. This failure of the pentacene to affect the structure of the reconstruction may represent a fundamental difference between the growth of organic thin films and that of inorganic thin films on semiconductor surfaces

  9. Optical, structural and surface characterization of ultrasonically sprayed CdO:F films

    International Nuclear Information System (INIS)

    Akyuz, I.; Kose, S.; Ketenci, E.; Bilgin, V.; Atay, F.

    2011-01-01

    Research highlights: → The effect of F doping on the optical, structural and surface properties of ultrasonically sprayed CdO films has been investigated. F doping affected each of these properties. → The low cost of the production system is an advantage for potential applications of these films. CF4 film caused the transmittance values to increase which is a desired development for transparent conducting oxide industry. → Low reflectance value of CF2 film makes this sample a promising material for anti-reflection coatings. → F doping has found to be an alternative solution to increase the narrow band gap of CdO films. This is an other development of CdO:F films for optoelectronic and photovoltaic solar cell applications. → Rough samples may be an alternative in single-junction μc-Si solar cells having superstrate configuration. When we take into account the refractive index and rough surface of the samples, rough interface between a low refractive index material (CdO:F, n ∼ 1.6) and a high refractive index material (for Si n ∼ 3.7) results in reduced reflection due to gradual refractive index matching. In order to increase this effect high rms roughness (R q ) values needed. Also this will allow light trapping into Si layer and cause back and forth scattering at the interfaces increasing the optical path within the Si layer. - Abstract: In this work, we report the effect of F doping on some physical properties of CdO films. Ultrasonic spray pyrolysis technique has been used to obtain the films. Thicknesses, refractive indices and extinction coefficients of the films have been determined by spectroscopic ellipsometry technique using Cauchy-Urbach model for fitting. Transmission and reflectance spectra have been taken by UV spectrophotometer, and band gap values have been determined by optical method. X-ray diffraction patterns have been used to study the structural properties such as crystallinity level, texture coefficient, crystallite size and

  10. The microwave surface impedance of MgB2 thin films

    International Nuclear Information System (INIS)

    Purnell, A J; Zhukov, A A; Nurgaliev, T; Lamura, G; Bugoslavsky, Y; Lockman, Z; MacManus-Driscoll, J L; Zhai, H Y; Christen, H M; Paranthaman, M P; Lowndes, D H; Jo, M H; Blamire, M G; Hao, Ling; Gallop, J C; Cohen, L F

    2003-01-01

    In this paper we present the results of measurements of the microwave surface impedance of a powder sample and two films of MgB 2 . The powder sample has a T c = 39 K and the films have T c = 29 K and 38 K. These samples show different temperature dependences of the field penetration depth. Over a period of six months, the film with T c = 38 K degraded to a T c of 35 K. We compare the results on all samples with data obtained elsewhere and discuss the implications as far as is possible at this stage

  11. Tuning the electronic properties at the surface of BaBiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ferreyra, C. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Guller, F.; Llois, A. M.; Vildosola, V. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Marchini, F.; Williams, F. J. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires (Argentina); Lüders, U. [CRISMAT, CNRS UMR 6508, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen Cedex 4 (France); Albornoz, C. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Leyva, A. G. [GIyA y INN, CNEA, Av.Gral Paz 1499, (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, UNSAM, Campus Miguelete, (1650), San Martín, Buenos Aires (Argentina); and others

    2016-06-15

    The presence of 2D electron gases at surfaces or interfaces in oxide thin films remains a hot topic in condensed matter physics. In particular, BaBiO{sub 3} appears as a very interesting system as it was theoretically proposed that its (001) surface should become metallic if a Bi-termination is achieved (Vildosola et al., PRL 110, 206805 (2013)). Here we report on the preparation by pulsed laser deposition and characterization of BaBiO{sub 3} thin films on silicon. We show that the texture of the films can be tuned by controlling the growth conditions, being possible to stabilize strongly (100)-textured films. We find significant differences on the spectroscopic and transport properties between (100)-textured and non-textured films. We rationalize these experimental results by performing first principles calculations, which indicate the existence of electron doping at the (100) surface. This stabilizes Bi ions in a 3+ state, shortens Bi-O bonds and reduces the electronic band gap, increasing the surface conductivity. Our results emphasize the importance of surface effects on the electronic properties of perovskites, and provide strategies to design novel oxide heterostructures with potential interface-related 2D electron gases.

  12. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  13. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    International Nuclear Information System (INIS)

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-01-01

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed

  14. Determining surface coverage of ultra-thin gold films from X-ray reflectivity measurements

    International Nuclear Information System (INIS)

    Kossoy, A.; Simakov, D.; Olafsson, S.; Leosson, K.

    2013-01-01

    The paper describes usage of X-ray reflectivity for characterization of surface coverage (i.e. film continuity) of ultra-thin gold films which are widely studied for optical, plasmonic and electronic applications. The demonstrated method is very sensitive and can be applied for layers below 1 nm. It has several advantages over other techniques which are often employed in characterization of ultra-thin metal films, such as optical absorption, Atomic Force Microscopy, Transmission Electron Microscopy or Scanning Electron Microscopy. In contrast to those techniques our method does not require specialized sample preparation and measurement process is insensitive to electrostatic charge and/or presence of surface absorbed water. We validate our results with image processing of Scanning Electron Microscopy images. To ensure precise quantitative analysis of the images we developed a generic local thresholding algorithm which allowed us to treat series of images with various values of surface coverage with similar image processing parameters. - Highlights: • Surface coverage/continuity of ultra-thin Au films (up to 7 nm) was determined. • Results from X-ray reflectivity were verified by scanning electron microscopy. • We developed local thresholding algorithm to treat non-homogeneous image contrast

  15. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  16. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    International Nuclear Information System (INIS)

    Nagao, Yuki; Kubo, Takahiro

    2014-01-01

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system

  17. Synthesis of ZnO based nanopowders via a non-hydrolytic sol gel technique and their densification behaviour and varistor properties

    Directory of Open Access Journals (Sweden)

    Shereef Anas

    2010-03-01

    Full Text Available Hexagonal nanocrystalline varistor grade ZnO particles with size 50 nm and the specific surface area of 28 m2/g have been prepared by non-aqueous gelation technique involving diethylene glycol and triethanolamine. The as-prepared varistor nanopowders were analyzed with the support of XRD, TG/DTA, FTIR, TMA, SEM and TEM. Varistor discs were fabricated by pressing and their densification was studied at 850, 950, 1050 and 1150°C. The evolution of varistor microstructures, extent of grain growth and the influence of microstructure on the I-V properties were explored and presented.

  18. Surface characterization of superconductive Nd1Ba2Cu3Oy thin films using scanning probe microscopes

    International Nuclear Information System (INIS)

    Ting, W.; Badaye, M.; Itti, R.; Morishita, T.; Koshizuka, N.; Tanaka, S.

    1996-01-01

    Recently, superconductive Nd 1 Ba 2 Cu 3 O y (Nd123) thin films with high superconducting transition temperature (T c ) have been successfully fabricated at the authors institute employing the standard laser ablation method. In this paper, they report parts of the results of surface characterization of the Nd123 thin films using an ultrahigh vacuum scanning tunneling microscope/spectroscopy (UHV-STM/STS) and an atomic force microscope (AFM) system operated in air. Clear spiral pattern is observed on the surfaces of Nd123 thin films by STM and AFM, suggesting that films are formed by two-dimensional island growth mode at the final growing stage. Contour plots of the spirals show that the step heights of the spirals are not always the integer or half integer numbers of the c-axis parameter of the structure. This implies that the surface natural termination layer of the films may not be unique. Surface atomic images of the as-prepared Nd123 thin films are obtained employing both STM and AFM. STS measurements show that most of the surfaces are semiconductive, or sometimes even metallic. The results of STS measurements together with the fact that they are able to see the surface atomic images using scanning probe microscopes suggest that exposure to air does not cause serious degradation to the as-prepared surfaces of Nd123 thin films

  19. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  20. Surface crystallographic structures of cellulose nanofiber films and overlayers of pentacene

    Science.gov (United States)

    Nakayama, Yasuo; Mori, Toshiaki; Tsuruta, Ryohei; Yamanaka, Soichiro; Yoshida, Koki; Imai, Kento; Koganezawa, Tomoyuki; Hosokai, Takuya

    2018-03-01

    Cellulose nanofibers or nanocellulose is a promising recently developed biomass and biodegradable material used for various applications. In order to utilize this material as a substrate in organic electronic devices, thorough understanding of the crystallographic structures of the surfaces of the nanocellulose composites and of their interfaces with organic semiconductor molecules is essential. In this work, surface crystallographic structures of nanocellulose films (NCFs) and overlayers of pentacene were investigated by two-dimensional grazing-incidence X-ray diffraction. The NCFs are found to crystallize on solid surfaces with the crystal lattice preserving the same structure of the known bulk phase, whereas distortion of interchain packing toward the surface normal direction is suggested. The pentacene overlayers on the NCFs are found to form the thin-film phase with an in-plane mean crystallite size of over 10 nm.

  1. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    Science.gov (United States)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  2. Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment

    Science.gov (United States)

    Liu, Ai-Ping; Liu, Min; Yu, Jian-Can; Qian, Guo-Dong; Tang, Wei-Hua

    2015-05-01

    Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272237, 51272231, and 51010002) and the China Postdoctoral Science Foundation (Grant Nos. 2012M520063, 2013T60587, and Bsh1201016).

  3. Densification and grain growth during sintering of porous Ce0.9Gd0.1O1.95tape cast layers: A comprehensive study on heuristic methods

    DEFF Research Database (Denmark)

    Ni, De Wei; Schmidt, Cristine Grings; Teocoli, Francesca

    2013-01-01

    The sintering behavior of porous Ce0.9Gd0.1O1.95(CGO10) tape cast layers was systematically investigated to establish fundamental kinetic parameters associated to densification and grain growth. Densification and grain growth were characterized by a set of different methods to determine the domin...... and grain boundary mobility in the porous body was estimated around 10−18–10−16m3N−1s−1 at the investigated temperature range.© 2013 Elsevier Ltd. All rights reserved.......The sintering behavior of porous Ce0.9Gd0.1O1.95(CGO10) tape cast layers was systematically investigated to establish fundamental kinetic parameters associated to densification and grain growth. Densification and grain growth were characterized by a set of different methods to determine...... the dominant sintering mechanisms and kinetics, both in isothermal and at constant heating rate (iso-rate) conditions. Densification of porous CGO10 tape is thermally activated with typical activation energy which was estimated around 440–470 kJ mol−1. Grain growth showed similar thermal activation energy...

  4. Strain transfer through film-substrate interface and surface curvature evolution during a tensile test

    Science.gov (United States)

    He, Wei; Han, Meidong; Goudeau, Philippe; Bourhis, Eric Le; Renault, Pierre-Olivier; Wang, Shibin; Li, Lin-an

    2018-03-01

    Uniaxial tensile tests on polyimide-supported thin metal films are performed to respectively study the macroscopic strain transfer through an interface and the surface curvature evolution. With a dual digital image correlation (DIC) system, the strains of the film and the substrate can be simultaneously measured in situ during the tensile test. For the true strains below 2% (far beyond the films' elastic limit), a complete longitudinal strain transfer is present irrespective of the film thickness, residual stresses and microstructure. By means of an optical surface profiler, the three-dimensional (3D) topography of film surface can be obtained during straining. As expected, the profile of the specimen center remains almost flat in the tensile direction. Nevertheless, a relatively significant curvature evolution (of the same order with the initial curvature induced by residual stresses) is observed along the transverse direction as a result of a Poisson's ratio mismatch between the film and the substrate. Furthermore, finite element method (FEM) has been performed to simulate the curvature evolution considering the geometric nonlinearity and the perfect strain transfer at the interface, which agrees well with the experimental results.

  5. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  6. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability.

    Science.gov (United States)

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ~11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Tailoring surface properties of ArF resists thin films with functionally graded materials (FGM)

    Science.gov (United States)

    Takemoto, Ichiki; Ando, Nobuo; Edamatsu, Kunishige; Fuji, Yusuke; Kuwana, Koji; Hashimoto, Kazuhiko; Funase, Junji; Yokoyama, Hiroyuki

    2007-03-01

    Our recent research effort has been focused on new top coating-free 193nm immersion resists with regard to leaching of the resist components and lithographic performance. We have examined methacrylate-based resins that control the surface properties of ArF resists thin films by surface segregation behavior. For a better understanding of the surface properties of thin films, we prepared the six resins (Resin 1-6) that have three types fluorine containing monomers, a new monomer (Monomer A), Monomer B and Monomer C, respectively. We blended the base polymer (Resin 0) with Resin (1-6), respectively. We evaluated contact angles, surface properties and lithographic performances of the polymer blend resists. The static and receding contact angles of the resist that contains Resin (1-6) are greater than that of the base polymer (Resin 0) resist. The chemical composition of the surface of blend polymers was investigated with X-ray photoelectron spectroscopy (XPS). It was shown that there was significant segregation of the fluorine containing resins to the surface of the blend films. We analyzed Quantitative Structure-Property Relationships (QSPR) between the surface properties and the chemical composition of the surface of polymer blend resists. The addition of 10 wt% of the polymer (Resin 1-6) to the base polymer (Resin 0) did not influence the lithographic performance. Consequently, the surface properties of resist thin films can be tailored by the appropriate choice of fluorine containing polymer blends.

  8. Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.

    Science.gov (United States)

    Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin

    2014-02-04

    Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which

  9. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  10. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    International Nuclear Information System (INIS)

    Kumar, Vijay; Ali, Yasir; Sharma, Kashma; Kumar, Vinod; Sonkawade, R.G.; Dhaliwal, A.S.; Swart, H.C.

    2014-01-01

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li 3+ ion beam irradiation for various fluences (1 × 10 11 , 1 × 10 12 and 1 × 10 13 ions/cm 2 ). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence

  11. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Ali, Yasir [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Sharma, Kashma [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan 173212 (India); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Sonkawade, R.G. [Inter University Accelerator Center, Aruna Asif Ali Marg, New Delhi 110067 (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2014-03-15

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li{sup 3+} ion beam irradiation for various fluences (1 × 10{sup 11}, 1 × 10{sup 12} and 1 × 10{sup 13} ions/cm{sup 2}). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence.

  12. Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells

    International Nuclear Information System (INIS)

    Wojcieszak, Damian; Kaczmarek, Danuta; Antosiak, Aleksandra; Mazur, Michal; Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata; Poniedzialek, Agata; Gamian, Andrzej; Szponar, Bogumila

    2015-01-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90 at.% of Cu and 10 at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu–Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10–15 nm and 25–35 nm size were present. High surface active area with a roughness of 8.9 nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. - Graphical abstract: Bactericidal and fungicidal effects of time contact with surface of Cu–Ti thin films. - Highlights: • Antimicrobial activity and cytotoxic effect (viability of L929 cell line) of metallic Cu–Ti films • Thin films were prepared by co-sputtering of Cu and Ti. • As-deposited Cu–Ti films were amorphous and homogenous. • Bactericidal and fungicidal effects even in short term-contact were observed

  13. Influence of Cu–Ti thin film surface properties on antimicrobial activity and viability of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojcieszak, Damian, E-mail: damian.wojcieszak@pwr.edu.pl [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Kaczmarek, Danuta [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Antosiak, Aleksandra [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław (Poland); Mazur, Michal [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Rybak, Zbigniew; Rusak, Agnieszka; Osekowska, Malgorzata [Department for Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Poniatowskiego 2, 50-326 Wroclaw (Poland); Poniedzialek, Agata [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Gamian, Andrzej; Szponar, Bogumila [Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław (Poland)

    2015-11-01

    The paper describes properties of thin-film coatings based on copper and titanium. Thin films were prepared by co-sputtering of Cu and Ti targets in argon plasma. Deposited coatings consist of 90 at.% of Cu and 10 at.% of Ti. Characterization of the film was made on the basis of investigations of microstructure and physicochemical properties of the surface. Methods such as scanning electron microscopy, x-ray microanalysis, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, optical profilometry and wettability measurements were used to assess the properties of deposited thin films. An impact of Cu–Ti coating on the growth of selected bacteria and viability of the living cells (line L929, NCTC clone 929) was described in relation to the structure, surface state and wettability of the film. It was found that as-deposited films were amorphous. However, in such surroundings the nanocrystalline grains of 10–15 nm and 25–35 nm size were present. High surface active area with a roughness of 8.9 nm, had an effect on receiving relatively high water contact angle value (74.1°). Such wettability may promote cell adhesion and result in an increase of the probability of copper ion transfer from the film surface into the cell. Thin films revealed bactericidal and fungicidal effects even in short term-contact. High activity of prepared films was directly related to high amount (ca. 51 %) of copper ions at 1+ state as x-ray photoelectron spectroscopy results have shown. - Graphical abstract: Bactericidal and fungicidal effects of time contact with surface of Cu–Ti thin films. - Highlights: • Antimicrobial activity and cytotoxic effect (viability of L929 cell line) of metallic Cu–Ti films • Thin films were prepared by co-sputtering of Cu and Ti. • As-deposited Cu–Ti films were amorphous and homogenous. • Bactericidal and fungicidal effects even in short term-contact were observed.

  14. Surface modification of poly(tetrafluoroethylene) films by low energy Ar+ ion-beam activation and UV-induced graft copolymerization

    International Nuclear Information System (INIS)

    Zhang Yan; Huan, A.C.H.; Tan, K.L.; Kang, E.T.

    2000-01-01

    Surface modification of poly(tetrafluoroethylene) (PTFE) films by Ar + ion-beam irradiation with varying ion energy and ion dose was carried out. The changes in surface composition of the irradiated PTFE films were characterized, both in situ and after exposure to air, by X-ray photoelectron spectroscopy (XPS). The possible mechanisms of chemical reaction induced by the incident ion beam on the surface of PTFE film included defluorination, chain scission and cross-linking, as indicated by the presence of the characteristic peak components associated with the - - -CF 3 , - - -CF, and C(CF 2 ) 4 species in the C 1s core-level spectra, the decrease in surface [F]/[C] ratio, and the increase in surface micro-hardness of the Ar + ion-beam-treated PTFE films. Furthermore, the free radicals generated by the ion-beam could react with oxygen in the air to give rise to oxidized carbon species, such as the peroxides, on the PTFE surface. Thus, after exposure to air, the Ar + ion-beam-pretreated PTFE films were susceptible to further surface modification by UV-induced graft copolymerization with a vinyl monomer, such as acrylamide (AAm). The graft concentrations were deduced from the XPS-derived surface stoichiometries. The Ar + ion energy and the ion dose affected not only the surface composition of the treated films but also the graft copolymerization efficiency of the corresponding pretreated films

  15. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  16. An amorphous Si-O film tribo-induced by natural hydrosilicate powders on ferrous surface

    International Nuclear Information System (INIS)

    Zhang, Baosen; Xu, Binshi; Xu, Yi; Ba, Zhixin; Wang, Zhangzhong

    2013-01-01

    The tribological properties of surface-coated serpentine powders suspended in oil were evaluated using an Optimal SRV-IV oscillating friction and wear tester. The worn surface and the tribo-induced protective film were characterized by scanning electron microscope and focused ion beam (SEM/FIB) work station, energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM). Results indicate that with 0.5 wt% addition of serpentine powders to oil, the friction coefficient and wear rate significantly decrease referenced to those of the base oil alone. An amorphous SiO x film with amorphous SiO x particles inserted has formed on the worn surface undergoing the interactions between serpentine particles and friction surfaces. The protective film with excellent lubricating ability and mechanical properties is responsible for the reduced friction and wear.

  17. Studies on the Optical Properties and Surface Morphology of Cobalt Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    Benny Joseph

    2008-01-01

    Full Text Available Thin films of Cobalt Phthalocyanine (CoPc are fabricated at a base pressure of 10-5 m.bar using Hind-Hivac thermal evaporation plant. The films are deposited on to glass substrates at various temperatures 318, 363, 408 and 458K. The optical absorption spectra of these thin films are measured. The present studies reveal that the optical band gap energies of CoPc thin films are almost same on substrate temperature variation. The structure and surface morphology of the films deposited on glass substrates of temperatures 303, 363 and 458K are studied using X-ray diffractograms and Scanning Electron Micrographs (SEM, which show that there is a change in the crystallinity and surface morphology due to change in the substrate temperatures. Full width at half maximum (FWHM intensity of the diffraction peaks is also found reduced with increasing substrate temperatures. Scanning electron micrographs show that these crystals are needle like, which are interconnected at high substrate temperatures. The optical band gap energy is almost same on substrate temperature variation. Trap energy levels are also observed for these films.

  18. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  19. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    International Nuclear Information System (INIS)

    Pandiyaraj, Krishnasamy Navaneetha; Yoganand, Paramasivam; Selvarajan, Vengatasamy; Deshmukh, Rajendrasing R.; Balasubramanian, Suresh; Maruthamuthu, Sundaram

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  20. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun; Zhang, Sam; Huang Weimin

    2005-01-01

    TiNi films were prepared by co-sputtering TiNi and Ti targets. X-ray photoelectron spectroscopy (XPS) was employed to study surface chemistry of the films and interfacial structure of Si/TiNi system. Exposure of the TiNi film to the ambient atmosphere (23 deg. C and 80% relatively humidity) facilitated quick adsorption of oxygen and carbon on the surface. With time, carbon and oxygen content increased drastically at the surface, while oxygen diffused further into the layer. After a year, carbon content at the surface became as high as 65.57% and Ni dropped below the detection limit of XPS. Depth profiling revealed that significant inter-diffusion occurred between TiNi film and Si substrate with a layer of 90-100 nm. The detailed bond changes of different elements with depth were obtained using XPS and the formation of titanium silicides at the interface were identified

  1. Surface impedance of epitaxial films Y-Ba-Cu-O in short wave region of range millimetric

    International Nuclear Information System (INIS)

    Vojnovskij, I.V.; Pustyl'nik, O.D.; Boguslavskij, Yu.M.; Shapovalov, A.P.

    1992-01-01

    Epitaxial Y-Ba-Cu-O films on MgO substrate with perfect crystal structure are obtained due to nonaxial magnetron HF-spraying. Temperature dependence of the surface impedance of the films within 66 and 134 GHz frequency is studied. The obtained value of residual surface resistance within 134 GHz frequency (60 mohm) confirms high quality of the films

  2. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  3. Temperature dependence of coercivity behavior in iron films on silicone oil surfaces

    International Nuclear Information System (INIS)

    Xu Xiaojun; Ye Quanlin; Ye Gaoxiang

    2007-01-01

    A new iron film system, deposited on silicone oil surfaces by vapor phase deposition method, has been fabricated and its microstructure as well as magnetic properties has been studied. It is found that the temperature dependence of the coercive field H c (T) of the films exhibits a peak around a critical temperature T crit =10-15 K: for the temperature T crit ,H c (T) increases with the temperature; if T>T crit , however, it decreases rapidly and then approaches a steady value as T further increases. Our study shows that, for T>T crit , the observed coercivity behavior is mainly dominated by the effect of the non-uniform single-domain particle size distribution, and for T crit , the anomalous coercivity behavior may be resulted from the surface anisotropy, the surface effect and the characteristic internal stress distribution in the films. The influence of the shape and size of the particles on the thermal dependence of the magnetization is also investigated

  4. Sebum/Meibum Surface Film Interactions and Phase Transitional Differences

    OpenAIRE

    Mudgil, Poonam; Borchman, Douglas; Gerlach, Dylan; Yappert, Marta C.

    2016-01-01

    Purpose Sebum may contribute to the composition of the tear film lipid layer naturally or as a contaminant artifact from collection. The aims of this study were to determine: if sebum changes the rheology of meibum surface films; if the resonance near 5.2 ppm in the 1H-NMR spectra of sebum is due to squalene (SQ); and if sebum or SQ, a major component of sebum, interacts with human meibum. Methods Human meibum was collected from the lid margin with a platinum spatula. Human sebum was collecte...

  5. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    International Nuclear Information System (INIS)

    Bai Liqiang; Zhu Liangjun; Min Sijia; Liu Lin; Cai Yurong; Yao Juming

    2008-01-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH 2 )-NGIVKAGPAIAVLGEAAL-CONH 2 , using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  6. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Liqiang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Zhu Liangjun; Min Sijia [College of Animal Sciences, Zhejiang University, Hangzhou 310029 (China); Liu Lin; Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao Juming [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)], E-mail: yaoj@zstu.edu.cn

    2008-03-15

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH{sub 2})-NGIVKAGPAIAVLGEAAL-CONH{sub 2}, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  7. Structural and optical properties of pentacene films grown on differently oriented ZnO surfaces

    International Nuclear Information System (INIS)

    El Helou, M; Lietke, E; Helzel, J; Heimbrodt, W; Witte, G

    2012-01-01

    Pentacene films have been grown on two polar zinc oxide surfaces, i.e., ZnO(0001) and ZnO(0 0 0 1-bar ), as well as on the mixed-terminated ZnO(1 0 1-bar 0) and are characterized by means of atomic force microscopy (AFM), x-ray diffraction (XRD), and thermal desorption spectroscopy (TDS). In all cases, pentacene aggregates in an upright orientation without any evidence for the formation of an interface stabilized wetting layer. Additional films deposited on a highly-defective, oxygen-depleted ZnO(0 0 0 1-bar ) reveal no altered growth mode. Nearly identical optical absorption spectra have been measured for all films, thus corroborating a weak molecule-substrate interaction. Upon cooling, however, a slightly different relaxation behavior could be resolved for pentacene films on polar ZnO surfaces compared to pentacene on the mixed-terminated ZnO(1 0 1-bar 0) surface.

  8. Enhanced atom mobility on the surface of a metastable film.

    Science.gov (United States)

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  9. Growth and surface modification of LaFeO3 thin films induced by reductive annealing

    International Nuclear Information System (INIS)

    Flynn, Brendan T.; Zhang, Kelvin H.L.; Shutthanandan, Vaithiyalingam; Varga, Tamas; Colby, Robert J.; Oleksak, Richard P.; Manandhar, Sandeep; Engelhard, Mark H.; Chambers, Scott A.; Henderson, Michael A.; Herman, Gregory S.; Thevuthasan, Suntharampillai

    2015-01-01

    Highlights: • LaFeO 3 was grown by molecular beam epitaxy on ZrO 2 :Y 2 O 3 . • The film was highly oriented but not single crystalline. • Angle resolved XPS revealed differences between surface and bulk oxygen. • Annealing the film in vacuum resulted in the sequential reduction of Fe cations. • A greater degree of Fe reduction was found at the surface. - Abstract: The mixed electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO 3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) demonstrated that the film is primarily textured in the [1 0 0] direction and is stoichiometric. High-resolution transmission electron microscopy measurements show regions that are dominated by [1 0 0] oriented LFO grains that are oriented with respect to the substrates lattice. However, selected regions of the film show multiple domains of grains that are not [1 0 0] oriented. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved X-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of LFO materials for catalytic applications

  10. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  11. Goldmann tonometry tear film error and partial correction with a shaped applanation surface.

    Science.gov (United States)

    McCafferty, Sean J; Enikov, Eniko T; Schwiegerling, Jim; Ashley, Sean M

    2018-01-01

    The aim of the study was to quantify the isolated tear film adhesion error in a Goldmann applanation tonometer (GAT) prism and in a correcting applanation tonometry surface (CATS) prism. The separation force of a tonometer prism adhered by a tear film to a simulated cornea was measured to quantify an isolated tear film adhesion force. Acrylic hemispheres (7.8 mm radius) used as corneas were lathed over the apical 3.06 mm diameter to simulate full applanation contact with the prism surface for both GAT and CATS prisms. Tear film separation measurements were completed with both an artificial tear and fluorescein solutions as a fluid bridge. The applanation mire thicknesses were measured and correlated with the tear film separation measurements. Human cadaver eyes were used to validate simulated cornea tear film separation measurement differences between the GAT and CATS prisms. The CATS prism tear film adhesion error (2.74±0.21 mmHg) was significantly less than the GAT prism (4.57±0.18 mmHg, p film adhesion error was independent of applanation mire thickness ( R 2 =0.09, p =0.04). Fluorescein produces more tear film error than artificial tears (+0.51±0.04 mmHg; p film adhesion error (1.40±0.51 mmHg) was significantly less than that of the GAT prism (3.30±0.38 mmHg; p =0.002). Measured GAT tear film adhesion error is more than previously predicted. A CATS prism significantly reduced tear film adhesion error bŷ41%. Fluorescein solution increases the tear film adhesion compared to artificial tears, while mire thickness has a negligible effect.

  12. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Kobayashi, M; Morita, M

    2008-01-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] thin films were systematically investigated. Spin-coated PFA-C y thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-C y with short side chain (y≤6) and increased above y≥8. GIXD revealed that fluoroalkyl side chain of PFA-C y with y≥8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-C y can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C 8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity

  13. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Science.gov (United States)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  14. Surface characterization of hydrophobic thin films deposited by inductively coupled and pulsed plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Lee, Ji-Hye; Kim, Kang-Jin; Lee, Yeonhee

    2009-01-01

    Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C 2 F 6 , C 3 F 8 , and c-C 4 F 8 and the unsaturated hydrocarbons of C 2 H 2 . The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF 2 and CF 3 , on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF 2 concentrations than those grown under PP technique.

  15. Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Vinodh; Pandyan, R. Kodi; Mahendran, M., E-mail: manickam-mahendran@tce.edu, E-mail: perialangulam@gmail.com [Smart Materials Lab, Department of Physics, Thiagarajar College of Engineering, Madurai – 625 015 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad – 500 058 (India); Pandi, R. Senthur [School of Advanced Sciences, VIT University, Vellore – 632 014 (India)

    2016-05-23

    Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L1{sub 2} cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.

  16. Characterization of spin-on-glass very-low-k polymethylsiloxane with copper metallization

    International Nuclear Information System (INIS)

    Aw, K.C.; Salim, N.T.; Gao, W.; Li, Z.

    2006-01-01

    Cu diffusion is one major problem that inhibits low-k dielectric to be integrated with existing fabrication technology effectively. This paper demonstrates the effects of surface modification towards polymethylsiloxane low-k dielectric (LKD 5109) from JSR Micro using gas mixture of H 2 + N 2 plasma in order to improve Cu diffusion barrier. C-V plots indirectly indicated that plasma treatment reduces Cu + ions penetration during Cu deposition using magnetron sputtering. XPS confirmed that short duration (10 to 30 s) of H 2 + N 2 plasma treatment could cause surface densification of LKD 5109 low-k thin film through formation of N-C bonds. However, the negative effect of plasma treatment is the increment of dielectric constant (k) due to possible surface densification

  17. Experimental Observation of Densification Behavior of UO2 Annular Pellet

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Rhee, Young-Woo; Kim, Jong-Hun; Yang, Jae-Ho; Kang, Ki-Won; Kim, Keon-Sik

    2007-01-01

    Recently, in the nuclear industry, one of the major issues is the improvement of a fuel economy. And many efforts have been made to develop a nuclear fuel for a high burnup and extended cycle. In the development of a high performance fuel, in-reactor fuel behavior (fission gas release, pellet-clad interaction, stress corrosion cracking, cladding corrosion, etc.) must be seriously reconsidered. Also, fuel fabrication (high enriched UO 2 powder handling, fuel rod and assembly manufacturing, fabricated fuel rod and assembly storage and transport, etc.) and an enrichment process (5 w/o criticality limit, etc.) must be discussed. A modification and an improvement of the nuclear fuel system will be also required. The typical fuel geometry of a PWR (Pressurized Water Reactor) is composed of a cylindrical pellet with a tubular cladding. And the outer surface of the cladding is cooled with water. However, to allow a substantial increase in the power density, an additional cooling is needed. One of the best ways is the application of the new fuel geometry that is of annular shape and has both internal and external cooling. From this point of view, the double cooled fuel is being developed by KAERI (Korea Atomic Energy Research Institute), and as a part of the project, the development of a fabrication process of a UO 2 annular pellet is now in progress. The dimensional behavior of UO 2 fuel is an important parameter in an irradiation performance. Various investigations (resintering test, model calculation, in-pile dimensional change measuring, etc.) had been performed. In designing a double cooled fuel, the importance of the dimensional behavior of a fuel pellet is higher, because the gap distance between a pellet and cladding can considerably affect on the in reactor fuel performance (gap conductance). And the dimensional behavior of an inner/outer gap is different with a cylindrical pellet, when the pellet shrinks (densification), the inner gap distance decreases and the

  18. Apparent activation energy for densification of α-Al2 O3 powder at ...

    Indian Academy of Sciences (India)

    Wintec

    in service, it is necessary to proceed with a meticulous analysis of sintering, where the relative density ..... growth using internal mass sources. Only bulk transport mechanisms cause shrinkage. It is accepted that the GBD or VD are two prominent mechanisms for densification in porous ceramic compacts. It is noted that the ...

  19. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong; Li Ru

    2008-01-01

    Poly(tetrafluoroethylene) (PTFE) surfaces are modified with remote and direct Ar plasma, and the effects of the modification on the hydrophilicity of PTFE are investigated. The surface microstructures and compositions of the PTFE film were characterized with the goniometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that the remote and direct plasma treatments modify the PTFE surface in morphology and composition, and both modifications cause surface oxidation of PTFE films, in the forming of some polar functional groups enhancing polymer wettability. When the remote and direct Ar plasma treats PTFE film, the contact angles decrease from the untreated 108-58 o and 65.2 o , respectively. The effect of the remote Ar plasma is more noticeable. The role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. This shows that remote Ar plasma can restrain the ion and electron etching reaction and enhance radical reaction

  20. Surface modification of PET films using dielectric barrier discharge driven by repetitive nanosecond-pulses

    International Nuclear Information System (INIS)

    Shao Tao; Zhang Cheng; Long Kaihua; Wang Jue; Zhang Dongdong; Yan Ping; Zhou Yuanxiang

    2010-01-01

    In this paper, surface treatment of PET films for improving the hydrophilicity using DBD excited by unipolar nanosecond-pulses is presented. Homogeneous and filamentary discharge are obtained under certain experimental conditions and then used to modify the surface of PET films. The properties of PET films before and after treatment are characterized with water contact angle measurement, atomic force microscope and X-ray photoelectron spectroscope. The experimental results show that static water contact angles decrease after DBD plasma treatment and the observed contact angle is changed from 80 degree for the untreated samples to 20 degree after treatment. However, the decrease of contact angles is not continuous and it will reach a saturation state after certain treatment time. The improvement of surface hydrophilicity can be attributed to the enhancement of the surface roughness and introduction of oxygen-containing polar functional groups. In contrast with the filamentary DBD treatment, the homogenous DBD is more effective in PET surface treatment. (authors)

  1. Influence of Surface Roughness and Agitation on the Morphology of Magnetite Films Electrodeposited on Carbon Steel Substrates

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2016-11-01

    Full Text Available In this work, we investigated the effects of surface roughness and agitation on the morphology of magnetite films electrodeposited from alkaline Fe(III-triethanolamine (TEA solutions on carbon steel substrates. The surface roughness of the carbon steel substrates was maintained in the range of 1.64–0.06 μm by using mechanical grinding and polishing methods. The agitation speed was set at 0 and 900 rpm during the electrodeposition process. The particle size and surface roughness value of the magnetite films gradually decreased with decreasing substrate roughness. However, the influence of the substrate roughness on the thickness of the magnetite film was negligible. The morphology of the magnetite film fabricated at 900 rpm appeared to be highly faceted compared to that of the magnetite film produced at 0 rpm. The thickness and surface roughness of the magnetite film significantly increased with the agitation speed, which also significantly affected the electrodeposition efficiency. The effects of substrate surface roughness and agitation on the morphology of magnetite films electrodeposited on carbon steel substrates were also discussed. The obtained results provide critical information for the simulation of magnetite deposits on carbon steel pipes in the secondary systems of nuclear power plants.

  2. Optimization algorithm based on densification and dynamic canonical descent

    Science.gov (United States)

    Bousson, K.; Correia, S. D.

    2006-07-01

    Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.

  3. Ferromagnetic transitions of a spin-one Ising film in a surface and bulk transverse fields

    International Nuclear Information System (INIS)

    Saber, A.; Lo Russo, S.; Mattei, G.; Mattoni, A.

    2002-01-01

    Using the effective field theory method, we have calculated the Curie temperature of a spin-one Ising ferromagnetic film in a surface and bulk transverse fields. Numerical calculations give phase diagrams under various parameters. Surface exchange enhancement is considered. The dependence of the critical transverse field on film thickness, and phase diagrams in the fields, critical surface transverse field versus the bulk one are presented

  4. Work Function of Oxide Ultrathin Films on the Ag(100) Surface.

    Science.gov (United States)

    Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Thomas, Iorwerth O; Netzer, Falko P; Ferrari, Anna Maria; Fortunelli, Alessandro

    2012-02-14

    Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.

  5. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  6. Instability of confined water films between elastic surfaces.

    Science.gov (United States)

    de Beer, Sissi; 't Mannetje, Dieter; Zantema, Sietske; Mugele, Frieder

    2010-03-02

    We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a distribution of drops with a typical thickness of a few nanometers and a characteristic lateral size and spacing of several micrometers. Whereas the characteristic length is found to be independent of the ambient humidity, the characteristic time of the breakup decreases from approximately 1 to 0.01 s with increasing humidity. The existence of characteristic length and time scales shows that this breakup is controlled by an instability rather than a conventional nucleation and growth mechanism for SFA experiments. These findings cannot be explained by a dispersion-driven instability mechanism. In contrast, a model involving the elastic energies for the deformation of both the mica sheets and the underlying glue layer correctly reproduces the scaling of the characteristic length and time with humidity.

  7. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    Science.gov (United States)

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  8. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  9. Surface of Alumina Films after Prolonged Breakdowns in Galvanostatic Anodization

    Directory of Open Access Journals (Sweden)

    Christian Girginov

    2011-01-01

    Full Text Available Breakdown phenomena are investigated at continuous isothermal (20∘C and galvanostatic (0.2–5 mA cm−2 anodizing of aluminum in ammonium salicylate in dimethylformamide (1 M AS/DMF electrolyte. From the kinetic (-curves, the breakdown voltage ( values are estimated, as well as the frequency and amplitude of oscillations of formation voltage ( at different current densities. The surface of the aluminum specimens was studied using atomic force microscopy (AFM. Data on topography and surface roughness parameters of the electrode after electric breakdowns are obtained as a function of anodization time. The electrode surface of anodic films, formed with different current densities until the same charge density has passed (2.5 C cm−2, was assessed. Results are discussed on the basis of perceptions of avalanche mechanism of the breakdown phenomena, due to the injection of electrons and their multiplication in the volume of the film.

  10. Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, Houria; Couret, Alain; Durand, Lise [CNRS, CEMES-UPR 8011, Centre d' Elaboration de Materiaux et d' Etudes Structurales, BP 94347, 29 rue J. Marvig, F-31055 Toulouse (France); Universite de Toulouse, UPS, F-31055 Toulouse (France); Monchoux, Jean-Philippe, E-mail: monchoux@cemes.fr [CNRS, CEMES-UPR 8011, Centre d' Elaboration de Materiaux et d' Etudes Structurales, BP 94347, 29 rue J. Marvig, F-31055 Toulouse (France); Universite de Toulouse, UPS, F-31055 Toulouse (France)

    2011-10-13

    Graphical abstract: Highlights: > Mechanisms of a TiAl alloy powder densified by spark plasma sintering are identified. > Microstructure evolution of the powder is followed during the sintering cycle. > As-atomized supersaturated powder comes back to equilibrium. > Densification occurs by plastification of the particles at high temperature. > No mechanisms related to electric current are observed. - Abstract: This work aims at identifying, by coupled scanning and transmission electron microscopy (SEM and TEM) observations, the densification mechanisms occurring when an atomized Ti-47Al-1W-1Re-0.2Si powder is densified by spark plasma sintering (SPS). For this purpose, interruptions of the SPS cycle have been performed to follow the evolution of the microstructure step by step. The powder particles exhibit a classical dendritic microstructure containing a large amount of out-of-equilibrium {alpha} phase. During heating-up, the microstructure undergoes successive transformations. At T = 525-875 deg. C the {alpha} phase transforms into {gamma}. The {gamma} phase formed is supersaturated in W and Re. It de-saturates for T above 875 deg. C by discontinuous precipitation of W and Re-rich B2 phase. Densification takes place for T between 900 deg. C and 1150 deg. C by plastic deformation of the powder particles. TEM observations show that the repartition of the plastic deformation is correlated to the dendritic microstructure, and that dynamic recrystallization mechanisms occur. Microstructural phenomena directly resulting from the high currents involved in the SPS process have not been observed.

  11. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Roach, D. B. Beringer, J. R. Skuza, W. A. Oliver, C. Clavero, C. E. Reece, R. A. Lukaszew

    2012-06-01

    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  12. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Directory of Open Access Journals (Sweden)

    W. M. Roach

    2012-06-01

    Full Text Available Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  13. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    International Nuclear Information System (INIS)

    Roach, W.M.; Beringer, D.B.; Skuza, J.R.; Oliver, W.A.; Clavero, C.; Reece, C.E.; Lukaszew, R.A.

    2012-01-01

    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  14. Surface functionalisation of polypyrrole films using UV light induced radical activation

    International Nuclear Information System (INIS)

    Lisboa, P.; Gilliland, D.; Ceccone, G.; Valsesia, A.; Rossi, F.

    2006-01-01

    Electrochemically deposited polypyrrole (PPy) films were functionalised with amine or carboxylic function. The functionalisation was done by grafting allylamine or acrylic acid (AAc) using UV light radical activation. The active groups of the surface were quantified by X-ray photoelectron spectroscopy (XPS) after chemical derivatisation with trifluoroethanol (TFE) or 4-trifluoromethylbenzaldehyde (TFBA), respectively. Grafting with AAc completely covered the PPy film introducing high levels of carboxylic function. In the case of allylamine grafting, a saturation point at low amine carbon level was achieved. Further characterisation of the surfaces was done by time of flight secondary ion mass spectroscopy (TOF-SIMS), atomic force microscope (AFM) and scanning electron microscope (SEM)

  15. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Guimond, Sebastien

    2009-06-04

    The growth and the surface structure of well-ordered V{sub 2}O{sub 3}, V{sub 2}O{sub 5} and MoO{sub 3} thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V{sub 2}O{sub 3}(0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V{sub 2}O{sub 3} bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V{sub 2}O{sub 5}(001) and MoO{sub 3}(010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O{sub 2} in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V{sub 2}O{sub 5} and MoO{sub 3} layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a

  16. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    International Nuclear Information System (INIS)

    Guimond, Sebastien

    2009-01-01

    The growth and the surface structure of well-ordered V 2 O 3 , V 2 O 5 and MoO 3 thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V 2 O 3 (0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V 2 O 3 bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V 2 O 5 (001) and MoO 3 (010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O 2 in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V 2 O 5 and MoO 3 layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a monolayer is formed dur-ing the preparation of supported vanadia

  17. Wet-Chemical Surface Texturing of Sputter-Deposited ZnO:Al Films as Front Electrode for Thin-Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Xia Yan

    2015-01-01

    Full Text Available Transparent conductive oxides (TCOs play a major role as the front electrodes of thin-film silicon (Si solar cells, as they can provide optical scattering and hence improved photon absorption inside the devices. In this paper we report on the surface texturing of aluminium-doped zinc oxide (ZnO:Al or AZO films for improved light trapping in thin-film Si solar cells. The AZO films are deposited onto soda-lime glass sheets via pulsed DC magnetron sputtering. Several promising AZO texturing methods are investigated using diluted hydrochloric (HCl and hydrofluoric acid (HF, through a two-step etching process. The developed texturing procedure combines the advantages of the HCl-induced craters and the smaller and jagged—but laterally more uniform—features created by HF etching. In the two-step process, the second etching step further enhances the optical haze, while simultaneously improving the uniformity of the texture features created by the HCl etch. The resulting AZO films show large haze values of above 40%, good scattering into large angles, and a surface angle distribution that is centred at around 30°, which is known from the literature to provide efficient light trapping for thin-film Si solar cells.

  18. Optical properties of WO{sub 3} thin films using surface plasmon resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi; Sharma, Anjali; Gupta, Vinay, E-mail: drguptavinay@gmail.com, E-mail: vgupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India)

    2014-01-28

    Indigenously assembled surface plasmon resonance (SPR) technique has been exploited to study the thickness dependent dielectric properties of WO{sub 3} thin films. WO{sub 3} thin films (80 nm to 200 nm) have been deposited onto gold (Au) coated glass prism by sputtering technique. The structural, optical properties and surface morphology of the deposited WO{sub 3} thin films were studied using X-ray diffraction, UV-visible spectrophotometer, Raman spectroscopy, and Scanning electron microscopy (SEM). XRD analysis shows that all the deposited WO{sub 3} thin films are exhibiting preferred (020) orientation and Raman data indicates that the films possess single phase monoclinic structure. SEM images reveal the variation in grain size with increase in thickness. The SPR reflectance curves of the WO{sub 3}/Au/prism structure were utilized to estimate the dielectric properties of WO{sub 3} thin films at optical frequency (λ = 633 nm). As the thickness of WO{sub 3} thin film increases from 80 nm to 200 nm, the dielectric constant is seen to be decreasing from 5.76 to 3.42, while the dielectric loss reduces from 0.098 to 0.01. The estimated value of refractive index of WO{sub 3} film is in agreement to that obtained from UV-visible spectroscopy studies. The strong dispersion in refractive index is observed with wavelength of incident laser light.

  19. On the Morphology of the SDS Film on the Surface of Borosilicate Glass

    Directory of Open Access Journals (Sweden)

    Zih-Yao Shen

    2017-05-01

    Full Text Available Surfactant films on solid surfaces have attracted much attention because of their scientific interest and applications, such as surface treatment agent, or for micro- or nano-scale templates for microfluidic devices. In this study, anionic surfactant sodium dodecyl sulfate (SDS solutions with various charged inorganic salts was spread on a glass substrate and dried to form an SDS thin film. Atomic force microscopy (AFM was employed to observe the micro-structure of the SDS thin film. The effects of inorganic salts on the morphology of the SDS film were observed and discussed. The results of experiments demonstrated that pure SDS film formed patterns of long, parallel, highly-ordered stripes. The existence of the inorganic salt disturbed the structure of the SDS film due to the interaction between the cationic ion and the anionic head groups of SDS. The divalent ion has greater electrostatic interaction with anionic head groups than that of the monovalent ion, and causes a gross change in the morphology of the SDS film. The height of the SDS bilayer measured was consistent with the theoretical value, and the addition of the large-sized monovalent ion would lead to lowering the height of the adsorbed structures.

  20. A wafer mapping technique for residual stress in surface micromachined films

    International Nuclear Information System (INIS)

    Schiavone, G; Murray, J; Smith, S; Walton, A J; Desmulliez, M P Y; Mount, A R

    2016-01-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements. (paper)

  1. Multifractural analysis of AFM images of Nb thin film surfaces

    International Nuclear Information System (INIS)

    Altajskij, M.V; Chernenko, L.P.; Balebanov, V.M.; Erokhin, N.S.; Moiseev, S.S.

    2000-01-01

    The multifractal analysis of the atomic Force Microscope (AFM) images of the Niobium (Nb) thin film surfaces has been performed. These Nb films are being used for the measurements of the London penetration depth of stationary magnetic field by polarized neutron reflectometry. The analysis shows the behavior of Renyi dimensions of images (in the range of available scales 6-2000 nm), like the known multifractal p-model, with typical Hausdorff dimension of prevalent color in the range of 1.6-1.9. This indicates the fractal nature of film landscape on those scales. The perspective of new mechanism of order parameter suppression on superconductor-vacuum boundary, manifested in anomalous magnetic field penetration in discussed

  2. ZnO film for application in surface acoustic wave device

    International Nuclear Information System (INIS)

    Du, X Y; Fu, Y Q; Tan, S C; Luo, J K; Flewitt, A J; Maeng, S; Kim, S H; Choi, Y J; Lee, D S; Park, N M; Park, J; Milne, W I

    2007-01-01

    High quality, c-axis oriented zinc oxide (ZnO) thin films were grown on silicon substrate using RF magnetron sputtering. Surface acoustic wave (SAW) devices were fabricated with different thickness of ZnO ranging from 1.2 to 5.5 μmUm and the frequency responses were characterized using a network analyzer. Thick ZnO films produce the strongest transmission and reflection signals from the SAW devices. The SAW propagation velocity is also strongly dependent on ZnO film thickness. The performance of the ZnO SAW devices could be improved with addition of a SiO 2 layer, in name of reflection signal amplitude and phase velocity of Rayleigh wave

  3. Light scattering effect of ITO:Zr/AZO films deposited on periodic textured glass surface morphologies for silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahzada Qamar [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Kwon, Gi Duk; Kim, Sunbo; Balaji, Nagarajan; Shin, Chonghoon; Kim, Sangho; Khan, Shahbaz; Pribat, Didier [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Raja, Jayapal; Lee, Youn-Jung [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Razaq, Aamir [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan); Velumani, S. [Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of); Department of Electrical Engineering (SEES), Mexico City (Mexico); Yi, Junsin [Sungkyunkwan University, Department of Energy Science, Suwon (Korea, Republic of); Sungkyunkwan University, College of Information and Communication Engineering, Suwon (Korea, Republic of)

    2015-09-15

    Various SF{sub 6}/Ar plasma-textured periodic glass surface morphologies for high transmittance, haze ratio and low sheet resistance of ITO:Zr films are reported. The SF{sub 6}/Ar plasma-textured glass surface morphologies were changed from low aspect ratio to high aspect ratio with the increase in RF power from 500 to 600 W. The micro- and nano-size features of textured glass surface morphologies enhanced the haze ratio in visible as well as NIR wavelength region. Micro-size textured features also influenced the sheet resistance and electrical characteristics of ITO:Zr films due to step coverage. The ITO:Zr/AZO bilayer was used as front TCO electrode for p-i-n amorphous silicon thin film solar cells with current density-voltage characteristics as: V{sub oc} = 875 mV, FF = 70.90 %, J{sub sc} = 11.31 mA/cm{sup 2}, η = 7.02 %. (orig.)

  4. Surface Modification of Sputtered Ga. In. 5 Sb hin Films | Ishu ...

    African Journals Online (AJOL)

    This can be interpreted as reduction in surface states induced by passivating oxide formed after Ru and Pt treatment. Electrical characterization of the film viz. Vander Pauw resistivity, Hall mobility etc. measurements also showed improved result compared to untreated and Pd treated surface and is been reported. Finally

  5. Tribology of thin wetting films between bubble and moving solid surface.

    Science.gov (United States)

    Karakashev, Stoyan I; Stöckelhuber, Klaus W; Tsekov, Roumen; Phan, Chi M; Heinrich, Gert

    2014-08-01

    This work shows a successful example of coupling of theory and experiment to study the tribology of bubble rubbing on solid surface. Such kind of investigation is reported for the first time in the literature. A theory about wetting film intercalated between bubble and moving solid surface was developed, thus deriving the non-linear evolution differential equation which accounted for the friction slip coefficient at the solid surface. The stationary 3D film thickness profile, which appears to be a solution of the differential equation, for each particular speed of motion of the solid surface was derived by means of special procedure and unique interferometric experimental setup. This allowed us to determine the 3D map of the lift pressure within the wetting film, the friction force per unit area and the friction coefficient of rubbing at different speeds of motion of the solid surface. Thus, we observed interesting tribological details about the rubbing of the bubble on the solid surface like for example: 1. A regime of mixed friction between dry and lubricated friction exists in the range of 6-170 μm/s, beyond which the rubbing between the bubble and solid becomes completely lubricated and passes through the maximum; 2. The friction coefficient of rubbing has high values at very small speeds of solid's motion and reduces substantially with the increase of the speed of the solid motion until reaching small values, which change insignificantly with the further increase of the speed of the solid. Despite the numerous studies on the motion of bubble/droplet in close proximity to solid wall in the literature, the present investigation appears to be a step ahead in this area as far as we were able to derive 3D maps of the bubble close to the solid surface, which makes the investigation more profound. © 2013.

  6. Surface scattering mechanisms of tantalum nitride thin film resistor.

    Science.gov (United States)

    Chen, Huey-Ru; Chen, Ying-Chung; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Chu, Tian-Jian; Shih, Chih-Cheng; Chuang, Nai-Chuan; Wang, Kao-Yuan

    2014-01-01

    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current-voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms.

  7. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Shreyes, Amrita Ravi

    2017-06-07

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other.

  8. Enhancement of the saturation mobility in a ferroelectric-gated field-effect transistor by the surface planarization of ferroelectric film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Young, E-mail: semigumi@kaist.ac.kr [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Jeon, Gwang-Jae; Kang, In-Ku; Shim, Hyun Bin; Lee, Hee Chul [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-09-30

    Ferroelectricity refers to the property of a dielectric material to undergo spontaneous polarization which originates from the crystalline phase. Hence, ferroelectric materials have a certain degree of surface roughness when they are formed as a thin film. A high degree of surface roughness may cause unintended phenomena when the ferroelectric material is used in electronic devices. Specifically, the quality of subsequently deposited film could be affected by the rough surface. The present study reports that the surface roughness of ferroelectric polymer film can be reduced by a double-spin-coating method of a solution, with control of the solubility of the solution. At an identical thickness of 350 nm, double-spin-coated ferroelectric film has a root-mean-square roughness of only 3 nm, while for single-spin-coated ferroelectric film this value is approximately 16 nm. A ferroelectric-gated field-effect transistor was fabricated using the proposed double-spin-coating method, showing a maximum saturation mobility as much as seven-fold than that of a transistor fabricated with single-spin-coated ferroelectric film. The enhanced saturation mobility could be explained by the Poole–Frenkel conduction mechanism. The proposed method to reduce the surface roughness of ferroelectric film would be useful for high performance organic electronic devices, including crystalline-phase dielectric film. - Highlights: • Single and double-layer solution-processed polymer ferroelectric films were obtained. • Adjusting the solvent solubility allows making double-layer ferroelectric (DF) films. • The DF film has a smoother surface than single-layer ferroelectric (SF) film. • DF-gated transistor has faster saturation mobility than SF-based transistor. • Solvent solubility adjustment led to higher performance organic devices.

  9. Characterization of lipid films by an angle-interrogation surface plasmon resonance imaging device.

    Science.gov (United States)

    Liu, Linlin; Wang, Qiong; Yang, Zhong; Wang, Wangang; Hu, Ning; Luo, Hongyan; Liao, Yanjian; Zheng, Xiaolin; Yang, Jun

    2015-04-01

    Surface topographies of lipid films have an important significance in the analysis of the preparation of giant unilamellar vesicles (GUVs). In order to achieve accurately high-throughput and rapidly analysis of surface topographies of lipid films, a homemade SPR imaging device is constructed based on the classical Kretschmann configuration and an angle interrogation manner. A mathematical model is developed to accurately describe the shift including the light path in different conditions and the change of the illumination point on the CCD camera, and thus a SPR curve for each sampling point can also be achieved, based on this calculation method. The experiment results show that the topographies of lipid films formed in distinct experimental conditions can be accurately characterized, and the measuring resolution of the thickness lipid film may reach 0.05 nm. Compared with existing SPRi devices, which realize detection by monitoring the change of the reflective-light intensity, this new SPRi system can achieve the change of the resonance angle on the entire sensing surface. Thus, it has higher detection accuracy as the traditional angle-interrogation SPR sensor, with much wider detectable range of refractive index. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  11. Type conversion, contacts, and surface effects in electroplated CdTe films

    International Nuclear Information System (INIS)

    Basol, B.M.; Ou, S.S.; Stafsudd, O.M.

    1985-01-01

    Efficient electroplated CdS/CdTe solar cells can be fabricated by heat treating and type-converting the n-CdTe films deposited on CdS layers. In this paper, various mechanisms which may give rise to the conversion of electroplated CdTe films from n to p type are investigated. It is concluded that Cd-vacancy generation is the main mechanism of type conversion. Possible effects of oxygen on this mechanism are also discussed. Evaporated Au contacts to electroplated p-CdTe films were studied. It was found that the Au contacts depleted the excess Te present on the surface of Br 2 -methanol etched p-CdTe films. Oxygen was found to affect the electrical characteristics of such contacts

  12. Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces

    Science.gov (United States)

    Shafiei, Mehdi; Alpas, Ahmet T.

    2009-11-01

    Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42 GPa. The surface texture of the NC Ni obtained in this way featured a high density (4 × 10 3 mm -2) of conical protuberances with an average height of 10.0 ± 2.0 μm and a tip radius of 2.5 ± 0.5 μm. This structure increased the water repellency and reduced the COF, compared to smooth NC Ni surfaces. The application of a short-duration (120 s) electrodeposition process that deposited "Ni crowns" with a larger radius of 6.0 ± 0.5 μm on the protuberances, followed by a perfluoropolyether (PFPE) solution treatment succeeded in producing a surface texture consisting of nanotextured protuberances that resulted in a very high water contact angle of 156°, comparable to that of the superhydrophobic lotus leaf. Additionally, the microscale protuberances eliminated the initial high COF peaks observed when smooth NC Ni films were tested, and the PFPE treatment resulted in a 60% reduction in the steady-state COFs.

  13. The protective nature of passivation films on zinc: surface charge

    International Nuclear Information System (INIS)

    Muster, Tim H.; Cole, Ivan S.

    2004-01-01

    The influence of oxide surface charge on the corrosion performance of zinc metals was investigated. Oxidised zinc species (zinc oxide, zinc hydroxychloride, zinc hydroxysulfate and zinc hydroxycarbonate) with chemical compositions similar to those produced on zinc during atmospheric corrosion were formed as particles from aqueous solution, and as passive films deposited onto zinc powder, and rolled zinc, surfaces. Synthesized oxides were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and electron probe X-ray microanalysis. The zeta potentials of various oxide particles, as determined by microelectrophoresis, are reported as a function of pH. Particulates containing a majority of zinc hydroxycarbonate and zinc hydroxysulfate crystallites were found to possess a negative surface charge below pH 6, whilst zinc oxide-hydroxide and zinc hydroxychloride crystallites possessed isoelectric points (IEP's) higher than pH 8. The ability of chloride species to pass through a bed of 3 μm diameter zinc powder was found to increase for surfaces possessing carboxy and sulfate surface species, suggesting that negatively charged surfaces can aid in the repulsion of chloride ions. Electrochemical analysis of the open-circuit potential as a function of time at a fixed pH of 6.5 showed that the chemical composition of passive films on zinc plates influenced the ability of chloride ions to access anodic sites for periods of approximately 1 h

  14. Study of TCP densification via image analysis

    International Nuclear Information System (INIS)

    Silva, R.C.; Alencastro, F.S.; Oliveira, R.N.; Soares, G.A.

    2011-01-01

    Among ceramic materials that mimic human bone, β-type tri-calcium phosphate (β-TCP) has shown appropriate chemical stability and superior resorption rate when compared to hydroxyapatite. In order to increase its mechanical strength, the material is sintered, under controlled time and temperature conditions, to obtain densification without phase change. In the present work, tablets were produced via uniaxial compression and then sintered at 1150°C for 2h. The analysis via XRD and FTIR showed that the sintered tablets were composed only by β-TCP. The SEM images were used for quantification of grain size and volume fraction of pores, via digital image analysis. The tablets showed small pore fraction (between 0,67% and 6,38%) and homogeneous grain size distribution (∼2μm). Therefore, the analysis method seems viable to quantify porosity and grain size. (author)

  15. Comparative investigation of the Ti and Mo additives influence on the opto-electronic properties of the spray deposited WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manceriu, Laura Maria, E-mail: manceriu.laura@gmail.com [CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Dr. Albert Schweitzer, F-33608 Pessac (France); The RTD Dept. Renewable Energy Systems and Recycling, University of Transilvania Brasov, Eroilor 29, 500036 Brasov (Romania); Rougier, Aline [CNRS, Université de Bordeaux, ICMCB, 87 Avenue du Dr. Albert Schweitzer, F-33608 Pessac (France); Duta, Anca, E-mail: a.duta@unitbv.ro [The RTD Dept. Renewable Energy Systems and Recycling, University of Transilvania Brasov, Eroilor 29, 500036 Brasov (Romania)

    2015-05-05

    Highlights: • Ti and Mo–WO{sub 3} thin films were obtained by spray pyrolysis. • Morphology and structure changes related to solution surface tension modification. • FTO/WO{sub 3} junction parameters dependent on WO{sub 3} layer morphology and structure. • Flat band potential and series resistance varied with cation doping. • Ad(de)sorption of oxygen/water during annealing and cooling influence conductivity. - Abstract: In this paper we compare the optical and electrical properties of the WO{sub 3} thin films containing 2, 5 and 10 at.% of Ti and Mo additives, deposited by spray pyrolysis. The influence of the type and additive concentration on the nanostructure, topography and composition of the WO{sub 3} layers are mainly related to the surface tension energy changes, and further correlated with the (photo)electrical and optical properties. The FTO/WO{sub 3} junction through its characteristic, namely barrier height, ideality factor, flat band potential, and series resistance, served as a tool for associating the before mentioned characteristics. The morphology of the WO{sub 3} thin films densifies and the roughness is reduced with increasing Ti and Mo concentration, in good agreement with solution surface tension reduction. WO{sub 3} based films exhibit a p-type semiconducting behavior, as confirmed also by the Mott–Schottky analysis, with a lower p-type conductivity for the Ti–WO{sub 3} films, as higher number of oxygen vacancies are generated by Ti addition. Changes in conductivity are mainly attributed to the oxygen vacancies concentration evolution at the film surface due to oxygen/water adsorption. For heavily doped WO{sub 3} thin films the contribution of these surface processes to the overall conductivity is reduced since surface reactivity is lost by densification. As opposed to Ti-doping which has a detrimental effect on layers structure, Mo addition, even in high concentrations, has a positive effect on layers crystallinity; hence

  16. Homogenization models for thin rigid structured surfaces and films.

    Science.gov (United States)

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  17. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  18. A theoretical investigation of the influence of the surface effect on the ferroelectric property of strained barium titanate film

    Science.gov (United States)

    Fang, Chao; Liu, Wei Hua

    2017-07-01

    The influence of the surface effect on the ferroelectric property of strained barium titanate film has been investigated. In this study, based on time-dependent Ginsburg-Landau-Devonshire thermodynamic theory, the surface effects have been simulated by introducing a surface constant, which leads to the strained BaTiO3 film consisting of inner tetragonal core and gradient lattice strain layer. Further, surface effects produce a depolarization field which has a dominant effect on the ferroelectric properties of the films. The spontaneous polarization, dielectric properties and ferroelectric hysteresis loop of BaTiO3 film are calculated under different boundary conditions. Theoretical and experimental results for strained BaTiO3 film are compared and discussed.

  19. Surface, interface and thin film characterization of nano-materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Kimura, Shigeru; Kobayashi, Keisuke

    2005-01-01

    From the results of studies in the nanotechnology support project of the Ministry of Education, Culture, Sports, Science and Technology of Japan, several investigations on the surface, interface and thin film characterization of nano-materials are described; (1) the MgB 2 thin film by X-ray diffraction, (2) the magnetism of the Pt thin film on a Co film by X-ray magnetic circular dichroism measurement, (3) the structure and physical properties of oxygen molecules absorbed in a micro hole of the cheleted polymer crystal by the direct observation in X-ray powder diffraction, and (4) the thin film gate insulator with a large dielectric constant, thermally treated HfO 2 /SiO 2 /Si, by X-ray photoelectron spectroscopy. (M.H.)

  20. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    Science.gov (United States)

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  1. Relation between film thickness and surface doping of MoS2 based field effect transistors

    Science.gov (United States)

    Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan

    2018-05-01

    Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.

  2. The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.

    Science.gov (United States)

    Picker, Katharina M

    2004-04-01

    The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are

  3. X-ray Photon Correlation Spectroscopy Study on Dynamics of the Free Surface in Entangled Polystyrene Melt Films

    International Nuclear Information System (INIS)

    Koga, Tadanori; Li Chunhua; Endoh, Maya K; Narayanan, Suresh; Lurio, Laurence; Sinha, Sunil K

    2011-01-01

    The dynamics of polymer chains near the surface of a melt and within thin films remains a subject of inquiry along with the nature of the glass transition in these systems. Recent studies show that the properties of the free surface region are crucial in determining the anomalous glass transition temperature (T g ) reduction of polymer thin films. In this study, by embedding 'dilute' gold nanoparticles in polystyrene (PS) thin films as 'markers', we could successfully probe the diffusive Brownian motion which tracks the local viscosity both at the free surface and within the rest of the single PS thin film far above bulk T g . The technique used was X-ray photon correlation spectroscopy with resonance-enhanced X-rays that allows us to independently measure the motion in the regions of interest at the nanometer scale. We found the presence of the surface reduced viscosity layer in entangled PS thin films at T>>T g .

  4. Influence of surface defects in ZnO thin films on its biosensing response characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Shibu; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2011-09-15

    Highly c-axis oriented zinc oxide (ZnO) thin films deposited by rf magnetron sputtering under varying processing pressure (20-50 mT) in a reactive gas mixture of argon and oxygen were studied for biosensing application. The as-deposited ZnO thin films were in a state of compressive stress having defects related to interstitial Zn and antisite oxygen. Glucose oxidase has been chosen as the model enzyme in the present study and was immobilized on the surface of ZnO thin films deposited on indium tin oxide coated Corning Glass substrate. The studies reveal a correlation between the biosensing characteristic and the presence of defects in the ZnO films. The ZnO films deposited under high pressure (50 mT) are found to be more sensitive for biosensing application due to availability of more surface area for effective immobilization of biomolecules and exhibits a suitable microenvironment with good electron transfer characteristic. The obtained results highlight the importance of desired microstate besides availability of suitable native defects in the ZnO thin film for exhibiting enhanced biosensing response.

  5. Influence of surface defects in ZnO thin films on its biosensing response characteristic

    International Nuclear Information System (INIS)

    Saha, Shibu; Gupta, Vinay

    2011-01-01

    Highly c-axis oriented zinc oxide (ZnO) thin films deposited by rf magnetron sputtering under varying processing pressure (20-50 mT) in a reactive gas mixture of argon and oxygen were studied for biosensing application. The as-deposited ZnO thin films were in a state of compressive stress having defects related to interstitial Zn and antisite oxygen. Glucose oxidase has been chosen as the model enzyme in the present study and was immobilized on the surface of ZnO thin films deposited on indium tin oxide coated Corning Glass substrate. The studies reveal a correlation between the biosensing characteristic and the presence of defects in the ZnO films. The ZnO films deposited under high pressure (50 mT) are found to be more sensitive for biosensing application due to availability of more surface area for effective immobilization of biomolecules and exhibits a suitable microenvironment with good electron transfer characteristic. The obtained results highlight the importance of desired microstate besides availability of suitable native defects in the ZnO thin film for exhibiting enhanced biosensing response.

  6. Densifying carbon nanotubes on assembly surface by the self-contraction of silk fibroin

    Science.gov (United States)

    Jiang, Chunyang; Yang, Xueqin; Zhao, Jingna; Li, Qingsong; Zhang, Ke-Qin; Zhang, Xiaohua; Li, Qingwen

    2018-04-01

    High densification of carbon nanotubes (CNTs) is important for high utilization efficiency of their superior properties in macroscopic assemblies. However, the conventional "top-down" compressing strategies have met problems to modify CNT assemblies at and below the micrometer scale. Here we report a molecular way to strap CNTs together via the self-contraction of silk fibroin (SF) during its drying process, resulting in a localized densification below the micrometer scale. Importantly, after the thermal removal of SF molecules, the densified assembly was well maintained. The SF-induced densification increased the average strength from 355 MPa to 960 MPa for CNT fibers, and from 1.45 GPa to 1.82 GPa for CNT ribbons, which contain much more CNTs on the surface.

  7. Surface structural reconstruction of SrVO3 thin films on SrTiO3 (001)

    Science.gov (United States)

    Wang, Gaomin; Saghayezhian, Mohammad; Chen, Lina; Guo, Hangwen; Zhang, Jiandi

    Paramagnetic metallic oxide SrVO3>(SVO) is an itinerant system known to undergo thickness-induced metal-insulator-transition (MIT) in ultrathin film form, which makes it a prototype system for the study of the mechanism behind metal-insulator-transition like structure distortion, electron correlations and disorder-induced localization. We have grown SrVO3 thin film with atomically flat surface through the layer-by-layer deposition by laser Molecular Beam Epitaxy (laser-MBE) on SrTiO3 (001) surface. Low Energy Electron Diffraction (LEED) measurements reveal that there is a (√2X √2) R45°surface reconstruction independent of film thickness. By using LEED-I(V) structure refinement, we determine the surface structure. In combination with X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM), we discuss the implication on the MIT in ultrathin films below 2-3 unit cell thickness. This work is supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  8. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Craciun, V.; Singh, R. K.

    2000-01-01

    Ba 0.5 Sr 0.5 TiO 3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (∼1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO 3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer. (c) 2000 American Institute of Physics

  9. Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation

    Science.gov (United States)

    Craciun, V.; Singh, R. K.

    2000-04-01

    Ba0.5Sr0.5TiO3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (˜1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer.

  10. On the structure and surface chemical composition of indium-tin oxide films prepared by long-throw magnetron sputtering

    International Nuclear Information System (INIS)

    Chuang, M.J.; Huang, H.F.; Wen, C.H.; Chu, A.K.

    2010-01-01

    Structures and surface chemical composition of indium tin oxide (ITO) thin films prepared by long-throw radio-frequency magnetron sputtering technique have been investigated. The ITO films were deposited on glass substrates using a 20 cm target-to-substrate distance in a pure argon sputtering environment. X-ray diffraction results showed that an increase in substrate temperature resulted in ITO structure evolution from amorphous to polycrystalline. Field-emission scanning electron microscopy micrographs suggested that the ITO films were free of bombardment of energetic particles since the microstructures of the films exhibited a smaller grain size and no sub-grain boundary could be observed. The surface composition of the ITO films was characterized by X-ray photoelectron spectroscopy (XPS). Oxygen atoms in both amorphous and crystalline ITO structures were observed from O 1 s XPS spectra. However, the peak of the oxygen atoms in amorphous ITO phase could only be found in samples prepared at low substrate temperatures. Its relative peak area decreased drastically when substrate temperatures were larger than 200 o C. In addition, a composition analysis from the XPS results revealed that the films deposited at low substrate temperatures contained high concentration of oxygen at the film surfaces. The oxygen-rich surfaces can be attributed to hydrolysis reactions of indium oxides, especially when large amount of the amorphous ITO were developed near the film surfaces.

  11. Electric controlling of surface metal-insulator transition in the doped BaTiO3 film

    Directory of Open Access Journals (Sweden)

    Wei Xun

    2017-07-01

    Full Text Available Based on first-principles calculations, the BaTiO3(BTO film with local La-doping is studied. For a selected concentration and position of doping, the surface metal-insulator transition occurs under the applied electric field, and the domain appears near the surface for both bipolar states. Furthermore, for the insulated surface state, i.e., the downward polarization state in the doped film, the gradient bandgap structure is achieved, which favors the absorption of solar energy. Our investigation can provide an alternative avenue in modification of surface property and surface screening effect in polar materials.

  12. Surface nanostructuring of TiO2 thin films by ion beam irradiation

    International Nuclear Information System (INIS)

    Romero-Gomez, P.; Palmero, A.; Yubero, F.; Vinnichenko, M.; Kolitsch, A.; Gonzalez-Elipe, A.R.

    2009-01-01

    This work reports a procedure to modify the surface nanostructure of TiO 2 anatase thin films through ion beam irradiation with energies in the keV range. Irradiation with N + ions leads to the formation of a layer with voids at a depth similar to the ion-projected range. By setting the ion-projected range a few tens of nanometers below the surface of the film, well-ordered nanorods appear aligned with the angle of incidence of the ion beam. Slightly different results were obtained by using heavier (S + ) and lighter (B + ) ions under similar conditions

  13. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  14. Quasi-one-dimensional electron transport over the surface of a liquid-helium film

    International Nuclear Information System (INIS)

    Sokolov, Sviatoslav; Studart, Nelson

    2003-01-01

    Quasi-one-dimensional mobility of surface electrons over a liquid-helium suspended film is studied for a conducting channel. The electron mobility is calculated taking into account the electron scattering by helium atoms in the vapor phase, ripplons, and surface defects of the film substrate both in one-electron regime and in the so-called complete-control limit where the influence of inter-electron collisions on the electron distribution function is taken into account. It is shown that the mobility for low temperatures is dominated by the surface-defect scattering and its temperature dependence is essentially different from that of the electron-ripplon scattering

  15. Novel alternating polymer adsorption/surface activation self-assembled film based on hydrogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongjun; Yang Shuguang; Guan Ying; Miao Xiaopeng; Cao Weixiao; Xu Jian

    2003-08-01

    By combining hydrogen bonding layer-by-layer self-assembly and the stepwise chemisorption method, a new alternating polymer adsorption/surface activation self-assembly method was developed. First a layer of diphenylamine-4-diazonium-formaldehyde resin (diazo resin or DR) is deposited on a substrate. In the following surface activation step, the diazonium groups on the surface couple with resorcin in the outside solution. The deposition of another layer of DR is feasible due to the formation of hydrogen bond between the diazonium group of DR and the hydroxy group of the resorcin moieties. The resulting film is photosensitive. After UV irradiation, the film becomes very stable towards polar organic solvents.

  16. A model system to mimic environmentally active surface film roughness and hydrophobicity.

    Science.gov (United States)

    Grant, Jacob S; Shaw, Scott K

    2017-10-01

    This work presents the development and initial assessment of a laboratory platform to allow quantitative studies on model urban films. The platform consists of stearic acid and eicosane mixtures that are solution deposited from hexanes onto smooth, solid substrates. We show that this model has distinctive capabilities to better mimic a naturally occurring film's morphology and hydrophobicity, two important parameters that have not previously been incorporated into model film systems. The physical and chemical properties of the model films are assessed using a variety of analytical instruments. The film thickness and roughness are probed via atomic force microscopy while the film composition, wettability, and water uptake are analyzed by Fourier transform infrared spectroscopy, contact angle goniometry, and quartz crystal microbalance, respectively. Simulated environmental maturation is achieved by exposing the film to regulated amounts of UV/ozone. Ultimately, oxidation of the film is monitored by the analytical techniques mentioned above and proceeds as expected to produce a utile model film system. Including variable roughness and tunable surface coverage results in several key advantages over prior model systems, and will more accurately represent native urban film behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Management of the ocular surface and tear film before, during, and after laser in situ keratomileusis.

    Science.gov (United States)

    Albietz, Julie M; Lenton, Lee M

    2004-01-01

    To identify evidence-based, best practice strategies for managing the ocular surface and tear film before, during, and after laser in situ keratomileusis (LASIK). After a comprehensive review of relevant published literature, evidence-based recommendations for best practice management strategies are presented. Symptoms of ocular irritation and signs of dysfunction of the integrated lacrimal gland/ocular surface functional gland unit are common before and after LASIK. The status of the ocular surface and tear film before LASIK can impact surgical outcomes in terms of potential complications during and after surgery, refractive outcome, optical quality, patient satisfaction, and the severity and duration of dry eye after LASIK. Before LASIK, the health of the ocular surface should be optimized and patients selected appropriately. Dry eye before surgery and female gender are risk factors for developing chronic dry eye after LASIK. Management of the ocular surface during LASIK can minimize ocular surface damage and the risk of adverse outcomes. Long-term management of the tear film and ocular surface after LASIK can reduce the severity and duration of dry eye symptoms and signs. Strategies to manage the integrated ocular surface/lacrimal gland functional unit before, during, and after LASIK can optimize outcomes. As problems with the ocular surface and tear film are relatively common, attention should focus on the use and improvement of evidence-based management strategies.

  18. Sintering of nanopowders of ZrO_2 (Y_2O_3): Effect of compaction pressure on densification

    International Nuclear Information System (INIS)

    Palmeira, Alexandre Alvarenga; Magnago, Roberto de Oliveira; Pereira, Glayce Cassaro; Bondioli, Marcelo Jose; Strecker, Kurt; Santos, Claudinei dos

    2014-01-01

    In this work studied the powders (nano) sintered of ZrO_2 (Y_2O_3) by dilatometry. Was identified the effect of compaction pressure variation in the final results of densification of materials. Powders were compacted at different compaction pressures. The compacts were subjected to temperatures of 1250°C to 1400°C with sintering levels ranging from 0 to 8 hours. Samples were characterized by X-ray diffraction and relative density using Archimedes method. The results were compared with powders (micro) of similar composition in order to compare the effect of particle size on densification parameters. The samples were further subjected to microstructural characterization in order to identify the average grain size of the sintering under each condition used in both materials. (author)

  19. Comparison of Surface-enhanced Raman Scattering Spectra of Two Kinds of Silver Nanoplate Films

    Institute of Scientific and Technical Information of China (English)

    TAO Jin-long; TANG Bin; XU Shu-ping; PAN Ling-yun; XU Wei-qing

    2012-01-01

    Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared.Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out.The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped.In this model,the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.

  20. Studies on Gas Sensing Performance of Pure and Surface Modified SrTiO3 Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    V. B. Gaikwad

    2009-08-01

    Full Text Available Strontium Titanate (SrTiO3 (ST was prepared mechanochemically from Sr(OH2 and TiO2. XRD confirms the Perovskite phase of material. Thick films of ST were prepared by screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to CO gas at 350 oC for 100 ppm gas concentration. To improve the sensitivity and selectivity of the film towards a particular gas, ST thick films were surface modified by dipping them in a solution of nano copper for different intervals of time. These surface modified ST films showed larger sensitivity to H2S gas (100 ppm at 300 oC than pure ST film. A systematic study, of sensing performance of the sensor, indicates the key role-played by the nano copper species on the surface .The sensitivity, selectivity, response and recovery time of the sensor were measured and presented.

  1. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); De Smet, Jelle; Willems, Wouter [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); Cools, Pieter; De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); De Smet, Herbert; Van Steenbeerge, Geert [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium)

    2016-07-15

    Highlights: • Laser patterning of thin film PEDOT:PSS on polymer foils is characterized in great detail. • PEDOT:PSS does not need to be fully removed to create electrically insulating patterns. • The underlying polymer foil influences the ablation behavior. - Abstract: Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  2. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  3. Development of natively textured surface hydrogenated Ga-doped ZnO-TCO thin films for solar cells via magnetron sputtering

    International Nuclear Information System (INIS)

    Wang, Fei; Chen, Xin-liang; Geng, Xin-hua; Zhang, De-kun; Wei, Chang-chun; Huang, Qian; Zhang, Xiao-dan; Zhao, Ying

    2012-01-01

    Highlights: ► Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. ► The directly deposited HGZO thin films present rough crater-type surface morphology. ► Typical HGZO thin film exhibits a high electron mobility of 41.3 cm 2 /V s and a relative low sheet resistance of ∼7.0 Ω. ► These HGZO thin films have high optical transmittances in the visible and near infrared region (∼380–1100 nm). ► A gradient H 2 growth method for fabricating HGZO thin films has been proposed in magnetron sputtering process. - Abstract: The main purposes are to obtain high quality transparent conductive oxide (TCO) based on zinc oxide (ZnO) thin films with high optical transparency in the visible and near infrared spectral range, high electrical conductivity and good light-scattering capability to enhance the path of the light inside the Si-based thin film solar cells. Natively textured surface hydrogenated gallium-doped ZnO (HGZO) thin films have been deposited via pulsed direct current (DC) magnetron sputtering on glass substrates at a substrate temperature of 553 K. These natively textured HGZO thin films exhibit high optical transmittance (over 80%) in the visible and near infrared region (λ = 380–1100 nm) and excellent electrical properties. The optimized HGZO thin film with crater-type textured surface obtained at the hydrogen flow rate of ∼2.0 sccm exhibits a high electron mobility of 41.3 cm 2 /V s and a relatively low sheet resistance of ∼7.0 Ω. The influences of hydrogen flow rates on the surface morphology, electrical and optical properties of HGZO thin films were investigated in detail. In addition, we put forward a method of gradient H 2 growth technique for fabricating HGZO thin films so as to obtain rough surface structure with good light-scattering capability and high electrical conductivity. “Crater-like” surface feature size and optical transmittance

  4. Micro-orientation control of silicon polymer thin films on graphite surfaces modified by heteroatom doping

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, Iwao, E-mail: shimoyama.iwao@jaea.go.jp [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Baba, Yuji [Fukushima Administrative Department, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Hirao, Norie [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan)

    2017-05-31

    Highlights: • Micro-orientation control method for organic polysilane thin films is proposed. • This method utilizes surface modification of graphite using heteroatom doping. • Lying, standing, and random orientations can be freely controlled by this method. • Micro-pattering of a polysilane film with controlled orientations is achieved. - Abstract: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is applied to study orientation structures of polydimethylsilane (PDMS) films deposited on heteroatom-doped graphite substrates prepared by ion beam doping. The Si K-edge NEXAFS spectra of PDMS show opposite trends of polarization dependence for non irradiated and N{sub 2}{sup +}-irradiated substrates, and show no polarization dependence for an Ar{sup +}-irradiated substrate. Based on a theoretical interpretation of the NEXAFS spectra via first-principles calculations, we clarify that PDMS films have lying, standing, and random orientations on the non irradiated, N{sub 2}{sup +}-irradiated, and Ar{sup +}-irradiated substrates, respectively. Furthermore, photoemission electron microscopy indicates that the orientation of a PDMS film can be controlled with microstructures on the order of μm by separating irradiated and non irradiated areas on the graphite surface. These results suggest that surface modification of graphite using ion beam doping is useful for micro-orientation control of organic thin films.

  5. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    International Nuclear Information System (INIS)

    Hai-Qing, Xiao; Chun-Lan, Zhou; Xiao-Ning, Cao; Wen-Jing, Wang; Lei, Zhao; Hai-Ling, Li; Hong-Wei, Diao

    2009-01-01

    Al 2 O 3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10 12 cm −2 is detected in the Al 2 O 3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO 2 and plasma enhanced chemical vapor deposition SiN x :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al 2 O 3 . (cross-disciplinary physics and related areas of science and technology)

  6. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  7. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  8. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  9. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    International Nuclear Information System (INIS)

    Verma, Shweta; Rao, B. Tirumala; Bhartiya, S.; Sathe, V.; Kukreja, L.M.

    2015-01-01

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength

  10. Irradiation induced densification and its correlation with three-membered rings in vitreous silica

    Czech Academy of Sciences Publication Activity Database

    Gavenda, T.; Gedeon, O.; Jurek, Karel

    2015-01-01

    Roč. 425, Oct (2015), s. 61-66 ISSN 0022-3093 R&D Projects: GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : silica glass * electron irradiation * densification * Raman spectroscopy * glass topology * three-membered rings Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.825, year: 2015

  11. Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Marc D; Vohra, Yogesh K [Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, AL (United States)

    2002-10-21

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60{+-}5 GPa averaged over three samples. (rapid communication)

  12. Rutherford backscattering analysis of glass surfaces and TiOsub(x) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H; Hacker, E; Schirmer, G

    1981-11-20

    The composition of sputter-etched substrate surfaces is critically dependent on the conditions in the sputtering system before etching, on the position of the sample within this system and on the chemical sample cleaning. The stoichiometric values for thin TiOsub(x) films are greater than 2 (up to 2.9). Additional oxygen is physisorbed in the layers. Argon atoms are embedded in the substrate-layer interface region of bias-sputtered films. Gas entrapments can be explained from the formation of the initial film structure in the interface region.

  13. Thermo-mechanical Densification of Populus tomentosa var. tomentosa with Low Moisture Content

    Directory of Open Access Journals (Sweden)

    Dengyun Tu

    2014-05-01

    Full Text Available This study used thermo-mechanical densification technology to compress low-moisture content (3~5% rapid-growth Populus tomentosa var. tomentosa trees to produce specimens with a low-compression ratio (small volume loss and a uniform density profile and desirable properties. Furthermore, the densified specimens were subjected to post-heat treatment at 180, 190, and 200 °C for 2, 3, and 4 h, respectively. Microscopic examination was performed to observe the changes that occurred in the wood vessels after densification. To determine the influence of post-heat treatment on the set recovery, the specimens were subjected to eight cycles of soaking and drying in 20 °C water and two cycles in boiling water. The density profile tendencies of the densified specimens were in accord with undensified specimens. Microscopic observation revealed that the deformations present in the densified wood resulted from the viscous buckling of cell walls without fracture. The volume of the void areas in the specimens decreased uniformly. Post-heat treatment can decrease compressive deformation, especially when applied at 200 °C for 4 h. After two boiling water cycles of soaking and drying, the densified wood still had a certain set recovery. Therefore, densified wood should be used sparingly in high temperature and high humidity environments.

  14. Surface passivation by Al2O3 and a-SiNx: H films deposited on wet-chemically conditioned Si surfaces

    NARCIS (Netherlands)

    Bordihn, S.; Mertens, V.; Engelhart, P.; Kersten, K.; Mandoc, M.M.; Müller, J.W.; Kessels, W.M.M.

    2012-01-01

    The surface passivation of p- and n-type silicon by different chemically grown SiO2 films (prepared by HNO3, H2SO4/H2O2 and HCl/H2O2 treatments) was investigated after PECVD of a-SiNx:H and ALD of Al2O3 capping films. The wet chemically grown SiO2 films were compared to thermally grown SiO2 and the

  15. Surface assisted electric transport in Ag2S thin films

    International Nuclear Information System (INIS)

    Karashanova, D.; Starbov, N.

    2006-01-01

    Electric transport measurements of thickness-dependent electronic and ionic conductivity of epitaxial Ag 2 S films are used to split both kinds of conductivity into bulk and surface components. The established considerable electronic and ionic surface conductances demonstrate unambiguously the co-existance of electronic and ionic space charge regions in the vicinity of silver sulfide free surface oriented along the zone axes [1-bar 01-bar ]. The parameters of both space charge layers - surface potential, thickness of the space charge region and concentration of the surface compensating charges, are calculated. It is estimated that for intrinsic silver sulfide, the effective surface potential of (1-bar 01-bar ) Ag 2 S surface is negative, its value being about -610mV at 400K

  16. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  17. Electron scattering at surfaces and grain boundaries in thin Au films

    International Nuclear Information System (INIS)

    Henriquez, Ricardo; Flores, Marcos; Moraga, Luis; Kremer, German; González-Fuentes, Claudio; Munoz, Raul C.

    2013-01-01

    The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ 0 (T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K 0 (T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ 0 (300) = 37 nm, the electron mean free path in the bulk at 300 K, the effect of electron

  18. Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

    Directory of Open Access Journals (Sweden)

    Osękowska Małgorzata

    2015-09-01

    Full Text Available In this work the physicochemical and biological properties of nanocrystalline TiO2 thin films were investigated. Thin films were prepared by magnetron sputtering method. Their properties were examined by X-ray diffraction, photoelectron spectroscopy, atomic force microscopy, optical transmission method and optical profiler. Moreover, surface wettability and scratch resistance were determined. It was found that as-deposited coatings were nanocrystalline and had TiO2-anatase structure, built from crystallites in size of 24 nm. The surface of the films was homogenous, composed of closely packed grains and hydrophilic. Due to nanocrystalline structure thin films exhibited good scratch resistance. The results were correlated to the biological activity (in vitro of thin films. Morphological changes of mouse fibroblasts (L929 cell line after contact with the surface of TiO2 films were evaluated with the use of a contrast-phase microscope, while their viability was tested by MTT colorimetric assay. The viability of cell line upon contact with the surface of nanocrystalline TiO2 film was comparable to the control sample. L929 cells had homogenous cytoplasm and were forming a confluent monofilm, while lysis and inhibition of cell growth was not observed. Moreover, the viability in contact with surface of examined films was high. This confirms non-cytotoxic effect of TiO2 film surface on mouse fibroblasts.

  19. Compositional ratio effect on the surface characteristics of CuZn thin films

    Science.gov (United States)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  20. Preparation of enhanced hydrophobic poly(L-lactide-co-ε-caprolactone) films surface and its blood compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Il; Lim, Jin Ik; Jung, Youngmee; Mun, Cho Hay [Division of Life and Health Science, Biomaterials Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, Ji Heung, E-mail: kimjh@skku.edu [Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University, Suwon, Kyunggi (Korea, Republic of); Kim, Soo Hyun, E-mail: soohkim@kist.re.kr [Division of Life and Health Science, Biomaterials Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul (Korea, Republic of)

    2013-07-01

    Hydrophobicity-enhanced poly(L-lactide-co-ε-caprolactone) (PLCL) (50:50) films were cast by using the solvent–nonsolvent casting method. PLCL (50:50) was synthesized by the well-known random copolymerization process and confirmed by {sup 1}H NMR analysis. The molecular weight of the synthesized PLCL was measured by gel permeation chromatography (GPC). Number-average (Mn), weight-average (Mw) molecular weights and polydispersity (Mw/Mn) were 7 × 10{sup 4}, 1.2 × 10{sup 5}, and 1.7, respectively. PLCL films were cast in vacuum condition with various nonsolvents and nonsolvent ratios. Tetrahydrofuran (THF) was used as the solvent and three different alcohols were used as the nonsolvent: methanol, ethanol, and isopropyl alcohol (IPA). Surface hydrophobicity was confirmed by water contact angle. The water contact angle was increased from 81° ± 2° to 107° ± 2°. Water contact angle was influenced by surface porosity and topography. The prepared film surfaces were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The change of crystalline property was characterized by X-ray diffraction (XRD). Platelet adhesion tests on the modified PLCL film surfaces were evaluated by platelet-rich plasma (PRP). The modified film surface exhibited enhanced hydrophobicity and reduced platelet adhesion ratio depending on the surface topography. One of the candidate products proposed as a potential blood compatible material showed a markedly reduced platelet adhesion property.

  1. Surface Hydrophilicity of Poly(l-Lactide Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture

    Directory of Open Access Journals (Sweden)

    Chiara Argentati

    2018-02-01

    Full Text Available Current knowledge indicates that the molecular cross-talk between stem cells and biomaterials guides the stem cells’ fate within a tissue engineering system. In this work, we have explored the effects of the interaction between the poly(l-lactide acid (PLLA polymer film and human adult adipose stem cells (hASCs, focusing on the events correlating the materials’ surface characteristics and the cells’ plasma membrane. hASCs were seeded on films of pristine PLLA polymer and on a PLLA surface modified by the radiofrequency plasma method under oxygen flow (PLLA+O2. Comparative experiments were performed using human bone-marrow mesenchymal stem cells (hBM-MSCs and human umbilical matrix stem cells (hUCMSCs. After treatment with oxygen-plasma, the surface of PLLA films became hydrophilic, whereas the bulk properties were not affected. hASCs cultured on pristine PLLA polymer films acquired a spheroid conformation. On the contrary, hASCs seeded on PLLA+O2 film surface maintained the fibroblast-like morphology typically observed on tissue culture polystyrene. This suggests that the surface hydrophilicity is involved in the acquisition of the spheroid conformation. Noteworthy, the oxygen treatment had no effects on hBM-MSC and hUCMSC cultures and both stem cells maintained the same shape observed on PLLA films. This different behavior suggests that the biomaterial-interaction is stem cell specific.

  2. Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation

    International Nuclear Information System (INIS)

    Ţălu, Ştefan; Marković, Zoran; Stach, Sebastian; Todorović Marković, B.; Ţălu, Mihai

    2014-01-01

    This study presents a multifractal approach, obtained with atomic force microscopy analysis, to characterize the structural evolution of single wall carbon nanotube thin films upon exposure to optical parametric oscillator laser irradiation at wavelength of 430 nm. Microstructure and morphological changes of carbon nanotube films deposited on different substrates (mica and TGX grating) were recorded by atomic force microscope. A detailed methodology for surface multifractal characterization, which may be applied for atomic force microscopy data, was presented. Multifractal analysis of surface roughness revealed that carbon nanotube films surface has a multifractal geometry at various magnifications. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of carbon nanotube films surface morphology at nanometer scale. Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters.

  3. Condensation En Film Liquidesur Une Surface Verticale Bordant Un ...

    African Journals Online (AJOL)

    This study aims to obtain the necessary information for the characterization and the precision of the dynamics of the condensation phenomenon in order to ... show the effect of the permeability porous medium and inclination of the principal axes on the liquid film thickness, liquid mass flow rate and surface heat transfer rate.

  4. Experimental study of the effect of the reduced graphene oxide films on nucleate boiling performances of inclined surfaces

    International Nuclear Information System (INIS)

    Kim, Ji Hoon; Kong, Byeong Tak; Kim, Ji Min

    2016-01-01

    For the enhancing the CHF, surface coating techniques are available. Yang et al. performed small scale boiling experiments for the vessel lower head, which was coated by aluminum/copper micro particles. Recently, graphene has received much attention for applications in thermal engineering due to its large thermal conductivity. Ahn et al. used a silicon dioxide substrate, which was coated graphene films, as a heating surface during pool boiling experiments. The graphene films inhibited the formation of hot spots, increasing the CHF. For applying novel material 'Graphene' in nuclear industry, here we investigated the effects of graphene film coatings on boiling performances. The experimental pool boiling facility, copying the geometry of lower head of reactor, was designed for verifying orientation effects. The effects of graphene films coating on varied inclined heater surfaces were investigated. The CHF values were increased at every case, but the increased amounts were decreased for downward heater surfaces. At the downward-facing region, however, coating the RGO films would change the CHF mechanisms and boiling heat transfer performances. Generally, RGO films, made by colloidal fabrication, has defects on each flakes.

  5. An Analysis of Saturated Film Boiling Heat Transfer from a Vertical Slab with Horizontal Bottom Surface

    OpenAIRE

    茂地, 徹; 山田, たかし

    1997-01-01

    The film boiling heat transfer from a vertical slab with horizontal bottom surface to saturated liquids was analyzed theoretically. Bromley's solution for the vertical surface was modified to accommodate the continuity of the vapor mass flow rate around the lower corner of the vertical slab. The thickness of the vapor film covering the vertical surface of the slab was increased owing to the inflow of vapor generated under the horizontal bottom surface and resulted in a decrease in the heat tr...

  6. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.

    Science.gov (United States)

    Sorg, B S; Welch, A J

    2001-01-01

    Previous research introduced the concept of using biodegradable polymer film reinforcement of a liquid albumin solder for improvement of the tensile strength of repaired incisions in vitro. In this study, the effect of creating small pores in the PLGA films on the weld breaking strength is studied. Additionally, the effect of hydration on the strength of the reinforced welds is investigated. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with an 806-nm CW diode laser. A poly(DL-lactic-co-glycolic acid) (PLGA) film was used to reinforce the solder (the controls had solder but no reinforcement). Breaking strengths were measured acutely and after hydration in saline for 1 and 2 days. The data were analyzed by ANOVA (P < 0.05) and multiple comparisons of means were performed using the Newman-Keuls test. The creation of pores in the PLGA films qualitatively improved the film flexibility without having an apparent adverse effect on the breaking strength, while the actual technique of applying the film and solder had more of an effect. The acute maximum average breaking strengths of some of the film reinforced specimens (114.7 g-134.4 g) were significantly higher (P < 0.05) than the acute maximum average breaking strength of the unreinforced control specimens (68.3 g). Film reinforced specimens were shown to have a statistically significantly higher breaking strength than unreinforced controls after 1- and 2-day hydration. Reinforcement of liquid albumin solders in laser-assisted incision repair appears to have advantages over conventional methods that do not reinforce the cohesive strength of the solder in terms of acute breaking strength and after immersion in moist environments for short periods of time. Using a film with the solder applied to one surface only may be advantageous over other techniques.

  7. Electron pulsed beam induced processing of thin film surface by Nb3Ge deposited into a stainless steel tape

    International Nuclear Information System (INIS)

    Vavra, I.; Korenev, S.A.

    1988-01-01

    A surface of superconductive thin film of Nb 3 Ge deposited onto a stainless steel tape was processed using the electron beam technique. The electron beam used had the following parameters: beam current density from 400 to 1000 A/cm 2 ; beam energy 100 keV; beam impulse length 300 ns. By theoretical analysis it is shown that the heating of film surface is an adiabatic process. It corresponds to our experimental data and pictures showing a surface remelting due to electron beam influence. After beam processing the superconductive parameters of the film remain unchanged. Roentgenograms have been analysed of Nb 3 Ge film surface recrystallized due to electron beam influence

  8. Geotechnical field investigation of the rapid densification phenomenon in oil sands mature fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.; Chalaturnyk, R.J.; Scott, J.D.; Cyre, G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; MacKinnon, M. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2002-07-01

    The Mildred Lake Settling Basin (MLSB) is an oil sand tailings pond with a water area of about 11 square km and a maximum depth of mature fine tailings (MFT) of about 50 m, rendering it Syncrude's largest disposal site for tailings. Syncrude began storing the MFT in 1978 but in recent years there has been a sharp increase in the consolidation of the fine tailings, creating pumping challenges in the transfer of tailings from the MLSB for the creation of composite tailings. This paper presents preliminary results of field and laboratory study which have been launched to better manage the rapid densification of fine tailings. The study involves sampling, field vane tests, cone penetration tests, steel plate penetration tests and earth pressure measurements. Methane producing microorganisms have become very active in the part of the pond that is experiencing rapid densification. The objective of the study was to determine the inventory and distribution of high strength MFT in current storage ponds and to assess whether geotechnical properties are enough to support direct loading with solids such as sand, clay or coke. The cause of the phenomena was also examined along with ways to possibly enhance MFT development through microbial, physical or chemical treatments. Results show that the accumulation of methane gas may have reached a critical state in some parts of the pond. The densification phenomenon at the southern pond is more significant compared to the northern pond. Earth pressure measurements indicate that the earth pressure cell has good sensitivity and that the coefficient of earth pressure at rest is approximately one. Good agreement was reached between different testing methods used to determine geotechnical properties of MFT. 5 refs., 4 tabs., 14 figs.

  9. Numerical analysis of the heating phase and densification mechanism in polymers selective laser melting process

    Science.gov (United States)

    Mokrane, Aoulaiche; Boutaous, M'hamed; Xin, Shihe

    2018-05-01

    The aim of this work is to address a modeling of the SLS process at the scale of the part in PA12 polymer powder bed. The powder bed is considered as a continuous medium with homogenized properties, meanwhile understanding multiple physical phenomena occurring during the process and studying the influence of process parameters on the quality of final product. A thermal model, based on enthalpy approach, will be presented with details on the multiphysical couplings that allow the thermal history: laser absorption, melting, coalescence, densification, volume shrinkage and on numerical implementation using FV method. The simulations were carried out in 3D with an in-house developed FORTRAN code. After validation of the model with comparison to results from literature, a parametric analysis will be proposed. Some original results as densification process and the thermal history with the evolution of the material, from the granular solid state to homogeneous melted state will be discussed with regards to the involved physical phenomena.

  10. Experimental Research on Selective Laser Melting AlSi10Mg Alloys: Process, Densification and Performance

    Science.gov (United States)

    Chen, Zhen; Wei, Zhengying; Wei, Pei; Chen, Shenggui; Lu, Bingheng; Du, Jun; Li, Junfeng; Zhang, Shuzhe

    2017-12-01

    In this work, a set of experiments was designed to investigate the effect of process parameters on the relative density of the AlSi10Mg parts manufactured by SLM. The influence of laser scan speed v, laser power P and hatch space H, which were considered as the dominant parameters, on the powder melting and densification behavior was also studied experimentally. In addition, the laser energy density was introduced to evaluate the combined effect of the above dominant parameters, so as to control the SLM process integrally. As a result, a high relative density (> 97%) was obtained by SLM at an optimized laser energy density of 3.5-5.5 J/mm2. Moreover, a parameter-densification map was established to visually select the optimum process parameters for the SLM-processed AlSi10Mg parts with elevated density and required mechanical properties. The results provide an important experimental guidance for obtaining AlSi10Mg components with full density and gradient functional porosity by SLM.

  11. Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells.

    Science.gov (United States)

    Baba, Akira; Aoki, Nobutaka; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2011-06-01

    In this study, we demonstrate the fabrication of grating-coupled surface plasmon resonance (SPR) enhanced organic thin-film photovoltaic cells and their improved photocurrent properties. The cell consists of a grating substrate/silver/P3HT:PCBM/PEDOT:PSS structure. Blu-ray disk recordable substrates are used as the diffraction grating substrates on which silver films are deposited by vacuum evaporation. P3HT:PCBM films are spin-coated on silver/grating substrates. Low conductivity PEDOT:PSS/PDADMAC layer-by-layer ultrathin films deposited on P3HT:PCBM films act as the hole transport layer, whereas high conductivity PEDOT:PSS films deposited by spin-coating act as the anode. SPR excitations are observed in the fabricated cells upon irradiation with white light. Up to a 2-fold increase in the short-circuit photocurrent is observed when the surface plasmon (SP) is excited on the silver gratings as compared to that without SP excitation. The finite-difference time-domain simulation indicates that the electric field in the P3HT:PCBM layer can be increased using the grating-coupled SP technique. © 2011 American Chemical Society

  12. Adhesion and friction in polymer films on solid substrates: conformal sites analysis and corresponding surface measurements.

    Science.gov (United States)

    An, Rong; Huang, Liangliang; Mineart, Kenneth P; Dong, Yihui; Spontak, Richard J; Gubbins, Keith E

    2017-05-21

    In this work, we present a statistical mechanical analysis to elucidate the molecular-level factors responsible for the static and dynamic properties of polymer films. This analysis, which we term conformal sites theory, establishes that three dimensionless parameters play important roles in determining differences from bulk behavior for thin polymer films near to surfaces: a microscopic wetting parameter, α wx , defined as the ratio of polymer-substrate interaction to polymer-polymer interaction; a dimensionless film thickness, H*; and dimensionless temperature, T*. The parameter α wx introduced here provides a more fundamental measure of wetting than previous metrics, since it is defined in terms of intermolecular forces and the atomic structure of the substrate, and so is valid at the nanoscale for gas, liquid or solid films. To test this theoretical analysis, we also report atomic force microscopy measurements of the friction coefficient (μ), adhesion force (F A ) and glass transition temperature (T g ) for thin films of two polymers, poly(methyl methacrylate) (PMMA) and polystyrene (PS), on two planar substrates, graphite and silica. Both the friction coefficient and the glass transition temperature are found to increase as the film thickness decreases, and this increase is more pronounced for the graphite than for the silica surface. The adhesion force is also greater for the graphite surface. The larger effects encountered for the graphite surface are attributed to the fact that the microscopic wetting parameter, α wx , is larger for graphite than for silica, indicating stronger attraction of polymer chains to the graphite surface.

  13. Effect of surface microstructure and wettability on plasma protein adsorption to ZnO thin films prepared at different RF powers

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhanyun; Chen Min; Chen Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275 (China); Pan Shirong, E-mail: stscdh@mail.sysu.edu.c [Artificial Heart Lab, the 1st Affiliate Hospital of Sun Yat-Sen University, Guangzhou 510080 (China)

    2010-10-01

    In this paper, the adsorption behavior of plasma proteins on the surface of ZnO thin films prepared by radio frequency (RF) sputtering under different sputtering powers was studied. The microstructures and surface properties of the ZnO thin films were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible optical absorption spectroscopy and contact angle techniques. The results show that the ZnO thin films have better orientation of the (0 0 2) peak with increasing RF power, especially at around 160 W, and the optical band gap of the ZnO films varies from 3.2 to 3.4 eV. The contact angle test carried out by the sessile drop technique denoted a hydrophobic surface of the ZnO films, and the surface energy and adhesive work of the ZnO thin films decreased with increasing sputtering power. The amounts of human fibrinogen (HFG) and human serum albumin (HSA) adsorbing on the ZnO films and reference samples were determined by using enzyme-linked immunosorbent assay (ELISA). The results show that fewer plasma proteins and a smaller HFG/HSA ratio adsorb on the ZnO thin films' surface.

  14. Effect of chemical treatment on surface characteristics of sputter deposited Ti-rich NiTi shape memory alloy thin-films

    International Nuclear Information System (INIS)

    Sharma, S.K.; Mohan, S.

    2014-01-01

    Graphical abstract: FTIR spectra recorded for sputter deposited (a) untreated and (b) chemically treated NiTi SMA thin-films. - Highlights: • The effect of chemical treatment on surface properties of NiTi films demonstrated. • Chemically treated films offer strong ability to form protective TiO 2 layer. • TiO 2 layer formation offer great application prospects in biomedical fields. - Abstract: NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti:45/55 at.%). The rate of deposition and thickness of sputter deposited films were maintained to ∼35 nm min −1 and 4 μm respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO 3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (1 1 0) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (1 0 0), (1 0 1), and (2 0 0) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO 2 ) along with parent Austenite (1 1 0) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO 2 ) layer on the surface of

  15. Mechanical Characterization of Nanoporous Thin Films by Nanoindentation and Laser-induced Surface Acoustic Waves

    Science.gov (United States)

    Chow, Gabriel

    Thin films represent a critical sector of modern engineering that strives to produce functional coatings at the smallest possible length scales. They appear most commonly in semiconductors where they form the foundation of all electronic circuits, but exist in many other areas to provide mechanical, electrical, chemical, and optical properties. The mechanical characterization of thin films has been a continued challenge due foremost to the length scales involved. However, emerging thin films focusing on materials with significant porosity, complex morphologies, and nanostructured surfaces produce additional difficulties towards mechanical analysis. Nanoindentation has been the dominant thin film mechanical characterization technique for the last decade because of the quick results, wide range of sample applicability, and ease of sample preparation. However, the traditional nanoindentation technique encounters difficulties for thin porous films. For such materials, alternative means of analysis are desirable and the lesser known laser-induced surface acoustic wave technique (LiSAW) shows great potential in this area. This dissertation focuses on studying thin, porous, and nanostructured films by nanoindentation and LiSAW techniques in an effort to directly correlate the two methodologies and to test the limits and applicabilities of each technique on challenging media. The LiSAW technique is particularly useful for thin porous films because unlike indentation, the substrate is properly accounted for in the wave motion analysis and no plastic deformation is necessary. Additionally, the use of lasers for surface acoustic wave generation and detection allows the technique to be fully non-contact. This is desirable in the measurement of thin, delicate, and porous films where physical sample probing may not be feasible. The LiSAW technique is also valuable in overcoming nanoscale roughness, particularly for films that cannot be mechanically polished, since typical SAW

  16. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania); Bita, B. [National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari RO-077190 (Romania); Faculty of Physics, 405 Atomistilor Street, Magurele RO-077125 (Romania); Besleaga, C.; Zgura, I. [National Institute of Materials Physics, 105bis Atomistilor Street, Magurele RO-077125 (Romania); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg, Freiberg D-09596 (Germany); Popescu, A.C., E-mail: andrei.popescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania)

    2016-12-30

    Highlights: • Ripples obtained on carbon films after irradiation with visible ps laser pulses. • Amorphous carbon was transformed in nanographite following irradiation. • Ripples had a complex morphology, being made of islands of smaller ripples. • Hydrophilic carbon films became hydrophobic after surface structuring. - Abstract: Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  17. Modification of the surface properties of a polyimide film during irradiation with polychromic light

    International Nuclear Information System (INIS)

    Rosu, Liliana; Sava, Ion; Rosu, Dan

    2011-01-01

    The behaviour of a polyimide film with the aromatic structure during the exposure to UV light with λ > 290 nm was studied. Significant changes in color surface and gloss surface were identified during irradiation. Sample became lighten and less glossy after exposure to the light. These modifications were correlated with the structural changes in FTIR spectra. Based on changes in FTIR spectra recorded during irradiation, a mechanism for the photochemical degradation of polyimide film was proposed.

  18. Proximal surface caries detection with direct-exposure and rare earth screen/film imaging

    International Nuclear Information System (INIS)

    Lundeen, R.C.; McDavid, W.D.; Barnwell, G.M.

    1988-01-01

    This laboratory study compared five imaging systems for their diagnostic accuracy in detection of proximal surface dental caries. Ten viewers provided data on radiographic detectability of carious lesions. The diagnostic accuracy of each system was determined with receiver operating characteristic (ROC) curves by comparing viewer data with the true state of the teeth as determined microscopically. D-speed film marginally outperformed the other four systems, but the three screen/film systems matched the diagnostic accuracy of E-speed film. Radiation reductions between 62% and 92% were achieved with the screen/film systems when compared to the two conventional dental films. The feasibility of designing a screen/film bite-wing cassette was shown, but the poor diagnostic accuracy of the present bite-wing system indicated a need for a new technology in caries detection

  19. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    Science.gov (United States)

    Schwenger, Frédéric; Van Eijk, Alexander M. J.

    2017-10-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.

  20. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    Science.gov (United States)

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.