WorldWideScience

Sample records for surface figure measurement

  1. Minimizing Uncertainty in Cryogenic Surface Figure Measurement

    Science.gov (United States)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    A new facility at the Goddard Space Flight Center is designed to measure with unusual accuracy the surface figure of mirrors at cryogenic temperatures down to 12 K. The facility is currently configured for spherical mirrors with a radius of curvature (ROC) of 600 mm, and apertures of about 150 mm or less. The goals of the current experiment were to 1) Obtain the best possible estimate of test mirror surface figure, S(x,y) at 87 K and 20 K; 2) Obtain the best estimate of the cryo-change, Delta (x,y): the change in surface figure between room temperature and the two cryo-temperatures; and 3) Determine the uncertainty of these measurements, using the definitions and guidelines of the ISO Guide to the Expression of Uncertainty in Measurement. A silicon mirror was tested, and the cry-change from room temperature to 20K was found to be 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  2. Figures of merit for surface plasmon waveguides

    Science.gov (United States)

    Berini, Pierre

    2006-12-01

    Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of hree popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.

  3. Figure Measurements of High-Energy-X-Ray Replicated Optics

    Science.gov (United States)

    Gubarev, Mikhail; Ramsey, Brian; Kester, Thomas; Engelhaupt, Darell; Speegle, Chet; Martin, Greg

    2003-01-01

    We are developing grazing incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The HERO mirror shells are fabricated using electroform-nickel replication off super-polished cylindrical mandrels. One of the sources for mirror resolution error is departure of the shell figure from prescription. We have modified a Vertical-scan Long Trace Profilometer (VLTP) in order to measure the figure of the inner surface of the HERO mirror shells for diameters as small as 76 mm. Mirror alignment method and sources for systematic errors will be discussed. Comparison of figure metrology of the mandrel and the shells will be presented together with results from x-ray tests.

  4. Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — data for figures 1-8 in journal article "Assessment of port-related air quality impacts: geographic analysis of population", International Journal of Environment and...

  5. Figuring and Polishing Precision Optical Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The requirements for cost effective manufacturing and metrology of large optical surfaces is instrumental for the success of future NASA programs such as LISA,...

  6. Material removal and surface figure during pad polishing of fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Suratwala, T I; Feit, M D; Steele, W A

    2009-05-04

    The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the applied loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: (1) a moment caused by a pivot point and interface friction forces; (2) viscoelastic relaxation of the polyurethane lap; and (3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then combined to form a spatial and temporal Preston model & code for material removal (called Surface Figure or SurF{copyright}). The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner.

  7. Figure measurements of high-energy x-ray replicated optics

    Science.gov (United States)

    Gubarev, Mikhail V.; Ramsey, Brian D.; Kester, Thomas; Speegle, Chet O.; Engelhaupt, Darell; Martin, Greg

    2004-02-01

    We are developing grazing incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The HERO mirror shells are fabricated using electroform-nickel replication off super-polished cylindrical mandrels. One of the sources for mirror resolution error is departure of the shell figure from prescription. We have modified a Vertical-scan Long Trace Profilometer (VLTP) in order to measure the figure of the inner surface of the HERO mirror shells for diameters as small as 74 mm. Metrology of the figure, the microroughness, tilt angle, the circularity for the shell mirrors and the mandrels, as well as alignment procedures are discussed. Comparison of metrology of the mandrel and the shells is presented together with results from x-ray tests.

  8. Figuring and Polishing Precision Optical Surfaces, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The requirements for cost effective manufacturing and metrology of large optical surfaces is instrumental for the success of future NASA programs such as LISA,...

  9. Measuring the In-Process Figure, Final Prescription, and System Alignment of Large Optics and Segmented Mirrors Using Lidar Metrology

    Science.gov (United States)

    Ohl, Raymond; Slotwinski, Anthony; Eegholm, Bente; Saif, Babak

    2011-01-01

    The fabrication of large optics is traditionally a slow process, and fabrication capability is often limited by measurement capability. W hile techniques exist to measure mirror figure with nanometer precis ion, measurements of large-mirror prescription are typically limited to submillimeter accuracy. Using a lidar instrument enables one to measure the optical surface rough figure and prescription in virtuall y all phases of fabrication without moving the mirror from its polis hing setup. This technology improves the uncertainty of mirror presc ription measurement to the micron-regime.

  10. Figures of merit for measuring aging management program effectiveness

    International Nuclear Information System (INIS)

    Knudson, R.; Sciacca, F.; Walsh, R.; Zigler, G.

    1991-01-01

    One of the requirements for nuclear plant license renewal may be the establishment and demonstration of an effective aging management program. An analysis of both qualitative and quantitative information will be required to define the contents of this aging management program. The authors propose two quantitative figures of merit, Mean Event Detection Frequency and Mean Renewal Rate, that can be used to compare the effectiveness of various inspection, surveillance, test, and monitoring (ISTM) activities for aging mitigation. An example showing the relative effectiveness of an enhanced Loose Parts Monitoring System with current ISTM activities for steam generators and reactor internals is provided. (author)

  11. Influence of material removal programming on ion beam figuring of high-precision optical surfaces

    Science.gov (United States)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui

    2014-09-01

    Ion beam figuring (IBF) provides a nanometer/subnanometer precision fabrication technology for optical components, where the surface materials on highlands are gradually removed by the physical sputtering effect. In this deterministic method, the figuring process is usually divided into several iterations and the sum of the removed material in each iteration is expected to approach the ideally removed material as nearly as possible. However, we find that the material removal programming in each iteration would influence the surface error convergence of the figuring process. The influence of material removal programming on the surface error evolution is investigated through the comparative study of the contour removal method (CRM) and the geometric proportion removal method (PRM). The research results indicate that the PRM can maintenance the smoothness of the surface topography during the whole figuring process, which would benefit the stable operation of the machine tool and avoid the production of mid-to-high spatial frequency surface errors. Additionally, the CRM only has the corrective effect on the area above the contour line in each iteration, which would result in the nonuniform convergence of the surface errors in various areas. All these advantages distinguish PRM as an appropriate material removal method for ultraprecision optical surfaces.

  12. Measurement of the figure of merit of indigenously developed Nd ...

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... a linearly polarized light at Na D line (λd = 587.6 nm) of the laser glass was performed ... nF and nC are the refractive indices measured at λF = 486.1 nm and λC = 656.3 nm respectively. Using this, the n2 is given by Boling's formula as n2 = K(nd − 1) (n2 ... fluences (E) of the pump laser is given by [6].

  13. Measurement of the figure of merit M for 1-C3F6/SF6 mixtures

    DEFF Research Database (Denmark)

    Christensen, Jørn Erik Berril; McAllister, Iain Wilson

    1997-01-01

    High precision measurements of the linear part of the Paschen curve are reported for 1-C3F6/SF6 mixtures. From these measurements, values for the pressure-reduced limiting electric field strength (E/p)lim and the associated figure of merit M are derived. These two parameters can be used to charac......High precision measurements of the linear part of the Paschen curve are reported for 1-C3F6/SF6 mixtures. From these measurements, values for the pressure-reduced limiting electric field strength (E/p)lim and the associated figure of merit M are derived. These two parameters can be used...

  14. Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Ran, Tong; Zhang, Deyuan

    2015-11-01

    Nepenthes pitcher inspired slippery lubricant-infused porous surfaces greatly impact the understanding of liquid-repellent surfaces construction and have attracted extensive attention in recent years due to their potential applications in self-cleaning, anti-fouling, anti-icing, etc. In this work, we have successfully fabricated transparent slippery lubricant-infused surfaces based on breath figure patterns (BFPs). Large-area BFPs with interconnected pores were initially formed on the glass substrate and then a suitable lubricant was added onto the surfaces. The interconnected pores in BFPs were able to hold the lubricant liquid in place and form a stable liquid/solid composite surface capable of repelling a variety of liquids. The liquid-repellent surfaces show extremely low critical sliding angles for various liquids, thus providing the surfaces with efficient self-cleaning property. It was also found that the liquid droplets' sliding behaviors on the surfaces were significantly influenced by the tilting angle of the substrate, liquid volume, liquid chemical properties, and pore sizes of the surfaces.

  15. Surface cleanliness measurement procedure

    Science.gov (United States)

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  16. X-ray Multilayers and Thin-Shell Substrate Surface-Figure Correction

    Science.gov (United States)

    Windt, David

    We propose a comprehensive experimental research program whose two main goals are (a) to improve the performance of hard X-ray multilayer coatings and (b) to develop a high-throughput method to correct mid-frequency surface errors in thin-shell mirror substrates. Achieving these goals will enable the cost-effective construction of light- weight, highly-nested X-ray telescopes having greater observational sensitivity, wider energy coverage, and higher angular resolution than can be achieved at present. The realization of this technology will thus benefit the development of a variety of Explorer- class NASA X-ray astronomy missions now being formulated for both the soft and hard X-ray bands, and will enable the construction of future facility-class X-ray missions that will require both high sensitivity and high resolution. Building on the success of our previous APRA-funded research, we plan to investigate new thin-film growth techniques, new materials, and new aperiodic coating designs in order to develop new hard X-ray multilayers that have higher X-ray reflectance, wider energy response, lower film stress, and good stability, and that can be produced more quickly, at reduced cost. Additionally, we propose to build upon our extensive experience in sub-nm film-thickness control using velocity modulation and masked deposition techniques, and in the recent development of low-roughness, low-stress films grown by reactive sputtering, in order to develop new methods for correcting mid-frequency surface errors in thin-shell mirror substrates using both differential deposition and ion-beam figuring, either alone or in combination. These two surface-correction techniques already being used for sub-nm figuring of precision optics in a variety of disciplines, including diffraction-limited EUV lithography and synchrotron applications requiring sub-micron focusing are ideally suited for controlling mm-scale surface errors in the thin-shell substrates used for astronomical X

  17. Cubic Invariant Spherical Surface Harmonics in Conjunction With Diffraction Strain Pole-Figures

    NARCIS (Netherlands)

    Brakman, C.M.

    1986-01-01

    Four kinds of cubic invariant spherical surface harmonics are introduced. It has been shown previously that these harmonics occur in the equations relating measured diffraction (line-shift) elastic strain and macro-stresses generating these strains for the case of textured cubic materials. As a

  18. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  19. Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics

    Science.gov (United States)

    Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.

    2015-01-01

    Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.

  20. Contributions to the defocusing effect on pole figure measurements by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, J.; Salat F, R. S.; Jimenez J, A.; Kryshtab, T., E-mail: palacios@esfm.ipn.mx [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Mexico D. F. (Mexico)

    2015-07-01

    A simple method, considering a parallel beam approximation has been made to reproduce the main features of the defocusing effect, observed when pole figures are measured with the Schulz reflection technique using X-ray diffraction. A Lorentzian curve was used to approximate the primary beam profile. This method applied to low index reflections of copper and silver shows qualitatively and partially quantitatively, the extent the elongation of the ellipse resulting from the intersection of the beam with the tilted sample causes the defocusing effect. Differences observed experimentally are attributed mainly to the divergence of the beam, but also partially to the particular primary beam profile. Additionally, measurements with two different vertical heights of the receiving slit, i. e. the measured arch length of the Debye-Scherrer ring, indicate that this parameter plays no role in defocusing. (Author)

  1. Image, measure, figure: a critical discourse analysis of nursing practices that develop children.

    Science.gov (United States)

    Einboden, Rochelle; Rudge, Trudy; Varcoe, Colleen

    2013-07-01

    Motivated by discourses that link early child development and health, nurses engage in seemingly benign surveillance of children. These practices are based on knowledge claims and technologies of developmental science, which remain anchored in assumptions of the child body as an incomplete form with a universal developmental trajectory and inherent potentiality. This paper engages in a critical discursive analysis, drawing on Donna Haraway's conceptualizations of technoscience and figuration. Using a contemporary developmental screening tool from nursing practice, this analysis traces the effects of this tool through production, transformation, distribution, and consumption. It reveals how the techniques of imaging, abstraction, and measurement collide to fix the open, transformative child body in a figuration of the developing child. This analysis also demonstrates how technobiopower infuses nurses' understandings of children and structures developmentally appropriate expectations for children, parents, and nurses. Furthermore, it describes how practices that claim to facilitate healthy child development may inversely deprive children of agency and foster the production of normal or ideal children. An alternative ontological perspective is offered as a challenge to the individualism of developmental models and other dominant ideologies of development, as well as practices associated with these ideologies. In summary, this analysis argues that nurses must pay closer attention to how technobiopower infuses practices that monitor and promote child development. Fostering a critical understanding of the harmful implications of these practices is warranted and offers the space to conceive of human development in alternate and exciting ways. © 2013 John Wiley & Sons Ltd.

  2. Experimental measurement of lattice strain pole figures using synchrotron x rays

    International Nuclear Information System (INIS)

    Miller, M.P.; Bernier, J.V.; Park, J.-S.; Kazimirov, A.

    2005-01-01

    This article describes a system for mechanically loading test specimens in situ for the determination of lattice strain pole figures and their evolution in multiphase alloys via powder diffraction. The data from these experiments provide insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Relatively thin (0.5 mm) iron/copper specimens were axially strained using a mechanical loading frame beyond the macroscopic yield strength of the material. The loading was halted at multiple points during the deformation to conduct a diffraction experiment using a 0.5x0.5 mm 2 monochromatic (50 keV) x ray beam. Entire Debye rings of data were collected for multiple lattice planes ({hkl}'s) in both copper and iron using an online image plate detector. Strain pole figures were constructed by rotating the loading frame about the specimen transverse direction. Ideal powder patterns were superimposed on each image for the purpose of geometric correction. The chosen reference material was cerium (IV) oxide powder, which was spread in a thin layer on the downstream face of the specimen using petroleum jelly to prevent any mechanical coupling. Implementation of the system at the A2 experimental station at the Cornell High Energy Synchrotron Source (CHESS) is described. The diffraction moduli measured at CHESS were shown to compare favorably to in situ data from neutron-diffraction experiments conducted on the same alloys

  3. La petite fille de la surface comme figure de la dissolution du soi

    Directory of Open Access Journals (Sweden)

    Öznur Karakaş

    2015-12-01

    Full Text Available This article follows the traces of the jeune fille that can be found throughout Deleuze’s Logic of Sense, so as to pave the way for further reflection on possible links between feminism(s and Deleuzian thought. By analysing the key concepts of Logic of Sense, it is shown that Deleuze conceptualizes the jeune fille as the figure of the dissolution of the self, carried out through a close reading of Leibniz, Nietzsche and psychoanalysis. The jeune fille/the feminine is accordingly construed as an aleatory point at the intersection of possible world(s. This in turn resonates with Luce Irigaray’s project with respect to sexual difference, in which she calls upon feminists to create conceptions of the feminine as pure difference, not captured by the name of the Father or the patriarchal symbolic system.

  4. Specification of the surface figure and finish of optical elements in terms of system performance

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.

    1992-09-01

    Brookhaven National Laboratory is the site of the National Synchrotron Light Source (NSLS); an electron synchrotron which is an intense source of hard and soft x-rays. Since there are no effective refracting elements for x rays, this radiation must be manipulated and focused by mirrors configured to give high reflectivity. This paper describes methods of predicting the degradation of the performance of a simple imaging system in terms of the statistics of the shape errors of the focusing element, and conversely, of specifying those statistics in terms of requirements on image quality. Results are illustrated for a normal-incidence x-ray mirrors having figure errors plus conventional and/or fractal finish errors

  5. Figure5

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is an R statistics package script that allows the reproduction of Figure 5. The script includes the links to large NetCDF files that the figures access for O3,...

  6. Figure 7

    Data.gov (United States)

    U.S. Environmental Protection Agency — Two files provided. The ENS.tar file contains text data files (*.csv) used to create Figure 7 and Figure 8. The Figure7.txt is an R script that reads these files and...

  7. Tools for measuring surface cleanliness

    Energy Technology Data Exchange (ETDEWEB)

    Schroder, Mark Stewart (Hendersonville, NC); Woodmansee, Donald Ernest (Simpsonville, SC); Beadie, Douglas Frank (Greenville, SC)

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  8. Armor Plate Surface Roughness Measurements

    National Research Council Canada - National Science Library

    Stanton, Brian; Coburn, William; Pizzillo, Thomas J

    2005-01-01

    ...., surface texture and coatings) that could become important at high frequency. We measure waviness and roughness of various plates to know the parameter range for smooth aluminum and rolled homogenous armor (RHA...

  9. Quantitative electroencephalographic and neuropsychological investigation of an alternative measure of frontal lobe executive functions: the Figure Trail Making Test.

    Science.gov (United States)

    Foster, Paul S; Drago, Valeria; Ferguson, Brad J; Harrison, Patti Kelly; Harrison, David W

    2015-12-01

    The most frequently used measures of executive functioning are either sensitive to left frontal lobe functioning or bilateral frontal functioning. Relatively little is known about right frontal lobe contributions to executive functioning given the paucity of measures sensitive to right frontal functioning. The present investigation reports the development and initial validation of a new measure designed to be sensitive to right frontal lobe functioning, the Figure Trail Making Test (FTMT). The FTMT, the classic Trial Making Test, and the Ruff Figural Fluency Test (RFFT) were administered to 42 right-handed men. The results indicated a significant relationship between the FTMT and both the TMT and the RFFT. Performance on the FTMT was also related to high beta EEG over the right frontal lobe. Thus, the FTMT appears to be an equivalent measure of executive functioning that may be sensitive to right frontal lobe functioning. Applications for use in frontotemporal dementia, Alzheimer's disease, and other patient populations are discussed.

  10. A Nonequilibrium Figure of Saturn's Satellite Iapetus and the Origin of the Equatorial Ridge on Its Surface

    Science.gov (United States)

    Kondratyev, B. P.

    2018-03-01

    The structure, dynamical equilibrium, and evolution of Saturn's moon Iapetus are studied. It has been shown that, in the current epoch, the oblateness of the satellite ɛ2 ≈ 0.046 does not correspond to its angular velocity of rotation, which causes the secular spherization behavior of the ice shell of Iapetus. To study this evolution, we apply a spheroidal model, containing a rock core and an ice shell with an external surface ɛ2, to Iapetus. The model is based on the equilibrium finite-difference equation of the Clairaut theory, while the model parameters are taken from observations. The mean radius of the rock core and the oblateness of its level surface, ɛ1 ≈ 0.028, were determined. It was found that Iapetus is covered with a thick ice shell, which is 56.6% of the mean radius of the figure. We analyze a role of the core in the evolution of the shape of a gravitating figure. It was determined that the rock core plays a key part in the settling of the ice masses of the equatorial bulge, which finally results in the formation of a large circular equatorial ridge on the surface of the satellite. From the known mean altitude of this ice ridge, it was found that, in the epoch of its formation, the rotation period of Iapetus was 166 times shorter than that at present, as little as T ≈ 11h27m. This is consistent with the fact that a driving force of the evolution of the satellite in our model was its substantial despinning. The model also predicts that the ice ridge should be formed more intensively in the leading (dark and, consequently, warmer) hemisphere of the satellite, where the ice is softer. This inference agrees with the observations: in the leading hemisphere of Iapetus, the ridge is actually high and continuous everywhere, while it degenerates into individual ice peaks in the opposite colder hemisphere.

  11. Regular figures

    CERN Document Server

    Tóth, L Fejes; Ulam, S; Stark, M

    1964-01-01

    Regular Figures concerns the systematology and genetics of regular figures. The first part of the book deals with the classical theory of the regular figures. This topic includes description of plane ornaments, spherical arrangements, hyperbolic tessellations, polyhedral, and regular polytopes. The problem of geometry of the sphere and the two-dimensional hyperbolic space are considered. Classical theory is explained as describing all possible symmetrical groupings in different spaces of constant curvature. The second part deals with the genetics of the regular figures and the inequalities fo

  12. Figure Drawing

    Science.gov (United States)

    Herberholz, Barbara

    2010-01-01

    The figure has "figured" prominently in the choice of subject matter for many artists throughout history. Whether they may choose to depict it in an abstract or expressive form, most artists are quite capable of realistic portrayals of the human form. And all people know that one of the very first drawings made by young children is a symbol for…

  13. Correcting intensity loss errors in the absence of texture-free reference samples during pole figure measurement

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Vu, Viet Q.; Gazder, Azdiar A.

    2016-01-01

    Even with the use of X-ray polycapillary lenses, sample tilting during pole figure measurement results in a decrease in the recorded X-ray intensity. The magnitude of this error is affected by the sample size and/or the finite detector size. These errors can be typically corrected by measuring the intensity loss as a function of the tilt angle using a texture-free reference sample (ideally made of the same alloy as the investigated material). Since texture-free reference samples are not readily available for all alloys, the present study employs an empirical procedure to estimate the correction curve for a particular experimental configuration. It involves the use of real texture-free reference samples that pre-exist in any X-ray diffraction laboratory to first establish the empirical correlations between X-ray intensity, sample tilt and their Bragg angles and thereafter generate correction curves for any Bragg angle. It will be shown that the empirically corrected textures are in very good agreement with the experimentally corrected ones. - Highlights: •Sample tilting during X-ray pole figure measurement leads to intensity loss errors. •Texture-free reference samples are typically used to correct the pole figures. •An empirical correction procedure is proposed in the absence of reference samples. •The procedure relies on reference samples that pre-exist in any texture laboratory. •Experimentally and empirically corrected textures are in very good agreement.

  14. Figure 3

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Figure.tar.gz contains a directory for each WRF ensemble run. In these directories are *.csv files for each meteorology variable examined. These are comma...

  15. Figure6

    Data.gov (United States)

    U.S. Environmental Protection Agency — R script for the reproduction of Figure6. This script accesses archived CMAQ and WRF model output on US EPA's HPC sol computer system and plots forward trajectories...

  16. Figures1

    OpenAIRE

    2014-01-01

    NB. Soulignons que cette carte, établie à partir de statistiques officielles, est en contradiction avec de nombreuses enquêtes locales.Source : Diop Salif, Rekacewicz Philippe, 2003, Atlas mondial de l’eau, Paris, Éditions Autrement.Figure 1. Part de la population urbaine ayant accès à l'eau potable en Afrique subsaharienne Source : Diop, Rekacewicz, 2003.Figure 2. Afrique subsaharienne : pénurie d'eau douce et stress hydrique en 1990 et 2025 (projection) Source : Diop, Rekacewicz, 2003.Fig...

  17. Measurements of Near Sea Surface Infrared Propagation

    National Research Council Canada - National Science Library

    Frost, Shaun

    1999-01-01

    .... Measurements have been made of the atmospheric infrared transmission near the sea surface. Spectral transmission profiles were measured for a number of ranges using a fourier transform spectrometer...

  18. The measurement of surface gravity

    International Nuclear Information System (INIS)

    Crossley, David; Hinderer, Jacques; Riccardi, Umberto

    2013-01-01

    This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10 −8 m s −2 ), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1–5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post

  19. The measurement of surface gravity

    Science.gov (United States)

    Crossley, David; Hinderer, Jacques; Riccardi, Umberto

    2013-04-01

    This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10-8 m s-2), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post-glacial rebound

  20. Formation and texture of palladium germanides studied by in situ X-ray diffraction and pole figure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geenen, F.A., E-mail: Filip.Geenen@UGent.be [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Knaepen, W.; De Keyser, K. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Opsomer, K. [Interuniversitair Micro-Electronica Centrum (IMEC), Kapeldreef 75, 3001 Leuven (Belgium); Vanmeirhaeghe, R.L. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown (United States); Detavernier, C. [Ghent University, Department of Solid-State Sciences, Krijgslaan 281 (S1), 9000 Gent (Belgium)

    2014-01-31

    The solid state reaction between 30 nm Pd films and various Ge substrates (Ge(100), Ge(111), polycrystalline Ge and amorphous Ge) was studied by means of in situ X-ray diffraction and in situ sheet resistance measurements. The reported phase sequence of Pd{sub 2}Ge followed by PdGe was verified on all substrates. The texture of the germanides was analysed by pole figure measurements on samples quenched in the Pd{sub 2}Ge and in the PdGe phase on both Ge(100) and (111) substrates. We report an epitaxial growth of Pd{sub 2}Ge on Ge(111) and on Ge(100). The formed PdGe has an axiotaxial alignment on Ge(111). On Ge(100), the axiotaxial texture is observed together with a fibre texture. The higher formation temperature of PdGe on Ge(111) could be related to the epitaxial alignment of the Pd{sub 2}Ge parent phase on Ge(111). - Highlights: • Solid-state reaction is studied on a Pd film with Ge substrates. • Pd2Ge grains have an epitaxial texture on both Ge 100 and Ge 111. • PdGe grains are found to grow with an axiotaxial texture. • Retarded PdGe formation on Ge111 is related with strong epitaxy of Pd2Ge.

  1. The use of a position sensitive detector or of a multidetector for the measurement of pole figures by neutron time-of-flight technique

    International Nuclear Information System (INIS)

    Walther, K.

    1990-01-01

    The neutron flux of even high flux reactors is weak in comparison with the quantum flux of X-ray tubes and therefore in order to decrease the expense on measuring time more and more neutron diffractometers are equipped with position sensitive detectors or multidetectors. In this paper the peculiarities of the use of such detecting devices are discussed for the measurement of pole figures. A special arrangement of a multidetector is proposed which will allow one to scan the whole pole figure by rotating the sample about only one axis and considerably will save measuring time. 4 refs.; 5 figs

  2. Measuring Surface Combatant Fleet Effectiveness

    National Research Council Canada - National Science Library

    Crary, Michael

    1999-01-01

    ...? While Measures of Effectiveness for an individual ship can include its number of missiles, speed, and endurance, it is difficult to find a Measure of Effectiveness credible to experienced warplanners...

  3. Surface charge measurement by the Pockels effect

    CERN Document Server

    Sam, Y L

    2001-01-01

    have been observed by applying both impulse and AC voltages to a needle electrode in direct contact with the BSO. AC surface discharge behaviour of polymeric materials bonded to the BSO has also been investigated. The effect of the surrounding environment has been experimentally examined by placing the cell inside a vacuum chamber. Surface charge measurements have been made at various atmospheric pressures. The effect of an electro-negative gas (Sulphur Hexafluoride) on the surface charge distribution has also been investigated. This thesis is concerned with the design and development of a surface charge measurement system using Pockels effect. The measurement of surface charge is important in determining the electrical performance of high voltage insulation materials. The method proposed allows on-line measurement of charge and can generate two-dimensional images that represent the charge behaviour on the surface of the material under test. The measurement system is optical and uses a Pockels crystal as the ...

  4. Figure and finish of grazing incidence mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Church, E.L.

    1989-08-01

    Great improvement has been made in the past several years in the quality of optical components used in synchrotron radiation (SR) beamlines. Most of this progress has been the result of vastly improved metrology techniques and instrumentation permitting rapid and accurate measurement of the surface finish and figure on grazing incidence optics. A significant theoretical effort has linked the actual performance of components used as x-ray wavelengths to their topological properties as measured by surface profiling instruments. Next-generation advanced light sources will require optical components and systems to have sub-arc second surface figure tolerances. This paper will explore the consequences of these requirements in terms of manufacturing tolerances to see if the present manufacturing state-of-the-art is capable of producing the required surfaces. 15 refs., 14 figs., 2 tabs

  5. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  6. Open questions in surface topography measurement: a roadmap

    International Nuclear Information System (INIS)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W; O’Connor, Daniel

    2015-01-01

    Control of surface topography has always been of vital importance for manufacturing and many other engineering and scientific disciplines. However, despite over one hundred years of quantitative surface topography measurement, there are still many open questions. At the top of the list of questions is ‘Are we getting the right answer?’ This begs the obvious question ‘How would we know?’ There are many other questions relating to applications, the appropriateness of a technique for a given scenario, or the relationship between a particular analysis and the function of the surface. In this first ‘open questions’ article we have gathered together some experts in surface topography measurement and asked them to address timely, unresolved questions about the subject. We hope that their responses will go some way to answer these questions, address areas where further research is required, and look at the future of the subject. The first section ‘Spatial content characterization for precision surfaces’ addresses the need to characterise the spatial content of precision surfaces. Whilst we have been manufacturing optics for centuries, there still isn’t a consensus on how to specify the surface for manufacture. The most common three methods for spatial characterisation are reviewed and compared, and the need for further work on quantifying measurement uncertainties is highlighted. The article is focussed on optical surfaces, but the ideas are more pervasive. Different communities refer to ‘figure, mid-spatial frequencies, and finish’ and ‘form, waviness, and roughness’, but the mathematics are identical. The second section ‘Light scattering methods’ is focussed on light scattering techniques; an important topic with in-line metrology becoming essential in many manufacturing scenarios. The potential of scattering methods has long been recognized; in the ‘smooth surface limit’ functionally significant relationships can be derived from first

  7. Surface texture measurement for dental wear applications

    Science.gov (United States)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  8. Technique for measuring very high surface velocities

    International Nuclear Information System (INIS)

    Maron, Y.

    1977-01-01

    An interferometric technique for measuring displacements of surfaces moving at velocities in the range of a few millimeters per microsecond is presented. The Doppler shift of frequency of light scattered from such surfaces is too high to be detectable by known devices. The present technique is based upon monitoring the signal resulting from the interference between two beams reflected from the surface at different incidence angles. Measurement systems for specularly as well as diffusely reflecting surfaces are described. Light source with very modest temporal coherence delivering about 100 mw power is required. The accuracy of the technique is discussed. (author)

  9. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    Science.gov (United States)

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  10. How much detail is needed in modeling a transcranial magnetic stimulation figure-8 coil: Measurements and brain simulations

    OpenAIRE

    Petrov, Petar I.; Mandija, Stefano; Sommer, Iris E. C.; van den Berg, Cornelis A. T.; Neggers, Sebastiaan F. W.

    2017-01-01

    Background: Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM), there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to several limitations. Methods: We evaluate and empirically validate models of a figure-of-eight TMS coil t...

  11. Surface texture measurement for additive manufacturing

    International Nuclear Information System (INIS)

    Triantaphyllou, Andrew; Tomita, Ben; Milne, Katherine A; Giusca, Claudiu L; Macaulay, Gavin D; Roerig, Felix; Hoebel, Matthias; Leach, Richard K

    2015-01-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting. (paper)

  12. Constructing invariant fairness measures for surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Ungstrup, Michael

    2002-01-01

    The paper proposes a rational method to derive fairness measures for surfaces. It works in cases where isophotes, reflection lines, planar intersection curves, or other curves are used to judge the fairness of the surface. The surface fairness measure is derived by demanding that all the given cu...... of curves. Six basic third order invariants by which the fairing measures can be expressed are defined. Furthermore, the geometry of a plane intersection curve is studied, and the variation of the total, the normal, and the geodesic curvature and the geodesic torsion is determined....

  13. Surface tension measurements with a smartphone

    Science.gov (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-11-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept of surface tension through simple experiments.

  14. Constructing Invariant Fairness Measures for Surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Ungstrup, Michael

    1998-01-01

    This paper presents a general method which from an invariant curve fairness measure constructs an invariant surface fairness measure. Besides the curve fairness measure one only needs a class of curves on the surface for which one wants to apply the curve measure. The surface measure at a point...... variation.The method is extended to the case where one considers, not the fairness of one curve, but the fairness of a one parameter family of curves. Such a family is generated by the flow of a vector field, orthogonal to the curves. The first, respectively the second order derivative along the curve...... of the size of this vector field is used as the fairness measure on the family.Six basic 3rd order invariants satisfying two quadratic equations are defined. They form a complete set in the sense that any invariant 3rd order function can be written as a function of the six basic invariants together...

  15. Preparation of stable silica surfaces for surface forces measurement

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  16. Body Dissatisfaction Measured with a Figure Preference Task and Self-Esteem in 8 Year Old Children—a Study within the ABIS-Project

    Directory of Open Access Journals (Sweden)

    F.S. Koch

    2008-01-01

    Full Text Available Body dissatisfaction has been related to low self-esteem and depression in adolescents. With regard to the current world wide rise in childhood obesity and common stigmatization of adults and children with obesity, easy to use and cost effective measurements of body dissatisfaction would be helpful in epidemiological research. In the current study, detailed data on body measurements with regard to perceived and ideal body size and body dissatisfaction, as measured with the figure preference task, are presented for a population based sample of 3837 children. Perceived body size correlations to weight, body mass index [BMI], and waist circumference were between 0.41 and 0.54; and to height between 0.12 and 0.21. Odds ratios for lower self-esteem increased with increase in body dissatisfaction. Gender differences in body dissatisfaction were present but not found in relation to self-esteem. It is concluded that the figure preference task yields valuable information in epidemiological studies of children as young as 7.5 years of age. It is argued, that the figure preference task is an additional measurement which theoretically relates to psychological stress in childhood.

  17. Body Dissatisfaction Measured with a Figure Preference Task and Self-Esteem in 8 Year Old Children - a Study within the ABIS-Project

    Directory of Open Access Journals (Sweden)

    A. Sepa

    2008-01-01

    Full Text Available Body dissatisfaction has been related to low self-esteem and depression in adolescents. With regard to the current world wide rise in childhood obesity and common stigmatization of adults and children with obesity, easy to use and cost effective measurements of body dissatisfaction would be helpful in epidemiological research. In the current study, detailed data on body measurements with regard to perceived and ideal body size and body dissatisfaction, as measured with the figure preference task, are presented for a population based sample of 3837 children. Perceived body size correlations to weight, body mass index [BMI], and waist circumference were between 0.41 and 0.54; and to height between 0.12 and 0.21. Odds ratios for lower self-esteem increased with increase in body dissatisfaction. Gender differences in body dissatisfaction were present but not found in relation to self-esteem. It is concluded that the figure preference task yields valuable information in epidemiological studies of children as young as 7.5 years of age. It is argued, that the figure preference task is an additional measurement which theoretically relates to psychological stress in childhood.

  18. Measurement of Gas-Surface Accommodation

    Science.gov (United States)

    Trott, W. M.; Rader, D. J.; Castañeda, J. N.; Torczynski, J. R.; Gallis, M. A.

    2008-12-01

    Thermal accommodation coefficients have been determined for a variety of gas-surface combinations using an experimental apparatus developed to measure both the pressure dependence of the conductive heat flux and the variation of gas density between parallel plates separated by a gas-filled gap. Effects of gas composition, surface roughness and surface contamination have been examined with this system, and the behavior of gas mixtures has also been explored. Results are discussed in comparison with previous parallel-plate experimental studies as well as numerical simulations.

  19. Effect of x-ray mirror figure error on the focus profile: comparison of measurements with physical and geometric optics simulations

    Science.gov (United States)

    Laundy, David; Sawhney, Kawal

    2017-08-01

    Mirrors operating at grazing angles utilising total external reflection are commonly used for focusing X-ray at synchrotron radiation sources. Figure error on the mirror causes distortion of the focus profile. We have modeled a well characterized test mirror which has three different modifications of the elliptical figure laid down in parallel lanes running the length of the mirror. The focusing of the mirror was simulated using geometric optics (ray tracing) and physical optics (wave propagation). The mirror was then tested with X-rays on a beamline at a synchrotron radiation facility. The comparison between the two simulation methods and the measured data elucidates the origins of structures on the intensity profile of the focused beam and demonstrate that for quantitative agreement between simulation and experiment, interference and diffraction effects must be modeled.

  20. Interpreting the probe-surface interaction of surface measuring instruments, or what is a surface?

    Science.gov (United States)

    Leach, Richard; Weckenmann, Albert; Coupland, Jeremy; Hartmann, Wito

    2014-09-01

    When using dimensional measuring instruments it is assumed that there is a property of the object, which we call surface, that is present before during and after the measurement, i.e. the surface is a fundamental property of an object that can, by appropriate means, be used to measure geometry. This paper will attempt to show that the fundamental property ‘surface’ does not exist in any simple form and that all the information we can have about a surface is the measurement data, which will include measurement uncertainty. Measurement data, or what will be referred to as the measured surface, is all that really exists. In this paper the basic physical differences between mechanically, electromagnetically and electrically measured surfaces are highlighted and discussed and accompanied by measurement results on a roughness artefact.

  1. Interpreting the probe-surface interaction of surface measuring instruments, or what is a surface?

    International Nuclear Information System (INIS)

    Leach, Richard; Weckenmann, Albert; Hartmann, Wito; Coupland, Jeremy

    2014-01-01

    When using dimensional measuring instruments it is assumed that there is a property of the object, which we call surface, that is present before during and after the measurement, i.e. the surface is a fundamental property of an object that can, by appropriate means, be used to measure geometry. This paper will attempt to show that the fundamental property ‘surface’ does not exist in any simple form and that all the information we can have about a surface is the measurement data, which will include measurement uncertainty. Measurement data, or what will be referred to as the measured surface, is all that really exists. In this paper the basic physical differences between mechanically, electromagnetically and electrically measured surfaces are highlighted and discussed and accompanied by measurement results on a roughness artefact. (paper)

  2. Surface resistivity measurement of plasma treated polymers

    International Nuclear Information System (INIS)

    Simon, D.; Pigram, P.J.; Liesegang, J.

    2000-01-01

    Full text: Resistivity of insulators is an important property of materials used within the integrated circuit and packaging industries. The measurement of electrical resistivity of insulator materials in the surface region in this work is interpreted through observations of surface charge decay. A self-field driven and diffusion charge transport theory is used to model the process and resistivity values obtained computationally. Data for the charge decay of surface charged samples are collected by suspending them inside a coaxial cylinder connected to an electrometer. Samples used have been low density polyethylene LDPE sheet, both pristine and surface treated. Some samples have been treated by air plasma at low vacuum pressures for different periods of time; others have been washed in ethyl acetate and then plasma treated before the resistivity measurement. The sets of resistivity measurements form the various treatments are compared below. X-ray photoelectron spectroscopy (XPS) has also been used to investigate and account for the observed variations in surface resistivity

  3. Three-Dimensionally Conformal Porous Microstructured Fabrics via Breath Figures: A Nature-Inspired Approach for Novel Surface Modification of Textiles.

    Science.gov (United States)

    Gong, Jianliang; Xu, Bingang; Tao, Xiaoming

    2017-05-24

    Breath figures (BFs) are a kind of water droplet arrays that can be formed by condensing aqueous vapor onto a cold surface, such as dewy phenomenon on a spider web. This study developed a BF-inspired approach for direct introduction of desired materials onto the textile surfaces with three-dimensionally conformal porous microstructures by the evaporation of solution-coated fabric under high humidity environment, which brings a brand-new kind of modified textiles, three-dimensionally conformal porous microstructured fabrics (CPMFs). Such kind of CPMFs can possess customized multifunctional properties of introduced materials, and meanwhile maintain the inherent properties and unique texture features of fabrics. This nature-inspired BF approach is robust and versatile for customized preparation of CPMFs based on different fabrics with different common polymers. Moreover, it is also feasible for one-step functionalization of CPMFs by the incorporation of nanoparticles (such as titanium dioxide nanoparticles, TiO 2 NPs) into the porous microstructures during the BF process. Comparing to the sample modified without porous microstructures, the resultant TiO 2 NPs-incorporated CPMFs show an obviously enhanced performance on photocatalytic degradation of pollutants under the same ultraviolet irradiation conditions.

  4. Surface Tension Measurements with a Smartphone

    Science.gov (United States)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-01-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept…

  5. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  6. Optical measurement of surface roughness in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brodmann, R.

    1984-11-01

    The measuring system described here is based on the light-scattering method, and was developed by Optische Werke G. Rodenstock, Munich. It is especially useful for rapid non-contact monitoring of surface roughness in production-related areas. This paper outlines the differences between this system and the common stylus instrument, including descriptions of some applications in industry.

  7. How much detail is needed in modeling a transcranial magnetic stimulation figure-8 coil: Measurements and brain simulations.

    Science.gov (United States)

    Petrov, Petar I; Mandija, Stefano; Sommer, Iris E C; van den Berg, Cornelis A T; Neggers, Sebastiaan F W

    2017-01-01

    Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM), there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to several limitations. We evaluate and empirically validate models of a figure-of-eight TMS coil that are commonly used in published modeling studies, of increasing complexity: simple circular coil model; coil with in-plane spiral winding turns; and finally one with stacked spiral winding turns. We will assess the electric fields induced by all 3 coil models in the motor cortex using a computer FEM model. Biot-Savart models of discretized wires were used to approximate the 3 coil models of increasing complexity. We use a tailored MR based phase mapping technique to get a full 3D validation of the incident magnetic field induced in a cylindrical phantom by our TMS coil. FEM based simulations on a meshed 3D brain model consisting of five tissues types were performed, using two orthogonal coil orientations. Substantial differences in the induced currents are observed, both theoretically and empirically, between highly idealized coils and coils with correctly modeled spiral winding turns. Thickness of the coil winding turns affect minimally the induced electric field, and it does not influence the predicted activation. TMS coil models used in FEM simulations should include in-plane coil geometry in order to make reliable predictions of the incident field. Modeling the in-plane coil geometry is important to correctly simulate the induced electric field and to correctly make reliable predictions of neuronal activation.

  8. How much detail is needed in modeling a transcranial magnetic stimulation figure-8 coil: Measurements and brain simulations.

    Directory of Open Access Journals (Sweden)

    Petar I Petrov

    Full Text Available Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM, there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to several limitations.We evaluate and empirically validate models of a figure-of-eight TMS coil that are commonly used in published modeling studies, of increasing complexity: simple circular coil model; coil with in-plane spiral winding turns; and finally one with stacked spiral winding turns. We will assess the electric fields induced by all 3 coil models in the motor cortex using a computer FEM model. Biot-Savart models of discretized wires were used to approximate the 3 coil models of increasing complexity. We use a tailored MR based phase mapping technique to get a full 3D validation of the incident magnetic field induced in a cylindrical phantom by our TMS coil. FEM based simulations on a meshed 3D brain model consisting of five tissues types were performed, using two orthogonal coil orientations.Substantial differences in the induced currents are observed, both theoretically and empirically, between highly idealized coils and coils with correctly modeled spiral winding turns. Thickness of the coil winding turns affect minimally the induced electric field, and it does not influence the predicted activation.TMS coil models used in FEM simulations should include in-plane coil geometry in order to make reliable predictions of the incident field. Modeling the in-plane coil geometry is important to correctly simulate the induced electric field and to correctly make reliable predictions of neuronal activation.

  9. How much detail is needed in modeling a transcranial magnetic stimulation figure-8 coil: Measurements and brain simulations

    Science.gov (United States)

    Mandija, Stefano; Sommer, Iris E. C.; van den Berg, Cornelis A. T.; Neggers, Sebastiaan F. W.

    2017-01-01

    Background Despite TMS wide adoption, its spatial and temporal patterns of neuronal effects are not well understood. Although progress has been made in predicting induced currents in the brain using realistic finite element models (FEM), there is little consensus on how a magnetic field of a typical TMS coil should be modeled. Empirical validation of such models is limited and subject to several limitations. Methods We evaluate and empirically validate models of a figure-of-eight TMS coil that are commonly used in published modeling studies, of increasing complexity: simple circular coil model; coil with in-plane spiral winding turns; and finally one with stacked spiral winding turns. We will assess the electric fields induced by all 3 coil models in the motor cortex using a computer FEM model. Biot-Savart models of discretized wires were used to approximate the 3 coil models of increasing complexity. We use a tailored MR based phase mapping technique to get a full 3D validation of the incident magnetic field induced in a cylindrical phantom by our TMS coil. FEM based simulations on a meshed 3D brain model consisting of five tissues types were performed, using two orthogonal coil orientations. Results Substantial differences in the induced currents are observed, both theoretically and empirically, between highly idealized coils and coils with correctly modeled spiral winding turns. Thickness of the coil winding turns affect minimally the induced electric field, and it does not influence the predicted activation. Conclusion TMS coil models used in FEM simulations should include in-plane coil geometry in order to make reliable predictions of the incident field. Modeling the in-plane coil geometry is important to correctly simulate the induced electric field and to correctly make reliable predictions of neuronal activation PMID:28640923

  10. The effect of scattered light sensor orientation on roughness measurement of curved polished surfaces

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    with crossed surface lay to document the robustness of the method. The instrument area-integrating measuring principle (figure 1) is based on a non-coherent light beam of ∅ 0.9 mm and 670 nm wavelength illuminating the measured surface, reflection of the incident light from the surface slopes in spatial......The effect of angular orientation of a scattered light sensor with respect to main curvature and surface lay on roughness measurements is evaluated. A commercial scattered light sensor OS 500-32 from Optosurf GmbH was used. The investigation was performed on polished cylindrical surfaces...... directions, and its acquisition within ± 16º angular range with a linear detector array. From the distribution of the acquired scattered light intensity, a number of statistical parameters describing the surface texture are calculated, where the Aq parameter (variance of the scattered light distribution...

  11. Surface dose extrapolation measurements with radiographic film

    International Nuclear Information System (INIS)

    Butson, Martin J; Cheung Tsang; Yu, Peter K N; Currie, Michael

    2004-01-01

    Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)

  12. Novel surface measurement system reading cost savings

    Energy Technology Data Exchange (ETDEWEB)

    Sword, M.

    1996-05-01

    A new state-of-the-art data acquisition system for the oil and natural gas industries is being marketed by OPSCO`92 Industries Ltd. The unit is portable, it measures surface data which is calibrated to bottom-hole conditions and designed to measure temperature and pressure information without the necessity of sending testing equipment downhole. The Surface Data System (SDS) uses silicon-crystal technology, is mounted in a suitcase size carrying case, and runs off a 12-volt battery enclosure which can be backed up by a small solar panel. The first generation system can handle 16 different channels of information input on a laptop computer. Pressure, pressure differential, temperature, frequency and pulse signals for flow meter measurements are handled by standard sensors. Areas of application include build-up and fall-off tests, pipeline evaluation, pre-frac tests, underbalanced drilling and gas well evaluation. 1 fig., 1 photo.

  13. Surface topography measurements over the 1 meter to 10 micrometer spatial period bandwidth

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Furenlid, K.; DeBiasse, R.A.; Church, E.L.

    1989-09-01

    A recently-developed long-trace surface profiling instrument (LTP) is now in operation in our laboratory measuring surface profiles on grazing incidence aspheres and also conventional optical surface. The LTP characterizes surface height profiles in a non-contact manner over spatial periods ranging from 1 meter (the maximum scan length) to 2 mm (the Nyquist period for 1 mm sampling period) and complements the range of our WYKO NCP-1000 2.5X surface roughness profiler (5 mm to 9.8 μm). Using these two instruments, we can fully characterize both figure and finish of an optical surface in the same way that we normally characterize surface finish, e.g., by means of the power spectral density function in the spatial frequency domain. A great deal of information about the distribution of figure errors over various spatial frequency ranges is available from this data, which is useful for process control and predicting performance at the desired wavelength and incidence angle. In addition, the LTP is able to measure the absolute radius of curvature on long-radius optics with high precision and accuracy. Angular errors in the optical head are measured in real time by an electronic autocollimator as the head traverses the linear air bearing slide. Measurements of kilometer radius optics can be made very quickly and the data analyzed in a format that is very easy to understand. 17 refs., 10 figs

  14. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  15. Radioimmunoassay to quantitatively measure cell surface immunoglobulins

    International Nuclear Information System (INIS)

    Krishman, E.C.; Jewell, W.R.

    1975-01-01

    A radioimmunoassay techniques developed to quantitatively measure the presence of immunoglobulins on the surface of cells, is described. The amount of immunoglobulins found on different tumor cells varied from 200 to 1140 ng/10 6 cells. Determination of immunoglobulins on the peripheral lymphocytes obtained from different cancer patients varied between 340 to 1040 ng/10 6 cells. Cultured tumor cells, on the other hand, were found to contain negligible quantities of human IgG [pt

  16. Description of measurement techniques for surface contaminations

    International Nuclear Information System (INIS)

    Bourrez, E.

    2001-01-01

    The needs of evaluation of the surface contamination are numerous in the processes of production and management of radioactive waste. The market of radiation protection materials proposes a lot of devices answering to the almost all these needs. These device have however their conditions and particular limits for use. To realize correct measurements it is use the device, the technique and the methods adapted to the need, by taking into account the optimization of economical aspect. (N.C.)

  17. Digital Moiré based transient interferometry and its application in optical surface measurement

    Science.gov (United States)

    Hao, Qun; Tan, Yifeng; Wang, Shaopu; Hu, Yao

    2017-10-01

    Digital Moiré based transient interferometry (DMTI) is an effective non-contact testing methods for optical surfaces. In DMTI system, only one frame of real interferogram is experimentally captured for the transient measurement of the surface under test (SUT). When combined with partial compensation interferometry (PCI), DMTI is especially appropriate for the measurement of aspheres with large apertures, large asphericity or different surface parameters. Residual wavefront is allowed in PCI, so the same partial compensator can be applied to the detection of multiple SUTs. Excessive residual wavefront aberration results in spectrum aliasing, and the dynamic range of DMTI is limited. In order to solve this problem, a method based on wavelet transform is proposed to extract phase from the fringe pattern with spectrum aliasing. Results of simulation demonstrate the validity of this method. The dynamic range of Digital Moiré technology is effectively expanded, which makes DMTI prospective in surface figure error measurement for intelligent fabrication of aspheric surfaces.

  18. Acoustic Impedance Measurement for Underground Surfaces.

    Science.gov (United States)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  19. Measuring the Valence of Nanocrystal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan Scharle [Columbia Univ., New York, NY (United States)

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystal with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.

  20. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  1. Calibration of areal surface topography measuring instruments

    Science.gov (United States)

    Seewig, J.; Eifler, M.

    2017-06-01

    The ISO standards which are related to the calibration of areal surface topography measuring instruments are the ISO 25178-6xx series which defines the relevant metrological characteristics for the calibration of different measuring principles and the ISO 25178-7xx series which defines the actual calibration procedures. As the field of areal measurement is however not yet fully standardized, there are still open questions to be addressed which are subject to current research. Based on this, selected research results of the authors in this area are presented. This includes the design and fabrication of areal material measures. For this topic, two examples are presented with the direct laser writing of a stepless material measure for the calibration of the height axis which is based on the Abbott- Curve and the manufacturing of a Siemens star for the determination of the lateral resolution limit. Based on these results, as well a new definition for the resolution criterion, the small scale fidelity, which is still under discussion, is presented. Additionally, a software solution for automated calibration procedures is outlined.

  2. Seasonal slope surface deformation measured with TLS

    International Nuclear Information System (INIS)

    Fan, L; Smethurst, J; Powrie, W; Sellaiya, A

    2014-01-01

    In temperate European climates, soil water removal due to vegetation transpiration peaks in summer and soil rewetting from higher levels of precipitation occurs in winter. In clays of high plasticity, the seasonal cycles of drying and wetting cause the soil to experience a volumetric change, resulting in seasonal shrinking and swelling. For a clay slope exhibiting volume change, such behaviour can lead to excessive deformation and could contribute to strain-softening and progressive slope failure. This can in turn cause traffic disruption and loss of life if roads and railways are founded on or surrounded by such slopes. This paper discusses the driving forces of seasonal surface movement, in particular the role of vegetation, and presents the use of Terrestrial Laser Scanning (TLS) to measure the surface movement of a lightly vegetated London Clay slope near Newbury, UK. Two TLS scans were carried out in early and late summer respectively, representing relative wet and dry conditions of the slope. Continuous field measurements of soil water content in upper layers of the slope were obtained from TDR ThetaProbes already installed at the site. The water content data are used to support the results obtained from TLS by indicating the likely volumetric change in the soil due to loss of water

  3. Sea Surface Temperatures (SST): Significance and Measurement

    Science.gov (United States)

    Singer, S. F.

    2006-05-01

    Oceans cover 71 percent of Earth's surface and control the global climate. Quoted global mean temperature values and trends, largely based on land thermometers, differ substantially -" mainly because of uncertainties about SST. The ongoing controversy about the relative importance of natural climate changes and Anthropogenic Global Warming (AGW) revolves mainly around disparities between temperature trends of the atmosphere and surface (in the tropics and SH, i.e. mostly SST). Accurate measurement of SST is difficult. Geographic coverage is poor and there are many different techniques, each with its own problems and uncertainties: Water temperatures from buckets and ship-engine inlets; fixed and floating buoys; air temperatures from shipboard and island stations; and remote sensing from satellites using IR and microwaves. As is evident, each technique refers to a different level below the air-water interface. Drifter buoys (at around 50 cm) measure temperatures in the euphotic layers that are generally warmer than the bulk mixed layer sampled by ships (typically around 10 m). The IR emission arises from a 10-micron-thick skin that interacts dynamically with the underlying "mixed layer." The microwave data depend also on emissivity and therefore on surface roughness and sea state. SST data derived from corals provide some support for instrumental data but are not conclusive. The majority of corals show a warming trend since 1979; others show cooling or are ambiguous. There are different ways of interpreting this result. Physical optics dictates that the downwelling IR radiation from atmospheric greenhouse gases is absorbed in the first instance within the skin. Only direct measurements can establish how much of this energy is shared with the bulk mixed layer (to which the usual SST values refer.). SST controls evaporation and therefore global precipitation. SST influences tropical cyclones and sea-level rise; but there is lively debate on those issues. Changes in

  4. Quadrotor helicopter for surface hydrological measurements

    Science.gov (United States)

    Pagano, C.; Tauro, F.; Porfiri, M.; Grimaldi, S.

    2013-12-01

    Surface hydrological measurements are typically performed through user-assisted and intrusive field methodologies which can be inadequate to monitor remote and extended areas. In this poster, we present the design and development of a quadrotor helicopter equipped with digital acquisition system and image calibration units for surface flow measurements. This custom-built aerial vehicle is engineered to be lightweight, low-cost, highly customizable, and stable to guarantee optimal image quality. Quadricopter stability guarantees minimal vibrations during image acquisition and, therefore, improved accuracy in flow velocity estimation through large scale particle image velocimetry algorithms or particle tracking procedures. Stability during the vehicle pitching and rolling is achieved by adopting large arm span and high-wing configurations. Further, the vehicle framework is composed of lightweight aluminum and durable carbon fiber for optimal resilience. The open source Ardupilot microcontroller is used for remote control of the quadricopter. The microcontroller includes an inertial measurement unit (IMU) equipped with accelerometers and gyroscopes for stable flight through feedback control. The vehicle is powered by a 3 cell (11.1V) 3000 mAh Lithium-polymer battery. Electronic equipment and wiring are hosted into the hollow arms and on several carbon fiber platforms in the waterproof fuselage. Four 35A high-torque motors are supported at the far end of each arm with 10 × 4.7 inch propellers. Energy dissipation during landing is accomplished by four pivoting legs that, through the use of shock absorbers, prevent the impact energy from affecting the frame thus causing significant damage. The data capturing system consists of a GoPro Hero3 camera and in-house built camera gimbal and shock absorber damping device. The camera gimbal, hosted below the vehicle fuselage, is engineered to maintain the orthogonality of the camera axis with respect to the water surface by

  5. Student figures in friction

    DEFF Research Database (Denmark)

    Nielsen, Gritt B.

    , students' room for participation in their own learning, influenced by demands for efficiency, flexibility and student-centred education. The thesis recasts the anthropological endeavour as one of ‘figuration work'. That is, ‘frictional events' are explored as moments when conflicting figures...

  6. Figure S1 Figure S2

    Indian Academy of Sciences (India)

    WINTEC

    6.8. 7.0. 7.2. 7.4. 7.6. 7.8. 8.0. 8.2. 8.4. 8.6. 8.8 ppm. 0.0. 1.8. 9.7. 5.4. 6.9. 8.1. 9.0. 10.8. 3.2. 10.3. Figure S3. NMR titration of DAN-Ia acid with NDI at 30% MeOH in CDCl3. The numbers represent the mole ratios of the DAN-acid to the repeat unit.

  7. data for figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — Figures 1-10 and Table 1. This dataset is associated with the following publication: Chang, S.Y., S. Arunachalam, A. Valencia, B. Naess, V. Isakov , M. Breen , T....

  8. Facts and Figures

    Science.gov (United States)

    ... Saves Lives Facts & Figures My Blood, Your Blood Blood Donation Types Did you know there is more than one type of blood donation? Learn more about blood donation types here. Blood Safety and Testing The blood supply ...

  9. [Measuring microhardness of laser exposed tooth surface].

    Science.gov (United States)

    Florin, R; Herrmann, C; Bernhardt, W

    1990-02-01

    In principle it is possible to homogenize the enamel surface by melting structural elements with the continuous wave CO2 laser. Using the precision instrument NEOPHOT 2 (Carl Zeiss JENA) the microhardness of extracted laserexposed premolares were tested so as to clarify the functional strain capasity and the mechanical characteristics of laserexposed regions of enamel surfaces. The proven higher hardness in the centre of the laserinduced fusing zones (in comparison with adjacent enamel) objectify an attainable refining of the enamel surface that probably causes an increase in the caries-preventive resistance.

  10. Ion beam figuring of CVD silicon carbide mirrors

    Science.gov (United States)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  11. Surface texturing of crystalline silicon and effective area measurement

    Science.gov (United States)

    Sun, Tietun; Chen, Dong; Chui, Rongqiang

    2000-11-01

    In this paper, the surface area of solar cell is determined by the capacitance measurements of MOS structure. The texture etching technology can be controlled according to the change of silicon surface area, furthermore, the textured silicon surface and interface characteristic of solar cell can be studied by measuring the relationship of capacitance and voltage for MOS structure.

  12. Multivariate analytical figures of merit as a metric for evaluation of quantitative measurements using comprehensive two-dimensional gas chromatography-mass spectrometry.

    Science.gov (United States)

    Eftekhari, Ali; Parastar, Hadi

    2016-09-30

    The present contribution is devoted to develop multivariate analytical figures of merit (AFOMs) as a new metric for evaluation of quantitative measurements using comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS). In this regard, new definition of sensitivity (SEN) is extended to GC×GC-MS data and then, other multivariate AFOMs including analytical SEN (γ), selectivity (SEL) and limit of detection (LOD) are calculated. Also, two frequently used second- and third-order calibration algorithms of multivariate curve resolution-alternating least squares (MCR-ALS) as representative of multi-set methods and parallel factor analysis (PARAFAC) as representative of multi-way methods are discussed to exploit pure component profiles and to calculate multivariate AFOMs. Different GC×GC-MS data sets with different number of components along with various levels of artifacts are simulated and analyzed. Noise, elution time shifts in both chromatographic dimensions, peak overlap and interferences are considered as the main artifacts in this work. Additionally, a new strategy is developed to estimate the noise level using variance-covariance matrix of residuals which is very important to calculate multivariate AFOMs. Finally, determination of polycyclic aromatic hydrocarbons (PAHs) in aromatic fraction of heavy fuel oil (HFO) analyzed by GC×GC-MS is considered as real case to confirm applicability of the proposed metric in real samples. It should be pointed out that the proposed strategy in this work can be used for other types of comprehensive two-dimensional chromatographic (CTDC) techniques like comprehensive two dimensional liquid chromatography (LC×LC). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. High speed machined surface roughness measurement ...

    African Journals Online (AJOL)

    Surface roughness monitoring techniques using non-contact methods based on computer vision technology are becoming popular and cost effective. An evolvable hardware configuration using reconfigurable Xilinx Virtex FPGA xcv1000 architecture with capability to compensate for poor illumination environment is ...

  14. Comparison of cognitive functioning as measured by the Ruff Figural Fluency Test and the CogState computerized battery within the LifeLines Cohort Study.

    Science.gov (United States)

    Kuiper, Jisca S; Oude Voshaar, Richard C; Verhoeven, Floor E A; Zuidema, Sytse U; Smidt, Nynke

    2017-05-12

    The Ruff Figural Fluency Test (RFFT; a pencil and paper test) and the CogState (a computerized cognitive test battery) are well-validated and suitable tests to evaluate cognitive functioning in large observational studies at the population level. The LifeLines Cohort Study includes the RFFT as baseline measurement and incorporated the CogState as replacement for the RFFT at follow-up. It is unknown how these two tests relate to each other. Therefore, the aim of this study is to examine the correlation between the RFFT and the CogState and the impact of demographic characteristics on this association. A subcohort of the LifeLines Cohort Study, a large population based cohort study, participated in this study. Correlations between the RFFT and six subtasks of the CogState were examined. Subgroup analyses were performed to investigate the influence of age, education, and gender on the results. With sensitivity analyses we investigated the influence of computer experience and (physical) impairments. A total of 509 participants (mean age (SD): 53 years (14.6); range 18-87 years) participated in this study. All correlations between the RFFT and the CogState were statistically significant (except for the correlation between the RFFT error ratio and the CogState One Back Task), ranging from -0.39 to 0.28. Stratifying the analyses for age, education, and gender did not substantially affect our conclusions. Sensitivity analyses showed no substantial influence of level of computer experience or (physical) impairments. Correlations found in the present study were only weak to moderate, indicating that cognitive functioning measured by the RFFT does not measure the same components of cognitive functioning as six subtasks of the CogState. Computerized testing such as the CogState may be very well suited for large cohort studies to assess cognitive functioning in the general population and to identify cognitive changes as early as possible, as it is a less time- and labor

  15. Graphics of polar figure

    International Nuclear Information System (INIS)

    Macias B, L.R.

    1991-11-01

    The objective of this work, is that starting from a data file coming from a spectra that has been softened, and of the one that have been generated its coordinates to project it in stereographic form, to create the corresponding polar figure making use of the Cyber computer of the ININ by means of the GRAPHOS package. This work only requires a Beta, Fi and Intensity (I) enter data file. It starts of the existence of a softened spectra of which have been generated already with these data, making use of some language that in this case was FORTRAN for the Cyber computer, a program is generated supported in the Graphos package that allows starting of a reading of the Beta, Fi, I file, to generate the points in a stereographic projection and that it culminates with the graph of the corresponding polar figure. The program will request the pertinent information that is wanted to capture in the polar figure just as: date, name of the enter file, indexes of the polar figure, number of levels, radio of the stereographic projection (cms.), crystalline system to which belongs the sample, name the neuter graph file by create and to add the own general data. (Author)

  16. The prediction of BRDFs from surface profile measurements

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.; Leonard, T.A.

    1989-01-01

    This paper discusses methods of predicting the BRDF of smooth surfaces from profile measurements of their surface finish. The conversion of optical profile data to the BRDF at the same wavelength is essentially independent of scattering models, while the conversion of mechanical measurements, and wavelength scaling in general, are model dependent. Procedures are illustrated for several surfaces, including two from the recent HeNe BRDF round robin, and results are compared with measured data. Reasonable agreement is found except for surfaces which involve significant scattering from isolated surface defects which are poorly sampled in the profile data

  17. Microthermal Instrument for Measuring Surface Layer Seeing

    Science.gov (United States)

    Li, Xue-Bao; Zheng, Yan-Fang; Deng, Lin Hua; Xu, Guang

    2012-02-01

    Microthermal fluctuations are introduced by atmospheric turbulence very near the ground. In order to detect microthermal fluctuations at Fuxian Solar Observatory (FSO), a microthermal instrument has been developed. The microthermal instrument consists of a microthermal sensor, which is based on a Wheatstone bridge circuit and uses fine tungsten filaments as resistance temperature detectors, an associated signal processing unit, and a data collection, & communication subsystem. In this paper, after a brief introduction to surface layer seeing, we discuss the instrumentation behind the microthermal detector we have developed and then present the results obtained. The results of the evaluation indicate that the effect of the turbulent surface boundary layer to astronomical seeing would become sufficiently small when installing a telescope at a height of 16m or higher from the ground at FSO.

  18. Rivited panel surface measurement using photogrammetry

    Science.gov (United States)

    Merrick, W. D.; Lobb, V. B.; Lansing, F. L.; Stoller, F. W.

    1986-01-01

    Two riveted antenna panels on rings number 3 and 9 were removed from the 34m antenna at DSS-15, fixed in the leveled position and the surface was photographed indoors. The results from this pilot photogrammetric demonstration and diagnostics of panel surface contours, are presented. The photogrammetric network for each panel incorporated eight photographs, two from each of four camera stations and observed over 200 targets. The accuracy (1 sigma) of the XYZ coordinates for the error ellipsoids was + or - 0.013 mm (0.0005 inch). This level of precision relative to the object size corresponds roughly to 1 part in 250,000 which is superior to conventional dial sweep-arm template techniques by at least a factor of 4.

  19. Surface Temperature Measurement Using Hematite Coating

    Science.gov (United States)

    Bencic, Timothy J. (Inventor)

    2015-01-01

    Systems and methods that are capable of measuring temperature via spectrophotometry principles are discussed herein. These systems and methods are based on the temperature dependence of the reflection spectrum of hematite. Light reflected from these sensors can be measured to determine a temperature, based on changes in the reflection spectrum discussed herein.

  20. Supplemental figures for ``Constraints on jet quenching in p-Pb collisions at $\\sqrt{s_{\\rm NN}} =5.02$ TeV measured by the event-activity dependence of semi-inclusive hadron-jet distributions''

    CERN Document Server

    2017-01-01

    This note presents supplemental figures that support the analysis and discussion in the ALICE paper ``Constraints on jet quenching in p-Pb collisions at $\\sqrt{s_{\\rm NN}} =5.02$ TeV measured by the event-activity dependence of semi-inclusive hadron-jet distributions"

  1. Interferometric Surface Relief Measurements with Subnano/Picometer Height Resolution

    Science.gov (United States)

    Sysoev, Evgeny; Kosolobov, Sergey; Kulikov, Rodion; Latyshev, Alexander; Sitnikov, Sergey; Vykhristyuk, Ignat

    2017-10-01

    We present an optical interference system nanoprofiler MNP-1 designed for high-precision noncontact measurement of surface relief with subnanometer resolution (root mean square of measured values), based on partial scanning of interference signal. The paper describes the construction of the measurement system with Linnik interferometer and the algorithm for nanorelief surface reconstruction. Experimental measurement results of silicon sample with profile height of surface structure of one interatomic distance obtained by MNP-1 are shown. It was proposed to use an atomically smooth surface as the reference mirror in the interferometer MNP-1 that allowed us to measure monatomic steps of the presented silicon sample. Monatomic steps of 0.31 nm in height on silicon (111) surface were measured with resolution up to 5 pm.

  2. Radioactivity Measurements on Glazed Ceramic Surfaces

    OpenAIRE

    Hobbs, Thomas G.

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near backgr...

  3. Piezotransistive GaN microcantilevers based surface work function measurements

    Science.gov (United States)

    Bayram, Ferhat; Khan, Digangana; Li, Hongmei; Maksudul Hossain, Md.; Koley, Goutam

    2018-04-01

    Surface work function (SWF) measurements using a piezotransistive III–nitride cantilever has been demonstrated on multiple surfaces. The minimum detectable surface potential change of 10 mV was achieved with a signal to noise ratio of 3. This method was applied to determine the surface potential changes due to exposure of 5 ppm NO2 in graphene and In2O3 thin film, simultaneously with conductivity changes. The potentiometric measurements yielded 100 and 80 mV potential changes in SWFs of graphene and In2O3 respectively, which matches very well with experimental data published earlier indicating the efficacy of this readily miniaturizable measurement technique.

  4. Comparative analyses of measured evapotranspiration for various land surfaces

    Science.gov (United States)

    Suat Irmak

    2016-01-01

    There is a significant lack of continuously measured ET data for multiple land surfaces in the same area to be able to make comparisons of water use rates of different agroecosystems. This research presentation will provide continuous evapotranspiration and other surface energy balance variables measured above multiple land use and management practices.

  5. Specific surface as a measure of burial diagenesis of chalk

    DEFF Research Database (Denmark)

    Borre, Mai Kirstine; Lind, Ida; Mortensen, Jeanette

    1997-01-01

    the relative importance of the three processes, simple models have been established to illustrate changes in pore space, particle size and -shape and the resulting trends in the specific surface. Specific surface and porosity of the samples were measured using image analysis on electron micrographs of polished...... sections. Using these simple models, trends in the measured specific surface can be interpred throughout the majority of the geological sequence....

  6. Development of material measures for performance verifying surface topography measuring instruments

    International Nuclear Information System (INIS)

    Leach, Richard; Giusca, Claudiu; Rickens, Kai; Riemer, Oltmann; Rubert, Paul

    2014-01-01

    The development of two irregular-geometry material measures for performance verifying surface topography measuring instruments is described. The material measures are designed to be used to performance verify tactile and optical areal surface topography measuring instruments. The manufacture of the material measures using diamond turning followed by nickel electroforming is described in detail. Measurement results are then obtained using a traceable stylus instrument and a commercial coherence scanning interferometer, and the results are shown to agree to within the measurement uncertainties. The material measures are now commercially available as part of a suite of material measures aimed at the calibration and performance verification of areal surface topography measuring instruments

  7. Advances in precision mirror figure metrology (abstract)

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Furenlid, K.; Church, E.L.

    1992-01-01

    New developments in optical measurement techniques have made it possible to test the surface quality on grazing incidence optics with extreme precision and accuracy. An instrument developed at Brookhaven, the Long Trace Profiler (LTP), measures the figure of large (up to 1 m long) cylindrical aspheres with nanometer accuracy. The LTP optical system is based around a common-path interferometer design belonging to the class of slope measuring interferometers and, as such, it is very robust, stable, and vibration insensitive. A unique error correction technique removes the effect of tilt errors in the optical head as it traverses the air bearing, thus allowing one to accurately measure the absolute surface profile and radius of curvature. This is of critical importance to the manufacture of long-radius spherical optics used in high-resolution soft x-ray monochromators and in the testing of mirror bending systems. This talk will review the principle of operation of the LTP, probe the factors limiting the performance of the system, and will examine the current state of the art in synchrotron radiation mirror manufacturing quality (as viewed by our metrology techniques). This research was supported by the U.S. Department of Energy Contract No. DE-AC02-76CH00016

  8. Radioactivity Measurements on Glazed Ceramic Surfaces.

    Science.gov (United States)

    Hobbs, T G

    2000-01-01

    A variety of commonly available household and industrial ceramic items and some specialty glass materials were assayed by alpha pulse counting and ion chamber voltage measurements for radioactivity concentrations. Identification of radionuclides in some of the items was performed by gamma spectroscopy. The samples included tableware, construction tiles and decorative tiles, figurines, and other products with a clay based composition. The concentrations of radioactivity ranged from near background to about four orders of magnitude higher. Almost every nuclide identification test demonstrated some radioactivity content from one or more of the naturally occurring radionuclide series of thorium or uranium. The glazes seemed to contribute most of the activity, although a sample of unglazed pottery greenware showed some activity. Samples of glazing paints and samples of deliberately doped glass from the World War II era were included in the test, as was a section of foam filled poster board. A glass disc with known (232)Th radioactivity concentration was cast for use as a calibration source. The results from the two assay methods are compared, and a projection of sensitivity from larger electret ion chamber devices is presented.

  9. Facts and figures

    International Nuclear Information System (INIS)

    1987-01-01

    Whereas most of the data are, naturally, about oil, a few figures concern nuclear energy. There is in Part 1 a flow chart of worldwide primary energy consumption by type, from 1974 to 1986, where nuclear energy consumption can be seen in relation to oil, gas, coal and hydro. The same is also given for the regions of the South. In section 3/18 the numbers of nuclear plants in construction and operation are listed separately for developing countries, centrally planned economies and industrialized countries, for 1986. (qui)

  10. Figures of transversality

    DEFF Research Database (Denmark)

    Gammeltoft, Tine

    2008-01-01

    In this article, I explore how prenatal screening is imbricated within state agendas, aspirations, and imaginings in contemporary Vietnam. In an effort to develop new ethnographic tropes for understanding the formation called "the state," I argue for a phenomenological take that emphasizes its...... affective and embodied aspects. Seeing the anomalous fetus as a "figure of transversality," as a critical focus for powerful imaginings and desires, I show how state–society relations in Vietnam are suffused by visceral affectivity and moral engagement. In the realm of reproduction, intense sentiments...... of anxiety, dread, desire, ambition, and hope tie together the state and its citizens, animating individual aspirations as well as national population policies....

  11. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    Energy Technology Data Exchange (ETDEWEB)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  12. A Study on 3-Dimensional Surface Measurement using Confocal Principle

    International Nuclear Information System (INIS)

    Kang, Young June; Song, Dae Ho; You, Weon Jae

    2001-01-01

    In modern industry, the accuracy and the sulfate-finish requirements for machined parts have been becoming ever more stringent. In addition, the measurement and understanding of surface topography is rapidly attracting the attention of the physicist and chemist as well as the engineer. Optical measuring method is used in vibration measurement, crack and defect detection with the advent of opto-mechatronics, and it is expected to play an important role in surface topography. In this study, the principle of confocal microscope is described, and the advanced 3-D surface measuring system that has better performance than the traditional confocal microscope is developed. Suitable fixtures arc developed and integrated with the computer system for generating 3-D surface and form data. Software for data acquisition and analysis of various parameters in surface geometrical features has been developed

  13. ROUGHNESS ON WOOD SURFACES AND ROUGHNESS MEASUREMENT METHODS

    Directory of Open Access Journals (Sweden)

    İsmail Aydın

    2003-04-01

    Full Text Available Some visual characteristics of wood such as color, pattern and texture determine the quality of manufactured products. Surface properties of wood material are important both in production and marketing after production. Initial studies related to the roughness of wood surface were begun in early 1950’s. However, no general agreed standardization can not have been developed for wood surfaces. Surface roughness of wood is function of the production process, product type and the natural anatomical properties of wood. Contact and non-contact tracing methods are used to measure of wood surface roughness. Surface roughness also affects the gluability and wettability of wood surfaces. The success in finishing also depends on the surface roughness of wood.

  14. Partial compensation interferometry for measurement of surface parameter error of high-order aspheric surfaces

    Science.gov (United States)

    Hao, Qun; Li, Tengfei; Hu, Yao

    2018-01-01

    Surface parameters are the properties to describe the shape characters of aspheric surface, which mainly include vertex radius of curvature (VROC) and conic constant (CC). The VROC affects the basic properties, such as focal length of an aspheric surface, while the CC is the basis of classification for aspheric surface. The deviations of the two parameters are defined as surface parameter error (SPE). Precisely measuring SPE is critical for manufacturing and aligning aspheric surface. Generally, SPE of aspheric surface is measured directly by curvature fitting on the absolute profile measurement data from contact or non-contact testing. And most interferometry-based methods adopt null compensators or null computer-generated holograms to measure SPE. To our knowledge, there is no effective way to measure SPE of highorder aspheric surface with non-null interferometry. In this paper, based on the theory of slope asphericity and the best compensation distance (BCD) established in our previous work, we propose a SPE measurement method for high-order aspheric surface in partial compensation interferometry (PCI) system. In the procedure, firstly, we establish the system of two element equations by utilizing the SPE-caused BCD change and surface shape change. Then, we can simultaneously obtain the VROC error and CC error in PCI system by solving the equations. Simulations are made to verify the method, and the results show a high relative accuracy.

  15. Figure out the Rhythm

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    Thinking in numbers, figures and systems plays a central part in our - at least scientific – understanding of musical matters. The kind of pre-order that the numbers - and also the systemic thinking - bring along seem to facilitate the access to and dealings with what we understand as fundamental...... to reflect. By means of a critical resume of an earlier analysis of rhythmical implications in Michael Jackson's "Give In To Me" this paper discusses these matters further and reflects upon arithmetic's influences and relevance for our understanding of music.......Thinking in numbers, figures and systems plays a central part in our - at least scientific – understanding of musical matters. The kind of pre-order that the numbers - and also the systemic thinking - bring along seem to facilitate the access to and dealings with what we understand as fundamental...... musical conditions. The number stands out as constituent of understanding in our views upon and dealings with frequency and relations between frequencies. The number as such becomes the lifeless agent of movement that without further notice is allowed to include - and systematise - the 'slow' frequencies...

  16. Automatic figure ranking and user interfacing for intelligent figure search.

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2010-10-01

    Full Text Available Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org. Existing research in figure search treats each figure equally, but we introduce a novel concept of "figure ranking": figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery.We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation.The evaluation results conclude that automatic figure ranking and user

  17. Automatic figure ranking and user interfacing for intelligent figure search.

    Science.gov (United States)

    Yu, Hong; Liu, Feifan; Ramesh, Balaji Polepalli

    2010-10-07

    Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org). Existing research in figure search treats each figure equally, but we introduce a novel concept of "figure ranking": figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery. We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP) approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs) incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation. The evaluation results conclude that automatic figure ranking and user interfacing as

  18. Creativity and ease of ambiguous figural reversal.

    Science.gov (United States)

    Wiseman, Richard; Watt, Caroline; Gilhooly, Kenneth; Georgiou, George

    2011-08-01

    Two studies examined the relationships between self-rated and objectively measured creative ability and ease of perceiving alternative interpretations of the ambiguous Duck-Rabbit figure. The studies found empirical support for what has previously been a largely analogical connection between figural reversal and creativity, using both self-rated trait creativity and objectively scored creative productivity. We discuss the hypothesis that executive functioning is the likely common cognitive factor linking perception of ambiguous figures and creative ability. ©2011 The British Psychological Society.

  19. Automatic Measurement of Low Level Contamination on Concrete Surfaces

    International Nuclear Information System (INIS)

    Tachibana, M.; Itoh, H.; Shimada, T.; Yanagihara, S.

    2002-01-01

    Automatic measurement of radioactivity is necessary for considering cost effectiveness in final radiological survey of building structures in decommissioning nuclear facilities. The RAPID (radiation measuring pilot device for surface contamination) was developed to be applied to automatic measurement of low level contamination on concrete surfaces. The RAPID has a capability to measure contamination with detection limit of 0.14 Bq/cm2 for 60Co in 30 seconds of measurement time and its efficiency is evaluated to be 5 m2/h in a normal measurement option. It was confirmed that low level contamination on concrete surfaces could be surveyed by the RAPID efficiently compared with direct measurement by workers through its actual application

  20. Measurement of Dynamic Friction Coefficient on the Irregular Free Surface

    International Nuclear Information System (INIS)

    Yeom, S. H.; Seo, K. S.; Lee, J. H.; Lee, K. H.

    2007-01-01

    A spent fuel storage cask must be estimated for a structural integrity when an earthquake occurs because it freely stands on ground surface without a restriction condition. Usually the integrity estimation for a seismic load is performed by a FEM analysis, the friction coefficient for a standing surface is an important parameter in seismic analysis when a sliding happens. When a storage cask is placed on an irregular ground surface, measuring a friction coefficient of an irregular surface is very difficult because the friction coefficient is affected by the surface condition. In this research, dynamic friction coefficients on the irregular surfaces between a concrete cylinder block and a flat concrete slab are measured with two methods by one direction actuator

  1. Measurement of near neighbor separations of surface atoms

    International Nuclear Information System (INIS)

    Cohen, P.I.

    Two techniques are being developed to measure the nearest neighbor distances of atoms at the surfaces of solids. Both measures extended fine structure in the excitation probability of core level electrons which are excited by an incident electron beam. This is an important problem because the structures of most surface systems are as yet unknown, even though the location of surface atoms is the basis for any quantitative understanding of the chemistry and physics of surfaces and interfaces. These methods would allow any laboratory to make in situ determinations of surface structure in conjunction with most other laboratory probes of surfaces. Each of these two techniques has different advantages; further, the combination of the two will increase confidence in the results by reducing systematic error in the data analysis

  2. Surface deposition measurements of the TMI-2 gross decontamination experiment

    International Nuclear Information System (INIS)

    McIssac, C.V.; Hetzer, D.C.

    1982-01-01

    In order to measure the effectiveness of the gross decontamination experiment (principally a water spray technique) performed in the TMI-2 reactor building, the Technical Information and Examination Program's Radiation and Environment personnel made surface activity measurements before and after the experiment. In conjunction with surface sampling, thermoluminescent dosimeter (TLD) and gamma spectrometry measurements were also performed to distinguish between radiation fields and contamination. The surface sampler used to collect samples from external surfaces within the reactor building is a milling tool having four major components: a 1.27-cm constant-speed drill; a drill support assembly that allows setting sample penetration depth; filter cartridges for intake air purification and sample collection; and an air pump that forces air across the surface being sampled and through the sample filter cartridge

  3. LONG-TERM PRESERVATION OF THE PHYSICAL REMAINS OF THE DESTROYED BUDDHA FIGURES IN BAMIYAN (AFGHANISTAN USING VIRTUAL REALITY TECHNOLOGIES FOR PREPARATION AND EVALUATION OF RESTORATION MEASURES

    Directory of Open Access Journals (Sweden)

    G. Toubekis

    2017-08-01

    Full Text Available In March 2001, the world’s largest depictions of standing Buddha figures located in Bamiyan (Afghanistan were destroyed during a campaign of the Taliban leadership against all non-Muslim heritage in the country. Bamiyan and its archaeological remains have been nominated a World Heritage also to commemorate the events of destruction the site has experienced over the centuries. More than fifteen years after the Giant Buddha figures turned into dust, the UNESCO Safeguarding campaign for the preservation of the Bamiyan World Heritage property has made considerable progress. Upon continued request by the local population and the national government, the international community is asked to contribute proposals for the future presentation of the physical remains including the options of reassembling the original fragments. The achievements and backlashes of the UNESCO campaign are discussed and a proposal is given, how virtual technology can contribute to the ongoing discussion regarding the future of the site. At a time when deliberate raids during military conflicts against heritage places have become commonplace, the Bamiyan case has become emblematic and is considered now a key turning point in the heritage community on the question, which roles reconstruction can have especially in the aftermath of conflict situations. It is argued that immersive virtual reality technologies offer the chance to investigate how values attributed to cultural heritage are produced and experienced among different stakeholder groups.

  4. Long-Term Preservation of the Physical Remains of the Destroyed Buddha Figures in Bamiyan (afghanistan) Using Virtual Reality Technologies for Preparation and Evaluation of Restoration Measures

    Science.gov (United States)

    Toubekis, G.; Jansen, M.; Jarke, M.

    2017-08-01

    In March 2001, the world's largest depictions of standing Buddha figures located in Bamiyan (Afghanistan) were destroyed during a campaign of the Taliban leadership against all non-Muslim heritage in the country. Bamiyan and its archaeological remains have been nominated a World Heritage also to commemorate the events of destruction the site has experienced over the centuries. More than fifteen years after the Giant Buddha figures turned into dust, the UNESCO Safeguarding campaign for the preservation of the Bamiyan World Heritage property has made considerable progress. Upon continued request by the local population and the national government, the international community is asked to contribute proposals for the future presentation of the physical remains including the options of reassembling the original fragments. The achievements and backlashes of the UNESCO campaign are discussed and a proposal is given, how virtual technology can contribute to the ongoing discussion regarding the future of the site. At a time when deliberate raids during military conflicts against heritage places have become commonplace, the Bamiyan case has become emblematic and is considered now a key turning point in the heritage community on the question, which roles reconstruction can have especially in the aftermath of conflict situations. It is argued that immersive virtual reality technologies offer the chance to investigate how values attributed to cultural heritage are produced and experienced among different stakeholder groups.

  5. Surface and interfacial tension measurement, theory, and applications

    CERN Document Server

    Hartland, Stanley

    2004-01-01

    This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such a

  6. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    Science.gov (United States)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  7. A computer-aided surface roughness measurement system

    International Nuclear Information System (INIS)

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisitions/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined

  8. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  9. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Device for radiometric measurement, e.g. of surface density

    International Nuclear Information System (INIS)

    Gregor, J.; Kopl, F.

    1973-01-01

    A design is described of a device for radiometric measurements, such as of material surface density, thickness of coating layers, surface moisture, and for the analysis of chemical composition. The device uses backscattered radiation indicated by two ionization chambers with gas filling; the radiation source is placed in between the chambers. (J.K.)

  11. Laboratory measurements of dusty surface charging in plasma.

    Science.gov (United States)

    Chou, Kevin; Wang, Joseph

    2017-09-01

    A novel method is developed to study the charging of a conducting surface covered by a thin dust layer in plasma. The potential profile in the dust layer and the floating potential of the surface underneath are measured directly by embedding conducting wires in the dust and connecting the wires to a measurement plate outside the vacuum chamber, where a Trek non-contacting electrostatic voltmeter measures the floating potential of the measurement plate. Laboratory experiments are carried out to study plasma charging of a conducting plate covered by lunar dust simulant, JSC-1A. The results show that the plate potential is dependent on both the ambient plasma condition and the dust layer thickness. The current balance condition controls the floating potential of the dust surface while the dust layer acts as a capacitor and controls the potential of the plate with respect to the dust surface. Hence, a dust covered conducting plate will be charged more negatively than a clean plate.

  12. Preliminary figures for 1991

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Neste Corporation's net sales during 1991 totalled USD 12.6 billion, an increase of 11 % over the figure for 1990. The largest growth in net sales took place in Neste Oil's trading activities and sales of in-house-produced crude oil. In the chemicals sector. particular growth was recorded in resins production. Gas, Shipping and Exploration and Production performed slightly better than during 1990. Oil's performance remained satisfactory. The performance of Chemicals, however, fell back considerably, primarily, as a result of the worldwide drop in prices in the petrochemicals and plastics industries. As a result, the Corporation's overall result was substantially below the good level recorded in 1990. The Corporation's operating margin totalled USD 650 million

  13. Accuracy of Surface Plate Measurements - General Purpose Software for Flatness Measurement

    NARCIS (Netherlands)

    Meijer, J.; Heuvelman, C.J.

    1990-01-01

    Flatness departures of surface plates are generally obtained from straightness measurements of lines on the surface. A computer program has been developed for on-line measurement and evaluation, based on the simultaneous coupling of measurements in all grid points. Statistical methods are used to

  14. Figure and finish characterization of high performance metal mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Church, E.L.

    1991-10-01

    Most metal mirrors currently used in synchrotron radiation (SR) beam lines to reflect soft x-rays are made of electroless nickel plate on an aluminum substrate. This material combination has allowed optical designers to incorporate exotic cylindrical aspheres into grazing incidence x-ray beam-handling systems by taking advantage of single-point diamond machining techniques. But the promise of high-quality electroless nickel surfaces has generally exceeded the performance. We will examine the evolution of electroless nickel surfaces through a study of the quality of mirrors delivered for use at the National Synchrotron Light Source over the past seven years. We have developed techniques to assess surface quality based on the measurement of surface roughness and figure errors with optical profiling instruments. It is instructive to see how the quality of the surface is related to the complexity of the machine operations required to produce it

  15. Dissociation of color and figure-ground effects in the watercolor illusion.

    Science.gov (United States)

    Von der Heydt, Rüdiger; Pierson, Rachel

    2006-01-01

    Two phenomena can be observed in the watercolor illusion: illusory color spreading and figure-ground organization. We performed experiments to determine whether the figure-ground effect is a consequence of the color illusion or due to an independent mechanism. Subjects were tested with displays consisting of six adjacent compartments--three that generated the illusion alternating with three that served for comparison. In a first set of experiments, the illusory color was measured by finding the matching physical color in the alternate compartments. Figureness (probability of 'figure' responses, 2AFC) of the watercolor compartments was then determined with and without the matching color in the alternate compartments. The color match reduced figureness, but did not abolish it. There was a range of colors in which the watercolor compartments dominated as figures over the alternate compartments although the latter appeared more saturated in color. In another experiment, the effect of tinting alternate compartments was measured in displays without watercolor illusion. Figureness increased with color contrast, but its value at the equivalent contrast fell short of the figureness value obtained for the watercolor pattern. Thus, in both experiments, figureness produced by the watercolor pattern was stronger than expected from the color effect, suggesting independent mechanisms. Considering the neurophysiology, we propose that the color illusion follows from the principles of representation of surface color in the visual cortex, while the figure-ground effect results from two mechanisms of border ownership assignment, one that is sensitive to asymmetric shape of edge profile, the other to consistency of color borders.

  16. Cantilever measurements of surface stress, surface reconstruction, film stress and magnetoelastic stress of monolayersc

    Directory of Open Access Journals (Sweden)

    Jürgen Kirschner

    2008-07-01

    Full Text Available We review the application of cantilever-based stress measurements in surface science and magnetism. The application of thin (thickness appr. 0.1 mm single crystalline substrates as cantilevers has been used successfully to measure adsorbate-induced surface stress changes, lattice misfit induced film stress, and magneto-elastic stress of ferromagnetic monolayers. Surface stress changes as small as 0.01 N/m can be readily measured, and this translates into a sensitivity for adsorbate-coverage well below 0.01 of one layer. Stress as large as several GPa, beyond the elasticity limits of high strength materials, is measured, and it is ascribed to the lattice misfit between film and substrate. Our results point at the intimate relation between surface stress and surface reconstruction, stress-induced structural changes in epitaxially strained films, and strain-induced modifications of the magneto-elastic coupling in ferromagnetic monolayers.

  17. Cantilever measurements of surface stress, surface reconstruction, film stress and magnetoelastic stress of monolayers.

    Science.gov (United States)

    Sander, Dirk; Tian, Zhen; Kirschner, Jürgen

    2008-07-29

    We review the application of cantilever-based stress measurements in surface science and magnetism. The application of thin (thickness appr. 0.1 mm) single crystalline substrates as cantilevers has been used successfully to measure adsorbate-induced surface stress changes, lattice misfit induced film stress, and magneto-elastic stress of ferromagnetic monolayers. Surface stress changes as small as 0.01 N/m can be readily measured, and this translates into a sensitivity for adsorbate-coverage well below 0.01 of one layer. Stress as large as several GPa, beyond the elasticity limits of high strength materials, is measured, and it is ascribed to the lattice misfit between film and substrate. Our results point at the intimate relation between surface stress and surface reconstruction, stress-induced structural changes in epitaxially strained films, and strain-induced modifications of the magneto-elastic coupling in ferromagnetic monolayers.

  18. Summations over equilaterally triangulated surfaces and the critical string measure

    Science.gov (United States)

    Smit, Dirk-Jan

    1992-01-01

    We propose a new approach to the summation over dynamically triangulated Riemann surfaces which does not rely on properties of the potential in a matrix model. Instead, we formulate a purely algebraic discretization of critical string path integral. This is combined with a technique which assigns to each equilateral triangulation of a two-dimensional surface a Riemann surface defined over a certain finite extension of the field of rational numbers, i.e. an arthmetic surface. Thus we establish a new formulation in which the sum over randomly triangulated surfaces defines an invariant measure on the moduli space of arithmetic surfaces. It is shown that because of this it is far from obvious that this measure for large genera approximates the measure defined by the continuum theory, i.e. Liouville theory or critical string theory. In low genus this subtlety does not exist. In the case of critical string theory we explicity compute the volume of the moduli space of arithmetic surfaces in terms of the modular height function and show that for low genus it approximates correctly the continuum measure. We also discuss a continuum limit which bears some resemblance with a double scaling limit in matrix models.

  19. Summations over equilaterally triangulated surfaces and the critical string measure

    International Nuclear Information System (INIS)

    Smit, D.J.; Lawrence Berkeley Lab., CA

    1992-01-01

    We propose a new approach to the summation over dynamically triangulated Riemann surfaces which does not rely on properties of the potential in a matrix model. Instead, we formulate a purely algebraic discretization of critical string path integral. This is combined with a technique which assigns to each equilateral triangulation of a two-dimensional surface a Riemann surface defined over a certain finite extension of the field of rational numbers, i.e. an arithmetic surface. Thus we establish a new formulated in which the sum over randomly triangulated surfaces defines an invariant measure on the moduli space of arithmetic surfaces. It is shown that because of this it is far from obvious that this measure for large genera approximates the measure defined by the continuum theory, i.e. Liouville theory or critical string theory. In low genus this subtlety does not exist. In the case of critical string theory we explicitly compute the volume of the moduli space of arithmetic surfaces in terms of the modular height function and show that for low genus it approximates correctly the continuum measure. We also discuss a continuum limit which bears some resemblance with a double scaling limit in matrix models. (orig.)

  20. Measuring evaporation from soil surfaces for environmental and ...

    African Journals Online (AJOL)

    ... in many aspects of environmental geotechnics and waste management. The paper describes the measurements made to assess the surface energy balance as well as its analysis, and presents the results of typical measurements. It also presents numerical values of the parameters and constants needed for the analysis.

  1. Sensitivity of surface resistance measurement of HTS thin films by ...

    Indian Academy of Sciences (India)

    field distribution in the resonators. The microwave surface resistance of the superconducting sample is then extracted from the measured Q value as a function of temperature. The sensitivity of the Rs measurement, that is, the relative change in the Q value with the change in the Rs value is determined for each resonator.

  2. Measurement of tendon reflexes by surface electromyography in normal subjects

    NARCIS (Netherlands)

    Stam, J.; van Crevel, H.

    1989-01-01

    A simple method for measuring the tendon reflexes was developed. A manually operated, electronic reflex hammer was applied that enabled measurement of the strength of tendon taps. Reflex responses were recorded by surface electromyography. Stimulus-response relations and latencies of tendon reflexes

  3. KIAI: FIGUR ELITE PESANTREN

    Directory of Open Access Journals (Sweden)

    Mohammad Takdir Ilahi

    2015-10-01

    Full Text Available In a pesantren (Islamic boarding school, kiai is an strategic element. Javanese kiai mainly believe that a pesantren is a small palace where he becomes the ultimate source of power and authority. Even though he lives in a rural village, he becomes a member of elite group in social, politic and economic sides in the society. Kiai who leads big pesantren has successfully enlarged their power in term of nation so kiai could be accepted in national elite. The position of kiai is higher among all pesantren elements. The degree as an Islamic scholar is exactly a sacred degree in pesantren culture and tradition. Without his figure, it is impossible for a pesantren to develop and survive. Kiai holds an ultimate position on educate the behavior and morality of the santri (students to be qualified and compatible Muslims generation. Kiai is not only a leader but he is also the man behind the leadership itself in supporting the progress of Islamic education institution for Muslims generations.

  4. Estimating the breast surface using UWB microwave monostatic backscatter measurements.

    Science.gov (United States)

    Winters, David W; Shea, Jacob D; Madsen, Ernest L; Frank, Gary R; Van Veen, Barry D; Hagness, Susan C

    2008-01-01

    This paper presents an algorithm for estimating the location of the breast surface from scattered ultrawideband (UWB) microwave signals recorded across an antenna array. Knowing the location of the breast surface can improve imaging performance if incorporated as a priori information into recently proposed microwave imaging algorithms. These techniques transmit low-power microwaves into the breast using an antenna array, which in turn measures the scattered microwave signals for the purpose of detecting anomalies or changes in the dielectric properties of breast tissue. Our proposed surface identification algorithm consists of three procedures, the first of which estimates M points on the breast surface given M channels of measured microwave backscatter data. The second procedure applies interpolation and extrapolation to these M points to generate N > M points that are approximately uniformly distributed over the breast surface, while the third procedure uses these N points to generate a 3-D estimated breast surface. Numerical as well as experimental tests indicate that the maximum absolute error in the estimated surface generated by the algorithm is on the order of several millimeters. An error analysis conducted for a basic microwave radar imaging algorithm (least-squares narrowband beamforming) indicates that this level of error is acceptable. A key advantage of the algorithm is that it uses the same measured signals that are used for UWB microwave imaging, thereby minimizing patient scan time and avoiding the need for additional hardware.

  5. Mapping surface soil moisture with L-band radiometric measurements

    Science.gov (United States)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1989-01-01

    A NASA C-130 airborne remote sensing aircraft was used to obtain four-beam pushbroom microwave radiometric measurements over two small Kansas tall-grass prairie region watersheds, during a dry-down period after heavy rainfall in May and June, 1987. While one of the watersheds had been burned 2 months before these measurements, the other had not been burned for over a year. Surface soil-moisture data were collected at the time of the aircraft measurements and correlated with the corresponding radiometric measurements, establishing a relationship for surface soil-moisture mapping. Radiometric sensitivity to soil moisture variation is higher in the burned than in the unburned watershed; surface soil moisture loss is also faster in the burned watershed.

  6. Indirect measurement of near-surface velocity and pressure fields based on measurement of moving free surface profiles

    International Nuclear Information System (INIS)

    Sibamoto, Yasuteru; Nakamura, Hideo

    2005-01-01

    A non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving fluid surface is developed. The technique is based on the measurement of fluid surface profile. The velocity and pressure fields are derived with use of the boundary element method (BEM) by seeking for an incompressible flow field that satisfies the kinematic boundary condition imposed by the time-dependent fluid surface profile. The proposed technique is tested by deriving the velocity and pressure fields inversely from the fluid surface profiles obtained by a forward BEM calculation of fluid surface response to externally-imposed pressure. The inverse calculation results show good agreement with the imposed pressure distribution in the forward calculation. (author)

  7. Roughness in Surface Force Measurements: Extension of DLVO Theory To Describe the Forces between Hafnia Surfaces.

    Science.gov (United States)

    Eom, Namsoon; Parsons, Drew F; Craig, Vincent S J

    2017-07-06

    The interaction between colloidal particles is commonly viewed through the lens of DLVO theory, whereby the interaction is described as the sum of the electrostatic and dispersion forces. For similar materials acting across a medium at pH values remote from the isoelectric point the theory typically involves an electrostatic repulsion that is overcome by dispersion forces at very small separations. However, the dominance of the dispersion forces at short separations is generally not seen in force measurements, with the exception of the interaction between mica surfaces. The discrepancy for silica surfaces has been attributed to hydration forces, but this does not explain the situation for titania surfaces where the dispersion forces are very much larger. Here, the interaction forces between very smooth hafnia surfaces have been measured using the colloid probe technique and the forces evaluated within the DLVO framework, including both hydration forces and the influence of roughness. The measured forces across a wide range of pH at different salt concentrations are well described with a single parameter for the surface roughness. These findings show that even small degrees of surface roughness significantly alter the form of the interaction force and therefore indicate that surface roughness needs to be included in the evaluation of surface forces between all surfaces that are not ideally smooth.

  8. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data presented in this data file is a product of a journal publication. The dataset contains measured and model predicted OPFRs gas-phase and surface-phase...

  9. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  10. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  11. Plastic Deformations of Measured Object Surface in Contact with Undeformable Surface of Measuring Tool

    Directory of Open Access Journals (Sweden)

    Kowalik Marek

    2016-10-01

    Full Text Available Measuring errors caused by deformation (flattening of a measured object appear under the influence of pressure force and weight of the measured object. Plastic strain, arising at the contact of a measured object and an undeformable contact tip of a measuring device, can be calculated by applying the Hertz plastic solution and the hypothesis of plastic strain. In a small area of contact between two bodies pressing against one another with force F, there appears the so-called contact stress. It can sometime reach very high values, exceeding the yield point, even when the contact pressure is relatively small. In the present work, the authors describe a theoretical solution to the problem of plastic strain between two bodies. The derived relationships enable to calculate force F during measurements of a deformable object by means of an instrument with an undeformable, spherical measuring tip. By applying the τmax hypothesis, a solution was obtained for the force F in an inexplicit form. The theoretical solution was verified with the digital simulation and experimental measurement. With the FEM method, the limit length gage was modeled in interaction with the measured shaft of a diameter d larger than the nominal one of Δl value.

  12. Plastic Deformations of Measured Object Surface in Contact with Undeformable Surface of Measuring Tool

    Science.gov (United States)

    Kowalik, Marek; Rucki, Mirosław; Paszta, Piotr; Gołębski, Rafał

    2016-10-01

    Measuring errors caused by deformation (flattening) of a measured object appear under the influence of pressure force and weight of the measured object. Plastic strain, arising at the contact of a measured object and an undeformable contact tip of a measuring device, can be calculated by applying the Hertz plastic solution and the hypothesis of plastic strain. In a small area of contact between two bodies pressing against one another with force F, there appears the so-called contact stress. It can sometime reach very high values, exceeding the yield point, even when the contact pressure is relatively small. In the present work, the authors describe a theoretical solution to the problem of plastic strain between two bodies. The derived relationships enable to calculate force F during measurements of a deformable object by means of an instrument with an undeformable, spherical measuring tip. By applying the τmax hypothesis, a solution was obtained for the force F in an inexplicit form. The theoretical solution was verified with the digital simulation and experimental measurement. With the FEM method, the limit length gage was modeled in interaction with the measured shaft of a diameter d larger than the nominal one of Δl value.

  13. Interferometric method for measuring high velocities of diffuse surfaces

    International Nuclear Information System (INIS)

    Maron, Y.

    1978-01-01

    An interferometric method for measuring the displacement of diffuse surfaces moving with velocities of a few microsecond is presented. The method utilizes the interference between two light beams reflected from a constant area of the moving surface at two different angles. It enables the detection of high rate velocity variations. Light source of a fairly low temporal coherence and power around 100mW is needed. (author)

  14. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...... surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within...

  15. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    , there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions.......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms...

  16. Reporting central tendencies of chamber measured surface emission and oxidation.

    Science.gov (United States)

    Abichou, Tarek; Clark, Jeremy; Chanton, Jeffery

    2011-05-01

    Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report "averages" of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the "average" measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH(4) emissions and surface air CH(4) concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R(2)=0.86), indicating that surface scans are a good way of identifying locations of high emissions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Inverse analysis of inner surface temperature history from outer surface temperature measurement of a pipe

    International Nuclear Information System (INIS)

    Kubo, S; Ioka, S; Onchi, S; Matsumoto, Y

    2010-01-01

    When slug flow runs through a pipe, nonuniform and time-varying thermal stresses develop and there is a possibility that thermal fatigue occurs. Therefore it is necessary to know the temperature distributions and the stress distributions in the pipe for the integrity assessment of the pipe. It is, however, difficult to measure the inner surface temperature directly. Therefore establishment of the estimation method of the temperature history on inner surface of pipe is needed. As a basic study on the estimation method of the temperature history on the inner surface of a pipe with slug flow, this paper presents an estimation method of the temperature on the inner surface of a plate from the temperature on the outer surface. The relationship between the temperature history on the outer surface and the inner surface is obtained analytically. Using the results of the mathematical analysis, the inverse analysis method of the inner surface temperature history estimation from the outer surface temperature history is proposed. It is found that the inner surface temperature history can be estimated from the outer surface temperature history by applying the inverse analysis method, even when it is expressed by the multiple frequency components.

  18. Intelligent sampling for the measurement of structured surfaces

    International Nuclear Information System (INIS)

    Wang, J; Jiang, X; Blunt, L A; Scott, P J; Leach, R K

    2012-01-01

    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed. (paper)

  19. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  20. Accuracy and reliability of three-dimensional surface reconstruction measurement

    International Nuclear Information System (INIS)

    Mizukami, Chikashi; Yamamoto, Etsuo; Ohmura, Masaki; Oiki, Hiroyuki; Tsuji, Jun; Muneta, Yuki; Tanabe, Makito; Hakuba, Nobuhiro; Azemoto, Syougo.

    1993-01-01

    We are using a new three-dimensional (3-D) surface reconstruction system to measure the temporal bones. This system offers the advantage of observation of the external aperture of the vestibular aqueduct and the porus acusticus internus in living subjects. However, its accuracy has not been confirmed. To investigate the accuracy of this new system, we measured the length of an in situ ceramic ossicular replacement prosthesis (CORP) of known length of 6.0 mm using 3-D surface reconstruction, conventional plain X-ray and polytomography. The CORP was scanned in the axial, sagittal and oblique directions. The mean measured length obtained with the 3-D surface reconstruction images was 5.94±0.21 on vertical scans, 5.91±0.27 on horizontal scans, and 6.01±0.25 on oblique scans. There were no significant differences among the measured lengths obtained in the three directions. Therefore, this 3-D surface reconstruction measurement system is considered to be reliable. Conversely, the mean measured length obtained by plain X-ray was 7.98±0.20, and by polytomography it was 7.94±0.23. These conventional methods have the inherent disadvantage of magnification of size which consequently requires correction. (author)

  1. Surface temperature measurement of plasma facing components in tokamaks

    International Nuclear Information System (INIS)

    Amiel, Stephane

    2014-01-01

    During this PhD, the challenges on the non-intrusive surface temperature measurements of metallic plasma facing components in tokamaks are reported. Indeed, a precise material emissivity value is needed for classical infrared methods and the environment contribution has to be known particularly for low emissivities materials. Although methods have been developed to overcome these issues, they have been implemented solely for dedicated experiments. In any case, none of these methods are suitable for surface temperature measurement in tokamaks.The active pyrometry introduced in this study allows surface temperature measurements independently of reflected flux and emissivities using pulsed and modulated photothermal effect. This method has been validated in laboratory on metallic materials with reflected fluxes for pulsed and modulated modes. This experimental validation is coupled with a surface temperature variation induced by photothermal effect and temporal signal evolvement modelling in order to optimize both the heating source characteristics and the data acquisition and treatment. The experimental results have been used to determine the application range in temperature and detection wavelengths. In this context, the design of an active pyrometry system on tokamak has been completed, based on a bicolor camera for a thermography application in metallic (or low emissivity) environment.The active pyrometry method introduced in this study is a complementary technique of classical infrared methods used for thermography in tokamak environment which allows performing local and 2D surface temperature measurements independently of reflected fluxes and emissivities. (author) [fr

  2. Direct measurement of Cu surface self-diffusion on a checked surface

    International Nuclear Information System (INIS)

    Cousty, Jacques; Peix, Roger; Perraillon, Bernard.

    1976-01-01

    A radiotracer technique ( 64 Cu) was developed to measure surface diffusion on copper surfaces of total impurity concentration not exceeding some 10 -3 monolayers. The apparatus used consists of a slow electron diffraction device, an Auger analysis spectrometer (CMA), an ion gun and an evaporation device assembled in an ultra-vacuum chamber holding a residual pressure below 10 -10 Torr. A sample handler enables the surface studied to be positioned in front of each of these instruments. During the diffusion treatment the chemical composition of the surface is checked intermittently, and afterwards the spread of the deposit is measured outside the ultravacuum chamber. Slices several microns thick are removed and dissolved separately in dishes containing HNO 3 . The activity is then measured with a flow counter [fr

  3. Evaluation of Satellite-Based Surface Energy Budget Products with Surface Measurements Over the Great Lakes

    Science.gov (United States)

    Wang, H.; Loeb, N. G.; Lenters, J. D.; Spence, C.; Blanken, P.

    2017-12-01

    Earth's climate is fundamentally driven by the global energy balance. While Earth's energy budget at the top-of-atmosphere (TOA) is well understood, satellite-based estimates of the global mean surface energy budget yield an imbalance of 15-20 Wm-2. The data products used to infer the components of the surface energy budget are often based upon physical or empirical models and ancillary input data sets of varying quality. In order to make progress, comparisons between satellite-based estimates of the surface energy budget components and direct surface measurements are critically needed. This study evaluates surface radiative fluxes from NASA CERES EBAF and surface turbulent heat fluxes from OAFLUX by comparing them with surface station measurements from the Great Lakes Evaporation Network (GLEN). The GLEN measurements are collected using instruments on lighthouses in the Great Lakes, and include surface evaporation measurement via eddy covariance technique. The evaluation is performed for 3 offshore and 1 nearshore Great Lakes sites. We highlight results for Stannard Rock in Lake Superior, which is the farthest lighthouse from shore ( 40km from the nearest land). Relative to the GLEN observations, the OAFLUX underestimates latent heat flux by 12 Wm-2 (19 Wm-2) at Stannard Rock (4-station average), in part due to its weaker near surface wind speed, and overestimates sensible heat flux by 12 Wm-2 (6 Wm-2), which is partly contributed by its colder surface air temperature. The CERES EBAF-Surface overestimates the surface downward all-sky shortwave (longwave) flux by 8 Wm-2 (7 Wm-2) at Stannard Rock, and is comparable to the 4-station average. As a result, the surface estimated using EBAF-Surface and OAFLUX receives 16 Wm-2 (13 Wm-2) more than the GLEN observations at Stannard Rock (4-station average). The above surface energy flux differences will be further discussed based on a comparison between the input data sets used in the satellite-based estimates and

  4. Figure reversals and creativity: a research note.

    Science.gov (United States)

    Simpson, M T; Lansky, L M; Senter, R J; Peterson, J M

    1983-10-01

    In a series of studies, Bergum and Bergum (1979a, 1979b) noted a positive relationship between college students' self-perceptions of creativity and their passive rates of ambiguous figure reversal. While these authors suggest that a relationship may also exist between figure-reversal rate and creativity, as assessed by external measures, their research does not support this claim. Indeed, other research has not substantiated a relationship between rate of figure reversal and objective tests of creativity (Bloomberg, 1971; Bergum & Flamm, 1975). It may also be the case that students' perceptions of their own creative ability differ markedly from externally-derived measures of such ability. As part of a larger study relating figure-reversal rate, creativity, and handedness, the present authors attempted to replicate and extend the work of Bergum and Bergum through the use of professors' judgments of students' creativity. The subjects were 48 senior students of architecture (40 males, 8 females). Each student initially read a description of six factors commonly associated with creativity in the psychological literature and then rated himself in creative ability in comparison to his classmates. In accordance with Bergum and Bergum (1979a, 1979b), the students passively viewed (and recorded) figure reversals of six ambiguous figures. The six figures were presented for 60 sec. each, with 10-sec. intervals, in two random orders. Students' creative ability was also determined from rankings by two architecture professors who were familiar with the students' work. To guide their rankings, the professors used the same description of creativity as was given to the students.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. ACCURACY EVALUATION FOR THE NON-CONTACT DEFECT AREA MEASUREMENT AT THE COMPLEX-SHAPE SURFACES UNDER VIDEOENDOSCOPIC CONTROL

    Directory of Open Access Journals (Sweden)

    A. V. Gorevoy

    2014-07-01

    Full Text Available The problem of non-contact surface defect area measurement at complex-shape objects under videoendoscopic control is considered. Major factors contributing to the measurement uncertainty are analyzed for the first time. The proposed method of accuracy analysis is based on the evaluation of 3D coordinates of surface points from 2D projections under assumption of projective camera model and Mahalanobis distance minimization in the image plane. Expressions for area measurement error caused by sum-of-triangles approximation are obtained analytically for practically important cases of cylindrical and spherical surfaces. It is shown that the magnitude of this error component for a single triangle does not exceed 1% for the real values of parameters of the endoscopic imaging system. Expressions are derived for area measurement uncertainty evaluation on arbitrary shape surfaces, caused by measurement errors of 3D coordinates of individual points with and without a priori information about surface shape. Verification of the obtained expressions with real experiment data showed that area measurement error for a complex figure, given by a set of points, is mainly caused by ignoring the fact that these points belong to the surface. It is proved that the use of a priori information about investigated surface shape, which is often available from the design documentation, in many cases would radically improve the accuracy of surface defects area measurement. The presented results are valid for stereoscopic, shadow and phase methods of video endoscopic measurements and can be effectively used in development of new non-contact measuring endoscopic systems and modernization of existing ones.

  6. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  7. Topography measurements for determining the decay factors in surface replication

    International Nuclear Information System (INIS)

    Song, J; Zheng, A; Vorburger, T V; Rubert, P

    2008-01-01

    The electro-forming technique is used at National Institute of Standards and Technology (NIST) for the production of standard reference material (SRM) 2461 standard casings to support nationwide ballistics measurement traceability and measurement quality control in the US. In order to ensure that the SRM casings are produced with virtually the same surface topography, it is necessary to test the decay factors of the replication process. Twenty-six replica casings are replicated from the same master casing for the decay factor tests. The NIST topography measurement system is used for measurements and correlations of surface topography. The topography decays are quantified by the cross-correlation function maximum CCF max . Based on the test, it is expected that 256 SRM casings can be replicated from the same master with CCF max values higher than 95%

  8. Measurement of surface crack length using image processing technology

    International Nuclear Information System (INIS)

    Nahm, Seung Hoon; Kim, Si Cheon; Kim, Yong Il; Ryu, Dae Hyun

    2001-01-01

    The development of a new experimental method is required to easily observe the growth behavior of fatigue cracks. To satisfy the requirement, an image processing technique was introduced to fatigue testing. The length of surface fatigue crack could be successfully measured by the image processing system. At first, the image data of cracks were stored into the computer while the cyclic loading was interrupted. After testing, crack length was determined using image processing software which was developed by ourselves. Block matching method was applied to the detection of surface fatigue cracks. By comparing the data measured by image processing system with the data measured by manual measurement with a microscope, the effectiveness of the image processing system was established. If the proposed method is used to monitor and observe the crack growth behavior automatically, the time and efforts for fatigue test could be dramatically reduced

  9. Two-pulse rapid remote surface contamination measurement.

    Energy Technology Data Exchange (ETDEWEB)

    Headrick, Jeffrey M.; Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.; Farrow, Roger L.

    2010-11-01

    This project demonstrated the feasibility of a 'pump-probe' optical detection method for standoff sensing of chemicals on surfaces. Such a measurement uses two optical pulses - one to remove the analyte (or a fragment of it) from the surface and the second to sense the removed material. As a particular example, this project targeted photofragmentation laser-induced fluorescence (PF-LIF) to detect of surface deposits of low-volatility chemical warfare agents (LVAs). Feasibility was demonstrated for four agent surrogates on eight realistic surfaces. Its sensitivity was established for measurements on concrete and aluminum. Extrapolations were made to demonstrate relevance to the needs of outside users. Several aspects of the surface PF-LIF physical mechanism were investigated and compared to that of vapor-phase measurements. The use of PF-LIF as a rapid screening tool to 'cue' more specific sensors was recommended. Its sensitivity was compared to that of Raman spectroscopy, which is both a potential 'confirmer' of PF-LIF 'hits' and is also a competing screening technology.

  10. Rumsey and Walker_AMT_2016_Figure 2.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — Figure summarizes uncertainty (error) in hourly gradient flux measurements by individual analyte. Flux uncertainty is derived from estimates of uncertainty in...

  11. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  12. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    Directory of Open Access Journals (Sweden)

    Alberto Barrientos

    2013-09-01

    Full Text Available The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  13. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  14. Solution algorithm of dwell time in slope-based figuring model

    Science.gov (United States)

    Li, Yong; Zhou, Lin

    2017-10-01

    Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.

  15. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  16. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...... the catalytic surface through the annulus between the tubes, and the gas is sampled close to the surface by the capillary. The influence of various design parameters on the lateral resolution and sensitivity of the measurements is investigated. It is found that the cuter diameter of the annulus sets the upper......, the limits of the range in reaction rate, which can be Studied are estimated. (c) 2005 Elsevier B.V. All rights reserved....

  17. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  18. Freeform surface measurement and characterisation using a toolmakers microscope

    International Nuclear Information System (INIS)

    Wong, Francis Seung-yin; Chauh, Kong-Bieng; Venuvinod, Patri K

    2014-01-01

    Current freeform surface (FFS) characterization systems mainly cover aspects related to computer-aided design/manufacture (CAD/CAM). This paper describes a new approach that extends into computer-aided inspection (CAI).The following novel features are addressed: - ◼ Feature recognition and extraction from surface data; - ◼ Characterisation of properties of the surface's M and N vectors at individual vertex; - ◼ Development of a measuring plan using a toolmakers microscope for the inspection of the FFS; - ◼ Inspection of the actual FFS produced by CNC milling; - ◼ Verification of the measurement results and comparison with the CAD design data; Tests have shown that the deviations between the CAI and CAD data were within the estimated uncertainty limits

  19. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  20. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  1. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  2. Edge effect correction using ion beam figuring.

    Science.gov (United States)

    Yang, Bing; Xie, Xuhui; Li, Furen; Zhou, Lin

    2017-11-10

    The edge effect is regarded as one of the most difficult technical issues for fabricating large primary mirrors, as it can greatly reduce the key performance of the optical system. Ion beam figuring (IBF) has the advantage of no edge effect, so we can use it to remove high points on the edge and improve surface accuracy. The edge local correction method (ELCM) of IBF processes only the surface edge zone, and is very different from the current full caliber figuring method (FCFM). Therefore, it is necessary to study the ELCM of IBF. In this paper, the key factors of ELCM are analyzed, such as dwell time algorithm, edge data extension methods, and the outward dimension of the starting figuring point. At the same time, the distinctions between ELCM and FCFM are compared. Finally, a 142 mm diameter fused silica mirror is fabricated to verify the validity of the theoretical of ELCM. The experimental results indicate that the figuring precision and efficiency can be obviously improved by ELCM.

  3. A new approach of surface flux measurements using DTS

    Science.gov (United States)

    van Emmerik, T. H. M.; Wenker, K. J. R.; Rimmer, A.; de Jong, S. A. P.; Lechinsky, Y.; van de Giesen, N. C.

    2012-04-01

    Estimation of surface fluxes is a difficult task, especially over lakes. Determining latent heat flux (evaporation), sensible heat flux and ground heat flux involves measurements and (or calculations) of net radiation, air temperature, water temperature, wind speed and relative humidity. This research presents a new method to measure surface fluxes by means of Distributed Temperature Sensing (DTS). From 0.5 m above lake level to 1.5 m under lake level DTS was applied to measure temperature. Using a PVC hyperboloid construction, a floating standalone measuring device was developed. This new setup distinguished itself by the open construction, so it is almost insensitive to direct radiation. While most of the lake ground heat changes occur very close to the lake surface, most measuring methods only obtain rough results. With this construction it was possible to create a spiral shaped fiber-optic cable setup, with which a vertical spatial resolution of 0.02 m and a temporal resolution of 1 min was obtained. The new method was tested in the deep Lake Kinneret (Israel) from 6 October, 2011 to 11 October, 2011and in the shallow Lake Binaba (Ghana) from 24 October, 2011 to 28 October, 2011. This study shows that with the developed method it is possible to capture the energy fluxes within the top water layer with a high resolution. When the old low resolution method was compared with the new high resolution method, it could be concluded that the impact of the surface fluxes in the upper layer is high on the energy balance on a daily scale. During the measuring period it was possible to use the temperature measured by the DTS to determine the sensible heat flux, the latent heat flux and the ground heat flux of both lakes.

  4. Estimation of surface area and surface area measure of three-dimensional sets from digitizations

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Kiderlen, Markus

    2010-01-01

    A local method for estimating surface area and surface area measure of three-dimensional objects from discrete binary images is presented. A weight is assigned to each 2 × 2 × 2 configuration of voxels and the total surface area of an object is given by summation of the local area contributions....... The method is based on an exact asymptotic result that holds for increasing resolution of the digitization. It states that the number of occurrences of a 2 ×  2 × 2 configuration is asymptotically proportional to an integral of its “h-function” with respect to the surface area measure of the object. We find...

  5. Step-height measurements on sand surfaces: A comparison between optical scanner and coordinate measuring machine

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, Seyed Alireza; Tiedje, Niels Skat

    2016-01-01

    the same routine to touch the different positions on the polygonised mesh. Each measurement was repeated 5 times. The results of step height measurements on sand surfaces showed a maximum error of ± 12 µm for CMM, while scanner shows only ± 4 µm. Generally speaking, optical step height values were measured...

  6. Facts and figures in 2004

    International Nuclear Information System (INIS)

    Lavergne, R.; Meuric, L.; Scherrer, S.; Paquel, V.; Louati, S.; Thienard, H.

    2005-01-01

    This document gathers a series of articles dedicated to the situation of the energy sector in France at the end of 2004: -) the energy balance sheet, -) the trend concerning energy consumption since 1973, -) the energy bill, -) figures about electrical power, -) figures about natural gas, -) figures about solid fossil fuels, -) figures about oil, and -) figures about renewable energies. The important fact to note is that the energy bill has soared by 24.1% to reach 28.35 milliard euros which represents 1.75% of the gross national product (PIB). The evolution over the year 2004 of the factors that contribute to the level of the energy bill is: - the import-export energy quantity differential: +7.5%, - the import-export energy cost differential (in Usa dollar): +27.1%, and - the fall of the dollar: -9.1%. (A.C.)

  7. Analysis of flame surface density measurements in turbulent premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Halter, Fabien [Institut PRISME, Universite d' Orleans, 45072 Orleans (France); Chauveau, Christian; Goekalp, Iskender [Institut de Combustion, Aerothermique, Reactivite et Environnement, Centre National de la Recherche Scientifique, 45071 Orleans (France); Veynante, Denis [Laboratoire E.M2.C, Centre National de la Recherche Scientifique, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2009-03-15

    In premixed turbulent combustion, reaction rates can be estimated from the flame surface density. This parameter, which measures the mean flame surface area available per unit volume, may be obtained from algebraic expressions or by solving a transport equation. In this study, detailed measurements were performed on a Bunsen-type burner fed with methane/air mixtures in order to determine the local flame surface density experimentally. This burner, located in a high-pressure combustion chamber, allows investigation of turbulent premixed flames under various flow, mixture, and pressure conditions. In the present work, equivalence ratio was varied from 0.6 to 0.8 and pressure from 0.1 to 0.9 MPa. Flame front visualizations by Mie scattering laser tomography are used to obtain experimental data on the instantaneous flame front dynamics. The exact equation given by Pope is used to obtain flame surface density maps for different flame conditions. Some assumptions are made in order to access three-dimensional information from our two-dimensional experiments. Two different methodologies are proposed and tested in term of global mass balance (what enters compared to what is burned). The detailed experimental flame surface data provided for the first time in this work should progressively allow improvement of turbulent premixed flame modeling approaches. (author)

  8. NOTE: Surface dose extrapolation measurements with radiographic film

    Science.gov (United States)

    Butson, Martin J.; Cheung, Tsang; Yu, Peter K. N.; Currie, Michael

    2004-07-01

    Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size.

  9. Key techniques for vision measurement of 3D object surface

    Science.gov (United States)

    Yang, Huachao; Zhang, Shubi; Guo, Guangli; Liu, Chao; Yu, Ruipeng

    2006-11-01

    Digital close-range photogrammetry system and machine vision are widely used in production control, quality inspection. The main aim is to provide accurate 3D objects or reconstruction of an object surface and give an expression to an object shape. First, the key techniques of camera calibration and target image positioning for 3D object surface vision measurement were briefly reviewed and analyzed in this paper. Then, an innovative and effect method for precise space coordinates measurements was proposed. Test research proved that the thought and methods we proposed about image segmentation, detection and positioning of circular marks were effective and valid. A propriety weight value for adding parameters, control points and orientation elements in bundle adjustment with self-calibration are advantageous to gaining high accuracy of space coordinates. The RMS error of check points is less than +/-1 mm, which can meet the requirement in industrial measurement with high accuracy.

  10. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range. Keywords: surface acoustic wave, surface plasmon resonance, collagen, fibrinogen, density, thickness

  11. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  12. Optical triangulation method for height measurements on water surfaces

    Science.gov (United States)

    Maas, Hans-Gerd; Hentschel, Bernd; Schreiber, Frank

    2003-01-01

    Optical triangulation methods based on a laser light sheet and a camera are frequently used as a surface measurement technique in a wide range of applications. They allow for the fast accurate determination of height profiles, based on relatively simple hardware and software configurations. Moreover, they can be implemented very efficiently and are especially suited for measurements on moving objects such as products on an assembly line. The study presented in the paper describes the adaptation of laser light sheet optical triangulation techniques to the task of water level profile measurements in hydromechanics experimental facilities. The properties of water surfaces necessitate several modifications of optical triangulation techniques to make them applicable: The mirror-like reflection properties of water surfaces form a contradiction to the assumption of diffuse reflection, on which standard light sheet triangulation techniques are based; this problem can be circumvented by using a diffuse reflecting projection plane to capture the mirror-like reflection of the laser line from the water surface. Due to the angle of incidence law, however, water surface tilts caused by waves will usually cause a strong degradation of the quality of the results when using reflected light; this effect can largely be compensated by processing max-store images derived from short image sequences rather than single images. These extensions of optical triangulation turned out to be crucial for the applicability of the method on water surfaces. Besides the theoretical concept and a sensitivity analysis of the method, a system configuration is outlined, and the results of a number of practical experiments are shown and discussed.

  13. A new surface resistance measurement method with ultrahigh sensitivity

    International Nuclear Information System (INIS)

    Liang, Changnian.

    1993-01-01

    A superconducting niobium triaxial cavity has been designed and fabricated to study residual surface resistance of planar superconducting materials. The edge of a 25.4 mm or larger diameter sample in the triaxial cavity is located outside the strong field region. Therefore, the edge effects and possible losses between the thin film and the substrate have been minimized, ensuring that induced RF losses are intrinsic to the test material. The fundamental resonant frequency of the cavity is the same as the working frequency of CEBAF cavities. The cavity has a compact size compared to its TE 011 counterpart, which makes it more sensitive to the sample's loss. For even higher sensitivity, a calorimetry method has been used to measure the RF losses on the superconducting sample. At 2 K, a 2 μK temperature change can be resolved by using carbon resistor sensors. The temperature distribution caused by RF heating is measured by 16 carbon composition resistor sensors. A 0.05 μW heating power can be detected as such a resolution, which translates to a surface resistance of 0.02 nΩ at a surface magnetic field of 52 Oe. This is the most sensitive device for surface resistance measurements to date. In addition, losses due to the indium seal, coupling probes, field emission sites other than the sample, and all of the high field resonator surface, are excluded in the measurement. Surface resistance of both niobium and high-Tc superconducting thin films has been measured. A low R s of 35.2 μΩ was measured for a 25.4 mm diameter YBa 2 Cu 3 O 7 thin film at 1.5 GHz and at 2 K. The measurement result is the first result for a large area epitaxially grown thin film sample at such a low RF frequency. The abrupt disappearance of multipacting between two parallel plates has been observed and monitored with the 16 temperature mapping sensors. Field emission or some field dependent anomalous RF losses on the niobium plate have also been observed

  14. Water Surface and Velocity Measurement-River and Flume

    Directory of Open Access Journals (Sweden)

    J. H. Chandler

    2014-06-01

    Full Text Available Understanding the flow of water in natural watercourses has become increasingly important as climate change increases the incidence of extreme rainfall events which cause flooding. Vegetation in rivers and streams reduce water conveyance and natural vegetation plays a critical role in flood events which needs to be understood more fully. A funded project at Loughborough University is therefore examining the influence of vegetation upon water flow, requiring measurement of both the 3-D water surface and flow velocities. Experimental work therefore requires the measurement of water surface morphology and velocity (i.e. speed and direction in a controlled laboratory environment using a flume but also needs to be adaptable to work in a real river. Measuring the 3D topographic characteristics and velocity field of a flowing water surface is difficult and the purpose of this paper is to describe recent experimental work to achieve this. After reviewing past work in this area, the use of close range digital photogrammetry for capturing both the 3D water surface and surface velocity is described. The selected approach uses either two or three synchronised digital SLR cameras in combination with PhotoModeler for data processing, a commercial close range photogrammetric package. One critical aspect is the selection and distribution of appropriate floating marker points, which are critical if automated and appropriate measurement methods are to be used. Two distinct targeting approaches are available: either large and distinct specific floating markers or some fine material capable of providing appropriate texture. Initial work described in this paper uses specific marker points, which also provide the potential measuring surface velocity. The paper demonstrates that a high degree of measurement and marking automation is possible in a flume environment, where lighting influences can be highly controlled. When applied to a real river it is apparent that

  15. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure.

    Science.gov (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela

    2017-09-19

    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  16. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  17. [Measurements of surface ocean carbon dioxide partial pressure during WOCE]. Summary of research progress

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This paper discusses the research progress of the second year of research under ``Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE`` and proposes to continue measurements of underway pCO{sub 2}. During most of the first year of this grant, our efforts to measure pCO{sub 2} on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO{sub 2} in air and surface seawater indicate air-sea equilibrium.

  18. Magnetic flux surface measurements at the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Matthias; Andreeva, Tamara; Biedermann, Christoph; Bozhenkov, Sergey; Geiger, Joachim; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lazerson, Samuel [Princeton Plasma Physics Laboratory, Princeton (United States)

    2016-07-01

    Recently the first plasma operation phase of the Wendelstein 7-X stellarator has been started at IPP Greifswald. Wendelstein 7-X is an optimized stellarator with a complex superconducting magnet system consisting of 50 non-planar and 20 planar field coils and further 10 normal conducting control and 5 trim coils. The magnetic confinement and hence the expected plasma performance are decisively determined by the properties of the magnet system, especially by the existence and quality of the magnetic flux surfaces. Even small error fields may result in significant changes of the flux surface topology. Therefore, measurements of the vacuum magnetic flux surfaces have been performed before plasma operation. The first experimental results confirm the existence and quality of the flux surfaces to the full extend from low field up to the nominal field strength of B=2.5T. This includes the dedicated magnetic limiter configuration that is exclusively used for the first plasma operation. Furthermore, the measurements are indicating that the intrinsic error fields are within the tolerable range and can be controlled utilizing the trim coils as expected.

  19. Surface albedo measurements in Mexico City metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Castro, T; Mar, B; Longoria, R; Ruiz Suarez, L. G [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico); Morales, L [Instituto de Geografia, UNAM, Mexico, D.F. (Mexico)

    2001-04-01

    Optical and thermal properties of soils are important input data for the meteorological and photochemical modules of air quality models. As development of these models increase on spatial resolution good albedo data become more important. In this paper measurements of surface albedo of UV (295-385 nm) and visible (450-550 nm) radiation are reported for different urban and rural surfaces in the vicinity of Mexico City. It was found for the downtown zone and average albedo value of 0.05 which is in very good agreement with reported values for urban surfaces. Our albedo values measured in UV region for grey cement and green grass are of 0.10 and 0.009, respectively, and quite similar to those found at the literature of 0.11 and 0.008 for those type of surfaces. [Spanish] Las propiedades opticas y termicas de suelos son datos importantes para los modulos meteorologicos y fotoquimicos de los modelos de calidad del aire. Conforme aumenta la resolucion espacial del modelo se vuelve mas importante contar con buenos datos de albedo. En este articulo se presentan mediciones de albedo superficial de radiacion Ultravioleta (295-385 nm) y visible (450-550 nm) para diferentes superficies urbanas. Los valores medidos de albedo en la region UV para cemento gris y pasto verde son de 0.10 y 0.009, respectivamente, y son muy similares a los reportados en la literatura, 0.11 y 0.008 para este tipo de superficies.

  20. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  1. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  2. System design description for surface moisture measurement system (SMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F.

    1996-09-23

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  3. Surface moisture measurement system hardware acceptance test procedure

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1996-01-01

    The purpose of this acceptance test procedure is to verify that the mechanical and electrical features of the Surface Moisture Measurement System are operating as designed and that the unit is ready for field service. This procedure will be used in conjunction with a software acceptance test procedure, which addresses testing of software and electrical features not addressed in this document. Hardware testing will be performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  4. Actual evaporation estimation from infrared measurement of soil surface temperature

    Directory of Open Access Journals (Sweden)

    Davide Pognant

    2013-09-01

    Full Text Available Within the hydrological cycle, actual evaporation represents the second most important process in terms of volumes of water transported, second only to the precipitation phenomena. Several methods for the estimation of the Ea were proposed by researchers in scientific literature, but the estimation of the Ea from potential evapotranspiration often requires the knowledge of hard-to-find parameters (e.g.: vegetation morphology, vegetation cover, interception of rainfall by the canopy, evaporation from the canopy surface and uptake of water by plant roots and many existing database are characterized by missing or incomplete information that leads to a rough estimation of the actual evaporation amount. Starting from the above considerations, the aim of this study is to develop and validate a method for the estimation of the Ea based on two steps: i the potential evaporation estimation by using the meteorological data (i.e. Penman-Monteith; ii application of a correction factor based on the infrared soil surface temperature measurements. The dataset used in this study were collected during two measurement campaigns conducted both in a plain testing site (Grugliasco, Italy, and in a mountain South-East facing slope (Cogne, Italy. During those periods, hourly measurement of air temperature, wind speed, infrared surface temperature, soil heat flux, and soil water content were collected. Results from the dataset collected in the two testing sites show a good agreement between the proposed method and reference methods used for the Ea estimation.

  5. The role of probe oxide in local surface conductivity measurements

    Science.gov (United States)

    Barnett, C. J.; Kryvchenkova, O.; Wilson, L. S. J.; Maffeis, T. G. G.; Kalna, K.; Cobley, R. J.

    2015-05-01

    Local probe methods can be used to measure nanoscale surface conductivity, but some techniques including nanoscale four point probe rely on at least two of the probes forming the same low resistivity non-rectifying contact to the sample. Here, the role of probe shank oxide has been examined by carrying out contact and non-contact I V measurements on GaAs when the probe oxide has been controllably reduced, both experimentally and in simulation. In contact, the barrier height is pinned but the barrier shape changes with probe shank oxide dimensions. In non-contact measurements, the oxide modifies the electrostatic interaction inducing a quantum dot that alters the tunneling behavior. For both, the contact resistance change is dependent on polarity, which violates the assumption required for four point probe to remove probe contact resistance from the measured conductivity. This has implications for all nanoscale surface probe measurements and macroscopic four point probe, both in air and vacuum, where the role of probe oxide contamination is not well understood.

  6. Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation.

    Science.gov (United States)

    Flores-Moreno, J M; Furlong, Cosme; Rosowski, John J; Harrington, Ellery; Cheng, Jeffrey T; Scarpino, C; Santoyo, F Mendoza

    2011-01-01

    We describe a novel holographic otoscope system for measuring nanodisplacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology, and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using the Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane. SCANNING 33: 342-352, 2011. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  7. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... pocket spending. Take action. Become an advocate SPECIAL REPORT — ALZHEIMER'S DISEASE: THE NEXT FRONTIER In the history ... State The 2017 Alzheimer's Disease Facts and Figures report contains data on the impact of this disease ...

  8. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Facts and Figures report contains data on the impact of this disease in every state across the nation. Click below to see the effect that Alzheimer's is having in your state. Read ...

  9. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... home care. Take action. Become an advocate SPECIAL REPORT: FINANCIAL AND PERSONAL BENEFITS OF EARLY DIAGNOSIS Early ... State The 2018 Alzheimer's Disease Facts and Figures report contains data on the impact of this disease ...

  10. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease Facts and Figures report ... on the impact of this disease in every state across the nation. Click below to see the ...

  11. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... irrevocable disability occurs. LEARN ABOUT OUR COMMITMENT TO RESEARCH. Read More Alzheimer's Disease Facts in Each State The 2017 Alzheimer's Disease Facts and Figures report contains data on the impact of this disease in every ...

  12. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... same category as other chronic diseases, such as cardiovascular disease or diabetes, which can be ... Disease Facts and Figures report contains data on the impact of this disease ...

  13. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Alzheimer's & Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full ... all ages are living with Alzheimer's dementia in 2018. This number includes an estimated 5.5 million ...

  14. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Alzheimer's >> Home Text size: A A A 2017 Alzheimer's Disease Facts and Figures Download the Full Report: ... twice as high. Invest in a world without Alzheimer's. Donate Caregivers In 2016, 15.9 million family ...

  15. R-X Modeling Figures

    Energy Technology Data Exchange (ETDEWEB)

    Goda, Joetta Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grogan, Brandon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-26

    This document contains figures that will be included in an ORNL final report that details computational efforts to model an irradiation experiment performed on the Godiva IV critical assembly. This experiment was a collaboration between LANL and ORNL.

  16. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Alzheimer's >> Home Text size: A A A 2017 Alzheimer's Disease Facts and Figures Download the Full Report: Download ... spending. Take action. Become an advocate SPECIAL REPORT — ALZHEIMER'S DISEASE: THE NEXT FRONTIER In the history of medicine, ...

  17. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: Download ... worried about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease ...

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: ... twice as high. Invest in a world without Alzheimer's. Donate Caregivers Eighty-three percent of the help ...

  19. Alzheimer's Disease Facts and Figures

    Science.gov (United States)

    ... Dementia >> Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: ... twice as high. Invest in a world without Alzheimer's. Donate Caregivers Eighty-three percent of the help ...

  20. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... RESEARCH. Read More Alzheimer's Disease Facts in Each State The 2017 Alzheimer's Disease Facts and Figures report ... on the impact of this disease in every state across the nation. Click below to see the ...

  1. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... Home Text size: A A A 2018 Alzheimer's Disease Facts and Figures Download the full report: Download ... about memory loss? KNOW THE 10 SIGNS Alzheimer's Disease Facts in Each State The 2018 Alzheimer's Disease ...

  2. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  3. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  4. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Several Surfaces and Ecosystem over Southern Africa

    Science.gov (United States)

    Gatebe, C. K.; King, M. D.; Tsay, S.; Arnold, G. T.; Li, J. Y.

    2001-12-01

    The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF measurements were obtained over different natural surfaces and ecosystem in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 oS, 31.5 oE) and Mongu tower, Zambia (15.4 oS, 23.3 oE). Additional sites are also considered and include, Maun tower, Botswana (20.0 oS, 23.5 oE), Sowa Pan, Botswana (20.6 oS, 26.2 oE) and Etosha Pan, Namibia (19.0 oS, 16.0 oE). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 μ m), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 μ m). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of ~20 o and fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were

  5. Surface Current Measurements In Terra Nova Bay By Hf Radar

    Science.gov (United States)

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  6. Surface measurement errors using commercial scanning white light interferometers

    International Nuclear Information System (INIS)

    Gao, F; Petzing, J; Coupland, J M; Leach, R K

    2008-01-01

    This paper examines the performance of commercial scanning white light interferometers in a range of measurement tasks. A step height artefact is used to investigate the response of the instruments at a discontinuity, while gratings with sinusoidal and rectangular profiles are used to investigate the effects of surface gradient and spatial frequency. Results are compared with measurements made with tapping mode atomic force microscopy and discrepancies are discussed with reference to error mechanisms put forward in the published literature. As expected, it is found that most instruments report errors when used in regions close to a discontinuity or those with a surface gradient that is large compared to the acceptance angle of the objective lens. Amongst other findings, however, we report systematic errors that are observed when the surface gradient is considerably smaller. Although these errors are typically less than the mean wavelength, they are significant compared to the vertical resolution of the instrument and indicate that current scanning white light interferometers should be used with some caution if sub-wavelength accuracy is required

  7. Surface measurement errors using commercial scanning white light interferometers

    Science.gov (United States)

    Gao, F.; Leach, R. K.; Petzing, J.; Coupland, J. M.

    2008-01-01

    This paper examines the performance of commercial scanning white light interferometers in a range of measurement tasks. A step height artefact is used to investigate the response of the instruments at a discontinuity, while gratings with sinusoidal and rectangular profiles are used to investigate the effects of surface gradient and spatial frequency. Results are compared with measurements made with tapping mode atomic force microscopy and discrepancies are discussed with reference to error mechanisms put forward in the published literature. As expected, it is found that most instruments report errors when used in regions close to a discontinuity or those with a surface gradient that is large compared to the acceptance angle of the objective lens. Amongst other findings, however, we report systematic errors that are observed when the surface gradient is considerably smaller. Although these errors are typically less than the mean wavelength, they are significant compared to the vertical resolution of the instrument and indicate that current scanning white light interferometers should be used with some caution if sub-wavelength accuracy is required.

  8. Surface temperature measurements of heterogeneous explosives by IR emission

    Energy Technology Data Exchange (ETDEWEB)

    Henson, B.F.; Funk, D.J.; Dickson, P.M.; Fugard, C.S.; Asay, B.W.

    1998-03-01

    The authors present measurements of the integrated IR emission (1--5 {micro}m) from both the heterogeneous explosive PBX 9501 and pure HMX at calibrated temperatures from 300 C to 2,500 C. The IR power emitted as a function of temperature is that expected of a black body, attenuated by a unique temperature independent constant which the authors report as the thermal emissivity. The authors have utilized this calibration of IR emission in measurements of the surface temperature from PBX 9501 subject to 1 GPa, two dimensional impact, and spontaneous ignition in unconfined cookoff. They demonstrate that the measurement of IR emission in this spectral region provides a temperature probe of sufficient sensitivity to resolve the thermal response from the solid explosive throughout the range of weak mechanical perturbation, prolonged heating to ignition, and combustion.

  9. Application of laser tracker technology for measuring optical surfaces

    Science.gov (United States)

    Zobrist, Tom L.

    The pages of this dissertation detail the development of an advanced metrology instrument for measuring large optical surfaces. The system is designed to accurately guide the fabrication of the Giant Magellan Telescope and future telescopes through loose-abrasive grinding. The instrument couples a commercial laser tracker with an advanced calibration technique and a set of external references to mitigate a number of error sources. The system is also required to work as a verification test for the GMT principal optical interferometric test of the polished mirror segment to corroborate the measurements in several low-order aberrations. A set of system performance goals were developed to ensure that the system will achieve these purposes. The design, analysis, calibration results, and measurement performance of the Laser Tracker Plus system are presented in this dissertation.

  10. Measurement of steep aspheric surfaces using an anamorphic probe

    International Nuclear Information System (INIS)

    Biswas, Amiya; Coupland, Jeremy

    2008-01-01

    Synthetic aperture interferometry has been previously proposed as a possible in-process method to measure aspheric form (R. Tomlinson, Appl. Opt.42, 701, 2003.APOPAI0003-693510.1364/AO.42.000701). Preliminary demonstration utilized a scanning probe consisting of a pair of bare single mode fibers to perform source and receive functions. It was found that this probe did not have sufficient numerical aperture (NA) to measure steep surfaces and that simply increasing the NA decreases the light gathering efficiency substantially. In this paper, we introduce supplementary optics to increase the NA, and the light gathering efficiency has been increased by adopting an anamorphic design. A spherical test optic of known form is measured to demonstrate the capability of the new probe design

  11. Measurement of steep aspheric surfaces using an anamorphic probe

    Science.gov (United States)

    Biswas, Amiya; Coupland, Jeremy

    2008-04-01

    Synthetic aperture interferometry has been previously proposed as a possible in-process method to measure aspheric form (R. Tomlinson, Appl. Opt.42, 701, 2003.APOPAI0003-693510.1364/AO.42.000701). Preliminary demonstration utilized a scanning probe consisting of a pair of bare single mode fibers to perform source and receive functions. It was found that this probe did not have sufficient numerical aperture (NA) to measure steep surfaces and that simply increasing the NA decreases the light gathering efficiency substantially. In this paper, we introduce supplementary optics to increase the NA, and the light gathering efficiency has been increased by adopting an anamorphic design. A spherical test optic of known form is measured to demonstrate the capability of the new probe design.

  12. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  13. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  14. Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements

    Science.gov (United States)

    Wye, Lauren C.; Zebker, Howard A.; Ostro, Steven J.; West, Richard D.; Gim, Yonggyu; Lorenz, Ralph D.; The Cassini Radar Team

    2007-06-01

    albedo feature Shangri-La is best fit by a Hagfors model with a dielectric constant close to 2.4 and an rms slope near 9.5°. From the modeled backscatter curves, we find the average radar albedo in the same linear (SL) polarization to be near 0.34. We constrain the total-power albedo in order to compare the measurements with available groundbased radar results, which are typically obtained in both senses of circular polarization. We estimate an upper limit of 0.4 on the total-power albedo, a value that is significantly higher than the 0.21 total albedo value measured at 13 cm [Campbell, D., Black, G., Carter, L., Ostro, S., 2003. Science 302, 431-434]. This is consistent with a surface that has more small-scale structure and is thus more reflective at 2-cm than 13-cm. We compare results across overlapping observations and observe that the reduction and analysis are repeatable and consistent. We also confirm the strong correlations between radar and near-infrared images.

  15. Surface solar irradiance from SCIAMACHY measurements: algorithm and validation

    Directory of Open Access Journals (Sweden)

    P. Wang

    2011-05-01

    Full Text Available Broadband surface solar irradiances (SSI are, for the first time, derived from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY satellite measurements. The retrieval algorithm, called FRESCO (Fast REtrieval Scheme for Clouds from the Oxygen A band SSI, is similar to the Heliosat method. In contrast to the standard Heliosat method, the cloud index is replaced by the effective cloud fraction derived from the FRESCO cloud algorithm. The MAGIC (Mesoscale Atmospheric Global Irradiance Code algorithm is used to calculate clear-sky SSI. The SCIAMACHY SSI product is validated against globally distributed BSRN (Baseline Surface Radiation Network measurements and compared with ISCCP-FD (International Satellite Cloud Climatology Project Flux Dataset surface shortwave downwelling fluxes (SDF. For one year of data in 2008, the mean difference between the instantaneous SCIAMACHY SSI and the hourly mean BSRN global irradiances is −4 W m−2 (−1 % with a standard deviation of 101 W m−2 (20 %. The mean difference between the globally monthly mean SCIAMACHY SSI and ISCCP-FD SDF is less than −12 W m−2 (−2 % for every month in 2006 and the standard deviation is 62 W m−2 (12 %. The correlation coefficient is 0.93 between SCIAMACHY SSI and BSRN global irradiances and is greater than 0.96 between SCIAMACHY SSI and ISCCP-FD SDF. The evaluation results suggest that the SCIAMACHY SSI product achieves similar mean bias error and root mean square error as the surface solar irradiances derived from polar orbiting satellites with higher spatial resolution.

  16. Airborne spectral measurements of surface-atmosphere anisotropy for several surfaces and ecosystems over southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; King, Michael D.; Platnick, Steve; Arnold, G. Thomas; Vermote, Eric F.; Schmid, Beat

    2003-07-01

    The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft during the Southern Africa Regional Science Initiative 2000 (SAFARI 2000) dry season campaign and obtained measurements of bidirectional reflectance distribution function (BRDF) for a variety of natural surfaces and ecosystems in southern Africa. To measure the BRDF of the surface-atmosphere system, the University of Washington CV-580 banked at a roll angle of ˜20° and flew circles about 3 km in diameter above the surface, taking approximately 2 min. Multiple circular orbits were acquired over selected surfaces so that average BRDFs could be acquired, smoothing out small-scale surface and atmospheric inhomogeneities. In this paper, we present results of BRDFs taken over two Earth Observing System (EOS) validation sites: Skukuza tower, South Africa (25.0°S, 31.5°E) and Mongu tower, Zambia (15.4°S, 23.3°E). Additional sites are discussed and include the Maun tower, Botswana (20.0°S, 23.6°E), Sua Pan, Botswana (20.6°S, 25.9°E), Etosha Pan, Namibia (19.0°S, 16.0°E), and marine stratocumulus clouds off the west coast of Namibia (20.5°S, 13.1°E). Results clearly show anisotropy in reflected solar radiation over the various surfaces types: savanna, salt pans, and cloud. The greatest anisotropy is observed over marine stratus clouds, which exhibit strong forward scattering as well as important water cloud scattering features such as the rainbow and glory. The BRDF over savanna is characterized by a distinct backscattering peak in the principal plane and shows directional and spectral variations. Over the pans, the BRDF is more enhanced in the backscattering plane than forward scattering plane and shows little directional variation.

  17. Figure

    Indian Academy of Sciences (India)

    45

    mBraun, 120G,. Germany) was used to assemble the Swagelok cells. Lithium metal (Aldrich, 99.9%) was used as the counter electrode and Teklon (Anatek, USA) as the separator. All the tests were performed using 1 M. LiPF6 dissolved in the ...

  18. Figure correction of multilayer coated optics

    Science.gov (United States)

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  19. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  20. Measuring the surface roughness of geological rock surfaces in SAR data using fractal geometry

    Science.gov (United States)

    Ghafouri, Ali; Amini, Jalal; Dehmollaian, Mojtaba; Kavoosi, Mohammad Ali

    2017-05-01

    Determining surface morphology using synthetic aperture radar (SAR) data requires accurate topographic and microtopographic models. To distinguish different surface geometric patterns and to differentiate the formation of geological rock surfaces, it is necessary to model the smoothness and roughness of surfaces based on radar signal backscattering. Euclidean geometry is less able than fractal geometry to describe natural phenomena; however, in application to radar backscattering models, fractal geometry has never fully replaced Euclidean geometry. Using fractal geometry only, this paper attempts to improve the backscattering simulation generated by an Integral Equation Model to improve the description of geological rock surfaces. As the application of radar signal backscattering is a rarity in the domain of geology, the paper also discusses the efficiency of the method in improving the results of conventional geological mapping methods. The proposed method is applied to the Anaran geological formation (between Dehloran and Ilam in IRAN) using TerraSAR-X SAR data and in situ roughness measurements on pure sites with rough, intermediate, and smooth morphologies. This implementation shows fractal and diffractal behavior of geological morphologies under various conditions.

  1. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    Science.gov (United States)

    Bailey, Sean; Canter, Caleb

    2017-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  2. Reliability of surface EMG measurements from the suprahyoid muscle complex

    DEFF Research Database (Denmark)

    Kothari, Mohit; Stubbs, Peter William; Pedersen, Asger Roer

    2017-01-01

    of using the suprahyoid muscle complex (SMC) using surface electromyography (sEMG) to assess changes to neural pathways by determining the reliability of measurements in healthy participants over days. Methods: Seventeen healthy participants were recruited. Measurements were performed twice with one week...... between sessions. Single pulse (at 120% and 140% of the resting motor threshold (rMT)) and paired pulse (2 ms and 15 ms paired pulse) transcranial magnetic stimulation (TMS) were used to elicit MEPs in the SMC which were recorded using sEMG. Results: ≈50% of participants (range: 42%-58%; depending...... on stimulus type/intensity) had significantly different MEP values between day 1 and day 2 for single pulse and paired pulse TMS. A large stimulus artefact resulted in MEP responses that could not be assessed in four participants. Conclusions: The assessment of the SMC using sEMG following TMS was poorly...

  3. Measurement of Tritium Surface Distribution on TFTR Bumper Limiter Tiles

    International Nuclear Information System (INIS)

    Sugiyama, K.; Tanabe, T.; Skinner, C.H.; Gentile, C.A.

    2004-01-01

    The tritium surface distribution on graphite tiles used in the Tokamak Fusion Test Reactor (TFTR) bumper limiter and exposed to TFTR deuterium-tritium (D-T) discharges from 1993 to 1997 was measured by the Tritium Imaging Plate Technique (TIPT). The TFTR bumper limiter shows both re-/co-deposition and erosion. The tritium images for all tiles measured are strongly correlated with erosion and deposition patterns, and long-term tritium retention was found in the re-/co-depositions and flakes. The CFC tiles located at erosion dominated areas clearly showed their woven structure in their tritium images owing to different erosion yields between fibers and matrix. Significantly high tritium retention was observed on all sides of the erosion tiles, indicating carbon transport via repetition of local erosion/deposition cycles

  4. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  5. Vacuum-Flex Figuring of Primary Telescope Mirrors

    Science.gov (United States)

    Albin, E. F. M.

    2004-12-01

    In the current investigation, details on the construction and performance of a vacuum-flexed (i.e., figured) 51 cm (20-inch) mirror, with a fast f/4 focal ratio, are presented. A vacuum has the chief advantage of being able to pull with a uniform or isotropic stress across a large surface area, which will naturally form a parabolic surface. The essence of the idea is to grind and polish a spherical mirror and then warp or flex it into a near perfect paraboloid, thus avoiding tedious figuring altogether. To date, telescope makers around the globe have experimented with small flexed mirrors with considerable success. In these instances, mirrors have been flexed by exerting tension on a bolt or sponge-pad adhered to the back of the mirror. The prototype mirror consists of two 51 cm disks of plate glass -- each slumped to an f/4 focal ratio. The front-plate (19 mm in thickness) is separated from the back-plate (13 mm in thickness) back a flexible 9.5 mm air filled gasket. Although the rubber gasket makes a fairly good vacuum seal, silicon cement was placed about the outer edge in order to produce a perfectly tight seal. A vacuum of 8 kPa on the back of the mirror resulted in approximately 164 kilograms of negative pressure, which is required to flex the mirror into the required paraboloid. Ronchi test show a nice smooth paraboloid free from astigmatism while foucault zonal measurements display a figure better than 1/20 wave. Preliminary star testing show promising results as well. Vacuum-flexed mirrors may have benefits for both amateur and professional telescope makers alike. A US patent is pending on the aforementioned design.

  6. Forskerklummen: Figured Worlds of literacy

    DEFF Research Database (Denmark)

    Møller, Hanne

    2017-01-01

    Figured worlds”, altså forestillede verdener, er et teoretisk begreb, som i øjeblikket dukker op i flere og flere forskningssammenhænge. Det bliver anvendt på mange forskellige måder både inden for uddannelsesforskning og i forskning i literacy.......”Figured worlds”, altså forestillede verdener, er et teoretisk begreb, som i øjeblikket dukker op i flere og flere forskningssammenhænge. Det bliver anvendt på mange forskellige måder både inden for uddannelsesforskning og i forskning i literacy....

  7. Measuring surface energy and evapotranspiration across Caribbean mangrove forests

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T. E.; Price, R.

    2014-12-01

    Coastal mangroves lose large amounts of water through evapotranspiration (ET) that can be equivalent to the amount of annual rainfall in certain years. Satellite remote sensing has been used to estimate surface energy and ET variability in many forested ecosystems, yet has been widely overlooked in mangrove forests. Using a combination of long-term datasets (30-year) acquired from the NASA Landsat 5 and 7 satellite databases, the present study investigated ET and surface energy balance variability between two mangrove forest sites in the Caribbean: 1) Everglades National Park (ENP; Florida, USA) and 2) Sian Ka'an Biosphere Reserve (SKBR; Quintana Roo, Mexico). A satellite-derived surface energy balance model was used to estimate ET in tall and scrub mangroves environments at ENP and SKBR. Results identified significant differences in soil heat flux measurements and ET between the tall and scrub mangrove environments. Scrub mangroves exhibited the highest soil heat flux coincident with the lowest biophysical indices (i.e., Fractional Vegetation Cover, Normalized Difference Vegetation Index, and Soil-Adjusted Vegetation Index) and ET rates. Mangrove damage and mortality was observed on the satellite images following strong tropical storms and associated with anthropogenic modifications and resulted in low values in spectral vegetation indices, higher soil heat flux, and higher ET. Recovery of the spectral characteristics, soil heat flux and ET was within 1-2 years following hurricane disturbance while, degradation caused by human disturbance persisted for many years. Remotely sensed ET of mangrove forests can provide estimates over a few decades and provide us with some understanding of how these environments respond to disturbances to the landscape in periods where no ground data exists or in locations that are difficult to access. Moreover, relationships between energy and water balance components developed for the coastal mangroves of Florida and Mexico could be

  8. Entrance surface dose measurements in mammography using thermoluminescence technique

    International Nuclear Information System (INIS)

    Rivera, T.; Vega C, H.R.; Manzanares A, E; Azorin, J.; Gonzalez, P.R.

    2007-01-01

    Full text: Of the various techniques that can be used for personnel dosimetry, thermoluminescence dosimetry (TLD) has emerged as a superior technique due to its manifold advantages over other methods of dose estimation. Various phosphors have been therefore investigated regarding their suitability for dosimetry. In this paper, a dosimetry system based on thermally stimulated luminescence (TSL) from zirconium oxide phosphors embedded in polytetrafluorethylene (ZrO 2 +PTFE) was developed for entrance surface doses (ES) measurements in mammography. Small ZrO 2 pellets of 5 mm in diameter and 0.8 mm in thickness were used. The reproducibility of measurements and linearity of ZrO 2 were also studied. The results were compared with those obtained from LiF:Mg,Cu,P usually used for the determination of absorbed dose in mammography. Measurements both per unit air kerma and In vivo were performed using a mammography unit model DMR (General Electric). The results showed that ZrO 2 TLDs can be used for the same X-ray dosimetry applications as LiF:Mg,Cu,P, with each type having the disadvantage of a response dependent on energy, particularly at low energies. These results indicate a considerable potential for use in routine control and In vivo ES measurements in mammography. (Author)

  9. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  10. Response Surface Methods For Spatially-Resolved Optical Measurement Techniques

    Science.gov (United States)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.

  11. Retorical figures in advertising language

    Directory of Open Access Journals (Sweden)

    Radenković-Šošić Bojana

    2012-01-01

    Full Text Available Promotional activities are very often based on advertising and diverse types of public relations. In order to attract consumers' attention and achieve communication goals set by the corporate strategy, advertisers frequently use rhetorical elements in advertising discourse. The advertisers try to convey a desired message and to communicate with the recipient of the message by using various rhetorical figures. It is argued that understanding the structure and function of rhetorical figures in advertising requires a "text- and reader-aware approach". The use of rhetorical figures in advertising has been overlooked in consumer research. This paper shows that the use of rhetorical elements in the advertising discourse is very frequent, but at the same time it is questioned if the function of the rhetorical figures is just a communication with the target market (which is a base of communication models and if the consequences of linguistic influences are much more serious. The complex nature of advertising language with various rhetorical figures (thropes and schemes do not just stimulate recipients to demonstrate a desirable behavior, but indirectly it constructs a concept of desirable lifestyle and it induces them to identify themselves with the explained model. Moreover, the analyzed corpus included advertising slogans of social responsible companies as well as advertising campaigns with elements of diverse ideologies. In the time of digitization and a rapid information flow, consumer's attention is less dedicated to the advertising messages. Therefore, it should be expected that in the future advertisers will have to adjust linguistic, audio and visual techniques to the unfocused message recipients.

  12. Colour measurements of surfaces to evaluate the restoration materials

    Science.gov (United States)

    Lo Monaco, Angela; Marabelli, Maurizio; Pelosi, Claudia; Picchio, Rodolfo

    2011-06-01

    In this paper two case studies on the application of colour measurements for the evaluation of some restoration materials are discussed. The materials related to the research are: watercolours employed in restoration of wall paintings and preservative/consolidants for wood artifacts. Commercial watercolours, supplied by Maimeri, Windsor&Newton and Talens factories have been tested. Colour measurements have been performed by means of a reflectance spectrophotometer (RS) before and after accelerated ageing of watercolours at 92% relative humidity (RH) and in a Solar Box chamber. The experimental results show that watercolours based on natural earths and artificial ultramarine undergo the main colour changes, expressed as L*, a* and b* variations and total colour difference (▵E*). In the other cases colour differences depend on both watercolour typology and suppliers. The other example concerns the evaluation of colour change due to surface treatment of Poplar (Populus sp.) and chestnut (Castanea sativa L.) wood samples. The wooden samples have been treated with a novel organic preservative/consolidant product that has been tested also in a real case as comparison. The treated samples have been artificially aged in Solar Box chamber equipped with a 280 nm UV filter. Colour has been measured before and after the artificial ageing by means of a RS. Colour changes have been determined also for the main door of an historical mansion in Viterbo, made of chestnut wood, and exposed outdoors.

  13. Advanced metrology of surface defects measurement for aluminum die casting

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2011-07-01

    Full Text Available The scientific objective of the research is to develop a strategy to build computer based vision systems for inspection of surface defects inproducts, especially discontinuities which appear in castings after machining. In addition to the proposed vision inspection method theauthors demonstrates the development of the advanced computer techniques based on the methods of scanning to measure topography ofsurface defect in offline process control. This method allow to identify a mechanism responsible for the formation of casting defects. Also,the method allow investigating if the, developed vision inspection system for identification of surface defects have been correctlyimplemented for an online inspection. Finally, in order to make casting samples with gas and shrinkage porosity defects type, the LGT gas meter was used . For this task a special camera for a semi-quantitative assessment of the gas content in aluminum alloy melts, using a Straube-Pfeiffer method was used. The results demonstrate that applied solution is excellent tool in preparing for various aluminum alloysthe reference porosity samples, identified next by the computer inspection system.

  14. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  15. Fast figuring of large optics by reactive atom plasma

    Science.gov (United States)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  16. Channel Storage change: a new remote sensed surface water measurement

    Science.gov (United States)

    Coss, S. P.; Durand, M. T.; Yi, Y.; Guo, Q.; Shum, C. K.; Allen, G. H.; Pavelsky, T.

    2017-12-01

    Here we present river channel storage change (CSC) measurements for 17 major world rivers from 2002-2016. We combined interpolated daily 1 km resolution Global River Radar Altimeter Time Series (GRRATS) river surface elevation data with static widths from the global river Global River Widths from Landsat (GRWL) dataset, to generate preliminary channel storage measurements. CSC is a previously unmeasured component of the terrestrial water balance It is a fundamental Earth science quantity with global bearing on floodplains, ecology, and geochemistry. CSC calculations require only remote sensed data, making them an ideal tool for studying remote regions where hydrological data is not easily accessible. CSC is uniquely suited to determine the role of hydrologic and hydraulic controls in basins with strong seasonal cycles (freeze-up and break-up). The cumulative CSC anomaly can impart spatial details that discharge measurements cannot. With this new measurement, we may be able to determine critical hydrological and hydraulic controls on rapidly changing systems like Arctic rivers. Results for Mississippi River indicate that peak CSC anomaly was the highest in 2011 (12.6 km3) and minimum CSC anomaly was in 2012 (-12.2 km3). Peak CSC has most frequently occurs in May (5 years), but has come as late in the year as July, and as early as January. Results for the Yukon River indicate that peak CSC anomaly was the highest in 2013 (13.9 km3) and minimum CSC anomaly was in 2010 (-14.2 km3). Peak CSC has most frequently come in early to mid-June (4-18), but has occurred in May (19-31) four years in the study period (three of the last 6 years) and once on April 30th.

  17. Measuring sea surface height with a GNSS-Wave Glider

    Science.gov (United States)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  18. Measuring surface temperature of isolated neutron stars and related problems

    Science.gov (United States)

    Teter, Marcus Alton

    New and exciting results for measuring neutron star surface temperatures began with the successful launch of the Chandra X-ray observatory. Among these results are new detections of neutron star surface temperatures which have made it possible to seriously test neutron star thermal evolution theories. The important new temperature determination of the Vela pulsar (Pavlov, et al., 2001a) requires a non-standard cooling scenario to explain it. Apart from this result, we have measured PSR B1055-52's surface temperature in this thesis, determining that it can be explained by standard cooling with heating. Our spectral fit of the combined data from ROSAT and Chandra have shown that a three component model, two thermal blackbodies and an non-thermal power-law, is required to explain the data. Furthermore, our phase resolved spectroscopy has begun to shed light on the geometry of the hot spot on PSR B1055-52's surface as well as the structure of the magnetospheric radiation. Also, there is strong evidence for a thermal distribution over its surface. Most importantly, the fact that PSR B1055-52 does not have a hydrogen atmosphere has been firmly established. To reconcile these two key observations, on the Vela pulsar and PSR B1055-52, we tested neutron star cooling with neutrino processes including the Cooper pair neutrino emission process. Overall, it has been found that a phase change associated with pions being present in the cores of more massive neutron stars explains all current of the data. A transition from neutron matter to pion condensates in the central stellar core explains the difference between standard and non-standard cooling scenarios, because the superfluid suppression of pion cooling will reduce the emissivity of the pion direct URCA process substantially. A neutron star with a mass of [Special characters omitted.] with a medium stiffness equation of state and a T72 type neutron superfluid models the standard cooling case well. A neutron star of [Special

  19. Third quarter 2005 sales figures

    International Nuclear Information System (INIS)

    2005-01-01

    With manufacturing facilities in over 40 countries and a sales network in over 100, AREVA offers customers technological solutions for nuclear power generation and electricity transmission and distribution. The group also provides interconnect systems to the telecommunications, computer and automotive markets. This document presents the sales figures of the group for the third quarter of 2005: sales revenues in the front end division, in the reactor and services division, in the back end division and in the transmission and distribution division

  20. Algorithm for ion beam figuring of low-gradient mirrors.

    Science.gov (United States)

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  1. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available Surface current information collected over the Agulhas Current region and derived from the Doppler centroid anomalies of the Advanced Synthetic Aperture Radar (ASAR) are examined. The sources of errors and potential use of the radar surface...

  2. ROUGHNESS ON WOOD SURFACES AND ROUGHNESS MEASUREMENT METHODS

    OpenAIRE

    İsmail Aydın; Gürsel Çolakoğlu

    2003-01-01

    Some visual characteristics of wood such as color, pattern and texture determine the quality of manufactured products. Surface properties of wood material are important both in production and marketing after production. Initial studies related to the roughness of wood surface were begun in early 1950’s. However, no general agreed standardization can not have been developed for wood surfaces. Surface roughness of wood is function of the production process, product type and the natural anatomic...

  3. Rumsey and Walker_AMT_2016_Figure 1.xlsx

    Data.gov (United States)

    U.S. Environmental Protection Agency — Figure summarizes diurnal profiles of uncertainty in the chemical gradient and transfer velocity measurements from which fluxes are calculated. This dataset is...

  4. Measuring evaporation from soil surfaces for environmental and ...

    African Journals Online (AJOL)

    There are many reasons for the need to assess rates and quantities of evaporation or evapotranspiration from natural soil surfaces, the surfaces of deposits of mine or industrial waste, or soil-covered waste surfaces. These include assessing water balances for nearsurface soil strata, landfills, tailings dams and waste dumps ...

  5. Effects of drop size and measuring condition on static contact angle measurement on a superhydrophobic surface with goniometric technique

    International Nuclear Information System (INIS)

    Seo, Kwangseok; Kim, Minyoung; Kim, Do Hyun; Ahn, Jeong Keun

    2015-01-01

    It is not a simple task to measure a contact angle of a water drop on a superhydrophobic surface with sessile drop method, because a roll-off angle is very low. Usually contact angle of a water drop on a superhydrophobic surface is measured by fixing a drop with intentional defects on the surface or a needle. We examined the effects of drop size and measuring condition such as the use of a needle or defects on the static contact angle measurement on superhydrophobic surface. Results showed that the contact angles on a superhydrophobic surface remain almost constant within intrinsic measurement errors unless there is a wetting transition during the measurement. We expect that this study will provide a deeper understanding on the nature of the contact angle and convenient measurement of the contact angle on the superhydrophobic surface.

  6. Entrance surface dose measurements in pediatric radiological examinations

    International Nuclear Information System (INIS)

    Ribeiro, L.A.; Yoshimura, E.M.

    2008-01-01

    A survey of pediatric radiological examinations was carried out in a reference pediatric hospital of the city of Sao Paulo, in order to investigate the doses to children undergoing conventional X-ray examinations. The results showed that the majority of pediatric patients are below 4 years, and that about 80% of the examinations correspond to chest projections. Doses to typical radiological examinations were measured in vivo with thermoluminescent dosimeters (LiF: Mg, Ti and LiF: Mg, Cu, P) attached to the skin of the children to determine entrance surface dose (ESD). Also homogeneous phantoms were used to obtain ESD to younger children, because the technique uses a so small kVp that the dosimeters would produce an artifact image in the patient radiograph. Four kinds of pediatric examinations were investigated: three conventional examinations (chest, skull and abdomen) and a fluoroscopic procedure (barium swallow). Relevant information about kVp and mAs values used in the examinations was collected, and we discuss how these parameters can affect the ESD. The ESD values measured in this work are compared to reference levels published by the European Commission for pediatric patients. The results obtained (third-quartile of the ESD distribution) for chest AP examinations in three age groups were: 0.056 mGy (2-4 years old); 0.068 mGy (5-9 years old); 0.069 mGy (10-15 years old). All of them are below the European reference level (0.100 mGy). ESD values measured to the older age group in skull and abdomen AP radiographs (mean values 3.44 and 1.20 mGy, respectively) are above the European reference levels (1.5 mGy to skull and 1.0 mGy to abdomen). ESD values measured in the barium swallow examination reached 10 mGy in skin regions corresponding to thyroid and esophagus. It was noticed during this survey that some technicians use, improperly, X-ray fluoroscopy in conventional examinations to help them in positioning the patient. The results presented here are a

  7. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    Science.gov (United States)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  8. Scanning compound surfaces with no existing CAD model by using laser probe of a coordinate measuring machine

    Science.gov (United States)

    Che, Chenggang

    1992-09-01

    In recent years, the manufacturing of parts with compound surfaces relies more and more on computer integrated manufacturing (CIM) because of the ever increasing complexity of surface features. For a standard CIM cycle, it starts from a computer aided design (CAD) model which was designed previously be experienced mechanical drafters. The CAD model is then interpreted as numerical controlled (NC) machining codes according to which the part is finally manufactured, this is usually referred to as the normal manufacturing process in Figure 1. However, in many cases, a CAD model of a part is not always readily available to begin the CIM cycle. For instance, in automobile industry, the development of new car models takes a long time from concept to model because of the tedious manual digitization process. Also, in some other cases, the mechanical design of a product may need frequent modification, such as ship hulls, aeroplane fuselages, wings and turbine blades, etc. This was traditionally done by copymilling of a master model. In a computer aided manufacturing (CAM) environment, a mathematical model or representation of a part is required to begin a CIM cycle. The automation of the whole manufacturing system requires a rapid part modeling tool. Fortunately, this becomes possible with the advent of recent development in optical sensing devices and many non-contact sensing techniques. Before a part model is established, surface digitization should first be implemented so that enough measurement points can be fitted later, and this is the most important step of the reverse engineering process as in Figure 1. And also, it is obvious that the efficiency and accuracy of the surface modeling relies heavily on the efficiency and accuracy of the surface digitization. The present paper aims at achieving surface digitization accurately and rapidly with a coordinate measurement machine (CMM) and an inexpensive laser range-finding probe. By making full use of the control system of

  9. UAV BASED BRDF-MEASUREMENTS OF AGRICULTURAL SURFACES WITH PFIFFIKUS

    Directory of Open Access Journals (Sweden)

    G. J. Grenzdörffer

    2012-09-01

    Full Text Available BRDF is a common problem in remote sensing and also in oblique photogrammetry. Common approaches of BRDF-measurement with a field goniometer are costly and rather cumbersome. UAVs may offer an interesting alternative by using a special flight pattern of oblique and converging images. The main part of this paper is the description of a photogrammetric workflow in order to determine the anisotropic reflection properties of a given surface. Due to the relatively low flying heights standard procedures from close range photogrammetry were adopted for outdoor usage. The photogrammetric processing delivered automatic and highly accurate orientation information with the aid of coded targets. The interior orientation of the consumer grade camera is more or less stable. The radiometrically corrected oblique images are converted into ortho photos. The azimuth and elevation angle of every point may then be computed. The calculated anisotropy of a winter wheat plot is shown. A system four diagonally-looking cameras (Four Vision and an additional nadir looking camera is under development. The multi camera system especially designed for a Micro- UAV with a payload of min 1 kg. The system is composed of five industrial digital frame cameras (1.3 Mpix CCD-chips, 15 fp/s with fixed lenses. Also special problems with the construction of a light weight housing of the multi camera solution are covered in the paper.

  10. Can in vivo surface dental enamelmicrobiopsies be used to measure remote lead exposure?

    Science.gov (United States)

    Olympio, Kelly Polido Kaneshiro; Huila, Manuel Fernando Gonzalez; de Almeida Baldini Cardoso, Cristiane; da Silva Ferreira, Ana Paula Sacone; Ortiz, Adrielly Garcia; Toma, Henrique Eisi; da Silva, Ricardo Henrique Alves; Luz, Maciel Santos; Cardoso, Maria Regina Alves; Kelmer, Gislayne Aparecida Rodrigues; de Oliveira, Pedro Vitoriano; Bechara, Etelvino José Henriques; Günhter, Wanda Maria Risso; Buzalaf, Marília Afonso Rabelo

    2017-12-20

    Measuring lead in the surface dental enamel (SDE) using biopsies is a rapid, safe, and painless procedure. The dental enamel lead levels (DELLs) decrease from the outermost superficial layer to the inner layer of dental enamel, which becomes crucial for the biopsy depth (BD) measurement. However, whether the origin of lead found in SDE is fully endogenous is not yet established. There is also controversy about the biopsy protocol. The aims of this study were to investigate if DELLs are altered by extrinsic contamination (A) and to evaluate the real geometric figure formed by the erosion provoked by biopsy procedure and the respective BD in SDE (B). To accomplish the aim A, lead from 90 bovine incisor crowns lead was determined by graphite furnace atomic absorption spectrometer as a function of exposure time and lead concentration. Two biopsies were performed in each tooth, before and after lead exposure. Six 15-tooth groups differed by exposure time (1 or 30 min) and lead concentrations (A. 0 mg/L-placebo, B. 0.01 mg/L-standard for drinking water, or C. 0.06 mg/L-concentration found in contaminated groundwater). Phosphorus was determined by an inductively coupled plasm optical emission spectrometer to quantify the enamel removed. To compare intakes/losses of lead in SDE among the groups, values of DELL differences between before and after lead exposure were compared by ANOVA (p bottom surface area, analyzed by microscopy, showed an irregular area, with regions of peaks and valleys, where areas with depth ranging from 0.2 (peaks) to 1.8 μm (valleys) (± 0.1 μm) could be found. BD carried out in vivo is commonly calculated using the cylinder height formula. The real BD was shown to be very similar to already published data. In conclusion, the SDE of erupted teeth does not seem to be susceptible to environmental lead intake, being thus reliable to measure remote exposures to lead.

  11. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are ...

  12. Les figures multiples du maire.

    Directory of Open Access Journals (Sweden)

    Olivier Lebraud

    2004-06-01

    Full Text Available Alors même que l’ensemble du personnel gouvernemental et parlementaire est sujet à une relative désaffection de la part des citoyens, les maires français jouissent, on le sait, d’une popularité qui fait d’eux les figures centrales de la scène politique. Au-delà de la décentralisation, qui a souvent renforcé leur image de décideurs, ils ont su tirer parti de la dimension identitaire qui caractérise l’échelon communal pour devenir les acteurs indispensables de la vie locale. ...

  13. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within...

  14. Measurement of Sky Surface Brightness Fluctuations at λ=4 Microns

    Science.gov (United States)

    Xu, Jing; Bock, James J.; Ganga, Ken M.; Gorjian, Varoujan; Uemizu, Kazunori; Kawada, Mitsunobu; Lange, Andrew E.; Matsumoto, Toshio; Watabe, Toyoki

    2002-12-01

    We present a measurement of faint-source confusion in deep, wide-field 4 μm images. The 1.8d×1.8d images with 17" resolution are centered about the nearby edge-on spiral galaxies NGC 4565 and NGC 5907. After removing statistical noise and gain fluctuations in the focal plane array, we measure spatial fluctuations in the sky brightness to be δνIν=2.74+/-0.14 nW m-2 sr-1, approximately 1% of the diffuse background level observed in a single pixel. The brightness fluctuations are confirmed to be associated with the sky by subtracting sequential images of the same region. An autocorrelation analysis shows the fluctuations are well described by unresolved point sources. We see no evidence for surface brightness fluctuations on larger angular scales (2'S)=1.04+0.86-0.34 nW m-2 sr-1 to the cosmic infrared background, evaluated at S=4.0×10-8 nW m-2. From the fluctuation data we can determine the integrated source counts N(>S)=1.79+0.26-0.40×107 sr-1, evaluated at S=4.0×10-8 nW m-2. The observed fluctuations are consistent with reddened K-band galaxy number counts. The number counts of extracted point sources with flux νFν>6.3×10-7 nW m-2 are dominated by stars and agree well with the Galactic stellar model of Wright & Reese. Removing the stellar contribution from DIRBE maps with zodiacal subtraction results in a residual brightness of 14.0+/-2.6 (22.2+/-5.9) nW m-2 sr-1 at 3.5 (4.9) μm for the NGC 5907 field and 24.0+/-2.7 (36.8+/-6.0) nW m-2 sr-1 at 3.5 (4.9) μm for the NGC 4565 field. The NGC 5907 residuals are consistent with tentative detections of the infrared background reported by Dwek & Arendt, Wright & Reese, and Gorjian, Wright, & Chary.

  15. Hooke's figurations: a figural drawing attributed to Robert Hooke.

    Science.gov (United States)

    Hunter, Matthew C

    2010-09-20

    The experimental philosopher Robert Hooke (1635-1703) is known to have apprenticed to the leading painter Peter Lely on his first arrival in London in the late 1640s. Yet the relevance of Hooke's artistic training to his mature draughtsmanship and identity has remained unclear. Shedding light on that larger interpretive problem, this article argues for the attribution to Hooke of a figural drawing now in Tate Britain (T10678). This attributed drawing is especially interesting because it depicts human subjects and bears Hooke's name functioning as an artistic signature, both highly unusual features for his draughtsmanship. From evidence of how this drawing was collected and physically placed alongside images by leading artists in the early eighteenth century, I suggest how it can offer new insight into the reception of Hooke and his graphic work in the early Enlightenment.

  16. Measurement of magnetic surfaces on the Compact Auburn Torsatron

    International Nuclear Information System (INIS)

    Henderson, M.A.; Gandy, R.F.; Hanson, J.D.; Knowlton, S.F.; Swanson, D.G.

    1992-01-01

    The magnetic flux surfaces of the Compact Auburn Torsatron have been experimentally mapped in a variety of magnetic configurations. The magnetic surface mapping was done using the phosphor screen technique. The results are compared with an extensive computer model in order to validate the design coil structure and determine what modifications are needed to correct any minor winding errors. In initial field mapping experiments, a large up--down asymmetry was identified in the vacuum magnetic surfaces. A set of mapping studies was used to characterize the error through addition of terms to the coil winding law. The error was corrected with the use of a radial trim coil

  17. SMEX03 Surface and Soil Temperature Measurements: Alabama

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains land surface temperature and soil temperature data at depths of 1 cm, 5 cm, and 10 cm collected during the Soil Moisture Experiment 2003...

  18. Large thermoelectric figure of merit in graphene layered devices at low temperature

    Science.gov (United States)

    Olaya, Daniel; Hurtado-Morales, Mikel; Gómez, Daniel; Alejandro Castañeda-Uribe, Octavio; Juang, Zhen-Yu; Hernández, Yenny

    2018-01-01

    Nanostructured materials have emerged as an alternative to enhance the figure of merit (ZT) of thermoelectric (TE) devices. Graphene exhibits a high electrical conductivity (in-plane) that is necessary for a high ZT; however, this effect is countered by its impressive thermal conductivity. In this work TE layered devices composed of electrochemically exfoliated graphene (EEG) and a phonon blocking material such as poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polyaniline (PANI) and gold nanoparticles (AuNPs) at the interface were prepared. The figure of merit, ZT, of each device was measured in the cross-plane direction using the Transient Harman Method (THM) and complemented with AFM-based measurements. The results show remarkable high ZT values (0.81  <  ZT  <  2.45) that are directly related with the topography, surface potential, capacitance gradient and resistance of the devices at the nanoscale.

  19. Measuring the surface-heating of medical ultrasonic probes

    International Nuclear Information System (INIS)

    Kollmann, Chr; Vacariu, G; Fialka-Moser, V; Bergmann, H

    2004-01-01

    Due to converting losses the probe's surface itself is heated up, especially when emitting into air. Possible temperature increases in an ensemble of 15 different diagnostic and therapeutic ultrasound probes from 7 manufacturers in the frequency range between 0.05-7.5 MHz have been examined. Surface temperatures were detected by means of a calibrated IR-thermographic camera using a scheme of various power and pulse settings, as well as different imaging modalitites as used in clinical routine. Depending on the setup and the output power, the absolute surface temperatures of some of the probes emitting in air can be beyond 43 deg. C within 5-7 min.; a maximum surface temperature of 84 deg. C has been detected. Continuous mode or high pulse repetition frequencies on the therapeutic system side, small focused Doppler modes on the diagnostic system side combined with increased emitted acoustic intensities result in high surface temperatures. Within a worst case scenario a potential risk of negative skin changes (heat damage) or non-optimal therapeutic effects seems to be possible if a therapeutic system is used very often and if its emission continues unintentionally. In general the user should be aware that low emission intensities of e.g. 50 mW cm -2 could already produce hot surfaces

  20. An Overview of Human Figure Modeling for Army Aviation Systems

    Science.gov (United States)

    2010-04-01

    space reach and vision analyses, while others are used to examine biomechanics or strength issues, for example. Still other human figure modeling... levers (ECLs) located on the side console panel. Figure 9 shows a large male with insufficient knee clearance at the lower section of the instrument...Measuring Machine CMWS Common Missile Warning System ECL Engine Control Lever FOV Field of View GMC Ground Movement Control HFE Human

  1. Removal of Surface-Reflected Light for the Measurement of Remote-Sensing Reflectance from an Above-Surface Platform

    Science.gov (United States)

    2010-12-06

    REPORT DATE IDD-MM- YYYY) 14-02-2011 2. REPORT TYPE Journal Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Removal of Surface...impossible to obtain Rr, from measurements of vertical profiles of Lu and Elt [6]. During the experiment, the surface was calm [see Fig. 8(a)] and

  2. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    International Nuclear Information System (INIS)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-01-01

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release

  3. Measuring the role of seagrasses in regulating sediment surface elevation.

    Science.gov (United States)

    Potouroglou, Maria; Bull, James C; Krauss, Ken W; Kennedy, Hilary A; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M; Githaiga, Michael N; Diele, Karen; Huxham, Mark

    2017-09-20

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other 'blue carbon' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  4. Measuring the role of seagrasses in regulating sediment surface elevation

    KAUST Repository

    Potouroglou, Maria

    2017-09-13

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other \\'blue carbon\\' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  5. Finding Figurative Language in "The Phantom Tollbooth."

    Science.gov (United States)

    Hinton, Lisa

    This lesson is an exploration of figurative language using the novel "The Phantom Tollbooth" and various Web resources. Students examine figurative language in the story and create a chart representing the literal and figurative meanings of words and phrases. During the four to eight 40-minute class sessions, middle school students will: read the…

  6. Optical Roughness Measuring Instrument For Fine-Machined Surfaces

    Science.gov (United States)

    Brodmann, Rainer; Gerstorfer, Oskar; Thurn, Gerd

    1985-06-01

    The roughness measuring instrument described is based on light scattering and is suitable in a wide range of applications, especially in micro-machining. The most important properties are the sensitivity in the measuring range from below 0.005 i.im up to 2µm (Ra value), the independence of the reflection coefficient due to normalization, and the larger tolerance of measur-ing distance of +/-2 mm.

  7. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle.

    Science.gov (United States)

    Horiuchi, H; Nikolov, A; Wasan, D T

    2012-11-01

    The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Measuring of noise and wearing of quiet surfaces

    OpenAIRE

    Raitanen, Nina

    2005-01-01

    When using surfaces with special qualities, there is a need for tools to assess these qualities. Two methods, SPB (Statistical Pass-by) and CPX (Close Proximity), have been used for testing the noise properties of the surfaces in the other countries. Both of these methods had to be modified to suit the Finnish environment. SPBmod-method adheres to the ISO-standard quite closely. It was decided that heavy vehicles are not included in the test, as stipulated in the standard. The normalisation s...

  9. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  10. Surface adhesion and its dependence on surface roughness and humidity measured with a flat AFM tip

    NARCIS (Netherlands)

    Colak, A.; Wormeester, Herbert; Zandvliet, Henricus J.W.; Poelsema, Bene

    2012-01-01

    The adhesion force between a surface and the tip of an atomic force microscope cantilever has been determined by recording force–distance curves with an atomic force microscope. Flat tips with a diameter of 2 μm were used to mimic the adhesion between two parallel surfaces. In such a configuration,

  11. Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Aono, M.

    1997-01-01

    We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...

  12. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    NARCIS (Netherlands)

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower

  13. Measurement of grassland evaporation using a surface-layer ...

    African Journals Online (AJOL)

    A dual-beam surface-layer scintillometer (SLS) was used to estimate sensible heat flux (H) every 2 min for a path length of either 50 or 101 m, for more than 30 months in a mesic grassland in eastern South Africa. The SLS method relies on Monin-Obukhov similarity theory, the correlation between the laser beam signal ...

  14. Surface and Flow Field Measurements on the FAITH Hill Model

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  15. Surface-source modeling and estimation using biomagnetic measurements.

    Science.gov (United States)

    Yetik, Imam Samil; Nehorai, Arye; Muravchik, Carlos H; Haueisen, Jens; Eiselt, Michael

    2006-10-01

    We propose a number of electric source models that are spatially distributed on an unknown surface for biomagnetism. These can be useful to model, e.g., patches of electrical activity on the cortex. We use a realistic head (or another organ) model and discuss the special case of a spherical head model with radial sensors resulting in more efficient computations of the estimates for magnetoencephalography. We derive forward solutions, maximum likelihood (ML) estimates, and Cramér-Rao bound (CRB) expressions for the unknown source parameters. A model selection method is applied to decide on the most appropriate model. We also present numerical examples to compare the performances and computational costs of the different models and illustrate when it is possible to distinguish between surface and focal sources or line sources. Finally, we apply our methods to real biomagnetic data of phantom human torso and demonstrate the applicability of them.

  16. Measurement noise of a point autofocus surface topography instrument

    DEFF Research Database (Denmark)

    Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo

    Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....

  17. The effect of scattered light sensor orientation on roughness measurement of curved polished surfaces

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2014-01-01

    Light scattering is a method for surface roughness measurements well suitable for use in a production environment thanks to its fast measurement rate, insensitivity to vibrations and to small misalignments. The method is however affected by several other factors. In this paper, the effect of angu...... of angular orientation of a commercial scattered light sensor on roughness measurements of polished cylindrical surfaces with crossed surface lay is investigated to document the robustness of the method....

  18. Measurement of the surface susceptibility and the surface conductivity of atomically thin by spectroscopic ellipsometry

    KAUST Repository

    Jayaswal, Gaurav

    2017-10-01

    We show how to correctly extract from the ellipsometric data the surface susceptibility and the surface conductivity that describe the optical properties of monolayer $\\ m MoS_2$. Theoretically, these parameters stem from modelling a single-layer two-dimensional crystal as a surface current, a truly two-dimensional model. Currently experimental practice is to consider this model equivalent to a homogeneous slab with an effective thickness given by the interlayer spacing of the exfoliating bulk material. We prove that the error in the evaluation of the surface susceptibility of monolayer $\\ m MoS_2$, owing to the use of the slab model, is at least 10% or greater, a significant discrepancy in the determination of the optical properties of this material.

  19. Commencement measurements giving fundamental surface tension determinations in tensiometry

    International Nuclear Information System (INIS)

    Carbery, D; Morrin, D; O'Rourke, B; McMillan, N D; O'Neill, M; Riedel, S; Pringuet, P; Smith, S R P

    2011-01-01

    This study provides experimental testing of a ray-tracing model of the tensiotrace that explores the measurement potential of a well-defined optical position in the tensiotrace signal known as the 'commencement'. This point is defined as the first measureable optical coupling in the fiber drophead between source and collector fibers for light injected inside a growing drop. Tensiotrace ray-tracing model is briefly introduced. Empirical relationships of commencement measures from a wide-ranging study are presented. A number of conclusions can be drawn from the successful linking of computer predictions to these experimental relationships.

  20. Surface preparation for residual stress measurement of an accelerated corrosion tested welded marine steel

    International Nuclear Information System (INIS)

    Ahmad, Bilal; Fitzpatrick, Michael E.

    2015-01-01

    Residual stress measurement is often required for the assessment of structural integrity of components. Measurement of residual stress in corrosion tested specimens is challenging owing to the difficulty of accessing the surface because of the rust layer. This study explored the potential methods for the surface preparation of an ultrasonically-peened and accelerated corrosion tested DH36 marine steel fillet welded specimen to ease the way for subsequent residual stress measurement using neutron diffraction and the contour method. We find that hydroblasting introduces compressive residual stress at the surface that will alter the surface stress to be measured

  1. Surface roughness: A review of its measurement at micro-/nano-scale

    Science.gov (United States)

    Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.

    2018-01-01

    The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

  2. Time-Resolved Surface Temperature Measurement for Pulsed Ablative Thrusters

    National Research Council Canada - National Science Library

    Antonsen, Erik

    2003-01-01

    .... The diagnostic draws on heritage from the experimental dynamic crack propagation community which has used photovoltaic infrared detectors to measure temperature rise in materials in the process of fracture...

  3. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  4. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  5. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  7. Measurement of the interaction between the flow and the free surface of a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji [Univ. of Tokyo, Ibaraki (Japan); Schmidl, W.D.; Philip, O.G. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow.

  8. High-speed 3D surface measurement with mechanical projector

    Science.gov (United States)

    Hyun, Jae-Sang; Zhang, Song

    2017-05-01

    This paper presents a method to overcome the light spectral range limitation of using digital-light-processing (DLP) projector for 3D shape measurement by developing a mechanical projector. The mechanical projector enables much broader spectral range of light than that the DLP projector allows. The rapidly spinning disk with binary structures can generate desired sinusoidal patterns at a frequency of 10 kHz or higher with a single DC motor. By precisely synchronizing the camera with the projector, phase-shifted fringe patterns can be accurately captured for high-accuracy 3D shape measurement. We further employed a computational framework that could enable absolute phase and thus absolute 3D shape measurement. We developed such prototype system that experimentally demonstrated the success of the proposed method.

  9. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    Science.gov (United States)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  10. Effect of surface fissure on apparent resistivity measurements

    Science.gov (United States)

    Sailhac, P.; Gance, J.; Malet, J.

    2013-12-01

    Fissures are features of interest, prone to create preferential flow path, modifying locally the soil hydrogeological behavior. Electrical Resistivity Tomography (ERT) is a suitable tool to monitor such preferential flow path. However, this technique is not efficient in the presence of surface fissure, due to a bad resistivity recovering around the fissure vicinity during the inversion process. Therefore, we propose a description of fissure effect on raw apparent resistivity on three resistivity arrays. The purposes of the study are multiple. First, we aim at making ERT users aware of surface fissure effect, and propose a first help to interpret basically resistivity pseudo sections. Second, we propose to ERT users to automatically conduct a surface fissure survey on the studied profile, in order to consider each fissure in a forward DC model and to suppress their effect. Finally, this study is only a first step toward 2D fissure shape inversion, and time-lapse monitoring of fissure drying and filling. In this study, we create a fissure model based on different geomorphological descriptors. After describing the FEM-DC forward modeling strategy, we investigate the fissure effect on pseudo section of apparent resistivity for a Wenner-Schlumberger (WS), a dipole-dipole (DD) and a gradient (GRAD) array. We determine a fissure detectability threshold for each array and perform a sensitivity analysis on the different fissure parameters (position, width, depth, dip angles...). The crack filling or drying effect is also investigated. The possibility to remove fissure effect and to propose a first interpretation of time-lapse data is illustrated on real data. This study show again the higher sensitivity of the DD array compared to the GRAD and WS arrays. Not only the maximal amplitude in the pseudo section is higher for the DD array, but also the anomaly pattern created by the fissure is much larger for this acquisition geometry. The minimal depth detectable for the DD

  11. Measurement of adhesion properties between topcoat paint and metallized/galvanized steel with surface energy measurement equipment.

    Science.gov (United States)

    2013-09-01

    The objectives of this research project are: (1) Compare the adhesion properties of NEPCOAT-approved topcoat paint over : metallized or galvanized steel. Use surface-energy measuring technique to characterize the wetting properties of the liqui...

  12. Heat capacity mapping mission. [satellite for earth surface temperature measurement

    Science.gov (United States)

    Price, J. C.

    1978-01-01

    A Heat Capacity Mapping Mission (HCMM), part of a series of Applications Explorers Missions, is designed to provide data on surface heating as a response to solar energy input. The data is obtained by a two channel scanning radiometer, with one channel covering the visible and near-IR band between 0.5 and 1.1 micrometers, and the other covering the thermal-IR between 10.5 and 12.5 micrometers. The temperature range covered lies between 260 and 340 K, in 0.3 deg steps, with an accuracy at 280 K of plus or minus 0.5 K. Nominal altitude is 620 km, with a ground swath 700 km wide.

  13. Canonical measures on the moduli spaces of compact Riemann surfaces

    International Nuclear Information System (INIS)

    Nag, S.

    1988-08-01

    We first study some explicit relations between the canonical line bundle and the Hodge bundle over moduli spaces for low genus. This leads to a natural measure on the moduli space of every genus which is related to the Siegel symplectic metric on Siegel upper half-space as well as to the Hodge metric on the Hodge bundle. (author). 9 refs

  14. Direct measurement of surface-state conductance by microscopic four-point probe method

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanikawa, T.

    2002-01-01

    For in situ measurements of local electrical conductivity of well defined crystal surfaces in ultrahigh vacuum, we have developed microscopic four-point probes with a probe spacing of several micrometres, installed in a scanning-electron - microscope/electron-diffraction chamber. The probe...... is precisely positioned on targeted areas of the sample surface by using piezoactuators. This apparatus enables conductivity measurement with extremely high surface sensitivity, resulting in direct access to surface-state conductivity of the surface superstructures, and clarifying the influence of atomic steps...

  15. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

    Science.gov (United States)

    Ku, Bon Ki; Kulkarni, Pramod

    2012-05-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

  16. The latest figures on uranium

    International Nuclear Information System (INIS)

    Vance, R.

    2010-01-01

    According to the latest figures on uranium, soon to be published by the NEA, uranium resources, production and demand are all on the rise. Exploration efforts have increased recently in line with the expected expansion of nuclear energy in the coming years. Total identified resources have grown and are now sufficient to cover 100 years of supply at 2008 rates of consumption. Costs of production have, however, also increased. This article is based on the latest edition of the 'Red Book', Uranium 2009: Resources, Production and Demand, which presents the results of the most recent biennial review of world uranium market fundamentals and a statistical profile of the world uranium industry as of 1 January 2009. It contains official data provided by OECD Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) member countries on uranium exploration, resources, production and reactor-related requirements. Projections of nuclear generating capacity and reactor-related uranium requirements through 2035 are also provided as well as a discussion of long-term uranium supply and demand issues. Despite recent declines stemming from the global financial crisis, world demand for electricity is expected to continue to grow significantly over the next several decades to meet the needs of an increasing population and economic growth. The recognition by an increasing number of governments that nuclear power can produce competitively priced, base-load electricity that is essentially free of greenhouse gas emissions, coupled with the role that nuclear can play in enhancing security of energy supply, increases the prospects for growth in nuclear generating capacity, although the magnitude of that growth remains to be determined. Regardless of the role that nuclear energy ultimately plays in meeting rising electricity demand, the uranium resource base is more than adequate to meet projected requirements. Meeting even high-case requirements to 2035 would consume less

  17. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  18. Surface topography measurement by frequency sweeping digital holography.

    Czech Academy of Sciences Publication Activity Database

    Lédl, Vít; Psota, Pavel; Kaván, František; Matoušek, Ondřej; Mokrý, Pavel

    2017-01-01

    Roč. 56, č. 28 (2017), s. 7808-7814 ISSN 1559-128X R&D Projects: GA MŠk(CZ) LO1206; GA ČR(CZ) GA16-11965S Institutional support: RVO:61389021 Keywords : Wavelenght Scanning Interferometry * Shape measurement * Profilomerty Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 1.650, year: 2016 https:// doi . org /10.1364/AO.56.007808

  19. Radioisotope tracer application in surface and groundwater flow measurements

    International Nuclear Information System (INIS)

    Monev, E.

    1983-01-01

    The ''peak to peak'' method for measurement of water flow with the use of radioactive tracer was investigated. The theoretical basis for this method has been established. The experiments in the open channel have shown the applicability of the method. Groundwater flow was studied by injection of radioactive tracer into the bore-hole followed by gamma-logging in three different time intervals. Interpretation of gamma lows in terms of filtration velocity in various depths proved to be possible

  20. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  1. Influence of sampling points on inspection accuracy of free-form surfaces using coordinate measuring machine

    Science.gov (United States)

    Xie, Mengmin; Chen, Yueping; Zhang, Anshe; Fang, Rui

    2018-03-01

    The inspection accuracy of free-form surfaces is mainly affected by the processing, the number of sampling points, the distribution of sampling points, the measurement equipment and other factors. This paper focuses on the influence of sampling points on inspection accuracy of free-form surfaces, and isoparametric distribution was used in sample point distribution. Different sampling points number was compared on a same surface and a probe, the measurement data were analyzed and the optimal sampling points number was obtained.

  2. Characterization of silicon surface states at clean and copper contaminated condition via transient capacitance measurement

    Science.gov (United States)

    Song, Lihui; Xie, Meng; Yu, Xuegong; Yang, Deren

    2017-10-01

    Silicon surface is one of the dominant recombination sites for silicon solar cells. Generally, the recombination ability of silicon surface is characterized in terms of surface recombination velocity. However, silicon surface actually contain a series of donor and acceptor levels across the silicon band gap, and therefore the surface recombination velocity is too general to provide detailed information of the silicon surface states. In this paper, we used the measured transient capacitance data to extract the detailed information (like defect energy levels, defect densities, and capture cross sections) of the silicon surface states. Furthermore, the influence of copper contamination on silicon surface states was examined, and it was found that copper contamination can change the localized energy levels of "clean" silicon surface states to the band-like energy levels, meanwhile the defect densities and capture cross sections were both enlarged.

  3. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  4. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... that use detectable measures of biological changes in the brain, commonly known as biological markers, or biomarkers, as part of the diagnosis. The development and validation of Alzheimer's disease ...

  5. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... arc of scientific progress is now requiring a change in how we diagnose Alzheimer's disease. Both the ... proposed guidelines that use detectable measures of biological changes in the brain, commonly known as biological markers, ...

  6. Automatic centroid detection and surface measurement with a digital Shack–Hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Zhao, Liping; Li, Xiang; Fang, Zhongping

    2010-01-01

    With the breakthrough of manufacturing technologies, the measurement of surface profiles is becoming a big issue. A Shack–Hartmann wavefront sensor (SHWS) provides a promising technology for non-contact surface measurement with a number of advantages over interferometry. The SHWS splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. So the accuracy of the centroid measurement determines the accuracy of the SHWS. In this paper, we have presented a new centroid measurement algorithm based on an adaptive thresholding and dynamic windowing method by utilizing image-processing techniques. Based on this centroid detection method, we have developed a digital SHWS system which can automatically detect centroids of focal spots, reconstruct the wavefront and measure the 3D profile of the surface. The system has been tested with various simulated and real surfaces such as flat surfaces, spherical and aspherical surfaces as well as deformable surfaces. The experimental results demonstrate that the system has good accuracy, repeatability and immunity to optical misalignment. The system is also suitable for on-line applications of surface measurement

  7. Forces due to surface water measured by force microscopy. Consequences for anchoring biological cells to surfaces

    International Nuclear Information System (INIS)

    Schilcher, K.

    1997-05-01

    Interaction forces in 'Scanning Force Microscopy' (SFM). Force curves revealed exponentially decaying, attractive forces between silicon tip and silicon sample in aqueous media. Replacing the silicon sample by a sheet of mica, the interaction forces had both, an attractive and a repulsive component. Addition of salts generally reduced the forces. At 500 mM salt concentration, the attractive force became quantized with a residual force value of 23 pN. The attractive force is attributed to the gain in energy of water molecules which are released from surface water into free water during tip-sample approach. This conclusion is supported by a statistical model. The repulsive force contribution in the case of mica, is caused by hydration forces due to the spatial organization of crystalline water on the mica surface. Anchoring of biological cells. Molecular resolution of cell surfaces by SFM requires cell anchoring without interference with cell physiology. For this a novel strategy, 'hydrophobic anchoring' was designed. It avoids strong attractive forces between cell and by using a flexible spacer molecule. It establishes anchoring by a lipid (bound to the spacer), which weakly interacts with the hydrophobic core of the cell membrane. The method was subjected to tests using RBL-2H3, CH0 αβ and HEK-293 cells. The strength of cell anchoring was assayed by shear forces. In all cases 'hydrophobic anchoring' via a spacer caused elective anchoring much beyond controls. Such cell anchoring was employed for the imaging of RBL-2H3 cells by SFM. Images showed considerable finer details than images of loosely adsorbed cells. With about 50 rim resolution, SFM succeeded in imaging microvilli, filopodia, single cytoskeletal fibers (microtubules, microfilaments) and vesicles. In addition, as a consequence of cell stimulation upon ionomycin treatment, lamellae formation and the appearance of secretory granules on top of them were observed which indicates the viability of anchored

  8. The Vernier Caliper and Significant Figures.

    Science.gov (United States)

    Oberhofer, E. S.

    1985-01-01

    Misconceptions occur because the caliper is often read with the same significant figures as a meter stick; however, the precision of the vernier caliper is greater than the precision of a meter stick. Clarification of scale reading, precision of both tools, and significant figures are discussed. (JN)

  9. 49 CFR Appendix - Figures to Part 38

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Figures to Part 38 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems Trams, and similar vehicles, and systems Pt. 38, Figures...

  10. Dress Images on Gold-foil Figures

    DEFF Research Database (Denmark)

    Mannering, Ulla; Andersson Strand, Eva Birgitta

    2009-01-01

    From the Late Iron Age settlement Sorte Muld on Bornholm both gold foil figures with depictions of costumes and textile tools can tell about textile production.......From the Late Iron Age settlement Sorte Muld on Bornholm both gold foil figures with depictions of costumes and textile tools can tell about textile production....

  11. Evolution of the Significant Figure Rules

    Science.gov (United States)

    Carter, Ashley R.

    2013-01-01

    Today, almost all introductory physics textbooks include standardized "rules" on how to find the number of significant figures in a calculated value. And yet, 30 years ago these rules were almost nonexistent. Why have we increased the role of significant figures in introductory classes, and should we continue this trend? A look back at…

  12. Figure-associated text summarization and evaluation.

    Science.gov (United States)

    Polepalli Ramesh, Balaji; Sethi, Ricky J; Yu, Hong

    2015-01-01

    Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903).

  13. "Blessed": Musical Talent, Smartness, & Figured Identities

    Science.gov (United States)

    Hoffman, Adria R.

    2015-01-01

    The purpose of this study is to explore smartness and talent as social constructs. Drawing on Holland et al.'s (1998) figured identities, this article explores the figuring of abilities by elucidating the voices of African American high school chorus students. Critical Race Theory (CRT) helps to unpack normalized language and practices that…

  14. Figure-associated text summarization and evaluation.

    Directory of Open Access Journals (Sweden)

    Balaji Polepalli Ramesh

    Full Text Available Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903.

  15. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  16. Experimental measurements of surface stiffness on water-saturated porous solids

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, P.B.; Blaho, G. (Department of Welding Engineering, The Ohio State University, Columbus, Ohio 43210 (United States))

    1994-02-01

    The surface impedance of a fluid/fluid-saturated porous solid interface is defined as the ratio of the pressure difference between the fluids on the two sides of the interface and the volume velocity of the fluid through the surface pores. In most cases, the surface pores are inherently open'' and the surface impedance is negligible when the sample is fully submerged in fluid. On the other hand, due to surface tension, practically closed-pore boundary conditions can prevail at an interface between a nonwetting fluid (e.g., air) and a porous solid saturated with a wetting fluid (e.g., water). This effect is caused by the high stiffness of the microscopic fluid membranes extended by capillary forces over the otherwise open surface pores. We have determined the quasistatic surface stiffness of different water-saturated porous materials by changing the hydrostatic pressure and directly measuring the average surface displacement by an acoustical sensor. Generally, the surface stiffness is proportional to the surface tension of the wetting fluid and inversely proportional to the static permeability of the specimen. For cylindrical pores, the measured surface stiffness is in good agreement with theoretical predictions. For more irregular geometries, such as consolidated spherical beads, the surface stiffness is still inversely proportional to the static permeability but its value is orders of magnitudes lower than for cylindrical pores of comparable permeability.

  17. S-wave velocity measurements along levees in New Orleans using passive surface wave methods

    Science.gov (United States)

    Hayashi, K.; Lorenzo, J. M.; Craig, M. S.; Gostic, A.

    2017-12-01

    In order to develop non-invasive methods for levee inspection, geophysical investigations were carried out at four sites along levees in the New Orleans area: 17th Street Canal, London Avenue Canal, Marrero Levee, and Industrial Canal. Three of the four sites sustained damage from Hurricane Katrina in 2005 and have since been rebuilt. The geophysical methods used include active and passive surface wave methods, and capacitively coupled resistivity. This paper summarizes the acquisition and analysis of the 1D and 2D passive surface wave data. Twelve wireless seismic data acquisition units with 2 Hz vertical component geophones were used to record data. Each unit includes a GPS receiver so that all units can be synchronized over any distance without cables. The 1D passive method used L shaped arrays of three different sizes with geophone spacing ranging from 5 to 340 m. Ten minutes to one hour of ambient noise was recorded with each array, and total data acquisition took approximately two hours at each site. The 2D method used a linear array with a geophone spacing of 5m. Four geophones were moved forward every 10 minutes along 400 1000 m length lines. Data acquisition took several hours for each line. Recorded ambient noise was processed using the spatial autocorrelation method and clear dispersion curves were obtained at all sites (Figure 1a). Minimum frequencies ranged from 0.4 to 0.7 Hz and maximum frequencies ranged from 10 to 30 Hz depending on the site. Non-linear inversion was performed and 1D and 2D S-wave velocity models were obtained. The 1D method penetrated to depths ranging from 200 to 500 m depending on the site (Figure 1b). The 2D method penetrated to a depth of 40 60 m and provided 400 1000 m cross sections along the levees (Figure 2). The interpretation focused on identifying zones beneath the levees or canal walls having low S-wave velocities corresponding to saturated, unconsolidated sands, or low-rigidity clays. Resultant S-wave velocity profiles

  18. Alzheimer's Disease Facts and Figures

    Medline Plus

    Full Text Available ... diagnose Alzheimer's disease. Both the National Institute on Aging – Alzheimer's Association (NIA-AA) 2011 workgroup and the International Work Group (IWG) have proposed guidelines that use detectable measures of biological changes in the brain, commonly known as biological markers, ...

  19. Surface energy balance measurements in the Mexico City: a review

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda Martinez, A. [Universidad Veracruzana, Xalapa, Veracruz (Mexico); Jauregui Ostos, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico)

    2005-01-01

    During the last decade of the 20th Century, diverse campaigns for measuring the atmospheric energy balance were performed in downtown Mexico City (School of Mines and Preparatory School No. 7), in the southern suburbs (University Reserve) and in the surrounding rural areas (Plan Texcoco), in addition to a campaign carried out in 1985 in the Tacubaya district, a suburban western peripheral site. The objective was to obtain data for a better understanding of the climatic alterations due to urbanization, particularly to describe the role that the modification of the natural ground cover has played as a result of paving and the construction of urban canyons. In this paper, a review of these campaigns is presented. Energy partitioning in some areas (Tacubaya and Preparatory School No.7) is similar to that observed in urban centers of middle latitudes, whereas the major contrast was observed between Texcoco, with maximum energy consumption through evaporation, and School of Mines, where the latent heat is as low as in a desert. From the values of the correlations among the different components of energy balance, it may be possible to attempt the modeling of the diverse components of energy balance by means of regression equations starting from the net radiation. Those same coefficients distinguish the type of environment: urban, suburban or rural. [Spanish] Las primeras mediciones de balance energetico en la Ciudad de Mexico se realizaron en 1985 en un suburbio al poniente de la ciudad (el observatorio de Tacubaya). Ya en la decada de los anos noventa del siglo XX, dichas observaciones se multiplicaron tanto en el centro historico (antigua Escuela de Minas y en el edificio de la Preparatoria No. 7), como en otros sitios al sur (en terrenos de Ciudad Universitaria) y en la periferia rural (Plan Texcoco). El proposito de estas mediciones ha sido tener un mejor entendimiento de las alteraciones climaticas debidas a la urbanizacion. En este trabajo se presenta una revision

  20. Analysis of moire figures using interferometric lattices with Airy perfils

    International Nuclear Information System (INIS)

    Rabal, H.J.; Garavaglia, M.

    1979-01-01

    Using a Fabry-Perot interferometer and a spectrograph, iluminated with white light, ondulatory spectra are obtained. The componentes are not equidistance among them and the intensity distribution obeys the Airy's law. It is been made preliminar experiments to determinate if the moire figures, generated by the ondulatory spectra interaction, allows to measure displacements, rotations, etc [es

  1. Forces on a magnet moving past figure-eight coils

    International Nuclear Information System (INIS)

    Mulcahy, T.H.; He, Jianliang; Rote, D.M.; Rossing, T.D.

    1993-01-01

    For the first time, the lift, drag, and guidance forces acting on a permanent magnet are measured as the magnet passes over different arrays of figure-eight (null-flux) coils. The experimental results are in good agreement with the predictions of dynamic circuit theory, which is used to explain more optimal coil arrays

  2. Non-destructive plasma frequency measurement for a semiconductor thin film using broadband surface plasmon polaritons

    Science.gov (United States)

    Yang, Tao; Ge, Jia-cheng; Li, Xing-ao; Stantchev, Rayko Ivanov; Zhu, Yong-yuan; Zhou, Yuan; Huang, Wei

    2018-03-01

    Measurement of the plasma frequency of a semiconductor film using broadband surface plasmon is demonstrated in this paper. We theoretically deduce a formula about the relation between plasma frequency and characteristic surface plasmon frequency. The characteristic surface plasmon frequency can be captured from the cut-off frequency of the transmission spectra of the broadband surface plasmon, which is used to measure the plasma frequency indirectly. The plasma frequencies of an intrinsic indium antimonide with and without optical illuminance are measured with a THz time-domain spectrometer at room temperature. The experimental measured plasma frequencies fit well with theoretical and simulation results. Compared with other methods, the proposed method has a special advantage on measuring the plasma frequency for a thin semiconductor film coated on other materials.

  3. Surface roughness characterization of Al-doped zinc oxide thin films using rapid optical measurement

    Science.gov (United States)

    Kuo, Chil-Chyuan

    2011-07-01

    Transparent conductive oxide thin films have been widely investigated in photoelectric devices such as flat panel display (FPD) and solar cells. Al-doped zinc oxide (AZO) thin films have been widely employed in FPD. Measuring the surface roughness of AZO thin films is important before the manufacturing of photoelectric device using AZO thin films because surface roughness of AZO thin films will significantly affect the performance of photoelectric device. Traditional methods to measure surface roughness of AZO thin films are scanning electron microscopy and atomic force microscopy. The disadvantages of these approaches include long lead time and slow measurement speed. To solve this problem, an optical inspection system for rapid measurement of the surface roughness of AZO thin films is developed in this study. It is found that the incident angle of 60° is a good candidate to measure the surface roughness of AZO thin films. Based on the trend equation y=-3.6483 x+2.1409, the surface roughness of AZO thin films ( y) can be directly deduced from the peak power density ( x) using the optical inspection system developed. The maximum measurement-error rate of the optical inspection system developed is less than 8.7%.The saving in inspection time of the surface roughness of AZO thin films is up to 83%.

  4. Using Figure and Concept Knowledge in Geometry

    Directory of Open Access Journals (Sweden)

    Yavuz Karpuz

    2014-08-01

    Full Text Available In this study, we aim to investigate how students build interaction between concepts and figure in geometry. For this purpose we developed two type data collection tool. First one called shapely is formed eight open ended question which has concepts and figure. Second one called shapeless is formed eight open ended question which has only concepts. To prepare this data collection tools’ difficulty level we took two math teachers’ opinions. Developed data collection tools were applied 120 students at 9th grade and 11th grade in Trabzon Gazi Anatolian High School. First of all we applied shapeless questions. One month later we applied shapely questions. We investigated students’ answer and the data showed that students more succeed in shapely questions than shapeless questions. We concluded that the difficulty of solving shapeless question result from students didn’t manage to draw figure representing concept knowledge or draw wrong figure, figure drawn by students can’t fulfıl generalizability condition and students who have little knowledge of concept in geometry is under the influence of prototype figure.Key Words:    Figural concepts theory, geometrical reasoning, geometry teaching

  5. High-resolution hot-film measurement of surface heat flux to an impinging jet

    Science.gov (United States)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  6. Optical microscope for three-dimensional surface displacement and shape measurements at the microscale.

    Science.gov (United States)

    Xia, Shuman; Pan, Zhipeng; Zhang, Jingwen

    2014-07-15

    We report a novel optical microscope for full-field, noncontact measurements of three-dimensional (3D) surface deformation and topography at the microscale. The microscope system is based on a seamless integration of the diffraction-assisted image correlation (DAIC) method with fluorescent microscopy. We experimentally demonstrate the microscope's capability for 3D measurements with submicrometer spatial resolution and subpixel measurement accuracy.

  7. Locating karst depressed columns by means of Rn measurement on the surface

    International Nuclear Information System (INIS)

    Tang Daimao; Liu Hongfu; Duan Hongjie; Duan Lindi; Sui Haichen

    1999-01-01

    The coal mining and the related surface projects are extremely harassed by the underground karst depressed columns. The author discussed the surface Rn concentration's abnormality caused by the karst depressed columns. It is concluded that different kinds of karst depressed column can cause different Rn concentration's abnormality. The α-cup Rn measuring instrument was used for detecting Rn abnormality on the surface in order to locate the underground karst depressed columns

  8. Measurement of Fine Grain Copper Surface Texture Created by Abrasive Water Jet Cutting

    OpenAIRE

    HLAVÁČEK, Petr; VALÍČEK, Jan; HLOCH, Sergej; GREGER, Miroslav; FOLDYNA, Josef; IVANDIĆ, Željko; SITEK, Libor; KUŠNEROVÁ, Milena; ZELEŃÁK, Michal

    2009-01-01

    The paper presents results of experiments performed on copper with commercial purity to determine the influence of material grain size on both mechanical properties and texture of surface machined by abrasive water jet. An Equal Channel Angular Extrusion technology was used for creation of fine-grain copper samples. Hardness and grain size of fine-grain copper were measured, and, subsequently, surface of prepared copper samples was machined by abrasive water jet technology. Surface irregul...

  9. Annunciations - Figuring the Feminine in Renaissance Art

    Directory of Open Access Journals (Sweden)

    John M. Carvalho

    2016-01-01

    Full Text Available Viewers of Renaissance representations of the Annunciation miss an important irony. Where Mary is figured as unimpressed by Gabriel's proposal, she is upholding a masculinist ideal of female virtue. Where she is figured as delighted by the news, she represents an alternative feminine ideal that continues to be attractive to women and feminists, today. Inspired by the writings of Luce Irigaray and Julia Kristeva, I figure Mary in Renaissance representations of the Annunciation as contesting an ideal of feminine virtue that would deny her sexual difference and deny her pleasure in fulfilling her role as the bride and mother of God.

  10. Three-dimensional measuring technique for surface topography using a light-sectioning microscope.

    Science.gov (United States)

    Xia, Linglin; Chen, Peifeng; Wang, Ying; Zhou, Le; Luo, Xi

    2012-03-10

    Three-dimensional (3D) surface topographic analysis, measurement, and assessment techniques have raised great interest not only among researchers but also among industrial users. Many industrial processes and applications are directly influenced by the small-scale roughness of surface finishes. This paper describes the development and implementation of a noncontact, three-dimensional, microtopography measuring system. The instrument is formed by combining a modified light-sectioning microscope subsystem with a computer subsystem. In particular, optical system characteristics of the light-sectioning microscope are investigated, and a textured steel sheet is measured to demonstrate good practical outcomes. Details of measuring processes and image processing algorithms are provided, such as procedures for measurement, image edge extraction, and 3D topography reconstruction. After the 3D topography of the measured surface has been reconstructed, the topography field description parameters are calculated. A standard roughness block was used for calibration of the surface microtopography measuring system. Results obtained showed the measurement method output has good agreement with the actual asperity (unevenness or roughness) of the surface. The computer subsystem is used to process and control asperity measurements and image generation, and for image acquisition and presentation.

  11. Deterministic figure correction of piezoelectrically adjustable slumped glass optics

    Science.gov (United States)

    DeRoo, Casey T.; Allured, Ryan; Cotroneo, Vincenzo; Hertz, Edward; Marquez, Vanessa; Reid, Paul B.; Schwartz, Eric D.; Vikhlinin, Alexey A.; Trolier-McKinstry, Susan; Walker, Julian; Jackson, Thomas N.; Liu, Tianning; Tendulkar, Mohit

    2018-01-01

    Thin x-ray optics with high angular resolution (≤ 0.5 arcsec) over a wide field of view enable the study of a number of astrophysically important topics and feature prominently in Lynx, a next-generation x-ray observatory concept currently under NASA study. In an effort to address this technology need, piezoelectrically adjustable, thin mirror segments capable of figure correction after mounting and on-orbit are under development. We report on the fabrication and characterization of an adjustable cylindrical slumped glass optic. This optic has realized 100% piezoelectric cell yield and employs lithographically patterned traces and anisotropic conductive film connections to address the piezoelectric cells. In addition, the measured responses of the piezoelectric cells are found to be in good agreement with finite-element analysis models. While the optic as manufactured is outside the range of absolute figure correction, simulated corrections using the measured responses of the piezoelectric cells are found to improve 5 to 10 arcsec mirrors to 1 to 3 arcsec [half-power diameter (HPD), single reflection at 1 keV]. Moreover, a measured relative figure change which would correct the figure of a representative slumped glass piece from 6.7 to 1.2 arcsec HPD is empirically demonstrated. We employ finite-element analysis-modeled influence functions to understand the current frequency limitations of the correction algorithm employed and identify a path toward achieving subarcsecond corrections.

  12. Feed-forward segmentation of figure-ground and assignment of border-ownership.

    Directory of Open Access Journals (Sweden)

    Hans Supèr

    Full Text Available Figure-ground is the segmentation of visual information into objects and their surrounding backgrounds. Two main processes herein are boundary assignment and surface segregation, which rely on the integration of global scene information. Recurrent processing either by intrinsic horizontal connections that connect surrounding neurons or by feedback projections from higher visual areas provide such information, and are considered to be the neural substrate for figure-ground segmentation. On the contrary, a role of feedforward projections in figure-ground segmentation is unknown. To have a better understanding of a role of feedforward connections in figure-ground organization, we constructed a feedforward spiking model using a biologically plausible neuron model. By means of surround inhibition our simple 3-layered model performs figure-ground segmentation and one-sided border-ownership coding. We propose that the visual system uses feed forward suppression for figure-ground segmentation and border-ownership assignment.

  13. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  14. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand

    NARCIS (Netherlands)

    Nolet, Corjan; Poortinga, Ate; Roosjen, Peter; Bartholomeus, Harm; Ruessink, Gerben|info:eu-repo/dai/nl/169093360

    2014-01-01

    Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure

  15. Effective aerodynamic roughness estimated from airborne laser altimeter measurements of surface features

    NARCIS (Netherlands)

    De Vries, AC; Kustas, WP; Ritchie, JC; Klaassen, W; Menenti, M; Rango, A; Prueger, JH

    2003-01-01

    Aerodynamic roughness length (z(0)) and displacement height (d(0)) are important surface parameters for estimating surface fluxes in numerical models. These parameters are generally determined from wind flow characteristics using logarithmic wind profiles measured at a meteorological tower or by

  16. On the measurement of the surface energy budget over a land ...

    Indian Academy of Sciences (India)

    e-mail: bhat@caos.iisc.ernet.in. The measurement of surface energy balance over a land surface in an open area in Bangalore is .... Sensors used in the present experimental setup and their specifications. These instruments were procured .... the value of the scalar at the roughness height zos. ψm and ψs are the M–O ...

  17. Calibration of a distributed hydrology and land surface model using energy flux measurements

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  18. Development of a laser-based sensor to measure true road surface deflection.

    Science.gov (United States)

    2017-04-01

    The high-speed measurement of accurate pavement surface deflections under a moving wheel at a networklevel : still remains a challenge in pavement engineering. This goal cannot be accomplished with stationary deflectionmeasuring : devices. Engineers ...

  19. Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements

    NARCIS (Netherlands)

    Barshan, B; Baskent, D

    Two novel methods for surface profile extraction based on multiple ultrasonic range measurements are described and compared. One of the methods employs morphological processing techniques, whereas the other employs a spatial voting scheme followed by simple thresholding. Morphological processing

  20. Surface-Borne Time-of-Reception Measurements (STORM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon proposes the Surface-borne Time-Of-Reception Measurements (STORM) system as a method to locate the position of lightning strikes on aerospace vehicles....

  1. Measuring grinding surface roughness based on the sharpness evaluation of colour images

    International Nuclear Information System (INIS)

    Huaian, Y I; Jian, L I U; Enhui, L U; Peng, A O

    2016-01-01

    Current machine vision-based detection methods for metal surface roughness mainly use the grey values of images for statistical analysis but do not make full use of the colour information and ignore the subjective judgment of the human vision system. To address these problems, this paper proposes a method to measure surface roughness through the sharpness evaluation of colour images. Based on the difference in sharpness of virtual images of colour blocks that are formed on grinding surfaces with different roughness, an algorithm for evaluating the sharpness of colour images that is based on the difference of the RGB colour space was used to develop a correlation model between the sharpness and the surface roughness. The correlation model was analysed under two conditions: constant illumination and varying illumination. The effect of the surface textures of the grinding samples on the image sharpness was also considered, demonstrating the feasibility of the detection method. The results show that the sharpness is strongly correlated with the surface roughness; when the illumination and the surface texture have the same orientation, the sharpness clearly decreases with increasing surface roughness. Under varying illumination, this correlation between the sharpness and surface roughness was highly robust, and the sharpness of each virtual image increased linearly with the illumination. Relative to the detection method for surface roughness using gray level co-occurrence matrix or artificial neural network, the proposed method is convenient, highly accurate and has a wide measurement range. (paper)

  2. Measurement uncertainty and gauge capability of surface roughness measurements in the automotive industry: a case study

    International Nuclear Information System (INIS)

    Drégelyi-Kiss, Ágota; Czifra, Árpád

    2014-01-01

    The calculation methods of the capability of measurement processes in the automotive industry differ from each other. There are three main calculation methods: MSA, VDA 5 and the international standard, ISO 22514–7. During this research our aim was to compare the capability calculation methods in a case study. Two types of automotive parts (ten pieces of each) are chosen to examine the behaviour of the manufacturing process and to measure the required characteristics of the measurement process being evaluated. The measurement uncertainty of the measuring process is calculated according to the VDA 5 and ISO 22514–7, and MSA guidelines. In this study the conformance of a measurement process in an automotive manufacturing process is determined, and the similarities and the differences between the methods used are shown. (paper)

  3. Progress in the specification of optical instruments for the measurement of surface form and texture

    Science.gov (United States)

    de Groot, Peter J.

    2014-05-01

    Specifications for confocal microscopes, optical interferometers and other methods of measuring areal surface topography can be confusing and misleading. The emerging ISO 25178 standards, together with the established international vocabulary of metrology, provide a foundation for improved specifications for 3D surface metrology instrumentation. The approach in this paper links instrument specifications to metrological characteristics that can influence a measurement, using consistent definitions of terms, and reference to verification procedures.

  4. The Role of Inhibitory Control in the Development of Human Figure Drawing in Young Children

    Science.gov (United States)

    Riggs, Kevin J.; Jolley, Richard P.; Simpson, Andrew

    2013-01-01

    We investigated the role of inhibitory control in young children's human figure drawing. We used the Bear-Dragon task as a measure of inhibitory control and used the classification system devised by Cox and Parkin to measure the development of human figure drawing. We tested 50 children aged between 40 and 64 months. Regression analysis showed…

  5. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Science.gov (United States)

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  6. The Figure 8 Model of International Relations

    National Research Council Canada - National Science Library

    Sibayan, Jerome T

    2008-01-01

    .... The Figure 8 Model is presented first in a Cartesian format and then in geometrical form. This model is an intuitive idea based on a particular reading of history rather than a new international relations theory...

  7. Spheres of Exemption, Figures of Exclusion

    DEFF Research Database (Denmark)

    , the history of ideas, social science, political science and literature studies, Spheres of Exemption, Figures of Exclusion offers thirteen investigations into the co-constitutive relationship between subjectivity and political and legal order, combining theoretical reflection with empirical and historical...

  8. LASSI - A Scanning Differential Ac Interferometer For Surface Profile And Roughness Measurement

    Science.gov (United States)

    Makosch, Guenter

    1989-03-01

    LASSI (Laser Spot Scanning Interferometer) is a highly precise and versatile surface profilometer developed for various measurement applications in surface lapping, etching and polishing processes. The principle of measurement is based on a differential interferometer in which two parallel light beams split from a He-Ne laser are scanned across a sample surface. The phase difference of the reflected beams changes proportionally with the height variation between the two spots illuminated on the surface. In using a phase-locked method to determine the phase differences height variations of a surface can be measured with manometer precision. The range of applications of an instrument built on this principle encompasses step height, roughness, slope, and profile measurement of surface microtopographies. Special versions of this tool have also been developed for in situ monitoring of etch or deposition rates in sputter-etching and wet etching processes. In this paper, the principle of measurement will be described and some theoretical aspects of the measurement technique will be discussed. The various LASSI tools and their applications are reviewed.

  9. Measurement of free-surface of liquid metal lithium jet for IFMIF target

    International Nuclear Information System (INIS)

    Hiroo Kondo; Nobuo Yamaoka; Takuji Kanemura; Seiji Miyamoto; Hiroshi Horiike; Mizuho Ida; Hiroo Nakamura; Izuru Matsushita; Takeo Muroga

    2006-01-01

    This reports an experimental study on flow characteristics of a lithium target flow of International Fusion Materials Irradiation Facility (IFMIF). Surface shapes of the target were tried to measure by pattern projection method that is a three dimensional image measurement method. Irregularity of the surface shape caused by surface wakes was successfully measured by the method. IFMIF liquid lithium target is formed a flat plane jet of 25 mm in depth and 260 mm in width, and flows in a flow velocity range of 10 to 20 m/s. Aim of this study is to develop measurement techniques for monitoring of the target when IFMIF is in operation. The lithium target flow is high speed jet and the temperature high is more than 500 K. Also, light is not transmitted into liquid metal lithium. Therefore, almost of all flow measurement techniques developed for water are not used for lithium flow. In this study, pattern projection method was employed to measure the surface irregularity of the target. In the method, stripe patterns are projected onto the flow surface. The projected patterns are deformed according the surface shape. Three-dimensional surface shape is measured by analyzing the deformed patterns recorded using a CCD camera. The method uses the property that lithium dose not transmit visible lights. The experiments were carried out using a lithium loop at Osaka University. In this facility, lithium plane jet of 10 mm in depth and 70 mm width is obtained in the velocity range of less than 15 m/s using a two contractions nozzle. The pattern projection method was used to measure the amplitude of surface irregularity caused by surface wakes. The surface wakes were generated from small damaged at the nozzle edge caused by erosion, and those were successfully measured by the method. The measurement results showed the amplitude of the surface wakes were approximately equal to a size of damage of a nozzle. The amplitude was decreasing with distance to down stream and with decreasing

  10. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    Energy Technology Data Exchange (ETDEWEB)

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B. [Department of Energy, New York, NY (United States)

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  11. Wall surface temperature measurement for the in-pile radioisotope target capsule

    International Nuclear Information System (INIS)

    Liu Yan

    2008-01-01

    The surface temperatures of the radioisotope target capsule is one of the important parameter to its structure integrity. In order to verify the results of theoretical calculation for design, an in-pile surface temperature of capsule wall was measured in Heavy Water Research Reactor (HWRR). The results showed that the temperature were accordant with the theoretical calculation.The measuring methods of the external and internal surface of capsule wall were described also, including instruments selection, the technology of embedded thermocouples and error analysis. (authors)

  12. Surface shape measurement by multi-illumination lensless Fourier transform digital holographic interferometry

    Science.gov (United States)

    Dong, Jun; Jia, Shuhai; Jiang, Chao

    2017-11-01

    This paper presents a multi-illumination lensless Fourier transform digital holographic interferometry method for surface shape measurement. In this method, the interference phases with different effective synthetic wavelengths are obtained by tilting the illumination angle several times, and all are wrapped. A Fourier-transform demodulation algorithm employing all these wrapped phases simultaneously is used to determine the object surface shape. No phase unwrapping procedure is required, and the shape information of each point is calculated independently, thereby offering great flexibility for measuring objects with discontinuities surface, such as holes, steps and gaps. Experimental results demonstrate the validity of the principle.

  13. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    Matthias J. Mayser

    2014-06-01

    Full Text Available Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes.

  14. Comparative investigation of optical techniques for topography measurement of rough plastic surfaces

    DEFF Research Database (Denmark)

    Bariani, Paolo; Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2003-01-01

    An experimental assessment of three-dimensional surface topography characterisation methods for use with rough plastic parts has been carried out. Also, calibration methods and measuring procedures including optimal measuring conditions have been developed and applied. The study is based on rough...... polypropylene parts manufactured by injection moulding. The mould was equipped with inserts with EDM machined surfaces (Sa  3.5 µm) in order to represent a typical tool surface for injection moulding. A focus detection laser scanning profiler, a confocal scanning laser microscope, a white light interferometer...... and, in addition, a scanning electron microscope, have been used in the analysis of plastic surfaces. This investigation has shown that topography assessment of rough plastic surfaces is critical to both white light interference microscope and confocal microscope while the focus detection laser...

  15. Land Surface Albedos Computed from BRF Measurements with a Study of Conversion Formulae

    Directory of Open Access Journals (Sweden)

    Aku Riihelä

    2010-08-01

    Full Text Available Land surface hemispherical albedos of several targets have been resolved using the bidirectional reflectance factor (BRF library of the Finnish Geodetic Institute (FGI. The library contains BRF data measured by FGI during the years 2003–2009. Surface albedos are calculated using selected BRF datasets from the library. Polynomial interpolation and extrapolation have been used in computations. Several broadband conversion formulae generally used for satellite based surface albedo retrieval have been tested. The albedos were typically found to monotonically increase with increasing zenith angle of the Sun. The surface albedo variance was significant even within each target category / surface type. In general, the albedo estimates derived using diverse broadband conversion formulas and estimates obtained by direct integration of the measured spectra were in line.

  16. Adaptive Sampling based 3D Profile Measuring Method for Free-Form Surface

    Science.gov (United States)

    Duan, Xianyin; Zou, Yu; Gao, Qiang; Peng, Fangyu; Zhou, Min; Jiang, Guozhang

    2018-03-01

    In order to solve the problem of adaptability and scanning efficiency of the current surface profile detection device, a high precision and high efficiency detection approach is proposed for surface contour of free-form surface parts based on self- adaptability. The contact mechanical probe and the non-contact laser probe are synthetically integrated according to the sampling approach of adaptive front-end path detection. First, the front-end path is measured by the non-contact laser probe, and the detection path is planned by the internal algorithm of the measuring instrument. Then a reasonable measurement sampling is completed according to the planned path by the contact mechanical probe. The detection approach can effectively improve the measurement efficiency of the free-form surface contours and can simultaneously detect the surface contours of unknown free-form surfaces with different curvatures and even different rate of curvature. The detection approach proposed in this paper also has important reference value for free-form surface contour detection.

  17. Introducing a mini-catamaran to perform reflectance measurements above and below the water surface

    Science.gov (United States)

    Froidefond, Jean-Marie; Ouillon, Sylvain

    2005-02-01

    An innovative platform is tested to perform reflectance measurements at sea. This platform is a mini-catamaran with two hulls 1m long and set 0.7m apart, fitted with optical sensors. It can be used far away from an oceanographic ship to avoid its hull influencing the measurement. Reflectance measurements were performed with a TriOS radiance sensor placed +2cm or -2cm from the water surface and a TriOS irradiance sensor. Tests were carried out in calm seas and with cloud cover. The processing to derive marine radiances from raw measurements is detailed. When the radiance sensor is above the interface, it limits the sky reflections on the targeted surface and the radiance is identical to that deduced from measurements below the surface. When the sensor is placed at +3cm abovewater or higher, glint affects the measurements. The mini-catamaran shows a good ability to measure marine reflectance with an adapted measurement protocol. Except for very turbid waters, it seems preferable to perform upwelling radiance measurements below the surface.

  18. Development of measuring device for inner surfaces of embedded piping (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hirokuni [Ohyo Koken Kogyo Co., Ltd., Tokyo (Japan); Hatakeyama, Mutsuo [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan); Tachibana, Mitsuo; Yanagihara, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The measuring device for inner surfaces of embedded piping (MISE) was developed to evaluate low-level radiological contaminations of inner surfaces of piping. The MISE consists of a cylindrically-formed double layered type detector and a piping crawling robot, which were designed and manufactured separately. In measurements of the contaminations, an outer cylindrical detector close to the surface of piping measures {beta}-rays and {gamma}-rays and an inner cylindrical detector set after a shielding plate for shield of {beta}-rays measures {gamma}-rays. The {beta}-ray counting rates are derived by subtracting {gamma}-ray counts measured by the inner detector from {gamma}- and {beta}-ray counts measured by the outer detector. The piping crawling robot transports the cylindrically-formed double layered type detector with observing inner surfaces of piping. The detection limit for the contamination of {sup 60}Co was found to be about 0.17 Bq/cm{sup 2} with measurement time of 30 seconds. It is expected that 0.2 Bq/cm{sup 2} corresponding to clearance level of {sup 60}Co (0.4 Bq/g) can be evaluated with measurement time of 2 seconds, which is equal to measurement speed of 54 m/h. (author)

  19. On the measurement of surface tension in binders used for moulding sands

    Directory of Open Access Journals (Sweden)

    B. Hutera

    2008-07-01

    Full Text Available The surface tension of foundry binders is a very important parameter affecting the properties of a sand-binder system. Combined with other parameters, its value determines an outcome of the process of moulding sand preparation and the mechanical properties of the ready moulding composition. The problem of how to measure the surface tension of binders used in preparation of moulding sands is discussed only occasionally. Indirectly, the surface tension is characterised by the value of a contact angle, but it never means that these two parameters can be considered identical. Numerous methods are available and used at present to measure the surface tension, among others, the capillary rise method, the spinning drop method, the sessile drop method, the pendant drop method, the method of pulled out ring (or plate, or frame. There is also a rich variety of devices offered with different measuring methods. The devices are modern and represent a high level of the technical skill and art. Unfortunately, also their price is high. It is, however, possible to obtain the reliable results of the surface tension measurement using relatively simple methods, viz. the stalagmometric method and the capillary rise method. What is necessary are proper conditions of the measurement, directly related with the specific properties of binders. The present paper gives examples of the results obtained during measurement of the surface tension of some selected binders. Attention was drawn to the methods of taking measurements, and the obtained results were discussed and analysed. The possibilities of detemining the surface tension of the examined binders from the results of the contact angle measurements using the “sessile drop” and “pendant drop” methods were outlined.

  20. The deconvolution of sputter-etching surface concentration measurements to determine impurity depth profiles

    International Nuclear Information System (INIS)

    Carter, G.; Katardjiev, I.V.; Nobes, M.J.

    1989-01-01

    The quasi-linear partial differential continuity equations that describe the evolution of the depth profiles and surface concentrations of marker atoms in kinematically equivalent systems undergoing sputtering, ion collection and atomic mixing are solved using the method of characteristics. It is shown how atomic mixing probabilities can be deduced from measurements of ion collection depth profiles with increasing ion fluence, and how this information can be used to predict surface concentration evolution. Even with this information, however, it is shown that it is not possible to deconvolute directly the surface concentration measurements to provide initial depth profiles, except when only ion collection and sputtering from the surface layer alone occur. It is demonstrated further that optimal recovery of initial concentration depth profiles could be ensured if the concentration-measuring analytical probe preferentially sampled depths near and at the maximum depth of bombardment-induced perturbations. (author)

  1. Design of measurement system of 3D surface profile based on chromatic confocal technology

    Science.gov (United States)

    Wang, An-su; Xie, Bin; Liu, Zi-wei

    2018-01-01

    Chromatic confocal 3D profilometer has widely used in science investigation and industry fields recently for its high precision, great measuring range and numerical surface characteristic. It can provide exact and omnidirectional solution for manufacture and research by 3D non-contact surface analysis technique. The article analyzes the principle of surface measurement with chromatic confocal technology, and provides the designing indicators and requirements of the confocal system. As the key component, the dispersive objective used to achieve longitudinal focus vibration with wavelength was designed. The objective disperses the focus of wavelength between 400 700 nm to 15 mm longitudinal range. With selected spectrometer, the resolution of chromatic confocal 3D profilometer is no more than 5 μm, which can meet needs for the high precision non-contact surface profile measurement.

  2. A high-reflective surface measurement method based on conoscopic holography technology

    Science.gov (United States)

    Cheng, Xu; Li, ZhongWei; Shi, YuSheng; Zhao, HengShuang; Zhan, Guomin

    2014-11-01

    Measuring high-reflective surfaces using optical method is always a big challenging problem. This paper presents a high-reflective surface measurement method based on conoscopic holography technology using a 4D motion platform equipped with a conoscopic holography optical probe. There are two key problems needed to solve before the automate scan of the complex shape surface: the coordinate calibration and the path planning. To improve the calibration efficiency and accuracy, the coordinate calibration is divided into two parts: the rough calibration and the accurate registration. The path planning consists of two aspects including: the path points generation and the path points verification. In addition, by scanning the objects having high-reflective surfaces, such as the metal blades, coins and other work-pieces, the efficiency of the measurement method has been verified.

  3. Surface electronic transport measurements: A micro multi-point probe approach

    DEFF Research Database (Denmark)

    Barreto, Lucas

    2014-01-01

    This work is mostly focused on the study of electronic transport properties of two-dimensional materials, in particular graphene and topological insulators. To study these, we have improved a unique micro multi-point probe instrument used to perform transport measurements. Not only the experimental...... quantities are extracted, such as conductivity, carrier density and carrier mobility. • A method to insulate electrically epitaxial graphene grown on metals, based on a stepwise intercalation methodology, is developed and transport measurements are performed in order to test the insulation. • We show...... a direct measurement of the surface electronic transport on a bulk topological insulator. The surface state conductivity and mobility are obtained. Apart from transport properties, we also investigate the atomic structure of the Bi2Se3(111) surface via surface x-ray diraction and low-energy electron...

  4. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  5. Presenting Fake Figures: A Tool to Teach Effective Scientific Figure Design

    Directory of Open Access Journals (Sweden)

    Veronica A. Segarra

    2013-08-01

    Full Text Available As trained scientists, we become adept not only at analyzing and understanding figures in the scientific literature, but also at designing figures to effectively represent our own data and findings. As educators, we strive to pass on these skills to our students, some of whom will ultimately become scientists themselves. Conveying the principles of effective figure design can be challenging, particularly when students have had little exposure to the process of reading scientific literature, much less writing a piece of scientific literature. Improvisational activities in the classroom reinforce teaching goals such as spontaneity, risk-taking, creativity, communication skills, team-building, and critical thinking (2. Indeed, improv training for scientists is becoming more common, helping scientists to communicate more spontaneously about their work and connect with their audience (1. In this article, we present an improvisational game that can aid in the teaching of effective scientific figure design. This “Present-a-Fake-Figure Exercise” is applicable to both the classroom and laboratory settings. In this learning activity, students improvise presenting fake scientific figures to an audience of their peers. These fake figures are prepared beforehand by the instructor and exemplify the do’s and don’ts of scientific figure design. Some of the learning outcomes of the activity include (1 identifying what makes a scientific figure cohesive, easy to analyze, and reader-friendly, and (2 identifying strategies that are useful in the design of a multi-panel figure to convey a scientific story.

  6. On-orbit figure sensing and figure correction control for 0.5 arc-second adjustable X-ray optics

    Science.gov (United States)

    Reid, Paul

    changed constantly at several cycles/sec (active). In our approach, the mirror figure is corrected based on ground measurements, accounting for figure errors due to mirror manufacturing, mounting induced deformations, modeled gravity release, and modeled on-orbit thermal effects. The piezoelectric strain monitoring we seek to develop in this program extends adjustable mirror technology development, as it enables efficient adjustment and correction of mirror figure on-orbit, as required. This unprecedented level of system robustness will make telescopes less expensive to build because requirements for the non-optical systems can be looser, and it will also make the system more resistant to degradation, promoting mission success. The largest drivers for changes from ground calibration to on-orbit performance are piezoelectric material aging and an unexpected thermal environment (i.e., larger gradients than modeled or other thermal control system problem). Developing the capability to accurately monitor the health of each piezoelectric cell and the local mirror surface temperature will enable the real time sensing of any of these potential issues, help determine the cause, and enable corrections via updating models of on-orbit conditions and re-optimizing the required piezoelectric cell voltages for mirror figure correction. Our 3 year research program includes the development of the strain monitoring technology, its deposition on the adjustable optics, modeling and performance simulation, accelerated lifetime testing, and optical and electrical metrology of sample adjustable optics that incorporate monitoring sensors. Development of the capability to remotely monitor piezo performance and temperature to necessary precision will vastly improve reliability of the SMART-X mission concept, or the sub-arc-second X-ray Surveyor mission described in the 2013 NASA Astrophysics Roadmap, Enduring Quests Daring Visions.

  7. Precise measurement of cat patellofemoral joint surface geometry with multistation digital photogrammetry.

    Science.gov (United States)

    Ronsky, J L; Boyd, S K; Lichti, D D; Chapman, M A; Salkauskas, K

    1999-04-01

    Three-dimensional joint models are important tools for investigating mechanisms related to normal and pathological joints. Often these models necessitate accurate three-dimensional joint surface geometric data so that reliable model results can be obtained; however, in models based on small joints, this is often problematic due to limitations of the present techniques. These limitations include insufficient measurement precision the requirement of contact for the measurement process, and lack of entire joint description. This study presents a new non-contact method for precise determination of entire joint surfaces using multistation digital photogrammetry (MDPG) and is demonstrated by determining the cartilage and subchondral bone surfaces of the cat patellofemoral (PF) joint. The digital camera-lens setup was precisely calibrated using 16 photographs arranged to achieve highly convergent geometry to estimate interior and distortion parameters of the camera-lens setup. Subsequently, six photographs of each joint surface were then acquired for surface measurement. The digital images were directly imported to a computer and newly introduced semi-automatic computer algorithms were used to precisely determine the image coordinates. Finally, a rigorous mathematical procedure named the bundle adjustment was used to determine the three-dimensional coordinates of the joint surfaces and to estimate the precision of the coordinates. These estimations were validated by comparing the MDPG measurements of a cylinder and plane to an analytical model. The joint surfaces were successfully measured using the MDPG method with mean precision estimates in the least favorable coordinate direction being 10.3 microns for subchondral bone and 17.9 microns for cartilage. The difference in measurement precision for bone and cartilage primarily reflects differences in the translucent properties of the surfaces.

  8. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    Science.gov (United States)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  9. Step-height measurements on sand surfaces: A comparison between optical scanner and coordinate measuring machine

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, Seyed Alireza; Tiedje, Niels Skat

    2016-01-01

    based on triangulation principle using fringe projection was also used to measure the step heights resulting in a point cloud for each scanning. A similar measurement procedure with scanner was made using the scanners software to simulate a ball probe with the same size of CMM probe and following....... In this work step-heights ranging from 0.1 mm to 5.0 mm were made on 6 customised sand samples with an average grain size of 230 µm, produced using a hard binder that can be scanned both by tactile and optical probes. The step-heights were measured using a CMM with ø8 mm tactile probe. An optical 3D scanner...

  10. Angular calibration of surface slope measuring profilers with a bendable mirror

    Science.gov (United States)

    Artemiev, Nikolay A.; Smith, Brian V.; Domning, Edward E.; Chow, Ken P.; Lacey, Ian; Yashchuk, Valeriy V.

    2014-09-01

    Performance of state-of-the-art surface slope measuring profilers, such as the Advanced Light Source's (ALS) long trace profiler (LTP-II) and developmental LTP (DLTP) is limited by the instrument's systematic error. The systematic error is specific for a particular measurement arrangement and, in general, depends on both the measured surface slope value and the position along a surface under test. Here we present an original method to characterize or measure the instrument's systematic error using a bendable X-ray mirror as a test surface. The idea of the method consists of extracting the systematic error from multiple measurements performed at different mirror bendings. An optimal measurement strategy for the optic, under different settings of the benders, and the method of accurate fitting of the measured slope variations with characteristic functions are discussed. We describe the procedure of separation of the systematic error of an actual profiler from surface slope variation inherent to the optic. The obtained systematic error, expressed as a function of the angle of measurement, is useful as a calibration of the instrument arranged to measure an optic with a close curvature and length. We show that accounting for the systematic error enables the optimal setting of bendable optics to the desired ideal shape with accuracy limited only by the experimental noise. Application of the method in the everyday metrology practice increases the accuracy of the measurements and allows measurements of highly curved optics with accuracy similar to those achieved with flat optics. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  11. A Study on Infrared Emissivity Measurement of Material Surface by Reflection Method

    International Nuclear Information System (INIS)

    Kang, Byung Chul; Kim, Sang Myoung; Choi, Joung Yoon; Kim, Gun Ok

    2010-01-01

    Infrared emissivity is one of the most important factors for the temperature measurement by infrared thermography. Although the infrared emissivity of an object can be measured from the ratio of blackbody and the object, at room temperature it is practically difficult to measure the value due to the background effects. Hence, quantitative reflectance of bare steel plate and the surface of coating was measured by FT-IR spectroscopy and emissivity was calculated from this. The emissivity of polished bare steel surface was from 0.06 to 0.10 and the value for the unpolished bare steel can not be achieved because optical characteristics changes of surface roughness induces erroneous results. Emissivity of transparent paint coated steel was from 0.50 to 0.84. Depends on the IR absorption regions, which is a characteristic value of the coating, emissivity changes. This study suggests surface condition of material, thickness, roughness etcetra are important factor for IR optical characteristics. Emissivity measurement by reflection method is useful technique to be applied for metal and it with coating applied on the surface. The range of experimental errors of temperature can be narrowed by the application of infrared thermography from the measured thermal emissivity

  12. Challenges in the areal measurement of surface roughness and shape at the micro and nanoscale

    International Nuclear Information System (INIS)

    Montgomery, P C; Guellil, M; Pfeiffer, P; Anstotz, F; Roques, S; Serio, B; Pramatarova, L

    2014-01-01

    Measuring surface roughness accurately at the micro and nano scale presents several challenges. While optical techniques can be used to rapidly measure large areas, significant variations can be found between results from different techniques on similar samples. In the present work, a comparison has been made between the results of two different systems using interference microscopy and AFM to make measurements at the same place on the same sample. Two samples were prepared on silicon wafers by marking them with a multi-scale pattern using a photoresist process of lithography from an optical mask, followed by reactive ion etching. One was left bare and the other was prepared with a rough layer of hydroxyapatite before measuring at the chosen positions. Comparison of the results showed that while the general shapes of the measured surface microstructures were similar, several differences were found. For example, there was a variation of up to 7% between techniques in the measurement of the depths of the etched features and artefacts were also visible at square edges. These results show the need to pay careful attention to instrument calibration and probe/surface interactions in order to improve the accuracy of surface characterization of surface roughness and topography

  13. Study of measurement methods of ultrafine aerosols surface-area for characterizing occupational exposure

    International Nuclear Information System (INIS)

    Bau, S.

    2008-12-01

    This work aims at improving knowledge on ultrafine aerosols surface-area measurement. Indeed, the development of nano-technologies may lead to occupational exposure to airborne nano-structured particles, which involves a new prevention issue. There is currently no consensus concerning what parameter (mass, surface-area, number) should be measured. However, surface-area could be a relevant metric, since it leads to a satisfying correlation with biological effects when nano-structured particles are inhaled. Hence, an original theoretical work was performed to position the parameter of surface-area in relation to other aerosol characteristics. To investigate measurement techniques of nano-structured aerosols surface-area, the experimental facility CAIMAN (Characterization of Instruments for the Measurement of Aerosols of Nano-particles) was designed and built. Within CAIMAN, it is possible to produce nano-structured aerosols with varying and controlled properties (size, concentration, chemical nature, morphology, state-of-charge), stable and reproducible in time. The generated aerosols were used to experimentally characterize the response of the instruments in study (NSAM and AeroTrak 9000 TSI, LQ1-DC Matter Engineering). The response functions measured with monodisperse aerosols show a good agreement with the corresponding theoretical curves in a large size range, from 15 to 520 nm. Furthermore, hypotheses have been formulated to explain the reasonable biases observed when measuring poly-disperse aerosols. (author)

  14. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement. These ...

  15. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    In this work BET surface area measurements and mercury porosimetry are used to characterize leached layers formed when seawater-soluble pigments (Cu2O and ZnO) dissolve during accelerated leaching of simple antifouling coatings. Measurements on single-pigment coatings show that an increasing...

  16. Defining and measuring the mean residence time of lateral surface transient storage zones in small streams

    Science.gov (United States)

    T.R. Jackson; R. Haggerty; S.V. Apte; A. Coleman; K.J. Drost

    2012-01-01

    Surface transient storage (STS) has functional significance in stream ecosystems because it increases solute interaction with sediments. After volume, mean residence time is the most important metric of STS, but it is unclear how this can be measured accurately or related to other timescales and field-measureable parameters. We studied mean residence time of lateral...

  17. Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticles

    DEFF Research Database (Denmark)

    Madsen, Jacob; Liu, Pei; Wagner, Jakob Birkedal

    2017-01-01

    Strain analysis from high-resolution transmission electron microscopy (HRTEM) images offers a convenient tool for measuring strain in materials at the atomic scale. In this paper we present a theoretical study of the precision and accuracy of surface strain measurements directly from aberration...

  18. Sensitivity of surface resistance measurement of HTS thin films by ...

    Indian Academy of Sciences (India)

    ... field distribution in the resonators. The microwave surface resistance of the superconducting sample is then extracted from the measured value as a function of temperature. The sensitivity of the s measurement, that is, the relative change in the value with the change in the s value is determined for each resonator.

  19. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose

  20. Measurement and Modeling of Surface Tensions of Asymmetric Systems: Heptane, Eicosane, Docosane, Tetracosane and their Mixtures

    DEFF Research Database (Denmark)

    Queimada, Antonio; Silva, Filipa A. E.; Caco, Ana I.

    2003-01-01

    To extend the surface tension database for heavy or asymmetric n-alkane mixtures, measurements were performed using the Wilhelmy plate method. Measured systems included the binary mixtures heptane + eicosane, heptane + docosane and heptane + tetracosane and the ternary mixture heptane + eicosane...

  1. Surface EMG measurements during fMRI at 3T : Accurate EMG recordings after artifact correction

    NARCIS (Netherlands)

    van Duinen, Hiske; Zijdewind, Inge; Hoogduin, H; Maurits, N

    2005-01-01

    In this experiment, we have measured surface EMG of the first dorsal interosseus during predefined submaximal isometric contractions (5, 15, 30, 50, and 70% of maximal force) of the index finger simultaneously with fMRI measurements. Since we have used sparse sampling fMRI (3-s scanning; 2-s

  2. Quantification of displacement and velocity noise in vibrometer measurements on transversely moving or rotating surfaces

    Science.gov (United States)

    Dräbenstedt, Alexander

    2007-06-01

    The heterodyne interferometer (vibrometer) is a well established technique for measuring all kinds of mechanical vibrations in a broad range of applications. The non-contact measurement principle relies upon the Doppler (or phase-) shift that laser light experiences when it is reflected by the vibrating surface. The speckle nature of the reflected light imposes problems and creates additional measurement noise if the object is moving transversely through the laser spot or is rotating around an axis perpendicular to the laser direction. Another implication that can arise is cross coupling from in-plane vibrations into the out-of-plane measurement direction when small in-plane vibrations are present. A model is presented in this paper that describes the origin of these disturbances. Using this model it is possible to quantify the amplitude spectrum of the noise in displacement and velocity measurements. This enables the user to calculate the limits of resolvable vibration amplitudes when transverse motion is present. The results of the model have been confirmed well by measurements. In addition, the influence of the surface roughness and beam inclination on the out-of-plane vibration measurements at a tilted surface is investigated. The conditions for the measurability of the profile of a transversely moving surface are derived in this work. It is discussed that the R q-roughness parameter has to be less than λ/4 to obtain the slope information in the speckle-perturbed interferometer signal.

  3. Simulation and Measurement of Angle Resolved Reflectance from Black Si Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Wu, Kaiyu; Schmidt, Michael Stenbæk

    2015-01-01

    In this work angle-resolved reflectance from nanostructured Si surfaces realized by maskless RIE texturing has been simulated and measured. The simulation and experimental measurement data show the same trend. Experimentally a total reflectance below 1% for incident angles below 30o and specular...

  4. Using the lambda function to evaluate probe measurements of charged dielectric surfaces

    DEFF Research Database (Denmark)

    Rerup, T. O.; Crichton, George C; McAllister, Iain Wilson

    1996-01-01

    The use of Pedersen's λ function to evaluate electrostatic probe measurements of charged dielectric surfaces is demonstrated. With a knowledge of the probe λ function, the procedure by which this function is employed is developed, and thereafter applied to a set of experimental measurements avail...

  5. Measurement and Modeling of Surface Tensions of Asymmetric Systems: Heptane, Eicosane, Docosane, Tetracosane and their Mixtures

    DEFF Research Database (Denmark)

    Queimada, Antonio; Silva, Filipa A.E; Caco, Ana I.

    2003-01-01

    To extend the surface tension database for heavy or asymmetric n-alkane mixtures, measurements were performed using the Wilhelmy plate method. Measured systems included the binary mixtures heptane + eicosane, heptane + docosane and heptane + tetracosane and the ternary mixture heptane + eicosane ...

  6. The Possibility of Semantic Features and Analysis of Figures of Speech——Cognitive Figures and Expressive Figures

    Directory of Open Access Journals (Sweden)

    Liu Dawei

    2007-10-01

    Full Text Available In this paper, linguistic methodology is suggested for approaching figures of speech formed due to shift of cognitive relations. First, requisite features, possible features and impossible features are proposed on the basis of semantic analysis and their interrelationships and expressions are discussed. Then it is further argued that all figures formed due to shift of cognitive relation are expressed to accept an impossible feature; and there are four semantic forms to accept it: “zero distance/distanced”, “implicit/explicit”, “direct/indirect”, “positive/negative”. Finally, starting from the two approaches to figures we comment on the traditional idea of separating decoration and substance and the new idea of “function as form”.

  7. Field Measurements of PCB emissions from Building Surfaces Using a New Portable Emission Test Cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Haven, Rune; Gunnarsen, Lars Bo

    2016-01-01

    Danish elementary school. The emission test cell was capable of measuring widely varying specific emission rates of PCBtotal (8-3357 ng/(m2·h)). Remediated measures were found to reduce the emission rates by more than 96% compared with similar untreated surfaces. Emission rates may be affected...... by the conditions in the test cell (such as clean air and increased air velocity) and thereby potentially be different without the test cell attached to the surface. Still the measured emission rates obtained by using the test cell are valuable for determination of mitigation strategies. Additionally the test cell...

  8. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  9. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    Science.gov (United States)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  10. An Evaluation of pectus excavatum by means of body surface measurements on chest CT scans

    International Nuclear Information System (INIS)

    Hirotani, Taichi; Ohama, Kazunori; Shimotake, Takashi; Ishikawa, Nobuki; Watanabe, Reiji

    2009-01-01

    The aim of this study is to determine whether the body surface index replaces the Haller index in order to evaluate the severity of pectus excavatum. Sixty-nine cases with a diagnosis of pectus excavatum between August 2001 and January 2008 were prospectively enrolled in the study. The anterior-posterior chest dimension, lateral chest dimension and depth of the most profound depressed area were measured. The body surface index was expressed as an equation A/(B-C), where A was the transverse diameter, B was the anterior-posterior diameter and C was the depth of the depressed area. This index was compared to the Haller index in each patient. In this study, each value was measured on a chest CT scan. The body surface index significantly correlated with the Haller index, in which the coefficient of correlation was 0.879 (p<0.01). The body surface index corresponding to Haller index 3.25 seems to be 1.67. We could find the body surface index corresponding to each Haller index. We propose that an evaluation of pectus excavatum by means of body surface measurements is clinically useful, and may replace the Haller index. The body surface index may allow us to assess the severity of pectus excavatum without a CT scan, resulting in a reduction of radiation exposure for children with pectus excavatum. It's possible to evaluate the body surface index by using a relational table between this index and the Hailer index. We'll evaluate the body surface index by using values measured on a real body. (author)

  11. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  12. Figure and flesh : Francis Bacon's challenge to the figurative tradition in Western art

    OpenAIRE

    Telci, Müge

    2002-01-01

    Ankara : The Department of Graphic Design and the Institute of Fine Arts of Bilkent University, 2002. Thesis (Master's) -- Bilkent University, 2002. Includes bibliographical references leaves 79-81. When figuring the body is at stake within the Western tradition of art, figuration comes up as a question of framing and controlling the mass of body (flesh, bones, body liquids etc…). The apparent obsession of Western art with perfect body figures might be understood as an attem...

  13. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures....... The temperatures of the sample are found in a single calculation from the measured spectra independently of the response function of the instrument and the emissivity of the sample. The spectral emissivity of a sample can be measured if the instrument is calibrated against a blackbody source. Temperatures...... of blackbody sources are estimated with an uncertainty of 0.2-2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen. (C) 1996 Optical Society of America...

  14. Development of measuring device for inner surfaces of embedded piping (Contract research)

    CERN Document Server

    Itoh, H; Tachibana, M; Yanagihara, S

    2003-01-01

    The measuring device for inner surfaces of embedded piping (MISE) was developed to evaluate low-level radiological contaminations of inner surfaces of piping. The MISE consists of a cylindrically-formed double layered type detector and a piping crawling robot, which were designed and manufactured separately. In measurements of the contaminations, an outer cylindrical detector close to the surface of piping measures beta-rays and gamma-rays and an inner cylindrical detector set after a shielding plate for shield of beta-rays measures gamma-rays. The beta-ray counting rates are derived by subtracting gamma-ray counts measured by the inner detector from gamma- and beta-ray counts measured by the outer detector. The piping crawling robot transports the cylindrically-formed double layered type detector with observing inner surfaces of piping. The detection limit for the contamination of sup 6 sup 0 Co was found to be about 0.17 Bq/cm sup 2 with measurement time of 30 seconds. It is expected that 0.2 Bq/cm sup 2 co...

  15. Fundamentals of figure control and fracture-'free' finishing for high aspect ratio laser optics

    Energy Technology Data Exchange (ETDEWEB)

    Suratwala, Tayyab [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    The high level objectives of the this work were to: 1) scientifically understand critical phenomena affecting the surface figure during full aperture finishing; 2) utilize these fundamentals to more deterministically control the surface figure during finishing; 3) successfully polish under rogue particle-‘free’ environments during polishing by understanding/preventing key sources of rogue particles.

  16. Holographic otoscope for nano-displacement measurements of surfaces under dynamic excitation

    OpenAIRE

    Flores-Moreno, J. M.; Furlong, Cosme; Rosowski, John J.; Harrington, Ellery; Cheng, Jeffrey T.; Scarpino, C.; Santoyo, F. Mendoza

    2011-01-01

    We describe a novel holographic otoscope system for measuring nano-displacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image...

  17. Liquid metals surface temperature fields measurements with a two-colour pyrometer

    OpenAIRE

    Monier, Romain; Thumerel, François; Chapuis, Julien; Soulié, Fabien; Bordreuil, Cyril

    2017-01-01

    International audience; The paper presents an apparatus to measure surface temperature distribution of liquid metals during fusion processes. The apparatus is based on dual wavelength radiation thermometry and is designed to measure temperature from 1500 to 3000 K. The pyrometer is based on standard optical parts and industrial CCD cameras. Uncertainties are analysed on the base of the radiometric equations. To insure relative precision in the measurement, a calibration procedure is conducted...

  18. Spectral measurements of returned spacecraft surfaces and the implications for space debris material measurements

    Science.gov (United States)

    Jorgensen, K.; Culp, R. D.; Clark, R. N.

    2001-10-01

    Knowledge of the physical properties of orbital debris is necessary for modeling the debris environment. Current methods determine the size and mass of orbital debris based on knowledge or assumption of the material type of the piece. By using spectroscopy, one can determine the material type of the piece by comparing the absorption features of its spectra to that of lab spectra for given materials. The goal of this research is not to improve the models themselves, but to improve the information others use to make the models. In order to determine the effects of the space environment on the reflectance spectra of spacecraft materials, researchers measured materials from returned spacecraft. Measurements of material degradation for returned missions from the Long Duration Exposure Facility (LDEF) are documented herein. When the spectra of returned spacecraft materials were compared with the pre-flight laboratory spectra degradation in the samples were seen mostly in the visible wavelengths, while the samples showed similar features in the near-infrared. Overall, the results displayed less degradation on the spaceflight samples than anticipated. The spectral measurements of returned spacecraft materials lent credence to continuing the study of determining the material type of orbital debris using spectroscopy.

  19. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  20. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    Science.gov (United States)

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  1. The Quick Measure of a Nurbs Surface Curvature for Accurate Triangular Meshing

    Directory of Open Access Journals (Sweden)

    Kniat Aleksander

    2014-04-01

    Full Text Available NURBS surfaces are the most widely used surfaces for three-dimensional models in CAD/ CAE programs. When a model for FEM calculation is prepared with a CAD program it is inevitable to mesh it finally. There are many algorithms for meshing planar regions. Some of them may be used for meshing surfaces but it is necessary to take the curvature of the surface under consideration to avoid poor quality mesh. The mesh must be denser in the curved regions of the surface. In this paper, instead of analysing a surface curvature, the method to assess how close is a mesh triangle to the surface to which its vertices belong, is presented. The distance between a mesh triangle and a parallel tangent plane through a point on a surface is the measure of the triangle quality. Finding the surface point whose projection is located inside the mesh triangle and which is the tangency point to the plane parallel to this triangle is an optimization problem. Mathematical description of the problem and the algorithm to find its solution are also presented in the paper.

  2. New twist in the optical schematic of surface slope measuring long trace profiler

    Science.gov (United States)

    Nikitin, Sergey M.; Gevorkyan, Gevork S.; McKinney, Wayne R.; Lacey, Ian; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2017-09-01

    The advents of fully coherent free electron lasers and diffraction limited synchrotron storage ring sources of x-rays are catalyzing the development of new, ultra-high accuracy metrology methods. To fully exploit the potential of these sources, metrology needs to be capable of determining the figure of an optical element with sub-nanometer height accuracy. Currently, the two most prevalent slope measuring instruments used for characterization of x-ray optics are the auto-collimator based nanometer optical measuring device (NOM) and the long trace profiler (LTP) using pencil beam interferometry (PBI). These devices have been consistently improved upon by the x-ray optics metrology community, but appear to be approaching their metrological limits. Here, we revise the traditional optical schematic of the LTP. We experimentally show that, for the level of accuracy desired for metrology with state-of-the-art x-ray optics, the Dove prism in the LTP reference channel appears to be one of the major sources of instrumental error. Therefore, we suggest returning back to the original PBI LTP schematics with no Dove prism in the reference channel. In this case, the optimal scanning strategies [Yashchuk, Rev. Sci. Instrum. 80, 115101 (2009)] used to suppress the instrumental drift error have to be used to suppress a possible drift error associated with laser beam pointing instability. We experimentally and by numerical simulation demonstrate the usefulness of the suggested approach for measurements with x-ray optics with both face up and face down orientations.

  3. Interpretation of hole-to-surface resistivity measurements at Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Daniels, J.J.; Scott, J.H.

    1981-01-01

    Hole-to-surface resistivity measurements at Yucca Mountain indicate the presence of many near-surface geologic inhomogeneities, with no definite indication of deep structural features. A resistive anomaly near drill hole UE25a-6 is interpreted as a thin, vertical, resistive body that nearly intersects the surface, and may be caused by a silicified, or calcified, fracture zone. A resistive anomaly near hole UE25a-7 is probably caused by a near surface, horizontal, lens-shaped body that may represent a devitrified zone in the Tiva Canyon Member. Many conductive anomalies were detected to the southwest of hole UE25a-4. However, these anomalies are interpreted to be caused by variations in the thickness of the surface alluvium

  4. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  5. Using a terrestrial laser scanner to measure spatiotemporal surface moisture dynamics

    Science.gov (United States)

    Smit, Y.; Donker, J.; Ruessink, G.

    2017-12-01

    A terrestrial laser scanner (TLS) is an active remote sensing technique that utilizes the round trip time of an emitted laser beam to provide the range between the laser scanner and the backscattering object. It is routinely used for topographic mapping, forest measurements or 3D city models since it derives useful object representations by means of a dense three-dimensional (3D) point cloud. Here, we present a novel application using the returned intensity of the emitted beam to detect surface moisture with the RIEGL VZ-400. Because this TLS operates at a wavelength near a water absorption band (1550 nm), reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Concurrent gravimetric surface moisture samples were collected to calibrate the relation between reflectance and surface moisture. Results reveal the reflectance output is a robust parameter to measure surface moisture from the thin upper layer over its full range from 0% to 25%. The obtained calibration curve of the presented TLS, describing the relationship between reflectance and surface moisture, has a root-mean-square error of 2.7% and a correlation coefficient squared of 0.85. This relation holds to about 60 m from the TLS. Within this distance the TLS typically produces O(10^6-10^7) data points, which we averaged into surface moisture maps with a 1 x 1 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. Concluding, TLS (RIEGL-VZ 400) is a highly suited technique to accurately and robustly measure spatiotemporal surface moisture variations on a coastal beach with high spatial ( 1 x 1 m) and temporal ( 15-30min.) resolution.

  6. A noninvasive ultrasound elastography technique for measuring surface waves on the lung.

    Science.gov (United States)

    Zhang, Xiaoming; Osborn, Thomas; Kalra, Sanjay

    2016-09-01

    The purpose of this work was to demonstrate an ultrasound based surface wave elastography (SWE) technique for generating and detecting surface waves on the lung. The motivation was to develop a noninvasive technique for assessing superficial lung tissue disease including interstitial lung disease (ILD). ILD comprises a number of lung disorders in which the lung tissue is stiffened and damaged due to fibrosis of the lung tissue. Currently, chest radiographs and computed tomography (CT) are the most common clinical methods for evaluating lung disease, but they are associated with radiation and cannot measure lung mechanical properties. The novelty of SWE is to develop a noninvasive and nonionizing technique to measure the elastic properties of superficial lung tissue. We propose to generate waves on the lung surface through wave propagation from a local harmonic vibration excitation on the chest through an intercostal space. The resulting surface wave propagation on the lung is detected using an ultrasound probe through the intercostal space. To demonstrate that surface waves can be generated on the lung, an ex vivo muscle-lung model was developed to evaluate lung surface wave generation and detection. In this model, swine muscle was laid atop a swine lung. A vibration excitation of 0.1s 100Hz wave was generated on the muscle surface and the surface waves on the lung were detected using a linear array ultrasound probe at 5MHz. To test its feasibility for patient use, SWE was used to measure both lungs of an ILD patient through eight intercostal spaces. The mean wave speed was 1.71±0.20m/s (±SD) at the functional residual capacity, while the mean wave speed was 2.36±0.33m/s at the total lung capacity. These studies support the feasibility of SWE for noninvasive measurement of elastic properties of lung and demonstrate potential for assessment of ILD. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Measurements of dry-deposition rates on various earth surfaces by 212Pb

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.

    2004-01-01

    Dry deposition rates of 212 Pb on a coniferous forest (Japanese cedar) and a broad-leaf forest (Pasania edulis) have been measured. Those on various kinds of grass fields, various states on artificial surface such as water, paper, and standing paper have been also measured. The dry deposition rates depend on the characteristics of depositing particles and the conditions of deposited surfaces. Dry deposition rates on the forest of Japanese cedar are highest because of the complex and adhesive surface of the leaves. Those on various grass fields are roughly depend on the logarithm of the height of their grasses. The total deposition rates of 7 Be do not depend on the densities or heights of the grasses. 7 Be may be not kept on their leaves or surface soil for a long time. The dry deposition rates of on artificial surface, e.g. paper and water surfaces make clear the mechanism on dry deposition, and suggest that more chances of collision and more adhesive of the surface are important for the dry deposition. About 90% of all deposition on the artificial paper grass was attached on the standing paper. On water surface, 60% of the rate of paper grass was attached, but only about 20% were attached on a dry paper plate. The aerosol particles are deposited by collision with the surface, therefore the deposition velocity depends on the chance of collision and the characteristics of the surface. Therefore the dry deposition rates on forests are larger and those of coniferous forest are largest. (author)

  8. Reconciling Electrical Properties of Titan's Surface Derived from Cassini RADAR Scatterometer and Radiometer Measurements

    Science.gov (United States)

    Zebker, H. A.; Wye, L. C.; Janssen, M.; Paganelli, F.; Cassini RADAR Team

    2006-12-01

    We observe Titan, Saturn's largest moon, using active and passive microwave instruments carried on board the Cassini spacecraft. The 2.2-cm wavelength penetrates the thick atmosphere and provides surface measurements at resolutions from 10-200 km over much of the satellite's surface. The emissivity and reflectivity of surface features are generally anticorrelated, and both values are fairly high. Inversion of either set of data alone yields dielectric constants ranging from 1.5 to 3 or 4, consistent with an icy hydrocarbon or water ice composition. However, the dielectric constants retrieved from radiometric data alone are usually less than those inferred from backscatter measurements, a discrepancy consistent with similar analyses dating back to lunar observations in the 1960's. Here we seek to reconcile Titan's reflectivity and emissivity observations using a single physical model of the surface. Our approach is to calculate the energy scattered by Titan's surface and near subsurface, with the remainder absorbed. In equilibrium the absorption equals the emission, so that both the reflectivity and emissivity are described by the model. We use a form of the Kirchhoff model for modeling surface scatter, and a model based on weak localization of light for the volume scatter. With this model we present dielectric constant and surface roughness parameters that match both sets of Cassini RADAR observations over limited regions on Titan's surface, helping to constrain the composition and roughness of the surface. Most regions display electrical properties consistent with solid surfaces, however some of the darker "lake-like" features at higher latitudes can be modeled as either solid or liquid materials. The ambiguity arises from the limited set of observational angles available.

  9. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  10. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    Science.gov (United States)

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  11. The measurement of surface roughness to determine the suitability of different methods for stone cleaning

    International Nuclear Information System (INIS)

    Vazquez-Calvo, Carmen; Alvarez de Buergo, Monica; Fort, Rafael; Varas-Muriel, Maria Jose

    2012-01-01

    The roughness of stone surface was measured, before and after bead blasting-based cleaning methods, to select the most efficient one to be used in masonry and stonework of specific areas of the Cathedral of Segovia (Spain). These types of cleaning methods can, besides the removal of soiling and surface deposits, leave a rougher surface, which would mean higher and more rapid water retention and deposit accumulation due to a specific surface increase, therefore accelerating stone decay. Or, in contrast, the cleaning method can be so aggressive that it can smooth the surface by reducing its roughness, a fact that usually corresponds to excessive material removal—soot and deposits–-but also part of the stone substrate. Roughness results were complemented with scanning electron microscopy observations and analyses and colour measurements. Finally, it was possible to select the best cleaning method among the six that were analysed, for different areas and different stone materials. Therefore, this study confirms the measurement of surface roughness as a reliable test to determine the suitability of stone cleaning methods; it is a non-destructive technique, portable and friendly to use, which can help us to rapidly assess—together with other techniques—the efficacy and aggressiveness of the stone cleaning method. (paper)

  12. Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements

    Science.gov (United States)

    Jaumann, R.; Stephan, K.; Hansen, G. B.; Clark, R. N.; Buratti, B. J.; Brown, R. H.; Baines, K. H.; Newman, S. F.; Bellucci, G.; Filacchione, G.; Coradini, A.; Cruikshank, D. P.; Griffith, C. A.; Hibbitts, C. A.; McCord, T. B.; Nelson, R. M.; Nicholson, P. D.; Sotin, C.; Wagner, R.

    2008-02-01

    The surface of Enceladus consists almost completely of water ice. As the band depths of water ice absorptions are sensitive to the size of particles, absorptions can be used to map variations of icy particles across the surface. The Visual and Infrared Mapping Spectrometer (VIMS) observed Enceladus with a high spatial resolution during three Cassini flybys in 2005 (orbits EN 003, EN 004 and EN 011). Based on these data we measured the band depths of water ice absorptions at 1.04, 1.25, 1.5, and 2 μm. These band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 μm and 1 mm. The agreement between the experimental (VIMS) and model values supports the assumption that pure water ice characterizes the surface of Enceladus and therefore that variations in band depth correspond to variations in water ice particle diameters. Our measurements show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively "fresh" surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles (˜0.2 mm) are concentrated in the so called "tiger stripes" at the south pole. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening.

  13. Comparison of MODIS-derived land surface temperature with air temperature measurements

    Science.gov (United States)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  14. Evaluating surface protonic transport on cerium oxide via electrochemical impedance spectroscopy measurement

    Science.gov (United States)

    Manabe, Ryo; Stub, Sindre Østby; Norby, Truls; Sekine, Yasushi

    2018-02-01

    Surface protonic transport on cerium oxide (CeO2) was investigated using electrochemical impedance spectroscopy (EIS). CeO2 pellets showing low relative density: approximately 60%, was prepared for the purpose. The structure and morphology of the prepared CeO2 pellets were confirmed from XRD and SEM measurements. Results show that the pellets had a pure cubic phase, with open pores on which water can be adsorbed. Electrochemical impedance spectroscopy measurements were taken to evaluate the surface protonic transport on CeO2 as a function of temperature and as a function of partial pressure of water (PH2O) at 400 °C. Investigations of the temperature dependence of the conductivity revealed that only the conductivities of surface grain bulk (σintra) and surface grain boundary (σinter) increased with decreasing temperatures under wet conditions (PH2O = 0.026 atm). The PH2O dependence of surface conductivities (σintra and σinter) revealed that σintra increases strongly with PH2O at 400 °C. These findings provide evidence that water adsorbates play an important role in surface protonic transport on CeO2 at low temperatures. Surface protonic transport at low temperatures can contribute to the expansion of applications for electrical and catalytic processes.

  15. Sub-aperture stitching of aspheric surfaces in precision in-situ measurement

    Science.gov (United States)

    Pan, Jintao; Zhang, Xiangchao; Xu, Min

    2017-10-01

    Currently the measurement of complex surfaces is a challenging task in precision engineering. Full aperture measurement is difficult to meet the requirements on accuracy and range at the same time, thus sub-aperture stitching measurement is conducted in turn. A robust six degrees of freedom stitching method is proposed for the in-situ subaperture measurement. The partial-partial-iterative closest point (PPICP) algorithm with a point-to-plane minimization approach is used. To avoid the potential over-influence of outliers, robust M-estimation techniques is applied for the processing of data. The optimal motion parameters are solved iteratively using the Levenberg-Marquardt algorithm. Curved surface interpolation technology based on the Delaunay triangulation is used to complete the surface integration for achieving seamless surface stitching. The PPICP method can effectively eliminate the systematic measurement errors, such as tilt, translation and rotation errors. Experimental results show that the proposed method has higher accuracy, efficiency and stability for precision in-situ measurements.

  16. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    International Nuclear Information System (INIS)

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-01-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ∼ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ∼ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity

  17. Consistency of Lower-Body Dimensions Using Surface Landmarks and Simple Measurement Tools.

    Science.gov (United States)

    Caia, Johnpaul; Weiss, Lawrence W; Chiu, Loren Z F; Schilling, Brian K; Paquette, Max R

    2016-09-01

    Caia, J, Weiss, LW, Chiu, LZF, Schilling, BK, and Paquette, MR. Consistency of lower-body dimensions using surface landmarks and simple measurement tools. J Strength Cond Res 30(9): 2600-2608, 2016-Body dimensions may influence various types of physical performance. This study was designed to establish the reliability and precision of bilateral lower-body dimensions using surface anatomic landmarks and either sliding calipers or goniometry. Fifty university students (25 men and 25 women) were measured on 2 separate occasions separated by 48 or 72 hours. A small digital caliper was used to acquire longitudinal dimensions of the feet, whereas a larger broad-blade caliper was used to measure lower-limb, hip, and pelvic dimensions. Quadriceps angle (Q-angle) was determined through surface goniometry. Data for all foot and lower-limb dimensions were both reliable and precise (intraclass correlation coefficient (ICC) ≥0.72, SEM 0.1-0.5 cm). Measures of Q-angle were also reliable and precise (ICC ≥0.85, SEM 0.2-0.4°). Findings from this investigation demonstrate that lower-body dimensions may be reliably and precisely measured through simple practical tests, when surface anatomic landmarks and standardized procedures are used. Although intertester reliability remains to be established, meticulous adherence to specific measurement protocols is likely to yield viable output for lower-body dimensions when more sophisticated methods are unavailable or inappropriate.

  18. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    Science.gov (United States)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  19. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  20. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    Science.gov (United States)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  1. Energy in Sweden. Facts and figures 2005

    International Nuclear Information System (INIS)

    2005-12-01

    Energy in Sweden. Facts and Figures 2005 contains the tabular data for most of the diagrams in the main publication. These data consist primarily of the results of the Agency's processing of basic data from Statistics Sweden. Facts and Figures is available at www.stem.se in pdf- and excel file formats. With effect from the 2001 edition, statistics are of preliminary character for the two preceding years (2003 and 2004). Breakdowns into certain types of fuels vary somewhat depending on whether preliminary or final data has been used. Further information about the statistics can be found in Energy in Sweden, chapter 8 Energy Facts

  2. Resolution potential of surface wave phase velocity measurements at small arrays

    Science.gov (United States)

    Bodin, Thomas; Maupin, Valérie

    2008-02-01

    The deployment of temporary arrays of broadband seismological stations over dedicated targets is common practice. Measurement of surface wave phase velocity across a small array and its depth-inversion gives us information about the structure below the array which is complementary to the information obtained from body-wave analysis. The question is however: what do we actually measure when the array is much smaller than the wave length, and how does the measured phase velocity relates to the real structure below the array? We quantify this relationship by performing a series of numerical simulations of surface wave propagation in 3-D structures and by measuring the apparent phase velocity across the array on the synthetics. A principal conclusion is that heterogeneities located outside the array can map in a complex way onto the phase velocities measured by the array. In order to minimize this effect, it is necessary to have a large number of events and to average measurements from events well-distributed in backazimuth. A second observation is that the period of the wave has a remarkably small influence on the lateral resolution of the measurement, which is dominantly controlled by the size of the array. We analyse if the artefacts created by heterogeneities can be mistaken for azimuthal variations caused by anisotropy. We also show that if the amplitude of the surface waves can be measured precisely enough, phase velocities can be corrected and the artefacts which occur due to reflections and diffractions in 3-D structures greatly reduced.

  3. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator.

    Science.gov (United States)

    Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W

    2017-03-15

    The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  4. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  5. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    Science.gov (United States)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  6. High-speed surface temperature measurements on plasma facing materials for fusion applications

    Science.gov (United States)

    Araki, Masanori; Kobayashi, Masanobu

    1996-01-01

    For the lifetime evaluation of plasma facing materials in fusion experimental machines, it is essential to investigate their surface behavior and their temperature responses during an off-normal event such as the plasma disruptions. An infrared thermometer with a sampling speed as fast as 1×10-6 s/data, namely, the high-speed infrared thermometer (HSIR), has been developed by the National Research Laboratory of Metrology in Japan. To evaluate an applicability of the newly developed HSIR on the surface temperature measurement of plasma facing materials, high heat flux beam irradiation experiments have been performed with three different materials under the surface heat fluxes up to 170 MW/m2 for 0.04 s in a hydrogen ion beam test facility at the Japan Atomic Energy Research Institute. As for the results, HSIR can be applicable for measuring the surface temperature responses of the armor tile materials with a little modification. It is also confirmed that surface temperatures measured with the HSIR thermometer show good agreement with the analytical results for stainless steel and carbon based materials at a temperature range of up to 2500 °C. However, for aluminum the HSIR could measure the temperature of the high dense vapor cloud which was produced during the heating due to lower melting temperature. Based on the result, a multichannel arrayed HSIR thermometer has been designed and fabricated.

  7. Atypical Activation during the Embedded Figures Task as a Functional Magnetic Resonance Imaging Endophenotype of Autism

    Science.gov (United States)

    Spencer, Michael D.; Holt, Rosemary J.; Chura, Lindsay R.; Calder, Andrew J.; Suckling, John; Bullmore, Edward T.; Baron-Cohen, Simon

    2012-01-01

    Atypical activation during the Embedded Figures Task has been demonstrated in autism, but has not been investigated in siblings or related to measures of clinical severity. We identified atypical activation during the Embedded Figures Task in participants with autism and unaffected siblings compared with control subjects in a number of temporal…

  8. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  9. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  10. Selection and presentation of imaging figures in the medical literature.

    Directory of Open Access Journals (Sweden)

    George C M Siontis

    Full Text Available BACKGROUND: Images are important for conveying information, but there is no empirical evidence on whether imaging figures are properly selected and presented in the published medical literature. We therefore evaluated the selection and presentation of radiological imaging figures in major medical journals. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed articles published in 2005 in 12 major general and specialty medical journals that had radiological imaging figures. For each figure, we recorded information on selection, study population, provision of quantitative measurements, color scales and contrast use. Overall, 417 images from 212 articles were analyzed. Any comment/hint on image selection was made in 44 (11% images (range 0-50% across the 12 journals and another 37 (9% (range 0-60% showed both a normal and abnormal appearance. In 108 images (26% (range 0-43% it was unclear whether the image came from the presented study population. Eighty-three images (20% (range 0-60% had any quantitative or ordered categorical value on a measure of interest. Information on the distribution of the measure of interest in the study population was given in 59 cases. For 43 images (range 0-40%, a quantitative measurement was provided for the depicted case and the distribution of values in the study population was also available; in those 43 cases there was no over-representation of extreme than average cases (p = 0.37. SIGNIFICANCE: The selection and presentation of images in the medical literature is often insufficiently documented; quantitative data are sparse and difficult to place in context.

  11. Dynamic measurement of surface strain distribution on the foot during walking.

    Science.gov (United States)

    Ito, Kohta; Maeda, Kosuke; Fujiwara, Ikumi; Hosoda, Koh; Nagura, Takeo; Lee, Taeyong; Ogihara, Naomichi

    2017-05-01

    To clarify the mechanism underlying the development of foot disorders such as diabetic ulcers and deformities, it is important to understand how the foot surface elongates and contracts during gait. Such information is also helpful for improving the prevention and treatment of foot disorders. We therefore measured temporal changes in the strain distribution on the foot surface during human walking. Five adult male participants walked across a glass platform placed over an angled mirror set in a wooden walkway at a self-selected speed and the dorsolateral and plantar surfaces of the foot were filmed using two pairs of synchronized high-speed cameras. Three-dimensional (3D) digital image correlation was used to quantify the spatial strain distribution on the foot surface with respect to that during quiet standing. Using the proposed method, we observed the 3D patterns of foot surface strain distribution during walking. Large strain was generated around the ball on the plantar surface of the foot throughout the entire stance phase, due to the windlass mechanism. The dorsal surface around the cuboid was stretched in the late stance phase, possibly due to lateral protruding movement of the cuboid. It may be possible to use this technique to non-invasively estimate movements of the foot bones under the skin using the surface strain distribution. The proposed technique may be an effective tool with which to analyze foot deformation in the fields of diabetology, clinical orthopedics, and ergonomics. Copyright © 2017. Published by Elsevier Ltd.

  12. Measurements of long-range interactions between protein-functionalized surfaces by total internal reflection microscopy.

    Science.gov (United States)

    Wang, Zhaohui; Gong, Xiangjun; Ngai, To

    2015-03-17

    Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions.

  13. Application of a new point measurement to estimate goundwater-surface water exchange

    DEFF Research Database (Denmark)

    Cremeans, Mackenzie; Devlin, J.F.; McKnight, Ursula S.

    The StreamBed Point Velocity Probe (SBPVP), a new point measurement device, measures in situ groundwater velocities at the groundwater-surface water interface (GWSWI, based on a mini-tracer test on the probe surface. This device yields velocities without reliance on estimations of hydraulic...... of concentrations and velocities. Given these localized hot spots, detailed information about flow at the GWSWI could be vital to understanding solute, and, by extension, nutrient, movement in ecosystems affected by exchange. Such information could be crucial to effective remediation design....

  14. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low residual resistance ratio (RRR) niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR = 190 niobium increased noticeably from the theoretical value if the cooling rate was slower than ∼ 10 K/min. (author)

  15. Measurement range of phase retrieval in optical surface and wavefront metrology

    International Nuclear Information System (INIS)

    Brady, Gregory R.; Fienup, James R.

    2009-01-01

    Phase retrieval employs very simple data collection hardware and iterative algorithms to determine the phase of an optical field. We have derived limitations on phase retrieval, as applied to optical surface and wavefront metrology, in terms of the speed of beam (i.e., f-number or numerical aperture) and amount of aberration using arguments based on sampling theory and geometrical optics. These limitations suggest methodologies for expanding these ranges by increasing the complexity of the measurement arrangement, the phase-retrieval algorithm, or both. We have simulated one of these methods where a surface is measured at unusual conjugates

  16. Simulated plasma facing component measurements for an in situ surface diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Hartwig, Z. S.; Whyte, D. G.

    2010-10-01

    The ideal in situ plasma facing component (PFC) diagnostic for magnetic fusion devices would perform surface element and isotope composition measurements on a shot-to-shot (˜10 min) time scale with ˜1 μm depth and ˜1 cm spatial resolution over large areas of PFCs. To this end, the experimental adaptation of the customary laboratory surface diagnostic—nuclear scattering of MeV ions—to the Alcator C-Mod tokamak is being guided by ACRONYM, a Geant4 synthetic diagnostic. The diagnostic technique and ACRONYM are described, and synthetic measurements of film thickness for boron-coated PFCs are presented.

  17. Time-Distance Helioseismology with f Modes as a Method for Measurement of Near-Surface Flows

    Science.gov (United States)

    Duvall, Thomas L., Jr.; Gizon, Laurent

    1999-01-01

    Travel times measured for the f mode have been used to study flows near the solar surface in conjunction with simultaneous measurements of the magnetic field. Previous flow measurements of doppler surface rotation, small magnetic feature rotation, supergranular pattern rotation, and surface meridional circulation have been confirmed. In addition, the flow in supergranules due to Coriolis forces has been measured. The spatial and temporal power spectra for a six-day observing sequence has been measured.

  18. XPS and surface resistivity measurements of plasma - treated FEP co-polymer

    International Nuclear Information System (INIS)

    Pitrus, R.K.; Brack, N.; Liesegang, J.; Pigram, P.J.

    2002-01-01

    Full text: Fluorinated polymers such as fluorinated ethylene propylene (FEP) and poly(tetrafluoroethylene) (PTFE) play an important role in many applications due to their many desirable properties such as chemical resistivity, inertness, electrical stability and low dielectric constant; however, one disadvantage of fluorinated polymers is their extreme surface hydrophobicity. Previous studies show that plasma treatment will modify the surface by increasing the surface free energy and also offer a rapid and convenient method for pre-treating the polymers for many purposes. This paper, through resistivity and XPS (x-ray photoelectron spectroscopy) measurements, attempts to discover basic effects of such plasma treatment. Fluorinated ethylene propylene (FEP) co-polymer film of (0.05) mm thickness (obtained commercially) and with the following structure (CF 2 -CF 2 )-(CF(CF 3 )CF 2 )- was used. A suitable cleaning procedure was used to remove adventitious carbon from the surface. XPS has been used to study FEP film properties. The spectra of XPS were analyzed with the main focus on carbon and fluorine as they compose the elemental component of FEP film. A value of 2.05 was obtained for the F/C ratio, which is slightly higher than the theoretical F/C value estimated from the chemical structure of FEP (F/C 2). The clean film was then air plasma treated (pressure 10 -1 torr and power 30W) for various treatment times to produce a higher energy fluoropolymer surface. XPS studies investigated changes to the polymer surface and determined that oxidation occurs on the FEP surface. The oxidation reactions on the FEP surface form oxygen functional groups such as C-O and C=O groups. The results also show that the percentage of CF 2 and CF 3 in the co-polymer surface decreased with exposure time and the percentage of CF, C-C, C-O and C=O increased. There is a sharp decrease in F/C ratio and increase in O/C ratio. In addition to XPS, the resistivity of FEP-film was measured by a

  19. In-situ spectroscopic erosion yield measurement with applications to sputtering and surface morphology alterations

    International Nuclear Information System (INIS)

    Leung, W.K.; Hirooka, Y.; Conn, R.W.; Goebel, D.M.; Labombard, B.; Nygren, R.

    1988-01-01

    An in-situ spectroscopic erosion yield measurement is developed and used to monitor material surface erosion during bombardment by a plasma. The experiments are performed in a plasma that has the characteristics of a fusion tokamak boundary plasma but the technique is applicable to many processes where plasma erosion is important. Erosion yield of materials bombarded in a high flux (up to 10 18 ion/cm 2 /s) plasma environment has been previously studies using weight loss measurements. In the present study, the sputtered flux from a material is monitored by the line emission intensities of atoms eroded from the surface. The line intensities can be used to infer erosion yields after proper calibration. The method agrees well with results from weight loss measurements. Earlier work established that the material surface structure can substantially influence the erosion yield. When a change of surface morphology (e.g., cone formation) occurs, weight loss methods cannot be used to determine the erosion yield. However, the in-situ erosion measurement is suitable and is used to investigate the relation between the on-set of morphology changes and alternations in erosion yield during plasma bombardment. Experiments are reported for copper, as an example of a pure material, and stainless steel, as an example of an alloy system. The formation of surface cones is observed only when both the sample temperature is above a critical value and surface impurities exist. If the source of impurities is removed, or the sample temperature is lowered below the critical value, a surface rough with cones will be returned to a smooth state

  20. An in-situ spectroscopic erosion yield measurement with applications to sputtering and surface morphology alterations

    International Nuclear Information System (INIS)

    Leung, W.K.; Hirooka, Y.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Nygren, R.

    1988-07-01

    An in-situ spectroscopic erosion yield measurement is developed and used to monitor material surface erosion during bombardment by a plasma. The experiments are performed in a plasma that has the characteristics of a fusion tokamak boundary plasma but the technique is applicable to many processes where plasma erosion is important. Erosion yield of materials bombarded in a high flux (up to 10 18 ion/cm 2 /s) plasma environment has been previously studied using weight loss measurements. In the present study, the sputtered flux from a material is monitored by the line emission intensities of atoms eroded from the surface. The line intensities can be used to infer erosion yields after proper calibration. The method agrees well with results from weight loss measurements. Earlier work established that the material surface structure can substantially influence the erosion yield. When a change of surface morphology (e.g. cone formation) occurs, weight loss methods cannot be used to determine the erosion yield. However, the in-situ erosion measurement is suitable and is used to investigate the relation between the on-set of morphology changes and alternations in erosion yield during plasma bombardment. Experiments are reported for copper, as an example of pure material, and stainless steel, as a example of an alloy system. The formation of surface cones is observed only when both the sample temperature is above a critical value and surface impurities exist. If the source of impurities is removed, or the sample temperature is lowered below the critical values, a surface rough with cones will be returned to smooth state. 20 refs., 10 figs

  1. In situ spectroscopic erosion yield measurement with applications to sputtering and surface morphology alterations

    International Nuclear Information System (INIS)

    Leung, W.K.; Hirooka, Y.; Conn, R.W.; Goebel, D.M.; Labombard, B.; Nygren, R.

    1989-01-01

    An in situ spectroscopic erosion yield measurement is developed and used to monitor material surface erosion during bombardment by a plasma. The experiments are performed in a plasma that has the characteristics of a fusion tokamak boundary plasma but the technique is applicable to many processes where plasma erosion is important. Erosion yield of materials bombarded in a high flux (up to 10 18 ion/cm 2 s) plasma environment has been previously studied using weight loss measurements. In the present study, the sputtered flux from a material is monitored by the line emission intensities of atoms eroded from the surface. The line intensities can be used to infer erosion yields after proper calibration. The method agrees well with results from weight loss measurements. Earlier work established that the material surface structure can substantially influence the erosion yield. When a change of surface morphology (e.g., cone formation) occurs, weight loss methods cannot be used to determine the erosion yield. However, the in situ erosion measurement is suitable and is used to investigate the relation between the onset of morphology changes and alternations in erosion yield during plasma bombardment. Experiments are reported for copper, as an example of a pure material, and stainless steel, as an example of an alloy system. The formation of surface cones is observed only when both the sample temperature is above a critical value and surface impurities exist. If the source of impurities is removed, or the sample temperature is lowered below the critical value, a surface rough with cones will be returned to a smooth state

  2. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    Science.gov (United States)

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  3. Surface dose measurement with Gafchromic EBT3 film for intensity modulated radiotherapy technique

    Science.gov (United States)

    Akbas, Ugur; Kesen, Nazmiye Donmez; Koksal, Canan; Okutan, Murat; Demir, Bayram; Becerir, Hatice Bilge

    2017-09-01

    Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.

  4. Determination of the transfer function for optical surface topography measuring instruments—a review

    Science.gov (United States)

    Foreman, Matthew R.; Giusca, Claudiu L.; Coupland, Jeremy M.; Török, Peter; Leach, Richard K.

    2013-05-01

    A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements.

  5. Determination of the transfer function for optical surface topography measuring instruments—a review

    International Nuclear Information System (INIS)

    Foreman, Matthew R; Török, Peter; Giusca, Claudiu L; Leach, Richard K; Coupland, Jeremy M

    2013-01-01

    A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements. (topical review)

  6. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Shuai; Hu, Peng-Cheng, E-mail: hupc@hit.edu.cn; Ding, Xue-Mei, E-mail: X.M.Ding@outlook.com; Tan, Jiu-Bin [Harbin Institute of Technology, D-403 Science Park, 2 Yikuang Street, Harbin 150080 (China)

    2016-08-15

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibration show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer’s effectiveness for determination of the posture of a reflective surface.

  7. A fiber-coupled displacement measuring interferometer for determination of the posture of a reflective surface

    Science.gov (United States)

    Mao, Shuai; Hu, Peng-Cheng; Ding, Xue-Mei; Tan, Jiu-Bin

    2016-08-01

    A fiber-coupled displacement measuring interferometer capable of determining of the posture of a reflective surface of a measuring mirror is proposed. The newly constructed instrument combines fiber-coupled displacement and angular measurement technologies. The proposed interferometer has advantages of both the fiber-coupled and the spatially beam-separated interferometer. A portable dual-position sensitive detector (PSD)-based unit within this proposed interferometer measures the parallelism of the two source beams to guide the fiber-coupling adjustment. The portable dual PSD-based unit measures not only the pitch and yaw of the retro-reflector but also measures the posture of the reflective surface. The experimental results of displacement calibration show that the deviations between the proposed interferometer and a reference one, Agilent 5530, at two different common beam directions are both less than ±35 nm, thus verifying the effectiveness of the beam parallelism measurement. The experimental results of angular calibration show that deviations of pitch and yaw with the auto-collimator (as a reference) are less than ±2 arc sec, thus proving the proposed interferometer's effectiveness for determination of the posture of a reflective surface.

  8. BOOK REVIEW: Relativistic Figures of Equilibrium

    Science.gov (United States)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  9. Discharge Onset Voltage Prediction for a Gas-Insulated System Via the Figure-of-Merit Concept

    DEFF Research Database (Denmark)

    Crichton, George C; Vibholm, Svend

    1987-01-01

    The accuracy of discharge onset prediction via thefigur figure-of-merit concept for a strongly electronegative gas is examined. A coaxial system is employed, for which the inner electrode possesses a surface roughness of Ra=35 ¿m. With SF6 as the insulating medium a reference discharge-onset cha......The accuracy of discharge onset prediction via thefigur figure-of-merit concept for a strongly electronegative gas is examined. A coaxial system is employed, for which the inner electrode possesses a surface roughness of Ra=35 ¿m. With SF6 as the insulating medium a reference discharge...

  10. Michelangelo, Leibniz and the Serpentine Figure

    NARCIS (Netherlands)

    S. Tuinen (Sjoerd)

    2011-01-01

    textabstractAbstract In his lectures from 1987, Deleuze draws an analogy between Michelangelo‟s figures and Leibnizian substances by claiming that neither are essences but rather sources of modifications or manners of being. The best way to explore this analogy, I argue, is by focusing on

  11. The Offerings of Fringe Figures and Migrants

    Science.gov (United States)

    Engels-Schwarzpaul, A.-Chr.

    2015-01-01

    "The Western tradition", as passe-partout, includes fringe figures, émigrés and migrants. Rather than looking to resources at the core of the Western tradition to overcome its own blindnesses, I am more interested in its gaps and peripheries, where other thoughts and renegade knowledges take hold. It is in the contact zones with…

  12. Photovoltaic power production figures in 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Worldwide figures of photovoltaic power production (in Mw) along 1992 are presented. Worldwide production of modules per manufacturing technology and per manufacturing companies in Europe, USA and Japan are provided as well. The review has used the following sources: ''PV News'', ''PV insider's report'' and ''systems solars''. (Author)

  13. Participation in the Figured World of Graffiti

    Science.gov (United States)

    Valle, Imuris; Weiss, Eduardo

    2010-01-01

    This article is based on ethnographic work with two "crews" of young graffiti artists in southern Mexico City. The crews share certain characteristics with gangs or urban tribes, but more with "communities of practice": they live in the "figured world" of graffiti, a community of practice at the local and global…

  14. Engine classification using vibrations measured by Laser Doppler Vibrometer on different surfaces

    Science.gov (United States)

    Wei, J.; Liu, Chi-Him; Zhu, Zhigang; Vongsy, Karmon; Mendoza-Schrock, Olga

    2015-05-01

    In our previous studies, vehicle surfaces' vibrations caused by operating engines measured by Laser Doppler Vibrometer (LDV) have been effectively exploited in order to classify vehicles of different types, e.g., vans, 2-door sedans, 4-door sedans, trucks, and buses, as well as different types of engines, such as Inline-four engines, V-6 engines, 1-axle diesel engines, and 2-axle diesel engines. The results are achieved by employing methods based on an array of machine learning classifiers such as AdaBoost, random forests, neural network, and support vector machines. To achieve effective classification performance, we seek to find a more reliable approach to pick authentic vibrations of vehicle engines from a trustworthy surface. Compared with vibrations directly taken from the uncooperative vehicle surfaces that are rigidly connected to the engines, these vibrations are much weaker in magnitudes. In this work we conducted a systematic study on different types of objects. We tested different types of engines ranging from electric shavers, electric fans, and coffee machines among different surfaces such as a white board, cement wall, and steel case to investigate the characteristics of the LDV signals of these surfaces, in both the time and spectral domains. Preliminary results in engine classification using several machine learning algorithms point to the right direction on the choice of type of object surfaces to be planted for LDV measurements.

  15. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  16. Waste-surface mapping of the Fernald K-65 silos using a structured light measurement system

    International Nuclear Information System (INIS)

    Burks, B.L.; DePiero, F.W.; Dinkins, M.A.; Rowe, J.C.; Selleck, C.B.; Jacoboski, D.L.

    1992-10-01

    A remotely operated surface-mapping measurement system was developed by the Robotics ampersand Process Systems Division at Oak Ridge National Laboratory for use in the K-65 waste-storage silos at Fernald, Ohio. The mapping system used three infrared line-generating laser diodes as illumination sources and three high-resolution, low-lux, calibrated, black-and-white, charge-coupled-device video cameras as receivers. These components were combined to form structured light source range and direction sensors with six different possible emitter-receiver pairs. A technology demonstration and predeployment tests were performed at Fernald using the empty Silo 4 into which was placed rectangular objects of known dimensions. These objects were scanned by the structured light sources to demonstrate functionality and verify that the system was giving sufficiently accurate range data in three dimensions. The structured light sources were deployed in Silos 1 and 2 to scan the waste surfaces. The resulting data were merged to create three-dimensional maps of those surfaces. A bentonite clay cap was placed over the waste surfaces and surface maps were obtained. The change in surface height before and after bentonite addition was utilized as a measure of clay cap thickness

  17. Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution

    International Nuclear Information System (INIS)

    Giusca, Claudiu L; Leach, Richard K

    2013-01-01

    Calibration of the scales of areal surface topography measuring instruments requires testing of the resolution. Several designs of artefact that allow testing of the resolution of such instruments are currently available; however, analysis methods need to be developed to provide comparable results. A novel method for determining the lateral resolution of areal surface topography measuring instruments is presented. The method uses a type ASP (star-shaped) material measure. To demonstrate the validity of the method, the resolution of a phase shifting interferometer was determined based on the ISO definition of the lateral period limit. Using the proposed method, the type ASP material measure, which is often used to judge qualitatively an instrument's resolution, can be used to quantitatively estimate the resolution of instruments using the topography data. (paper)

  18. Surface-sensitive conductivity measurement using a micro multi-point probe approach

    DEFF Research Database (Denmark)

    Perkins, Edward; Barreto, Lucas; Wells, Justin

    2013-01-01

    measurements with an equidistant four-point probe for a wide range of contact spacings. In this way, it is possible to distinguish between bulk-like and surface-like conduction. The paper describes the design of the instrument and the approach to data and error analysis. Application examples are given......An instrument for microscale electrical transport measurements in ultra-high vacuum is presented. The setup is constructed around collinear lithographically-created multi-point probes with a contact spacing down to 500 nm. Most commonly, twelve-point probes are used. These probes are approached...... to the surface via piezoelectric positioners. Standard four-point resistance measurements can be performed using any combination of contacts out of the twelve available. Current/voltage measurements are taken semi-automatically for a variety of the possible contact configurations, effectively emulating...

  19. "Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine"

    Science.gov (United States)

    Ding, Carl-Philipp; Honza, Rene; Böhm, Benjamin; Dreizler, Andreas

    2017-04-01

    This paper shows the results of spatially resolved temperature measurements of the piston surface of an optically accessible direct injection spark ignition engine during flame impingement. High-speed thermographic phosphor thermometry (TPT), using Gd3Ga5O12:Cr,Ce, and planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) were used to investigate the temperature increase and the time and position of flame impingement at the piston surface. Measurements were conducted at two operating cases and showed heating rates of up to 16,000 K/s. The OH-PLIF measurements were used to localize flame impingement and calculate conditioned statistics of the temperature profiles. The TPT coating was characterized and its influence on the temperature measurements evaluated.

  20. Standard Test Method for Measuring Heat Flux Using Surface-Mounted One-Dimensional Flat Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C 518 and Practices C 1041 and C 1046. The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier’s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface (1). Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical en...

  1. A COST-EFFECTIVE METHOD FOR CRACK DETECTION AND MEASUREMENT ON CONCRETE SURFACE

    Directory of Open Access Journals (Sweden)

    M. M. Sarker

    2017-11-01

    Full Text Available Crack detection and measurement in the surface of concrete structures is currently carried out manually or through Non-Destructive Testing (NDT such as imaging or scanning. The recent developments in depth (stereo cameras have presented an opportunity for cost-effective, reliable crack detection and measurement. This study aimed at evaluating the feasibility of the new inexpensive depth camera (ZED for crack detection and measurement. This depth camera with its lightweight and portable nature produces a 3D data file of the imaged surface. The ZED camera was utilized to image a concrete surface and the 3D file was processed to detect and analyse cracks. This article describes the outcome of the experiment carried out with the ZED camera as well as the processing tools used for crack detection and analysis. Crack properties that were also of interest were length, orientation, and width. The use of the ZED camera allowed for distinction between surface and concrete cracks. The ZED high-resolution capability and point cloud capture technology helped in generating a dense 3D data in low-lighting conditions. The results showed the ability of the ZED camera to capture the crack depth changes between surface (render cracks, and crack that form in the concrete itself.

  2. a Cost-Effective Method for Crack Detection and Measurement on Concrete Surface

    Science.gov (United States)

    Sarker, M. M.; Ali, T. A.; Abdelfatah, A.; Yehia, S.; Elaksher, A.

    2017-11-01

    Crack detection and measurement in the surface of concrete structures is currently carried out manually or through Non-Destructive Testing (NDT) such as imaging or scanning. The recent developments in depth (stereo) cameras have presented an opportunity for cost-effective, reliable crack detection and measurement. This study aimed at evaluating the feasibility of the new inexpensive depth camera (ZED) for crack detection and measurement. This depth camera with its lightweight and portable nature produces a 3D data file of the imaged surface. The ZED camera was utilized to image a concrete surface and the 3D file was processed to detect and analyse cracks. This article describes the outcome of the experiment carried out with the ZED camera as well as the processing tools used for crack detection and analysis. Crack properties that were also of interest were length, orientation, and width. The use of the ZED camera allowed for distinction between surface and concrete cracks. The ZED high-resolution capability and point cloud capture technology helped in generating a dense 3D data in low-lighting conditions. The results showed the ability of the ZED camera to capture the crack depth changes between surface (render) cracks, and crack that form in the concrete itself.

  3. Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials

    Science.gov (United States)

    Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.

    2004-01-01

    Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896

  4. INFORMATIONAL MODEL OF MENTAL ROTATION OF FIGURES

    Directory of Open Access Journals (Sweden)

    V. A. Lyakhovetskiy

    2016-01-01

    Full Text Available Subject of Study.The subject of research is the information structure of objects internal representations and operations over them, used by man to solve the problem of mental rotation of figures. To analyze this informational structure we considered not only classical dependencies of the correct answers on the angle of rotation, but also the other dependencies obtained recently in cognitive psychology. Method.The language of technical computing Matlab R2010b was used for developing information model of the mental rotation of figures. Such model parameters as the number of bits in the internal representation, an error probability in a single bit, discrete rotation angle, comparison threshold, and the degree of difference during rotation can be changed. Main Results.The model reproduces qualitatively such psychological dependencies as the linear increase of time of correct answers and the number of errors on the angle of rotation for identical figures, "flat" dependence of the time of correct answers and the number of errors on the angle of rotation for mirror-like figures. The simulation results suggest that mental rotation is an iterative process of finding a match between the two figures, each step of which can lead to a significant distortion of the internal representation of the stored objects. Matching is carried out within the internal representations that have no high invariance to rotation angle. Practical Significance.The results may be useful for understanding the role of learning (including the learning with a teacher in the development of effective information representation and operations on them in artificial intelligence systems.

  5. Using IR-measured soil surface temperatures to estimate hydraulic properties of the top soil layer

    Science.gov (United States)

    Steenpass, Christian; Vanderborght, Jan; Herbst, Michael; Simunek, Jirka; Vereecken, Harry

    2010-05-01

    The temporal and spatial development of soil surface temperatures (SST) depends on water availability in the near-surface soil layer. Since the soil loses latent heat during evaporation and water available for evaporation depends on soil hydraulic properties (SHP), the temporal variability of SST should contain information about the near-surface SHP. This study was conducted to investigate the information content of soil surface temperatures for estimation of soil hydraulic properties and their uncertainties, and to determine the effect of soil tillage on near-surface SHP. A hydrological model (HYDRUS-1D) coupled with a global optimizer (DREAM) was used to inversely estimate the van Genuchten-Mualem parameters of SHP from infra-red measured SST and TDR-measured water contents. The general applicability of this approach was tested using synthetic data. The same approach was then applied to a real data set, which was collected during September 2008 in Selhausen, Germany. The synthetic data set was generated using HYDRUS-1D for the same initial and boundary conditions and measurement protocol as the real data set. Using synthetic and real data it was found that although estimated SHP are sensitive to SST, their estimates are relatively uncertain when only information about SST is used. These uncertainties can be reduced by additionally considering also measured soil water contents. A comparison of SHP determined in the laboratory on undisturbed soil samples with those estimated from SST and TDR data measured in a harrowed soil showed similar results for the deeper undisturbed soil and large differences for the harrowed part of the soil profile. This shows the important effect of soil tillage on soil hydraulic properties. Application of the method in the field to characterize the hydraulic properties of the upper soil layer may reduce the amount of needed in-soil measurements and therefore allows larger scale observations.

  6. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  7. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets.

    Science.gov (United States)

    Kremer, J; Kilzer, A; Petermann, M

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  8. Topological sectors and measures on moduli space in quantum Yang-Mills on a Riemann surface

    Science.gov (United States)

    Fine, Dana Stanley

    1996-03-01

    Previous path integral treatments of Yang-Mills on a Riemann surface automatically sum over principal fiber bundles of all possible topological types in computing quantum expectations. This paper extends the path integral formulation to treat separately each topological sector. The formulation is sufficiently explicit to calculate Wilson line expectations exactly. Further, it suggests two new measures on the moduli space of flat connections, one of which proves to agree with the small-volume limit of the Yang-Mills measure.

  9. On the discrepancy in measurement of Q using surface waves and normal modes

    Science.gov (United States)

    Meschede, M.; Romanowicz, B. A.

    2012-12-01

    We revisit the decade-old unsolved problem of why measurements of the quality factor (Q) for fundamental mode propagating Rayleigh waves differs by up to 20% from that measured using normal modes, in the frequency band where both approaches are possible. Surface wave measurements consistently yield lower Q values than modes. Since it is unclear which measurement is more accurate, this is currently a limitation on the resolution of 1D average Q profiles in the Earth, compounded by the fact that the measurement bias may not only affect the region of the spectrum where both methods are available but every Q measurement that is based upon one or the other of the mentioned techniques. We investigate the effect of elastic focussing and defocussing on long time series using a spectral element method that we have shown to be accurate enough for the relevant period ranges and the necessarily long time series. While previous investigations are based upon approximate methods that are only valid for smooth 3D models and weak heterogeneities, the SEM allows us to estimate the effect of more realistic distributions of heterogeneities on amplitude measurements, and therefore Q. Our investigations show a bias towards lower Q in the first arriving surface wave trains and a bias towards higher Q in later arrivals which could explain the mode surface-wave discrepancy. Heuristically this can be explained by the fact that energy that has been scattered off the great circle path is brought back into the great circle after multiple-orbits, leading to increased amplitude in late arrivals. Further we reinvestigate the effects of noise that predominantly influences the later part of the seismogram, the effect of post-processing as well as mode amplitude modulations that could potentially bias the measurements. We plan to present preliminary results on applying our insights to debias real data and reduce the error bounds on 1D Q models from normal modes and surface waves.

  10. The Surface Measurement of Fibre Orientation Anisotropy and Misalignment Angle by Laser Diffraction

    OpenAIRE

    Pereira, Mário José Teixeira; Fiadeiro, Paulo Torrão; Jesus, M. E. P.; Silvy, Jacques

    2010-01-01

    The dimensional stability in fibre webs mainly depends of the fibre anisotropy and its orientation on the surfaces. These parameters are influenced during the manufacturing process, where the length and type of the fibres is determinant. The web quality control, in general, is performed based on the measurement of these parameters in the bulk of the fibre webs. This paper presents an optical laser diffraction method to measure the fibre anisotropy and the fibre orientation distribution only a...

  11. Infrared polarisation measurements of surface and buried anti-personnel landmines

    OpenAIRE

    Cremer, F.; Jong, W. de; Schutte, K.

    2001-01-01

    Linear polarisation of Thermal InfraRed (TIR) radiation occurs whenever radiation is reflected or emitted from a smooth surface (such as the top of a landmine) and observed from a grazing angle. The background (soil and vegetation) is generally much rougher and therefore has less pronounced linear polarised radiation. This difference in polarisation can be used to enhanced detection of land mines using TIR cameras. A measurement setup is constructed for measurement of polarised TIR images. Th...

  12. Measurement of the body surface temperature by the method of laser photothermal radiometry

    International Nuclear Information System (INIS)

    Skvortsov, L A; Kirillov, V M

    2003-01-01

    The specific features of contactless measurements of the body surface temperature by the method of repetitively pulsed laser photothermal radiometry are considered and the requirements to the parameters of the laser and measurement scheme are formulated. The sensitivity of the method is estimated. The advantages of laser photothermal radiometry over the conventional passive radiometric method are discussed. (laser applications and other topics in quantum electronics)

  13. Influence and modelling of view angles and microrelief on surface temperature measurements of bare agricultural soils

    Science.gov (United States)

    Verbrugghe, Michel; Cierniewski, Jerzy

    The exploitation of remote sensing instruments with large fields of view necessarily implies the analysis of instruments acquired over a wide variety of viewing geometries. The purpose of this study is to underline the effects of view angles and microrelief on the directional surface temperature measurements of cultivated bare soils. A campaign of measurements was carried out at Poznan (Poland) in April 1995. The directional temperatures were measured on a furrowed sandy soil. The measurements were acquired at ground level with a radiothermometer in the 8-14 μm band. The radiothermometer was fixed on a special goniometric support 2.1 m above the soil surface and was directed at the soil with view zenith angles varying from -60° to +60° by steps of 10°. The data were collected for solar zenith angles ranging from 40.2° to 62.3°. In the experiment, for a given sun position, the difference between oblique and nadir measurements could reach 6°C. A model aimed at explaining the variations of the surface temperature measurements of furrowed soil in relation to its viewing conditions is presented. This model requires the precise soil microrelief geometry configuration, the illumination and viewing conditions of the surface and the radiative temperatures of the shaded and sunlit soil facets. The results show a good correlation between the predicted and the measured data. This type of modelling can be used to correct radiative temperature measurements of soils from view angles and soil microrelief geometry effects.

  14. Measuring 3-dimensional tooth movement with a 3-dimensional surface laser scanner

    OpenAIRE

    Thiruvenkatachari, Badri; Al-Abdallah, Mariam; Akram, Noreen C.; Sandler, Jonathan; O'Brien, Kevin

    2009-01-01

    Introduction: Our aims in this study were to (1) develop a method of measuring 3-dimensional (3D) tooth movement using a 3D surface laser scanner, (2) test the accuracy of this method, and (3) compare the measurements with those from cephalometric radiographs. Methods: A method of superimposing pretreatment and posttreatment models on the palatal rugae was developed, and an experimental model was prepared to evaluate the accuracy and reliability of the laser scanner. Records were obtained fro...

  15. Evaluation of surface contamination based on certifiably traceable, internationally accreditable measurements

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1992-01-01

    National Accreditation and Measurement Service (NAMAS) adopted by the EUROMET agreement requires that the calibration of monitoring instruments be traceable internationally with the objective that radiation hazard assessment be improved. This objective is achieved for Tritium surface contamination by employing calibration sources and evaluation methods which comply with ISO standards including the measurement of activity removable by Volatilization as well as dust. Consideration should be given to organic binding of tritium in the skin with its implications in the event of litigation. (author)

  16. Experimental analysis on removal factor of smear method in measurement of surface contamination

    International Nuclear Information System (INIS)

    Sugiura, Nobuyuki; Taira, Junichi; Takenaka, Keisuke; Yamanaka, Kazuo; Sugai, Kenji; Kosako, Toshiso

    2007-01-01

    The smear test is one of the important ways to measure surface contamination. The loose contamination under the high background radiation, which is more significant in handling non-sealed radioisotopes, can be evaluated by this method. The removal factor is defined as the ratio of the activity removed from the surface by one smear to the whole activity of the removable surface contamination. The removal factor is greatly changed by the quality and condition of surface materials. In this study, the values of removal factor at several typical surface conditions were evaluated experimentally and the practical application of those values was considered. It is required the smear should be pressed by moderate pressure when wiping the surface. The pressure from 1.0 kg to 1.5 kg per filter paper was recommended. The removal factor showed lower value in wiping by the pressure below 1.0 kg. The value of 0.5 for the removal factor could be applied to the smooth surface of linoleum, concrete coated with paint or epoxy resin, stainless steel and glass with the statistical allowance. (author)

  17. Direct measurement of colloidal interactions between polyaniline surfaces in a uv-curable coating formulation

    DEFF Research Database (Denmark)

    Jafarzadeh, Shadi; Claesson, Per M.; Pan, Jinshan

    2014-01-01

    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteri......The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different...... cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast...

  18. Laser pulse transient method for measuring the normal spectral emissivity of samples with arbitrary surface quality

    Science.gov (United States)

    Jeromen, A.; Grabec, I.; Govekar, E.

    2008-09-01

    A laser pulse transient method for measuring normal spectral emissivity is described. In this method, a laser pulse ( λ=1064 nm) irradiates the top surface of a flat specimen. A two-dimensional temperature response of the bottom surface is measured with a calibrated thermographic camera. By solving an axisymmetric boundary value heat conduction problem, the normal spectral emissivity at 1064 nm is determined by using an iterative nonlinear least-squares estimation procedure. The method can be applied to arbitrary sample surface quality. The method is tested on a nickel specimen and used to determine the normal spectral emissivity of AISI 304 stainless steel. The expanded combined uncertainty of the method has been estimated to be 18%.

  19. On the attempts to measure water (and other volatiles) directly at the surface of a comet

    Science.gov (United States)

    Wright, I. P.; Sheridan, S.; Morgan, G. H.; Barber, S. J.; Morse, A. D.

    2017-04-01

    The Ptolemy instrument on the Philae lander (of the Rosetta space mission) was able to make measurements of the major volatiles, water, carbon monoxide and carbon dioxide, directly at the surface of comet 67P/Churyumov-Gerasimenko. We give some background to the mission and highlight those instruments that have already given insights into the notion of water in comets, and which will continue to do so as more results are either acquired or more fully interpreted. On the basis of our results, we show how comets may in fact be heterogeneous over their surface, and how surface measurements can be used in a quest to comprehend the daily cycles of processes that affect the evolution of comets. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  20. Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons.

    Science.gov (United States)

    Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J

    2015-01-01

    We demonstrate that thermoelectric properties of graphene nanoribbons can be dramatically improved by introducing nanopores. In monolayer graphene, this increases the electronic thermoelectric figure of merit ZT e from 0.01 to 0.5. The largest values of ZT e are found when a nanopore is introduced into bilayer graphene, such that the current flows from one layer to the other via the inner surface of the pore, for which values as high as ZT e = 2.45 are obtained. All thermoelectric properties can be further enhanced by tuning the Fermi energy of the leads.