WorldWideScience

Sample records for surface features assist

  1. Feature sensitive multiscale editing on surfaces

    NARCIS (Netherlands)

    Clarenz, U.; Griebel, M.; Rumpf, M.; Schweitzer, M.A.; Telea, A.

    2004-01-01

    A novel editing method for large triangular meshes is presented. We detect surface features, such as edge and corners, by computing local zero and first surface moments, using a robust and noise resistant method. The feature detection is encoded in a finite element matrix, passed to an algebraic

  2. Robust Features Of Surface Electromyography Signal

    International Nuclear Information System (INIS)

    Sabri, M I; Miskon, M F; Yaacob, M R

    2013-01-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20–27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and

  3. Robust Features Of Surface Electromyography Signal

    Science.gov (United States)

    Sabri, M. I.; Miskon, M. F.; Yaacob, M. R.

    2013-12-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20-27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and show

  4. Surface characterization based upon significant topographic features

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, J; Grime, D; Blateyron, F, E-mail: fblateyron@digitalsurf.fr [Digital Surf, 16 rue Lavoisier, F-25000 Besancon (France)

    2011-08-19

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  5. Surface characterization based upon significant topographic features

    International Nuclear Information System (INIS)

    Blanc, J; Grime, D; Blateyron, F

    2011-01-01

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  6. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  7. Parallel optical trap assisted nanopatterning on rough surfaces

    International Nuclear Information System (INIS)

    Tsai, Y-C; Fardel, R; Arnold, C B; Leitz, K-H; Schmidt, M; Otto, A

    2012-01-01

    There exist many optical lithography techniques for generating nanostructures on hard, flat surfaces over large areas. However, few techniques are able to create such patterns on soft materials or surfaces with pre-existing structure. To address this need, we demonstrate the use of parallel optical trap assisted nanopatterning (OTAN) to provide an efficient and robust direct-write method of producing nanoscale features without the need for focal plane adjustment. Parallel patterning on model surfaces of polyimide with vertical steps greater than 1.5 µm shows a feature size uncertainty better than 4% across the step and lateral positional accuracy of 25 nm. A Brownian motion model is used to describe the positional accuracy enabling one to predict how variation in system parameters will affect the nanopatterning results. These combined results suggest that OTAN is a viable technique for massively parallel direct-write nanolithography on non-traditional surfaces. (paper)

  8. Surrogate-assisted feature extraction for high-throughput phenotyping.

    Science.gov (United States)

    Yu, Sheng; Chakrabortty, Abhishek; Liao, Katherine P; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2017-04-01

    Phenotyping algorithms are capable of accurately identifying patients with specific phenotypes from within electronic medical records systems. However, developing phenotyping algorithms in a scalable way remains a challenge due to the extensive human resources required. This paper introduces a high-throughput unsupervised feature selection method, which improves the robustness and scalability of electronic medical record phenotyping without compromising its accuracy. The proposed Surrogate-Assisted Feature Extraction (SAFE) method selects candidate features from a pool of comprehensive medical concepts found in publicly available knowledge sources. The target phenotype's International Classification of Diseases, Ninth Revision and natural language processing counts, acting as noisy surrogates to the gold-standard labels, are used to create silver-standard labels. Candidate features highly predictive of the silver-standard labels are selected as the final features. Algorithms were trained to identify patients with coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis using various numbers of labels to compare the performance of features selected by SAFE, a previously published automated feature extraction for phenotyping procedure, and domain experts. The out-of-sample area under the receiver operating characteristic curve and F -score from SAFE algorithms were remarkably higher than those from the other two, especially at small label sizes. SAFE advances high-throughput phenotyping methods by automatically selecting a succinct set of informative features for algorithm training, which in turn reduces overfitting and the needed number of gold-standard labels. SAFE also potentially identifies important features missed by automated feature extraction for phenotyping or experts. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please

  9. New Operator Assistance Features in the CMS Run Control System

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.M.; et al.

    2017-11-22

    During Run-1 of the LHC, many operational procedures have been automated in the run control system of the Compact Muon Solenoid (CMS) experiment. When detector high voltages are ramped up or down or upon certain beam mode changes of the LHC, the DAQ system is automatically partially reconfigured with new parameters. Certain types of errors such as errors caused by single-event upsets may trigger an automatic recovery procedure. Furthermore, the top-level control node continuously performs cross-checks to detect sub-system actions becoming necessary because of changes in configuration keys, changes in the set of included front-end drivers or because of potential clock instabilities. The operator is guided to perform the necessary actions through graphical indicators displayed next to the relevant command buttons in the user interface. Through these indicators, consistent configuration of CMS is ensured. However, manually following the indicators can still be inefficient at times. A new assistant to the operator has therefore been developed that can automatically perform all the necessary actions in a streamlined order. If additional problems arise, the new assistant tries to automatically recover from these. With the new assistant, a run can be started from any state of the sub-systems with a single click. An ongoing run may be recovered with a single click, once the appropriate recovery action has been selected. We review the automation features of CMS Run Control and discuss the new assistant in detail including first operational experience.

  10. A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Hsin-Min Lee

    2017-01-01

    Full Text Available Focusing on the feature of porosity in bamboo charcoal, this study applies the ultrasonic-assisted vibration method to perform surface polishing of the silicon wafer workpiece. The self-developed bamboo charcoal polishing spindle and ultrasonic- assisted vibration mechanism are attached to a single lapping machine. In the machining process, ultrasonic vibration enables the diamond slurry to smoothly pass through the microscopic holes of bamboo charcoal; the end of the bamboo charcoalis able to continue machining on the surface of the workpiece through the grasping force which exists in the microscopic holes. Under the polishing and machining parameters of ultrasonic-assisted vibration, with a diamond slurry concentration of 0.3%, the experimental results show a polishing time of 20 min, a loading of 25 N on the workpiece surface, a spindle speed of 1200 rpm, a vibration frequency of 30 kHz and the original surface roughness value of Ra 0.252 μm equals that of a mirror-like surface at Ra 0.017 μm. These research results prove that by using bamboo charcoal and ultrasonic-assisted vibration for polishing, a very good improvement can be achieved on the workpiece surface.

  11. Assist feature printability prediction by 3-D resist profile reconstruction

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-06-01

    Sub-resolution Assist Features (SRAFs) are powerful tools to enhance the focus margin of drawn patterns. SRAFs are placed and sized so they do not print on the wafer, but the larger the SRAF, the more effective it becomes at enhancing through-focus stability. The size and location of an SRAF that will image on a wafer is highly dependent upon neighboring patterns and models of SRAF printability are, at present, unreliable. Model-based SRAF placement has been used to enhance resolution at 20nm node processes and below with stringent requirements that inserted SRAFs will not be imaged on wafer. However, despite widespread SRAF use and hard data as to SRAF effectiveness, it has been very difficult to develop a process model that accurately predicts under what process conditions an SRAF will image on a wafer. More accurate models of SRAF printing should allow model based SRAF placement to be relaxed, resulting in more effective SRAF placement and broader focus margins. One of the first problems with the concept of SRAF printability is the definition of an SRAF printing on a wafer. This is not obvious because two different states of printing exist. The first print state is when a residue is left on a wafer from the SRAF. The first state can be considered printing from the point of view that photoresist is on the wafer and the photoresist may even lift off and cause defects. However, the first state can be considered non-printing because the over etch from the etch process will generally remove the photoresist residual and the material underneath. The second state is when a pattern is formed and etched into the substrate, a state at which the pattern has clearly printed on the wafer. Of course, intermediate states may also be defined. In order to be applicable, an SRAF printability model must be able to predict both printing states. In addition, the model must be able to extrapolate to configurations beyond those used to develop the model in the first place. These model

  12. Surface-Assisted Dynamic Search Processes.

    Science.gov (United States)

    Shin, Jaeoh; Kolomeisky, Anatoly B

    2018-03-01

    Many chemical and biological systems exhibit intermittent search phenomena when participating particles alternate between dynamic regimes with different dimensionalities. Here we investigate theoretically a dynamic search process of finding a small target on a two-dimensional surface starting from a bulk solution, which is an example of such an intermittent search process. Both continuum and discrete-state stochastic descriptions are developed. It is found that depending on the scanning length λ, which describes the area visited by the reacting molecule during one search cycle, the system can exhibit three different search regimes: (i) For small λ values, the reactant finds the target mostly via three-dimensional bulk diffusion; (ii) for large λ values, the reactant molecule associates to the target mostly via surface diffusion; and (iii) for intermediate λ values, the reactant reaches the target via a combination of three-dimensional and two-dimensional search cycles. Our analysis also shows that the mean search times have different scalings as a function of the size of the surface segment depending on the nature of the dynamic search regime. Search dynamics are also sensitive to the position of the target for large scanning lengths. In addition, it is argued that the continuum description underestimates mean search times and does not always correctly describe the most optimal conditions for the surface-assisted dynamic processes. The importance of our findings for real natural systems is discussed.

  13. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  14. Left ventricular assist device (lvad design features: literature review

    Directory of Open Access Journals (Sweden)

    Yu. V. Bogdanova

    2014-01-01

    Full Text Available More than 8 million people in our country suffer from heart failure. About one million of these people die each year [1]. The problem of ventricular assist device creating - a mechanical device used for partial or complete replacement of heart function - is investigated for a long time (according to [2] just in our country since the 1970s. Today plenty of encouraging results are received. There is a number of VAD models which are successfully applied to patients with heart failure. After implantation, patients conduct a way of life that is normal in many respects: they are in the family, often they have an opportunity to work in their former specialty. Some of them live with the device about 8 years [3].According to [4] for 2010 the estimated total number of long-term devices implanted in the United States per year is over 1,700 (the population of the U.S. is 305 million, compared with over 430 per year in Europe (the population of Europe is 731 million. Unfortunately, people who need a heart transplant are much more.The principle of VAD is that being connected to the left ventricle with one cannula and to the ascending aorta with the other cannula the pump fully or partially replaces the function of the natural heart. This scheme allows the use of VAD in two ways: as a "bridge to transplantation" when the device is used temporarily until the donor heart is found, and a "bridge to recovery", when through the use of VAD the function of the heart muscle is recovered.VAD system can be divided into three subsystems: blood pump, power supply system and control system (Fig. 1.Each subsystem can be the subject of separate study. Special role in the development of VAD plays medical side of the issue. Successful research and development require interaction with qualified professionals in this field. The development of VAD is a multidisciplinary problem which demands fulfilment of a number of requirements.One of the most active programs in implantation of

  15. Ball assisted device for analytical surface sampling

    Science.gov (United States)

    ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R

    2015-11-03

    A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.

  16. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Microstructural features of environmentally assisted cracking in pipeline steel

    International Nuclear Information System (INIS)

    Williams, B.W.; Lambert, S.B.; Zhang, X.; Plumtree, A.; Sutherby, R.

    2003-01-01

    A number of small-scale pipeline specimens containing edge or surface cracks were tested in simulated groundwater (NS4 solution) in an anaerobic environment under cyclic loading conditions. Micrographs of the crack surface showed corrosion fatigue at high frequencies and low R-ratios. Following large amounts of growth (∼200 μm) for those specimens tested at low frequencies, evidence of transgranular quasi-cleavage was detected. Green rust was found to be present at the crack tips and along their flanks. Iron sulfide, resulting from anaerobic sulfate-reducing bacteria and iron carbonate were also present in the NS4 solution during testing. These corrosion products retarded crack growth in the depth direction of surface cracks. Under variable amplitude loadings conditions, the accompanying increased surface crack growth rate can be accounted for by rupture of the green rust film at the crack tip. (author)

  18. Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.

    Science.gov (United States)

    Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene

    2016-03-01

    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

  19. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available . An intelligent mesh morphing strategy where dissimilar feature surfaces can be extracted automatically also greatly reduces the amount of user input required. REFERENCES [1] R. Bryan, P.S. Mohan, A. Hopkins, F. Galloway, M. Taylor and P. Nair, Statitical...

  20. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  1. Representing images using curvilinear feature driven subdivision surfaces.

    Science.gov (United States)

    Zhou, Hailing; Zheng, Jianmin; Wei, Lei

    2014-08-01

    This paper presents a subdivision-based vector graphics for image representation and creation. The graphics representation is a subdivision surface defined by a triangular mesh augmented with color attribute at vertices and feature attribute at edges. Special cubic B-splines are proposed to describe curvilinear features of an image. New subdivision rules are then designed accordingly, which are applied to the mesh and the color attribute to define the spatial distribution and piecewise-smoothly varying colors of the image. A sharpness factor is introduced to control the color transition across the curvilinear edges. In addition, an automatic algorithm is developed to convert a raster image into such a vector graphics representation. The algorithm first detects the curvilinear features of the image, then constructs a triangulation based on the curvilinear edges and feature attributes, and finally iteratively optimizes the vertex color attributes and updates the triangulation. Compared with existing vector-based image representations, the proposed representation and algorithm have the following advantages in addition to the common merits (such as editability and scalability): 1) they allow flexible mesh topology and handle images or objects with complicated boundaries or features effectively; 2) they are able to faithfully reconstruct curvilinear features, especially in modeling subtle shading effects around feature curves; and 3) they offer a simple way for the user to create images in a freehand style. The effectiveness of the proposed method has been demonstrated in experiments.

  2. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  3. Laser-assisted surface cleaning of metallic components

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... for effective utilization of uranium and thorium reserves to fulfill the ever growing need of energy [3]. ... nism of laser-assisted removal of ThO2 particulates off the metal surface and present here results of some ... samples (tungsten ribbon, thoria-contaminated zircaloy metal) were irradiated inside a chamber ...

  4. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  5. Detection of a bright feature on the surface of Betelgeuse

    Energy Technology Data Exchange (ETDEWEB)

    Buscher, D.F.; Baldwin, J.E.; Warner, P.J. (Mullard Radio Astronomy Observatory, Cambridge (UK). Cavendish Lab.); Haniff, C.A. (Palomar Observatory, Pasadena, CA (USA))

    1990-07-01

    We present high-resolution images of the M-supergiant Betelgeuse in 1989 February at wavelengths of 633, 700 and 710 nm, made using the non-redundant masking method. At all these wavelengths, there is unambiguous evidence for an asymmetric feature on the surface of the star, which contributes 10-15 per cent of the total observed flux. This might be due to a close companion passing in front of the stellar disc or, more likely, to large-scale convection in the stellar atmosphere. (author).

  6. Featuring Multiple Local Optima to Assist the User in the Interpretation of Induced Bayesian Network Models

    DEFF Research Database (Denmark)

    Dalgaard, Jens; Pena, Jose; Kocka, Tomas

    2004-01-01

    We propose a method to assist the user in the interpretation of the best Bayesian network model indu- ced from data. The method consists in extracting relevant features from the model (e.g. edges, directed paths and Markov blankets) and, then, assessing the con¯dence in them by studying multiple...

  7. Land surface and climate parameters and malaria features in Vietnam

    Science.gov (United States)

    Liou, Y. A.; Anh, N. K.

    2017-12-01

    Land surface parameters may affect local microclimate, which in turn alters the development of mosquito habitats and transmission risks (soil-vegetation-atmosphere-vector borne diseases). Forest malaria is a chromic issue in Southeast Asian countries, in particular, such as Vietnam (in 1991, approximate 2 million cases and 4,646 deaths were reported (https://sites.path.org)). Vietnam has lowlands, sub-tropical high humidity, and dense forests, resulting in wide-scale distribution and high biting rate of mosquitos in Vietnam, becoming a challenging and out of control scenario, especially in Vietnamese Central Highland region. It is known that Vietnam's economy mainly relies on agriculture and malaria is commonly associated with poverty. There is a strong demand to investigate the relationship between land surface parameters (land cover, soil moisture, land surface temperature, etc.) and climatic variables (precipitation, humidity, evapotranspiration, etc.) in association with malaria distribution. GIS and remote sensing have been proven their powerful potentials in supporting environmental and health studies. The objective of this study aims to analyze physical attributes of land surface and climate parameters and their links with malaria features. The outcomes are expected to illustrate how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, a platform with promising possibilities of allowing disease early-warning systems with citizen participation will be proposed.

  8. Diamond Provenance Through Shape, Colour, Surface Features and Value

    Science.gov (United States)

    Harris, J.

    2002-05-01

    The physical properties of diamond provide a possible means by which run-of-mine productions may be identified. Such properties as shape, the regularity and angularity of the crystal form, the level of transparency, colour, syngenetic inclusion content and surface feature characteristics, all as a function of diamond size, can classify diamond productions. In early work, up to 1500 diamonds in specific sizes ranging from just under 2mm up to 6mm were evaluated. Using this procedure, most of the diamonds from the main mines in southern Africa have now been classified. Within South Africa, the mine at Swartruggens is the only one to have measurable levels of cube-shaped diamonds and an absence of the spinel twin form of diamond, more commonly known as the macle. In Botswana, the proportion of cube related forms at Jwaneng is about four times that at Orapa. Whilst the common diamond colours, colourless, yellow and brown, occur in most mines, there is a marked change in the proportion of transparent green-coated diamonds with depth in mines such as Finsch and Jwaneng. Individual mines may also have very small proportions of distinctive diamond colours, such as pinks at the Argyle mine in Australia and blues in the Premier mine in South Africa. More recently, classification emphasis has shifted away from large numbers of diamonds examined and particular attention has been paid to surface features, which reflect changes to the diamond either whilst still in the kimberlite, or subsequently during transport to an alluvial source. A classification of diamonds at the Venetia mine, South Africa, for example, showed that the proportion of diamonds with the feature referred to as corrosion sculpture, was distinctive between kimberlite types within the mine. With alluvial diamonds, transport causes further defects, particularly a general increase in the proportion of diamonds with surface features referred to as percussion marks and edge abrasion. The above observational

  9. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  10. Ceres' deformational surface features compared to other planetary bodies.

    Science.gov (United States)

    von der Gathen, Isabel; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; Elgner, Stephan; Kersten, Elke; Matz, Klaus-Dieter; Nass, Andrea; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Schröder, Stefanus E.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland; De Sanctis, Maria C.; Schenk, Paul; Scully, Jennifer E. C.; Williams, Dave A.; Raymond, Carol A.

    2016-04-01

    On March 2015, NASA's Dawn spacecraft arrived at the dwarf planet Ceres and has been providing images of its surface. Based on High Altitude Mapping Orbiter (HAMO) clear filter images (140 m/px res.), a Survey mosaic (~400 m/px) and a series of Low Altitude Mapping Orbiter (LAMO) clear filter images (35 m/px) of the Dawn mission [1], deformational features are identified on the surface of Ceres. In order to further our knowledge about the nature and origin of these features, we start a comparative analysis of similar features on different planetary bodies, like Enceladus, Ganymede and the Moon, based on images provided by the Cassini, Galileo and Lunar Orbiter mission. This study focuses on the small scale fractures, mostly located on Ceres' crater floors, in comparison with crater fractures on the planetary bodies named above. The fractures were analyzed concerning the morphology and shape, the distribution, orientation and possible building mechanisms. On Ceres, two different groups of fractures are distinct. The first one includes fractures, normally arranged in subparallel pattern, which are usually located on crater floors, but also on crater rims. Their sense of direction is relatively uniform but in some cases they get deformed by shearing. The second group consists of joint systems, which spread out of one single location, sometimes arranged concentric to the crater rim. They were likely formed by cooling-melting processes linked to the impact process or up doming material. Fractures located on crater floors are also common on the icy satellite Enceladus [3]. While Enceladus' fractures don't seem to have a lot in common compared to those on Ceres, we assume that similar fracture patterns and therefore similar building mechanism can be found e.g. on Ganymede and especially on the Moon [2]. Further work will include the comparison of the fractures with additional planetary bodies and the trial to explain why fracturing e.g. on Enceladus differs from that on

  11. Biomechanical Evaluation of a Bed Feature to Assist in Turning and Laterally Repositioning Patients.

    Science.gov (United States)

    Wiggermann, Neal

    2016-08-01

    This study investigated the effects of hospital bed features on the biomechanical stresses experienced by nurses when turning and laterally repositioning patients. Turn Assist, a common feature in ICU beds that helps to rotate patients, and side rail orientation were evaluated. Manual patient handling is a risk factor for musculoskeletal injury, and turning patients is one of the most common patient handling activities. No known studies have evaluated bed attributes such as the Turn Assist feature and side rail orientation that may affect the stresses experienced by the nurse. Nine female nurses laterally repositioned and turned a 63-kg and 123-kg subject on an ICU bed while motion capture, ground reaction forces, and hand force data were recorded. Loading of the spine and shoulder was modeled using 3D Static Strength Prediction Program (3DSSPP). Spine compression and shear forces did not exceed recommended limits when turning or laterally repositioning. However, the mean pull forces required to manually laterally reposition even the 63-kg subject was 340 Newtons, more than 50% greater than limits established in psychophysical testing. Turn Assist considerably reduced spine loading and pull forces for both turning and laterally repositioning. Lowering side rails reduced spinal compression by 11% when turning patients. Laterally repositioning patients as part of turning may pose an injury risk to caregivers. Turn Assist reduces physical loading on nurses when turning and repositioning patients. Caregivers should consider using Turn Assist and other aids such as mechanical lifts or sliding sheets especially when turning patients requires lateral repositioning. © 2015, Human Factors and Ergonomics Society.

  12. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  13. Full-chip-based subresolution assist features correction for mask manufacturing

    Science.gov (United States)

    Bang, Ju-Mi; Masumoto, Issei; Ji, Min-Kyu; Jang, Sung-Hoon; Aburatani, Isao; Choi, Ji-Hyun; Woo, Sang-Gyun; Cho, Han-Ku

    2007-10-01

    Sub Resolution Assist Features (SRAFs) are now the main option for enabling low-k I photolithograpy. These technical challenges for the 45nm node, along with the insurmountable difficulties in EUV lithography, have driven the semiconductor mask-maker into the low-k I lithography era under the pressure of ever shrinking feature sizes. Extending lithography towards lower k I puts a strong demand on the resolution enhancement technique (RET), and better exposure tool. However, current mask making equipments and technologies are facing their limits. Particularly, due to smaller feature size, the critical dimension (CD) linearity of both main cell patterns and SRAFs on a mask is deviated from perfect condition differently. There are certain discrepancies of CD linearity from ideal case. For example, as the CD size gets smaller, the bigger CD discrepancy is to be. There are many technologies, such as hard-mask process and negative-resist process and so on. One of them is an assist feature correction, which can be applied to achieve better CD control. In other words, in order to compensate this CD linearity deviation, the new correction algorithm with SRAFs is applied in data process flow. In this paper, we will describe in detail the implement of our study and present results on a full 65nm node with experimental data.

  14. SMA actuator for tab-assisted control surface application

    Science.gov (United States)

    Nguyen, Thang D.; Gowing, Scott; Bochinski, David; Carpenter, Bernie F.

    1999-07-01

    This study, started in late 1997, evaluates the concept of tab-assisted control (TAC), and the use of shape memory alloy (SMA) actuator in that connection. Under the TAC concept, a small tab, typically 10 percent of the mean chord of the entire control surface structure, is appended to the trailing edge of the primary control surface, or flap. This small tab vastly enhances the versatility of the control surface system. Depending on the orientation of the tab with respect to the flap and the amount of tab deflection, this tab may be used to modify lift and torque, actuate the flap, or provide precision control; if the tab is aligned with the flap, TAC reverts itself to the conventional configuration. Despite its many benefits, TAC faces one practical challenge in implementation. Due to the particular TAC configuration, the actuating system for the tab must be compact enough to fit in the limited real estate available within the flap. This makes SMA actuator a promising contender for TAC implementation. This paper presents some of the experimental result relevant to the design of the SMA actuator and addresses implementation issues such as power usage, life cycle, frequency response, and reliability.

  15. Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.

    Science.gov (United States)

    Segovia, F; Górriz, J M; Ramírez, J; Phillips, C

    2016-01-01

    Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.

  16. Floor Covering and Surface Identification for Assistive Mobile Robotic Real-Time Room Localization Application

    Directory of Open Access Journals (Sweden)

    Michael Gillham

    2013-12-01

    Full Text Available Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms’ flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification.

  17. Multivariate Feature Selection of Image Descriptors Data for Breast Cancer with Computer-Assisted Diagnosis

    Science.gov (United States)

    Galván-Tejada, Carlos E.; Zanella-Calzada, Laura A.; Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L.

    2017-01-01

    Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions. PMID:28216571

  18. Multivariate Feature Selection of Image Descriptors Data for Breast Cancer with Computer-Assisted Diagnosis

    Directory of Open Access Journals (Sweden)

    Carlos E. Galván-Tejada

    2017-02-01

    Full Text Available Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions.

  19. Multivariate Feature Selection of Image Descriptors Data for Breast Cancer with Computer-Assisted Diagnosis.

    Science.gov (United States)

    Galván-Tejada, Carlos E; Zanella-Calzada, Laura A; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Garza-Veloz, Idalia; Martinez-Fierro, Margarita L

    2017-02-14

    Breast cancer is an important global health problem, and the most common type of cancer among women. Late diagnosis significantly decreases the survival rate of the patient; however, using mammography for early detection has been demonstrated to be a very important tool increasing the survival rate. The purpose of this paper is to obtain a multivariate model to classify benign and malignant tumor lesions using a computer-assisted diagnosis with a genetic algorithm in training and test datasets from mammography image features. A multivariate search was conducted to obtain predictive models with different approaches, in order to compare and validate results. The multivariate models were constructed using: Random Forest, Nearest centroid, and K-Nearest Neighbor (K-NN) strategies as cost function in a genetic algorithm applied to the features in the BCDR public databases. Results suggest that the two texture descriptor features obtained in the multivariate model have a similar or better prediction capability to classify the data outcome compared with the multivariate model composed of all the features, according to their fitness value. This model can help to reduce the workload of radiologists and present a second opinion in the classification of tumor lesions.

  20. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    Directory of Open Access Journals (Sweden)

    Han Sun

    2018-03-01

    Full Text Available The novel human-computer interface (HCI using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC and Fisher discrimination (FD criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT and recognition rate (RR. The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s

  1. Density driven placement of sub-DSA resolution assistant features (SDRAFs)

    Science.gov (United States)

    Guo, Daifeng; Tung, Maryann; Karageorgos, Ioannis; Wong, H.-S. Philip; Wong, Martin D. F.

    2017-03-01

    In the pursuit of alternatives to traditional optical lithography, block copolymer directed self-assembly (DSA) has emerged as a low-cost, high-throughput option. However, issues of defectivity have hampered DSA's viability for large-scale patterning. Recent studies have shown copolymer fill level to be a crucial factor in defectivity, as template overfill can result in malformed DSA structures and poor LCDU after etching. For this reason, it is previously demonstrated the use of sub-DSA resolution assist features (SDRAFs) as a method of evening out template density. In this work, we propose an algorithm to place SDRAFs in random logic contact/via layouts. By adopting this SDRAF placement scheme, we can significantly improve the density unevenness and the resources used are also optimized. This is the first work to investigate the placement of SDRAFs in order to mitigate the DSA density variation problem, and it can be adopted for the mass deployment of DSA.

  2. Simulations of spatial DSA morphology, DSA-aware assist features and block copolymer-homopolymer blends

    Science.gov (United States)

    Latypov, Azat; Coskun, Tamer H.; Garner, Grant; Preil, Moshe; Schmid, Gerard; Xu, Ji; Zou, Yi

    2014-03-01

    Further enhancements to Monte Carlo and Self-Consistent Field Theory Directed Self-Assembly (DSA) simulation capabilities implemented in GLOBALFOUNDRIES are presented and discussed, along with the results of their applications. We present the simulation studies of DSA in graphoepitaxy confinement wells, where the DSA process parameters are varied in order to determine the optimal set of parameters resulting in a robust and etch transferrable phase morphology. A novel concept of DSA-aware assist features for the optical lithography process is presented and demonstrated in simulations. The results of the DSA simulations and studies for the DSA process using a blend of homopolymers and diblock copolymers are also presented and compared with the simulated diblock copolymer systems.

  3. Oceanic whitecaps: Sea surface features detectable via satellite that ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Andreas et al (1995), and figure 1 of Monahan and Spillane (1984). et al (1995) made detailed measurements in a large wave basin of the increases in brightness tempera- ture associated with measured increases in stage A whitecap coverage. It follows that the fraction of the sea surface covered by stage A whitecaps can ...

  4. Surface and upper air meteorological features during onset phase of ...

    Indian Academy of Sciences (India)

    Over the Bay of Bengal higher negative (air to sea) values of sensible flux prevailed before the monsoon onset which became less negative with the advance of monsoon over that region. The pre-onset period was characterized by large sea surface temperature (SST) gradient over the Arabian Sea with rapid decrease ...

  5. FEATURES OF GEODEFORMATION CHANGES OF NEAR SURFACE SEDIMENTARY ROCKS

    Directory of Open Access Journals (Sweden)

    I. A. Larionov

    2016-11-01

    Full Text Available The results of investigations of the deformation process in the near surface sedimentary rocks, which has been carried out in a seismically active region of Kamchatka peninsular since 2007,are presented. The peculiarity of the experiments on the registration of geodeformations is the application of a laser deformograph-interferometer constructed according to the Michelson interferometer scheme.

  6. Feature-based handling of surface faults in compact disc players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    In this paper a novel method called feature-based control is presented. The method is designed to improve compact disc players’ handling of surface faults on the discs. The method is based on a fault-tolerant control scheme, which uses extracted features of the surface faults to remove those from...... the detector signals used for control during the occurrence of surface faults. The extracted features are coefficients of Karhunen–Loève approximations of the surface faults. The performance of the feature-based control scheme controlling compact disc players playing discs with surface faults has been...... validated experimentally. The proposed scheme reduces the control errors due to the surface faults, and in some cases where the standard fault handling scheme fails, our scheme keeps the CD-player playing....

  7. Engineered biomimicry: polymeric replication of surface features found on insects

    Science.gov (United States)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  8. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  9. Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-07-12

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  10. Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-08-03

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  11. Thermal Infrared Spectra of Microcrystalline Sedimentary Phases: Effects of Natural Surface Roughness on Spectral Feature Shape

    Science.gov (United States)

    Hardgrove, C.; Rogers, A. D.

    2012-03-01

    Thermal infrared spectral features of common microcrystalline phases (chert, alabaster, micrite) are presented. Spectra are sensitive to mineralogy and micron-scale (~1-25 µm) surface roughness. Roughness is on the scale of the average crystal size.

  12. Manufacture of functional surfaces through combined application of tool manufacturing processes and Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Arentoft, Mogens; Grønbæk, J.

    2012-01-01

    The tool surface topography is often a key parameter in the tribological performance of modern metal forming tools. A new generation of multifunctional surfaces is achieved by combination of conventional tool manufacturing processes with a novel Robot Assisted Polishing process. This novel surface...

  13. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  14. Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification

    International Nuclear Information System (INIS)

    Vladkova, T.G.; Keranov, I.L.; Dineff, P.D.; Youroukov, S.Y.; Avramova, I.A.; Krasteva, N.; Altankov, G.P.

    2005-01-01

    Plasma based Ar + beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow. XPS analysis was performed to study the changes in the surface chemical composition of the modified samples and the corresponding changes in the surface energy were monitored by contact angle measurements. We found that plasma based Ar + beam transforms the initially hydrophobic PDMS surface into a hydrophilic one mainly due to a raising of the polar component of the surface tension, this effect being most probably due to an enrichment of the modified surface layer with permanent dipoles of a [SiO x ]-based network and elimination of the original methyl groups. The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar + beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or bare surfaces. The cell response seems to be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar + beam treatment followed or not by AA grafting

  15. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Xia Lixin; Wang Haibo; Wang Jian; Gong Ke; Jia Yi; Zhang Huili; Sun Mengtao

    2008-01-01

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at a power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the ∼1593 cm -1 band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.

  16. Laser assisted fabrication of random rough surfaces for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Brissonneau, V., E-mail: vincent.brissonneau@im2np.fr [Thales Optronique SA, Avenue Gay-Lussac, 78995 Elancourt (France); Institut Materiaux Microelectronique Nanosciences de Provence, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Escoubas, L. [Institut Materiaux Microelectronique Nanosciences de Provence, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Flory, F. [Institut Materiaux Microelectronique Nanosciences de Provence, Ecole Centrale Marseille, Marseille (France); Berginc, G. [Thales Optronique SA, Avenue Gay-Lussac, 78995 Elancourt (France); Maire, G.; Giovannini, H. [Institut Fresnel, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Random rough surfaces are photofabricated using an argon ion laser. Black-Right-Pointing-Pointer Speckle and surface correlation function are linked. Black-Right-Pointing-Pointer Exposure beam is modified allowing tuning the correlation. Black-Right-Pointing-Pointer Theoretical examples are presented. Black-Right-Pointing-Pointer Experimental results are compared with theoretical expectation. - Abstract: Optical surface structuring shows great interest for antireflective or scattering properties. Generally, fabricated surface structures are periodical but random surfaces that offer new degrees of freedom and possibilities by the control of their statistical properties. We propose an experimental method to create random rough surfaces on silicon by laser processing followed by etching. A photoresist is spin coated onto a silicon substrate and then exposed to the scattering of a modified laser beam. The beam modification is performed by using a micromirror matrix allowing laser beam shaping. An example of tuning is presented. An image composed of two white circles with a black background is displayed and the theoretical shape of the correlation is calculated. Experimental surfaces are elaborated and the correlation function calculated from height mapping. We finally compared the experimental and theoretical correlation functions.

  17. Fractal Features and Surface Micromorphology of Unworn Surfaces of Rigid Gas Permeable Contact Lenses.

    Science.gov (United States)

    Ţălu, Ştefan; Bramowicz, Miroslaw; Kulesza, Slawomir; Fiorillo, Ilenia; Giovanzana, Stefano

    2017-08-01

    The aim of this exploratory study was to investigate the micromorphology of surfaces of rigid gas permeable (RGP) contact lenses (CLs) using atomic force microscopy (AFM) followed by fractal analysis. In order to characterize in a quantitative manner the micromorphology of surfaces of new and unworn RGP CLs made of twelve different materials, AFM was taken and then analyzed using fractal methods. Surface topography was sampled in an intermittent-contact mode in air, on square areas of 5 × 5 µm 2 (MultiMode with Nanoscope V (Bruker). Spatial characteristics of 3-D surface texture were obtained using parameters defined in ISO 25178-2: 2012 norm. The surface texture turned out to have complex 3-D nanoscale geometry. For quantitative characterization of the properties of surface geometry at nanometer level of CL on the global scale, a series of fractal parameters was used. Statistical and fractal parameters of 3-D surfaces can be used by manufacturers to assess the micromorphology of CLs in order to improve their 3-D surface texture characteristics. These parameters can also be used in an elastic-plastic finite element model with contact elements to simulate the friction, wear and micro-elastohydrodynamic lubrication at a nanometer scale between the CL with the corneal surface.

  18. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  19. Microwave assisted organic modification and surface functionalization of Phyllosilicates

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-11-01

    Full Text Available Organically modified phyllosilicates (montmorillonite and palygorskite) using Arquad 2HT-75 surfactant were effectively synthesized utilizing a microwave irradiation technique. The microwave method was successfully used also for the surface...

  20. Technical assistance contractor management plan: Surface and ground water

    International Nuclear Information System (INIS)

    1994-09-01

    This report presents the general management structure of the Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. This team is a partnership of four major private subcontractors, which teamed together, are striving to be the leader in environmental restoration of uranium mining and milling operations. It will provide a pool of experts in various aspects of the technologies necessary to accomplish this goal, available to DOE to deal with mission concerns. The report expands on goals from TAC's mission statement, which include management concerns, environment, safety, and health, quality, technical support, communications, and personnel

  1. Do Particular Design Features Assist People with Aphasia to Comprehend Text? An Exploratory Study

    Science.gov (United States)

    Wilson, Lucy; Read, Jennifer

    2016-01-01

    Background: Much of the evidence underlying guidelines for producing accessible information for people with aphasia focuses on client preference for particular design features. There is limited evidence regarding the effects of these features on comprehension. Aims: To examine the effects of specific design features on text comprehension. It was…

  2. Refining femtosecond laser induced periodical surface structures with liquid assist

    International Nuclear Information System (INIS)

    Jiao, L.S.; Ng, E.Y.K.; Zheng, H.Y.

    2013-01-01

    Highlights: ► LIPSS on silicon wafer was made in air and in ethanol environment. ► Ethanol environment produce cleaner surface ripples. ► Ethanol environment decrease spatial wavelength of the LIPSS by 30%. ► More number of pulses produce smaller spatial wavelength in air. ► Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  3. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  4. Features of reproduction and assisted reproduction in the white (Ceratotherium simum) and black (Diceros bicornis) rhinoceros

    OpenAIRE

    Ververs, Cyrillus; van Zijl Langhout, M; Govaere, Jan; Van Soom, Ann

    2015-01-01

    Despite the worldwide increase of rhinoceros calf numbers, the growth of the population of white and black rhinoceros is slowing down mainly due to anthropogenic causes, such as poaching and habitat loss. Assisted reproduction is one of the methods of preserving the valuable genomes of these animals from being lost, and assists in breeding them in captivity to maintain the specie(s) numbers and provide an option for possible reintroduction into the wild. Since wild rhinoceros are difficult to...

  5. A new procedure for characterizing textured surfaces with a deterministic pattern of valley features

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, A; De Chiffre, Leonardo

    2013-01-01

    In recent years there has been the development of a high number of manufacturing methods for creating textured surfaces which often present deterministic patterns of valley features. Unfortunately, suitable methodologies for characterizing them are lacking. Existing standards cannot in fact...... properly characterize such surfaces, providing at times unreasonable values. In this paper, a new procedure for characterizing such surfaces is proposed, relying on advanced filtering and feature recognition and separation. Existing advanced filtering methods do not always eliminate all distortions......, therefore some modifications are investigated. In particular the robust Gaussian regression filter has been modified providing an envelope first-guess in order to always fit the mean line through the plateau region. Starting from a filtered and aligned profile, the feature thresholds recognition...

  6. Laser-assisted surface cleaning of metallic components

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Keywords. YAG laser, oxide layer, contamination, cleaning. Abstract. Removal of a thin oxide layer from a tungsten ribbon and ThO2 particulates from zircaloy surface was achieved using a pulsed Nd:YAG laser. The removal mechanism of the oxide layer from the tungsten ribbon was identified as spallation ...

  7. Laser-assisted surface cleaning of metallic components

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... 1Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur 401 504, India ... taining to nuclear industry in the field of nuclear fuel fabrication and radioactive waste management. As we know .... ThO2 powder taken along with a small quantity of isopropyl alcohol on the surface of. 240.

  8. Remote sensing of coastal sea-surface features off northern British Columbia

    International Nuclear Information System (INIS)

    Jardine, I.D.; Thomson, K.A.; LeBlond, P.H.; Foreman, M.G.

    1993-01-01

    This article presents an overview of surface oceanographic features identified by AVHRR imagery in Hecate Strait and adjacent waters surrounding the Queen Charlotte Islands, Canada, an area still poor in in situ observations. The observed features and their temporal variability are interpreted in terms of meteorological and hydrological forcing. The effects of tidal mixing are discussed through the application of a finite element numerical model

  9. Oriented coupling of major histocompatibility complex (MHC) to sensor surfaces using light assisted immobilisation technology

    DEFF Research Database (Denmark)

    Snabe, Torben; Røder, Gustav Andreas; Neves-Petersen, Maria Teresa

    2005-01-01

    histocompatibility complex (MHC class I) to a sensor surface is presented. The coupling was performed using light assisted immobilisation--a novel immobilisation technology which allows specific opening of particular disulphide bridges in proteins which then is used for covalent bonding to thiol-derivatised surfaces...... via a new disulphide bond. Light assisted immobilisation specifically targets the disulphide bridge in the MHC-I molecule alpha(3)-domain which ensures oriented linking of the complex with the peptide binding site exposed away from the sensor surface. Structural analysis reveals that a similar...

  10. Comparing experts and novices in Martian surface feature change detection and identification

    Science.gov (United States)

    Wardlaw, Jessica; Sprinks, James; Houghton, Robert; Muller, Jan-Peter; Sidiropoulos, Panagiotis; Bamford, Steven; Marsh, Stuart

    2018-02-01

    Change detection in satellite images is a key concern of the Earth Observation field for environmental and climate change monitoring. Satellite images also provide important clues to both the past and present surface conditions of other planets, which cannot be validated on the ground. With the volume of satellite imagery continuing to grow, the inadequacy of computerised solutions to manage and process imagery to the required professional standard is of critical concern. Whilst studies find the crowd sourcing approach suitable for the counting of impact craters in single images, images of higher resolution contain a much wider range of features, and the performance of novices in identifying more complex features and detecting change, remains unknown. This paper presents a first step towards understanding whether novices can identify and annotate changes in different geomorphological features. A website was developed to enable visitors to flick between two images of the same location on Mars taken at different times and classify 1) if a surface feature changed and if so, 2) what feature had changed from a pre-defined list of six. Planetary scientists provided ;expert; data against which classifications made by novices could be compared when the project subsequently went public. Whilst no significant difference was found in images identified with surface changes by expert and novices, results exhibited differences in consensus within and between experts and novices when asked to classify the type of change. Experts demonstrated higher levels of agreement in classification of changes as dust devil tracks, slope streaks and impact craters than other features, whilst the consensus of novices was consistent across feature types; furthermore, the level of consensus amongst regardless of feature type. These trends are secondary to the low levels of consensus found, regardless of feature type or classifier expertise. These findings demand the attention of researchers who

  11. Surface Texturing of CVD Diamond Assisted by Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Daniele M. Trucchi

    2017-11-01

    Full Text Available Diamond is a wide bandgap semiconductor with excellent physical properties which allow it to operate under extreme conditions. However, the technological use of diamond was mostly conceived for the fabrication of ultraviolet, ionizing radiation and nuclear detectors, of electron emitters, and of power electronic devices. The use of nanosecond pulse excimer lasers enabled the microstructuring of diamond surfaces, and refined techniques such as controlled ablation through graphitization and etching by two-photon surface excitation are being exploited for the nanostructuring of diamond. On the other hand, ultrashort pulse lasers paved the way for a more accurate diamond microstructuring, due to reduced thermal effects, as well as an effective surface nanostructuring, based on the formation of periodic structures at the nanoscale. It resulted in drastic modifications of the optical and electronic properties of diamond, of which “black diamond” films are an example for future high-temperature solar cells as well as for advanced optoelectronic platforms. Although experiments on diamond nanostructuring started almost 20 years ago, real applications are only today under implementation.

  12. Shape based automated detection of pulmonary nodules with surface feature based false positive reduction

    International Nuclear Information System (INIS)

    Nomura, Y.; Itoh, H.; Masutani, Y.; Ohtomo, K.; Maeda, E.; Yoshikawa, T.; Hayashi, N.

    2007-01-01

    We proposed a shape based automated detection of pulmonary nodules with surface feature based false positive (FP) reduction. In the proposed system, the FP existing in internal of vessel bifurcation is removed using extracted surface of vessels and nodules. From the validation with 16 chest CT scans, we find that the proposed CAD system achieves 18.7 FPs/scan at 90% sensitivity, and 7.8 FPs/scan at 80% sensitivity. (orig.)

  13. Surface feature congruency effects in the object-reviewing paradigm are dependent on task memory demands.

    Science.gov (United States)

    Kimchi, Ruth; Pirkner, Yossef

    2014-08-01

    Perception of object continuity depends on establishing correspondence between objects viewed across disruptions in visual information. The role of spatiotemporal information in guiding object continuity is well documented; the role of surface features, however, is controversial. Some researchers have shown an object-specific preview benefit (OSPB)-a standard index of object continuity-only when correspondence could be based on an object's spatiotemporal information, whereas others have found color-based OSPB, suggesting that surface features can also guide object continuity. This study shows that surface feature-based OSPB is dependent on the task memory demands. When the task involved letters and matching just one target letter to the preview ones, no color congruency effect was found under spatiotemporal discontinuity and spatiotemporal ambiguity (Experiments 1-3), indicating that the absence of feature-based OSPB cannot be accounted for by salient spatiotemporal discontinuity. When the task involved complex shapes and matching two target shapes to the preview ones, color-based OSPB was obtained. Critically, however, when a visual working memory task was performed concurrently with the matching task, the presence of a nonspatial (but not a spatial) working memory load eliminated the color-based OSPB (Experiments 4 and 5). These results suggest that the surface feature congruency effects that are observed in the object-reviewing paradigm (with the matching task) reflect memory-based strategies that participants use to solve a memory-demanding task; therefore, they are not reliable measures of online object continuity and cannot be taken as evidence for the role of surface features in establishing object correspondence.

  14. Laser gas assisted texturing and formation of nitride and oxynitride compounds on alumina surface: Surface response to environmental dust

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.

    2018-03-01

    Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.

  15. Dimer-flipping-assisted diffusion on a Si(001) surface

    International Nuclear Information System (INIS)

    Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.

    2000-01-01

    The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows

  16. Nonsolvent-assisted fabrication of multi-scaled polylactide as superhydrophobic surfaces.

    Science.gov (United States)

    Chang, Yafang; Liu, Xuying; Yang, Huige; Zhang, Li; Cui, Zhe; Niu, Mingjun; Liu, Hongzhi; Chen, Jinzhou

    2016-03-14

    The solution-processing fabrication of superhydrophobic surfaces is currently intriguing, owing to high-efficiency, low cost, and energy-consuming. Here, a facile nonsolvent-assisted process was proposed for the fabrication of the multi-scaled surface roughness in polylactide (PLA) films, thereby resulting in a significant transformation in the surface wettability from intrinsic hydrophilicity to superhydrophobicity. Moreover, it was found that the surface topographical structure of PLA films can be manipulated by varying the compositions of the PLA solutions. And the samples showed superhydrophobic surfaces as well as high melting enthalpy and crystallinity. In particular, a high contact angle of 155.8° together with a high adhesive force of 184 μN was yielded with the assistance of a multi-nonsolvent system, which contributed to the co-existence of micro-/nano-scale hierarchical structures.

  17. Which Robot Features Can Stimulate Better Responses from Children with Autism in Robot-Assisted Therapy?

    Directory of Open Access Journals (Sweden)

    Jaeryoung Lee

    2012-09-01

    Full Text Available This study explores the response of autistic children to a few design features of the robots for autism therapy and provides suggestions on the robot features that have a stronger influence on the therapeutic process. First, we investigate the effect of selected robot features on the development of social communication skills in autistic children. The results indicate that the toy's “face” and “moving limb” usually draw the children's attention and improve children's facial expression skills, but do not contribute to the development of other social communication skills. Secondly, we study the response of children with low-functioning autism to robots with verbal communication functionalities. Test results show that children interacted with the verbal-featured robot more intensively than with the experimenter. We conclude that robots with faces and moving limbs can engage autistic children in a better way. Facial expression of the robots can elicit a greater response than prompting by humans.

  18. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    Science.gov (United States)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  19. Federal Educational Assistance Programs Available to Service Members: Program Features and Recommendations for Improved Delivery

    Science.gov (United States)

    2015-01-01

    family of origin having a lower socioeconomic background – having been a foster child or homeless youth – being a first-generation college goer...to analyze programs’ effectiveness. xiii Acknowledgments Many people provided valuable assistance and support to our research and to our con- tinuing... people ; developing a talent, hobby, or skill; and simple love of learning. Service Figure 4.3 Decision Model of Efficient Pathways to a Degree for

  20. Robot-assisted transaxillary thyroid surgery-retrospective analysis of anthropometric features.

    Science.gov (United States)

    Axente, Dan Damian; Constantea, Nicolae Augustin

    2016-11-01

    The vast majority of studies published on robot-assisted thyroid surgery are South Korean. This study aims to assess the impact of certain anthropometric parameters on performing robot-assisted thyroid surgery on Caucasian patients. A total of 91 patients underwent robot-assisted surgery by the axillary approach in the Fifth Surgical Clinic, City Hospital Cluj-Napoca, between 2010 and 2015. Besides the specific clinical and pathological parameters, a series of anthropometric parameters and the postoperative occurrence of skin disorders in the cervical or subclavicular region were determined for each patient. There was an increase in dissection time and console time, which was directly proportional to the patients' body mass index. There were no statistically significant differences in the incidence of postoperative complications in patients with different body mass indices. The postoperative drainage volume was significantly higher in overweight or obese patients. The time needed to visualize the thyroid lodge was longer in patients with wider shoulders, and there was a negative correlation between neck length and console time. A statistically significant direct correlation was found between the clavicle length-neck length ratio and the duration of the entire intervention. There was no significant influence of any of these parameters on the duration of hospitalization or the occurrence of other postoperative complications. The nutritional status of the patients and the other anthropometric parameters influenced the duration and difficulty of the intervention, without affecting its safety in terms of intra- and postoperative- complications.

  1. Laser gas assisted treatment of steel 309: Corrosion and scratch resistance of treated surface

    Science.gov (United States)

    Toor, Ihsan-ul-Haq; Yilbas, B. S.; Ahmed, Junaid; Karatas, C.

    2017-10-01

    Laser gas assisted surface treatment of steel 309 is carried out and the characteristics of the resulting surface are analyzed using the analytical tools. Scanning electron and 3-D optical microscopes are used to assess the morphological and metallurgical changes in the laser treated layer. Energy spectroscopy and X-ray diffraction are carried out to determine the elemental composition and compounds formed on the laser treated surface. The friction coefficient of the laser treated surface is measured using the micro-tribometer and compared to that of the as received surface. The corrosion resistance of the laser treated and as received surfaces is measured incorporating the electrochemical tests. It is found that laser treatment results in a dense layer and formation of nitride compounds at the surface. This enhances the microhardness at the laser treated surface. The friction coefficient attains lower values at the laser treated surface than that corresponding to the as received surface. The corrosion rate of the surface reduces significantly after the laser treatment process, which can be attributed to the passive layer at the surface via formation of a dense layer and nitride compounds in the surface vicinity. In addition, the number of pit sites decreased for the laser treated surface than that of as received surface.

  2. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate......-process determination of the process endpoint. This makes it possible to reliably determine the right time for changing the polishing media to finer abrasive when applying a given set of parameters is no longer effective to create a smoother surface, thus improving the efficiency of the process. The findings enabling...

  3. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Rong [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Chen, Ding, E-mail: ma97chen@hotmail.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Qianxia [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Bian, Zhibing; Dai, Haixiong; Zhang, Chi [Jiangsu Jinling Special Paint Co., Ltd., Yangzhou 225212 (China)

    2014-10-15

    Highlights: • TiH{sub 2} was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH{sub 2} with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process.

  4. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    International Nuclear Information System (INIS)

    Ning, Rong; Chen, Ding; Zhang, Qianxia; Bian, Zhibing; Dai, Haixiong; Zhang, Chi

    2014-01-01

    Highlights: • TiH 2 was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH 2 with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process

  5. An acoustic feature-based similarity scoring system for speech rehabilitation assistance.

    Science.gov (United States)

    Syauqy, Dahnial; Wu, Chao-Min; Setyawati, Onny

    2016-08-01

    The purpose of this study is to develop a tool to assist speech therapy and rehabilitation, which focused on automatic scoring based on the comparison of the patient's speech with another normal speech on several aspects including pitch, vowel, voiced-unvoiced segments, strident fricative and sound intensity. The pitch estimation employed the use of cepstrum-based algorithm for its robustness; the vowel classification used multilayer perceptron (MLP) to classify vowel from pitch and formants; and the strident fricative detection was based on the major peak spectral intensity, location and the pitch existence in the segment. In order to evaluate the performance of the system, this study analyzed eight patient's speech recordings (four males, four females; 4-58-years-old), which had been recorded in previous study in cooperation with Taipei Veterans General Hospital and Taoyuan General Hospital. The experiment result on pitch algorithm showed that the cepstrum method had 5.3% of gross pitch error from a total of 2086 frames. On the vowel classification algorithm, MLP method provided 93% accuracy (men), 87% (women) and 84% (children). In total, the overall results showed that 156 tool's grading results (81%) were consistent compared to 192 audio and visual observations done by four experienced respondents. Implication for Rehabilitation Difficulties in communication may limit the ability of a person to transfer and exchange information. The fact that speech is one of the primary means of communication has encouraged the needs of speech diagnosis and rehabilitation. The advances of technology in computer-assisted speech therapy (CAST) improve the quality, time efficiency of the diagnosis and treatment of the disorders. The present study attempted to develop tool to assist speech therapy and rehabilitation, which provided simple interface to let the assessment be done even by the patient himself without the need of particular knowledge of speech processing while at the

  6. Knowledge-based driver assistance systems traffic situation description and situation feature relevance

    CERN Document Server

    Huelsen, Michael

    2014-01-01

    The comprehension of a traffic situation plays a major role in driving a vehicle. Interpretable information forms a basis for future projection, decision making and action performing, such as navigating, maneuvering and driving control. Michael Huelsen provides an ontology-based generic traffic situation description capable of supplying various advanced driver assistance systems with relevant information about the current traffic situation of a vehicle and its environment. These systems are enabled to perform reasonable actions and approach visionary goals such as injury and accident free driv

  7. Thermal Behaviour of Unusual Local-Scale Surface Features on Vesta

    Science.gov (United States)

    Tosi, F.; Capria, M. T.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; hide

    2012-01-01

    On Vesta, the region of the infrared spectrum beyond approximately 3.5 micrometers is dominated by the thermal emission of the asteroid's surface, which can be used to determine surface temperature by means of temperature-retrieval algorithms. The thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes are used to retrieve surface temperatures, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were re-observed by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low-Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. To calculate surface temperatures, we applied a Bayesian approach to nonlinear inversion based on the Kirchhoff law and the Planck function. These results were cross-checked through application of alternative methods. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Some bright terrains have an overall albedo in the visible as much as 40% brighter than surrounding areas. Data from the IR channel of VIR show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations. In particular, it is shown that during maximum daily insolation, dark features in the equatorial region may rise to

  8. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini

    2007-01-01

    Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 mn with a fluence of 2 J/cm(2). The surface quality of the thin...

  9. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  10. Growth of phenylene vinylene thin films via surface polymerization by ion-assisted deposition

    NARCIS (Netherlands)

    Wroble, Amanda T.; Wildeman, Jurjen; Anunskis, Daniel J.; Hanley, Luke

    2008-01-01

    Surface polymerization by ion-assisted deposition was used to grow phenylene vinylene films (SPIAD-PPV) using the evaporation of 2methoxy-5-(2'-ethylhexyloxy)-1,4-bis((4',4 ''-bisstyryl) benzene) (MEH-OPV5) and the simultaneous deposition of non-mass-selected 10-200 eV thiophene or acetylene ions.

  11. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  12. Classification methodology and feature selection to assist fault location in power distribution systems

    Directory of Open Access Journals (Sweden)

    Juan José Mora Flórez

    2008-01-01

    Full Text Available A classification methodology based on Support Vector Machines (SVM is proposed to locate the faulted zone in power distribution networks. The goal is to reduce the multiple-estimation problem inherent in those methods that use single end measures (in the substation to estimate the fault location in radial systems. A selection of features or descriptors obtained from voltages and currents measured in the substation are analyzed and used as input of the SVM classifier. Performance of the fault locator having several combinations of these features has been evaluated according to its capability to discriminate between faults in different zones but located at similar distance. An application example illustrates the precision, to locate the faulted zone, obtained with the proposed methodology in simulated framework. The proposal provides appropriate information for the prevention and opportune attention of faults,requires minimum investment and overcomes the multiple-estimation problem of the classic impedance based methods.

  13. A surface defect detection method based on multi-feature fusion

    Science.gov (United States)

    Wu, Xiaojun; Xiong, Huijiang; Yu, Zhiyang; Wen, Peizhi

    2017-07-01

    Automatic inspection takes a great role in guaranteeing the product quality. But one of the limitations of current inspection algorithms is either product specific or problem specific. In this paper, we propose a defect detection method based on three image features fusion for variety of industrial products surface detection. The proposed method learns sub-image gray level difference, color histogram and pixel regularity of qualified images off-line and test the images based on the detection results of these three image features. It avoids the feature training of defect products as it is difficult to collect large amount of defect samples. The experimental results show that the detection accuracy is between 93% and 98% and the approach is efficient for the real time applications of industrial product inspect.

  14. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  15. Relationship between iris surface features and angle width in Asian eyes.

    Science.gov (United States)

    Sidhartha, Elizabeth; Nongpiur, Monisha Esther; Cheung, Carol Y; He, Mingguang; Wong, Tien Yin; Aung, Tin; Cheng, Ching-Yu

    2014-10-23

    To examine the associations between iris surface features with anterior chamber angle width in Asian eyes. In this prospective cross-sectional study, we recruited 600 subjects from a large population-based study, the Singapore Epidemiology of Eye Diseases (SEED) study. We obtained standardized digital slit-lamp iris photographs and graded the iris crypts (by number and size), furrows (by number and circumferential extent), and color (higher grade denoting darker iris). Vertical and horizontal cross-sections of anterior chamber were imaged using anterior segment optical coherence tomography. Angle opening distance (AOD), angle recess area (ARA), and trabecular-iris space area (TISA) were measured using customized software. Associations of the angle width with the iris surface features in the subject's right eyes were assessed using linear regression analysis. A total of 464 eyes of the 464 subjects (mean age: 57.5 ± 8.6 years) had complete and gradable data for crypts and color, and 423 eyes had gradable data for furrows. After adjustment for age, sex, ethnicity, pupil size, and corneal arcus, higher crypt grade was independently associated with wider AOD750 (β [change in angle width per grade higher] = 0.018, P = 0.023), ARA750 (β = 0.022, P = 0.049), and TISA750 (β = 0.011, P = 0.019), and darker iris was associated narrower ARA750 (β = -0.025, P = 0.044) and TISA750 (β = -0.013, P = 0.011). Iris surface features, assessed and measured from slit-lamp photographs, correlated well with anterior chamber angle width; irises with more crypts and lighter color were associated with wider angle. These findings may provide another imaging modality to assess angle closure risk based on iris surface features. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  16. Surface features of central North America: a synoptic view from computer graphics

    Science.gov (United States)

    Pike, R.J.

    1991-01-01

    A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author

  17. Memory for surface features of unfamiliar melodies: independent effects of changes in pitch and tempo.

    Science.gov (United States)

    Schellenberg, E Glenn; Stalinski, Stephanie M; Marks, Bradley M

    2014-01-01

    A melody's identity is determined by relations between consecutive tones in terms of pitch and duration, whereas surface features (i.e., pitch level or key, tempo, and timbre) are irrelevant. Although surface features of highly familiar recordings are encoded into memory, little is known about listeners' mental representations of melodies heard once or twice. It is also unknown whether musical pitch is represented additively or interactively with temporal information. In two experiments, listeners heard unfamiliar melodies twice in an initial exposure phase. In a subsequent test phase, they heard the same (old) melodies interspersed with new melodies. Some of the old melodies were shifted in key, tempo, or key and tempo. Listeners' task was to rate how well they recognized each melody from the exposure phase while ignoring changes in key and tempo. Recognition ratings were higher for old melodies that stayed the same compared to those that were shifted in key or tempo, and detrimental effects of key and tempo changes were additive in between-subjects (Experiment 1) and within-subjects (Experiment 2) designs. The results confirm that surface features are remembered for melodies heard only twice. They also imply that key and tempo are processed and stored independently.

  18. Rules and economic features connected with adoption and medical assisted reproduction

    Directory of Open Access Journals (Sweden)

    Hemion Braho

    2015-07-01

    Full Text Available The aim of this brief study is to analyze the phenomenon of adoption and the assisted reproductive technologies, not from a social point of view as experts often do, but on an economic point of view. This could be possible analyzing first of all the laws regulating these “markets” and the influence of this regulation on the economic aspects. Although it could seem immoral to study this social aspects connected with filiation, we know that the social desire of some parents or some individuals to have children and their possibility is oriented by laws, economic possibilities and economy in general. This study is based on an empirical methodology, taking as study-case Italy and trying not to give any ethic orientation.

  19. Compressive Fracture of Brittle Geomaterial: Fractal Features of Compression-Induced Fracture Surfaces and Failure Mechanism

    Directory of Open Access Journals (Sweden)

    L. Ren

    2014-01-01

    Full Text Available Compressive fracture is one of the most common failure patterns in geotechnical engineering. For better understanding of the local failure mechanism of compressive fractures of brittle geomaterials, three compressive fracture tests were conducted on sandstone. Edge cracked semicircular bend specimens were used and, consequently, fresh and unfilled compressive fracture surfaces were obtained. A laser profilometer was employed to measure the topography of each rough fracture surface, followed by fractal analysis of the irregularities of the obtained compression-induced fracture surfaces using the cubic cover method. To carry out a contrastive analysis with the results of compressive fracture tests, three tension mode fracture tests were also conducted and the fractal features of the obtained fracture surfaces were determined. The obtained average result of the fractal dimensions of the compression-induced surfaces was 2.070, whereas the average result was 2.067 for the tension-induced fracture surfaces. No remarkable differences between the fractal dimensions of the compression-induced and tension-induced fracture surfaces may indicate that compressive fracture may occur, at least on the investigative scale of this work, in a similar manner to tension fracture.

  20. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  1. Observation of surface features on an active landslide, and implications for understanding its history of movement

    Directory of Open Access Journals (Sweden)

    M. Parise

    2003-01-01

    Full Text Available Surface features are produced as a result of internal deformation of active landslides, and are continuously created and destroyed by the movement. Observation of their presence and distribution, and surveying of their evolution may provide insights for the zonation of the mass movement in sectors characterized by different behaviour. The present study analyses and describes some example of surface features observed on an active mass movement, the Slumgullion earthflow, in the San Juan Mountains of southwestern Colorado. The Slumgullion earthflow is one of the most famous and spectacular landslides in the world; it consists of a younger, active part which moves on and over an older, much larger, inactive part. Total length of the earthflow is 6.8 km, with an estimated volume of 170 × 10 6 m 3 . Its nearly constant rate of movement (ranging from about 2 m per year at the head, to a maximum of 6–7 m per year at its narrow and central part, to values between 1.3 and 2 m per year at the active toe, and the geological properties of moving material, are well suited for the observation of the development and evolution of surface features. In the last 11 years, repeated surveying at the Slumgullion site has been performed through recognition of surface features, measurements of their main characteristics, and detailed mapping. In this study, two sectors of the Slumgullion earthflow are analysed through comparison of the features observed in this time span, and evaluation of the changes occurred: they are the active toe and an area located at the left flank of the landslide. Choice of the sectors was dictated in the first case, by particular activity of movement and the nearby presence of elements at risk (highway located only 250 m downhill from the toe; and in the second case, by the presence of many surface features, mostly consisting of several generations of flank ridges. The active toe of the landslide is characterized by continuous movement

  2. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Chen, Fan; Jia, Xiao-feng; Zhao, Chong-yang; Wang, Xiao-bo [Henan Polytechnic University, Jiaozuo (China)

    2017-04-15

    Ultrasonic vibration-assisted Electrolytic in-process dressing (ELID) grinding is a highly efficient and highly precise machining method. The surface quality prediction model in ultrasonic vibration-assisted ELID mirror grinding was studied. First, the interaction between grits and workpiece surface was analyzed according to kinematic mechanics, and the surface roughness model was developed. The variations in surface roughness under different parameters was subsequently calculated and analyzed by MATLAB. Results indicate that compared with the ordinary ELID grinding, ultrasonic vibration-assisted ELID grinding is superior, because it has more stable and better surface quality and has an improved range of ductile machining.

  3. Part-based Pedestrian Detection and Feature-based Tracking for Driver Assistance

    DEFF Research Database (Denmark)

    Prioletti, Antonio; Møgelmose, Andreas; Grislieri, Paolo

    2013-01-01

    gained a special place among the different approaches presented. This paper presents a state-of-the-art pedestrian detection system based on a two-stage classifier. Candidates are extracted with a Haar cascade classifier trained with the Daimler Detection Benchmark data set and then validated through...... on a prototype vehicle and offers high performance in terms of several metrics, such as detection rate, false positives per hour, and frame rate. The novelty of this system relies on the combination of a HOG part-based approach, tracking based on a specific optimized feature, and porting on a real prototype....

  4. Tech-Assisted Language Learning Tasks in an EFL Setting: Use of Hand phone Recording Feature

    Directory of Open Access Journals (Sweden)

    Alireza Shakarami

    2014-09-01

    Full Text Available Technology with its speedy great leaps forward has undeniable impact on every aspect of our life in the new millennium. It has supplied us with different affordances almost daily or more precisely in a matter of hours. Technology and Computer seems to be a break through as for their roles in the Twenty-First century educational system. Examples are numerous, among which CALL, CMC, and Virtual learning spaces come to mind instantly. Amongst the newly developed gadgets of today are the sophisticated smart Hand phones which are far more ahead of a communication tool once designed for. Development of Hand phone as a wide-spread multi-tasking gadget has urged researchers to investigate its effect on every aspect of learning process including language learning. This study attempts to explore the effects of using cell phone audio recording feature, by Iranian EFL learners, on the development of their speaking skills. Thirty-five sophomore students were enrolled in a pre-posttest designed study. Data on their English speaking experience using audio–recording features of their Hand phones were collected. At the end of the semester, the performance of both groups, treatment and control, were observed, evaluated, and analyzed; thereafter procured qualitatively at the next phase. The quantitative outcome lent support to integrating Hand phones as part of the language learning curriculum. Keywords:

  5. Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features.

    Science.gov (United States)

    Machado, Mary C; Webster, Thomas J

    2017-01-01

    Polyvinyl chloride (PVC) endotracheal tubes (ETTs) nanoetched with a fungal lipase have been shown to reduce bacterial growth and biofilm formation and could be an inexpensive solution to the complex problem of ventilator-associated pneumonia (VAP). Although bacterial growth and colonization on these nanoetched materials have been well characterized, little is known about the mechanism by which the fungal lipase degrades the PVC and, thus, alters its properties to minimize bacteria functions. This study used X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to better describe the surface chemistry of both unetched and lipase nanoetched PVC ETT. ATR-FTIR analysis of the unetched and treated surfaces showed a similar presence of a plasticizer. This was confirmed by XPS analysis, which showed an increase of carbon and the presence of oxygen on both unetched and nanoetched surfaces. A quantitative comparison of the FTIR spectra revealed significant correlations (Pearson's correlation, R =0.997 [ R 2 =0.994, P degradation of the plasticizer by the fungal lipase. In contrast, results from this study did demonstrate significantly increased nanoscale surface features on the lipase etched compared to non-etched PVC ETTs. This led to a change in surface energetics, which altered ion adsorption to the ETTs. Thus, these results showed that PVC surfaces nanoetched with a 0.1% lipase solution for 48 hours have no significant change on surface chemistry but do significantly increase nanoscale surface roughness and alters ion adsorption, which suggests that the unique properties of these materials, including their previously reported ability to decrease bacterial adhesion and growth, are due to the changes in the degree of the nanoscale roughness, not changes in their surface chemistry.

  6. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  7. In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features

    Directory of Open Access Journals (Sweden)

    C Brose

    2012-05-01

    Full Text Available Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.

  8. Examining the Impact of Question Surface Features on Students' Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of…

  9. Characterization of conducting polymer films grown via surface polymerization by ion-assisted deposition

    Science.gov (United States)

    Tepavcevic, Sanja

    2006-04-01

    Optimization of photonic and electronic devices based on conductive polymers, such as polythiophene and polyphenyl, requires the development of processing methods that can control both film chemistry and morphology on the nanoscale. One such method is explored in this thesis: surface polymerization by ion-assisted deposition (SPIAD). Polythiophene and polyphenyl thin films are grown on a silicon surface by SPIAD which uses hyperthermal, mass-selected thiophene cations coincident with alpha-thermal beam of aterthiophene (3T) or p-terphenyl (3P) neutrals. Mass spectrometry and x-ray photoelectron spectroscopy are used to verify polymerization of both 3T and 3P. The optimal conditions for the most efficient polymerization reaction and film growth are found by varying ion/neutral ratio and ion energy. The electronic structures of these films are probed by ultraviolet photoelectron spectroscopy (UPS) and polarized near-edge x-ray absorption fine structure spectroscopy (NEXAFS). The conducting polymer films formed by SPIAD display new valence band features resulting from a reduction in both their band gap and barrier to hole injection. These changes in film electronic structure result from an increase in the electron conjugation length and other changes in film structure induced by SPIAD. Scanning electron microscopy and x-ray diffraction are used to demonstrate that SPIAD can control the overall polythiophene and polyphenyl film morphology through the mediation of adsorption, diffusion, sublimation (desorption), and other thermal film growth events by ion-induced processes including polymerization, sputtering, bond breakage, and energetic mixing. Predicting the electronic properties, growth mechanism and morphology of the SPIAD films should be possible through computer simulations of the controlling phenomenon. Study with first principles density functional theory-molecular dynamics (DFT-MD) simulations indicates that polymerization and fragmentation of ions and

  10. Exploring microstructure and surface features of Chinese coins using non-invasive approaches

    International Nuclear Information System (INIS)

    Xie, Ruishi; Li, Yuanli; Guo, Baogang; Hu, Hailong; Jiang, Linhai

    2015-01-01

    Highlights: • The microstructure and surface features of Chinese coins were systematically explored. • The application of non-invasive techniques enables unambiguous explorations of the component, morphology, microstructure and physical properties of the coins. • This work provides a new insight into exploration of surface properties of precious metal objects, metallic artefacts as well as monuments without causing any damage to them. - Abstract: Despite the apparent significance of Chinese coins, the knowledge about the surface properties of the coins is still largely unknown. To date, most analytical techniques (e.g., cross-section analysis, inductively coupled plasma-mass spectrometry, thermal analysis) require the partial or total destruction of the investigated sample, which is fatal to precious objects (e.g., artefacts and monuments). Herein, we systematically investigate the surface of a series of one yuan Chinese coins to disclose their chemical composition, morphology, and microstructure features using non-invasive techniques. Investigations were performed with scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy, and X-ray diffraction. The application of these approaches enables unambiguous explorations of the component, morphology, microstructure and physical properties of the samples without destroying them. The identification of the coins was achieved in light of the name of issuing authority and floral pattern. The morphology observations of the samples display that these coins possess mostly homogeneous surfaces; hence such a finding allows the formulation of a possible minting technology. Besides, the energy dispersive X-ray spectroscopy has proved of great role in exploring these coins, mainly because of its detectability to easily probe the presence of certain minor elements, which is critical in understanding surface finishing technologies, and production processes. The findings manifest that the coins were made

  11. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  12. Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2016-01-01

    Full Text Available To achieve the wind sail-assisted function of the unmanned surface vehicle (USV, this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A algorithm and present the realization flow for each subsystem of the SUICS. By using the test boat, the design and implementation of the SUICS are fulfilled systematically. Experiments verify the performance and effectiveness of our SUICS. The SUICS enhances the intelligent utility of sustainable wind energy for the sail-assisted USV significantly and plays a vital role in shipping energy-saving emission reduction requirements issued by International Maritime Organization (IMO.

  13. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Tadashi, E-mail: tad_sekimoto@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Maruyama, Hitoshi, E-mail: maru-cib@umin.ac.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Kondo, Takayuki, E-mail: takakondonaika@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Shimada, Taro, E-mail: bobtaro51@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Takahashi, Masanori, E-mail: machat1215@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Yokosuka, Osamu, E-mail: yokosukao@faculty.chiba-u.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Otsuka, Masayuki, E-mail: otsuka-m@faculty.chiba-u.jp [Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Miyazaki, Masaru, E-mail: masaru@faculty.chiba-u.jp [Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Mine, Yoshitaka, E-mail: yoshitaka.mine@toshiba.co.jp [Toshiba Medical Systems Corporation, Ultrasound Systems Division, Ultrasound Systems Development Department, Otawara, Tochigi (Japan)

    2013-06-15

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis.

  14. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    International Nuclear Information System (INIS)

    Sekimoto, Tadashi; Maruyama, Hitoshi; Kondo, Takayuki; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu; Otsuka, Masayuki; Miyazaki, Masaru; Mine, Yoshitaka

    2013-01-01

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis

  15. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    Science.gov (United States)

    Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.

  16. Features of the supercritical CO2-assisted immobilization of fluorinated tetraphenylporphyrins into tetrafluoroethylene copolymers

    Science.gov (United States)

    Shershnev, I. V.; Cherkasova, A. V.; Kopylov, A. S.; Glagolev, N. N.; Bragina, N. A.; Solov'eva, A. B.

    2017-07-01

    The immobilization of fluorinated tetraphenylporphyrins (FTPPs) into tetrafluoroethylene copolymers (fluoroplast F-42 and MF-4SK, a perfluorinated sulfonic acid cation exchanger in H+-form) is conducted in supercritical CO2 (scCO2). The effects the conditions of immobilization (the temperature and pressure of scCO2, reaction time, and the addition of cosolvents) and the structure of the carrier polymer have on the content of porphyrin in these polymers is studied. The porphyrin-loaded polymer systems are shown to exhibit photosensitizing activity in anthracene and cholesterol oxidation in scCO2. Under conditions of photocatalysis, chemical and functional stability is a feature of only MF-4SK polymer systems; this is attributed to the formation of protonated forms of the porphyrins and their interaction with SO3 --groups of the polymer (an ion exchange process), which prevents leaching of the FTPP from the polymer matrix. The photocatalytic process actually occurs inside the matrix of the perfluorinated copolymer, with the protonated form of the porphyrin acting as a photosensitizer. The rate constant of anthracene photooxidation in the presence of FTPP-loaded MF-4SK films in scCO2 is found to pass through a maximum as a function of the porphyrin content and the polymer film thickness. The use of such catalytic systems for cholesterol photooxidation in scCO2 is shown to produce a virtual monoproduct (yield, 10%): 6-formyl-B-norcholestane-3,5-diol, a compound with high biological activity.

  17. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  18. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    Science.gov (United States)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  19. Surface Features and Cathodoluminescence (CL) Characteristics of Corundum Gems from Eastern of Thailand

    Science.gov (United States)

    Boonsoong, A.

    2017-12-01

    Thailand has long been well known as a supplier of gemstones and also one of the world's color stone centers for decades. The principal gemstones are corundum, garnet and zircon. The corundum deposits of Chanthaburi-Trat Provinces form the most significant ruby-sapphire concentration in Thailand. Corundums are commonly found in secondary deposits (alluvium, elluvial, residual-soil and colluvium deposits as well as stream sediments) with the thickness of the gem-bearing layer varying from 10-100cm and the thickness of the overburden ranging up to 15m. A number of corundum samples were collected from each of the twenty-nine corundum deposits in the Chanthaburi-Trat gem fields, eastern of Thailand. Corundum varies in colour across the region with colours associated with three geographic zones; a western zone, characterized by blue, green and yellow sapphires; a middle zone with blue, green sapphires plus rubies; and an eastern zone yielding mainly rubies. This project has aim to study surface features and characterize the Cathodoluminescence (CL) of corundum gems in the Chanthaburi-Trat gem fields, Thailand. Surfaces of the corundums under a scanning electron microscope show triangular etch features and randomly oriented needle-like patterns. These reveal that the corundums have interacted with the magma during their ascent to the Earth's surface. Surface features attributable to transport and weathering processes are scratches, conchoidal fractures and a spongy surface appearance. Clay minerals and Fe-Ti oxide minerals deposited on the spongy surfaces of some corundums also indicate that these grains experienced chemical weathering or reacted with the soil solution while they were in the alluvium. Cathodoluminescence shows some blue sapphires to exhibit dull blue luminescence. The main cause of the CL appearance of sapphires is likely to be a quench centre, Fe2+ in their structure. The bright red luminescence in corundum reflects a high Cr3+ content and is always

  20. Results of Vertical Scanning Interferometry (VSI) of Dissolved Borosilicate Glass: Evidence for Variable Surface Features and Global Surface Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Icenhower, Jonathan P.; Luttge, Andreas; McGrail, B. Peter; Beig, Mikhala S.; Arvidson, Rolf S.; Cordova, Elsa A.; Steele, Jackie L.; Baum, Steven R.

    2003-10-29

    Two disparate reaction mechanisms have been invoked to explain the reactivity of glass in contact with aqueous solution. One model is based on arguments from Transition State Theory (TST), which postulates that glass dissolution rates are surface reaction controlled. Alternatively, the second model argues that release of elements from glass to solution is governed by diffusion through an altered layer that forms on the surface of glass. Vertical Scanning Interferometry (VSI) is a new technique that allows one to observe surface features of specimens exposed to solution and may, potentially, be used to distinguish between competing models. We performed a series of dissolution experiments with a suite of glass compositions from chemically simple (sodium borosilicate) to complex (sixteen component borosilicate). Dissolution rates were determined using single-pass flow-through (SPFT) apparatus at 90ºC and pH = 9 and over a solution saturation interval. Upon termination of the experiments, glass coupons were examined by VSI techniques. Effluent chemistry and VSI measurements indicate a nearly constant rate of 2.2 to 3.4 g m-2 d-1 over the solution interval; rates calculated from both methods are identical within experimental uncertainty. We argue that this glass is phase separated, and propose a model for dissolution based on the relative rates of dissolution of the two glass compositions. The data are consistent with a modified version of TST and indicate the potency of VSI methods to elucidate glass reaction mechanisms.

  1. Immunohistochemical features of progesterone receptors expression of placental barrier in women with multiple pregnancies resulting from assisted reproduction

    Directory of Open Access Journals (Sweden)

    T. D. Zadorozhna

    2016-01-01

    Full Text Available Hormonal disorders are one of the main known causes of miscarriage and preterm birth in multiple pregnancies resulting from assisted reproductive technology (ART. Progesterone and the number of its receptors play an important role in the preservation and prolongation of pregnancy and it is the pressing issue of our time. The study of placentas, as the main site of synthesis of progesterone, has high informative potential and it is the most important diagnostic object, and information received by its research is essential for the full conclusion on the causes, mechanisms, close and long-term effects of multiple pregnancy pathology. Aim. The aim of our study was to investigate immunohistochemical features of placentas from women with dichorionic diamniotic twin pregnancies in spontaneous fertilization and after use of assisted reproductive technology (ART. Methods and results. According to this goal we examined 94 women, 44 of whom had multiple pregnancies due to ART, 42 with separate multiple pregnancy and 38 women with a singleton pregnancy. We carried out clinical and statistical analysis of the course of pregnancy and childbirth in the studied groups. During the study it was found that multiple pregnancies due to assisted reproduction belong to the high risk of gestation, at which premature births occur much more frequently than in singleton pregnancies. We were the first to carry out the immunohistochemical study of placentas in which the highest expression of progesterone receptors in the nuclei of cells of decidua (45% related to the parent structure of the placenta from women with multiple pregnancies caused by ART is found. It is also found that with increasing gestational age, there has been a significant decrease in the expression of the activity of progesterone receptors (from 45 to 2.5%, regardless of the method of conception and the number of fetuses. Conclusions. The results of the study point to the definitive link of structures of

  2. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  3. Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features

    Directory of Open Access Journals (Sweden)

    Machado MC

    2017-03-01

    Full Text Available Mary C Machado,1 Thomas J Webster2 1Center for Biomedical Engineering, Division of Engineering Brown University, Providence, RI, 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Polyvinyl chloride (PVC endotracheal tubes (ETTs nanoetched with a fungal lipase have been shown to reduce bacterial growth and biofilm formation and could be an inexpensive solution to the complex problem of ventilator-associated pneumonia (VAP. Although bacterial growth and colonization on these nanoetched materials have been well characterized, little is known about the mechanism by which the fungal lipase degrades the PVC and, thus, alters its properties to minimize bacteria functions. This study used X-ray photoelectron spectroscopy (XPS and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR to better describe the surface chemistry of both unetched and lipase nanoetched PVC ETT. ATR-FTIR analysis of the unetched and treated surfaces showed a similar presence of a plasticizer. This was confirmed by XPS analysis, which showed an increase of carbon and the presence of oxygen on both unetched and nanoetched surfaces. A quantitative comparison of the FTIR spectra revealed significant correlations (Pearson’s correlation, R=0.997 [R2=0.994, P<0.001] between the unetched and nanomodified PVC ETT spectra, demonstrating similar surface chemistry. This analysis showed no shifting or widening of the bands in the spectra and no significant changes in the intensity of the infrared peaks due to the degradation of the plasticizer by the fungal lipase. In contrast, results from this study did demonstrate significantly increased nanoscale surface features on the lipase etched compared to non-etched PVC ETTs. This led to a change in surface energetics, which altered ion adsorption to the ETTs. Thus, these results showed that PVC surfaces nanoetched with a 0.1% lipase solution for 48 hours have no significant change

  4. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    Science.gov (United States)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  5. HYDROLOGIC AND FEATURE-BASED SURFACE ANALYSIS FOR TOOL MARK INVESTIGATION ON ARCHAEOLOGICAL FINDS

    Directory of Open Access Journals (Sweden)

    K. Kovács

    2012-07-01

    Full Text Available The improvement of detailed surface documentation methods provides unique tool mark-study opportunities in the field of archaeological researches. One of these data collection techniques is short-range laser scanning, which creates a digital copy of the object’s morphological characteristics from high-resolution datasets. The aim of our work was the accurate documentation of a Bronze Age sluice box from Mitterberg, Austria with a spatial resolution of 0.2 mm. Furthermore, the investigation of the entirely preserved tool marks on the surface of this archaeological find was also accomplished by these datasets. The methodology of this tool mark-study can be summarized in the following way: At first, a local hydrologic analysis has been applied to separate the various patterns of tools on the finds’ surface. As a result, the XYZ coordinates of the special points, which represent the edge lines of the sliding tool marks, were calculated by buffer operations in a GIS environment. During the second part of the workflow, these edge points were utilized to manually clip the triangle meshes of these patterns in reverse engineering software. Finally, circle features were generated and analysed to determine the different sections along these sliding tool marks. In conclusion, the movement of the hand tool could be reproduced by the spatial analysis of the created features, since the horizontal and vertical position of the defined circle centre points indicated the various phases of the movements. This research shows an exact workflow to determine the fine morphological structures on the surface of the archaeological find.

  6. Measurements of land surface features using an airborne laser altimeter: the HAPEX-Sahel experiment

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Menenti, M.; Weltz, M.A.

    1997-01-01

    An airborne laser profiling altimeter was used to measure surface features and properties of the landscape during the HAPEX-Sahel Experiment in Niger, Africa in September 1992. The laser altimeter makes 4000 measurements per second with a vertical resolution of 5 cm. Airborne laser and detailed field measurements of vegetation heights had similar average heights and frequency distribution. Laser transects were used to estimate land surface topography, gully and channel morphology, and vegetation properties ( height, cover and distribution). Land surface changes related to soil erosion and channel development were measured. For 1 km laser transects over tiger bush communities, the maximum vegetation height was between 4-5 and 6-5 m, with an average height of 21 m. Distances between the centre of rows of tiger bush vegetation averaged 100 m. For two laser transects, ground cover for tiger bush was estimated to be 225 and 301 per cent for vegetation greater than 0-5m tall and 190 and 25-8 per cent for vegetation greater than 10m tall. These values are similar to published values for tiger bush. Vegetation cover for 14 and 18 km transects was estimated to be 4 per cent for vegetation greater than 0-5 m tall. These cover values agree within 1-2 per cent with published data for short transects (⩾ 100 m) for the area. The laser altimeter provided quick and accurate measurements for evaluating changes in land surface features. Such information provides a basis for understanding land degradation and a basis for management plans to rehabilitate the landscape. (author)

  7. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    Science.gov (United States)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  8. EFFECTIVE DETECTION OF SUB-SURFACE ARCHEOLOGICAL FEATURES FROM LASER SCANNING POINT CLOUDS AND IMAGERY DATA

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2017-08-01

    Full Text Available The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  9. Surface feature characterization test plan: Conceptual design of a high level nuclear waste repository in salt

    International Nuclear Information System (INIS)

    1984-06-01

    This report presents the Surface Feature Characterization Test Plan for conceptual design. The Test Plan is part of the surface feature characterization program for conceptual design which will obtain information on site topography, hydrology, stratigraphy, and soil and rock engineering properties. The information will be obtained by the Geologic Project Manager (GPM). This Test Plan provides guidance to the GPM as to (1) the kinds of data to be collected, (2) anticipated methods, (3) the level of detail required, (4) interpretation to be made, and (5) the format for presentation. Based on this Test Plan and on conditions at the site that is selected, the GPM will develop an Activity Plan describing the methods to be used in obtaining the needed information. For each item of information, the Test Plan describes those facilities which require it for their design. The GPM can then determine the appropriate methods and level of effort for obtaining the information, taking into account its use and conditions at the selected site. 7 figs., 3 tabs

  10. Assessment of iris surface features and their relationship with iris thickness in Asian eyes.

    Science.gov (United States)

    Sidhartha, Elizabeth; Gupta, Preeti; Liao, Jiemin; Tham, Yih-Chung; Cheung, Carol Y; He, Mingguang; Wong, Tien Y; Aung, Tin; Cheng, Ching-Yu

    2014-05-01

    To assess iris surface features in Asian eyes and examine their associations with iris thickness measured by anterior segment optical coherence tomography (AS OCT). Cross-sectional study. We recruited 250 subjects from the Singapore Malay Eye Study. We obtained standardized slit-lamp photographs and developed a grading system assessing iris crypts (by number and size), furrows (by number and circumferential extent), and color (higher grade denoting darker iris). Vertical and horizontal cross-sections of the anterior chamber were imaged using AS OCT. Intragrader and intergrader agreements in the grading of iris surface were assessed by weighted κ (κ(w)) statistic. Associations of the average iris thickness with the grade of iris features were assessed using linear regression analysis. Frequency and size of iris crypts, furrows, and color; iris thickness at 750 μm (IT750) and 2000 μm (IT2000) from the scleral spur; and maximum iris thickness (ITM) averaged from the 4 quarters. Three hundred sixty-four eyes had complete and gradable data for crypts and color; 330 eyes were graded for furrows. The grading scheme showed good intragrader (crypt κ(w) = 0.919, furrow κ(w) =0.901, color κ(w) = 0.925) and intergrader (crypt κ(w) = 0.775, furrow κ(w) = 0.836, color κ(w) = 0.718) agreements. Higher crypt grade was associated independently with thinner IT750 (β [change in iris thickness per grade higher] = -0.007; P = 0.029), IT2000 (β = -0.018; P iris was also associated with thicker IT750 (β = 0.014; P = 0.001). Iris surface features, assessed and measured from slit-lamp photographs, correlate well with iris thickness. Irises with more crypts are thinner; irises with more extensive furrows and darker color are thicker peripherally. These findings may provide another means to assess angle closure risk based on iris features. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  11. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel.

    Science.gov (United States)

    Alavi, S Habib; Harimkar, Sandip P

    2015-05-01

    Simultaneous application of ultrasonic vibrations during conventional materials processing (casting, welding) and material removal processes (machining) has recently been gaining widespread attention due to improvement in metallurgical quality and efficient material removal, respectively. In this paper, ultrasonic vibration-assisted laser surface melting of austenitic stainless steel (AISI 316) is reported. While the application of ultrasonic vibrations during laser processing delays the laser interaction with material due to enhancement of surface convection, it resulted in expulsion of melt from the irradiated region (forming craters) and transition from columnar to equiaxed dendritic grain structure in the resolidified melt films. Systematic investigations on the effect of ultrasonic vibrations (with vibrations frequency of 20 kHz and power output in the range of 20-40%) on the development of microstructure during laser surface melting (with laser power of 900 W and irradiation time in the range of 0.30-0.45 s) are reported. The results indicate that the proposed ultrasonic vibration-assisted laser processing can be designed for efficient material removal (laser machining) and improved equiaxed microstructure (laser surface modifications) during materials processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microwave-assisted surface modification of metallocene polyethylene for improving blood compatibility.

    Science.gov (United States)

    Mohandas, Hemanth; Sivakumar, Gunalan; Kasi, Palaniappan; Jaganathan, Saravana Kumar; Supriyanto, Eko

    2013-01-01

    A wide number of polymers are being used for various medical applications. In this work, microwave-assisted surface modification of metallocene polyethylene (mPE) was studied. FTIR analysis showed no significant changes in the chemical groups after treatment. Contact angle analysis revealed a decrease in contact angle of the treated samples insinuating increasing hydrophilicity and better biocompatibility. Qualitative analysis of treated samples using scanning electron microscope (SEM) depicted increasing surface roughness and holes formation further corroborating the results. Coagulation assays performed for estimating prothrombin time (PT) and activated partial thromboplastin time (APTT) showed an increase in the clotting time which further confirmed the improved blood compatibility of the microwave-treated surfaces. Further, the extent of hemolysis in the treated sample was lower than the untreated one. Hence, microwave-assisted surface modification of mPE resulted in enhanced blood compatibility. Improved blood compatibility of mPE may be exploited for fabrication of artificial vascular prostheses, implants, and various blood contacting devices.

  13. Microwave-Assisted Surface Modification of Metallocene Polyethylene for Improving Blood Compatibility

    Directory of Open Access Journals (Sweden)

    Hemanth Mohandas

    2013-01-01

    Full Text Available A wide number of polymers are being used for various medical applications. In this work, microwave-assisted surface modification of metallocene polyethylene (mPE was studied. FTIR analysis showed no significant changes in the chemical groups after treatment. Contact angle analysis revealed a decrease in contact angle of the treated samples insinuating increasing hydrophilicity and better biocompatibility. Qualitative analysis of treated samples using scanning electron microscope (SEM depicted increasing surface roughness and holes formation further corroborating the results. Coagulation assays performed for estimating prothrombin time (PT and activated partial thromboplastin time (APTT showed an increase in the clotting time which further confirmed the improved blood compatibility of the microwave-treated surfaces. Further, the extent of hemolysis in the treated sample was lower than the untreated one. Hence, microwave-assisted surface modification of mPE resulted in enhanced blood compatibility. Improved blood compatibility of mPE may be exploited for fabrication of artificial vascular prostheses, implants, and various blood contacting devices.

  14. Stream/Bounce Event Perception Reveals a Temporal Limit of Motion Correspondence Based on Surface Feature over Space and Time

    Directory of Open Access Journals (Sweden)

    Yousuke Kawachi

    2011-06-01

    Full Text Available We examined how stream/bounce event perception is affected by motion correspondence based on the surface features of moving objects passing behind an occlusion. In the stream/bounce display two identical objects moving across each other in a two-dimensional display can be perceived as either streaming through or bouncing off each other at coincidence. Here, surface features such as colour (Experiments 1 and 2 or luminance (Experiment 3 were switched between the two objects at coincidence. The moment of coincidence was invisible to observers due to an occluder. Additionally, the presentation of the moving objects was manipulated in duration after the feature switch at coincidence. The results revealed that a postcoincidence duration of approximately 200 ms was required for the visual system to stabilize judgments of stream/bounce events by determining motion correspondence between the objects across the occlusion on the basis of the surface feature. The critical duration was similar across motion speeds of objects and types of surface features. Moreover, controls (Experiments 4a–4c showed that cognitive bias based on feature (colour/luminance congruency across the occlusion could not fully account for the effects of surface features on the stream/bounce judgments. We discuss the roles of motion correspondence, visual feature processing, and attentive tracking in the stream/bounce judgments.

  15. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  16. Feature extraction and classifcation in surface grading application using multivariate statistical projection models

    Science.gov (United States)

    Prats-Montalbán, José M.; López, Fernando; Valiente, José M.; Ferrer, Alberto

    2007-01-01

    In this paper we present an innovative way to simultaneously perform feature extraction and classification for the quality control issue of surface grading by applying two well known multivariate statistical projection tools (SIMCA and PLS-DA). These tools have been applied to compress the color texture data describing the visual appearance of surfaces (soft color texture descriptors) and to directly perform classification using statistics and predictions computed from the extracted projection models. Experiments have been carried out using an extensive image database of ceramic tiles (VxC TSG). This image database is comprised of 14 different models, 42 surface classes and 960 pieces. A factorial experimental design has been carried out to evaluate all the combinations of several factors affecting the accuracy rate. Factors include tile model, color representation scheme (CIE Lab, CIE Luv and RGB) and compression/classification approach (SIMCA and PLS-DA). In addition, a logistic regression model is fitted from the experiments to compute accuracy estimates and study the factors effect. The results show that PLS-DA performs better than SIMCA, achieving a mean accuracy rate of 98.95%. These results outperform those obtained in a previous work where the soft color texture descriptors in combination with the CIE Lab color space and the k-NN classi.er achieved a 97.36% of accuracy.

  17. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  18. Surface modification technique of structural ceramics: ion implantation-assisted multi-arc ion plating

    International Nuclear Information System (INIS)

    Peng Zhijian; Miao Hezhuo; Si Wenjie; Qi Longhao; Li Wenzhi

    2003-01-01

    Through reviewing the advantages and disadvantages of the existed surface modification techniques, a new technique, ion implantation-assisted multi-arc ion plating, was proposed. Using the proposed technique, the surfaces of silicon nitride ceramics were modified by Ti ion implantation, and then three kinds of ternary coatings, (Ti,Al)N, (Ti,Zr)N and (Ti,Cr)N, were deposited on the as-implanted ceramics. The coatings prepared by this technique are of high-hardness and well adhesive to the ceramic substrates. The maximal hardness measured by nanoindentation tests is more than 40 GPa. The maximal critical load by nanoscratch tests is more than 60 mN. The cutting tools prepared by this technique with the presented coatings are of excellent performance in industrial applications. The technique may be promising for the surface modification of structural ceramics. (orig.)

  19. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    Directory of Open Access Journals (Sweden)

    Simons Janet

    2011-01-01

    Full Text Available Abstract Thiol self-assembled monolayers (SAMs are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM and Kelvin probe force microscopy (KPFM. We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV, revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution.

  20. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.

    Science.gov (United States)

    Paulus, Stefan; Dupuis, Jan; Mahlein, Anne-Katrin; Kuhlmann, Heiner

    2013-07-27

    Laserscanning recently has become a powerful and common method for plant parameterization and plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation, segmentation and classification of single plants by a fully automated system. In this report, we introduce a technique for automated classification of point clouds of plants and present the applicability for plant parameterization. A surface feature histogram based approach from the field of robotics was adapted to close-up laserscans of plants. Local geometric point features describe class characteristics, which were used to distinguish among different plant organs. This approach has been proven and tested on several plant species. Grapevine stems and leaves were classified with an accuracy of up to 98%. The proposed method was successfully transferred to 3D-laserscans of wheat plants for yield estimation. Wheat ears were separated with an accuracy of 96% from other plant organs. Subsequently, the ear volume was calculated and correlated to the ear weight, the kernel weights and the number of kernels. Furthermore the impact of the data resolution was evaluated considering point to point distances between 0.3 and 4.0 mm with respect to the classification accuracy. We introduced an approach using surface feature histograms for automated plant organ parameterization. Highly reliable classification results of about 96% for the separation of grapevine and wheat organs have been obtained. This approach was found to be independent of the point to point distance and applicable to multiple plant species. Its reliability, flexibility and its high order of automation make this method well suited for the demands of high throughput phenotyping.

  1. Ultrasound-assisted extraction of Mangiferin from Mango (Mangifera indica L.) leaves using response surface methodology.

    Science.gov (United States)

    Zou, Tang-Bin; Xia, En-Qin; He, Tai-Ping; Huang, Ming-Yuan; Jia, Qing; Li, Hua-Wen

    2014-01-27

    Mangiferin is a xanthone widely distributed in higher plants showing antioxidative, antiviral, anticancer, antidiabetic, immunomodulatory, hepatoprotective and analgesic effects. In the present study, an ultrasonic-assisted extraction method was developed for the effective extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, extraction temperature, and extraction time were optimized by single-factor experiment and response surface methodology. The optimal extraction conditions were 44% ethanol, the liquid-to-solid ratio was 38:1, and extraction for 19.2 min at 60 °C under ultrasound irradiation of 200 W. Under optimal conditions, the yield of mangiferin was 58.46 ± 1.27 mg/g. The results obtained are helpful for the full utilization of mango leaves, and also indicated that ultrasonic-assisted extraction is a very useful method for the extraction of mangiferin from plant materials.

  2. Morphological analysis of the left ventricular endocardial surface using a bag-of-features descriptor.

    Science.gov (United States)

    Mukhopadhyay, Anirban; Qian, Zhen; Bhandarkar, Suchendra M; Liu, Tianming; Voros, Szilard; Rinehart, Sarah

    2015-07-01

    The limitations of conventional imaging techniques have hitherto precluded a thorough and formal investigation of the complex morphology of the left ventricular (LV) endocardial surface and its relation to the severity of coronary artery disease (CAD). However, recent developments in high-resolution multirow-detector computed tomography (MDCT) scanner technology have enabled the imaging of the complex LV endocardial surface morphology in a single heartbeat. Analysis of high-resolution computed tomography images from a 320-MDCT scanner allows for the noninvasive study of the relationship between the percent diameter stenosis (DS) values of the major coronary arteries and localization of the cardiac segments affected by coronary arterial stenosis. In this paper, a novel approach for the analysis of the nonrigid LV endocardial surface from MDCT images, using a combination of rigid body transformation-invariant shape descriptors and a more generalized isometry-invariant Bag-of-Features descriptor, is proposed and implemented. The proposed approach is shown to be successful in identifying, localizing, and quantifying the incidence and extent of CAD and, thus, is seen to have a potentially significant clinical impact. Specifically, the association between the incidence and extent of CAD, determined via the percent DS measurements of the major coronary arteries, and the alterations in the endocardial surface morphology is formally quantified. The results of the proposed approach on 16 normal datasets and 16 abnormal datasets exhibiting CAD with varying levels of severity are presented. A multivariable regression test is employed to test the effectiveness of the proposed morphological analysis approach. Experiments performed on a strictly leave-one-out basis are shown to exhibit a distinct and interesting pattern in terms of the correlation coefficient values within the cardiac segments, where the incidence of coronary arterial stenosis is localized.

  3. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-07

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  4. Short term memory for single surface features and bindings in ageing: A replication study.

    Science.gov (United States)

    Isella, Valeria; Molteni, Federica; Mapelli, Cristina; Ferrarese, Carlo

    2015-06-01

    In the present study we replicated a previous experiment investigating visuo-spatial short term memory binding in young and older healthy individuals, in the attempt to verify the pattern of impairment that can be observed in normal elderly for short term memory for single items vs short term memory for bindings. Assessing a larger sample size (25 young and 25 older subjects), using a more appropriate measure of accuracy for a change detection task (A'), and adding the evaluation of speed of performance, we confirmed that old normals show a decline in short term memory for bindings of shape and colour that is of comparable extent, and not major, to the decline in memory for single shapes and single colours. The absence of a specific deficit of short term memory for conjunctions of surface features seems to distinguish cognitive ageing from Alzheimer's Disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  6. Crystal surface analysis using matrix textural features classified by a Probabilistic Neural Network

    International Nuclear Information System (INIS)

    Sawyer, C.R.; Quach, V.T.; Nason, D.; van den Berg, L.

    1991-01-01

    A system is under development in which surface quality of a growing bulk mercuric iodide crystal is monitored by video camera at regular intervals for early detection of growth irregularities. Mercuric iodide single crystals are employed in radiation detectors. A microcomputer system is used for image capture and processing. The digitized image is divided into multiple overlappings subimage and features are extracted from each subimage based on statistical measures of the gray tone distribution, according to the method of Haralick [1]. Twenty parameters are derived from each subimage and presented to a Probabilistic Neural Network (PNN) [2] for classification. This number of parameters was found to be optimal for the system. The PNN is a hierarchical, feed-forward network that can be rapidly reconfigured as additional training data become available. Training data is gathered by reviewing digital images of many crystals during their growth cycle and compiling two sets of images, those with and without irregularities. 6 refs., 4 figs

  7. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  8. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    Science.gov (United States)

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  9. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps.

    Directory of Open Access Journals (Sweden)

    Jennifer L Wilkening

    Full Text Available The American pika (Ochotona princeps is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without and analyzed for glucocorticoid metabolites (GCM. We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  10. Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Kuntumalla, Mohan; Srikanth, Vadali V. S. S., E-mail: vvsssse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rajamudili, Kuladeep; Rao Desai, Narayana [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-04-21

    Deep sub-wavelength (Λ/λ = ∼0.22) periodic features are induced uniformly on a nanodiamond (ND) thin film surface using femtosecond (fs) laser irradiation (pulse duration = ∼110 fs and central wavelength of ∼800 nm). The topography of the surface features is controlled by the laser polarization. Orientation of features is perpendicular to laser polarization. Periodicity (spatial periodicity of < λ/4) of the surface features is less than the laser wavelength. This work gives an experimental proof of polarization controlled surface plasmon-fs laser coupling mechanism prompting the interaction between fs laser and solid matter (here ND thin film) which in turn is resulting in the periodic surface features. Scanning electron microscopy in conjunction with micro Raman scattering, X-ray diffraction, and atomic force microscopy are carried out to extract surface morphology and phase information of the laser irradiated regions. This work demonstrates an easy and efficient surface fabrication technique.

  11. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    International Nuclear Information System (INIS)

    1995-11-01

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements

  12. Experimental features of natural thermally assisted OSL (NTA-OSL) signal in various quartz samples; preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr [Institute of Nuclear Sciences, Ankara University, Beşevler, 06100 Ankara (Turkey); Şahiner, Eren, E-mail: sahiner@ankara.edu.tr [Institute of Nuclear Sciences, Ankara University, Beşevler, 06100 Ankara (Turkey); Meriç, Niyazi, E-mail: meric@ankara.edu.tr [Institute of Nuclear Sciences, Ankara University, Beşevler, 06100 Ankara (Turkey); Kitis, George, E-mail: gkitis@physics.auth.gr [Laboratory of Nuclear Physics and Elementary Particles, Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-04-15

    Highlights: •Intense NTA-OSL signal is ubiquitously monitored for five different quartz samples. •For the NTA-OSL signals of all quartz samples, the optimum measuring temperature was indicated to be at 180 °C. •The NTA-OSL signal comprises of at least two different contributing components. •Developing a SAR TA-OSL protocol is feasible. -- Abstract: The access to the OSL signals from very deep traps is achieved by an alternative experimental method which comprises combined action of thermal and optical stimulation, termed as thermally assisted OSL (TA-OSL). This experimental technique was suggested in order to not only measure the signal of the deep traps without heating the sample to temperatures greater than 500 °C, but also use the former for dosimetry purposes as well, due to exhibiting a number of interesting properties which could be effectively used towards dosimetry purposes, especially for large accumulated artificial doses. The present study provides for the first time in the literature with preliminary results towards the feasibility study of the naturally occurring TA-OSL signal in coarse grains of natural quartz towards its effective application to geological dating. The samples subjected to the present study were collected from fault lines in Kütahya-Simav, Western Anatolia Region, Turkey; independent luminescence approaches yielded an equivalent dose larger than 100 Gy. Several experimental luminescence features were studied, such as sensitivity, reproducibility, TA-OSL curve shape as well as the correlation between NTA-OSL and NTL/NOSL. Nevertheless, special emphasis was addressed towards optimizing the measuring conditions of the TA-OSL signal. The high intensity of the OSL signal confirms the existence of a transfer phenomenon from deep electron traps. The increase of the integrated TA-OSL signal as a function of temperature is monitored for temperatures up to 180 °C, indicating the later as the most effective stimulation temperature

  13. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  14. Potential surface alteration effects of laser-assisted periodontal surgery on existing dental restorations.

    Science.gov (United States)

    Kilinc, Evren; Rothrock, James; Migliorati, Erica; Drukteinis, Saulius; Roshkind, David M; Bradley, Paul

    2012-05-01

    Laser-assisted gingivectomies are performed in proximity to teeth, existing restorations, and implants. In case of accidental exposures, a detrimental surface defect may cause failure. Surface interactions should be evaluated for safety margin determination of certain laser-material combinations. The purpose of this in vitro study was to assess the microscopic and visible effects of CO2, Nd:YAG, and 810-nm diode laser irradiations on various dental materials and tooth tissue. Study samples were fabricated (10 x 7.5 mm irradiation surface area, 1 mm thickness) from eight material groups (amalgam, base metal, gold, palladium-silver, composite, ceramic, titanium, and extracted tooth slices). Laser irradiations were performed with CO2, Nd:YAG, and 810-nm diode lasers using the manufacturer's recommended settings for gingivectomy at a 45-degree angle for 30 seconds. Irradiated surfaces were evaluated under SEM at 200x and 1,000x magnifications. Standardized photographs were obtained using a camera mount system (10x high-definition macro lens). The SEM images and photographs were correlated to determine surface interactions. Nd:YAG detrimentally affected all metallic materials and tooth structures. CO2 altered amalgam, gold, and palladium-silver slightly, whereas composite, ceramic, and tooth surfaces were detrimentally altered. The 810-nm diode altered amalgam, gold, titanium, palladium-silver, and composite but only gold and palladium-silver surfaces were barely traceable. Within the limitations of this in vitro study, surface effects were all instant; therefore, even a short accidental exposure may be destructive in some laser-material combinations. During gingivectomies, CO2 near tooth-colored restorations and Nd:YAG near metallic restorations and implants should be used carefully. The 810-nm diode was found to be safer due to its reversible alterations in only some materials. Further in vivo studies are necessary to clinically apply the outcomes of this study.

  15. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    Science.gov (United States)

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an

  16. THE SORPTION EXTRACTION FEATURES OF KARMOAZONATE MERCURY(I COMPLE X BY ANION EXCHANGER AV-17-8 SURFACE

    Directory of Open Access Journals (Sweden)

    Н. M. Guzenko

    2014-11-01

    Full Text Available The dynamic and kinetic curves were analyzed, they were obtained by karmoazonate mercury(I complex extraction by anion exchanger AV-17-8 surface, and also calculated values of sorption process speed factor have allowed to establish the features of the adsorption layers formation on the resin surface.

  17. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  18. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements

  19. Texture-based segmentation with Gabor filters, wavelet and pyramid decompositions for extracting individual surface features from areal surface topography maps

    International Nuclear Information System (INIS)

    Senin, Nicola; Leach, Richard K; Pini, Stefano; Blunt, Liam A

    2015-01-01

    Areal topography segmentation plays a fundamental role in those surface metrology applications concerned with the characterisation of individual topography features. Typical scenarios include the dimensional inspection and verification of micro-structured surface features, and the identification and characterisation of localised defects and other random singularities. While morphological segmentation into hills or dales is the only partitioning operation currently endorsed by the ISO specification standards on surface texture metrology, many other approaches are possible, in particular adapted from the literature on digital image segmentation. In this work an original segmentation approach is introduced and discussed, where topography partitioning is driven by information collected through the application of texture characterisation transforms popular in digital image processing. Gabor filters, wavelets and pyramid decompositions are investigated and applied to a selected set of test cases. The behaviour, performance and limitations of the proposed approach are discussed from the viewpoint of the identification and extraction of individual surface topography features. (paper)

  20. Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology.

    Science.gov (United States)

    Jang, Seol; Lee, A Yeong; Lee, A Reum; Choi, Goya; Kim, Ho Kyoung

    2017-12-01

    The present study optimized ultrasound-assisted extraction conditions to maximize extraction yields of glycyrrhizic acid from licorice. The optimal extraction temperature (X 1 ), extraction time (X 2 ), and methanol concentration (X 3 ) were identified using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain the optimal processing parameters. Statistical analyses revealed that three variables and the quadratic of X 1 , X 2 , and X 3 had significant effects on the yields and were followed by significant interaction effects between the variables of X 2 and X 3 ( p response surface plot and contour plots derived from the mathematical models were applied to determine the optimal conditions. The optimum ultrasound-assisted extraction conditions were as follows: extraction temperature, 69 °C; extraction time, 34 min; and methanol concentration, 57%. Under these conditions, the experimental yield of glycyrrhizic acid was 3.414%, which agreed closely with the predicted value (3.406%). The experimental values agreed with those predicted by RSM models, thus indicating the suitability of the model employed and the success of RSM in optimizing the extraction conditions.

  1. Optimization of ultrasonic-assisted preparation of dietary fiber from corn pericarp using response surface methodology.

    Science.gov (United States)

    Wang, Anna; Wu, Ligen; Li, Xiulin

    2013-09-01

    Corn pericarp, which is an industrial waste of corn starch production, is an important source of dietary fiber in cereals, with claimed health benefits. However, they used to be discarded or utilized as animal feed. The application of pre-ultrasound treatment is critical for achieving rapid preparation of desired components from plant materials and for preserving structural and molecular properties of these compounds. Ultrasonic-assisted preparation was used to produce dietary fiber from corn pericarp using response surface methodology. The optimal particle size of corn pericarp (mesh size 40), the ratio of liquid to solid (25 mL g⁻¹), ultrasonic power (180 W) and ultrasonic time (80 min) were determined based on response surface methodology analysis. The interaction effects of particle size of corn pericarp and ultrasonic time had a highlysignificant effect on the yield of dietary fiber, and a significant effect was shown by ultrasonic power and ultrasonic time. The maximum yield of dietary fiber was 86.84%, which agreed closely with the predicted value. Using ultrasonic-assisted preparation, it may be possible to enhance the yield of dietary fiber from corn pericarp. © 2013 Society of Chemical Industry.

  2. Antiproliferative activity of Curcuma phaeocaulis Valeton extract using ultrasonic assistance and response surface methodology.

    Science.gov (United States)

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2017-01-02

    The objective of the study was to optimize the ultrasonic-assisted extraction of curdione, furanodienone, curcumol, and germacrone from Curcuma phaeocaulis Valeton (Val.) and investigate the antiproliferative activity of the extract. Under the suitable high-performance liquid chromatography condition, the calibration curves for these four tested compounds showed high levels of linearity and the recoveries of these four compounds were between 97.9 and 104.3%. Response surface methodology (RSM) combining central composite design and desirability function (DF) was used to define optimal extraction parameters. The results of RSM and DF revealed that the optimum conditions were obtained as 8 mL g -1 for liquid-solid ratio, 70% ethanol concentration, and 20 min of ultrasonic time. It was found that the surface structures of the sonicated herbal materials were fluffy and irregular. The C. phaeocaulis Val. extract significantly inhibited the proliferation of RKO and HT-29 cells in vitro. The results reveal that the RSM can be effectively used for optimizing the ultrasonic-assisted extraction of bioactive components from C. phaeocaulis Val. for antiproliferative activity.

  3. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Viviani, Gaspare

    2013-10-01

    Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected to receive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as "features": in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a

  4. Association between U.S. State AIDS Drug Assistance Program (ADAP) Features and HIV Antiretroviral Therapy Initiation, 2001–2009

    Science.gov (United States)

    Hanna, David B.; Buchacz, Kate; Gebo, Kelly A.; Hessol, Nancy A.; Horberg, Michael A.; Jacobson, Lisa P.; Kirk, Gregory D.; Kitahata, Mari M.; Korthuis, P. Todd; Moore, Richard D.; Napravnik, Sonia; Patel, Pragna; Silverberg, Michael J.; Sterling, Timothy R.; Willig, James H.; Collier, Ann; Samji, Hasina; Thorne, Jennifer E.; Althoff, Keri N.; Martin, Jeffrey N.; Rodriguez, Benigno; Stuart, Elizabeth A.; Gange, Stephen J.

    2013-01-01

    Background U.S. state AIDS Drug Assistance Programs (ADAPs) are federally funded to provide antiretroviral therapy (ART) as the payer of last resort to eligible persons with HIV infection. States differ regarding their financial contributions to and ways of implementing these programs, and it remains unclear how this interstate variability affects HIV treatment outcomes. Methods We analyzed data from HIV-infected individuals who were clinically-eligible for ART between 2001 and 2009 (i.e., a first reported CD4+ <350 cells/uL or AIDS-defining illness) from 14 U.S. cohorts of the North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD). Using propensity score matching and Cox regression, we assessed ART initiation (within 6 months following eligibility) and virologic suppression (within 1 year) based on differences in two state ADAP features: the amount of state funding in annual ADAP budgets and the implementation of waiting lists. We performed an a priori subgroup analysis in persons with a history of injection drug use (IDU). Results Among 8,874 persons, 56% initiated ART within six months following eligibility. Persons living in states with no additional state contribution to the ADAP budget initiated ART on a less timely basis (hazard ratio [HR] 0.73, 95% CI 0.60–0.88). Living in a state with an ADAP waiting list was not associated with less timely initiation (HR 1.12, 95% CI 0.87–1.45). Neither additional state contributions nor waiting lists were significantly associated with virologic suppression. Persons with an IDU history initiated ART on a less timely basis (HR 0.67, 95% CI 0.47–0.95). Conclusions We found that living in states that did not contribute additionally to the ADAP budget was associated with delayed ART initiation when treatment was clinically indicated. Given the changing healthcare environment, continued assessment of the role of ADAPs and their features that facilitate prompt treatment is needed. PMID:24260137

  5. Diagnostics of microwave assisted electron cyclotron resonance plasma source for surface modification of nylon 6

    Science.gov (United States)

    More, Supriya E.; Das, Partha Sarathi; Bansode, Avinash; Dhamale, Gayatri; Ghorui, S.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Mathe, Vikas L.

    2018-01-01

    Looking at the increasing scope of plasma processing of materials surface, here we present the development and diagnostics of a microwave assisted Electron Cyclotron Resonance (ECR) plasma system suitable for surface modification of polymers. Prior to the surface-treatment, a detailed diagnostic mapping of the plasma parameters throughout the reactor chamber was carried out by using single and double Langmuir probe measurements in Ar plasma. Conventional analysis of I-V curves as well as the elucidation form of the Electron Energy Distribution Function (EEDF) has become the source of calibration of plasma parameters in the reaction chamber. The high energy tail in the EEDF of electron temperature is seen to extend beyond 60 eV, at much larger distances from the ECR zone. This proves the suitability of the rector for plasma processing, since the electron energy is much beyond the threshold energy of bond breaking in most of the polymers. Nylon 6 is used as a representative candidate for surface processing in the presence of Ar, H2 + N2, and O2 plasma, treated at different locations inside the plasma chamber. In a typical case, the work of adhesion is seen to almost get doubled when treated with oxygen plasma. Morphology of the plasma treated surface and its hydrophilicity are discussed in view of the variation in electron density and electron temperature at these locations. Nano-protrusions arising from plasma treatment are set to be responsible for the hydrophobicity. Chemical sputtering and physical sputtering are seen to influence the surface morphology on account of sufficient electron energies and increased plasma potential.

  6. Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity.

    Science.gov (United States)

    Smith, Matthew C; Gestwicki, Jason E

    2012-07-26

    Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, might influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of 'druggable' protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favour discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets.

  7. Accessible surface area of proteins from purely sequence information and the importance of global features

    Science.gov (United States)

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-03-01

    We present a new approach for predicting the accessible surface area of proteins. The novelty of this approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Rather, sequential window information and the global monomer and dimer compositions of the chain are used. We find that much of the lost accuracy due to the elimination of evolutionary information is recouped by the use of global features. Furthermore, this new predictor produces similar results for proteins with or without sequence homologs deposited in the Protein Data Bank, and hence shows generalizability. Finally, these predictions are obtained in a small fraction (1/1000) of the time required to run mutation profile based prediction. All these factors indicate the possible usability of this work in de-novo protein structure prediction and in de-novo protein design using iterative searches. Funded in part by the financial support of the National Institutes of Health through Grants R01GM072014 and R01GM073095, and the National Science Foundation through Grant NSF MCB 1071785.

  8. A New Sensor for Surface Process Quantification in the Geosciences - Image-Assisted Tacheometers

    Science.gov (United States)

    Vicovac, Tanja; Reiterer, Alexander; Rieke-Zapp, Dirk

    2010-05-01

    The quantification of earth surface processes in the geosciences requires precise measurement tools. Typical applications for precise measurement systems involve deformation monitoring for geo-risk management, detection of erosion rates, etc. Often employed for such applications are laser scanners, photogrammetric sensors and image-assisted tacheometers. Image-assisted tacheometers offer the user (metrology expert) an image capturing system (CCD/CMOS camera) in addition to 3D point measurements. The images of the telescope's visual field are projected onto the camera's chip. The camera is capable of capturing panoramic image mosaics through camera rotation if the axes of the measurement system are driven by computer controlled motors. With appropriate calibration, these images are accurately geo-referenced and oriented since the horizontal and vertical angles of rotation are continuously measured and fed into the computer. The oriented images can then directly be used for direction measurements with no need for control points in object space or further photogrammetric orientation processes. In such a system, viewing angles must be addressed to chip pixels inside the optical field of view. Hence dedicated calibration methods have to be applied, an autofocus unit has to be added to the optical path, and special digital image processing procedures have to be used to detect the points of interest on the objects to be measured. We present such a new optical measurement system for measuring and describing 3D surfaces for geosciences. Besides the technique and methods some practical examples will be shown. The system was developed at the Vienna University of Technology (Institute of Geodesy and Geophysics) - two interdisciplinary research project, i-MeaS and SedyMONT, have been launched with the purpose of measuring and interpreting 3D surfaces and surface processes. For the in situ measurement of bed rock erosion the level of surveying accuracy required for recurring sub

  9. Simultaneous Dropwise and Filmwise Condensation on a Microstructured Surface without the Assistance of a Hydrophobic Coating

    Science.gov (United States)

    Orejon, Daniel; Shardt, Orest; Kumar Gunda, Naga Siva; Ikuta, Tatsuya; Takahashi, Koji; Mitra, Sushanta K.; Takata, Yasuyuki

    2017-11-01

    We demonstrate micropillar surfaces on which condensation occurs in a new mode with simultaneous dropwise/filmwise condensation (DWC/FWC). This is achieved without the assistance of a hydrophobic coating; the pillars and base surface are hydrophilic. By considering thermodynamic principles of droplet wetting and spreading, we designed microstructured surfaces where the condensate is able to spread through the structures. The geometry of the microstructures constrains the condensate between the pillars, the rise of condensate above the structures is not thermodynamically favorable and condensation takes place as FWC between pillars. At the same time, the continuous nucleation, growth and departure of droplets at the pillars' tops in a DWC fashion is observed. We propose a simple resistance based heat transfer model to support the greater heat transfer performance of the simultaneous DWC/FWC when compared to solely FWC. In addition we propose rational guidelines for the design of an optimum configuration that maximizes the heat transfer performance in the simultaneous DWC/FWC mode. The authors acknowledge the support of WPI-I2CNER and KAKENHI JSPS.

  10. UV irradiation assisted growth of ZnO nanowires on optical fiber surface

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Bo; Shi, Tielin; Liao, Guanglan; Li, Xiaoping; Huang, Jie; Zhou, Temgyuan; Tang, Zirong, E-mail: zirong@mail.hust.edu.cn

    2017-06-01

    Highlights: • A new fabrication process combined a hydrothermal process with UV irradiation from optical fiber is developed. • The growth of ZnO nanowires is efficient in the utilization of UV light. • A novel hybrid structure which integrates ZnO nanowires on optical fiber surface is synthesized. • The UV assisted growth of ZnO nanowires shows preferred orientation and better quality. • A mechanism of growing ZnO nanowires under UV irradiation is proposed. - Abstract: In this paper, a novel approach was developed for the enhanced growth of ZnO nanowires on optical fiber surface. The method combined a hydrothermal process with the efficient UV irradiation from the fiber core, and the effects of UV irradiation on the growth behavior of ZnO nanowires were investigated. The results show that UV irradiation had great effects on the preferred growth orientation and the quality of the ZnO nanowires. The crystallization velocity along the c-axis would increase rapidly with the increase of the irradiation power, while the growth process in the lateral direction was marginally affected by the irradiation. The structure of ZnO nanowires also shows less oxygen vacancy with UV irradiation of higher power. The developed approach is applicable for the efficient growth of nanowires on the fiber surface, and the ZnO nanowires/optical fiber hybrid structures have great potentials for a wide variety of applications such as optical fiber sensors and probes.

  11. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meininger, M. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Wolf-Brandstetter, C. [Max Bergmann Center for Biomaterials, Technical University of Dresden, Budapester Straße 27, D-01069 Dresden (Germany); Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Moseke, C., E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany)

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr{sup 2+} ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr{sup 2+} into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr{sup 2+} ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  12. Hot surface assisted compression ignition in a direct injection natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Aesoey, Vilmar

    1996-12-31

    This study investigates the problem of ignition in a direct injection natural gas engine. Due to poor auto-ignition properties of natural gas compared to regular diesel engine fuels, a special arrangement to assist and secure ignition is required. The objective was to investigate the feasibility of using a hot surface as ignition assistance, primarily for application in medium and large size engines, and further study the main mechanisms involved in the ignition process. A constant volume combustion bomb and a test engine are used for experiments, supported by theoretical analysis and numerical simulations. Variable composition of natural gas depending on the gas source and over time, is a important problem causing significant variation in ignition properties. It is shown that even small quantities of non-methane components, which are normally present in natural gases, strongly influence ignition. Actions to handle the ignition problem caused by variable natural composition, are also discussed. In order to estimate the ignition properties of natural gas, a simple correlation to gas composition is proposed, showing good correlation to the experimental data. Mathematical models for simulation of the processes are developed based on fundamental physical relations and experimental results. They are mainly used in this study to support and analyze the physical experiments, but can also be useful in future design and optimization processes. 71 refs., 80 figs., 6 tabs.

  13. Response Surface Methodology for Ultrasound-Assisted Extraction of Astaxanthin from Haematococcus pluvialis

    Directory of Open Access Journals (Sweden)

    Hong-Fu Wu

    2013-05-01

    Full Text Available Astaxanthin is a novel carotenoid nutraceutical occurring in many crustaceans and red yeasts. It has exhibited various biological activities including prevention or amelioration of cardiovascular disease, gastric ulcer, hypertension, and diabetic nephropathy. In this study, ultrasound-assisted extraction was developed for the effective extraction of astaxanthin from Haematococcus pluvialis. Some parameters such as extraction solvent, liquid-to-solid ratio, extraction temperature, and extraction time were optimized by single-factor experiment and response surface methodology. The optimal extraction conditions were 48.0% ethanol in ethyl acetate, the liquid-to-solid ratio was 20:1 (mL/g, and extraction for 16.0 min at 41.1 °C under ultrasound irradiation of 200 W. Under optimal conditions, the yield of astaxanthin was 27.58 ± 0.40 mg/g. The results obtained are beneficial for the full utilization of Haematococcus pluvialis, which also indicated that ultrasound-assisted extraction is a very useful method for extracting astaxanthin from marine life.

  14. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    International Nuclear Information System (INIS)

    Meininger, M.; Wolf-Brandstetter, C.; Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J.; Moseke, C.

    2016-01-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr 2+ ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr 2+ into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr 2+ ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  15. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    Science.gov (United States)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  16. Laser-assisted surface modification of Ti-implant in air and water environment

    Science.gov (United States)

    Trtica, M.; Stasic, J.; Batani, D.; Benocci, R.; Narayanan, V.; Ciganovic, J.

    2018-01-01

    A study of the surface modification of titanium CP grade 2 implant/target with high intensity picosecond (Nd:YAG) laser, operating at 1064 nm wavelength and pulse duration of 40 ps, in gaseous (air) and liquid (water) medium, is presented. The exposure of Ti to a laser pulse energy of 17 mJ in both media - gaseous and liquid, induced specific surface features and phenomena: (i) enhancement of the implant surface roughness (higher in water). In this context, the damage depth is more prominent in water (as high as ∼40 μm) vs. air (∼14 μm). Also, the appearance of laser induced periodic surface structures (LIPSS) is recorded in both media, at periphery area, while in water they are registered at lower pulse count; (ii) variation of chemical surface content depending on the applied medium. Thus, in the central irradiation region, the oxygen was absent in air while its concentration was relatively high (6.44 wt%) in case of water; (iii) possibility of direct collection of synthesized titanium based nanoparticles in water environment, and (iv) formation of the plasma above the sample in both mediums, more volumetrically confined in water. These investigations showed that surface structuring and observed phenomena are in strong correlation with the medium used. The liquid - water seems like the medium of choice in regard to titanium implant biocompatibility and bio-activity (the water is a favorable medium for build-up of the oxide layer which affects bioactivity). The process of laser interaction with titanium implant targets was accompanied by the formation of plasma plume, which provides the additional sterilizing effect facilitating contaminant-free conditions.

  17. Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps)

    OpenAIRE

    Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were...

  18. Surface optical phonons in GaAs nanowires grown by Ga-assisted chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    García Núñez, C., E-mail: carlos.garcia@uam.es; Braña, A. F.; Pau, J. L.; Ghita, D.; García, B. J. [Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Shen, G.; Wilbert, D. S.; Kim, S. M.; Kung, P. [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487 (United States)

    2014-01-21

    Surface optical (SO) phonons were studied by Raman spectroscopy in GaAs nanowires (NWs) grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates. NW diameters and lengths ranging between 40 and 65 nm and between 0.3 and 1.3 μm, respectively, were observed under different growth conditions. The analysis of the Raman peak shape associated to either longitudinal or surface optical modes gave important information about the crystal quality of grown NWs. Phonon confinement model was used to calculate the density of defects as a function of the NW diameter resulting in values between 0.02 and 0.03 defects/nm, indicating the high uniformity obtained on NWs cross section size during growth. SO mode shows frequency downshifting as NW diameter decreases, this shift being sensitive to NW sidewall oxidation. The wavevector necessary to activate SO phonon was used to estimate the NW facet roughness responsible for SO shift.

  19. GumPack: A Personal Health Assistant with Reconfigurable Surface Components

    Directory of Open Access Journals (Sweden)

    Kejia Li

    2013-01-01

    Full Text Available Wearable and everyday-carry medical devices can improve quality of life for individuals that need frequent health monitoring. Such tools can supplement ubiquitous home care environments populated with medical sensors, extending the reach of these environments and increasing the freedom of their occupants. This paper presents the concept design for an everyday-carry medical device called a ‘GumPack’: a small cuboid-shaped device that offers wireless connectivity and plug-and-play surface components, where a component can be a biomedical sensor or a wireless network coordinator that manages a body area network. This geometrical layout optimizes access to surface-based medical hardware mounted on a small form factor. The device offers substantive computing power, supports local component reconfigurability, and promotes interoperability with medical device coordination environments. The GumPack is envisioned to be a personal health assistant carried in a pocket or handbag that can operate alone or interface to, e.g., a cell phone.

  20. Intra-operative prostate motion tracking using surface markers for robot-assisted laparoscopic radical prostatectomy

    Science.gov (United States)

    Esteghamatian, Mehdi; Sarkar, Kripasindhu; Pautler, Stephen E.; Chen, Elvis C. S.; Peters, Terry M.

    2012-02-01

    Radical prostatectomy surgery (RP) is the gold standard for treatment of localized prostate cancer (PCa). Recently, emergence of minimally invasive techniques such as Laparoscopic Radical Prostatectomy (LRP) and Robot-Assisted Laparoscopic Radical Prostatectomy (RARP) has improved the outcomes for prostatectomy. However, it remains difficult for the surgeons to make informed decisions regarding resection margins and nerve sparing since the location of the tumor within the organ is not usually visible in a laparoscopic view. While MRI enables visualization of the salient structures and cancer foci, its efficacy in LRP is reduced unless it is fused into a stereoscopic view such that homologous structures overlap. Registration of the MRI image and peri-operative ultrasound image using a tracked probe can potentially be exploited to bring the pre-operative information into alignment with the patient coordinate system during the procedure. While doing so, prostate motion needs to be compensated in real-time to synchronize the stereoscopic view with the pre-operative MRI during the prostatectomy procedure. In this study, a point-based stereoscopic tracking technique is investigated to compensate for rigid prostate motion so that the same motion can be applied to the pre-operative images. This method benefits from stereoscopic tracking of the surface markers implanted over the surface of the prostate phantom. The average target registration error using this approach was 3.25+/-1.43mm.

  1. Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolution

    DEFF Research Database (Denmark)

    Speranzaa, Vito; Liparotia, Sara; Calaon, Matteo

    2017-01-01

    The production of polymeric components with functional structures in the micrometer and sub-micrometer range is a complex challenge for the injection molding process, since it suffers the use of low cavity surface temperatures that induce the fast formation of a frozen layer, thus preventing...... was sufficient to obtain accurate replication, with adequate surface temperatures. In the case of nano-features, the replication accuracy was affected by the morphology developed on the molding surface, that is aligned along the flow direction with dimensions comparable with the dimension of the nano...

  2. How do features of dressage arenas influence training surface properties which are potentially associated with lameness?

    Science.gov (United States)

    Murray, Rachel C; Walters, Juli; Snart, Hannah; Dyson, Sue; Parkin, Tim

    2010-11-01

    Results from a previous study indicated that there are specific arena surface characteristics that are associated with an increased likelihood of lameness in dressage horses. It is important to understand what modifiable arena factors lead to these detrimental surface characteristics. The aim of this study was to describe the use of training surfaces and arenas for United Kingdom dressage horses and to investigate any relationships between arena/surface variables and detrimental surface characteristics. Data from a questionnaire returned by 22.5% of all 11,363 registered members of British Dressage were used for the study. Univariate and multivariable logistic regression models were developed with each of the previously identified surface characteristics as dependent variables. Respondents reported that the majority of arenas were privately owned, sized 20 × 40 m and had a sand and rubber surface. The results indicated that wax-coated and sand and rubber surfaces were associated with less detrimental surface properties than sand, sand and PVC, woodchips or grass. Woodchips were most strongly associated with the detrimental characteristic of slipping, and sand with tripping. The findings indicated that any arena surface should have a base, with limestone the recommended surface, and that crushed concrete was best avoided. This information supported previous studies in racehorses that indicated that surface maintenance is essential, especially when many horses are using an arena daily. Problems were less likely if an arena was privately owned. Copyright © 2010. Published by Elsevier Ltd.

  3. Scanning electron microscopy of surface features of hamster embryo cells transformed in vitro by x-irradiation

    International Nuclear Information System (INIS)

    Borek, C.; Fenoglio, C.M.

    1976-01-01

    Scanning electron microscope studies were carried out on Syrian hamster embryo cells transformed in vitro by x-irradiation (300 rads) (x-ray transformed) and on normal nonirradiated and irradiated nontransformed controls. Transformed cells appeared in scanning electron microscopy as pleomorphic, thick cells piling up over each other and exhibiting extensive surface features consisting of microvilli, blebs, and ruffles. These surface structures were seen on single as well as on densely cultured transformed cells during both interphase and mitosis. The complex surface was observed shortly after transformation (on cells of a 20-day-old clone) and seems a permanent feature of the x-ray transformed cells (present after 8 years in culture). All controls appeared by scanning electron microscopy as regular, flat, and smooth cells which grew in high-density cultures to seemingly contact-inhibited monolayers. During mitosis the normal cells (control, nontransformed) displayed surface excrescences similar to those of the transformed cells making the mitotic normal cells indistinguishable from transformed cells. The complex surface features in the normal cells were temporary and reversed back to characteristic smoothness upon reentrance into interphase

  4. Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater.

    Directory of Open Access Journals (Sweden)

    Yue-Hong Wu

    Full Text Available Strains JW1T and JW3, isolated from surface seawater of the Arabian Sea, were subjected to polyphasic taxonomic analysis. Cells of both strains were Gram-stain-negative, aerobic, and rod-shaped. They formed violet pigment and produced violacein. On the basis of 16S rRNA gene sequence analysis, strains JW1T and JW3 showed high 16S rRNA gene sequence similarity with Pseudoalteromonas byunsanensis JCM12483T (98.2%, P. shioyasakiensis SE3T (97.8%, P. arabiensis JCM 17292T (97.3%, and P. gelatinilytica NH153T (97.1%. The 16S rRNA gene sequence similarity between JW1T and JW3 was 100%. Phylogenetic analyses revealed that both strains fell within the cluster of the genus Pseudoalteromonas and represented an independent lineage. The average nucleotide identity and in silico DNA-DNA hybridization values between JW1T and type strains of the closely related Pseudoalteromonas species were 70.9-83.3% and 20.0-26.4%, respectively. The sole respiratory quinone in both strains is ubiquinone 8 (Q-8. The principal fatty acids are summed feature 3 (C16:1ω7c and/or iso-C15:0 2OH, C18:1ω7c, and C16:0. The major polar lipids are phosphatidylethanolamine, phosphatidylglycerol, one unidentified glycolipid, one unidentified aminolipid, and one unidentified phospholipid. The DNA G+C content was 43.3 mol%. Differential phylogenetic distinctiveness, chemotaxonomic differences, and phenotypic properties indicated that strains JW1T and JW3 could be differentiated from the Pseudoalteromonas species with validly published names. Therefore, it is proposed that strains JW1T and JW3 represent a novel species of the genus Pseudoalteromonas, for which the name Pseudoalteromonas amylolytica sp. nov. (type strain, JW1T = CGMCC 1.15681T = KCTC 52406T = MCCC 1K02162T is proposed.

  5. CosmoQuest - Mapping Surface Features Across the Inner Solar System

    Science.gov (United States)

    Grier, Jennifer A.; Richardson, Matthew; Gay, Pamela L.; Lehan, Cory; Owens, Ryan; Robbins, Stuart J.; DellaGiustina, Daniella; Bennett, Carina; Runco, Susan; Graff, Paige

    2017-10-01

    The CosmoQuest Virtual Research Facility allows research scientists to work together with citizen scientists in ‘big data’ investigations. Some research requires the examination of vast numbers of images - partnering with engaged and trained citizen scientists allows for that research to be completed in a thorough and timely manner. The techniques used by CosmoQuest to collect impact crater data have been validated to ensure robustness (Robbins et al., 2014), and include software tools that accurately identify crater clusters, and multiple crater identifications. CosmoQuest has current or up-and-coming projects that span much of the inner solar system. “Moon Mappers” gives the public a chance to learn about the importance of cratered surfaces, and investigate factors that effect the identification and measurement of impact craters such as incidence angle. In the “Mars Mappers” program citizens map small craters in valley networks. These will be used to estimate times of ancient water flow. In “Mercury Mappers” the public learns about other issues related to crater counting, such as secondaries. On Mercury, secondaries appear to dominate counts up to 10km. By mapping these craters, we will be able to better understand the maximum diameter of secondaries relative to the parent primary. The public encounters Vesta in “Vesta Mappers,” a project that contributes data to the overall crater counting efforts on that body. Asteroid investigations do not end there - the OSIRIS-REx team is collaborating with CosmoQuest to create a science campaign to generate boulder and crater counting datasets of the asteroid Bennu. This “Bennu Mappers” project will inform the final selection of the sample return site. The Earth is the target for the “Image Detective” project, which uses the 2 million images returned from crewed space flight. These images are rich in information about our changing Earth, as well as phenomena like aurora. Citizens tag these images

  6. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features.

    Science.gov (United States)

    Karthick, P A; Makaram, Navaneethakrishna; Ramakrishnan, S

    2014-01-01

    Muscle fatigue is a neuromuscular condition where muscle performance decreases due to sustained or intense contraction. It is experienced by both normal and abnormal subjects. In this work, an attempt has been made to analyze the progression of muscle fatigue in biceps brachii muscles using surface electromyography (sEMG) signals. The sEMG signals are recorded from fifty healthy volunteers during dynamic contractions under well defined protocol. The acquired signals are preprocessed and segmented in to six equal parts for further analysis. The features, such as activity, mobility, complexity, sample entropy and spectral entropy are extracted from all six zones. The results are found showing that the extracted features except complexity feature have significant variations in differentiating non-fatigue and fatigue zone respectively. Thus, it appears that, these features are useful in automated analysis of various neuromuscular activities in normal and pathological conditions.

  7. Mobile Agents: A Distributed Voice-Commanded Sensory and Robotic System for Surface EVA Assistance

    Science.gov (United States)

    Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ronnie

    2003-01-01

    A model-based, distributed architecture integrates diverse components in a system designed for lunar and planetary surface operations: spacesuit biosensors, cameras, GPS, and a robotic assistant. The system transmits data and assists communication between the extra-vehicular activity (EVA) astronauts, the crew in a local habitat, and a remote mission support team. Software processes ("agents"), implemented in a system called Brahms, run on multiple, mobile platforms, including the spacesuit backpacks, all-terrain vehicles, and robot. These "mobile agents" interpret and transform available data to help people and robotic systems coordinate their actions to make operations more safe and efficient. Different types of agents relate platforms to each other ("proxy agents"), devices to software ("comm agents"), and people to the system ("personal agents"). A state-of-the-art spoken dialogue interface enables people to communicate with their personal agents, supporting a speech-driven navigation and scheduling tool, field observation record, and rover command system. An important aspect of the engineering methodology involves first simulating the entire hardware and software system in Brahms, and then configuring the agents into a runtime system. Design of mobile agent functionality has been based on ethnographic observation of scientists working in Mars analog settings in the High Canadian Arctic on Devon Island and the southeast Utah desert. The Mobile Agents system is developed iteratively in the context of use, with people doing authentic work. This paper provides a brief introduction to the architecture and emphasizes the method of empirical requirements analysis, through which observation, modeling, design, and testing are integrated in simulated EVA operations.

  8. Use of the discriminant Fourier-derived cepstrum with feature-level post-processing for surface electromyographic signal classification

    International Nuclear Information System (INIS)

    Chen, Xinpu; Zhu, Xiangyang; Zhang, Dingguo

    2009-01-01

    Myoelectrical pattern classification is a crucial part in multi-functional prosthesis control. This paper investigates a discriminant Fourier-derived cepstrum (DFC) and feature-level post-processing (FLPP) to discriminate hand and wrist motions using the surface electromyographic signal. The Fourier-derived cepstrum takes advantage of the Fourier magnitude or sub-band power energy of signals directly and provides flexible use of spectral information changing with different motions. Appropriate cepstral coefficients are selected by a proposed separability criterion to construct DFC features. For the post-processing, FLPP which combines features from several analysis windows is used to improve the feature performance further. In this work, two classifiers (a linear discriminant classifier and quadratic discriminant classifier) without hyper-parameter optimization are employed to simplify the training procedure and avoid the possible bias of feature evaluation. Experimental results of the 11-motion problem show that the proposed DFC feature outperforms traditional features such as time-domain statistics and autoregressive-derived cepstrum in terms of the classification accuracy, and it is a promising method for the multi-functionality and high-accuracy control of myoelectric prostheses

  9. Dynamics of Soil Deflation Features in Kangerlussuaq, Greenland Revealed by Variations in Lichen Diameters on Exposed Surfaces

    Science.gov (United States)

    Heindel, R. C.; Kelly, M. A.; Virginia, R. A.

    2013-12-01

    Little is known about the pervasive soil deflation features in the Kangerlussuaq region, West Greenland, an area deglaciated between ~6,800 and 150 years ago. While the majority of the landscape is vegetated with low-lying shrubs and graminoids, wind erosion has removed loess and vegetation from distinct patches ranging in size from a few to tens of meters across, leaving the underlying glacial till or bedrock exposed. Although previous work has considered aeolian landforms and regional loess deposition along the Watson River Valley, these deflation features have not been investigated in detail. We aim to determine both the timing and mechanisms of formation of the deflation features and will examine whether these mechanisms were related to regional climatic conditions, such as increased aridity, to fluctuations in the Greenland Ice Sheet, or to other factors. Our ongoing research investigating these features includes geomorphic mapping using field observations and satellite imagery, lichenometry of the exposed surfaces, and cosmogenic nuclide dating of boulders and bedrock within and near the deflation features. Here we present initial results from our lichenometry studies. During the summer of 2013, we measured maximum lichen (Rhizocarpon sp.) diameters on boulder and bedrock surfaces in 15 soil deflation features located between Kangerlussuaq and the ice sheet margin. Lichen diameters vary from only a few millimeters at the outer margins of deflation features to multiple centimeters (maximum ~50 mm) in the centers of the unvegetated patches. This distinct pattern suggests that the outer margins of the soil deflation features are currently active. Based on a previously established lichen growth curve for Rhizocarpon sp. in West Greenland, our results indicate that the features are expanding at a rate of ~1.5 m per 100 yrs. In addition, the large lichen diameters (~40-50 mm) that occur in the centers of deflation features suggest that the formation mechanism has

  10. Investigation of Selected Surface Integrity Features of Duplex Stainless Steel (DSS) after Turning

    Czech Academy of Sciences Publication Activity Database

    Krolczyk, G.; Nieslony, P.; Legutko, S.; Hloch, Sergej; Samardžić, I.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 91-94 ISSN 0543-5846 Institutional support: RVO:68145535 Keywords : duplex stainless steel * machining * turning * surface integrity * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 0.959, year: 2014 http://hrcak.srce.hr/126702

  11. Effective aerodynamic roughness estimated from airborne laser altimeter measurements of surface features

    NARCIS (Netherlands)

    De Vries, AC; Kustas, WP; Ritchie, JC; Klaassen, W; Menenti, M; Rango, A; Prueger, JH

    2003-01-01

    Aerodynamic roughness length (z(0)) and displacement height (d(0)) are important surface parameters for estimating surface fluxes in numerical models. These parameters are generally determined from wind flow characteristics using logarithmic wind profiles measured at a meteorological tower or by

  12. Predicting internal white oak (Quercus alba) log defect features using surface defect indicator measurements

    Science.gov (United States)

    Ralph E. Thomas

    2012-01-01

    As hardwood trees grow and develop, surface defects such as limb stubs and wounds are overgrown and encapsulated into the tree. Evidence of these defects can remain on the tree's surface for decades and in many instances for the life of the tree. The location and severity of internal defects dictate the quality and value of products that can be obtained from logs...

  13. Ultrastructural features of the internodes’ surface in horsetail (Equisetum arvense L.

    Directory of Open Access Journals (Sweden)

    Myroslava Stakhiv

    2013-04-01

    Full Text Available The ultrastructure of the outer surface of the common horsetail stem was studied. Through electron microscopic analysis we showed that silica plates on the surface of Equisetum arvense L. stem are distributed evenly, not tight, in thin layer. Thus, compact arrangement of particles on the internodes causes high mechanical strength and stiffness of the E. arvensestem and lateral branches.

  14. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology.

    Science.gov (United States)

    Tabaraki, Reza; Nateghi, Ashraf

    2011-11-01

    Ultrasonic technology was applied for extraction of polyphenols and antioxidants from the rice bran using ethanol as a food grade solvent. Response surface methodology (RSM) was used to optimize experimental conditions for extraction of polyphenols and antioxidants. Three independent variables such as solvent percentage (%), temperature (°C) and time (min) were studied. Effect of ethanol concentration was found to be significant on all responses. Total phenolic content (TPC) varied from 2.37 to 6.35mg gallic acid equivalent/g of dry sample. Antioxidant activity of the extracts was determined by the ferric reducing antioxidant power (FRAP) assay and scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. FRAP and DPPH values varied from 31.74 to 57.23μmol Fe(2+)/g of dry sample and 16.88% to 55.61% inhibition, respectively. Extraction yields ranged from 11 to 20.2%. Optimal ultrasonic-assisted extraction (UAE) conditions were identified as 65-67% ethanol, 51-54°C, 40-45min. The experimental values agreed with those predicted by SRM models, thus indicating suitability of the model employed and the success of RSM in optimizing the extraction conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  16. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology.

    Science.gov (United States)

    Ahamad, Javed; Amin, Saima; Mir, Showkat R

    2015-01-01

    Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  17. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology

    Directory of Open Access Journals (Sweden)

    Javed Ahamad

    2015-01-01

    Full Text Available Background: Momordica charantia Linn. (Cucurbitaceae fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. Objective: The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Materials and Methods: Response surface methodology (RSM was used for the optimization of ultrasound-assisted extraction (UAE conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD, and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. Results: The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. Conclusions:A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  18. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology

    Science.gov (United States)

    Ahamad, Javed; Amin, Saima; Mir, Showkat R.

    2015-01-01

    Background: Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. Objective: The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Materials and Methods: Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. Results: The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. Conclusions: A facile UAE protocol for a high extraction yield of charantin was developed and validated. PMID:26681889

  19. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    Directory of Open Access Journals (Sweden)

    Adriana Ibarra-Hernández

    2018-02-01

    Full Text Available Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A. These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation.

  20. Computation of fractal features based on the fractal analysis of surface electromyogram to estimate force of contraction of different muscles.

    Science.gov (United States)

    Poosapadi Arjunan, Sridhar; Kumar, Dinesh Kant

    2014-01-01

    This research study investigates the fractal properties of surface Electromyogram (sEMG) to estimate the force levels of contraction of three muscles with different cross-sectional areas (CSA): m. quadriceps--vastus lateralis, m. biceps brachii, andm. flexor digitorum superficialis. The fractal features were computed based on the fractal analysis of sEMG, signal recorded while performing sustained muscle contraction at different force levels. A comparison was performed between the fractal features and five other features reported in the literature. Linear regression analysis was carried out to determine the relationship between the force of contraction (20-100%) and features of sEMG. The results from the coefficients of regression r² show that the new fractal feature, maximum fractal length of the signal has highest correlation (range 0.88-0.90) when compared with other features which ranges from 0.34 to 0.74 for the three different muscles. This study suggests that the estimation of various levels of sustained contraction of muscles with varied CSA will provide a better insight into the biomechanics model that involves muscle properties and muscle activation.

  1. An Investigation Into Time Domain Features of Surface Electromyography to Estimate the Elbow Joint Angle

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available In literature, it is well established that feature extraction and pattern classification algorithms play essential roles in accurate estimation of the elbow joint angle. The problem with these algorithms, however, is that they require a learning stage to recognize the pattern as well as capture the variability associated with every subject when estimating the elbow joint angle. As EMG signals can be used to represent motion, we developed a non-pattern recognition method to estimate the elbow joint angle based on twelve time-domain features extracted from EMG signals recorded from bicep muscles alone. The extracted features were smoothed using a second order Butterworth low pass filter to produce the estimation. The accuracy of the estimated angles was evaluated by using the Pearson’s Correlation Coefficient (PCC and Root Mean Square Error (RMSE.The regression parameters (Euclidean distance, R^2 and slope were calculated to observe the response of the features to the elbow-joint angle. From the investigation, we found, in the period of motion 10s, MYOP features have the best accuracy: 0.97±0.02 (Mean±SD and 11.37±3.04˚ (Mean±SD for correlation coefficient and RMSE respectively. MYOP features also showed the highest R^2 and slope value 0.986±0.0083 (Mean±SD and 0.746±0.17 (Mean±SD respectively for flexion and extension motion and all periods of motion.

  2. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    Science.gov (United States)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  3. Accurate measurement of surface areas of anatomical structures by computer-assisted triangulation of computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, J.T.; Jacomb-Hood, J.; Abulafi, A.M.; Williams, N.S. (Royal London Hospital (United Kingdom)); Cookson, J.; Dykes, E.; Holman, J. (London Hospital Medical College (United Kingdom))

    1993-05-01

    There is a need for accurate surface area measurement of internal anatomical structures in order to define light dosimetry in adjunctive intraoperative photodynamic therapy (AIOPDT). The authors investigated whether computer-assisted triangulation of serial sections generated by computed tomography (CT) scanning can give an accurate assessment of the surface area of the walls of the true pelvis after anterior resection and before colorectal anastomosis. They show that the technique of paper density tessellation is an acceptable method of measuring the surface areas of phantom objects, with a maximum error of 0.5%, and is used as the gold standard. Computer-assisted triangulation of CT images of standard geometric objects and accurately-constructed pelvic phantoms gives a surface area assessment with a maximum error of 2.5% compared with the gold standard. The CT images of 20 patients' pelves have been analysed by computer-assisted triangulation and this shows the surface area of the walls varies from 143 cm[sup 2] to 392 cm[sup 2]. (Author).

  4. Solvent Separating Secondary Metabolites Directly from Biosynthetic Tissue for Surface-Assisted Laser Desorption Ionisation Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    David Rudd

    2015-03-01

    Full Text Available Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS methods namely nanostructure-assisted laser desorption ionisation (NALDI and desorption ionisation on porous silicon (DIOS surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of “on surface” solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples.

  5. Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment.

    Science.gov (United States)

    Gutknecht, Norbert; Franzen, Rene; Meister, Jörg; Vanweersch, Leon; Mir, Maziar

    2005-09-01

    The thermal rise threshold of an 810-nm semi-conductor diode laser on the root surface when used in root canals in vitro for laser assisted root canal treatment is investigated in this study. A total of 50 human single-rooted extracted teeth were included. For this study, the canals were enlarged up to an apical size of ISO#50 file. Laser irradiation was performed with six different settings. Specimens were irradiated at 0.6-1 W output power at the distal end of the fiber and about 1-1.5 W output power in the continuous mode (CW) as two groups. In the third group, 0.6-1 W output power, 10 ms pulse length (PL) and 10 ms interval duration (ID) were selected. In three other groups 1-1.5 W output power were used with different PL and ID as following: PL 10 and ID 10 ms, PL 10 and ID 20 ms and PL 20 and ID 20 ms. The total irradiation time was from 5 to 20 s per canal with a 200 mum in diameter and 25 mm long tip. After laser treatment, the temperature changes at the outer root surface were registered by means of NiCr-Ni measuring sensors and a T 202 thermometer. The safe temperature threshold for applying this diode laser in root canal is considered as 7 degrees C increase. To avoid increasing the temperature changes at the outer root surface related to this threshold, following total irradiation times were found: 0.6-1 W output power (10 ms PL/10 ms ID): 20 s (s), 1-1.5 W output power (10 ms/10 ms and 20 ms/20 ms): 15 s, 0.6-1 W output power CW and 1-1.5 W output power (20 ms PL/10 ms ID): 10 s and 1-1.5 W output power CW: 5 s. In the first three groups, 5 s irradiation and 5 s rest period avoided a temperature increase above the threshold of 7 degrees C).

  6. Off-Center Rotation of CuPc Molecular Rotor on a Bi(111) Surface and the Chiral Feature.

    Science.gov (United States)

    Sun, Kai; Tao, Min-Long; Tu, Yu-Bing; Wang, Jun-Zhong

    2017-05-04

    Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN₂) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.

  7. [Quantitative analysis of thiram by surface-enhanced raman spectroscopy combined with feature extraction Algorithms].

    Science.gov (United States)

    Zhang, Bao-hua; Jiang, Yong-cheng; Sha, Wen; Zhang, Xian-yi; Cui, Zhi-feng

    2015-02-01

    Three feature extraction algorithms, such as the principal component analysis (PCA), the discrete cosine transform (DCT) and the non-negative factorization (NMF), were used to extract the main information of the spectral data in order to weaken the influence of the spectral fluctuation on the subsequent quantitative analysis results based on the SERS spectra of the pesticide thiram. Then the extracted components were respectively combined with the linear regression algorithm--the partial least square regression (PLSR) and the non-linear regression algorithm--the support vector machine regression (SVR) to develop the quantitative analysis models. Finally, the effect of the different feature extraction algorithms on the different kinds of the regression algorithms was evaluated by using 5-fold cross-validation method. The experiments demonstrate that the analysis results of SVR are better than PLSR for the non-linear relationship between the intensity of the SERS spectrum and the concentration of the analyte. Further, the feature extraction algorithms can significantly improve the analysis results regardless of the regression algorithms which mainly due to extracting the main information of the source spectral data and eliminating the fluctuation. Additionally, PCA performs best on the linear regression model and NMF is best on the non-linear model, and the predictive error can be reduced nearly three times in the best case. The root mean square error of cross-validation of the best regression model (NMF+SVR) is 0.0455 micormol x L(-1) (10(-6) mol x L(-1)), and it attains the national detection limit of thiram, so the method in this study provides a novel method for the fast detection of thiram. In conclusion, the study provides the experimental references the selecting the feature extraction algorithms on the analysis of the SERS spectrum, and some common findings of feature extraction can also help processing of other kinds of spectroscopy.

  8. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.

    Science.gov (United States)

    Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K

    2017-08-15

    Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Microwave assisted in situ synthesis of Ag–NaCMC films and their reproducible surface-enhanced Raman scattering signals

    International Nuclear Information System (INIS)

    Jiang, Tao; Li, Junpeng; Zhang, Li; Wang, Binbing; Zhou, Jun

    2014-01-01

    Graphical abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized Ag–NaCMC film, although it maintained an EF as only 1.11 × 10 8 . The reproducible SERS signal of the Ag–NaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application. - Highlights: • The synthesis of Ag–NaCMC films was successfully fulfilled by a low-cost microwave method. • More uniform silver nanoparticles were observed in Ag–NaCMC film synthesized by microwave. • Improved reproducibility of SERS signal was obtained in microwave synthesized Ag–NaCMC film. - Abstract: Two kinds of Ag–NaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by

  10. Developments in convective heat transfer models featuring seamless and selected detail surfaces, employing electroless plating

    Science.gov (United States)

    Stalmach, C. J., Jr.

    1975-01-01

    Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy, and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy was deposited on the plastic surface that provides a hard, uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale shuttle orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose was to assess the heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.

  11. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age.

    Science.gov (United States)

    Olivares-Navarrete, Rene; Raines, Andrew L; Hyzy, Sharon L; Park, Jung Hwa; Hutton, Daphne L; Cochran, David L; Boyan, Barbara D; Schwartz, Zvi

    2012-08-01

    The surface properties of materials contribute to host cellular response and play a significant role in determining the overall success or failure of an implanted biomaterial. Rough titanium (Ti) surface microtopography and high surface free energy have been shown to enhance osteoblast maturation in vitro and increase bone formation in vivo. Whereas the surface properties of Ti are known to affect osteoblast response, host bone quality also plays a significant role in determining successful osseointegration. One factor affecting host bone quality is patient age. We examined both in vitro and in vivo whether response to Ti surface features was affected by animal age. Calvarial osteoblasts isolated from 1-, 3-, and 11-month-old rats all displayed a reduction in cell number and increases in alkaline phosphatase-specific activity and osteocalcin in response to increasing Ti surface microtopography and surface energy. Further, osteoblasts from the three ages examined displayed increased production of osteocalcin and local factors osteoprotegerin, vascular endothelial growth factor (VEGF)-A, and active transforming growth factor (TGF)-β1 in response to increasing Ti surface roughness and surface energy. Latent TGF-β1 only increased in cultures of osteoblasts from 1- and 3-month-old rats. Treatment with the systemic osteotropic hormone 1α,25(OH)(2)D(3) further enhanced the response of osteoblasts to Ti surface features for all three age groups. However, osteoblasts derived from 11-month-old animals had a reduced response to 1α,25(OH)(2)D(3) compared to osteoblasts derived from 1- or 3-month-old animals. These results were confirmed in vivo. Ti implants placed in the femoral intramedullary canal of old (9-month-old) mice yielded lower bone-to-implant contact and neovascularization in response to Ti surface roughness and energy compared to younger (2-month-old) mice. These results show that rodent osteoblast maturation in vitro as well as new bone formation in vivo is

  12. Seasonal features of atmospheric surface-layer characteristics over a tropical coastal station in Southern India

    International Nuclear Information System (INIS)

    Hari Prasad, K.B.R.R.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    Dispersion of air-borne effluents occurs in the atmospheric boundary layer (ABL) where turbulence is the main physical processes. In the surface layer of ABL, the mechanical (shear) generation of turbulence exceeds the buoyant generation or consumption of turbulence. In this layer, under steady state and horizontally homogeneous conditions various forces in the governing equation can be neglected and one can apply Monin-Obukhov Similarity Theory (MOST) to estimate the turbulent fluxes and other surface layer variables. Understanding the turbulent characteristics of the surface layer is vital for modeling of turbulent diffusion in regional numerical weather and pollution dispersion models. The objective of this study is to verify the validity of the MOST at the coastal site Kalpakkam under various atmospheric stability conditions with respect to different seasons for modeling atmospheric dispersion of radioactive effluents

  13. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  14. Laser gas-assisted processing of carbon coated and TiC embedded Ti-6Al-4V alloy surface

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (Saudi Arabia); Akhtar, S.; Aleem, B.J. Abdul [Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (Saudi Arabia); Karatas, C. [Faculty of Engineering, Hacettepe University (Turkey)

    2010-11-01

    Laser gas-assisted treatment of Ti-6Al-4V alloy surface is carried out. The alloy surface is initially coated by a carbon layer, in which the TiC particles are embedded prior to laser processing of the surface. The carbon coating with the presence of TiC particles on the workpiece surface is expected to result in carbonitride compound in the surface vicinity after the laser treatment process. Optical and scanning electron microscopes are used to examine the morphological and the metallurgical changes in the laser treated layer. The residual stress formed in the surface region after the laser treatment process is critical for the practical applications of the resulting surface. Therefore, the residual stress formed in the laser treated region is predicted from the analytically equation. The X-ray diffraction technique is incorporated to obtain the residual stress formed in the surface region. It is found that the residual stress predicted agrees with the X-ray diffraction data. The dense structures consisting of TiC{sub x}N{sub 1-x}, TiN{sub x}, Ti{sub 2}N, and TiC compounds are formed in the surface region of the treated layer. This, in turn, significantly increases the microhardness at the surface.

  15. Modification of the iron mechanical- and corrosion features by ion implantation in surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1981-01-01

    The physical mechanisms responsable by the tin ion implantation in the iron surface at moderated doses are studied. Several techniques are used such as alpha-particle Rutherford backscattering, conversion electron Moessbauer spectroscopy and scanning electron microscopy. (L.C.) [pt

  16. Outstanding Antibiofilm Features of Quanta-CuO Film on Glass Surface.

    Science.gov (United States)

    Tripathy, Nirmalya; Ahmad, Rafiq; Bang, Seung Hyuck; Khang, Gilson; Min, Jiho; Hahn, Yoon-Bong

    2016-06-22

    Intelligently designed surface nanoarchitecture provides defined control over the behavior of cells and biomolecules at the solid-liquid interface. In this study, CuO quantum dots (quanta-CuO; ∼3-5 nm) were synthesized by a simple, low-temperature solution process and further formulated as paint to construct quanta-CuO thin film on glass. Surface morphological characterizations of the as-coated glass surface reveal a uniform film thickness (∼120 ± 10 nm) with homogeneous distribution of quanta-CuO. The antibiofilm assay showed a very high contact bacteria-killing capacity of as-coated quanta-CuO glass surfaces toward Staphylococcus aureus and Escherichia coli. This efficient antibacterial/antibiofilm activity was ascribed to the intracellular reactive oxygen species (ROS) generated by the quanta-CuO attached to the bacterial cells, which leads to an oxidative assault and finally results in bacterial cell death. Although there is a significant debate regarding the CuO nanostructure's antibacterial mode of action, we propose both contact killing and/or copper ion release killing mechanisms for the antibiofilm activity of quanta-CuO paint. Moreover, synergism of quanta-CuO with conventional antibiotics was also found to further enhance the antibacterial efficacy of commonly used antibiotics. Collectively, this state-of-the-art design of quanta-CuO coated glass can be envisioned as promising candidates for various biomedical and environmental device coatings.

  17. A Three-Dimensional View of Titan's Surface Features from Cassini RADAR Stereogrammetry

    Science.gov (United States)

    Kirk, R. L.; Howington-Kraus, E.; Redding, B. L.; Becker, T. L.; Lee, E. M.; Stiles, B. W.; Hensley, S.; Hayes, A.; Lopes, R. M.; Lorenz, R. D.; Mitchell, K. L.; Radebaugh, J.; Paganelli, F.; Soderblom, L. A.; Stofan, E. R.; Wood, C. A.; Wall, S. D.; Cassini RADAR Team

    2008-12-01

    As of the end of its four-year Prime Mission, Cassini has obtained 300-1500 m resolution synthetic aperture radar images of the surface of Titan during 19 flybys. The elongated image swaths overlap extensively, and ~2% of the surface has now been imaged two or more times. The majority of image pairs have different viewing directions, and thus contain stereo parallax that encodes information about Titan's surface relief over distances of ~1 km and greater. As we have previously reported, the first step toward extracting quantitative topographic information was the development of rigorous "sensor models" that allowed the stereo systems previously used at the USGS and JPL to map Venus with Magellan images to be used for Titan mapping. The second major step toward extensive topomapping of Titan has been the reprocessing of the RADAR images based on an improved model of the satellite's rotation. Whereas the original images (except for a few pairs obtained at similar orbital phase, some of which we have mapped previously) were offset by as much as 30 km, the new versions align much better. The remaining misalignments, typically carbono)logic" cycle of precipitation, evaporation, and surface and subsurface fluid flow?

  18. Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation.

    Science.gov (United States)

    Shang, Bin; Wang, Yanbing; Peng, Bo; Deng, Ziwei

    2016-11-15

    Frequent oil spillages and industrial discharge of oils/organic solvents have induced severe environmental pollution and ecological damage, and a great cost in energy and finance has been consumed to solve the problems raised. Therefore, it is urgent to develop a surface hydrophobic modification that can be applied to materials with desired properties of high separation efficiency, excellent selectivity and stable performance in extreme conditions during the oil/water separation. Herein, with combined bioinspirations from mussel adhesive protein (polydopamine) and superhydrophobic lotus leaf (hierarchical structures), we develop a general way to superhydrophobically modify various commercial materials, aiming for the selective removal of oils/organic solvents from water. In this procedure, immersing commercial materials (e.g. melamine sponge, stainless steel mesh, nylon netting and cotton cloth) into water/ethanol/ammonia mixtures at a low concentration of dopamine (DA, 2mg/mL) allows a polydopamine (PDA) coating with a tunable roughness appearing on the substrate in one step. This is because DA can self-polymerize and form PDA particles with a catalyst of ammonia, attaching to any surfaces due to abundant catechol and amine groups in PDA, and ultimately, resulting in hierarchical structures. The subsequent decoration with 1H, 1H, 2H, 2H-perfluorodecanethiol features the surface superhydrophobic and superoleophilic. This approach is straightforward and economic, and carried out under a mild, environmental-benign circumstance, with nonspecific substrate demands. In addition, the as-prepared superhydrophobic materials exhibit excellent separation performances including high absorption/separation capacity, excellent selectivity, and extraordinary recyclability for collecting various oils/organic solvents from water. These superhydrophobic materials have also verified to be highly chemical resistant, environment stable and mechanically durable. Therefore, this

  19. Geological History of the Tyre Region of Europa: A Regional Perspective on Europan Surface Features and Ice Thickness

    Science.gov (United States)

    Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.

    2000-01-01

    Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

  20. Influence of surface features on the adhesion of Staphyloccocus epidermidis to Ag–TiCN thin films

    International Nuclear Information System (INIS)

    Carvalho, Isabel; Almeida Alves, Cristiana Filipa; Carvalho, Sandra; Henriques, Mariana; Oliveira, João Carlos; Piedade, Ana Paula

    2013-01-01

    Staphylococcus epidermidis has emerged as one of the major nosocomial pathogens associated with infections of implanted medical devices. The initial adhesion of these organisms to the surface of biomaterials is assumed to be an important stage in their colonization. The main objective of this work is to assess the influence of surface features on the adhesion of S. epidermidis to Ag–TiCN coatings deposited by dc reactive magnetron sputtering. The structural results obtained by x-ray diffraction show that the coatings crystallize in a B1-NaCl crystal structure typical of TiC 0.3 N 0.7 . The increase of Ag content promoted the formation of Ag crystalline phases. According to the results obtained with atomic force microscopy, a decrease on the surface roughness of the films from 39 to 7 nm is observed as the Ag content increases from 0 to 15 at.%. Surface energy results show that the increase of Ag promotes an increase in hydrophobicity. Bacterial adhesion and biofilm formation on coatings were assessed by the enumeration of the number of viable cells. The results showed that the surface with lower roughness and higher hydrophobicity leads to greater bacterial adhesion and biofilm formation, highlighting that surface morphology and hydrophobicity rule the colonization of materials. (paper)

  1. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, Flyura, E-mail: flyura.djurabekova@helsinki.fi; Ruzibaev, Avaz; Parviainen, Stefan [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Holmström, Eero [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Department of Earth Sciences, Faculty of Maths and Physical Sciences, UCL Earth Sciences, Gower Street, London WC1E 6BT (United Kingdom); Hakala, Mikko [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  2. COMPUTER GRAPHICS MEETS IMAGE FUSION: THE POWER OF TEXTURE BAKING TO SIMULTANEOUSLY VISUALISE 3D SURFACE FEATURES AND COLOUR

    Directory of Open Access Journals (Sweden)

    G. J. Verhoeven

    2017-08-01

    Full Text Available Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM approaches are capable of providing a photo-realistic texture along the threedimensional (3D digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  3. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    Science.gov (United States)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  4. Home Features and Assistive Technology for the Home-Bound Elderly in a Thai Suburban Community by Applying the International Classification of Functioning, Disability, and Health.

    Science.gov (United States)

    Putthinoi, Supawadee; Lersilp, Suchitporn; Chakpitak, Nopasit

    2017-01-01

    The ageing population is having an impact worldwide and has created a serious challenge in Thailand's healthcare systems, whereby healthcare practitioners play a major role in promoting independent interaction of their client's abilities, as well as environmental factors. The purpose of this study was to survey features of the home and assistive technology (AT) for the home-bound elderly in the community of Chiang Mai, Thailand. Home evaluation included features inside and outside the home, and AT was based on the International Classification of Functioning, Disability, and Health (ICF) concept. Methods included observation and an interview that were used by the researcher for evaluation. The study found that every home had at least one hazardous home feature such as inappropriate width of the door, high door threshold, tall stair steps, no bedside rail, and inappropriate height of the toilet pan. AT was found in houses as general products and technology for personal use in daily living and for personal indoor and outdoor mobility as well as transportation. Therefore, home features and AT can afford the home-bound elderly independent living within the community. Perspective AT according to the ICF concept could provide a common language for ageing in place benefits.

  5. Home Features and Assistive Technology for the Home-Bound Elderly in a Thai Suburban Community by Applying the International Classification of Functioning, Disability, and Health

    Directory of Open Access Journals (Sweden)

    Supawadee Putthinoi

    2017-01-01

    Full Text Available The ageing population is having an impact worldwide and has created a serious challenge in Thailand’s healthcare systems, whereby healthcare practitioners play a major role in promoting independent interaction of their client’s abilities, as well as environmental factors. The purpose of this study was to survey features of the home and assistive technology (AT for the home-bound elderly in the community of Chiang Mai, Thailand. Home evaluation included features inside and outside the home, and AT was based on the International Classification of Functioning, Disability, and Health (ICF concept. Methods included observation and an interview that were used by the researcher for evaluation. The study found that every home had at least one hazardous home feature such as inappropriate width of the door, high door threshold, tall stair steps, no bedside rail, and inappropriate height of the toilet pan. AT was found in houses as general products and technology for personal use in daily living and for personal indoor and outdoor mobility as well as transportation. Therefore, home features and AT can afford the home-bound elderly independent living within the community. Perspective AT according to the ICF concept could provide a common language for ageing in place benefits.

  6. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching

    Directory of Open Access Journals (Sweden)

    Guohua Wang

    2015-12-01

    Full Text Available Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians’ head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians’ size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  7. Far-Infrared Based Pedestrian Detection for Driver-Assistance Systems Based on Candidate Filters, Gradient-Based Feature and Multi-Frame Approval Matching.

    Science.gov (United States)

    Wang, Guohua; Liu, Qiong

    2015-12-21

    Far-infrared pedestrian detection approaches for advanced driver-assistance systems based on high-dimensional features fail to simultaneously achieve robust and real-time detection. We propose a robust and real-time pedestrian detection system characterized by novel candidate filters, novel pedestrian features and multi-frame approval matching in a coarse-to-fine fashion. Firstly, we design two filters based on the pedestrians' head and the road to select the candidates after applying a pedestrian segmentation algorithm to reduce false alarms. Secondly, we propose a novel feature encapsulating both the relationship of oriented gradient distribution and the code of oriented gradient to deal with the enormous variance in pedestrians' size and appearance. Thirdly, we introduce a multi-frame approval matching approach utilizing the spatiotemporal continuity of pedestrians to increase the detection rate. Large-scale experiments indicate that the system works in real time and the accuracy has improved about 9% compared with approaches based on high-dimensional features only.

  8. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  9. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    Science.gov (United States)

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala 19 can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. The mid-IR spectral effects of darkening agents and porosity on the silicate surface features of airless bodies

    Science.gov (United States)

    Young, C. L.; Wray, J. J.; Poston, M.; Hand, K. P.; Carlson, R. W.

    2017-12-01

    The surfaces of airless bodies present opportunities to investigate the physical processes acting on planetary systems over time, without the need to account for surface-atmosphere interactions. Silicate surfaces mixed with fine-grained optically dark material with varying degrees of porosity are ubiquitous on many airless bodies (e.g., Earth's Moon, Deimos, Phobos, asteroids, meteorites, and moons of the outer solar system). Although the mid-IR is rich in emissivity features of important minerals and molecular groups, including organics [e.g., 1], it is less studied for airless conditions and presents challenges in signal-to-noise ratio, especially for the colder outer solar system bodies with fined-grained surfaces [2, 3]. We systematically measured the mid-IR spectra of different mixtures of three silicates (antigorite, lizardite, and pure silica) with varying porosities and amounts of darkening agent (iron oxide and carbon). Serpentines, such as antigorite and lizardite, are common to airless surfaces, and their mid-IR spectra in the presence of darkening agents and different surface porosities would be typical for those measured by spacecraft. Although pure silica has only been measured in the plumes of Enceladus, it presents exciting possibilities for other Saturn-system surfaces due to long range transport [4], and it is therefore important to investigate how its spectral signature would be manifested in the mid-IR. Overall, this work provides a library of mineral mixtures to facilitate dealing with current and future mid-IR datasets of airless bodies. These results are also applicable to the development of future missions to airless bodies, and our continuing efforts will help determine if mid-IR spectrometry is worthwhile for surface compositional studies of icy bodies. The mixtures presented here could be useful for testing future mid-IR instruments by confirming detectability of spectral features for typical materials on the surfaces of interest. [1

  11. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  12. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  13. Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition.

    Science.gov (United States)

    Crick, Colin R; Bear, Joseph C; Kafizas, Andreas; Parkin, Ivan P

    2012-07-10

    A new class of superhydrophobic photocatalytic surfaces that are self-cleaning through light-induced photodegradation and the Lotus effect are presented. The films are formed in a single-step aerosol-assisted chemical vapor deposition (AACVD) process. The films are durable and show no degradation on continuous exposure to UV-C radiation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Horizontal transport of the regolith, modification of features, and erosion rates on the lunar surface

    Science.gov (United States)

    Arvidson, R.; Drozd, R. J.; Hohenberg, C. M.; Morgan, C. J.; Poupeau, G.

    1975-01-01

    Impact-ejecta systematics are developed for the smaller cratering events which, with cumulative crater populations observed in young mare regions and on Copernicus ejecta fields, yield rates and a range distribution for the horizontal transport of material by impact processes. The deposition rate for material originating more than 1 m away is found to be about 8 mm per million years. Material from 10 km away accumulates at a rate of about 0.08 mm per million years, providing a steady influx of foreign material. From the degradation of boulder tracks, a rate of 5 plus or minus 3 cm per million years is computed for the filling of shallow lunar depressions on slopes. Mass wastage and downslope movement of bedrock outcroppings on Hadley Rille seem to be proceeding at a rate of about 8 mm per million years. The Camelot profile is suggestive of a secondary impact feature.

  15. Biodegradation improvement of poly(3-hydroxy-butyrate) films by entomopathogenic fungi and UV-assisted surface functionalization.

    Science.gov (United States)

    Kessler, Felipe; Marconatto, Leticia; Rodrigues, Roberta da Silva Bussamara; Lando, Gabriela Albara; Schrank, Augusto; Vainstein, Marilene Henning; Weibel, Daniel Eduardo

    2014-01-05

    Ultraviolet (UV)-assisted surface modification in the presence of oxygen was used as initial step to achieve controlled degradation of poly(3-hydroxy-butyrate), PHB, films by entomopathogenic fungi. Treated surfaces were investigated by surface analysis techniques (water contact angle, Fourier Transformed Infrared Spectroscopy in Attenuated Total Reflectance mode, X-ray Photoelectron Spectroscopy, Near-edge X-ray Absorption Fine Structure, Gel Permeation Chromatography, Optical Microscopy, Scanning Electron Microscopy, and weight loss). After the UV-assisted treatments, new carbonyl groups in new chemical environments were detected by XPS and NEXAFS spectroscopy. The oxidizing atmosphere did not allow the formation of CC bonds, indicating that Norrish Type II mechanism is suppressed during or by the treatments. The higher hydrophilicity and concentration of oxygenated functional groups at the surface of the treated films possibly improved the biodegradation of the films. It was observed a clear increase in the growth of this fungus when oxygenated groups were grafted on the polymers surfaces. This simple methodology can be used to improve and control the degradation rate of PHB films in applications that require a controllable degradation rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Addition of nanoscaled bioinspired surface features: A revolution for bone related implants and scaffolds?

    Science.gov (United States)

    Bruinink, Arie; Bitar, Malak; Pleskova, Miriam; Wick, Peter; Krug, Harald F; Maniura-Weber, Katharina

    2014-01-01

    Our expanding ability to handle the "literally invisible" building blocks of our world has started to provoke a seismic shift on the technology, environment and health sectors of our society. During the last two decades, it has become increasingly evident that the "nano-sized" subunits composing many materials—living, natural and synthetic—are becoming more and more accessible for predefined manipulations at the nanosize scale. The use of equally nanoscale sized or functionalised tools may, therefore, grant us unprecedented prospects to achieve many therapeutic aims. In the past decade it became clear that nano-scale surface topography significantly influences cell behaviour and may, potentially, be utilised as a powerful tool to enhance the bioactivity and/ or integration of implanted devices. In this review, we briefly outline the state of the art and some of the current approaches and concepts for the future utilisation of nanotechnology to create biomimetic implantable medical devices and scaffolds for in vivo and in vitro tissue engineering,with a focus on bone. Based on current knowledge it must be concluded that not the materials and surfaces themselves but the systematic biological evaluation of these new material concepts represent the bottleneck for new biomedical product development based on nanotechnological principles. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  17. Grain surface features and clay mineralogy of the quaternary sediments from Western Deccan Trap Region, India, and their palaeoclimatic significance

    Directory of Open Access Journals (Sweden)

    Veena U. Joshi

    2011-06-01

    Full Text Available Quartz sand grains obtained from a deeply gullied topography along the banks of two tributaries of River Pravara in Maharashtra (India have been examined with a scanning electron microscope (SEM. Quartz grains have been selected after a heavy mineral separation and micro-photographs of each grain were taken at various angles and magnifications. The sediments reveal features resulting from mechanical grinding as well as from chemical alteration. Conchoidal fractures, cleavage planes, grooves, v-shaped indentations etc. are the mechanical features documented on the grains whereas solution pits of varying sizes and intensity, precipitation surfaces, oriented v-pits, solution crevasses and etching are the features of chemical origin. Several evidences indicate that the samples have undergone digenetic changes. Few grains show the features of intense chemical breakdown. The overall assemblages of the grain surface features suggest that the samples have been subjected to subaqueous transport for a considerable period of time. The minor chemical features such as solution pits or semi circular arcuate steps found in abundance on these grains are due to the dissolution of the sediments in a low energy fluviatile environment. For clay mineralogy, fractions between <2 and <0.2 mm were separated out from the sediments. The clay fractions were then subjected to examination by X-ray diffraction (XRD of oriented K/Ca saturated samples using a Philips Diffractometer and Ni-filtered Cu Ka radiation with the scanning speed of 10 2Ө min -1. The main clay minerals for all the samples are identical and show the presence of hydroxy-interlayered smectites with minor quantities of mica, kaolinite, smectites, quartz and feldspar. The first weathering product of the Deccan Basalt (DB is the dioctahedral smectite. Since the present semi aridic climatic condition of the study area can not transform a smectite to HIS and either smectite to kaolin, it is quite likely that

  18. Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions.

    Science.gov (United States)

    Navaneethakrishna, M; Ramakrishnan, S

    2014-01-01

    In this work, an attempt has been made to differentiate sEMG signals under muscle fatigue and non-fatigue conditions using multiscale features. Signals are recorded from biceps brachii muscle of 50 normal adults during repetitive dynamic contractions. After prescribed preprocessing, each signal is divided into six segments out of which first and last segments are considered in this analysis. Multiscale RMS (MSRMS) and Multiscale Permutation Entropy (MSPE) are computed for each subject in the time scales ranging from 1 to 50. The median values of the MSRMS and MSPE are calculated for further analysis. The results show an increase in amplitude for sEMG signals under fatigue condition. MSRMS values are found to be significantly higher in fatigue. An approximately constant difference in MSRMS value between fatigue and non-fatigue condition is observed over the entire time scale with a negative slope. Further, the median of MSRMS values for each subject is able to distinguish fatigue and non-fatigue conditions. Similar analysis on MSPE showed significant difference between fatigue and non-fatigue cases and lower values of MSPE is observed in fatigue. It is also observed that the median value of MSRMS and MSPE are able to distinguish these conditions. t-test for MSRMS, MSPE and their median value show high statistical significance. It appears that this method of analysis can be used for clinical evaluation of muscles.

  19. Some specific features of a surface-screw plasma instability in semiconductors

    International Nuclear Information System (INIS)

    Karavaev, G.F.; Tsipivka, Yu.I.

    1976-01-01

    A numerical analysis of the dispersion relation has been carried out, which enables to discover some new peculiarities in the behaviour of the surface helical instability (SHI) of a semiconductor plasma. To simplify the dispersion relation a semiconductor with nearly equal electron and hole mobilities has been considered. The dependences of threshold characteristics of SHI on a magnetic field H for different angular harmonics are represented graphically. A comparison of the formulas obtained shows that the approximation of truncated series yields an incorrect qualitative dependence of the wavelength on H, whereas asymptotic formulas in the range of strong magnetic fields yield not only a correct qualitative dependence of the threshold characteristics on H, but also a good quantitative agreement

  20. Visibility of lunar surface features - Apollo 14 orbital observations and lunar landing.

    Science.gov (United States)

    Ziedman, K.

    1972-01-01

    Description of an in-flight visibility test conducted during the Apollo 14 mission for the purpose of validating and extending the mathematical visibility models used previously in the course of the Apollo program to examine the constraints on descent operations imposed by lunar visibility limitations. Following a background review of the effects on mission planning of the visibility limitations due to downsun lunar surface detail 'washout' and a discussion of the visibility prediction techniques previously used for studying lunar visibility problems, the visibility test rationale and procedures are defined and the test results presented. The results appear to confirm the validity of the visibility prediction techniques employed in lunar visibility problem studies. These results provide also a basis for improving the accuracy of the prediction techniques by appropriate modifications.

  1. Application of Amniotic Membrane in Ocular Surface Diseases: Clinical Features and Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Derya Cindarik

    2012-05-01

    Full Text Available Pur po se: To investigate the effectiveness of amniotic membrane transplantation in cases with corneal thinning, desmatocele and refractive corneal ulcer. Ma te ri al and Met hod: Fifty-four eyes of 54 patients who were applied amniotic membrane transplantation for various ocular surface disease between January 2004 and February 2009 in Çukurova University Ophthalmology Department were included in the study. A complete ophthalmologic examination was performed. Corneal culture and corneal cytology samples were collected from the patients with the diagnosis of corneal ulcers. The patients were informed about the surgical procedure and the possible complications and informed consent was obtained. The amniotic membranes that were prepared under optimal conditions and protected in frozen forms were used in the operations. Follow-up examinations were done at postoperative 1st day, 1st week, 1st month, 3rd month, 6th month and then once in a year. Re sults: Of 54 patients, 26 (48.1% were men and 28 (51.8% were women. The mean age of patients was 52.53±19.75 (2-87 years. The cases were separated into 2 groups according to the etiology: group 1 - eyes with corneal ulcer (n:26 and group 2 - eyes with corneal stromal thinning, persistent epithelial defects and desmatocel (n:28. The transplantations were performed using cover technique in 17 eyes (31.4%, graft technique in 37 eyes (68.5% and graft technique with corneal patch in 2 eyes (3.7%. Partial penetrating keratoplasty was required in 38 of 54 eyes (70.3%. One eye was enucleated. Dis cus si on: The amniotic membrane transplantation has advantages like: it can be prepared easily and is cost-effective. It is a safe and effective procedure in ocular surface disease. (Turk J Ophthalmol 2012; 42: 177-82

  2. Computer vision-based apple grading for golden delicious apples based on surface features

    Directory of Open Access Journals (Sweden)

    Payman Moallem

    2017-03-01

    Full Text Available In this paper, a computer vision-based algorithm for golden delicious apple grading is proposed which works in six steps. Non-apple pixels as background are firstly removed from input images. Then, stem end is detected by combination of morphological methods and Mahalanobis distant classifier. Calyx region is also detected by applying K-means clustering on the Cb component in YCbCr color space. After that, defects segmentation is achieved using Multi-Layer Perceptron (MLP neural network. In the next step, stem end and calyx regions are removed from defected regions to refine and improve apple grading process. Then, statistical, textural and geometric features from refined defected regions are extracted. Finally, for apple grading, a comparison between performance of Support Vector Machine (SVM, MLP and K-Nearest Neighbor (KNN classifiers is done. Classification is done in two manners which in the first one, an input apple is classified into two categories of healthy and defected. In the second manner, the input apple is classified into three categories of first rank, second rank and rejected ones. In both grading steps, SVM classifier works as the best one with recognition rate of 92.5% and 89.2% for two categories (healthy and defected and three quality categories (first rank, second rank and rejected ones, among 120 different golden delicious apple images, respectively, considering K-folding with K = 5. Moreover, the accuracy of the proposed segmentation algorithms including stem end detection and calyx detection are evaluated for two different apple image databases.

  3. Surface scaling analysis of textured MgO thin films fabricated by energetic particle self-assisted deposition

    Science.gov (United States)

    Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa

    2018-04-01

    In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.

  4. The Word Composite Effect Depends on Abstract Lexical Representations But Not Surface Features Like Case and Font.

    Science.gov (United States)

    Ventura, Paulo; Fernandes, Tânia; Leite, Isabel; Almeida, Vítor B; Casqueiro, Inês; Wong, Alan C-N

    2017-01-01

    Prior studies have shown that words show a composite effect: When readers perform a same-different matching task on a target-part of a word, performance is affected by the irrelevant part, whose influence is severely reduced when the two parts are misaligned. However, the locus of this word composite effect is largely unknown. To enlighten it, in two experiments, Portuguese readers performed the composite task on letter strings: in Experiment 1, in written words varying in surface features (between-participants: courier, notera, alternating-cAsE), and in Experiment 2 in pseudowords. The word composite effect, signaled by a significant interaction between alignment of the two word parts and congruence between parts was found in the three conditions of Experiment 1, being unaffected by NoVeLtY of the configuration or by handwritten form. This effect seems to have a lexical locus, given that in Experiment 2 only the main effect of congruence between parts was significant and was not modulated by alignment. Indeed, the cross-experiment analysis showed that words presented stronger congruence effects than pseudowords only in the aligned condition, because when misaligned the whole lexical item configuration was disrupted. Therefore, the word composite effect strongly depends on abstract lexical representations, as it is unaffected by surface features and is specific to lexical items.

  5. Examining the Impact of Question Surface Features on Students’ Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of two question prompts. We asked four versions of the question with different combinations of the two plant species and order of prompts in an introductory cell biology course. We found that there was not a significant difference in the content of student responses to versions of the question stem with different species or order of prompts, using both computerized lexical analysis and expert scoring. We conducted 20 face-to-face interviews with students to further probe the effects of question wording on student responses. During the interviews, we found that students thought that the plant species was neither relevant nor confusing when answering the question. Students identified the prompts as both relevant and confusing. However, this confusion was not specific to a single version. PMID:25999312

  6. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    Science.gov (United States)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  7. An Effective Vacuum Assisted Extraction Method for the Optimization of Labdane Diterpenoids from Andrographis paniculata by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ya-Qi Wang

    2014-12-01

    Full Text Available An effective vacuum assisted extraction (VAE technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM. Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  8. Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro-feature parts using induction heating technology

    Science.gov (United States)

    Chen, Shia-Chung; Jong, Wen-Ren; Chang, Yaw-Jen; Chang, Jen-An; Cin, Jin-Chuan

    2006-09-01

    Hot embossing and injection molding are popular methods to duplicate micro features formed during polymer micro-fabrication of MEMS devices. However, both methods face challenges in filling the polymer melt completely into a micro-featured geometry of a high aspect ratio. In this study, electromagnetic induction heating combined with water cooling is used to achieve rapid mold surface temperature control during the micro-feature injection molding process. A CAE simulation was also developed through integration of both thermal and electromagnetic analysis modules of ANSYS, and its capability and accuracy were verified experimentally. Efficiency evaluations of induction heating and the uniformity of mold temperature control were conducted on a micro-featured mold. This mold was designed with a micro channel array of 30-50 µm in width and 120 and 600 µm in depth, corresponding to aspect ratios ranging from about 2.4 to 12. The accuracies of the micro channels in molded PMMA parts can be used to evaluate the effect of mold temperature on replication accuracy. It was found that rapid mold surface heating with temperature rising from 60 °C to between 100 °C and 140 °C by induction heating requires 2-3.5 s, while the mold temperature returns to 60 °C in about 70-110 s. The simulated mold surface temperature results are consistent with measured results. Achieving the same temperature variation by switching circulation coolants of different temperatures requires at least 7 min. The simulation also reveals that the electromagnetic wave can penetrate into the bottom of the micro channel and results in only about a 2 °C difference in temperature uniformity. For mold temperatures of 100 °C, 120 °C and 140 °C, the molded channel depths were 94.9 µm, 105.4 µm and 116.0 µm, respectively, when the ideal channel depth was 120 µm. When the channel depth is 600 µm, the mold temperature must exceed 120 °C, so that reasonable accuracy in micro-feature replication can be

  9. Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processing

    DEFF Research Database (Denmark)

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    Metallization of polymers is a widely used process in the electronic industry that involves their surface modification as a pre-treatment step. Laser-based surface modification is one of the commonly used techniques for polymers due to its speed and precision. The process involves laser heating...... of the polymer surface to generate a rough or porous surface. Laser processing in liquid generates superior surface characteristics that result in better metal deposition. In this study, a comparison of the surface characteristics obtained by laser processing in water vis-à-vis air along with the deposition...... characteristics are presented. In addition, a numerical model based on the finite volume method is developed to predict the temperature profile during the process. Based on the model results, it is hypothesized that physical phenomena such as vapor bubble generation and plasma formation may occur in the presence...

  10. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2010-01-01

    We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D-galactose us......We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D......-galactose using a standardized method. A near-linear increase was obtained in the thickness of the enzyme coat as the treatment proceeded. Interestingly, lactose, which is a substrate for beta-galactosidase, did not undergo enzymatic degradation during processing and remained unchanged for at least 1 month....... Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach....

  11. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...

  12. Surface plasma wave assisted second harmonic generation of laser over a metal film

    International Nuclear Information System (INIS)

    Chauhan, Santosh; Parashar, J.

    2015-01-01

    Second harmonic generation of laser mode converted surface plasma wave (SPW) over a corrugated metal film is studied. The laser, impinged on the metal film, under attenuated total reflection configuration, excites SPW over the metal–vacuum interface. The excited SPW extends over a much wider surface area than the laser spot cross-section. It exerts a second harmonic ponderomotive force on metal electrons, imparting them velocity that beats with the surface ripple to produce a nonlinear current, driving resonant second harmonic surface plasma wave

  13. A new practical method to reconstruct cerebral surface anatomical images for computer-assisted neurosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Shin; Kato, Amami; Yoshimine, Toshiki; Taneda, Mamoru; Hayakawa, Toru (Osaka Univ. (Japan). Faculty of Medicine)

    1994-03-01

    Authors have developed a new, practical method to reconstruct cerebral surface anatomical images for better surgical orientation and surgical planning. Using a personal computer and a commercially available image handling software, an area encompassing the surface gyri and sulci is selected from the most superficial slice of T1-weighted MR images, after which this selected area, on adjusting the alignment, is overlayed onto the next superficial slice. By repeating this procedure for 4 to 7 times, the brain surface image obtained clearly displays the gyri and sulci. A vascular image of the cerebral surface can also be obtained by this same method by using T2-weighted images or MR angiograms. Then, by combining both the brain surface and vascular images, an anatomically reconstructed image of the cerebral surface is achieved. The outlines of the lesion or ventricles can also be added, if necessary, and the entire procedure takes an hour or less. The authors believe that this method is superior to conventional surface anatomy scanning for discriminating anatomical structures close to a lesion. This surface anatomical imaging method has been used for the surgical planning and its use helped to minimize surgical damage to the eloquent areas. (author).

  14. Antibacterial and antibiofilm surfaces through Polydopamine-assisted immobilization of Lysostaphin as an antibacterial enzyme

    Science.gov (United States)

    Antibiotic resistance and the colonization of bacteria on surfaces, often as biofilms, prolong hospitalization periods, increase mortality, and are thus major concerns for health care providers. There is an urgent need for antimicrobial and antibiofilm surface treatments that are semi-permanent, can...

  15. A self-assembled monolayer-assisted surface microfabrication and release technique

    NARCIS (Netherlands)

    Kim, B.J.; Liebau, M.; Huskens, Jurriaan; Reinhoudt, David; Brugger, J.P.

    2001-01-01

    This paper describes a method of thin film and MEMS processing which uses self-assembled monolayers as ultra-thin organic surface coating to enable a simple removal of microfabricated devices off the surface without wet chemical etching. A 1.5-nm thick self-assembled monolayer of

  16. Spatial features of dose-surface maps from deformably-registered plans correlate with late gastrointestinal complications

    Science.gov (United States)

    Moulton, Calyn R.; House, Michael J.; Lye, Victoria; Tang, Colin I.; Krawiec, Michele; Joseph, David J.; Denham, James W.; Ebert, Martin A.

    2017-05-01

    This study investigates the associations between spatial distribution of dose to the rectal surface and observed gastrointestinal toxicities after deformably registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate brachytherapy (HDRBT) prostate cancer treatment. The study contains data for 118 patients where the HDRBT CT was deformably-registered to the EBRT CT. The EBRT and registered HDRBT TG43 dose distributions in a reference 2 Gy/fraction were 3D-summed. Rectum dose-surface maps (DSMs) were obtained by virtually unfolding the rectum surface slice-by-slice. Associations with late peak gastrointestinal toxicities were investigated using voxel-wise DSM analysis as well as parameterised spatial patterns. The latter were obtained by thresholding DSMs from 1-80 Gy (increment  =  1) and extracting inferior-superior extent, left-right extent, area, perimeter, compactness, circularity and ellipse fit parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate features with toxicities. Rectal bleeding, stool frequency, diarrhoea and urgency/tenesmus were associated with greater lateral and/or longitudinal spread of the high doses near the anterior rectal surface. Rectal bleeding and stool frequency were also influenced by greater low-intermediate doses to the most inferior 20% of the rectum and greater low-intermediate-high doses to 40-80% of the rectum length respectively. Greater low-intermediate doses to the superior 20% and inferior 20% of the rectum length were associated with anorectal pain and urgency/tenesmus respectively. Diarrhoea, completeness of evacuation and proctitis were also related to greater low doses to the posterior side of the rectum. Spatial features for the intermediate-high dose regions such as area, perimeter, compactness, circularity, ellipse eccentricity and confinement to ellipse fits were strongly associated with toxicities other than anorectal pain. Consequently, toxicity is

  17. Surface-Assisted Self-Assembly Strategies Leading to Supramolecular Hydrogels.

    Science.gov (United States)

    Vigier-Carrière, Cécile; Boulmedais, Fouzia; Schaaf, Pierre; Jierry, Loïc

    2018-02-05

    Localized molecular self-assembly processes leading to the growth of nanostructures exclusively from the surface of a material is one of the great challenges in surface chemistry. In the last decade, several works have been reported on the ability of modified or unmodified surfaces to manage the self-assembly of low-molecular-weight hydrogelators (LMWH) resulting in localized supramolecular hydrogel coatings mainly based on nanofiber architectures. This Minireview highlights all strategies that have emerged recently to initiate and localize LMWH supramolecular hydrogel formation, their related fundamental issues and applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface-plasmon-assisted electron capture in H+/Mg and H+/Al collisions

    International Nuclear Information System (INIS)

    Sandoval, R.; Gutierrez, F.A.; Jouin, H.

    2007-01-01

    We analyze the velocity-dependent threshold behavior of the transition rate for the surface-plasmon mode of proton neutralization at metallic surfaces. Consideration of the proton velocity, which had not been considered so far, affects the transition rates in a nonnegligible way. In particular we study the opening of the collective channel for the H + /Al system, which remains closed in the fixed ion approximation. Preliminary calculations of neutral fractions, after grazing incidence collision of a proton beam with an Al(1 1 1) surface, seem to indicate that the collective mechanism starts to play a significant role for impact velocities greater than 0.5 a.u

  19. Validation of in-line surface characterization by light scattering in Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2014-01-01

    sensor on the machine in a shop floor environment. Scattered light roughness measurements of the whole surfaces were performed to investigate the measurement method suitability for 100% quality control. For comparison, the surfaces were measured with reference optical instruments in laboratory conditions....... Comparison of the scattered light measurements results taken on the machine with the reference optical roughness measurements taken in laboratory demonstrate the capability of the scattered light sensor for robust in-line surface characterization. This allows for the RAP process control by proper process...

  20. Reactivity of Surface Nitrates in H2-Assisted SCR of NOx Over Ag/Al2O3 Catalyst

    DEFF Research Database (Denmark)

    Sadokhina, N. A.; Doronkin, Dmitry E.; Baeva, G. N.

    2013-01-01

    The role of nitrate ad-species in H2-assisted SCR over Ag/Al2O3 was compared in NH3-SCR and n-C6H14-SCR processes. It was found that nitrates could be reduced by NH3 or n-C6H14 at similar rates with H2 co-feeding which indicates a common rate-limiting step. However, contributions of surface nitrate...... reduction to the overall NH3-SCR or n-C6H14-SCR are different as revealed by comparing the rates of nitrate reduction with the rates of steady-state processes. The rate of the steady-state n-C6H14-SCR is virtually identical to the rate of surface nitrate reduction suggesting a significant contribution...

  1. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  2. Friction characteristics of submicrometre-structured surfaces fabricated by particle-assisted near-field enhancement with femtosecond laser

    International Nuclear Information System (INIS)

    Sakai, Tetsuo; Nedyalkov, Nikolay; Obara, Minoru

    2007-01-01

    We present friction characteristics of sliding textured silicon surfaces at the submicrometre scale. A two-dimensional submicrometre dimple array on the Si surface is fabricated by femtosecond laser processing. Direct femtosecond laser nano-structuring of the Si (1 0 0) substrate by polystyrene particle-assisted near-field enhancement is used. In the investigated hole diameter domain from 229 to 548 nm, an increase in the friction coefficient with the decrease in the hole size is found experimentally. The fabricated submicrometre dimples act evidently as lubricant reservoirs to supply lubricants and traps to capture wear debris. The fluctuation of the friction coefficient is also increased by reducing the dimple size. The lowest friction coefficient of 1.41 x 10 -2 is achieved with the dimple array having a diameter of about 550 nm. This value is 2.6 times lower than that of non-structured substrates

  3. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements....... There was a clear difference between the films produced below and above the melting point of PEG. For temperatures above the melting point, the polymer material was distributed non-uniformly over the substrate with growths areas, where cluster-like structures merge into large islands of micrometer size....... At these temperatures, the islands in the investigated growth areas cover most of the bottom layer which has a typical height of 50-150 nm. (c) 2005 Elsevier B.V. All rights reserved....

  4. Surface toughness of silicon nitride bioceramics: I, Raman spectroscopy-assisted micromechanics.

    Science.gov (United States)

    Pezzotti, Giuseppe; Enomoto, Yuto; Zhu, Wenliang; Boffelli, Marco; Marin, Elia; McEntire, Bryan J

    2016-02-01

    Indentation micro-fracture is revisited as a tool for evaluating the surface toughness of silicon nitride (Si3N4) bioceramics for artificial joint applications. Despite being unique and practical from an experimental perspective, a quantitative assessment of surface fracture toughness using this method is challenging. An improved method has been developed, consisting of coupling indentation with confocal (spatially resolved) Raman piezo-spectroscopy. Empowered by the Raman microprobe, the indentation micro-fracture method was found to be capable of providing reliable surface toughness measurements in silicon nitride biomaterials. In designing the microstructures of bioceramic bearing couples for improved tribological performance, surface toughness must be considered as a fundamentally different and distinct parameter from bulk toughness. The coupling of indention crack opening displacements (COD) with local stress field assessments by spectroscopy paves the way to reliably compare the structural properties of bioceramics and to quantitatively monitor their evolution during environmental exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Enhanced Transmission of Light and Matter through Nanoapertures without Assistance of Surface Waves

    OpenAIRE

    Kukhlevsky, S. V.

    2006-01-01

    Subwavelength aperture arrays in thin metal films enable enhanced transmission of light and matter waves [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and E. Moreno et al., Phys. Rev. Lett. 95, 170406 (2005)]. The phenomenon relies on resonant excitation of the surface electron or matter waves. We show another mechanism that provides a great transmission enhancement not by coupling to the surface waves but by the interference of diffracted evanescent waves in the far-...

  6. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  7. Surface plasmon polariton assisted red shift in excitonic emission of semiconductor microflowers

    Science.gov (United States)

    Parameswaran, Chithra; Warrier, Anita R.; Bingi, Jayachandra; Vijayan, C.

    2014-10-01

    We report on the study of metal nanoparticle-semiconductor hybrid system composed of β-indium sulfide (β-In2S3) and gold (Au) nanoparticles. β-In2S3 micron sized flower like structures (˜1 μm) and Au nanoparticles (˜10 nm) were synthesized by chemical route. These Au nanoparticles have surface plasmon resonance at ˜ 520 nm. We study the influence of Au surface plasmon polaritons on the radiative properties of the β-In2S3 microflowers. As a result of the coupling between the surface plasmon polaritons and the excitons there is a red shift ˜ 50 nm in emission spectrum of hybrid β-In2S3-Au system. Such hybrid systems provide scope for a control on the optical properties of semiconductor microstructures, thus rendering them suitable for specific device applications in optoelectronics and photovoltaics.

  8. The initiation of environmentally-assisted cracking in semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    James, L.A.

    1997-01-01

    A criterion to predict under what conditions EAC would Initiate In cracks In a high-sulfur steel in contact with low-oxygen water was recently proposed by Wire and U. This EAC Initiation Criterion was developed using transient analyses for the diffusion of sulfides plus experimental test results. The experiments were conducted mainly on compact tension-type specimens with initial crack depths of about 2.54 mm. The present paper expands upon the work of Wire and U by presenting results for significantly deeper initial semi-elliptical surface cracks. In addition, in one specimen, the surface crack penetrated weld-deposited cladding into the high-sulfur steel. The results for the semi-elliptical surface cracks agreed quite well with the EAC Initiation Criterion, and provide confirmation of the applicability of the criterion to crack configurations with more restricted access to water

  9. Template assisted surface microstructuring of flowable dental composites and its effect on microbial adhesion properties.

    Science.gov (United States)

    Frenzel, Nadja; Maenz, Stefan; Sanz Beltrán, Vanesa; Völpel, Andrea; Heyder, Markus; Sigusch, Bernd W; Lüdecke, Claudia; Jandt, Klaus D

    2016-03-01

    Despite their various advantages, such as good esthetic properties, absence of mercury and adhesive bonding to teeth, modern dental composites still have some drawbacks, e.g., a relatively high rate of secondary caries on teeth filled with composite materials. Recent research suggests that microstructured biomaterials surfaces may reduce microbial adhesion to materials due to unfavorable physical material-microbe interactions. The objectives of this study were, therefore, to test the hypotheses that (i) different surface microstructures can be created on composites by a novel straightforward approach potentially suitable for clinical application and (ii) that these surface structures have a statistically significant effect on microbial adhesion properties. Six different dental composites were initially tested for their suitability for microstructuring by polydimethylsiloxane (PDMS) templates. Each composite was light-cured between a glass slide and a microstructured PDMS template. The nano-hybrid composite Grandio Flow was the only tested composite with satisfying structurability, and was therefore used for the bacterial adhesion tests. Composites samples were structured with four different microstructures (flat, cubes, linear trapezoid structures, flat pyramids) and incubated for 4h in centrifuged saliva. The bacterial adherence was then characterized by colony forming units (CFUs) and scanning electron microscopy (SEM). All four microstructures were successfully transferred from the PDMS templates to the composite Grandio Flow. The CFU-test as well as the quantitative analysis of the SEM images showed the lowest bacterial adhesion on the flat composite samples. The highest bacterial adhesion was observed on the composite samples with linear trapezoid structures, followed by flat pyramids and cubes. The microstructure of dental composite surfaces statistically significantly influenced the adhesion of oral bacteria. Modifying the composite surface structure may be

  10. Photometric stereo sensor for robot-assisted industrial quality inspection of coated composite material surfaces

    Science.gov (United States)

    Weigl, Eva; Zambal, Sebastian; Stöger, Matthias; Eitzinger, Christian

    2015-04-01

    While composite materials are increasingly used in modern industry, the quality control in terms of vision-based surface inspection remains a challenging task. Due to the often complex and three-dimensional structures, a manual inspection of these components is nearly impossible. We present a photometric stereo sensor system including an industrial robotic arm for positioning the sensor relative to the inspected part. Two approaches are discussed: stop-and-go positioning and continuous positioning. Results are presented on typical defects that appear on various composite material surfaces in the production process.

  11. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, Nancy B.(BATTELLE (PACIFIC NW LAB)); Wahl, Jon H.(BATTELLE (PACIFIC NW LAB)); Kingsley, Mark T.(BATTELLE (PACIFIC NW LAB)); Wahl, Karen L.(BATTELLE (PACIFIC NW LAB))

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  12. Molecular dimensions and surface diffusion assisted mechanically robust slippery perfluoropolyether impregnated mesoporous alumina interfaces

    Science.gov (United States)

    Rowthu, Sriharitha; Balic, Edin E.; Hoffmann, Patrik

    2017-12-01

    Accomplishing mechanically robust omniphobic surfaces is a long-existing challenge, and can potentially find applications in bioengineering, tribology and paint industries. Slippery liquid impregnated mesoporous α-Al2O3 interfaces are achieved with water, alkanes, water based and oil based high viscosity acrylic paints. Incredibly high abrasion-resistance (wear coefficients ≤10‑8 mm3 N‑1 m‑1) and ultra-low friction coefficients (≥0.025) are attained, attributing to the hard alumina matrix and continuous replenishment of perfluoropolyether aided by capillarity and surface diffusion processes. A variety of impregnating liquids employed suggest that large molecules, faster surface diffusion and lowest evaporation rate generate the rare combination of high wear-resistance and omniphobicity. It is noteworthy that these novel liquid impregnated Al2O3 composites exhibit outstanding load bearing capacity up to 350 MPa; three orders of magnitude higher than achievable by the state of the art omniphobic surfaces. Further, our developed thermodynamic calculations suggest that the relative thermodynamic stability of liquid impregnated composites is linearly proportional to the spreading coefficient (S) of the impregnating liquid with the matrix material and is an important tool for the selection of an appropriate matrix material for a given liquid.

  13. Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles

    Czech Academy of Sciences Publication Activity Database

    Tarábková, Hana; Janda, Pavel

    2013-01-01

    Roč. 25, č. 18 (2013), s. 184001 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GAP208/12/2429 Institutional support: RVO:61388955 Keywords : water * latex particles * hydrophobic surfaces Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.223, year: 2013

  14. Evaluation of Breaking Performance in Vibration-Assisted Electrostatic Surface Induction Actuator

    DEFF Research Database (Denmark)

    Nemoto, Takeru; Zsurzsan, Tiberiu-Gabriel; Yamamoto, Akio

    2015-01-01

    This paper evaluates breaking performance of an electrostatic surface induction actuator. The actuator is equipped with piezoelectric vibrator such that the friction between the slider and the stator electrodes can be dramatically reduced by squeeze-film effect. In such an actuator, the friction ...

  15. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-01-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  16. Crossing the dividing surface of transition state theory. IV. Dynamical regularity and dimensionality reduction as key features of reactive trajectories.

    Science.gov (United States)

    Lorquet, J C

    2017-04-07

    higher energies, these characteristics persist, but to a lesser degree. Recrossings of the dividing surface then become much more frequent and the phase space volumes of initial conditions that generate recrossing-free trajectories decrease. Altogether, one ends up with an additional illustration of the concept of reactive cylinder (or conduit) in phase space that reactive trajectories must follow. Reactivity is associated with dynamical regularity and dimensionality reduction, whatever the shape of the potential energy surface, no matter how strong its anharmonicity, and whatever the curvature of its reaction path. Both simplifying features persist during the entire reactive process, up to complete separation of fragments. The ergodicity assumption commonly assumed in statistical theories is inappropriate for reactive trajectories.

  17. Crossing the dividing surface of transition state theory. IV. Dynamical regularity and dimensionality reduction as key features of reactive trajectories

    Science.gov (United States)

    Lorquet, J. C.

    2017-04-01

    energies, these characteristics persist, but to a lesser degree. Recrossings of the dividing surface then become much more frequent and the phase space volumes of initial conditions that generate recrossing-free trajectories decrease. Altogether, one ends up with an additional illustration of the concept of reactive cylinder (or conduit) in phase space that reactive trajectories must follow. Reactivity is associated with dynamical regularity and dimensionality reduction, whatever the shape of the potential energy surface, no matter how strong its anharmonicity, and whatever the curvature of its reaction path. Both simplifying features persist during the entire reactive process, up to complete separation of fragments. The ergodicity assumption commonly assumed in statistical theories is inappropriate for reactive trajectories.

  18. Clinical and Immunological Features of Opsoclonus-Myoclonus Syndrome in the Era of Neuronal Cell Surface Antibodies.

    Science.gov (United States)

    Armangué, Thaís; Sabater, Lidia; Torres-Vega, Estefanía; Martínez-Hernández, Eugenia; Ariño, Helena; Petit-Pedrol, Mar; Planagumà, Jesús; Bataller, Luis; Dalmau, Josep; Graus, Francesc

    2016-04-01

    Most studies on opsoclonus-myoclonus syndrome (OMS) in adults are based on small case series before the era of neuronal cell surface antibody discovery. To report the clinical and immunological features of idiopathic OMS (I-OMS) and paraneoplastic OMS (P-OMS), the occurrence of antibodies to cell surface antigens, and the discovery of a novel cell surface epitope. Retrospective cohort study and laboratory investigations of 114 adult patients with OMS at a center for autoimmune neurological disorders done between January 2013 and September 2015. Review of clinical records. Immunohistochemistry on rat brain and cultured neurons as well as cell-based assays were used to identify known autoantibodies. Immunoprecipitation and mass spectrometry were used to characterize novel antigens. Of the 114 patients (62 [54%] female; median age, 45 years; interquartile range, 32-60 years), 45 (39%) had P-OMS and 69 (61%) had I-OMS. In patients with P-OMS, the associated tumors included lung cancer (n = 19), breast cancer (n = 10), other cancers (n = 5), and ovarian teratoma (n = 8); 3 additional patients without detectable cancer were considered to have P-OMS because they had positive results for onconeuronal antibodies. Patients with I-OMS, compared with those who had P-OMS, were younger (median age, 38 [interquartile range, 31-50] vs 54 [interquartile range, 45-65] years; P OMS with lung cancer (21% vs 5% in patients with OMS without lung cancer; P = .02); however, a similar frequency of glycine receptor antibodies was found in patients with lung cancer without OMS (13 of 65 patients [20%]). A novel cell surface epitope, human natural killer 1 (HNK-1), was the target of the antibodies in 3 patients with lung cancer and P-OMS. Patients with I-OMS responded better to treatment and had fewer relapses than those with P-OMS. Older age and encephalopathy, significantly associated with P-OMS, are clinical clues suggesting an underlying tumor. Glycine receptor antibodies occur

  19. Secondary shock features for large surface explosions: results from the Sayarim Military Range, Israel and other experiments

    Science.gov (United States)

    Gitterman, Y.

    2014-05-01

    A series of surface explosions was designed and conducted by the Geophysical Institute of Israel at the Sayarim Military Range in the Negev desert, including two large-scale explosions: approx. 82 tons of high explosives in 2009, and approx. 100 tons of low-grade ANFO explosives in 2011. The main goal of the explosions was to provide large controlled sources for calibration of global infrasound stations designated for monitoring nuclear tests; however, the geophysical experiment also provided valuable observations for shock wave research. High-pressure gauges were deployed at distances between 100 and 600 m to record air blast properties and to provide reliable estimation of the true charge yield compared to the design value. Secondary shock phenomena were clearly observed at all near-source gauges as characteristic shock wave shapes. Secondary shocks were also observed at numerous seismic and acoustic sensors deployed in the range 0.3-20 km as acoustic phases. Empirical relationships for standard air blast parameters (peak pressure and impulse) and for a new parameter called secondary shock time delay, as a function of distance, were established and analyzed. The standard parameters, scaled by the cubic root of the estimated TNT yield, were found to be consistent for all analyzed explosions. However, the scaled secondary shock delays were clearly separated for the 2009 and 2011 explosions, thus demonstrating dependence on the explosive type. Additionally, air blast records from other experiments were used to extend the charge and distance ranges for the secondary shock observation, and showed consistency with the Sayarim data. Analysis and interpretation of observed features of the secondary shock phenomenon are proposed and a new empirical relationship of scaled secondary shock delay versus scaled distance is established. The results suggest that the secondary shock delay can be used as a new additional waveform feature for simple and cost-effective explosive

  20. Surface-Assisted Laser Desorption Ionization of Low Molecular Organic Substances on Oxidized Porous Silicon

    Science.gov (United States)

    Shmigol, I. V.; Alekseev, S. A.; Lavrynenko, O. Yu.; Zaitsev, V. N.; Barbier, D.; Pokrovskiy, V. A.

    Desorption/ionization on silicon (DIOS) mass spectra of methylene blue (MB+Cl-) were studied using p+-type oxidized monofunctional porous silicon (PS-OX mono ) free layers. Reduction/protonation processes of methylene blue (MB) dye were investigated. It was shown that SiH x terminal sites on oxidized surface of porous silicon (PS-OX) are not the rate-determining factor for the reduction/protonation in DIOS. Tunneling of electron through the dielectric layer of nanostructures on silicon surface under effect of local electrostatic and electromagnetic fields is considered to be the most significant factor of adsorbate-adsorbent electron exchange and further laser-induced ion formation.

  1. n-Alkylamine-assisted preparation of a high surface area vanadyl phosphate/tetraethylorthosilicate nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, João Paulo L., E-mail: billbrujah@yahoo.com.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901 (Brazil); Zampronio, Elaine C.; Oliveira, Herenilton P. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901 (Brazil)

    2013-02-15

    Graphical abstract: CuK{sub α} X-ray diffraction patterns of the VP, VPOc, VPOcT, VPOcT200 and VPOcT500. Highlights: ► TEOS and octylamine incorporation into the VP was achieved by expanding the lamellar. ► The specific surface area increased from 15 m{sup 2} g{sup −1} in VP to 237 m{sup 2} g{sup −1} in VPOcT. ► The VPOcT exhibited thermal resistance up to 200 °C in air. ► Upon thermal treatment up to 500 °C, the surface area increased to 838 m{sup 2} g{sup −1}. -- Abstract: We have developed a vanadyl phosphate/tetraethylorthosilicate (VPO/TEOS) nanocomposite comprised of silicate chains interleaved with VPO layers, prepared by using an n-alkylamines such as octylamine as the structure directing agent. The nanocomposites were synthesized by reacting amine-intercalated vanadyl phosphate with tetraethylorthosilicate via the soft chemistry approach. The synthetic procedure encompassed the exfoliation of the layered vanadyl phosphate as well as the reorganization of this exfoliated solid into a mesostructured lamellar phase with the same V–P–O connectivity as in the original matrix. TEOS incorporation into the vanadyl phosphate was achieved by expanding the lamellar structure with n-alkylamine (Δd = 13 Å with n-octylamine). The specific surface area increased from 15 m{sup 2} g{sup −1} in the vanadyl phosphate matrix to 237 m{sup 2} g{sup −1} in VPOcT, and the isotherm curves revealed the characteristic hysteresis of mesoporous materials. Upon thermal treatment up to 500 °C, the surface area increased to 837 m{sup 2} g{sup −1}, which is suitable for catalytic purposes.

  2. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    Science.gov (United States)

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-02-14

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Chang, Te-Wei; Wang, Xinhao; Mahigir, Amirreza; Veronis, Georgios; Liu, Gang Logan; Gartia, Manas Ranjan

    2017-08-25

    Many single-molecule (SM) label-free techniques such as scanning probe microscopies (SPM) and magnetic force spectroscopies (MFS) provide high resolution surface topography information, but lack chemical information. Typical surface enhanced Raman spectroscopy (SERS) systems provide chemical information on the analytes, but lack spatial resolution. In addition, a challenge in SERS sensors is to bring analytes into the so-called "hot spots" (locations where the enhancement of electromagnetic field amplitude is larger than 10 3 ). Previously described methods of fluid transport around hot spots like thermophoresis, thermodiffusion/Soret effect, and electrothermoplasmonic flow are either too weak or detrimental in bringing new molecules to hot spots. Herein, we combined the resonant plasmonic enhancement and photonic nanojet enhancemnet of local electric field on nonplanar SERS structures, to construct a stable, high-resolution, and below diffraction limit platform for single molecule label-free detection. In addition, we utilize Marangoni convection (mass transfer due to surface tension gradient) to bring new analytes into the hotspot. An enhancement factor of ∼3.6 × 10 10 was obtained in the proposed system. Rhodamine-6G (R6G) detection of up to a concentration of 10 -12 M, an improvement of two orders of magnitude, was achieved using the nanojet effect. The proposed system could provide a simple, high throughput SERS system for single molecule analysis at high spatial resolution.

  4. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    Energy Technology Data Exchange (ETDEWEB)

    Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India); Methattel Raman, Shijeesh [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India)

    2016-04-18

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  5. CO2 adsorption-assisted CH4 desorption on carbon models of coal surface: A DFT study

    Science.gov (United States)

    Xu, He; Chu, Wei; Huang, Xia; Sun, Wenjing; Jiang, Chengfa; Liu, Zhongqing

    2016-07-01

    Injection of CO2 into coal is known to improve the yields of coal-bed methane gas. However, the technology of CO2 injection-enhanced coal-bed methane (CO2-ECBM) recovery is still in its infancy with an unclear mechanism. Density functional theory (DFT) calculations were performed to elucidate the mechanism of CO2 adsorption-assisted CH4 desorption (AAD). To simulate coal surfaces, different six-ring aromatic clusters (2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6, and 7 × 7) were used as simplified graphene (Gr) carbon models. The adsorption and desorption of CH4 and/or CO2 on these carbon models were assessed. The results showed that a six-ring aromatic cluster model (4 × 4) can simulate the coal surface with limited approximation. The adsorption of CO2 onto these carbon models was more stable than that in the case of CH4. Further, the adsorption energies of single CH4 and CO2 in the more stable site were -15.58 and -18.16 kJ/mol, respectively. When two molecules (CO2 and CH4) interact with the surface, CO2 compels CH4 to adsorb onto the less stable site, with a resulting significant decrease in the adsorption energy of CH4 onto the surface of the carbon model with pre-adsorbed CO2. The Mulliken charges and electrostatic potentials of CH4 and CO2 adsorbed onto the surface of the carbon model were compared to determine their respective adsorption activities and changes. At the molecular level, our results showed that the adsorption of the injected CO2 promoted the desorption of CH4, the underlying mechanism of CO2-ECBM.

  6. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Gu, Guohua

    2018-02-15

    Alkali treatment of lignocellulosic biomass is conducted to remove hemi-cellulose and lignin, further increasing the reactivity and accessibility of cellulose. Ultrasound-assisted xanthation of alkali cellulose is optimized by response surface methodology (RSM) with a Box-Behnken design. A predicting mathematical model is obtained by fitting experimental data, and it is verified by analysis of variance. Response surface plots and the contour plots obtained from the model are applied to determine the interactions of experimental variables. The optimum conditions are NaOH concentration 1.3mol/L, ultrasonic time 71.6min and CS 2 dosage 1.5mL. FTIR, SEM and XPS characterizations confirm the synthesis and sorption mechanism of cellulose xanthate (CX). Biosorption of Pb (II) onto CX obeys pseudo-second order model and Langmuir model. The sorption mechanism is attributed to surface complexation or ion exchange. CX shows good reusability for Pb (II) sorption. The maximum sorption capacity of Pb(II) is 134.41mg/g, higher than that of other biosorbents. CX has great potential as an efficient and low-cost biosorbent for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Disorder-driven metal-insulator-transition assisted by interband Coulomb repulsion in a surface transfer doped electron system

    Science.gov (United States)

    Francisco Sánchez-Royo, Juan

    2012-12-01

    The two-dimensional conducting properties of the Si(111) \\sqrt {3} \\times \\sqrt {3} surface doped by the charge surface transfer mechanism have been calculated in the frame of a semiclassical Drude-Boltzmann model considering donor scattering mechanisms. To perform these calculations, the required values of the carrier effective mass were extracted from reported angle-resolved photoemission results. The calculated doping dependence of the surface conductance reproduces experimental results reported and reveals an intricate metallization process driven by disorder and assisted by interband interactions. The system should behave as an insulator even at relatively low doping due to disorder. However, when doping increases, the system achieves to attenuate the inherent localization effects introduced by disorder and to conduct by percolation. The mechanism found by the system to conduct appears to be connected with the increasing of the carrier effective mass observed with doping, which seems to be caused by interband interactions involving the conducting band and deeper ones. This mass enhancement reduces the donor Bohr radius and, consequently, promotes the screening ability of the donor potential by the electron gas.

  8. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    Directory of Open Access Journals (Sweden)

    Altun N. Emre

    2016-01-01

    Full Text Available Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspective of utilization of oil shales in a similar manner to coal and lignites, problems and restrictions related to the inorganic ash-making and potentially pollutant constituents are applied. In this respect, cleaning of this important energy source through mineral processing methods, particularly by flotation, is an outstanding option. However, on the basis of unique features and distinctive characteristics, treatment of oil shales like a type of coal is a big perception and may be highly misleading. This paper discusses specific challenges regarding flotation behavior of oil shales with reference to the surface characteristics and behavior of oil shale entities – probably the most important aspect that determines the efficiency and success of the flotation based cleaning process.

  9. Structure Crack Identification Based on Surface-mounted Active Sensor Network with Time-Domain Feature Extraction and Neural Network

    Directory of Open Access Journals (Sweden)

    Chunling DU

    2012-03-01

    Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.

  10. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A. [Atomic Energy of Canada Limited, Ontario (Canada)] [and others

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  11. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology.

    Science.gov (United States)

    Xu, Dong-Ping; Zhou, Yue; Zheng, Jie; Li, Sha; Li, An-Na; Li, Hua-Bin

    2015-12-24

    An ultrasound-assisted extraction (UAE) method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time) on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW), which was in accordance with the predicted value (1105.49 µmol Trolox/g DW). Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  12. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus Coreanus Miq.) using response surface methodology.

    Science.gov (United States)

    Teng, Hui; Lee, Won Young; Choi, Yong Hee

    2013-09-01

    Anthocyanins (Acys), polyphenols, and antioxidants were extracted from raspberry (Rubus Coreanus Miq.) using a highly efficient microwave-assisted extraction technique. Different solvents, including methanol, ethanol, and acetone, were tested. The colors of the extracts varied from light yellow to purple red or dark red. SEM and other nutrient analyses verified that ethanol was the most favorable medium for the microwave-assisted extraction of raspberry due to its high output and low toxicity. Effects of process parameters, including microwave power, irradiation time, and solvent concentration, were investigated through response surface methodology. Canonical analysis estimated that the highest total Acys content, total polyphenols content, and antioxidant activity of raspberry were 17.93 mg cyanidin-3-O-glucoside equivalents per gram dry weight, 38.57 mg gallic acid equivalents per gram dry weight, and 81.24%, respectively. The polyphenol compositions of raspberry extract were identified by HPLC with diode array detection, and nine kinds of polyphenols were identified and quantified, revealing that chlorogenic acid, syringic acid, and rutin are the major polyphenols contained in raspberry fruits. Compared with other fruits and vegetables, raspberry contains higher Acy and polyphenol contents with stronger antioxidant activity, suggesting that raspberry fruits are a good source of natural food colorants and antioxidants. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Dong-Ping Xu

    2015-12-01

    Full Text Available An ultrasound-assisted extraction (UAE method was developed for the efficient extraction of natural antioxidants from the flowers of Jatropha integerrima. Four independent variables, including ethanol concentration, solvent/material ratio, ultrasound irradiation time and temperature were studied by single factor experiments. Then, the central composite rotatable design and response surface methodology were employed to investigate the effect of three key parameters (ethanol concentration, solvent/material ratio, and ultrasound irradiation time on the antioxidant activities of the flower extracts. The optimal extraction conditions were an ethanol concentration of 59.6%, solvent/material ratio of 50:1, ultrasound irradiation time of 7 min, and ultrasound irradiation temperature of 40 °C. Under these conditions, the optimized experimental value was 1103.38 ± 16.11 µmol Trolox/g dry weight (DW, which was in accordance with the predicted value (1105.49 µmol Trolox/g DW. Furthermore, the antioxidant activities of flower extracts obtained by UAE were compared with those produced by the traditional maceration and Soxhlet extraction methods, and UAE resulted in higher antioxidant activities after a shorter time at a lower temperature. The results obtained are helpful for the full utilization of Jatropha integerrima, and also indicate that ultrasound-assisted extraction is an efficient method for the extraction of natural antioxidants from plant materials.

  14. An investigation into the effective surface passivation of quantum dots by a photo-assisted chemical method

    Science.gov (United States)

    Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung

    2018-01-01

    In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.

  15. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology

    Science.gov (United States)

    Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.

    2016-01-01

    Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.

  16. An investigation into the effective surface passivation of quantum dots by a photo-assisted chemical method

    Directory of Open Access Journals (Sweden)

    So-Yeong Joo

    2018-01-01

    Full Text Available In this study, we have developed an effective amino passivation process for quantum dots (QDs at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%. This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ∼28%.

  17. Optimization of ultrasound-assisted extraction of flavonoids compounds from Chenopodium hybridum L. stem with response surface methodology

    Science.gov (United States)

    Wu, Y.; Hu, H. B.; Wang, C. L.; Ma, S. R.; Zhang, L. L.

    2016-08-01

    Ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from the stem of Chenopodium hybridum L.(C.hybridum L.) was investigated in this paper. Significant technological parameters were screened and optimized by using Plackett-Burman (PB) design, Steepest ascent method and Box-Behnken (BB) design, respectively. A mathematical model with high correlation coefficient (R2=0.9896) was developed and showed good consistency between the experimental and predicted values. The optimum conditions for UAE were obtained by res- ponse surface methodology (RSM) as follows: volumn fraction of ethanol 76.62 %, extractive temperature 78.69°C, and liquid to solid ratio 58.43 for 30 min. Under these conditions, total flavo- noid content (TFC) of 9.4701 mg RE/100g were gained and it was closely related with predi- cted value (9.4640 mg RE/100g) and indicated the suitability of the developed model.

  18. Optimisation of Ultrasound-Assisted Extraction Conditions for Phenolic Content and Antioxidant Capacity from Euphorbia tirucalli Using Response Surface Methodology

    Science.gov (United States)

    Vuong, Quan V.; Goldsmith, Chloe D.; Dang, Trung Thanh; Nguyen, Van Tang; Bhuyan, Deep Jyoti; Sadeqzadeh, Elham; Scarlett, Christopher J.; Bowyer, Michael C.

    2014-01-01

    Euphorbia tirucalli (E. tirucalli) is now widely distributed around the world and is well known as a source of traditional medicine in many countries. This study aimed to utilise response surface methodology (RSM) to optimise ultrasonic-assisted extraction (UAE) conditions for total phenolic compounds (TPC) and antioxidant capacity from E. tirucalli leaf. The results showed that ultrasonic temperature, time and power effected TPC and antioxidant capacity; however, the effects varied. Ultrasonic power had the strongest influence on TPC; whereas ultrasonic temperature had the greatest impact on antioxidant capacity. Ultrasonic time had the least impact on both TPC and antioxidant capacity. The optimum UAE conditions were determined to be 50 °C, 90 min. and 200 W. Under these conditions, the E. tirucalli leaf extract yielded 2.93 mg GAE/g FW of TPC and exhibited potent antioxidant capacity. These conditions can be utilised for further isolation and purification of phenolic compounds from E. tirucalli leaf. PMID:26785074

  19. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology.

    Science.gov (United States)

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.

  20. Annealing assisted structural and surface morphological changes in Langmuir–Blodgett films of nickel octabutoxy phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Shilpa Harish, T.; Viswanath, P., E-mail: viswanath@cnsms.res.in

    2016-01-01

    We report our studies on thin films of metallo-phthalocyanine (MPc), Nickel(II)1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (NiPc(OBu){sub 8}) transferred in a well defined thermodynamic state over a self assembled monolayer (octadecyl trichlorosilane)/SiO{sub 2}/Si substrate using the Langmuir–Blodgett (LB) method. The films are characterized using differential scanning calorimetry (DSC), grazing incidence X-ray diffraction (GIXD) and atomic force microscopy (AFM) techniques. DSC studies on powdered samples in the bulk indicate enantiotropic solid–solid phase transition. GIXD studies on the as-deposited LB film show a Bragg peak indicating crystallinity of the thin film. Annealing (373 K) results in reduction of lattice spacing (1.21 Å) signifying changes in molecular packing within the unit cell. At this stage, an additional Bragg peak is observed which grows at the expense of the former one and they coexist between 373 K and 423 K. A discontinuity in lattice spacing from 20.73 to 15.12 Å with annealing indicates clearly a structural change of the underlying crystalline lattice. Correspondingly, the surface morphology images obtained using AFM show, with annealing, a transformation from spherical granular morphology to elongated, flat crystallites suggesting asymmetric growth process. Statistical parameters of the grain extracted from the AFM images show that the size, fractal dimension and circularity are affected by annealing. Based on these studies, we infer the structural and surface morphological changes of the meta-stable phase (Form I) to the stable phase (Form II) in annealed LB films of phthalocyanine. - Highlights: • Langmuir–Blodgett (LB) films of phthalocyanine subjected to thermal annealing. • Structural transformation and coexistence of polymorphs in LB films • Surface morphology changes from nanoscale grains to elongated crystallites. • Reduction of fractal dimension and circularity index reveals asymmetric growth.

  1. Response surface optimization of the ultrasonic-assisted extraction of edible brown pigment from Macadamia shells

    Science.gov (United States)

    Liu, Y. Y.; Liu, Y. J.; Gong, X.; Li, J. H.

    2017-09-01

    The ultrasonic extraction of Edible brown pigment from macadamia shells was researched using response surface methodology (RSM) with 3 factors and 3 levels. A Box-Behnken design (BBD) was employed to investigate the effects of Solvent concentration, ratio of water to raw material and extraction time on the extraction yield of brown pigment. By using this new method, the optimum extraction condition was obtained as follows: Ultrasonic treating time 71 min, solvent to sample ratio of 23 mL/g, Alcohol concentrations 62%. Under the optimized condition, the experimental yield of brown pigment was 0.636g.

  2. Surface Assisted Formation of methane Hydrates on Ice and Na Montmorillonite Clay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teich-McGoldrick, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cygan, Randall Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.

  3. Clinical use of computed tomography and surface markers to assist internal fixation within the equine hoof.

    Science.gov (United States)

    Gasiorowski, Janik C; Richardson, Dean W

    2015-02-01

    To describe clinical use of computed tomography (CT) and hoof surface markers to facilitate internal fixation within the confines of the hoof wall. Retrospective case series. Horses (n = 16) that had CT-guided internal fixation of the distal phalanx (DP) or distal sesamoid bone (DSB). Drill bit entry point and direction were planned from CT image series performed on hooves with grids of barium paste dots at proposed entry and projected exit sites. Post-implantation CT images were obtained to check screw position and length as well as fracture reduction. Imaging, reduction, and surgical and general anesthesia times were evaluated. Outcome was recorded. Screw position and length were considered near optimal in all horses, with no consequential malposition of bits or screws. Fracture reduction was evident in all cases. Preoperative planning times (at least 2 CT image acquisitions and grid creation) ranged from 10 to 20 minutes. Surgery time ranged from 45 to 90 minutes (mean, 61 minutes) and general anesthesia time ranged from 115 to 220 minutes (mean, 171 minutes). The combination of CT and surface marker grids allowed accurate positioning of screws in clinical DP and DSB fractures. The technique was simple and rapid. An aiming device is useful for the technique. © Copyright 2014 by The American College of Veterinary Surgeons.

  4. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  5. Optimization of ultrasound-assisted extraction of polyphenolic compounds from coriander seeds using response surface methodology

    Directory of Open Access Journals (Sweden)

    Zeković Zoran P.

    2016-01-01

    Full Text Available Coriandrum sativum L. (coriander seeds (CS were used for preparation of extracts with high content of biologically active compounds. In order to optimize ultrasoundassisted extraction process, three levels and three variables of Box-Behnken experimental design (BBD in combination with response surface methodology (RSM were applied, yielding maximized total phenolics (TP and flavonoids (TF content and antioxidant activity (IC50 and EC50 values. Independent variables were temperature (40-80oC, extraction time (40-80 min and ultrasonic power (96-216 W. Experimental results were fitted to a second-order polynomial model with multiple regression, while the analysis of variance (ANOVA was employed to assess the model fitness and determine optimal conditions for TP (79.60oC, 49.20 min, 96.69 W, TF (79.40oC, 43.60 min, 216.00 W, IC50 (80.00oC, 60.40 min, 216.00 W and EC50 (78.40oC, 68.60 min, 214.80 W. On the basis of the obtained mathematical models, three-dimensional surface plots were generated. The predicted values for TP, TF, IC50 and EC50 were: 382.68 mg GAE/100 g CS, 216 mg CE/100 g CS, 0.03764 mg/mL and 0.1425 mg/mL, respectively. [Projekat Ministarstva nauke Republike Srbije, br. TR31013

  6. SdrF, a Staphylococcus epidermidis surface protein, contributes to the initiation of ventricular assist device driveline-related infections.

    Directory of Open Access Journals (Sweden)

    Carlos Arrecubieta

    2009-05-01

    Full Text Available Staphylococcus epidermidis remains the predominant pathogen in prosthetic-device infections. Ventricular assist devices, a recently developed form of therapy for end-stage congestive heart failure, have had considerable success. However, infections, most often caused by Staphylococcus epidermidis, have limited their long-term use. The transcutaneous driveline entry site acts as a potential portal of entry for bacteria, allowing development of either localized or systemic infections. A novel in vitro binding assay using explanted drivelines obtained from patients undergoing transplantation and a heterologous lactococcal system of surface protein expression were used to identify S. epidermidis surface components involved in the pathogenesis of driveline infections. Of the four components tested, SdrF, SdrG, PIA, and GehD, SdrF was identified as the primary ligand. SdrF adherence was mediated via its B domain attaching to host collagen deposited on the surface of the driveline. Antibodies directed against SdrF reduced adherence of S. epidermidis to the drivelines. SdrF was also found to adhere with high affinity to Dacron, the hydrophobic polymeric outer surface of drivelines. Solid phase binding assays showed that SdrF was also able to adhere to other hydrophobic artificial materials such as polystyrene. A murine model of infection was developed and used to test the role of SdrF during in vivo driveline infection. SdrF alone was able to mediate bacterial adherence to implanted drivelines. Anti-SdrF antibodies reduced S. epidermidis colonization of implanted drivelines. SdrF appears to play a key role in the initiation of ventricular assist device driveline infections caused by S. epidermidis. This pluripotential adherence capacity provides a potential pathway to infection with SdrF-positive commensal staphylococci first adhering to the external Dacron-coated driveline at the transcutaneous entry site, then spreading along the collagen

  7. Comparison of Surface Flow Features from Lidar-Derived Digital Elevation Models with Historical Elevation and Hydrography Data for Minnehaha County, South Dakota

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.

    2009-01-01

    The U.S. Geological Survey (USGS) has taken the lead in the creation of a valuable remote sensing product by incorporating digital elevation models (DEMs) derived from Light Detection and Ranging (lidar) into the National Elevation Dataset (NED), the elevation layer of 'The National Map'. High-resolution lidar-derived DEMs provide the accuracy needed to systematically quantify and fully integrate surface flow including flow direction, flow accumulation, sinks, slope, and a dense drainage network. In 2008, 1-meter resolution lidar data were acquired in Minnehaha County, South Dakota. The acquisition was a collaborative effort between Minnehaha County, the city of Sioux Falls, and the USGS Earth Resources Observation and Science (EROS) Center. With the newly acquired lidar data, USGS scientists generated high-resolution DEMs and surface flow features. This report compares lidar-derived surface flow features in Minnehaha County to 30- and 10-meter elevation data previously incorporated in the NED and ancillary hydrography datasets. Surface flow features generated from lidar-derived DEMs are consistently integrated with elevation and are important in understanding surface-water movement to better detect surface-water runoff, flood inundation, and erosion. Many topographic and hydrologic applications will benefit from the increased availability of accurate, high-quality, and high-resolution surface-water data. The remotely sensed data provide topographic information and data integration capabilities needed for meeting current and future human and environmental needs.

  8. Surface-assisted large-scale ordering of DNA origami tiles.

    Science.gov (United States)

    Aghebat Rafat, Ali; Pirzer, Tobias; Scheible, Max B; Kostina, Anna; Simmel, Friedrich C

    2014-07-14

    The arrangement of DNA-based nanostructures into extended higher order assemblies is an important step towards their utilization as functional molecular materials. We herein demonstrate that by electrostatically controlling the adhesion and mobility of DNA origami structures on mica surfaces by the simple addition of monovalent cations, large ordered 2D arrays of origami tiles can be generated. The lattices can be formed either by close-packing of symmetric, non-interacting DNA origami structures, or by utilizing blunt-end stacking interactions between the origami units. The resulting crystalline lattices can be readily utilized as templates for the ordered arrangement of proteins. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer

    Science.gov (United States)

    Arasu, P. T.; Noor, A. S. M.; Shabaneh, A. A.; Yaacob, M. H.; Lim, H. N.; Mahdi, M. A.

    2016-12-01

    A single mode fiber Bragg grating (FBG) is used to generate Surface Plasmon Resonance (SPR). The uniform gratings of the FBG are used to scatter light from the fiber optic core into the cladding thus enabling the interaction between the light and a thin gold film in order to generate SPR. Applying this technique, the cladding around the FBG is left intact, making this sensor very robust and easy to handle. A thin film of graphene oxide (GO) is deposited over a 45 nm gold film to enhance the sensitivity of the SPR sensor. The gold coated sensor demonstrated high sensitivity of approximately 200 nm/RIU when tested with different concentrations of ethanol in an aqueous medium. A 2.5 times improvement in sensitivity is observed with the GO enhancement compared to the gold coated sensor.

  10. Decalin-assisted light emitting porous Si formation and its optical, surface and morphological properties

    Science.gov (United States)

    Karatutlu, Ali; Istengir, Sumeyra; Cosgun, Sedat; Seker, Isa; Unal, Bayram

    2017-11-01

    In this research paper, light emitting porous silicon (Lep-Si) samples were fabricated by a surfactant-mediated chemical stain etching solution in order to form homogenous luminescent nanostructures at room temperature. As an industrially important solvent, decalin (decahydronaphtalene) was used as a surfactant in the HF/HNO3 solutions in order to control the etching process. Morphological, surface and optical properties of the Lep-Si samples were examined using atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL) spectroscopy, and laser scanning confocal microscopy (LSCM) techniques. These characterization techniques were correlated with the various etching times including depth dependent luminescence profiles for the first time. We report the optimum conditions for production of the most efficient Lep-Si using decalin (decahydronaphtalene) and possible structural origins of light emission using the depth dependent luminescence measurements.

  11. Evolution features of the surface latent heat flux anomalies over the tropical Pacific associated with two types of ENSO events

    Science.gov (United States)

    Liu, Zhiyuan; Zhou, Lian-Tong

    2017-09-01

    The present study investigates the features of the surface latent heat flux (LHF) anomalies and their related variables over the tropical Pacific during two types of El Niño-Southern Oscillation (ENSO) events and seeks a possible candidate for the main contributions to the LHF anomalies. During El Niño Modoki and canonical El Niño events, the LHFs show positive anomalies over the equatorial central Pacific and in the areas immediately south of the equatorial eastern Pacific. In addition, the largest magnitudes and widest ranges of positive LHF anomalies for both types of events occur during their mature stages rather than during their developing or decaying phases. Analyses show that the positive LHF anomalies associated with both events are largely affected by the positive sea-air humidity difference anomalies. However, the negative surface wind speed anomalies associated with the canonical El Niño events clearly contribute to the decreases in the positive LHF anomalies over the central Pacific and in the area immediately north of the equatorial eastern Pacific due to the presence of westerly and northerly anomalies, respectively. Moreover, over the equatorial central Pacific and in the area immediately south of the eastern Pacific, the LHF anomalies are mainly influenced by oceanic variables during both types of ENSO events, indicating an atmospheric response to oceanic forcing. In contrast, outside of the area spanning 10° north and south of the equator in the tropical Pacific and with the exception of the southeastern region, the LHF anomalies are greatly influenced by atmospheric variables, suggesting an oceanic response to atmospheric forcing. Distinct differences exist during the mature event phase, with oceanic forcing dominating the equatorial central Pacific during El Niño Modoki events and the area immediately south of the equatorial eastern Pacific during canonical El Niño events. In addition, both types of ENSO events suggest the increasing

  12. Ultrasonic vibration-assisted pelleting of wheat straw: a predictive model for energy consumption using response surface methodology.

    Science.gov (United States)

    Song, Xiaoxu; Zhang, Meng; Pei, Z J; Wang, Donghai

    2014-01-01

    Cellulosic biomass can be used as a feedstock for biofuel manufacturing. Pelleting of cellulosic biomass can increase its bulk density and thus improve its storability and reduce the feedstock transportation costs. Ultrasonic vibration-assisted (UV-A) pelleting can produce biomass pellets whose density is comparable to that processed by traditional pelleting methods (e.g. extruding, briquetting, and rolling). This study applied response surface methodology to the development of a predictive model for the energy consumption in UV-A pelleting of wheat straw. Effects of pelleting pressure, ultrasonic power, sieve size, and pellet weight were investigated. This study also optimized the process parameters to minimize the energy consumption in UV-A pelleting using response surface methodology. Optimal conditions to minimize the energy consumption were the following: ultrasonic power at 20%, sieve size at 4 mm, and pellet weight at 1g, and the minimum energy consumption was 2.54 Wh. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl.

    Science.gov (United States)

    Yang, Li; Cao, Ya-Lan; Jiang, Jian-Guo; Lin, Qing-Sheng; Chen, Jian; Zhu, Liang

    2010-05-01

    Citrus aurantium L. var. amara Engl is a member of genus Citrus (Rutaceae) and has been used in Chinese medicine with the effectiveness of digestant and expectorant. Ultrasonic-assisted extraction process for maximum flavonoids from the flower of Citrus aurantium L. var. amara Engl was investigated by response surface methodology. Through single factor experiment, ranges of the main variables (including ethanol concentration, solid/liquid ratio, extraction time and temperature) affecting the extraction yield of flavonoids were confirmed. Box-Behnken central composite design consisting of 24 experimental runs and 5 replicates at zero point was then applied and a regress model was obtained to predict the optimal extraction yield. The ANOVA indicated that the regression equation fits very well with the actual situation, reflecting the relationship between the extraction yield of flavonoids and extraction conditions. The optimal conditions were as follows: extraction temperature 72.11 degrees C, time 51.89 min, ethanol concentration 51.19% and liquid/solid ratio of 40:10. Under the optimal conditions, the maximum response value of yield (1.88%) was consistent with the experimental value (1.87%), indicating the feasibility and validation of response surface methodology in optimizing the extraction of flavonoids from the flower of Citrus aurantium L. var. amara Engl.

  14. Bromide-Assisted Anisotropic Growth of Gold Nanoparticles as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Melissa A. Kerr

    2016-01-01

    Full Text Available We report herein a one-step synthesis of gold nanoparticles (Au NPs of various shapes such as triangles, hexagons, and semispheres, using 5-hydroxyindoleacetic acid (5-HIAA as the reducing agent in the presence of potassium bromide (KBr. Anisotropic Au NPs have received ever-increasing attention in various areas of research due to their unique physical and chemical properties. Numerous synthetic methods involving either top-down or bottom-up approaches have been developed to synthesize Au NPs with deliberately varied shapes, sizes, and configurations; however, the production of templateless, seedless, and surfactant-free singular-shaped anisotropic Au NPs remains a significant challenge. The concentrations of hydrogen tetrachloroaurate (HAuCl4, 5-HIAA, and KBr, as well as the reaction temperature, were found to influence the resulting product morphology. A detailed characterization of the resulting Au NPs was performed using ultraviolet-visible (UV-Vis spectroscopy, scanning electron microscopy (SEM, and Raman spectroscopy. The as-prepared Au NPs exhibited excellent surface-enhanced Raman scattering (SERS properties, which make them very attractive for the development of SERS-based chemical and biological sensors.

  15. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  16. Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite

    Science.gov (United States)

    Raval, Hiren D.; Samnani, Mohit D.; Gauswami, Maulik V.

    2018-01-01

    Need for improvement in water flux of thin film composite (TFC) RO membrane has been appreciated by researchers world over and surface modification approach is found promising to achieve higher water flux and solute rejection. Thin film composite RO membrane was exposed to 2000 mg/l sodium hypochlorite solution with varying concentrations of glycerol ranging from 1 to 10%. It was found that there was a drop in concentration of sodium hypochlorite after the addition of glycerol because of a new compound resulted from the oxidation of glycerol with sodium hypochlorite. The water flux of the membrane treated with 1% glycerol with 2000 mg/l sodium hypochlorite for 1 h was about 22% more and salt rejection was 1.36% greater than that of only sodium hypochlorite treated membrane for the same concentration and time. There was an increase in salt rejection of membrane with increase in concentration of glycerol from 1% to 5%, however, increasing glycerol concentration further up to 10%, the salt rejection declined. The water flux was found declining from 1% glycerol solution to 10% glycerol solution. The membrane samples were characterized to understand the change in chemical structure and morphology of the membrane.

  17. Fuel production from microwave assisted pyrolysis of coal with carbon surfaces

    International Nuclear Information System (INIS)

    Mushtaq, Faisal; Mat, Ramli; Ani, Farid Nasir

    2016-01-01

    Highlights: • MW heating of coal was carried out with uniformly distributed carbon surfaces. • The effects of carbon loading, MW power and N 2 flow rate were investigated. • Heating profile, pyrolysis products are influenced by the process variables. • Highest coal-tar obtained when final temperature sustained for longer duration. • Coal-tar is mainly composed of aromatics and saturated aliphatics hydrocarbons. - Abstract: In this study, coal solids were subjected to Microwave (MW) pyrolysis conditions. Coconut Activated Carbon (CAC) solids used as a MW absorber was distributed uniformly over coal solids to reduce hotspots. Three process parameters; CAC loading, MW power and N 2 flow rate were studies on pyrolysis heating performance. The highest coal-tar yield of 18.59 wt% was obtained with 600 W, 75 wt% CAC loading and 4 Liter per Minute (LPM) of N 2 flow rate. This improved coal-tar yield is mainly of the fact that higher MW power and CAC loading produced sustained pyrolysis conditions for longer duration for the complete conversion of pyrolysis solids. The coal-tar was composed mainly of aromatics (naphthalenes, benzenes and xylene) and saturated aliphatics (alkanes and alkenes) hydrocarbons. The gas produced from pyrolysis of coal is mainly of H 2 40.23–65.22 vol%.

  18. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    Science.gov (United States)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  19. Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination

    Science.gov (United States)

    Mudra, E.; Streckova, M.; Pavlinak, D.; Medvecka, V.; Kovacik, D.; Kovalcikova, A.; Zubko, P.; Girman, V.; Dankova, Z.; Koval, V.; Duzsa, J.

    2017-09-01

    In this paper, the electrospinning method was used for preparation of α-Al2O3 microfibers from PAN/Al(NO3)3 precursor solution. The precursor fibers were thermally treated by conventional method in furnace or low-temperature plasma induced surface sintering method in ambient air. The four different temperatures of PAN/Al(NO3)3 precursors were chosen for formation of α-Al2O3 phase by conventional sintering way according to the transition features observed in the TG/DSC analysis. In comparison, the low-temperature plasma treatment at atmospheric pressure was used as an alternative sintering method at the exposure times of 5, 10 and 30 min. FTIR analysis was used for evaluation of residual polymer after plasma induced calcination and for studying the mechanism of polymer degradation. The polycrystalline alumina fibers arranged with the nanoparticles was created continuously throughout the whole volume of the sample. On the other side the low temperature approach, high density of reactive species and high power density of plasma generated at atmospheric pressure by used plasma source allowed rapid removal of polymer in preference from the surface of fibers leading to the formation of composite ceramic/polymer fibers. This plasma induced sintering of PAN/Al(NO3)3 can have obvious importance in industrial applications where the ceramic character of surface with higher toughness of the fibers are required.

  20. Microwave-Assisted Extraction of Cannabinoids in Hemp Nut Using Response Surface Methodology: Optimization and Comparative Study

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chang

    2017-11-01

    Full Text Available Hemp nut is commonly incorporated into several food preparations; however, most countries set regulations for hemp products according to their cannabinoid content. In this study, we have developed an efficient microwave-assisted extraction (MAE method for cannabinoids (i.e., Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol in hemp nut. Optimization of the MAE procedure was conducted through single factor experiments and response surface methodology (RSM. A comparative study was also conducted to determine the differences in the extraction yields and morphology of hemp nut between MAE and reference extraction methods, namely heat reflux extraction (HRE, Soxhlet extraction (SE, supercritical fluid extraction (SFE, and ultrasound-assisted extraction (UAE. Among the independent variables in RSM, the temperature was the most significant parameter. The optimal conditions of MAE were as follows: extraction solvent of methanol, microwave power of 375 W, temperature of 109 °C, and extraction time of 30 min. Compared with reference extraction methods, MAE achieved the highest extraction yields of total cannabinoids in hemp nut (6.09 μg/g for MAE; 4.15 μg/g for HRE; 5.81 μg/g for SE; 3.61 μg/g for SFE; 3.73 μg/g for UAE with the least solvent consumption and shortest time. Morphological observations showed that substantial cell rupturing occurred in the microstructure of hemp nut after MAE, indicating enhanced dissolution of the target compounds during the extraction process. The MAE method is thus a rapid, economic, and environmentally friendly extraction method that is both effective and practical for industrial applications.

  1. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues

    Science.gov (United States)

    Chen, Fangfang; Wang, Jiayu; Chen, Huiru; Lu, Ruicong; Xie, Xiaoyu

    2018-03-01

    Magnetic nanoparticles have been widely used as support core for fast separation, which could be directly separated from complicated matrices using an external magnet in few minutes. Surface imprinting based on magnetic core has shown favorable adsorption and separation performance, including good adsorption capacity, fast adsorption kinetics and special selectivity adsorption. Reversible addition-fragmentation chain transfer (RAFT) is an ideal choice for producing well-defined complex architecture with mild reaction conditions. We herein describe the preparation of well-constructed magnetic molecularly imprinted polymers (MMIPs) for the recognition of benzimidazole (BMZ) residues via the microwave-assisted RAFT polymerization. The merits of RAFT polymerization assisting with microwave heating allowed successful and more efficient preparation of well-constructed imprinted coats. Moreover, the polymerization time dramatically shortened and was just 1/24th of the time taken by conventional heating. The results indicated that a uniform nanoscale imprinted layer was formed on the Fe3O4 core successfully, and enough saturation magnetization of MMIPs (16.53 emu g-1) was got for magnetic separation. The desirable adsorption capacity (30.18 μmol g-1) and high selectivity toward template molecule with a selectivity coefficient (k) of 13.85 of MMIPs were exhibited by the adsorption isothermal assay and competitive binding assay, respectively. A solid phase extraction enrichment approach was successfully established for the determination of four BMZ residues from apple samples using MMIPs coupled to HPLC. Overall, this study provides a versatile approach for highly efficient fabrication of well-constructed MMIPs for enrichment and determination of target molecules from complicated samples.

  2. Microwave-Assisted Extraction of Cannabinoids in Hemp Nut Using Response Surface Methodology: Optimization and Comparative Study.

    Science.gov (United States)

    Chang, Chih-Wei; Yen, Ching-Chi; Wu, Ming-Tsang; Hsu, Mei-Chich; Wu, Yu-Tse

    2017-11-03

    Hemp nut is commonly incorporated into several food preparations; however, most countries set regulations for hemp products according to their cannabinoid content. In this study, we have developed an efficient microwave-assisted extraction (MAE) method for cannabinoids (i.e., Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol) in hemp nut. Optimization of the MAE procedure was conducted through single factor experiments and response surface methodology (RSM). A comparative study was also conducted to determine the differences in the extraction yields and morphology of hemp nut between MAE and reference extraction methods, namely heat reflux extraction (HRE), Soxhlet extraction (SE), supercritical fluid extraction (SFE), and ultrasound-assisted extraction (UAE). Among the independent variables in RSM, the temperature was the most significant parameter. The optimal conditions of MAE were as follows: extraction solvent of methanol, microwave power of 375 W, temperature of 109 °C, and extraction time of 30 min. Compared with reference extraction methods, MAE achieved the highest extraction yields of total cannabinoids in hemp nut (6.09 μg/g for MAE; 4.15 μg/g for HRE; 5.81 μg/g for SE; 3.61 μg/g for SFE; 3.73 μg/g for UAE) with the least solvent consumption and shortest time. Morphological observations showed that substantial cell rupturing occurred in the microstructure of hemp nut after MAE, indicating enhanced dissolution of the target compounds during the extraction process. The MAE method is thus a rapid, economic, and environmentally friendly extraction method that is both effective and practical for industrial applications.

  3. Employing Response Surface Methodology for the Optimization of Ultrasound Assisted Extraction of Lutein and β-Carotene from Spinach

    Directory of Open Access Journals (Sweden)

    Ammar Altemimi

    2015-04-01

    Full Text Available The extraction of lutein and β-carotene from spinach (Spinacia oleracea L. leaves is important to the dietary supplement industry. A Box-Behnken design and response surface methodology (RSM were used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE of lutein and β-carotene from spinach. Three independent variables, extraction temperature (°C, extraction power (% and extraction time (min were studied. Thin-layer chromatography (TLC followed by UV visualization and densitometry was used as a simple and rapid method for both identification and quantification of lutein and β-carotene during UAE. Methanol extracts of leaves from spinach and authentic standards of lutein and β-carotene were separated by normal-phase TLC with ethyl acetate-acetone (5:4 (v/v as the mobile phase. In this study, the combination of TLC, densitometry, and Box–Behnken with RSM methods were effective for the quantitative analysis of lutein and β-carotene from spinach extracts. The resulting quadratic polynomial models for optimizing lutein and β-carotene from spinach had high coefficients of determination of 0.96 and 0.94, respectively. The optimal UAE settings for output of lutein and β-carotene simultaneously from spinach extracts were an extraction temperature of 40 °C, extraction power of 40% (28 W/cm3 and extraction time of 16 min. The identity and purity of each TLC spot was measured using time-of-flight mass spectrometry. Therefore, UAE assisted extraction of carotenes from spinach can provide a source of lutein and β-carotene for the dietary supplement industry.

  4. Comparison of single-step reverse transepithelial all-surface laser ablation (ASLA to alcohol-assisted photorefractive keratectomy

    Directory of Open Access Journals (Sweden)

    Aslanides IM

    2012-06-01

    Full Text Available Ioannis M Aslanides,1 Sara Padroni,1 Samuel Arba Mosquera,2 Antonis Ioannides,1 Achyut Mukherjee11Emmetropia Mediterranean Eye Institute, Heraklion, Crete, Greece; 2Schwind eye-tech-solutions GmbH, Kleinostheim, GermanyPurpose: To evaluate postoperative pain, corneal epithelial healing, development of corneal haze, refractive outcomes, and corneal aberrations in a novel one-step, modified transepithelial photorefractive keratectomy (PRK, termed All-surface laser ablation (ASLA, compared to conventional, alcohol-assisted PRK.Materials and methods: Sixty eyes of 30 myopic patients were prospectively recruited to a randomized fellow eye study. Patients underwent conventional alcohol-assisted PRK in one eye (control group and ASLA-modified transepithelial PRK in the other (30 eyes in each treatment arm. Primary endpoints were postoperative pain and haze scores at 1 day, 3 days, 1 week, and 1, 3, 6, and 12 months. Secondary endpoints included visual acuity at 1, 3, 6, and 12 months, corneal aberrations at 3, 6, and 12 months, and early and late onset haze. Refractive predictability, safety, and efficacy of the two methods were considered.Results: The average age of the cohort was 29 years (standard deviation [SD]: 9; range: 18–46, and the average spherical equivalent refractive error was -4.18 diopters (SD: 1.9. At 3 days after surgery, the average pain score was 64% lower in the ASLA group (P < 0.0005. At this point, 96% of ASLA eyes had no epithelial defect, whereas 43% in the alcohol-assisted group did not achieve complete epithelial healing, and required replacement of bandage contact lens. The haze level was consistently lower in the ASLA group at all time points from 1 to 6 months.Conclusion: This study shows that the ASLA technique may have a future role in refractive surgery, due to the fact that it offers faster epithelial healing, lower pain scores, and significantly less haze formation.Keywords: cornea, ASLA, PRK, alcohol

  5. Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2014-01-01

    Full Text Available Ultrasonic vibration assisted micro end grinding (UAMEG is a promising processing method for micro parts made of hard and brittle materials. First, the influence of ultrasonic assistance on the mechanism of this processing technology is theoretically analyzed. Then, in order to reveal the effects of ultrasonic vibration and grinding parameters on grinding forces and surface quality, contrast grinding tests of silica glass with and without ultrasonic assistance using micro radial electroplated diamond wheel are conducted. The grinding forces are measured using a three-component dynamometer. The surface characteristics are detected using the scanning electron microscope. The experiment results demonstrate that grinding forces are significantly reduced by introducing ultrasonic vibration into conventional micro end grinding (CMEG of silica glass; ultrasonic assistance causes inhibiting effect on variation percentages of tangential grinding force with grinding parameters; ductile machining is easier to be achieved and surface quality is obviously improved due to ultrasonic assistance in UAMEG. Therefore, larger grinding depth and feed rate adopted in UAMEG can lead to the improvement of removal rate and machining efficiency compared with CMEG.

  6. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  7. Assisted delivery with forceps

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000509.htm Assisted delivery with forceps To use the sharing features on ... called vacuum assisted delivery . When is a Forceps Delivery Needed? Even after your cervix is fully dilated ( ...

  8. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  9. Terrestrial Analogs for Surface Properties Associated with Impact Cratering on the Moon - Self-secondary Impact Features at Kings Bowl, Idaho

    Science.gov (United States)

    Matiella Novak, M. A.; Zanetti, M.; Neish, C.; Kukko, A.; Fan, K.; Heldmann, J.; Hughes, S. S.

    2017-12-01

    The Kings Bowl (KB) eruptive fissure and lava field, located in the southern end of Craters of the Moon National Monument, Idaho, is an ideal location for planetary analogue field studies of surface properties related to volcanic and impact processes. Here we look at possible impact features present in the KB lava field near the main vent that resulted in squeeze-ups of molten lava from beneath a semi-solid lava lake crust. These may have been caused by the ejection of blocks during the phreatic eruption that formed the Kings Bowl pit, and their subsequent impact into a partially solidified lava pond. We compare and contrast these features with analogous self-secondary impact features, such as irregular, rimless secondary craters ("splash craters") observed in lunar impact melt deposits, to better understand how self-secondary impacts determine the surface properties of volcanic and impact crater terrains. We do this by analyzing field measurements of these features, as well as high-resolution DEM data collected through the Kinematic LiDAR System (KLS), both of which give us feature dimensions and distributions. We then compare these data with self-secondary impact features on the Moon and related surface roughness constrained through Lunar Reconnaissance Orbiter observations (Mini-RF and LROC NACs). Possible self-secondary impact features can be found in association with many lunar impact craters. These are formed when ballistic ejecta from the crater falls onto the ejecta blanket and melt surrounding the newly formed crater. Self-secondary impact features involving impact melt deposits are particularly useful to study because the visibly smooth melt texture serves to highlight the impact points in spacecraft imagery. The unusual morphology of some of these features imply that they formed when the melt had not yet completely solidified, strongly suggesting a source of impactors from the primary crater itself. We will also discuss ongoing efforts to integrate field

  10. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology

    Directory of Open Access Journals (Sweden)

    Hui-Zhen LI

    Full Text Available Abstract Response surface methodology (RSM was used to optimize ultrasound-assisted extraction (UAE of functional components from perilla leaves. The factors investigated were ethanol concentration, extraction temperature, and extraction time. The results revealed that ethanol concentration had significant effects on all extraction parameters. Based on the RSM results, the optimal conditions were an ethanol concentration of 56%, a UAE temperature of 54 °C, and a UAE time of 55 min. Under these conditions, the experimental TPC (total phenolic content, RA (rosmarinic acid, FRAP (ferric reducing antioxidant power and DPPH (1,1-diphenyl-2-picrylhydrazyl values were 48.85 mg GAE/g DW (mg gallic acid equivalent /g of dry weight, 31.02 mg/g DW, 85.55 μmol Fe2+/g DW and 73.35%, respectively. The experimental values were in agreement with those predicted by RSM models, confirming suitability of the model employed and the success of RSM for optimization of the extraction conditions.

  11. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology.

    Science.gov (United States)

    Hammi, Khaoula Mkadmini; Jdey, Ahmed; Abdelly, Chedly; Majdoub, Hatem; Ksouri, Riadh

    2015-10-01

    The optimization of antioxidant extraction conditions from a ripe edible fruits of Zizyphus lotus (L.) with an ultrasound-assisted system was achieved by response surface methodology. The central composite rotatable design was employed for optimization of extraction parameters in terms of total phenolic content and antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and phosphomolybdenum assay. The optimum operating conditions for extraction were as follows: ethanol concentration, 50%; extraction time, 25 min; extraction temperature, 63°C and ratio of solvent to solid, 67 mL/g. Under these conditions, the obtained extract exhibited a high content of phenolic compounds (40.782 mg gallic acid equivalents/g dry matter) with significant antioxidant properties (the total antioxidant activity was 75.981 mg gallic acid equivalents/g dry matter and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity was 0.289 mg/mL). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology.

    Science.gov (United States)

    Yoshida, Tomoki; Tsubaki, Shuntaro; Teramoto, Yoshikuni; Azuma, Jun-ichi

    2010-10-01

    Microwave-assisted extraction (MAE) was applied for production of carbohydrates mainly consisting of arabinoxylan from corn pericarp which is an industrial waste of corn starch production by using hot compressed water as a solvent. The solubilization rate increased with increase in heating temperature and reached 75.2% at 220 °C. The main extracted materials were carbohydrates consist of glucose, xylose and arabinose indicating solubilization of starch and hemicellulose, while residues were composed of cellulose. Four independent variables (heating temperature, come-up time, heating time and solid to liquid ratio) were optimized for maximizing the carbohydrates yield using the response surface methodology including fractional factorial design, the path of steepest ascent and central composite design. The optimized condition was as follows; heating temperature 176.5 °C, come-up time 2 min, heating time 16 min and solid to liquid ratio 1/20 (g/mL), respectively. The maximal yield attained 70.8% of carbohydrates with predominant production of xylo-oligosaccharides. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Optimization of Ultrasound-Assisted Extraction of Antioxidants from Apium graveolens L. Seeds using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Şule Dinç Zor

    2017-09-01

    Full Text Available In this study, optimum conditions for ultrasound-assisted extraction (UAE of antioxidants from Apium graveolens L. seeds were investigated by Response Surface Methodology (RSM. A Box-Behnken Design (BBD was used to evaluate the effect of sonication time (5, 10, 15 min, ultrasound power (60, 120, 180 W and the ratio of extraction solvent in terms of methanol (0, 50, 100% on antioxidant capacity. The optimal UAE conditions for the parameters investigated were 11 min of sonication time, ultrasound power of 131 W and 100% methanol as an extraction solvent. Under these conditions, UAE of antioxidants from the seeds achieved a maximum of 95.08% in respect to 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging activity. Additionally, the high value of the adjusted coefficient of determination (R2adj = 0.9192 and the non-significant difference between experimental and predicted values confirmed the validity of the quadratic polynomial model. Hence, UAE is a suitable, fast, economical and practical technique for the extraction of antioxidants from Apium graveolens L. seeds.

  14. Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM).

    Science.gov (United States)

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Farhoosh, Reza

    2014-07-15

    The present study reports on the extraction of natural pigment from annatto seeds. Response surface methodology (RSM) was used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE). Four independent variables including temperature (20-80°C), sonication time (2-10 min), duty cycle (0.2-0.8s) and the ratio of seeds to the solvent (5-20%) were studied. According to the results, the optimal UAE condition was obtained with a temperature of 72.7°C, extraction time of 7.25 min, the ratio of seed to solvent of 14% and duty cycle of 0.8s. At these conditions, extraction yield determined as 6.35% and the absorbance value as 0.865%. The experimental values under optimal condition were in good consistent with the predicted values, which suggested UAE is more efficient process as compared to conventional extraction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fabrication of narrow surface relief features in a side-chain azobenzene polyester with a scanning near-field microscope

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N. C. R.; Pedersen, M.

    2001-01-01

    We show that it is possible to fabricate topographic submicron features in a side-chain azobenzene polyester with a scanning near-field optical microscope, Through irradiation at a wavelength of 488 run at intensity levels of 12 W/cm(2), topographic features as narrow as 240 nm and as high as 6 nm...... in high-density optical storage and high-resolution lithography....

  16. Influence of Structural Features and Fracture Processes on Surface Roughness: A Case Study from the Krosno Sandstones of the Górka–Mucharz Quarry (Little Beskids, Southern Poland

    Directory of Open Access Journals (Sweden)

    Pieczara Łukasz

    2015-09-01

    Full Text Available The paper presents the results of analysis of surface roughness parameters in the Krosno Sandstones of Mucharz, southern Poland. It was aimed at determining whether these parameters are influenced by structural features (mainly the laminar distribution of mineral components and directional distribution of non-isometric grains and fracture processes. The tests applied in the analysis enabled us to determine and describe the primary statistical parameters used in the quantitative description of surface roughness, as well as specify the usefulness of contact profilometry as a method of visualizing spatial differentiation of fracture processes in rocks. These aims were achieved by selecting a model material (Krosno Sandstones from the Górka-Mucharz Quarry and an appropriate research methodology. The schedule of laboratory analyses included: identification analyses connected with non-destructive ultrasonic tests, aimed at the preliminary determination of rock anisotropy, strength point load tests (cleaved surfaces were obtained due to destruction of rock samples, microscopic analysis (observation of thin sections in order to determine the mechanism of inducing fracture processes and a test method of measuring surface roughness (two- and three-dimensional diagrams, topographic and contour maps, and statistical parameters of surface roughness. The highest values of roughness indicators were achieved for surfaces formed under the influence of intragranular fracture processes (cracks propagating directly through grains. This is related to the structural features of the Krosno Sandstones (distribution of lamination and bedding.

  17. The analysis of quartz grain surface features as a complementary method for studying their provenance: the Guadalete River Basin (Cádiz, SW Spain)

    Science.gov (United States)

    Moral-Cardona, J. P.; Bellón, A. Sdnchez; López-Aguayo, F.; Caballero, M. A.

    1996-10-01

    The analysis of quartz grain surface features from several sandy deposits of the Guadalete River basin-Guadalete terraces, Miocene calcarenites and Aljibe sandstones-have yielded data of considerable value in the study of the provenance of these materials. The majority of the quartz grains of the Miocene calcarenites present the same primitive surface features as those of the Aljibe sandstones (generalised polishing of their surface, mechanical marks enlarged by solution) and many conchoidal fractures and grooves corresponding to the high-energy environment in which they were deposited. The quartz grains of the Guadalete terraces are mainly derived from the Miocene calcarenites (they show numerous fractures and polished grooves) and have undergone a later stage of evolution, forming isolated Vs and silica deposits corresponding to a final fluvial means of transport. These data indicate a possible evolution as follows: (1) Aljibe sandstones; (2) Miocene calcarenites; (3) fluvial sands of the Quaternary terraces of the Guadalete River. This evolution has been confirmed by study of the heavy mineral associations and the petrology of these materials. Thus, quartz grain surface features may be an extremely useful instrument for studying provenance, determining the evolutionary path that various sediments of a region have taken, thereby complementing the data yielded by the mineralogy of heavy minerals and regional geology.

  18. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  19. Statistical characterization of surface features from tungsten-coated divertor inserts in the DIII-D Metal Rings Campaign

    Science.gov (United States)

    Adams, Jacob; Unterberg, Ezekial; Chrobak, Christopher; Stahl, Brian; Abrams, Tyler

    2017-10-01

    Continuing analysis of tungsten-coated inserts from the recent DIII-D Metal Rings Campaign utilizes a statistical approach to study carbon migration and deposition on W surfaces and to characterize the pre- versus post-exposure surface morphology. A TZM base was coated with W using both CVD and PVD and allowed for comparison between the two coating methods. The W inserts were positioned in the lower DIII-D divertor in both the upper (shelf) region and lower (floor) region and subjected to multiple plasma shots, primarily in H-mode. Currently, the post-exposure W inserts are being characterized using SEM/EDX to qualify the surface morphology and to quantify the surface chemical composition. In addition, profilometry is being used to measure the surface roughness of the inserts both before and after plasma exposure. Preliminary results suggest a correlation between the pre-exposure surface roughness and the level of carbon deposited on the surface. Furthermore, ongoing in-depth analysis may reveal insights into the formation mechanism of nanoscale bumps found in the carbon-rich regions of the W surfaces that have not yet been explained. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  20. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.

    Science.gov (United States)

    Zeković, Zoran; Vladić, Jelena; Vidović, Senka; Adamović, Dušan; Pavlić, Branimir

    2016-10-01

    Microwave-assisted extraction (MAE) of polyphenols from coriander seeds was optimized by simultaneous maximization of total phenolic (TP) and total flavonoid (TF) yields, as well as maximized antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl and reducing power assays. Box-Behnken experimental design with response surface methodology (RSM) was used for optimization of MAE. Extraction time (X1 , 15-35 min), ethanol concentration (X2 , 50-90% w/w) and irradiation power (X3 , 400-800 W) were investigated as independent variables. Experimentally obtained values of investigated responses were fitted to a second-order polynomial model, and multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions. The optimal MAE conditions for simultaneous maximization of polyphenol yield and increased antioxidant activity were an extraction time of 19 min, an ethanol concentration of 63% and an irradiation power of 570 W, while predicted values of TP, TF, IC50 and EC50 at optimal MAE conditions were 311.23 mg gallic acid equivalent per 100 g dry weight (DW), 213.66 mg catechin equivalent per 100 g DW, 0.0315 mg mL(-1) and 0.1311 mg mL(-1) respectively. RSM was successfully used for multi-response optimization of coriander seed polyphenols. Comparison of optimized MAE with conventional extraction techniques confirmed that MAE provides significantly higher polyphenol yields and extracts with increased antioxidant activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Optimization of Ultrasonic-Assisted Extraction of Flavonoid Compounds and Antioxidants from Alfalfa Using Response Surface Method.

    Science.gov (United States)

    Jing, Chang-Liang; Dong, Xiao-Fang; Tong, Jian-Ming

    2015-08-26

    Ultrasonic-assisted extraction (UAE) was used to extract flavonoid-enriched antioxidants from alfalfa aerial part. Response surface methodology (RSM), based on a four-factor, five-level central composite design (CCD), was employed to obtain the optimal extraction parameters, in which the flavonoid content was maximum and the antioxidant activity of the extracts was strongest. Radical scavenging capacity of the extracts, which represents the amounts of antioxidants in alfalfa, was determined by using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. The results showed good fit with the proposed models for the total flavonoid extraction (R² = 0.9849), for the antioxidant extraction assayed by ABTS method (R² = 0.9764), and by DPPH method (R² = 0.9806). Optimized extraction conditions for total flavonoids was a ratio of liquid to solid of 57.16 mL/g, 62.33 °C, 57.08 min, and 52.14% ethanol. The optimal extraction parameters of extracts for the highest antioxidant activity by DPPH method was a ratio of liquid to solid 60.3 mL/g, 54.56 °C, 45.59 min, and 46.67% ethanol, and by ABTS assay was a ratio of liquid to solid 47.29 mL/g, 63.73 °C, 51.62 min, and 60% ethanol concentration. Our work offers optimal extraction conditions for total flavonoids and antioxidants from alfalfa.

  2. Optimization of oil yield from Hevea brasiliensis seeds through ultrasonic-assisted solvent extraction via response surface methodology

    Directory of Open Access Journals (Sweden)

    Val Irvin F. Mabayo

    2018-01-01

    Full Text Available The demand for oil has been increasing vastly over time, and the source of this has slowly been diminishing. The use of non-food feedstock is seen as a promising alternative source for the production of bio-based fuel. In this study, rubber (Hevea brasiliensis seeds were utilized as biomass in bio-oil production considering that these are non-edible and considered wastes in rubber tree plantations. In the oil extraction process, the rubber seed kernels were oven dried at 100 °C for 24 h, powdered and then dried further at 105 °C for 4 h. After characterization, optimization study was done using Design Expert 7.0 software through central composite design of the response surface methodology. Ultrasonication technology was employed in the oil extraction process which significantly reduced the reaction time needed for extraction to 15 min compared the conventional extraction method of at least 8 h. An optimum rubber seed oil (RSO yield of 30.3 ± 0.3% was obtained using 15 g biomass, 5:1 n-hexane to biomass (mL g−1 ratio, 50 μm resonance amplitude and 60 ± 5 °C temperature at 15 min reaction time. The oil yield at optimum condition was found to have 0.89 g mL−1 density at room temperature, 26.7 cSt kinematic viscosity at 40 °C and high heating value of 39.2 MJ kg−1. The Fourier Transform Infrared Radiation spectroscopy analysis of the RSO, at optimum condition, showed the presence of carboxylic acid and ester carbonyl functional groups which are good indicators as a potential source of biodiesel. Keywords: Hevea brasiliensis, Oil extraction, Optimization, Response surface methodology, Rubber seed oil, Ultrasonic-assisted solvent extraction

  3. Spatially Uniform Thin-Film Formation of Polymeric Organic Semiconductors on Lyophobic Gate Insulator Surfaces by Self-Assisted Flow-Coating.

    Science.gov (United States)

    Bulgarevich, Kirill; Sakamoto, Kenji; Minari, Takeo; Yasuda, Takeshi; Miki, Kazushi

    2017-02-22

    Surface hydrophobization by self-assembled monolayer formation is a powerful technique for improving the performance of organic field-effect transistors (OFETs). However, organic thin-film formation on such a surface by solution processing often fails due to the repellent property of the surface against common organic solvents. Here, a scalable unidirectional coating technique that can solve this problem, named self-assisted flow-coating, is reported. Producing a specially designed lyophobic-lyophilic pattern on the lyophobic surface enables organic thin-film formation in the lyophobic surface areas by flow-coating. To demonstrate the usefulness of this technique, OFET arrays with an active layer of poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) are fabricated. The ideal transfer curves without hysteresis behavior are obtained for all OFETs. The average field-effect hole mobility in the saturation regime is 0.273 and 0.221 cm 2 ·V -1 ·s -1 for the OFETs with the channels parallel and perpendicular to the flow-coating direction, respectively, and the device-to-device variation is less than 3% for each OFET set. Very small device-to-device variation is also obtained for the on-state current, threshold voltage, and subthreshold swing. These results indicate that the self-assisted flow-coating is a promising coating technique to form spatially uniform thin films of polymeric organic semiconductors on lyophobic gate insulator surfaces.

  4. [Age-related characteristics of the surface bioelectrical potential of human, canine and rat teeth and features of its distribution over the surface of the crown].

    Science.gov (United States)

    Donskiĭ, G I; Pavliuchenko, O N; Palamarchuk, Iu N; Makarova, N Ia

    1989-01-01

    Using a digital electron voltmeter, bioelectrical potentials (BEPs) of dental crowns have been recorded in 180 patients, 36 dogs, and 93 white non-inbred rats. It has been established that the surface BEP is a marker of dental enamel maturation and does not depend on the species of mammals. On the other hand maturation processes differ in their rate on the cutting edge, equator, and neck: with advancing age algebraic difference between the magnitudes of surface BEPs decreases in humans and increases in dogs and rats.

  5. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  6. Carabelli's trait revisited: an examination of mesiolingual features at the enamel-dentine junction and enamel surface of Pan and Homo sapiens upper molars.

    Science.gov (United States)

    Ortiz, Alejandra; Skinner, Matthew M; Bailey, Shara E; Hublin, Jean-Jacques

    2012-10-01

    Carabelli's trait is a morphological feature that frequently occurs on the mesiolingual aspect of Homo sapiens upper molars. Similar structures also referred to as Carabelli's trait have been reported in apes and fossil hominins. However, the morphological development and homology of these mesiolingual structures among hominoids are poorly understood. In this study, we employ micro-computed tomography to image the enamel-dentine junction (EDJ) and outer enamel surface (OES) of Pan (n = 48) and H. sapiens (n = 52) upper molars. We investigate the developmental origin of mesiolingual features in these taxa and establish the relative contribution of the EDJ and enamel cap to feature expression. Results demonstrate that mesiolingual features of H. sapiens molars develop at the EDJ and are similarly expressed at the OES. Morphological variation at both surfaces in this taxon can satisfactorily be assessed using standards for Carabelli's trait developed by the Arizona State University Dental Anthropology System (ASUDAS). Relative to H. sapiens, Pan has an even greater degree of correspondence in feature expression between the EDJ and OES. Morphological manifestations in Pan molars are not necessarily limited to the protocone and are best characterized by a lingual cingulum that cannot be captured by the ASUDAS. Cusp-like structures, similar to those seen in marked Carabelli's trait expressions in H. sapiens, were not found in Pan. This study provides a foundation for further analyses on the evolutionary history of mesiolingual dental traits within the hominoid lineage. It also highlights the wealth of morphological data that can be obtained at the EDJ for understanding tooth development and for characterizing tooth crown variation in worn fossil teeth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. On the development of conjunctival hyperemia computer-assisted diagnosis tools: Influence of feature selection and class imbalance in automatic gradings.

    Science.gov (United States)

    Sánchez Brea, María Luisa; Barreira Rodríguez, Noelia; Sánchez Maroño, Noelia; Mosquera González, Antonio; García-Resúa, Carlos; Giráldez Fernández, María Jesús

    2016-07-01

    The sudden increase of blood flow in the bulbar conjunctiva, known as hyperemia, is associated to a red hue of variable intensity. Experts measure hyperemia using levels in a grading scale, a procedure that is subjective, non-repeatable and time consuming, thus creating a need for its automatisation. However, the task is far from straightforward due to data issues such as class imbalance or correlated features. In this paper, we study the specific features of hyperemia and propose various approaches to address these problems in the context of an automatic framework for hyperemia grading. Oversampling, undersampling and SMOTE approaches were applied in order to tackle the problem of class imbalance. 25 features were computed for each image and regression methods were then used to transform them into a value on the grading scale. The values and relationships among features and experts' values were analysed, and five feature selection techniques were subsequently studied. The lowest mean square error (MSE) for the regression systems trained with individual features is below 0.1 for both scales. Multi-layer perceptron (MLP) obtains the best values, but is less consistent than the random forest (RF) method. When all features are combined, the best results for both scales are achieved with MLP. Correlation based feature selection (CFS) and M5 provide the best results, MSE=0.108 and MSE=0.061 respectively. Finally, the class imbalance problem is minimised with the SMOTE approach for both scales (MSElearning methods are able to perform an objective assessment of hyperemia grading, removing both intra- and inter-expert subjectivity while providing a gain in computation time. SMOTE and oversampling approaches minimise the class imbalance problem, while feature selection reduces the number of features from 25 to 3-5 without worsening the MSE. As the differences between the system and a human expert are similar to the differences between experts, we can therefore conclude that

  8. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  9. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g −1 , respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  10. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Ram Kumar, M.C.; Arun Kumar, A. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Padmanabhan, P.V.A. [PSN College of Engineering and Technology, Tirunelveli 627 152 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Bah, M.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, M.; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2016-05-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  11. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    International Nuclear Information System (INIS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M.C.; Arun Kumar, A.; Padmanabhan, P.V.A.; Deshmukh, R.R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A.S.

    2016-01-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  12. Earth Surface Processes and Environmental Changes in Lake-catchment Systems(<Featured Article>Earth Surface Processes, Natural Disasters and Historical Environmental Changes)

    OpenAIRE

    Kenji, KASHIWAYA; Institute of Nature and Environmental Technology, Kanazawa University

    2012-01-01

    Lake-catchment systems including continuous records of various climatic regimes are discussed for combining earth surface processes with temporal environmental changes. Three types of external forces (climatic, tectonic and anthropogenic), which are printed in lacustrine sediments and drainage landforms, are significant for understanding processes and changes. Present observations on small lake-catchment systems in Japan and past information on large lake-catchment systems in east Eurasia sho...

  13. Renal Epithelial Cell Injury Induced by Calcium Oxalate Monohydrate Depends on their Structural Features: Size, Surface, and Crystalline Structure.

    Science.gov (United States)

    Sun, Xin-Yuan; Ouyang, Jian-Ming; Gan, Qiong-Zhi; Liu, Ai-Jie

    2016-11-01

    Urinary crystals in normal and kidney stone patients often differ in crystal sizes and surface structures, but the effects of different crystal properties on renal tubular epithelial cells remain unclear. This study aimed to compare the cytotoxicity of micron/nano-calcium oxalate monohydrate (COM) crystals with sizes of 50 nm, 200 nm, 1 μm, 3 μm, and 10 μm to African green monkey renal epithelial (Vero) cells, to reveal the effect of crystal size and surface structure on cell injury, and to investigate the pathological mechanism of calcium oxalate kidney stones. Cell viability, cellular biochemical parameters, and internalized crystal amount in Vero cells were closely associated with the size of COM crystals. At the same concentration (200 μg/mL), COM-1 μm induced the most serious injury to Vero cells and caused the most significant change to cellular biochemical parameters, which were related to the specific porous structure and highest internalized amount in Vero cells. By contrast, COM-50 nm and COM-200 nm crystals lost their small size effect because of serious aggregation and weakened their toxicity to cells. COM-3 μm and COM-10 μm crystals were too large for cells to completely internalize; these crystals also exhibited a low specific surface area and thus weakened their toxicity. The excessive expression of intracellular ROS and reduction of the free-radical scavenger SOD were the main reasons for cell injury and eventually caused necrotic cell death. Crystal size, surface structure, aggregation, and internalization amount were closely related to the cytotoxicity of COM crystals.

  14. Structural features and seismotectonic implications of coseismic surface ruptures produced by the 2016 M w 7.1 Kumamoto earthquake

    Science.gov (United States)

    Lin, Aiming

    2017-09-01

    Field investigations and analyses of satellite images and aerial photographs reveal that the 2016 M w 7.1 (Mj 7.3) Kumamoto earthquake produced a ˜40-km surface rupture zone striking NE-SW on central Kyushu Island, Japan. Coseismic surface ruptures were characterized by shear faults, extensional cracks, and mole tracks, which mostly occurred along the pre-existing NE-SW-striking Hinagu-Futagawa fault zone in the southwest and central segments, and newly identified faults in the northeast segment. This study shows that (i) the Hinagu-Futagawa fault zone triggered the 2016 Kumamoto earthquake and controlled the spatial distribution of coseismic surface ruptures; (ii) the southwest and central segments were dominated by right-lateral strike-slip movement with a maximum in-site measured displacement of up to 2.5 m, accompanied by a minor vertical component. In contrast, the northeast segment was dominated by normal faulting with a maximum vertical offset of up to 1.75 m with a minor horizontal component that formed graben structures inside Aso caldera; (iii) coseismic rupturing initiated at the jog area between the Hinagu and Futagawa faults, then propagated northeastward into Aso caldera, where it terminated. The 2016 M w 7.1 Kumamoto earthquake therefore offers a rare opportunity to study the relationships between coseismic rupture processes and pre-existing active faults, as well as the seismotectonics of Aso volcano.

  15. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  16. The color enhancement and collimation features of the multi-colored LEDs with different periodic microstructure on the top surface of TIR lens

    Science.gov (United States)

    Ying, Shang-Ping; Fu, Han-Kuei

    2017-09-01

    Due to the advantages, such as high efficiency, power consumption reduction, no mercury, pure saturated color, high reliability and long lifetime, the solid-state lighting based on light-emitting diodes (LEDs) has become very popular at this stage. In the lighting applications such as spot lighting, downlighting, architectural and show lighting, the colortunable properties with collimating beam of LEDs are highly demanded. The color-tunable lighting is easily achieved using multi-colored LEDs instead of inefficient color filters. However, the applications of multi-colored LEDs usually appear the undesirable light patterns such as color separation or color fringes. At the meantime, the use of TIR (total internal reflection) lens for multi-colored LEDs to collimate the light from the LEDs with different color will introduce seriously undesirable artifacts. Thus, a periodic microstructure surface on the top surface of the TIR lens would be used to reshape the light from the different colored LED chips in the multi-colored LEDs, and then decrease the color separation and color nonuniformity. In this study, the TIR lens with periodic microstructure surface on the top surface would be used to collimate the light from multi-colored LEDs with low color separation or color fringes. The analysis of color enhancement and collimation features of the multi-colored LEDs with different periodic microstructure on the top surface of the TIR lens is presented.

  17. Optimization of Microwave-assisted Extraction of Silymarin fromSilybum marianumStraws by Response Surface Methodology and Quantification by High-Performance Liquid Chromatograph Method.

    Science.gov (United States)

    Ruan, Hong-Sheng; Zhang, Hai-Feng; Teng, Kun

    2018-01-01

    Silybum marianum , a member of the Aster family, is a well-known Chinese herb and the source of a popular antioxidant that is extensively used in Asia. The abundant S. marianum straws are still underutilized and wastefully discarded to pollute the environment. To solve the above problem and better utilize S. marianum straws, the objective of this study was to optimize the conditions for extraction of silymarin from S. marianum straws. A combination of microwave-assisted extraction and response surface methodology (RSM) was used for silymarin from S. marianum straws and yield assessment by high-performance liquid chromatography method. The RSM was based on a five-level, four-variable central composite design (CCD). The results indicated that the optimal conditions to obtain highest yields of silymarin were microwave power of 146 W, extraction time of 117 s, liquid-to-solid ratio of 16:1 mL/g, and ethanol concentration of 43% (v/v). Validation tests indicated that under the optimized conditions, the actual yield of silymarin was 6.83 ± 0.57 mg/g with relative standard deviation of 0.92% ( n = 5), which was in good agreement with the predicted yield. The exploitation of the natural plant resources present very important impact for the economic development. The knowledge obtained from this work should be useful to further exploit and apply this material. Silymarin has been isolated from Silybum marianum straws by microwave-assisted extraction and response surface methodologyThe results obtained are helpful for the full utilization of S. marianum strawsThe microwave-assisted extraction is a very useful method for the extraction of important phytochemicals from plant materials. Abbreviations used: MAE: Microwave-assisted extraction, RSM: Response surface methodology, HPLC: High-performance liquid chromatography, CCD: Central composite design, ANOVA: Analysis of variance.

  18. Equipment for decontamination of inner vessel surfaces featuring sound or ultrasound transducer on float inside liquid-filled vessel

    International Nuclear Information System (INIS)

    Bar, J.; Straka, M.

    1982-01-01

    The equipment for the decontamination of the inner surfaces of vessels consists of an immersion float which is provided with a screw, an electric motor, a rudder and at least one float chamber, and a remotely controlled valve. The float is provided with a power source, a high frequency a.c. current generator and a control panel outside the vessel. The float is connected to parts of the equipment outside the vessel by a multi-core cable. The immersion float may also be provided with a detector for measuring the quantity of ionizing radiation whose display is placed outside the vessel being decontaminated. (B.S.)

  19. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities.

    Science.gov (United States)

    Farha, Omar K; Yazaydın, A Özgür; Eryazici, Ibrahim; Malliakas, Christos D; Hauser, Brad G; Kanatzidis, Mercouri G; Nguyen, SonBinh T; Snurr, Randall Q; Hupp, Joseph T

    2010-11-01

    Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.

  20. Understanding the role of nitrogen in plasma-assisted surface modification of magnetic recording media with and without ultrathin carbon overcoats.

    Science.gov (United States)

    Dwivedi, Neeraj; Yeo, Reuben J; Satyanarayana, Nalam; Kundu, Shreya; Tripathy, S; Bhatia, C S

    2015-01-14

    A novel scheme of pre-surface modification of media using mixed argon-nitrogen plasma is proposed to improve the protection performance of 1.5 nm carbon overcoats (COC) on media produced by a facile pulsed DC sputtering technique. We observe stable and lower friction, higher wear resistance, higher oxidation resistance, and lower surface polarity for the media sample modified in 70%Ar + 30%N2 plasma and possessing 1.5 nm COC as compared to samples prepared using gaseous compositions of 100%Ar and 50%Ar + 50%N2 with 1.5 nm COC. Raman and X-ray photoelectron spectroscopy results suggest that the surface modification process does not affect the microstructure of the grown COC. Instead, the improved tribological, corrosion-resistant and oxidation-resistant characteristics after 70%Ar + 30%N2 plasma-assisted modification can be attributed to, firstly, the enrichment in surface and interfacial bonding, leading to interfacial strength, and secondly, more effective removal of ambient oxygen from the media surface, leading to stronger adhesion of the COC with media, reduction of media corrosion and oxidation, and surface polarity. Moreover, the tribological, corrosion and surface properties of mixed Ar + N2 plasma treated media with 1.5 nm COCs are found to be comparable or better than ~2.7 nm thick conventional COC in commercial media.

  1. Controlling Cell Functions and Fate with Surfaces and Hydrogels: The Role of Material Features in Cell Adhesion and Signal Transduction

    Directory of Open Access Journals (Sweden)

    Maurizio Ventre

    2016-03-01

    Full Text Available In their natural environment, cells are constantly exposed to a cohort of biochemical and biophysical signals that govern their functions and fate. Therefore, materials for biomedical applications, either in vivo or in vitro, should provide a replica of the complex patterns of biological signals. Thus, the development of a novel class of biomaterials requires, on the one side, the understanding of the dynamic interactions occurring at the interface of cells and materials; on the other, it requires the development of technologies able to integrate multiple signals precisely organized in time and space. A large body of studies aimed at investigating the mechanisms underpinning cell-material interactions is mostly based on 2D systems. While these have been instrumental in shaping our understanding of the recognition of and reaction to material stimuli, they lack the ability to capture central features of the natural cellular environment, such as dimensionality, remodelling and degradability. In this work, we review the fundamental traits of material signal sensing and cell response. We then present relevant technologies and materials that enable fabricating systems able to control various aspects of cell behavior, and we highlight potential differences that arise from 2D and 3D settings.

  2. Detailed gravimetric geoid confirmation of short wavelength features of sea surface topography detected by the Skylab S-193 altimeter in the Atlantic Ocean

    Science.gov (United States)

    Marsh, J. G.; Vincent, S.; Mcclinton, A. T.; Chang, E. S.

    1975-01-01

    A detailed gravimetric geoid was computed for the Northwest Atlantic Ocean and Caribbean Sea area in support of the calibration and evaluation of the GEOS-C altimeter. This geoid, computed on a 15 ft. x 15 ft. grid was based upon a combination of surface gravity data with the GSFC GEM-6 satellite derived gravity data. A comparison of this gravimetric geoid with 10 passes of SKYLAB altimeter data is presented. The agreement of the two data types is quite good with the differences generally less than 2 meters. Sea surface manifestations of numerous short wavelength (approximately 100 km) oceanographic features are now indicated in the gravimetric geoid and are also confirmed by the altimetry data.

  3. Brain ultrasound features in multiple births due to spontaneous conception compared with assisted reproductive techniques: a cross-sectional, population-based study.

    Science.gov (United States)

    Smilari, P; Praticò, A D; Salafia, S; Praticò, E R; Cilauro, S; Saporito, A; Pavone, P; Ruggieri, M

    2014-02-01

    Multiple pregnancies from spontaneous conception and obtained by assisted reproductive techniques (ART) are associated with a disproportionate share of complications compared with natural singleton pregnancies. The outcome of multiple pregnancies obtained by ART is still the subject of controversial opinions in the medical literature as they are associated with increased rates of perinatal complications, and perinatal mortality, as well as maternal complications. Aim of this study was to determine whether there are differences between these two groups of infants. We examined the imaging findings by means of brain ultrasound (performed at birth and sequentially up to their 6th month of age) in a cohort of 296 twins and triplets born following different techniques of assisted fertilization (63 pregnancies; 119 neonates) vs. spontaneous conception (94 pregnancies; 177 neonates). We did record, by means of X square corrected test, statistically significant differences (P=0.002) between the two populations at birth in the number of normal ultrasound scans (ARTassisted conceptions (P=0.959) at long-term follow-up have been noticed.

  4. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Science.gov (United States)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored

  5. LDRD final report : on the development of hybrid level-set/particle methods for modeling surface evolution during feature-scale etching and deposition processes

    International Nuclear Information System (INIS)

    McBride, Cory L.; Schmidt, Rodney Cannon; Musson, Lawrence Cale

    2005-01-01

    Two methods for creating a hybrid level-set (LS)/particle method for modeling surface evolution during feature-scale etching and deposition processes are developed and tested. The first method supplements the LS method by introducing Lagrangian marker points in regions of high curvature. Once both the particle set and the LS function are advanced in time, minimization of certain objective functions adjusts the LS function so that its zero contour is in closer alignment with the particle locations. It was found that the objective-minimization problem was unexpectedly difficult to solve, and even when a solution could be found, the acquisition of it proved more costly than simply expanding the basis set of the LS function. The second method explored is a novel explicit marker-particle method that we have named the grid point particle (GPP) approach. Although not a LS method, the GPP approach has strong procedural similarities to certain aspects of the LS approach. A key aspect of the method is a surface rediscretization procedure--applied at each time step and based on a global background mesh--that maintains a representation of the surface while naturally adding and subtracting surface discretization points as the surface evolves in time. This method was coded in 2-D, and tested on a variety of surface evolution problems by using it in the ChISELS computer code. Results shown for 2-D problems illustrate the effectiveness of the method and highlight some notable advantages in accuracy over the LS method. Generalizing the method to 3D is discussed but not implemented

  6. Sb(III)-Imprinted Organic-Inorganic Hybrid Sorbent Prepared by Hydrothermal-Assisted Surface Imprinting Technique for Selective Adsorption of Sb(III)

    Science.gov (United States)

    Zhang, Dan; Zhao, Yue; Xu, Hong-Bo

    2018-03-01

    Sb(III)-imprinted organic-inorganic hybrid sorbent was prepared by hydrothermal-assisted surface imprinting technique and was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy coupled to an energy dispersive spectrometer and N2 adsorption/desorption isotherms. Hydrothermal-assisted process can improve the selectivity of the Sb(III)-imprinted hybrid sorbent for Sb(III) due to stable control of temperature and pressure. The Sb(III)-imprinted hybrid sorbent IIS indicated higher selectivity for Sb(III), had high static adsorption capacity of 37.3 mg g-1 for Sb(III), displayed stable adsorption capacity in pH range from 4 to 8, reached an rapid adsorption equilibrium within 30 min. According to the correlation coefficient ( r 2 > 0.99), the experimental data fitted better the pseudo-second-order kinetic model and Langmuir equilibrium isotherm.

  7. Ultrastructural features of supraspinal muscles in rabbits after long-term transcutaneous lateral electrical surface stimulation (LESS

    Directory of Open Access Journals (Sweden)

    Mariusz Majewski

    2005-12-01

    Full Text Available Lateral electrical surface stimulation is one of methods used in the therapy of the progressive form of idiopathic scoliosis (IS in children and youth. However, there are data suggesting that this method may lead to serious adverse side effects, when used for a too long period of time per day. To clarify this issue, the present study was aimed at disclosing possible changes in the ultrastructural appearance of rabbit supraspinal muscles undergoing long-term stimulation (9 h per day, 3 months, an animal model successfully used to mimic the situation in humans. In comparison to the control animals, muscles of "overstimulated" rabbits exhibited clear signs of microscopical lesions, including depletion and disintegration of myofilaments, proliferation, dilatation and, sometimes, swelling of sarcoplasmic reticulum and/or mitochondria, as well as signs of destruction of the Z line. The above-mentioned abnormalities, especially the signs of degenerative processes associated with the Z line and the observed microlesions strongly suggest that the failure of the long-term LESS therapy of the IS may be attributable to these ultrastructural lesions.

  8. Correlation between phonon anomaly along [211] and the Fermi surface nesting features with associated electron-phonon interactions in Ni2FeGa: A first principles study

    International Nuclear Information System (INIS)

    Chabungbam, Satyananda; Sahariah, Munima B.

    2015-01-01

    First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni 2 FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA 2 ) modes show anomaly along [211] direction in Ni 2 FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes

  9. Surface and sub-surface anatomy of the landscape: integrating Unmanned Aerial Vehicle Structure from Motion (UAV-SfM) and Ground Penetrating Radar (GRP) to investigate sedimentary features in the field. - an example from NW Australia

    Science.gov (United States)

    Callow, Nik; Leopold, Matthias; May, Simon Matthias

    2015-04-01

    Geomorphology is confronted by the challenge of reconstructing landscape features at appropriate scales, resolution and accuracy, that allows meaningful analysis of environmental processes and their implications. Field geomorphology offers a discrete snapshot (i.e. one or two field campaigns) to reconstruct how features have changed, evolved or responded over time. We explore the application of an emerging photogrammetry technique called Structure-from-Motion (SfM), which uses multiple photographs of the same feature (but taken at different locations) to create high-accuracy three-dimensional models of surface of sedimentary fans formed by extreme wave events. This approach is complimented by investigation of the sub-surface morphology using Ground Penetrating Radar (GPR). Using an UAV "octocopter", we captured 1208 photos with a DSLR camera (Canon EoS-M) at the height of 50m with a ground pixel resolution of 9mm, above a cyclone wash-over fan in the Exmouth Gulf (Western Australia) that measured about 500m inland by 300m wide. Based on 38 ground control point targets (with between 4 and 45 individual photographs per target) the SfM surface had an absolute total (XYZ) accuracy of 51mm (39mm X, 29mm Y and 14mm Y), based on RTK-DGPS surveying from a local ground reference station (with an absolute AUSPOS accuracy of 57mm X, 6mm Y, 50mm Z to AHD) and an overall relative point accuracy of 7mm. A sparse point cloud of over 5.5 million data points was generated using only points with a reconstruction accuracy of Python. The output was then manually classified into ground and non-ground points, and the geostatistical analyst functionality of ArcGIS used to produce a final bare-earth DEM. This approach has allowed the study team to economically collect an unprecedented high-resolution and accuracy topographic model of this feature to compliment on-ground sediment, geophysics and dating work to analyse the complex evolution structure of the wash-over sequence and the

  10. A Homology Model Reveals Novel Structural Features and an Immunodominant Surface Loop/Opsonic Target in the Treponema pallidum BamA Ortholog TP_0326.

    Science.gov (United States)

    Luthra, Amit; Anand, Arvind; Hawley, Kelly L; LeDoyt, Morgan; La Vake, Carson J; Caimano, Melissa J; Cruz, Adriana R; Salazar, Juan C; Radolf, Justin D

    2015-06-01

    We recently demonstrated that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses characteristic BamA bipartite topology. Herein, we used immunofluorescence analysis (IFA) to show that only the β-barrel domain of TP_0326 contains surface-exposed epitopes in intact T. pallidum. Using the solved structure of Neisseria gonorrhoeae BamA, we generated a homology model of full-length TP_0326. Although the model predicts a typical BamA fold, the β-barrel harbors features not described in other BamAs. Structural modeling predicted that a dome comprised of three large extracellular loops, loop 4 (L4), L6, and L7, covers the barrel's extracellular opening. L4, the dome's major surface-accessible loop, contains mainly charged residues, while L7 is largely neutral and contains a polyserine tract in a two-tiered conformation. L6 projects into the β-barrel but lacks the VRGF/Y motif that anchors L6 within other BamAs. IFA and opsonophagocytosis assay revealed that L4 is surface exposed and an opsonic target. Consistent with B cell epitope predictions, immunoblotting and enzyme-linked immunosorbent assay (ELISA) confirmed that L4 is an immunodominant loop in T. pallidum-infected rabbits and humans with secondary syphilis. Antibody capture experiments using Escherichia coli expressing OM-localized TP_0326 as a T. pallidum surrogate further established the surface accessibility of L4. Lastly, we found that a naturally occurring substitution (Leu(593) → Gln(593)) in the L4 sequences of T. pallidum strains affects antibody binding in sera from syphilitic patients. Ours is the first study to employ a "structure-to-pathogenesis" approach to map the surface topology of a T. pallidum OMP within the context of syphilitic infection. Previously, we reported that TP_0326 is a bona fide rare outer membrane protein (OMP) in Treponema pallidum and that it possesses the bipartite topology characteristic of a BamA ortholog. Using a homology

  11. Effects of charge design features on parameters of acoustic and seismic waves and cratering, for SMR chemical surface explosions

    Science.gov (United States)

    Gitterman, Y.

    2012-04-01

    A series of experimental on-surface shots was designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR) in Negev desert, including two large calibration explosions: about 82 tons of strong IMI explosives in August 2009, and about 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources in different weather/wind conditions, for calibration of IMS infrasound stations in Europe, Middle East and Asia. Strong boosters and the upward charge detonation scheme were applied to provide a reduced energy release to the ground and an enlarged energy radiation to the atmosphere, producing enhanced infrasound signals, for better observation at far-regional stations. The following observations and results indicate on the required explosives energy partition for this charge design: 1) crater size and local seismic (duration) magnitudes were found smaller than expected for these large surface explosions; 2) small test shots of the same charge (1 ton) conducted at SMR with different detonation directions showed clearly lower seismic amplitudes/energy and smaller crater size for the upward detonation; 3) many infrasound stations at local and regional distances showed higher than expected peak amplitudes, even after application of a wind-correction procedure. For the large-scale explosions, high-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. Empirical relations for air-blast parameters - peak pressure, impulse and the Secondary Shock (SS) time delay - depending on distance, were developed and analyzed. The parameters, scaled by the cubic root of estimated TNT equivalent charges, were found consistent for all analyzed explosions, except of SS

  12. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    Science.gov (United States)

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  13. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.

    Science.gov (United States)

    Shivange, Amol V; Hoeffken, Hans Wolfgang; Haefner, Stefan; Schwaneberg, Ulrich

    2016-12-01

    Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: ( i ) identification of conserved and highly variable regions; ( ii ) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; ( iii ) in vitro DNA recombination of synthetic genes; and ( iv ) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.

  14. Effects of calcium phosphate coating to SLA surface implants by the ion-beam-assisted deposition method on self-contained coronal defect healing in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Heun-Joo; Song, Ji-Eun; Um, Yoo-Jung; Chae, Gyung Joon; Jung, Ui-Won; Kim, Chang-Sung; Choi, Seong-Ho [Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, 134 Shinchon-Dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Chung, Sung-Min [Dentium Co., Seoul (Korea, Republic of); Lee, In-Seop, E-mail: shchoi726@yuhs.a [Institute of Physics and Applied Physics, Atomic-scale Surface Science Research Center, Yonsei University, Seoul (Korea, Republic of)

    2009-08-15

    The aim of this study was to evaluate the healing of self-contained coronal defects on a sand-blasted, large-grit, acid-etched (SLA) surface implant, which had a calcium phosphate (CaP) coating applied by ion-beam-assisted deposition (IBAD). We also evaluated the effect of heating the coating to different temperatures. The CaP-coated SLA implants exhibited a slightly larger bone healing capacity in the self-contained coronal defect than SLA implants, indicating that combining SLA surface implants and a CaP coating by the IBAD method had synergistic effects on bone healing. There was no difference in the healing capacity between 350 deg. C and 450 deg. C heat treatment of the coating layer.

  15. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy

    International Nuclear Information System (INIS)

    Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P.

    2011-01-01

    Films made of nanofibrils were modified by adsorption of a cationic surfactant directly on the film surfaces. The nanofibrils were prepared by 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation and mechanical fibrillation, and were relatively homogeneous in size. The average nanofibril diameter and surface porosity was quantified based on computer-assisted field-emission scanning electron microscopy (FE-SEM). The cationic surfactant used in the adsorption was n-hexadecyl trimethylammonium bromide (cetyltrimethylammonium bromide, CTAB). The adsorption of CTAB was confirmed by Fourier transform infrared (FTIR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses. It was shown that the adsorbed layer of CTAB increased the hydrophobicity, without affecting the tensile index significantly. This capability, combined with the antiseptic properties of CTAB, may be a major advantage for several applications.

  16. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications

    KAUST Repository

    Alias, Mohd Sharizal

    2015-12-22

    The high optical gain and absorption of organic–inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption.

  17. CdTe quantum dots-sensitized solar cells featuring PCBM/P3HT as hole transport material and assistant sensitizer provide 3.40% efficiency

    International Nuclear Information System (INIS)

    Yue Gentian; Wu Jihuai; Xiao Yaoming; Lin Jianming; Huang Miaoliang; Lan Zhang; Fan Leqing

    2012-01-01

    Highlights: ► A CdTe QD-sensitized solar cell was fabricated by using PCBM/P3HT heterojunction. ► The QDSSC shows a light-to-electric energy conversion efficiency of 3.40%. ► Microporous Pt/C 60 film is better than Pt film as counter electrode for the QDSSC. ► PCBM/P3HT is better than I − /I 3 − and S 2− /S x as transferring medium for the QDSSC. - Abstract: A heterojunction consisted of [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) and poly(3-hexylthiophene) (P3HT) was employed as hole transporter and light absorber assistant, a microporous platinum/fullerenes (Pt/C 60 ) counter electrode was prepared by using a facile thermal decomposition method, and a polydimethyldiallyl ammonium–cadmium telluride [(PDDA)–CdTe] quantum dots photoanode was prepared by using chemical bath deposition method. Based on above components, a CdTe quantum dot-sensitized solar cell (QDSSC) was fabricated. The QDSSC shows a light-to-electric energy conversion efficiency of 3.40% under a simulated solar light irradiation with an intensity of 100 mW cm −2 . The electrochemical and photovoltaic measurements indicate that microporous Pt/C 60 film is better than Pt film as counter electrode material for the QDSSCs, and PCBM/P3HT is better than iodide/triiodide and sulfide/polysulfide as transferring medium for QDSSCs.

  18. Optimization of Surfactant-Mediated, Ultrasonic-assisted Extraction of Antioxidant Polyphenols from Rattan Tea (Ampelopsis grossedentata) Using Response Surface Methodology.

    Science.gov (United States)

    Li, Feng; Raza, Aun; Wang, Yan-Wei; Xu, Xiu-Quan; Chen, Guan-Hua

    2017-01-01

    Rattan tea is a medicinal plant that has been used for many years for the treatment of inflammation, fatty liver, tumor, diabetes, and hyperlipidemia. A green and novel approach based on surfactant-mediated, ultrasonic-assisted extraction (SM-UAE) was developed for the extraction of antioxidant polyphenols from Rattan tea. A nonionic surfactant Tween-80 was selected as extraction solvent. The antioxidant activity was measured by total phenolic content (TPC) and ferric-reducing/antioxidant capacity (FRAC) assay. Optimization of extraction parameters including concentration of solvent, ultrasonic time, and temperature were investigated by response surface methodology. The antioxidant activity was measured by TPC and FRAC assay. The optimal extraction conditions were determined as 6.8% (v/v) of aqueous Tween-80, ultrasonic temperature of 54°C, and ultrasonic time of 28.8 min. Under these conditions, the highest TPC value of 360.4 mg gallic acid equivalent per gram of dry weight material (GAE/g DW) was recorded. Moreover, 6.8% (v/v) of aqueous Tween-80, ultrasonic temperature of 54.5°C, and ultrasonic time of 28.4 min were determined for the highest FRAC value of 478.2 μmol of Fe 2+ /g of weight material (μmol Fe 2+ /g DW). Compared with other methods, the TPC and FRAC values of 313.5 mg GAE/g DW and 389.6 μmol Fe 2+ /g DW were obtained by heat reflux extraction using ethanol as solvent, respectively, and 343.2 mg GAE/g DW and 450.1 μmol Fe 2+ /g DW were obtained by UAE using ethanol as solvent, respectively. The application of SM-UAE markedly decreased extraction time or extraction cost and improved the extraction efficiency, compared with the other methods. Surfactant-mediated ultrasonic-assisted extraction of antioxidant polyphenols from Rattan Tea Response surface methodology used to optimize parameters and study combined effectsOptimized surfactant-mediated ultrasonic-assisted extraction process enhances the antioxidant phenolics extraction in less time

  19. The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd:YAG laser source.

    Science.gov (United States)

    Venkatesan, K

    2017-07-01

    Inconel 718, a high-temperature alloy, is a promising material for high-performance aerospace gas turbine engines components. However, the machining of the alloy is difficult owing to immense shear strength, rapid work hardening rate during turning, and less thermal conductivity. Hence, like ceramics and composites, the machining of this alloy is considered as difficult-to-turn materials. Laser assisted turning method has become a promising solution in recent years to lessen cutting stress when materials that are considered difficult-to-turn, such as Inconel 718 is employed. This study investigated the influence of input variables of laser assisted machining on the machinability aspect of the Inconel 718. The comparison of machining characteristics has been carried out to analyze the process benefits with the variation of laser machining variables. The laser assisted machining variables are cutting speeds of 60-150 m/min, feed rates of 0.05-0.125 mm/rev with a laser power between 1200 W and 1300 W. The various output characteristics such as force, roughness, tool life and geometrical characteristic of chip are investigated and compared with conventional machining without application of laser power. From experimental results, at a laser power of 1200 W, laser assisted turning outperforms conventional machining by 2.10 times lessening in cutting force, 46% reduction in surface roughness as well as 66% improvement in tool life when compared that of conventional machining. Compared to conventional machining, with the application of laser, the cutting speed of carbide tool has increased to a cutting condition of 150 m/min, 0.125 mm/rev. Microstructural analysis shows that no damage of the subsurface of the workpiece.

  20. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.

    Science.gov (United States)

    Bullock, Robin J; Aggarwal, Srijan; Perkins, Robert A; Schnabel, William

    2017-04-01

    In the event of a marine oil spill in the Arctic, government agencies, industry, and the public have a stake in the successful implementation of oil spill response. Because large spills are rare events, oil spill response techniques are often evaluated with laboratory and meso-scale experiments. The experiments must yield scalable information sufficient to understand the operability and effectiveness of a response technique under actual field conditions. Since in-situ burning augmented with surface collecting agents ("herders") is one of the few viable response options in ice infested waters, a series of oil spill response experiments were conducted in Fairbanks, Alaska, in 2014 and 2015 to evaluate the use of herders to assist in-situ burning and the role of experimental scale. This study compares burn efficiency and herder application for three experimental designs for in-situ burning of Alaska North Slope crude oil in cold, fresh waters with ∼10% ice cover. The experiments were conducted in three project-specific constructed venues with varying scales (surface areas of approximately 0.09 square meters, 9 square meters and 8100 square meters). The results from the herder assisted in-situ burn experiments performed at these three different scales showed good experimental scale correlation and no negative impact due to the presence of ice cover on burn efficiency. Experimental conclusions are predominantly associated with application of the herder material and usability for a given experiment scale to make response decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology

    International Nuclear Information System (INIS)

    Liu, Junhai; Zhuang, Yingbin; Li, Yan; Chen, Limei; Guo, Jingxue; Li, Demao; Ye, Naihao

    2013-01-01

    Microwave-assisted direct liquefaction (MADL) of Ulva prolifera was performed in ethylene glycol (EG) using sulfuric acid (H 2 SO 4 ) as a catalyst. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was employed to optimize the conditions of three independent variables (catalyst content, solvent-to-feedstock ratio and temperature) for the liquefaction yield. And the bio-oil was analyzed by elementary analysis, Fourier transform infrared spectroscopic analysis (FT-IR) and gas chromatography–mass spectrometry (GC–MS). The maximum liquefaction yield was 93.17%, which was obtained under a microwave power of 600 W for 30 min at 165 °C with a solvent-to-feedstock ratio of 18.87:1 and 4.93% sulfuric acid. The bio-oil was mainly composed of phthalic acid esters, alkenes and a fatty acid methyl ester with a long chain from C 16 to C 20 . - Highlights: • Ulva prolifera was converted to bio-oil through microwave-assisted direct liquefaction. • Response surface methodology was used to optimize the liquefaction technology. • A maximum liquefaction rate of 93.17 wt% bio-oil was obtained. • The bio-oil was composed of carboxylic acids and esters

  2. Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding.

    Science.gov (United States)

    Kumar, Sivakumar Prasanth; Patel, Chirag N; Jha, Prakash C; Pandya, Himanshu A

    2017-12-01

    The identification of isatin sulfonamide as a potent small molecule inhibitor of caspase-3 had fuelled the synthesis and characterization of the numerous sulfonamide class of inhibitors to optimize for potency. Recent works that relied on the ligand-based approaches have successfully shown the regions of optimizations for sulfonamide scaffold. We present here molecular dynamics-based pharmacophore modeling of caspase-3-isatin sulfonamide crystal structure, to elucidate the essential non-covalent contacts and its associated pharmacophore features necessary to ensure caspase-3 optimal binding. We performed 20ns long dynamics of this crystal structure to extract global conformation states and converted into structure-based pharmacophore hypotheses which were rigorously validated using an exclusive focussed library of experimental actives and inactives of sulfonamide class by Receiver Operating Characteristic (ROC) statistic. Eighteen structure-based pharmacophore hypotheses with better sensitivity and specificity measures (>0.6) were chosen which collectively showed the role of pocket residues viz. Cys163 (S 1 sub-site; required for covalent and H bonding with Michael acceptor of inhibitors), His121 (S 1 ; π stack with bicyclic isatin moiety), Gly122 (S 1 ; H bond with carbonyl oxygen) and Tyr204 (S 2 ; π stack with phenyl group of the isatin sulfonamide molecule) as stringent binding entities for enabling caspase-3 optimal binding. The introduction of spatial pharmacophore site points obtained from dynamics-based pharmacophore models in a virtual screening strategy will be helpful to screen and optimize molecules belonging to sulfonamide class of caspase-3 inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating.

    Science.gov (United States)

    Wang, Jiangxue; Fan, Yubo

    2014-12-03

    With the rapid development of nanotechnology, a variety of engineered nanoparticles (NPs) are being produced. Nanotoxicology has become a hot topic in many fields, as researchers attempt to elucidate the potential adverse health effects of NPs. The biological activity of NPs strongly depends on physicochemical parameters but these are not routinely considered in toxicity screening, such as dose metrics. In this work, nanoscale titanium dioxide (TiO2), one of the most commonly produced and widely used NPs, is put forth as a representative. The correlation between the lung toxicity and pulmonary cell impairment related to TiO2 NPs and its unusual structural features, including size, shape, crystal phases, and surface coating, is reviewed in detail. The reactive oxygen species (ROS) production in pulmonary inflammation in response to the properties of TiO2 NPs is also briefly described. To fully understand the potential biological effects of NPs in toxicity screening, we highly recommend that the size, crystal phase, dispersion and agglomeration status, surface coating, and chemical composition should be most appropriately characterized.

  4. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index; Influencia das caracteristicas da superficie no indice de refletancia solar de telhas ceramicas esmaltadas

    Energy Technology Data Exchange (ETDEWEB)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M., E-mail: luciana.maccarini@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Blumenau, SC (Brazil)

    2016-07-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  5. Financial Assistance Information

    Science.gov (United States)

    Skip to main content Financial Assistance Information Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding ...

  6. Radar-Assisted Mapping of Massive Ice in Western Utopia Planitia, Mars: Degradational Mechanisms and Implications for Surface Evolution

    Science.gov (United States)

    Stuurman, C. M.; Levy, J. S.; Holt, J. W.; Harrison, T. N.; Osinski, G. R.

    2015-12-01

    Western Utopia Planitia remains an enigmatic region of Mars. Radar and morphological analyses have framed the area as rich in ground ice, however there exist multiple theories regarding how the ice was emplaced. Here, we combine radar and morphological analyses to characterize the recent history of water ice in western Utopia Planitia. A radar reflective interface found in SHAllow RADar (SHARAD) data in Utopia Planitia is found to correlate with layered mesas 80-110 m thick. Discontinuities in the radar reflective interface relate to degradation of the layered mesas. This work uses the extent of the reflective interface to map the previous extent of the layered mesas, which we believe constitutes the remnants of a large ice sheet formed in the Late Amazonian. The past volume of the ice sheet is to be determined by the SHARAD-assisted mapping. This volume will be related to the recent climate history of western Utopia Planitia.

  7. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    Energy Technology Data Exchange (ETDEWEB)

    Razavizadeh, Mahmoud; Jamshidi, Masoud, E-mail: mjamshidi@iust.ac.ir

    2016-08-30

    Highlights: • In this research UV-irradiated PET fabric was chemically modified. • The fabric at first carboxylated under UV irradiation using glutaric anhydride, then it was grafted using isocyanate (i.e. MDI). • The surface of the fabric was characterized before and after each treating satge. • The composite samples were prepared and tested for T-Peel test. The surfaces of the fabrics were surface characterized to understand. - Abstract: Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  8. Surface Species and Metal Oxidation State during H2-Assisted NH3-SCR of NOx over Alumina-Supported Silver and Indium

    Directory of Open Access Journals (Sweden)

    Linda Ström

    2018-01-01

    Full Text Available Alumina-supported silver and indium catalysts are investigated for the hydrogen-assisted selective catalytic reduction (SCR of NOx with ammonia. Particularly, we focus on the active phase of the catalyst and the formation of surface species, as a function of the gas environment. Diffuse reflectance ultraviolet-visible (UV-vis spectroscopy was used to follow the oxidation state of the silver and indium phases, and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS was used to elucidate the formation of surface species during SCR conditions. In addition, the NOx reduction efficiency of the materials was evaluated using H2-assisted NH3-SCR. The DRIFTS results show that the Ag/Al2O3 sample forms NO-containing surface species during SCR conditions to a higher extent compared to the In/Al2O3 sample. The silver sample also appears to be more reduced by H2 than the indium sample, as revealed by UV-vis spectroscopic experiments. Addition of H2, however, may promote the formation of highly dispersed In2O3 clusters, which previously have been suggested to be important for the SCR reaction. The affinity to adsorb NH3 is confirmed by both temperature programmed desorption (NH3-TPD and in situ DRIFTS to be higher for the In/Al2O3 sample compared to Ag/Al2O3. The strong adsorption of NH3 may inhibit (self-poison the NH3 activation, thereby hindering further reaction over this catalyst, which is also shown by the lower SCR activity compared to Ag/Al2O3.

  9. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions : Impact of Particle Size, Line Tension, and Surface Functionality

    NARCIS (Netherlands)

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G. Julius

    2017-01-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell

  10. Surface Textures and Features Indicative of Endogenous Growth at the McCartys Flow Field, NM, as an Analog to Martian Volcanic Plains

    Science.gov (United States)

    Bleacher, Jacob E.; Crumpler, L. S.; Garry, W. B.; Zimbelman, J. R.; Self, S.; Aubele, J. C.

    2012-01-01

    Basaltic lavas typically form channels or tubes, which are recognized on the Earth and Mars. Although largely unrecognized in the planetary community, terrestrial inflated sheet flows also display morphologies that share many commonalities with lava plains on Mars. The McCartys lava flow field is among the youngest (approx.3000 yrs) basaltic flows in the continental United States. The southwest sections of the flow displays smooth, flat-topped plateaus with irregularly shaped pits and hummocky inter-plateau units that form a polygonal surface. Plateaus are typically elongate in map view, up to 20 m high and display lineations within the glassy crust. Lineated surfaces occasionally display small < 1m diameter lava coils. Lineations are generally straight and parallel each other, sometimes for over 100 meters. The boundaries between plateaus and depressions are also lineated and tilted to angles sometimes approaching vertical. Plateau-parallel cracks, sometimes containing squeeze-ups, mark the boundary between tilted crust and plateau. Some plateau depressions display level floors with hummocky surfaces, while some are bowl shaped with floors covered in broken lava slabs. The lower walls of pits sometimes display lateral, sagged lava wedges. Infrequently, pit floors display the upper portion of a tumulus from an older flow. In some places the surface crust has been disrupted forming a slabby texture. Slabs are typically on the scale of a meter or less across and no less than 7-10 cm thick. The slabs preserve the lineated textures of the undisturbed plateau crust. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within preferred regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Rough surfaces represent inflation-related disruption of pahoehoe lava and not a a lava. Depressions are often the result of non-inflation and can be clearly identified by lateral

  11. Cosmic ray exposure dating of geo-morphic surface features using in situ-produced 10Be: tectonic and climatic implications

    International Nuclear Information System (INIS)

    Siame, L.; Bellier, O.; Sebrier, M.; Braucher, R.; Bourles, D.L.

    2001-01-01

    The evolution of continental landforms is mainly modulated by the impact of climatic and tectonic processes. Because of their distinctive morphology and the periodicity of their deposition, climatically induced landforms such as alluvial fans or terraces are well suited to infer rates of tectonic and continental climatic processes. Within tectonically active regions, an important step consists in dating displaced geomorphic features to calculate slip rates on active faults. Dating is probably the most critical tool because it is generally much more simpler to measure deformation resulting from tectonic activity than it is to accurately date when that deformation occurred. Recent advances in analytical chemistry and nuclear physics (accelerator mass spectrometry) now allow quantitative abundance measurements of the extremely rare isotopes produced by the interaction of cosmic rays with surface rocks and soils, the so-called in situ-produced cosmogenic nuclides ( 3 He, 10 Be, 21 Ne, 26 Al, 36 Cl), and allow to directly date the duration that a landform has been exposed to cosmic rays at the Earth's surface (Lal, 1991; Nishiizumi et al., 1993; Cerling and Craig, 1994; Clark et al., 1995]. In fact, the abundance of these cosmo-nuclides is proportional to landscape stability and, under favorable circumstances, their abundance within surface rocks can be used as a proxy for erosion rate or exposure age. These cosmo-nuclides thus provide geomorphologists with the opportunity to constrain rates of landscape evolution. This paper presents a new approach that combines cosmic ray exposure (CRE) dating using in situ-produced 10 Be and geomorphic as well as structural analyse. This approach has been applied on two active strike-slip and reverse faults located in the Andean fore-land of western Argentina. These two case studies illustrate how CRE dating using in situ-produced 10 Be is particularly well suited for geomorphic studies that aim to estimate the respective control of

  12. Optimization of the ultrasound-assisted extraction of antioxidant phloridzin from Lithocarpus polystachyus Rehd. using response surface methodology.

    Science.gov (United States)

    Chen, Yang; Yin, Li-Zi; Zhao, Ling; Shu, Gang; Yuan, Zhi-Xiang; Fu, Hua-Lin; Lv, Cheng; Lin, Ju-Chun

    2017-11-01

    The purpose of this study was to optimize the extraction process of phloridzin from Lithocarpus polystachyus Rehd. leaves using response surface methodology and to determine the antioxidant capacity of the extract. A Box-Behnken design was used to analyze the effects of ethanol concentration, liquid-solid ratio, soak time and extraction time on the extraction yield of phloridzin. The content of phloridzin was determined by high-performance liquid chromatography. To assess the antioxidant capacity of the extract, three in vitro test systems were used (1,1-,diphenyl-2-picrylhydrazyl, hydroxyl radical scavenging test and reduction force). The optimal parameters obtained by response surface methodology were a volume fraction of ethanol of 64%, a liquid-solid ratio of 37:1, a soaking time of 35 h and a sonication time of 38 min. The proportion of the extraction of phloridzin from L. polystachyus under these industrial process conditions was 3.83%. According to the obtained results, response surface methodology could be suggested as an adequate model for optimizing the extraction process of phloridzin from L. polystachyus. Ultrasound extraction significantly increased the extraction rate of phloridzin, which could be used as an antioxidant in pharmaceutical and food products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of cerium oxide (CeO2) with high surface area through microwave assisted hydrothermal method

    International Nuclear Information System (INIS)

    Oliveira, M.J.C. de; Neiva, L.S.; Gama, L.; Oliveira, J.B.

    2011-01-01

    The objective of this research is synthesize nanoparticles with high surface area of Ceria (CeO 2 ) catalyst by a microwave hydrothermal method. For that it was used a 5% concentration in weight of [Ce(NO 3 ) 3. 6H 2 O] and 10 mL of [NaOH (5M)] under processing conditions in the equipment: maximum temperature of 150 deg C for 60 min with heating rate of 15 C /min. The resulting sample was characterized by XRD, SEM and BET method. It was observed that the Ceria particles are presented spatially in cubic structure, with crystallite size of 10 nm and surface area of 112 m²/g. Through the pore size distribution it was possible to observe that these were in mesoporous size, ranging from 3 to 30 nm. The possibility of obtaining catalysts with nanometer scale and high surface area by beans of microwave hydrothermal method, which involves low energy (low temperatures) and short synthesis time, makes this method very interesting and promising. (author)

  14. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L.) Peel Using Response Surface Methodology.

    Science.gov (United States)

    Deng, Gui-Fang; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2015-11-17

    Sugar apple (Annona squamosa L.) is a popular tropical fruit and its peel is a municipal waste. An ultrasound-assisted extraction method was developed for the recovery of natural antioxidants from sugar apple peel. Central composite design was used to optimize solvent concentration (13.2%-46.8%), ultrasonic time (33.2-66.8 min), and temperature (43.2-76.8 °C) for the recovery of natural antioxidants from sugar apple peel. The second-order polynomial models demonstrated a good fit of the quadratic models with the experimental results in respect to total phenolic content (TPC, R²=0.9524, pextraction conditions were 20:1 (mL/g) of solvent-to-solid ratio, 32.68% acetone, and 67.23 °C for 42.54 min under ultrasonic irradiation. Under these conditions, the maximal yield of total phenolic content was 26.81 (mg GA/g FW). The experimental results obtained under optimal conditions agreed well with the predicted results. The application of ultrasound markedly decreased extraction time and improved the extraction efficiency, compared with the conventional methods.

  15. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L. Peel Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gui-Fang Deng

    2015-11-01

    Full Text Available Sugar apple (Annona squamosa L. is a popular tropical fruit and its peel is a municipal waste. An ultrasound-assisted extraction method was developed for the recovery of natural antioxidants from sugar apple peel. Central composite design was used to optimize solvent concentration (13.2%–46.8%, ultrasonic time (33.2–66.8 min, and temperature (43.2–76.8 °C for the recovery of natural antioxidants from sugar apple peel. The second-order polynomial models demonstrated a good fit of the quadratic models with the experimental results in respect to total phenolic content (TPC, R2 = 0.9524, p < 0.0001, FRAP (R2 = 0.9743, p < 0.0001, and TEAC (R2 = 0.9610, p < 0.0001 values. The optimal extraction conditions were 20:1 (mL/g of solvent-to-solid ratio, 32.68% acetone, and 67.23 °C for 42.54 min under ultrasonic irradiation. Under these conditions, the maximal yield of total phenolic content was 26.81 (mg GA/g FW. The experimental results obtained under optimal conditions agreed well with the predicted results. The application of ultrasound markedly decreased extraction time and improved the extraction efficiency, compared with the conventional methods.

  16. Surface Modification of Aerosol-Assisted CVD Produced TiO2 Thin Film for Dye Sensitised Solar Cell

    Directory of Open Access Journals (Sweden)

    SuPei Lim

    2014-01-01

    Full Text Available We report a simple and convenient method for the preparation of Ag/TiO2 thin films supported on indium tin oxide, which was achieved by sonochemical deposition of Ag+ on aerosol-assisted chemical vapour deposited TiO2 thin films. Posttreatment was performed on the film by immersion in HCl. The as-prepared composite film was characterised by X-ray diffraction, ultraviolet-visible absorption spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy. The photoelectrochemical measurements and J-V characterisation showed approximately fivefold increase in photocurrent density generation and approximately sevenfold enhancement in dye sensitiser solar cell (DSSC conversion efficiency, which was achieved after modification of the TiO2 film with HCl posttreatment and Ag particle deposition. The improved photocurrent density of 933.30 μA/cm2, as well as DSSC power conversion efficiency of 3.63% with high stability, is an indication that the as-synthesised thin film is a potential candidate for solar energy conversion applications.

  17. Multi-criteria optimization for ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae using response surface methodology, an activity-based approach.

    Science.gov (United States)

    Zeng, Shanshan; Wang, Lu; Zhang, Lei; Qu, Haibin; Gong, Xingchu

    2013-06-01

    An activity-based approach to optimize the ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition-activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic-assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second-order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction.

    Science.gov (United States)

    Heleno, Sandrina A; Diz, Patrícia; Prieto, M A; Barros, Lillian; Rodrigues, Alírio; Barreiro, Maria Filomena; Ferreira, Isabel C F R

    2016-04-15

    Ergosterol, a molecule with high commercial value, is the most abundant mycosterol in Agaricus bisporus L. To replace common conventional extraction techniques (e.g. Soxhlet), the present study reports the optimal ultrasound-assisted extraction conditions for ergosterol. After preliminary tests, the results showed that solvents, time and ultrasound power altered the extraction efficiency. Using response surface methodology, models were developed to investigate the favourable experimental conditions that maximize the extraction efficiency. All statistical criteria demonstrated the validity of the proposed models. Overall, ultrasound-assisted extraction with ethanol at 375 W during 15 min proved to be as efficient as the Soxhlet extraction, yielding 671.5 ± 0.5mg ergosterol/100 g dw. However, with n-hexane extracts with higher purity (mg ergosterol/g extract) were obtained. Finally, it was proposed for the removal of the saponification step, which simplifies the extraction process and makes it more feasible for its industrial transference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quantification of captopril in urine through surface-assisted laser desorption/ionization mass spectrometry using 4-mercaptobenzoic acid-capped gold nanoparticles as an internal standard.

    Science.gov (United States)

    Chen, Wen-Tsen; Chiang, Cheng-Kang; Lin, Yang-Wei; Chang, Huan-Tsung

    2010-05-01

    We have developed a new internal standard method for the determination of the concentration of captopril (CAP) through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using gold nanoparticles (Au NPs). This approach provided linearity for CAP over the concentration range 2.5-25 microM (R(2) = 0.987), with a limit of detection (signal-to-noise ratio = 3) of 1.0 microM. The spot-to-spot variations in the concentration of CAP through SALDI-MS analyses performed in the absence and presence of the internal standard were 26% and 9%, respectively (15 measurements). This approach provides simplicity, accuracy, precision, and great reproducibility to the determination of the levels of CAP in human urine samples. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  20. Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology.

    Science.gov (United States)

    Ordóñez-Santos, Luis Eduardo; Pinzón-Zarate, Lina Ximena; González-Salcedo, Luis Octavio

    2015-11-01

    The present study reports on the extraction of total carotenoids from peach palm fruit by-products with sunflower oil. Response surface methodology (RSM) was used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE). Three independent variables including ultrasonic intensity (764-1528, W/m(2)), temperature (25-45°C), and the extraction time (10-30 min). According to the results, the optimal UAE condition was obtained with an ultrasonic intensity of 1528 W/m(2), extraction temperature of 35°C and extraction time of 30 min. At these conditions, extraction maximum extraction of total carotenoids as 163.47 mg/100 g dried peel. The experimental values under optimal condition were in good consistent with the predicted values. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. HNO₃-assisted polyol synthesis of ultralarge single-crystalline Ag microplates and their far propagation length of surface plasmon polariton.

    Science.gov (United States)

    Chang, Cheng-Wei; Lin, Fan-Cheng; Chiu, Chun-Ya; Su, Chung-Yi; Huang, Jer-Shing; Perng, Tsong-Pyng; Yen, Ta-Jen

    2014-07-23

    We developed a HNO3-assisted polyol reduction method to synthesize ultralarge single-crystalline Ag microplates routinely. The edge length of the synthesized Ag microplates reaches 50 μm, and their top facets are (111). The mechanism for dramatically enlarging single-crystalline Ag structure stems from a series of competitive anisotropic growths, primarily governed by carefully tuning the adsorption of Ag(0) by ethylene glycol and the desorption of Ag(0) by a cyanide ion on Ag(100). Finally, we measured the propagation length of surface plasmon polaritons along the air/Ag interface under 534 nm laser excitation. Our single-crystalline Ag microplate exhibited a propagation length (11.22 μm) considerably greater than that of the conventional E-gun deposited Ag thin film (5.27 μm).

  2. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications.

    Science.gov (United States)

    Balaji, Arunpandian; Jaganathan, Saravana Kumar; Supriyanto, Eko; Muhamad, Ida Idayu; Khudzari, Ahmad Zahran Md

    2015-01-01

    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.

  3. The effect of graphene oxide on surface features, biological performance and bio-stability of calcium phosphate coating applied by pulse electrochemical deposition

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar

    2018-04-01

    In the current study, the effect of second phase of graphene oxide (GO) on the surface features and biological behavior of calcium phosphate (CaP) coating was evaluated. To do so, the GO-CaP composite coating was applied on TiO2 nanotubular arrays using pulse electrochemical deposition. The SEM and AFM images showed that, the CaP-based coating with uniform and refined microstructure could be formed through its compositing with GO sheets. The biological assessment of the coatings was also conducted by cell culture test and MTT assay. Based on findings, the GO-CaP coating showed the better biocompatibility compared to the CaP coating. This could be owing to the fact that the composite coating provided the lower roughness, moderately wettable surface with a contact angle of 23.5° ± 2.6° and the higher stability in the biological environments because of being involved with only the stable phase of CHA. However, in the CaP coating, spreading of cells could be limited by the plate-like crystals with larger size. The higher solubility of the CaP coating in the cell culture medium possibly owing to the existence of some metastable CaP phases like OCP in addition to the dominant phase of CHA in this coating could be another reason for its less biocompatibility. At last, the CaP coating showed the higher apatite-forming ability in SBF solution after its compositing with GO.

  4. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice.

    Science.gov (United States)

    Bhanjadeo, Madhabi M; Nayak, Ashok K; Subudhi, Umakanta

    2017-04-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Analysis of the Geometrical Evolution in On-the-Fly Surface-Hopping Nonadiabatic Dynamics with Machine Learning Dimensionality Reduction Approaches: Classical Multidimensional Scaling and Isometric Feature Mapping.

    Science.gov (United States)

    Li, Xusong; Xie, Yu; Hu, Deping; Lan, Zhenggang

    2017-10-10

    On-the-fly trajectory-based nonadiabatic dynamics simulation has become an important approach to study ultrafast photochemical and photophysical processes in recent years. Because a large number of trajectories are generated from the dynamics simulation of polyatomic molecular systems with many degrees of freedom, the analysis of simulation results often suffers from the large amount of high-dimensional data. It is very challenging but meaningful to find dominating active coordinates from very complicated molecular motions. Dimensionality reduction techniques provide ideal tools to realize this purpose. We apply two dimensionality reduction approaches (classical multidimensional scaling and isometric feature mapping) to analyze the results of the on-the-fly surface-hopping nonadiabatic dynamics simulation. Two representative model systems, CH 2 NH 2 + and the phytochromobilin chromophore model, are chosen to examine the performance of these dimensionality reduction approaches. The results show that these approaches are very promising, because they can extract the major molecular motion from complicated time-dependent molecular evolution without preknown knowledge.

  6. Relative Path Impact Index (RPII): a morphometric approach to quantify the effect of anthropogenic features on surface flow processes in agricultural landscapes

    Science.gov (United States)

    Tarolli, P.; Prosdocimi, M.; Sofia, G.; Preti, F.; Dalla Fontana, G.

    2014-12-01

    Soil erosion in cultivated land is one of the main critical issue because of its significant economic consequences, especially whether it occurs in hilly and mountainous environments. Among the cultivated lands, vineyards deserve a particular attention. In fact, they not only represent one of the most important crop in terms of income and employment, but they also constitute the form of agricultural land use that causes the highest soil loss. In these cultivated lands, the construction of terraces is one of the most widely used system for soil and water conservation measures. However, while favoring agricultural activities, terraces may cause local instabilities as well, if they are not properly maintained. Terraced fields are also served by agricultural roads and the construction of these anthropogenic features can have deep effects on water flows and instabilities. In fact, the plane surface of roads can intercept the overland and the subsurface flow and can modify the natural flow directions expanding the drainage network. The main objective of this work is to use high-resolution topography derived from lidar technology for a hydro-geomorphological analysis of terraced vineyards. We considered few case studies located in Italy. At first, the Relative Path Impact Index (RPII) is used to identify likely sections of terraces and agricultural roads subject to potential landsliding or erosion. Statistical thresholds of RPII are then defined to label the most critical areas. Afterwards, using the index and the defined thresholds, different scenarios of soil conservation measures are simulated, to establish the optimal solution for erosion reduction. The results prove the effectiveness of high-resolution topography in the analysis of surface erosion in terraced vineyards, when the surface water flow is the main factor triggering the instabilities. This preliminary analysis can help in scheduling a suitable planning to mitigate the consequences of the anthropogenic

  7. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Science.gov (United States)

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influence of non-thermal TiCl{sub 4}/Ar + O{sub 2} plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K.N., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Kumar, A. Arun; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Sachdev, A.; Gopinath, P. [Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India); Cools, Pieter; De Geyter, N.; Morent, R. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Jozef Plateaustraat 22, 9000 Gent (Belgium); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Hegde, P. [William Mason High School, Mason 45040 (United States); Han, C. [Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Nadagouda, M.N. [Center for Nanoscale Multifunctional Materials, Wright State University, Dayton, OH 45435 (United States)

    2016-05-01

    of plasma treated PP films. Moreover the surface of modified PP films exhibited nano structured morphology, as confirmed by SEM, TEM and AFM. The physico-chemical changes have improved the hydrophilicity of the PP films. The in-vitro analysis clearly confirms that the TiOx coated PP films performs as good as the standard tissue culture plates and also are unlikely to impact the bacterial cell viability. - Highlights: • Developed TiOx based coating on the surface of PP films through DC glow discharge plasma assisted chemical vapor deposition. • The TiOx based coating was deposited as a function of applied potentials. • The comprehensive investigation has made on mechanism of formation of TiOx based coating. • The surface TiOx/PP films were characterized by various techniques. • The cell compatibility and antibacterial activity of the TiOx/PP films wasanalyzed in detail.

  9. Response surface methodology (RSM) modeling of microwave-assisted extraction of natural dye from Swietenia mahagony: A comparation between Box-Behnken and central composite design method

    Science.gov (United States)

    Kusuma, Heri Septya; Sudrajat, Robby Ginanjar Margo; Susanto, David Febrilliant; Gala, Selfina; Mahfud, Mahfud

    2015-12-01

    The increasing demand of non-toxic and environmentally friendly dyes, colorants that come from natural source have risen as an alternative of sintetic poisonous dyes. In this research natural dye from S. mahagony was extracted using microwave-assisted extraction method under different operating condition such as extraction time (10-30min), plant material to solvent ratio (0.03-0.05g/mL) and microwave power level (100-380 watt). Box-Behnken method and central composite design (CCD) method is widely used for modeling response surface methodology (RSM), both methods show good prediction performance. In this study response surface methodology was performed to optimize the process, both methods were performed by the help Statgraphics Centurion 16 to evaluate the effects of different operating parameters. Finally, both methods were statistically compared by root mean square error (RMSE) and absolute average deviation (AAD) based on validation data set. Further, result suggests that CCD has better performance as compared to Box-Behnken method. The maximum yield obtained for Box-Behnken is 3.7647% (380 watt, 0.0339g/mL, 28.8899min) and 3.7506% (379.986 watt, 0.0378g/mL, 30min) for central composite design method.

  10. Optimization of ultrasonic-assisted extraction of phenolic antioxidants from Malus baccata (Linn.) Borkh. using response surface methodology.

    Science.gov (United States)

    Wang, Lu; Wang, Zhenyu; Li, Xiaoyu

    2013-05-01

    In this study, the optimum extraction conditions for maximum recovery of the content of total phenolics (TPC) and total antioxidant abilities were analyzed for Malus baccata (Linn.) Borkh. using response surface methodology. The effects of ethanol percentage (X1 ,%), ultrasonic power (X2 , W) and extraction temperature (X3 , °C) on the total phenolic content (Y1 ) and antioxidant ability (Y2 ) were evaluated. A second-order polynomial model produced a satisfactory fitting of the experimental data with regard to total phenolic content (R(2) = 0.9942, P antioxidant ability (R(2) = 0.9966, P extraction temperature of 51.1°C for TPC and 60.5%, 311.4 W, 51.6°C for antioxidant ability, the predicted values agreed well with the experimental values. Results implied that the major phenolic compounds in obtained extracts as chlorogenic acid, quercetin-3-gal/glu, quercetin-3-xyl/ara, phloretin-2-xyloside, quercetin-3- rhamnoside, and phloridzin. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. OPTIMIZATION OF PATCHOULI OIL (POGOSTEMON CABLIN, BENTH WITH STEAM DISTILLATION ASSISTED BY PULSED ELECTRIC FIELD VIA RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    SUKARDI

    2017-08-01

    Full Text Available The study was aimed to determine the role of pulsed electric field (PEF treatment before hydro-distillation of the patchouli oil. Response Surface Methodology (RSM was employed to optimize PEF treatment (voltages, frequencies and times of distillation of patchouli oil from dried patchouli crops. The experimental design and analysis the result to obtain the optimal processing parameters was a Box-Behnken Design (BBD. Three variables were examined in this study: voltages (1,000-2,000 volt; frequencies (1,000-2,000 Hz; and distillation time (4-8 hours. The results showed that the voltage greatly affects the volume of patchouli oil obtained and optimum condition of PEF was voltages of 2,000 volts, frequencies of 1,874 Hz, and 8 hours distillation. The patchouli oil obtained is 8.037 ml of 300 g of dry material (±2.7%. The verification of the model shows that 96.6% (7.76±0.15 ml can adequately for reflecting the expected optimization.

  12. Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process

    Directory of Open Access Journals (Sweden)

    Sina Lohrasbi

    2016-09-01

    Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.

  13. Solvent-assisted multistage nonequilibrium electron transfer in rigid supramolecular systems: Diabatic free energy surfaces and algorithms for numerical simulations

    Science.gov (United States)

    Feskov, Serguei V.; Ivanov, Anatoly I.

    2018-03-01

    An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model

  14. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology.

    Science.gov (United States)

    Xu, Yan-Yang; Qiu, Yang; Ren, Hui; Ju, Dong-Hu; Jia, Hong-Lei

    2017-03-16

    Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol-water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30-0.35 g mL -1 ), ethanol-water ratio (0.6-0.8), ultrasonic time (40-60 min), and ultrasonic power (175-225 W) were further optimized by implementing Box-Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL -1 , ethanol-water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL -1 , ethanol-water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g -1 , respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.

  15. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    Science.gov (United States)

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology.

    Science.gov (United States)

    Yu, Hui-Chuan; Tan, Fa-Jui

    2017-11-01

    The objective of this study was to optimize ultrasonic-assisted enzymatic hydrolysis conditions, including enzyme-to-substrate (E/S) ratio, pH, and temperature, for producing porcine liver hydrolysates (PLHs) with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity by using response surface methodology (RSM). The study used RSM to determine the combination of hydrolysis parameters that maximized the antioxidant activity of our PLHs. Temperature (40°C, 54°C, and 68°C), pH (8.5, 9.5, and 10.5), and E/S ratio (0.1%, 2.1%, and 4.1%) were selected as the independent variables and analyzed according to the preliminary experiment results, whereas DPPH free radical scavenging activity was selected as the dependent variable. Analysis of variance showed that E/S ratio, pH, and temperature significantly affected the hydrolysis process (phighest scavenging activity were as follows: E/S ratio, 1.4% (v/w); temperature, 55.5°C; and initial pH, 10.15. Under these conditions, the degree of hydrolysis, DPPH free radical scavenging activity, ferrous ion chelating ability, and reducing power of PLHs were 24.12%, 79%, 98.18%, and 0.601 absorbance unit, respectively. The molecular weight of most PLHs produced under these optimal conditions was less than 5,400 Da and contained 45.7% hydrophobic amino acids. Ultrasonic-assisted enzymatic hydrolysis can be applied to obtain favorable antioxidant hydrolysates from porcine liver with potential applications in food products for preventing lipid oxidation.

  17. Variable domain N-linked glycosylation and negative surface charge are key features of monoclonal ACPA: implications for B-cell selection.

    Science.gov (United States)

    Lloyd, Katy A; Steen, Johanna; Amara, Khaled; Titcombe, Philip J; Israelsson, Lena; Lundström, Susanna L; Zhou, Diana; Zubarev, Roman A; Reed, Evan; Piccoli, Luca; Gabay, Cem; Lanzavecchia, Antonio; Baeten, Dominique; Lundberg, Karin; Mueller, Daniel L; Klareskog, Lars; Malmström, Vivianne; Grönwall, Caroline

    2018-03-07

    Autoreactive B cells have a central role in the pathogenesis of rheumatoid arthritis (RA), and recent findings have proposed that anti-citrullinated protein autoantibodies (ACPA) may be directly pathogenic. Herein, we demonstrate the frequency of variable-region glycosylation in single-cell cloned mAbs. A total of 14 ACPA mAbs were evaluated for predicted N-linked glycosylation motifs in silico, and compared to 452 highly-mutated mAbs from RA patients and controls. Variable region N-linked motifs (N-X-S/T) were strikingly prevalent within ACPA (100%) compared to somatically hypermutated (SHM) RA bone marrow plasma cells (21%), and synovial plasma cells from seropositive (39%) and seronegative RA (7%). When normalized for SHM, ACPA still had significantly higher frequency of N-linked motifs compared to all studied mAbs including highly-mutated HIV broadly-neutralizing and malaria-associated mAbs. The Fab glycans of ACPA-mAbs were highly sialylated, contributed to altered charge, but did not influence antigen binding. The analysis revealed evidence of unusual B-cell selection pressure and SHM-mediated decreased in surface charge and isoelectric point in ACPA. It is still unknown how these distinct features of anti-citrulline immunity may have an impact on pathogenesis. However, it is evident that they offer selective advantages for ACPA+ B cells, possibly also through non-antigen driven mechanisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Fibroblast activation protein-α, a stromal cell surface protease, shapes key features of cancer associated fibroblasts through proteome and degradome alterations.

    Science.gov (United States)

    Koczorowska, M M; Tholen, S; Bucher, F; Lutz, L; Kizhakkedathu, J N; De Wever, O; Wellner, U F; Biniossek, M L; Stahl, A; Lassmann, S; Schilling, O

    2016-01-01

    Cancer associated fibroblasts (CAFs) constitute an abundant stromal component of most solid tumors. Fibroblast activation protein (FAP) α is a cell surface protease that is expressed by CAFs. We corroborate this expression profile by immunohistochemical analysis of colorectal cancer specimens. To better understand the tumor-contextual role of FAPα, we investigate how FAPα shapes functional and proteomic features of CAFs using loss- and gain-of function cellular model systems. FAPα activity has a strong impact on the secreted CAF proteome ("secretome"), including reduced levels of anti-angiogenic factors, elevated levels of transforming growth factor (TGF) β, and an impact on matrix processing enzymes. Functionally, FAPα mildly induces sprout formation by human umbilical vein endothelial cells. Moreover, loss of FAPα leads to a more epithelial cellular phenotype and this effect was rescued by exogenous application of TGFβ. In collagen contraction assays, FAPα induced a more contractile cellular phenotype. To characterize the proteolytic profile of FAPα, we investigated its specificity with proteome-derived peptide libraries and corroborated its preference for cleavage carboxy-terminal to proline residues. By "terminal amine labeling of substrates" (TAILS) we explored FAPα-dependent cleavage events. Although FAPα acts predominantly as an amino-dipeptidase, putative FAPα cleavage sites in collagens are present throughout the entire protein length. In contrast, putative FAPα cleavage sites in non-collagenous proteins cluster at the amino-terminus. The degradomic study highlights cell-contextual proteolysis by FAPα with distinct positional profiles. Generally, our findings link FAPα to key aspects of CAF biology and attribute an important role in tumor-stroma interaction to FAPα. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Multi-Optimization of Ultrasonic-Assisted Enzymatic Extraction of Atratylodes macrocephala Polysaccharides and Antioxidants Using Response Surface Methodology and Desirability Function Approach.

    Science.gov (United States)

    Pu, Jin-Bao; Xia, Bo-Hou; Hu, Yi-Juan; Zhang, Hong-Jian; Chen, Jing; Zhou, Jie; Liang, Wei-Qing; Xu, Pan

    2015-12-11

    Rhizoma Atractylodes macrocephala polysaccharides (RAMP) have been reported to have a variety of important biological activities. In this study, an ultrasonic-assisted enzymatic extraction (UAEE) was employed to obtain the highest extraction yield and strongest antioxidant activity of RAMP and optimized by a multi-response optimization process. A three-level four-factor Box-Behnken design (BBD) was performed as response surface methodology (RSM) with desirability function (DF) to attain the optimal extraction parameters. The DPPH scavenging percentage was used to represent the antioxidant ability of RAMP. The maximum D value (0.328), along with the maximum yield (59.92%) and DPPH scavenging percentage (13.28%) were achieved at 90.54 min, 57.99 °C, 1.95% cellulase and 225.29 W. These values were further validated and found to be in good agreement with the predicted values. Compared to the other extraction methods, both the yield and scavenging percentage of RAMP obtained by UAEE was favorable and the method appeared to be time-saving and of high efficiency. These results demostrated that UAEE is an appropriate and effective extraction technique. Moreover, RSM with DF approach has been proved to be adequate for the design and optimization of the extraction parameters for RAMP. This work has a wide range of implications for the design and operation of polysaccharide extraction processes.

  20. Optimization of dynamic-microwave assisted enzymatic hydrolysis extraction of total ginsenosides from stems and leaves of panax ginseng by response surface methodology.

    Science.gov (United States)

    Wang, Xiao-Yan; Ren, Hui

    2018-03-21

    Ginseng stems and leaves (GSAL) are abundant in ginsenosides compounds. For efficient utilization of GSAL and the enhancement of total ginsenosides (TG) compound yields in GSAL, TG from GSAL were extracted, using dynamic-microwave assisted extraction coupled with enzymatic hydrolysis (DMAE-EH) method. The extraction process has been simulated and its main influencing factors such as ethanol concentration, microwave temperature, microwave time and pump flow rate have been optimized by response surface methodology coupled with a Box-Behnken design(BBD). The experimental results indicated that optimal extraction conditions of TG from GSAL were as follows: ethanol concentration of 75%, microwave temperature of 60°C, microwave time of 20 min and pump flow rate of 38 r/min. After experimental verification, the experimental yields of TG was 60.62 ± 0.85 mg g -1 , which were well agreement with the predicted by the model. In general, the present results demonstrated that DMAE-EH method was successfully used to extract total ginsenosides in GSAL.

  1. Automated Fluid Feature Extraction from Transient Simulations

    Science.gov (United States)

    Haimes, Robert

    2000-01-01

    In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense.

  2. Nanobubble-assisted surface nanopatterning

    Czech Academy of Sciences Publication Activity Database

    Janda, Pavel; Tarábková, Hana; Frank, Otakar; Klementová, Mariana; Kavan, Ladislav

    2012-01-01

    Roč. 3, č. 9 (2012), s. 59-59 ISSN 2157-7439. [International COnference on Nanotek and Expo /2./. 03.12.2012-05.12.2012, Philadelphia Center City] Institutional support: RVO:61388955 Keywords : nanobubbles * nanopatterning Subject RIV: CG - Electrochemistry

  3. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    Science.gov (United States)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  4. Surface morphological and photoelectrochemical studies of ZnS thin films developed from single source precursors by aerosol assisted chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Muhammad Ali [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Peiris, T.A. Nirmal; Wijayantha, K.G. Upul [Department of Chemistry, Loughborough University, Loughborough, LE11 3TU (United Kingdom); Khaledi, Hamid [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Ming, Huang Nay [Faculty of Science, Department of Physics, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Misran, Misni; Arifin, Zainudin [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Faculty of Science, Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia)

    2013-07-01

    Zinc sulphide (ZnS) thin films have been deposited on fluorine-doped tin oxide-coated conducting glass substrates at 375, 425 and 475 °C temperatures from single source adduct precursors [Zn(S{sub 2}CNCy{sub 2}){sub 2}(py)] (1) [where, Cy = cyclohexyl, py = pyridine] and [Zn{S_2CN(CH_2Ph)(Me)}{sub 2}(py)] (2) [where, Ph = Phenyl, Me = Methyl] using aerosol assisted chemical vapour deposition (AACVD). The precursor complexes have been characterized by microanalysis, infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, X-ray single crystal and thermogravimetric analysis. Thermal analysis showed that both precursors (1) and (2) undergo thermal decomposition at 375 °C to produce ZnS residues. The deposited ZnS films have been characterized by X-ray diffraction and energy dispersive X-ray spectroscopy. Scanning electron microscopic studies indicated that the surface morphology of ZnS films strongly depends on the nature of the precursor and the deposition temperature, regardless of marginal variation in thermal stability of the precursors. Direct band gap energies of 3.36 and 3.40 eV have been estimated from the ultraviolet–visible spectroscopy for the ZnS films fabricated from precursors (1) and (2), respectively. The current–voltage characteristics recorded under air mass 1.5 illumination confirmed that the deposited ZnS thin films are photoactive under anodic bias conditions. Furthermore, the photoelectrochemical (PEC) results indicate that these synthesised single source precursors are suitable for obtaining ZnS thin films by AACVD method. The ZnS thin film electrode prepared in this study are very promising for solar energy conversion and optoelectronic applications. The PEC properties of ZnS electrodes prepared from (2) are superior to that of the ZnS electrode prepared from precursor (1). - Highlights: • Synthesis and characterization of zinc dithiocarbamate pyridine adducts. • ZnS photo electrodes have been fabricated using aerosol-assisted

  5. Understanding Legacy Features with Featureous

    DEFF Research Database (Denmark)

    Olszak, Andrzej; Jørgensen, Bo Nørregaard

    2011-01-01

    Feature-centric comprehension of source code is essential during software evolution. However, such comprehension is oftentimes difficult to achieve due the discrepancies between structural and functional units of object-oriented programs. We present a tool for feature-centric analysis of legacy...

  6. Technical assistance contractor Management Plan

    International Nuclear Information System (INIS)

    1993-09-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) and its major teaming partners [Roy F. Weston, Inc. (RFW), Sergent, Hauskins ampersand Beckwith Agra, Inc. (SHB Agra), and Geraghty ampersand Miller, Inc. (G ampersand M)]. The first three companies have worked together effectively on the UMTRA Project for more than 10 years. With the initiation of the UMTRA Groundwater Project in April 1991, a need arose to increase the TAC's groundwater technical breadth and depth, so G ampersand M was brought in to augment the team's capabilities. The TAC contract's scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both surface and groundwater projects. The TAC team continues to support the DOE in completing surface remedial actions and initiating groundwater remediation work for start-up, characterization, design, construction oversight, and remedial operations. A key feature of the TAC's management approach is the extensive set of communication systems implemented for the UMTRA Project. These systems assist all functional disciplines in performing UMTRA Project tasks associated with management, technical support, administrative support, and financial/project controls

  7. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  8. Feature Extraction

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Feature selection and reduction are key to robust multivariate analyses. In this talk I will focus on pros and cons of various variable selection methods and focus on those that are most relevant in the context of HEP.

  9. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  10. Temperature Development on the External Root Surface During Laser-Assisted Endodontic Treatment Applying a Microchopped Mode of a 980 nm Diode Laser.

    Science.gov (United States)

    Beer, Franziska; Farmakis, Eleftherios Terry R; Kopic, Josip; Kurzmann, Christoph; Moritz, Andreas

    2017-04-01

    The aim of this article was to investigate the temperature increase of the external root surface during laser-assisted endodontic treatment using a diode laser (980 nm) in a microchopped mode. Ten freshly extracted, human maxillary incisors with mature apices were collected, prepared to size F4 at working length (ProTaper; Dentsply Maillefer, Ballaigues, Switzerland), mounted to a holder, and irradiated (using spiral movements in coronal direction) with a diode laser (GENTLEray 980 Classic Plus; KaVo, Biberach, Germany) with a 200 μm fiber in four different treatment groups: Group 1 (control group) was irradiated in six cycles of 5-sec irradiation/20-sec pause with 2.5 W in the pulse mode. Groups 2 to 4 were irradiated at six cycles of 5-sec irradiation/20-sec pause in the microchopped mode (Group 2-1.6 W; Group 3-2.0 W; Group 4-2.5 W). The applied mode was 25 ms on/25 ms off. Within the on period, the laser delivered an intermittent sequence of energy complexes and the maximum output was equal to the nominated output of the device (12 W). Canals were kept moist by sterile saline irrigation in between irradiations, and temperature changes were continuously measured using a thermal imaging camera. Recordings were analyzed by a mixed model (analysis of variance [ANOVA] for repeated measurements). The highest mean of temperature rise, 1.94°C ± 1.07°C, was measured in Group 4, followed by Group 3 (1.74°C ± 1.22°C) and Group 2 (1.58°C ± 1.18°C). The lowest increase occurred in Group 1 (1.06°C ± 1.20°C). There was a significant difference (p = 0.041) between the groups. Significant differences were found between Groups 1 and 4 (p = 0.007) and 1 and 2 (p = 0.035). In addition, a marginally significant difference between Groups 1 and 2 (p = 0.052) was noted. There was no significant difference between Groups 2, 3, and 4. Despite the low mean values reported, the highest temperature increase (+5.7°C) was

  11. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces.

    Science.gov (United States)

    Li, Jing; Inutan, Ellen D; Wang, Beixi; Lietz, Christopher B; Green, Daniel R; Manly, Cory D; Richards, Alicia L; Marshall, Darrell D; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.

  12. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology.

    Science.gov (United States)

    Rodríguez-Pérez, Celia; Gilbert-López, Bienvenida; Mendiola, Jose Antonio; Quirantes-Piné, Rosa; Segura-Carretero, Antonio; Ibáñez, Elena

    2016-07-01

    This work aims at studying the optimization of microwave-assisted extraction (MAE) and pressurized liquid extraction (PLE) by multi-response surface methodology (RSM) to test their efficiency towards the extraction of phenolic compounds from Moringa oleifera (M. oleifera) leaves. The extraction yield, total phenolic content (TPC), total flavonoid content (TF), DPPH scavenging method and trolox equivalent antioxidant capacity (TEAC) assay were considered as response variables while effects of extraction time, percentage of ethanol, and temperature were studied. Extraction time of 20 min, 42% ethanol and 158°C were the MAE optimum conditions for achieving extraction yield of 26 ± 2%, EC50 15 ± 2 μg/mL, 16 ± 1 Eq Trolox/100 g dry leaf, 5.2 ± 0.5 mg Eq quercetin/g dry leaf, and 86 ± 4 mg GAE/g dry leaf. Regarding PLE, the optimum conditions that allowed extraction yield of 56 ± 2%, EC50 21 ± 3 μg/mL, 12 ± 2 mmol Eq Trolox/100 g dry leaf, 6.5 ± 0.2 mg Eq quercetin/g dry leaf, and 59 ± 6 mg GAE/g dry leaf were 128°C, 35% of ethanol, and 20 min. PLE enabled the extraction of phenolic compounds with a higher number of hydroxyl-type substituents such as kaempferol diglycoside and its acetyl derivatives and those that are sensitive to high temperatures (glucosinolates or amino acids) while MAE allowed better recoveries of kaempferol, quercetin, and their glucosides derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Using precipitated Cr on the surface of Cu-Cr alloy powders as catalyst synthesizing CNTs/Cu composite powders by water-assisted CVD

    Science.gov (United States)

    Zhou, Honglei; Liu, Ping; Chen, Xiaohong; Bi, Liming; Zhang, Ke; Liu, Xinkuan; Li, Wei; Ma, Fengcang

    2018-02-01

    Given that the conventional catalyst is easily soluble in the matrix to result in the poor performance of the CNTs/Cu composite materials, the Cr nano-particles precipitated on the surface of Cu-Cr particles are first used as catalysts to prepare the CNTs/Cu composite powders by means of water-assisted chemical vapor deposition in situ synthesis. The results show that the morphological difference of the precipitated Cr nano-particle is obvious with the change of solution and aging treatment, and the morphology, length and diameter of the synthetic CNTs are also different. The catalyst of Cr nano-particle has the best morphology and the synthesized CNTs had a good wettability with Cu particles when the Cu-Cr composite powders was solution-treated at 1023 K for 60 min and then was aged at 723 K for 120 min. The length, diameter, yield and purity of the synthesized CNTs can be also affected by the moisture content in the reaction gas. It is the most suitable for the growth of CNTs when the moisture content is 0.4%, and the high purity and defect-free CNTs with the smooth pipe wall, a diameter of 20 ˜ 30 nm and a length of up to 1800 nm can be obtained. The yield of CNTs with the moisture content of 0.4% reached to 138%, which was increased by 119% to compare with that without moisture. In this paper, a feasible technology was offered for the preparation of high performance CNTs/Cu composites.

  14. New Trend for Acceleration Solid Phase Extraction Process Based on Using Magnetic Nano-adsorbents along with Surface Functionalization through Microwave Assisted Solvent-free Technique.

    Science.gov (United States)

    Ahmed, Salwa A; Soliman, Ezzat M

    2015-01-01

    The use of a microwave assisted solvent-free technique for silica coating of iron magnetic nanoparticles (Fe3O4-MNPs) and their functionalization with three aliphatic diamines: 1,2-ethylenediamine (1,2EDA), 1,5-pentanediamine (1,5PDA) and 1.8-octanediamine (1,8-ODA), were successfully achieved in a very short time. Only 60 min were needed for the nano-adsorbent modification as compared with more than 1000 min using conventional methods under reflux conditions. Their surface characteristics (observed by TEM, XRD and FT-IR), in addition to Cu(II) adsorption capacities (1.805, 1.928 and 2.116 mmol g(-1)) and time of equilibration (5 s) were almost the same. Thus, the time required to accomplish the solid phase extraction process is greatly reduced. On the other hand, the phenomenon of the fast equilibration kinetics was successfully extended on using the functionalized aliphatic diamines magnetic nano-adsorbents as precursors for further microwave treatment. Three selective magnetic nano-adsorbents (Fe3O4-MNPs-SiO2-1,2EDA-3FSA, Fe3O4-MNPs-SiO2-1,5PDA-3FSA and Fe3O4-MNPs-SiO2-1,8ODA-3FSA) were obtained via the reaction with 3-formayl salicylic acid (3FSA) as a selective reagent for Fe(III). At 5 s contact time, they exhibited maximum Fe(III) uptake equal to 4.512, 4.987 and 5.367 mmol g(-1), respectively. Furthermore, modeling of values of metal uptake capacity obtained at different shaking time intervals supports pseudo-second order kinetics.

  15. Evaluation, prediction and optimization the ultrasound-assisted extraction method using response surface methodology: antioxidant and biological properties of Stachys parviflora L.

    Directory of Open Access Journals (Sweden)

    Davoud Salarbashi

    2016-05-01

    Full Text Available Objective(s:To optimize the extraction method using response surface methodology, extract the phenolic compounds, and identify the antioxidant and biological properties of Stachys parviflora L.  extracts. Materials and Methods: Maceration and ultrasound-assisted extraction (UAE (4, 7, 10 min treatment time, 40, 70, 100 % high-intensity and 60, 80, 100 % (v v-1 methanol purity were applied to obtain the extracts. SEM was conducted to provide the microstructure of the extracted plant. MICs (colorimetric assay, MFCs (colony diameter, total phenolic content, total flavonoid content, radical scavenging capacity and extraction efficiency were determined. HPLC analysis was applied to measure the existent phenolic compounds. Results: A quadratic model (4 min treatment time, 74.5 % high-intensity and 74.2 % solvent purity was suggested as the best (TPC: 20.89 mg GAE g-1 d.m., TFC: 6.22 mg QEs g-1 d.m., DPPH IC50: 21.86 µg ml-1 and EE: 113.65 mg g-1 d.m. UAE extraction model. The optimized UAE extract was generally more effective against Gram-positive microorganisms (MIC: 10-20; MBC: 10-40 (mg ml-1 than Gram-negative ones (MIC: 40; MBC: >40 (mg ml-1. Moreover, it (MGI: 2.32-100 % revealed more anti-mold activity than maceration (MGI: Conclusion: RSM optimization was successfully applied for UAE from S. parviflora. The considerable antioxidant and biological properties were attributed to the phenolic compounds.

  16. Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology.

    Science.gov (United States)

    Asfaram, Arash; Ghaedi, Mehrorang; Hajati, Shaaker; Goudarzi, Alireza; Bazrafshan, Ali Akbar

    2015-06-15

    The simultaneous and competitive ultrasound-assisted removal of Auramine-O (AO), Erythrosine (Er) and Methylene Blue (MB) from aqueous solutions were rapidly performed onto copper-doped zinc sulfide nanoparticles loaded on activated carbon (ZnS:Cu-NP-AC). ZnS:Cu nanoparticles were studied by FESEM, XRD and TEM. First, the effect of pH was optimized in a one-at-a-time procedure. Then the dependency of dyes removal percentage in their ternary solution on the level and magnitude of variables such as sonication time, initial dyes concentrations and adsorbent dosage was fully investigated and optimized by central composite design (CCD) under response surface methodology (RSM) as well as by regarding desirability function (DF) as a good and general criterion. The good agreement found between experimental and predicted values supports and confirms the suitability of the present model to predict adsorption state. The applied ultrasound strongly enhanced mass transfer process and subsequently performance. Hence, a small amount of the adsorbent (0.04 g) was capable to remove high percentage of dyes, i.e. 100%, 99.6% and 100% for MB, AO and Er, respectively, in very short time (2.5 min). The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models showed that the Langmuir model applies well for the evaluation and description of the actual behavior of adsorption. The small amount of proposed adsorbent (0.015 g) was applicable for successful removal of dyes (RE>99.0%) in short time (2.5 min) with high adsorption capacity in single component system (123.5 mg g(-1) for MB, 123 mg g(-1) for AO and 84.5 mg g(-1) for Er). Kinetics evaluation of experiments at various time intervals reveals that adsorption processes can be well predicated and fitted by pseudo-second-order and Elovich models. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Matrix Assisted Ionization: New Aromatic and Nonaromatic Matrix Compounds Producing Multiply Charged Lipid, Peptide, and Protein Ions in the Positive and Negative Mode Observed Directly from Surfaces

    Science.gov (United States)

    Li, Jing; Inutan, Ellen D.; Wang, Beixi; Lietz, Christopher B.; Green, Daniel R.; Manly, Cory D.; Richards, Alicia L.; Marshall, Darrell D.; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH2 functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.

  18. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    Science.gov (United States)

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  19. Corticotomy-assisted orthodontics.

    Science.gov (United States)

    Cano, Jorge; Campo, Julián; Bonilla, Elena; Colmenero, César

    2012-02-01

    The use of orthodontic treatment in adult patients is becoming more common and these patients have different requirements specially regarding duration of treatment and facial and dental aesthetics. Alveolar corticotomy is an effective means of accelerating orthodontic treatment. This literature revision include an historical background, biological and orthodontic fundamentals and the most significant clinical applications of this technique. Orthodontic treatment time is reduced with this technique to one-third of that in conventional orthodontics. Alveolar bone grafting of labial and palatal/lingual surfaces ensures root coverage as the dental arch is expanded. Corticotomy-assisted orthodontics has been reported in a few clinical cases, and seems to be a promising adjuvant technique, indicated for many situations in the orthodontic treatment of adults without active periodontal pathology. Its main advantages are reduction of treatment time and postorthodontic stability. Further controlled prospective and histological studies are needed to study tooth movement, post-retention stability, and microstructural features of teeth, periodontium, and regenerated bone after using this procedure. Key words:Corticotomy, osteotomy, accelerated orthodontics.

  20. PECULIAR FEATURES OF MACHINING MARKS FORMATION ON SURFACE ОF TITANIUM SPECIMEN WITH SINGLE ELECTRO CONTACT ACTION OF WIRE ELECTRODE-TOOL

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2013-01-01

    Full Text Available The paper presents an investigation of shape and geometry parameters of machining marks obtained on the surface of titanium specimen with a single electro contact action of a wire electrode-tool. A description of the developed unit and methodology for execution of experimental investigations has been given in the paper. The paper provides and analyzes experimentally obtained data showing the effect of conditions and modes of single electro contact action of wire tool-electrode on the shape and geometrical parameters of machining marks obtained on the surface of titanium specimen. It is shown that the formation of these traces occurs in the context of joint action of both the electrical erosion and mechanical action of the working part of the wire electrode-tool on the surface of the titanium specimen that expands technological capabilities of electro contact treatment while  solving problems associated with targeted modification of the original work-piece surfaces.

  1. Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure

    OpenAIRE

    Lv, Yongqin; Lin, Zhixing; Svec, Frantisek

    2012-01-01

    A novel approach to porous polymer monoliths hypercrosslinked to obtain large surface areas and modified with zwitterionic functionalities through the attachment of gold nanoparticles in a layered architecture has been developed. The capillary columns were used for the separation of small molecules in hydrophilic interaction liquid chromatography mode. First, a monolith with a very large surface area of 430 m2/g was prepared by hypercrosslinking from a generic poly(4-methylstyrene-co-vinylben...

  2. Assistive Technology

    Science.gov (United States)

    ... Page Resize Text Printer Friendly Online Chat Assistive Technology Assistive technology (AT) is any service or tool that helps ... be difficult or impossible. For older adults, such technology may be a walker to improve mobility or ...

  3. Assisted Living

    Science.gov (United States)

    Assisted living is for adults who need help with everyday tasks. They may need help with dressing, bathing, ... don't need full-time nursing care. Some assisted living facilities are part of retirement communities. Others are ...

  4. Assisted Living

    Science.gov (United States)

    ... it, too. Back to top What is the Cost for Assisted Living? Although assisted living costs less than nursing home ... Primarily, older persons or their families pay the cost of assisted living. Some health and long-term care insurance policies ...

  5. Accounts Assistant

    Indian Academy of Sciences (India)

    CHITRA

    (Not more than three months old). Annexure 1. Indian Academy of Sciences. C V Raman Avenue, Bengaluru 560 080. Application for the Post of: Accounts Assistant / Administrative Assistant Trainee / Assistant – Official Language. Implementation Policy / Temporary Copy Editor and Proof Reader / Social Media Manager. 1.

  6. Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

    International Nuclear Information System (INIS)

    Watson, G S; Watson, J A

    2008-01-01

    In this paper we correlate the Atomic Force Microscope probe movement with surface location while scanning in the imaging and Force versus distance modes. Static and dynamic stick-slip processes are described on a scale of nanometres to microns on a range of samples. We demonstrate the limits and range of the tip apex being fixed laterally in the force versus distance mode and static friction slope dependence on probe parameters. Micron scale static and dynamic friction can be used to purposefully manipulate soft surfaces to produce well defined frictional gradients

  7. Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO{sub 2} nanocrystalline Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Casino, S. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Di Lupo, F., E-mail: francesca.dilupo@polito.it [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Francia, C. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Tuel, A. [IRCELYON, Institut de Recherches sur la Catalyse et l’environnement de Lyon, UMR 5256, CNRS-Université de Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); Bodoardo, S. [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Gerbaldi, C., E-mail: claudio.gerbaldi@polito.it [GAME Lab, Department of Applied Science and Technology – DISAT, Institute of Chemistry, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-05-01

    Highlights: • Mesoporous TiO{sub 2} nanocrystalline lithium battery anodes with tunable morphology. • Simple sol–gel technique using different cationic surfactants is adopted. • Textural/morphological characteristics define the electrochemical behaviour. • TiO{sub 2} anatase using C16TAB exhibits stable performance after 200 cycles. • It shows promising prospects as high-voltage safe Li-ion battery anode. - Abstract: We here investigate the physico-chemical/morphological characteristics and cycling behaviour of several kinds of nanocrystalline TiO{sub 2} Li-ion battery anodes selectively prepared through a simple sol–gel strategy based on a low-cost titanium oxysulfate precursor, by mediation of different cationic surfactants having different features (e.g., chain lengths, counter ion, etc.): i.e., cetyl-trimethylammonium bromide (CTAB), cetyl-trimethylammonium chloride (CTAC), benzalkonium chloride (BC) or octadecyl-trimethyl ammonium bromide (C{sub 18}TAB). X-ray diffraction profiles reveal single phase anatase having good correspondence with the reference pattern when using short chain CTAB, while in the other cases the presence of chloride and/or an increased chain length affect the purity of the samples. FESEM analysis reveal nanosized particles forming cauliflower-like aggregates. TiO{sub 2} materials demonstrate mesoporous characteristics and large specific surface area ranging from 250 to 30 m{sup 2} g{sup −1}. Remarkably stable electrode performance are achieved by appropriately selecting the cationic surfactant and the surfactant/precursor ratio. Detailed analysis is provided on the effect of the reaction conditions upon the formation of mesoporous crystalline titania enlightening new directions for the development of high performing lithium storage electrodes by a simple and low cost sol–gel strategy.

  8. Friction control of mechanical seals in a ventricular assist device

    Directory of Open Access Journals (Sweden)

    K. Kanda

    2015-06-01

    Full Text Available Low and stable friction is required for mechanical seals in implantable ventricular assist devices. In this study, a specialized test apparatus was designed to test the frictional properties of a mechanical seal in blood in implantable ventricular assist devices. It was shown that a blood-derived protein film forms on the sealing surfaces and causes higher and unstable friction than that in water. Further, it was shown that concave surface features on the substrate initially catch aggregated proteins that are denatured by friction, thus the protein film progresses from concave to flat regions on the substrate. On the basis of this protein film formation mechanism, the creation of a smooth, hydrophilic sealing surface was proposed to control friction and its effectiveness was validated.

  9. Effect of Surface Roughness and Structure Features on Tribological Properties of Electrodeposited Nanocrystalline Ni and Ni/Al2O3 Coatings

    Science.gov (United States)

    Góral, Anna; Lityńska-Dobrzyńska, Lidia; Kot, Marcin

    2017-05-01

    Metal matrix composite coatings obtained by electrodeposition are one of the ways of improving the surfaces of materials to enhance their durability and properties required in different applications. This paper presents an analysis of the surface topography, microstructure and properties (residual stresses, microhardness, wear resistance) of Ni/Al2O3 nanocomposite coatings electrodeposited on steel substrates from modified Watt's-type baths containing various concentrations of Al2O3 nanoparticles and a saccharin additive. The residual stresses measured in the Ni/Al2O3 coatings decreased with an increasing amount of the co-deposited ceramics. It was established that the addition of Al2O3 powder significantly improved the coatings' microhardness. The wear mechanism changed from adhesive-abrasive to abrasive with a rising amount of Al2O3 particles and coating microhardness. Nanocomposite coatings also exhibited a lower coefficient of friction than that of a pure Ni-electrodeposited coating. The friction was found to depend on the surface roughness, and the smoother surfaces gave lower friction coefficients.

  10. A level set methodology for predicting the effect of mask wear on surface evolution of features in abrasive jet micro-machining

    International Nuclear Information System (INIS)

    Burzynski, T; Papini, M

    2012-01-01

    A previous implementation of narrow-band level set methodology developed by the authors was extended to allow for the modelling of mask erosive wear in abrasive jet micro-machining (AJM). The model permits the prediction of the surface evolution of both the mask and the target simultaneously, by representing them as a hybrid and continuous mask–target surface. The model also accounts for the change in abrasive mass flux incident to both the target surface and, for the first time, the eroding mask edge, that is brought about by the presence of the mask edge itself. The predictions of the channel surface and eroded mask profiles were compared with measurements on channels machined in both glass and poly-methyl-methacrylate (PMMA) targets at both normal and oblique incidence, using tempered steel and elastomeric masks. A much better agreement between the predicted and measured profiles was found when mask wear was taken into account. Mask wear generally resulted in wider and deeper glass target profiles and wider PMMA target profiles, respectively, when compared to cases where no mask wear was present. This work has important implications for the AJM of complex MEMS and microfluidic devices that require longer machining times. (paper)

  11. Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: a comparison of thermal and uniaxial mechanical fatigue results

    CERN Document Server

    Aicheler, M

    2010-01-01

    Surface state plays a major role in the crack nucleation process of pure metals in the High-Cycle-Fatigue (HCF) as well as in the Ultra-High-Cycle-Fatigue (UHCF) regime. Therefore, in studies dealing with HCF or UHCF, special attention is paid to the evolution of surface degradation during fatigue life. The accelerating structures of the future Compact Linear Collider (CLIC) under study at CERN will be submitted to a high number of thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. The number of cycles during the foreseen lifetime of CLIC reaches 2x10(11). Fatigue may limit the lifetime of CLIC structures. In order to assess the effects of superficial fatigue, specific tests are defined and performed on polycrystalline Oxygen Free Electronic (OFE) grade Copper, a candidate material for the structures. Surface degradation depends on the orientation of near-surface grains. Copper samples thermally fatigued in two different fatigu...

  12. Nutrient dynamics and oceanographic features in the central Namibian upwelling region as reflected in δ15N-signals of suspended matter and surface sediments

    Directory of Open Access Journals (Sweden)

    S. Meisel

    2011-08-01

    Full Text Available The study deals with the modern situation of the northern Benguela Upwelling, directing particular attention to the shelf region off central Namibia (21 to 24° S. At the centre of the investigation is the comparison of δ15N-records in surface sediments (δ15Nsediment with suspended particulate matter (δ15NSPM from the surface ocean. In addition to that, water column profiles (including hydrographic data provide an insight into changes of δ15NSPM with depth and elucidate potential offsets between δ15NSPM and δ15Nsediment. The parallel spatial trend of δ15Nsediment and surface ocean δ15NSPM shows that secondary processes are not so pronounced as to obliterate the signal generated in the surface waters. Highest δ15N-signatures are found right off the coast where water temperatures are lowest. Concomitantly high productivity rates and low bottom oxygen suggest the upwelling of denitrified source waters. With increasing distance offshore, δ15N declines unexpectedly, reaching a minimum above the shelf break. Beyond that, the trend reverses to "normal" with δ15N-signals continuously increasing towards the mesopelagic ocean. The decrease in δ15Nsediment and surface ocean δ15NSPM with increasing distance to the coast disagrees with the concept of Rayleigh fractionation kinetics, viz. the progressive 15N-enrichment of the nitrate pool as it is gradually used up by phytoplankton growth. On the basis of the available evidence, the downward trend of δ15N results from decreased relative nitrate consumption, resting on a combination of reduced primary production and the existence of an ulterior source of nutrients. Nutrient replenishment seems to occur via an additional upwelling front at the edge of the shelf as well as tapping of subsurface nitrate through sufficiently deep penetration of wind- and wave-induced mixing over large areas of the shelf. Both mechanisms are considered capable of working against the expected nutrient drawdown (i.e. 15

  13. PDMS-SiO{sub 2}-TiO{sub 2}-CaO hybrid materials – Cytocompatibility and nanoscale surface features

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Wacha, András [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117 (Hungary); Gomes, Pedro S.; Fernandes, M. Helena R. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal); Fernandes, M. Helena Vaz [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Salvado, Isabel M. Miranda, E-mail: isabelmsalvado@ua.pt [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-07-01

    Two PDMS-SiO{sub 2}-TiO{sub 2}-CaO porous hybrid materials were prepared using the same base composition, precursors, and solvents, but following two different sol-gel procedures, based on the authors' previous works where for the first time, in this hybrid system, calcium acetate was used as calcium source. The two different procedures resulted in monolithic materials with different structures, microstructures, and surface wettability. Even though both are highly hydrophobic (contact angles of 127.2° and 150.6°), and present different filling regimes due to different surface topographies, they have demonstrated to be cytocompatible when tested with human osteoblastic cells, against the accepted idea that high-hydrophobic surfaces are not suitable to cell adhesion and proliferation. At the nanoscale, the existence of hydrophilic silica domains containing calcium, where water molecules are physisorbed, is assumed to support this capability, as discussed. - Highlights: • Two hybrid materials were prepared following two different sol-gel procedures. • Both are highly hydrophobic but demonstrated to be cytocompatible. • Different filling regimes were observed.

  14. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.

    Science.gov (United States)

    Galhardi, Juliana Aparecida; Bonotto, Daniel Marcos

    2016-09-01

    Effects of acid mine drainage (AMD) were investigated in surface waters (Laranjinha River and Ribeirão das Pedras stream) and groundwaters from a coal mining area sampled in two different seasons at Figueira city, Paraná State, Brazil. The spatial data distribution indicated that the acid effluents favor the chemical elements leaching and transport from the tailings pile into the superficial water bodies or aquifers, modifying their quality. The acid groundwaters in both sampling periods (dry: pH 2.94-6.04; rainy: pH 3.25-6.63) were probably due to the AMD generation and infiltration, after the oxidation of sulfide minerals. Such acid effluents cause an increase of the solubilization rate of metals, mainly iron and aluminum, contributing to both groundwater and surface water contamination. Sulfate in high levels is a result of waters' pollution due to AMD. In some cases, high sulfate and low iron contents, associated with less acidic pH values, could indicate that AMD, previously generated, is nowadays being neutralized. The chemistry of the waters affected by AMD is controlled by the pH, sulfide minerals' oxidation, oxygen, iron content, and microbial activity. It is also influenced by seasonal variations that allow the occurrence of dissolution processes and the concentration of some chemical elements. Under the perspective of the waters' quality evaluation, the parameters such as conductivity, dissolved sodium, and sulfate concentrations acted as AMD indicators of groundwaters and surface waters affected by acid effluents.

  15. Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL: “Herniated” HDL, a common feature in diabetes

    Science.gov (United States)

    Amigó, Núria; Mallol, Roger; Heras, Mercedes; Martínez-Hervás, Sergio; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles; Plana, Núria; Yanes, Óscar; Masana, Lluís; Correig, Xavier

    2016-01-01

    Recent studies have shown that pharmacological increases in HDL cholesterol concentrations do not necessarily translate into clinical benefits for patients, raising concerns about its predictive value for cardiovascular events. Here we hypothesize that the size-modulated lipid distribution within HDL particles is compromised in metabolic disorders that have abnormal HDL particle sizes, such as type 2 diabetes mellitus (DM2). By using NMR spectroscopy combined with a biochemical volumetric model we determined the size and spatial lipid distribution of HDL subclasses in a cohort of 26 controls and 29 DM2 patients before and after two drug treatments, one with niacin plus laropiprant and another with fenofibrate as an add-on to simvastatin. We further characterized the HDL surface properties using atomic force microscopy and fluorescent probes to show an abnormal lipid distribution within smaller HDL particles, a subclass particularly enriched in the DM2 patients. The reduction in the size, force cholesterol esters and triglycerides to emerge from the HDL core to the surface, making the outer surface of HDL more hydrophobic. Interestingly, pharmacological interventions had no effect on this undesired configuration, which may explain the lack of clinical benefits in DM2 subjects. PMID:26778677

  16. Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure.

    Science.gov (United States)

    Lv, Yongqin; Lin, Zhixing; Svec, Frantisek

    2012-10-16

    A novel approach to porous polymer monoliths hypercrosslinked to obtain large surface areas and modified with zwitterionic functionalities through the attachment of gold nanoparticles in a layered architecture has been developed. The capillary columns were used for the separation of small molecules in hydrophilic interaction liquid chromatography mode. First, a monolith with a very large surface area of 430 m(2)/g was prepared by hypercrosslinking from a generic poly(4-methylstyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolith via a Friedel-Crafts reaction catalyzed with iron chloride. Free radical bromination then provided this hypercrosslinked monolith with 5.7 at % Br that further reacted with cystamine under microwave irradiation, resulting in a product containing 3.8 at % sulfur. Clipping the disulfide bonds with tris(2-carboxylethyl) phosphine liberated the desired thiol groups that bind the first layer of gold nanoparticles. These immobilized nanoparticles were an intermediate ligand enabling the attachment of polyethyleneimine as a spacer followed by immobilization of the second layer of gold nanoparticles which were eventually functionalized with zwitterionic cysteine. This layered architecture, prepared using 10 nm nanoparticles, contains 17.2 wt % Au, more than twice than that found in the first layer alone. Chromatographic performance of these hydrophilic monolithic columns was demonstrated with the separation of mixtures of nucleosides and peptides in hydrophilic interaction chromatography (HILIC) mode. A column efficiency of 51,000 plates/m was achieved for retained analyte cytosine.

  17. Featuring animacy

    Directory of Open Access Journals (Sweden)

    Elizabeth Ritter

    2015-01-01

    Full Text Available Algonquian languages are famous for their animacy-based grammatical properties—an animacy based noun classification system and direct/inverse system which gives rise to animacy hierarchy effects in the determination of verb agreement. In this paper I provide new evidence for the proposal that the distinctive properties of these languages is due to the use of participant-based features, rather than spatio-temporal ones, for both nominal and verbal functional categories (Ritter & Wiltschko 2009, 2014. Building on Wiltschko (2012, I develop a formal treatment of the Blackfoot aspectual system that assumes a category Inner Aspect (cf. MacDonald 2008, Travis 1991, 2010. Focusing on lexical aspect in Blackfoot, I demonstrate that the classification of both nouns (Seinsarten and verbs (Aktionsarten is based on animacy, rather than boundedness, resulting in a strikingly different aspectual system for both categories. 

  18. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    Science.gov (United States)

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  19. Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves

    Science.gov (United States)

    Kim, K. Y.; Jeon, K. M.; Hong, M. H.; Park, Young-gyu

    2011-02-01

    To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.

  20. Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4-tert-Butyl-Pyridine and Atomic-Layer-Deposited Alumina as Surface Modifiers.

    Science.gov (United States)

    Katz, Michael J; Vermeer, Michael J DeVries; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T

    2015-06-18

    A series of dye-sensitized solar cells (DSCs) was constructed with TiO2 nanoparticles and N719 dye. The standard I3(-)/I(-) redox shuttle and the Co(1,10-phenanthroline)3(3+/2+) shuttle were employed. DSCs were modified with atomic-layered-deposited (ALD) coatings of Al2O3 and/or with the surface-adsorbing additive 4-tert-butyl-pyridine. Current-voltage data were collected to ascertain the influence of each modification upon the back electron transfer (ET) dynamics of the DSCs. The primary effect of the additives alone or in tandem is to increase the open-circuit voltage. A second is to alter the short-circuit current density, JSC. With dependence on the specifics of the system examined, any of a myriad of dynamics-related effects were observed to come into play, in both favorable (efficiency boosting) and unfavorable (efficiency damaging) ways. These effects include modulation of (a) charge-injection yields, (b) rates of interception of injected electrons by redox shuttles, and (c) rates of recombination of injected electrons with holes on surface-bound dyes. In turn, these influence charge-collection lengths, charge-collection yields, and onset potentials for undesired dark current. The microscopic origins of the effects appear to be related mainly to changes in driving force and/or electronic coupling for underlying component redox reactions. Perhaps surprisingly, only a minor role for modifier-induced shifts in conduction-band-edge energy was found. The combination of DSC-efficiency-relevant effects engendered by the modifiers was found to vary substantially as a function of the chemical identity of the redox shuttle employed. While types of modifiers are effective, a challenge going forward will be to construct systems in ways in which the benefits of organic and inorganic modifiers can be exploited in fully additive, or even synergistic, fashion.

  1. Modified-Atmospheric Pressure-Matrix Assisted Laser Desorption/Ionization Identification of Friction Modifier Additives Oleamide and Ethoxylated Tallow Amines on Varied Metal Target Materials and Tribologically Stressed Steel Surfaces.

    Science.gov (United States)

    Widder, Lukas; Ristic, Andjelka; Brenner, Florian; Brenner, Josef; Hutter, Herbert

    2015-11-17

    For many tasks in failure and damage analysis of surfaces deteriorated in heavy tribological contact, the detailed characterization of used lubricants and their additives is essential. The objective of the presented work is to establish accessibility of tribostressed surfaces for direct characterization via modified atmospheric pressure-matrix assisted laser desorption/ionization-mass spectrometry (m-AP-MALDI-MS). Special target holders were constructed to allow target samples of differing shape and form to fit into the desorption/ionization chamber. The best results of desorption and ionization on different target materials and varying roughnesses were achieved on smooth surfaces with low matrix/substrate interaction. M-AP-MALDI characterization of tribologically stressed steel surfaces after pin-on-disc sliding wear tests (SRV-tribotests) yielded positive identification of used friction modifier additives. Further structure elucidation by electrospray ionization mass spectrometry (ESI-MS) and measurements of worn surfaces by time-of-flight-secondary ion mass spectrometry (TOF-SIMS) accompanied findings about additive behavior and deterioration during tribological contact. Using m-AP-MALDI for direct offline examinations of worn surfaces may set up a quick method for determination of additives used for lubrication and general characterization of a tribological system.

  2. Feature displacement interpolation

    DEFF Research Database (Denmark)

    Nielsen, Mads; Andresen, Per Rønsholt

    1998-01-01

    Given a sparse set of feature matches, we want to compute an interpolated dense displacement map. The application may be stereo disparity computation, flow computation, or non-rigid medical registration. Also estimation of missing image data, may be phrased in this framework. Since the features...... often are very sparse, the interpolation model becomes crucial. We show that a maximum likelihood estimation based on the covariance properties (Kriging) show properties more expedient than methods such as Gaussian interpolation or Tikhonov regularizations, also including scale......-selection. The computational complexities are identical. We apply the maximum likelihood interpolation to growth analysis of the mandibular bone. Here, the features used are the crest-lines of the object surface....

  3. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers.

    Science.gov (United States)

    Bian, Juan; Olesik, Susan V

    2017-03-27

    Polyacrylonitrile/Nafion®/carbon nanotube (PAN/Nafion®/CNT) composite nanofibers were prepared using electrospinning. These electrospun nanofibers were studied as possible substrates for surface-assisted laser desorption/ionization (SALDI) and matrix-enhanced surface-assisted laser desorption/ionization time-of-flight mass spectrometry (ME-SALDI/TOF-MS) for the first time in this paper. Electrospinning provides this novel substrate with a uniform morphology and a narrow size distribution, where CNTs were evenly and firmly immobilized on polymeric nanofibers. The results show that PAN/Nafion®/CNT nanofibrous mats are good substrates for the analysis of both small drug molecules and high molecular weight polymers with high sensitivity. Markedly improved reproducibility was observed relative to MALDI. Due to the composite formation between the polymers and the CNTs, no contamination of the carbon nanotubes to the mass spectrometer was observed. Furthermore, electrospun nanofibers used as SALDI substrates greatly extended the duration of ion signals of target analytes compared to the MALDI matrix. The proposed SALDI approach was successfully used to quantify small drug molecules with no interference in the low mass range. The results show that verapamil could be detected with a surface concentration of 220 femtomoles, indicating the high detection sensitivity of this method. Analysis of peptides and proteins with the electrospun composite substrate using matrix assisted-SALDI was improved and a low limit of detection of approximately 6 femtomoles was obtained for IgG. Both SALDI and ME-SALDI analyses displayed high reproducibility with %RSD ≤ 9% for small drug molecules and %RSD ≤ 14% for synthetic polymers and proteins.

  4. Development and featuring of hemispherical photomultipliers for cosmic ray detection - calibration of surface detectors and analysis of horizontal showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Dornic, D.

    2006-09-01

    The large photomultipliers (PMT) are currently used in astro-particle and neutrino experiments where they have to detect low levels of light. We have studied and characterised large PMTs developed by the PHOTONIS Group Company. The first part of this thesis is dedicated to the full characterization of two types of multipliers currently used in large PMTs. Then, we present results of a new photocathode process, applied on the XPI805 (PMT used in the Pierre Auger Observatory) in order to improve the quantum efficiency. Finally, we study the PMT diameter influence on main parameters (5, 8 and 10 inches). The second part is devoted to the study of the water Cerenkov tank (WCD) response to the shower particles and the horizontal air showers analysis with the Pierre Auger Observatory. The main parameters of a WCD simulation developed in the Auger IPN group were calibrated with several measurements on vertical and inclined muons, performed on dedicated test tanks. The kind of detector used in the surface detector allows detecting very inclined events with a good sensitivity (zenith angle superior to 70 degrees). We have established specific methods to analyze these events (selection and reconstruction). These methods were applied to the Auger data in order to obtain the energy spectrum of the horizontal events. Finally, we detailed two methods to test directly the hadronic models predictions by studying the air showers muonic component. (author)

  5. Different features of the MHC class I heterodimer have evolved at different rates. Chicken B-F and beta 2-microglobulin sequences reveal invariant surface residues

    DEFF Research Database (Denmark)

    Kaufman, J; Andersen, R; Avila, D

    1992-01-01

    of small exons in the cytoplasmic region. The cDNA sequences were compared to turkey beta 2m, the apparent allele B-F12 alpha and other vertebrate homologs, using the 2.6 A structure of the human HLA-A2 molecule as a model. Both chicken alpha 1 and alpha 2 domains resemble mammalian classical class I......Chicken beta 2-microglobulin (beta 2m) and class I (B-F19 alpha chain) cDNA clones were isolated and the sequences compared to those of B-F Ag isolated from chicken E. These clones represent the major expressed class I molecules on E, with B-F alpha size variants evidently due to alternative use...... composition in B-F compared to class I molecules from other taxa. Many of the surface residues are quite diverged, particularly in alpha 3 and beta 2m. There are fewer changes in intra- and interdomain contact sites. Some residues with important functions are invariant, including seven residues that bind...

  6. Assistance Focus: Africa

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-29

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial, helps countries throughout the world create policies and programs that advance the deployment of clean energy technologies. Through the Solutions Center's no-cost 'Ask an Expert' service, a team of international experts has delivered assistance to countries in all regions of the world. High-impact examples from Africa are featured here.

  7. Optimization of Ultrasound-Assisted Extraction of Crude Oil from Winter Melon (Benincasa hispida Seed Using Response Surface Methodology and Evaluation of Its Antioxidant Activity, Total Phenolic Content and Fatty Acid Composition

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2012-10-01

    Full Text Available In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM. Process variables were power level (25–75%, temperature (45–55 °C and sonication time (20–40 min. It was found that all process variables have significant (p < 0.05 effects on the response variable. A central composite design (CCD was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter. The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  8. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Laser-Plasma Research Institute, Shahid Beheshti University G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Sharifian, M. [Faculty of Physics, Science Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2016-01-01

    Highlights: • Cell viability and antibacterial activity was investigated on PMMA modified by DBD. • Treated-samples got hydrophilic by introducing oxygen-containing functional groups. • Mouse embryonic fibroblast (MEF) adhesion was significantly enhanced. • Samples exhibited acceptable antibacterial activity against E. Coli. • Optimum antibacterial performance and cell attachment were obtained. - Abstract: This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid–base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was

  9. Thermally assisted mechanical dewatering (TAMD) of suspensions of fine particles: analysis of the influence of the operating conditions using the response surface methodology.

    Science.gov (United States)

    Mahmoud, Akrama; Fernandez, Aurora; Chituchi, Toma-Mihai; Arlabosse, Patricia

    2008-08-01

    Thermally assisted mechanical dewatering (TAMD) is a new process for energy-efficient liquid/solids separation which enhances conventional-device efficiency. The main idea of this process is to supply a flow of heat in mechanical dewatering processes to favour the reduction of the liquid content. This is not a new idea but the proposed combination, especially the chosen operating conditions (temperature bentonite sludge provided by Soletanche Bachy Company. Experiment showed that the extent of TAMD for a given material is particularly dependent on their physical and chemical properties but also on processing parameters.

  10. Nonmotor Features in Atypical Parkinsonism.

    Science.gov (United States)

    Bhatia, Kailash P; Stamelou, Maria

    2017-01-01

    Atypical parkinsonism (AP) comprises mainly multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which are distinct pathological entities, presenting with a wide phenotypic spectrum. The classic syndromes are now called MSA-parkinsonism (MSA-P), MSA-cerebellar type (MSA-C), Richardson's syndrome, and corticobasal syndrome. Nonmotor features in AP have been recognized almost since the initial description of these disorders; however, research has been limited. Autonomic dysfunction is the most prominent nonmotor feature of MSA, but also gastrointestinal symptoms, sleep dysfunction, and pain, can be a feature. In PSP and CBD, the most prominent nonmotor symptoms comprise those deriving from the cognitive/neuropsychiatric domain. Apart from assisting the clinician in the differential diagnosis with Parkinson's disease, nonmotor features in AP have a big impact on quality of life and prognosis of AP and their treatment poses a major challenge for clinicians. © 2017 Elsevier Inc. All rights reserved.

  11. Screening for Ocular Surface Squamous Neoplasia (OSSN by Slit-lamp Assisted Visual Inspection (SAVI following a short course of mild topical steroid-test qualities

    Directory of Open Access Journals (Sweden)

    E. Katsekera

    2014-08-01

    Results: Total number of patients with conjunctival growths screened by visual inspection was 119, with median age of 42 years and a range of 18 to 90 years and gender ratio of 1:1.9 in favour of females. There was no significant age difference between confirmed OSSN patients and non-OSSN (pterygia and the p-value was 0.617. Sensitivity and specificity of visual inspection in diagnosing OSSN when compared to histology were 94.3% and 74.2% respectively, with a positive predictive value of 74.6%. Histology reports indicated that 24.5% of OSSN specimens seen actually arose from pterygia. Conclusions: Slit lamp assisted visual inspection (SAVI is an accurate method of clinically diagnosing OSSN and can be recommended for use in resource limited settings with hard to access histopathological services.

  12. Forming Intermediate Phase on the Surface of PbI2Precursor Films by Short-Time DMSO Treatment for High-Efficiency Planar Perovskite Solar Cells via Vapor-Assisted Solution Process.

    Science.gov (United States)

    Chen, Haibin; Ding, Xihong; Xu, Pan; Hayat, Tasawar; Alsaedi, Ahmed; Yao, Jianxi; Ding, Yong; Dai, Songyuan

    2018-01-17

    Morphology regulation is vital to obtain high-performance perovskite films. Vapor-assisted deposition provides a simple approach to prepare perovskite films with controlled vapor-solid reaction. However, dense PbI 2 precursor films with large crystal grains make it difficult for organic molecules to diffuse and interact with inner PbI 2 frame. Here, a surface modification process is developed to optimize the surface layer morphology of PbI 2 precursor films and lower the resistance of the induced period in crystallization. The vapor optimization time is shortened to several seconds, and the intermediate phase forms on the surface layer of PbI 2 films. We achieve porous PbI 2 surface with smaller grains through dimethyl sulfoxide vapor treatment, which promotes the migration and reaction rate between CH 3 NH 3 I vapor and PbI 2 layer. The PbI 2 precursor films undergo dramatic morphological evolution due to the formed intermediate phase on PbI 2 surface layer. Taking advantage of the proposed surface modification process, we achieve high-quality uniform perovskite films with larger crystal grains and without residual PbI 2 . The repeatable perovskite solar cells (PSCs) with modified films exhibit power conversion efficiency of up to 18.43% for planar structure. Moreover, the devices show less hysteresis because of improved quality and reduced defect states of the films. Our work expands the application of morphology control through forming intermediate phase and demonstrates an effective way to enhance the performance of the PSCs.

  13. Enhanced photo-assistant electrocatalysis of anodization TiO2 nanotubes via surrounded surface decoration with MoS2 for hydrogen evolution reaction

    Science.gov (United States)

    Tian, Yuanyuan; Song, Ye; Dou, Meiling; Ji, Jing; Wang, Feng

    2018-03-01

    A highly ordered TiO2 nanotube array covered with MoS2 is fabricated through a facile anodization of a metallic Ti followed by electrochemical deposition approach. The morphologies characterization of v-TiO2@MoS2 indicate that a whole scale of 1D TiO2nanotube uniformly covered with the MoS2 layer inside and outside, and the pathway inside the TiO2nanotube is kept flow-through. The as-synthesized v-TiO2@MoS2 hybrid exhibits higher efficient and stable visible light activities than that of either pure TiO2 nanotubes or nv-TiO2@MoS2 nanostructures. By electrochemical measurements such as linear sweep voltammetry(LSV) and electrochemical impedance spectroscope (EIS) under light illumination or in dark, we find that the v-TiO2@MoS2hybrid shows markedly enhanced photoelectrochemical performance. Furthermore, we compare the electrocatalytic behavior of v-TiO2@MoS2under illumination in H2SO4/Lactic acid within Na2S/NaSO3 solution. The results show that the photo-assistant electrocatalytic activity in acidic environment is much better than in alkaline environment. The highly directional and orthogonal separation of charge carriers between TiO2 nanotubes and MoS2 layer, together with maximally exposed MoS2 edges, light harvesting and junctions formed between TiO2 and MoS2 is supposed to be mainly responsible for the enhanced photo-assistant electrocatalytic activity of v-TiO2@MoS2.

  14. Surface decontamination

    International Nuclear Information System (INIS)

    Silva, S. da; Teixeira, M.V.

    1986-06-01

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.) [pt

  15. Tailoring surface and photocatalytic properties of ZnO and nitrogen-doped ZnO nanostructures using microwave-assisted facile hydrothermal synthesis

    Science.gov (United States)

    Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.

    2017-08-01

    Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.

  16. Impact of self-assembled monolayer assisted surface dipole modulation of PET substrate on the quality of RF-sputtered AZO film

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Thieu Thi Tien [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Faculty of Chemical Engineering and Food Technology, Ba Ria-Vung Tau University, Vung Tau (Viet Nam); Mahesh, K.P.O. [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lin, Pao-Hung [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Tai, Yian, E-mail: ytai@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2017-05-01

    Highlights: • We use SAMs functionalizing the PET substrates to generate different surface dipoles. • We deposited AZO film on pristine and SAMs-modified PET substrate. • The positive dipole moment of PET surface promotes the crystallinity of AZO film. • The negative dipole moment of PET surface deteriorates the crystallinity of AZO film. • The electrical properties of AZO/PET changes upon the variation of the crystallinity. - Abstract: In this study, we fabricated the electron donating/withdrawing group functionalized organosilane self-assembled monolayers (SAMs) on transparent polyethylene terephthalate (PET) flexible substrate followed by the deposition of aluminum doped zinc oxide (AZO) using RF magnetron sputtering at room temperature. The effect of different SAMs on transparent PET substrates and AZO films were studied by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray diffraction (XRD), Field-Emission scanning electron microscope (FE-SEM), Hall measurement and UV–vis spectroscopy (UV–vis). The results presented that the surface dipole (i.e. electron-donating/withdrawing) of different SAMs functionalized PET substrates affected the quality of the AZO films which deposited on top of them. The crystallinity, the charge mobility, and the carrier concentration of the AZO improved when the film was deposited on the PET functionalized with electron donating group, which was possibly due to favored interaction between electron donating group and Al ions.

  17. Impact of self-assembled monolayer assisted surface dipole modulation of PET substrate on the quality of RF-sputtered AZO film

    International Nuclear Information System (INIS)

    Vo, Thieu Thi Tien; Mahesh, K.P.O.; Lin, Pao-Hung; Tai, Yian

    2017-01-01

    Highlights: • We use SAMs functionalizing the PET substrates to generate different surface dipoles. • We deposited AZO film on pristine and SAMs-modified PET substrate. • The positive dipole moment of PET surface promotes the crystallinity of AZO film. • The negative dipole moment of PET surface deteriorates the crystallinity of AZO film. • The electrical properties of AZO/PET changes upon the variation of the crystallinity. - Abstract: In this study, we fabricated the electron donating/withdrawing group functionalized organosilane self-assembled monolayers (SAMs) on transparent polyethylene terephthalate (PET) flexible substrate followed by the deposition of aluminum doped zinc oxide (AZO) using RF magnetron sputtering at room temperature. The effect of different SAMs on transparent PET substrates and AZO films were studied by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray diffraction (XRD), Field-Emission scanning electron microscope (FE-SEM), Hall measurement and UV–vis spectroscopy (UV–vis). The results presented that the surface dipole (i.e. electron-donating/withdrawing) of different SAMs functionalized PET substrates affected the quality of the AZO films which deposited on top of them. The crystallinity, the charge mobility, and the carrier concentration of the AZO improved when the film was deposited on the PET functionalized with electron donating group, which was possibly due to favored interaction between electron donating group and Al ions.