Sample records for surface faulting events

  1. Control Surface Fault Diagnosis with Specified Detection Probability - Real Event Experiences

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens


    Diagnosis of actuator faults is crucial for aircraft since loss of actuation can have catastrophic consequences. For autonomous aircraft the steps necessary to achieve fault tolerance is limited when only basic and non-redundant sensor and actuators suites are present. Through diagnosis...... that exploits analytical redundancies it is, nevertheless, possible to cheaply enhance the level of safety. This paper presents a method for diagnosing control surface faults by using basic sensors and hardware available on an autonomous aircraft. The capability of fault diagnosis is demonstrated obtaining...... false alarm probability. A data based method is used to determine the validity of the methods proposed. Verification is achieved using real data and shows that the presented diagnosis method is efficient and could have avoided incidents where faults led to loss of aircraft....

  2. Fault detection based on microseismic events (United States)

    Yin, Chen


    In unconventional reservoirs, small faults allow the flow of oil and gas as well as act as obstacles to exploration; for, (1) fracturing facilitates fluid migration, (2) reservoir flooding, and (3) triggering of small earthquakes. These small faults are not generally detected because of the low seismic resolution. However, such small faults are very active and release sufficient energy to initiate a large number of microseismic events (MEs) during hydraulic fracturing. In this study, we identified microfractures (MF) from hydraulic fracturing and natural small faults based on microseismicity characteristics, such as the time-space distribution, source mechanism, magnitude, amplitude, and frequency. First, I identified the mechanism of small faults and MF by reservoir stress analysis and calibrated the ME based on the microseismic magnitude. The dynamic characteristics (frequency and amplitude) of MEs triggered by natural faults and MF were analyzed; moreover, the geometry and activity types of natural fault and MF were grouped according to the source mechanism. Finally, the differences among time-space distribution, magnitude, source mechanism, amplitude, and frequency were used to differentiate natural faults and manmade fractures.

  3. Geotechnical Extreme Events Reconnaissance Report on the Performance of Structures in Densely Urbanized Areas Affected by Surface Fault Rupture During the August 24, 2014 M6 South Napa Earthquake, California, USA. (United States)

    Cohen-Waeber, J.; Lanzafame, R.; Bray, J.; Sitar, N.


    The August 24, 2014, M­w 6.0 South Napa earthquake is the largest seismic event to have occurred in the San Francisco Bay Region, California, USA, since the Mw 6.9 1989 Loma Prieta earthquake. The event epicenter occurred at the South end of the Napa Valley, California, principally rupturing northwest along parts of the active West Napa fault zone. Bound by two major fault zones to the East and West (Calaveras and Rogers Creek, respectively), the Napa Valley is filled with up to 170 m. of alluvial deposits and is considered to be moderately to very highly susceptible to liquefaction and has the potential for violent shaking. While damage due to strong ground shaking was significant, remarkably little damage due to liquefaction or landslide induced ground deformations was observed. This may be due to recent drought in the region. Instead, the South Napa earthquake is the first to produce significant surface rupture in this area since the Mw 7.9 1906 San Andreas event, and the first in Northern California to rupture through a densely urbanized environment. Clear expressions of surface fault rupture extended approximately 12 - 15 km northward from the epicenter and approximately 1-2 km southeast with a significant impact to infrastructure, including roads, lifelines and residential structures. The National Science Foundation funded Geotechnical Extreme Events Reconnaissance (GEER) Association presents here its observations on the performance of structures affected by surface fault rupture, in a densely populated residential neighborhood located approximately 10 km north of the epicenter. Based on the detailed mapping of 27 residential structures, a preliminary assessment of the quantitative descriptions of damage shows certain characteristic interactions between surface fault rupture and the overlying infrastructure: 48% of concrete slabs cracked up to 8 cm wide, 19% of structures shifted up to 11 cm off of their foundation and 44% of foundations cracked up to 3 cm

  4. Towards self-tuning residual generators for UAV control surface fault diagnosis

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren


    Control surface fault diagnosis is essential for timely detection of manoeuvring and stability risks for an unmanned aircraft. Timely detection is crucial since control surface related faults impact stability of flight and safety. Reliable diagnosis require well fitting dynamical models but with ...... flights with different members of a population of UAVs that have inherent model uncertainty from one member to another and from one flight to another. Events with actual faults on control surfaces demonstrates the efficacy of the approach....

  5. Rare event simulation for dynamic fault trees

    NARCIS (Netherlands)

    Ruijters, Enno Jozef Johannes; Reijsbergen, D.P.; de Boer, Pieter-Tjerk; Stoelinga, Mariëlle Ida Antoinette


    Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of

  6. Rare Event Simulation for Dynamic Fault Trees

    NARCIS (Netherlands)

    Ruijters, Enno Jozef Johannes; Reijsbergen, D.P.; de Boer, Pieter-Tjerk; Stoelinga, Mariëlle Ida Antoinette; Tonetta, Stefano; Schoitsch, Erwin; Bitsch, Friedemann


    Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of

  7. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han


    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  8. Simulating spontaneous aseismic and seismic slip events on evolving faults (United States)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras


    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare

  9. Timing of Late Holocene surface rupture of the Wairau Fault, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    Zachariasen, J.; Berryman, K.R.; Langridge, R.M.; Prentice, C.; Rymer, M.; Stirling, M.W.; Villamor, P.


    Three trenches excavated across the central portion of the right-lateral strike-slip Wairau Fault in South Island, New Zealand, exposed a complex set of fault strands that have displaced a sequence of late Holocene alluvial and colluvial deposits. Abundant charcoal fragments provide age control for various stratigraphic horizons dating back to c. 5610 yr ago. Faulting relations from the Wadsworth trench show that the most recent surface rupture event occurred at least 1290 yr and at most 2740 yr ago. Drowned trees in landslide-dammed Lake Chalice, in combination with charcoal from the base of an unfaulted colluvial wedge at Wadsworth trench, suggest a narrower time bracket for this event of 1811-2301 cal. yr BP. The penultimate faulting event occurred between c. 2370 and 3380 yr, and possibly near 2680 ± 60 cal. yr BP, when data from both the Wadsworth and Dillon trenches are combined. Two older events have been recognised from Dillon trench but remain poorly dated. A probable elapsed time of at least 1811 yr since the last surface rupture, and an average slip rate estimate for the Wairau Fault of 3-5 mm/yr, suggests that at least 5.4 m and up to 11.5 m of elastic shear strain has accumulated since the last rupture. This is near to or greater than the single-event displacement estimates of 5-7 m. The average recurrence interval for surface rupture of the fault determined from the trench data is 1150-1400 yr. Although the uncertainties in the timing of faulting events and variability in inter-event times remain high, the time elapsed since the last event is in the order of 1-2 times the average recurrence interval, implying that the Wairau Fault is near the end of its interseismic period. (author). 44 refs., 10 figs., 1 tab

  10. Seismic hazard in low slip rate crustal faults, estimating the characteristic event and the most hazardous zone: study case San Ramón Fault, in southern Andes (United States)

    Estay, Nicolás P.; Yáñez, Gonzalo; Carretier, Sebastien; Lira, Elias; Maringue, José


    Crustal faults located close to cities may induce catastrophic damages. When recurrence times are in the range of 1000-10 000 or higher, actions to mitigate the effects of the associated earthquake are hampered by the lack of a full seismic record, and in many cases, also of geological evidences. In order to characterize the fault behavior and its effects, we propose three different already-developed time-integration methodologies to define the most likely scenarios of rupture, and then to quantify the hazard with an empirical equation of peak ground acceleration (PGA). We consider the following methodologies: (1) stream gradient and (2) sinuosity indexes to estimate fault-related topographic effects, and (3) gravity profiles across the fault to identify the fault scarp in the basement. We chose the San Ramón Fault on which to apply these methodologies. It is a ˜ 30 km N-S trending fault with a low slip rate (0.1-0.5 mm yr-1) and an approximated recurrence of 9000 years. It is located in the foothills of the Andes near the large city of Santiago, the capital of Chile (> 6 000 000 inhabitants). Along the fault trace we define four segments, with a mean length of ˜ 10 km, which probably become active independently. We tested the present-day seismic activity by deploying a local seismological network for 1 year, finding five events that are spatially related to the fault. In addition, fault geometry along the most evident scarp was imaged in terms of its electrical resistivity response by a high resolution TEM (transient electromagnetic) profile. Seismic event distribution and TEM imaging allowed the constraint of the fault dip angle (˜ 65°) and its capacity to break into the surface. Using the empirical equation of Chiou and Youngs (2014) for crustal faults and considering the characteristic seismic event (thrust high-angle fault, ˜ 10 km, Mw = 6.2-6.7), we estimate the acceleration distribution in Santiago and the hazardous zones. City domains that are under

  11. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy (United States)

    Falcucci, E.; Gori, S.


    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  12. Historic Surface Rupture Informing Probabilistic Fault Displacement Analysis: New Zealand Case Studies (United States)

    Villamor, P.; Litchfield, N. J.; Van Dissen, R. J.; Langridge, R.; Berryman, K. R.; Baize, S.


    Surface rupture associated with the 2010 Mw7.1 Darfield Earthquake (South Island, New Zealand) was extremely well documented, thanks to an immediate field mapping response and the acquisition of LiDAR data within days of the event. With respect to informing Probabilistic Fault Displacement Analysis (PFDHA) the main insights and outcomes from this rupture through Quaternary gravel are: 1) significant distributed deformation either side of the main trace (30 to 300 m wide deformation zone) and how the deformation is distributed away from the main trace; 2) a thorough analysis of uncertainty of the displacement measures obtained using the LIDAR data and repeated measurements from several scientists; and 3) the short surface rupture length for the reported magnitude, resulting from complex fault rupture with 5-6 reverse and strike-slip strands, most of which had no surface rupture. While the 2010 event is extremely well documented and will be an excellent case to add to the Surface Rupture during Earthquakes database (SURE), other NZ historical earthquakes that are not so well documented, but can provide important information for PFDHA. New Zealand has experienced about 10 historical surface fault ruptures since 1848, comprising ruptures on strike-slip, reverse and normal faults. Mw associated with these ruptures ranges between 6.3 and 8.1. From these ruptures we observed that the surface expression of deformation can be influenced by: fault maturity; the type of Quaternary sedimentary cover; fault history (e.g., influence of inversion tectonics, flexural slip); fault complexity; and primary versus secondary rupture. Other recent >Mw 6.6 earthquakes post-2010 that did not rupture the ground surface have been documented with InSAR and can inform Mw thresholds for surface fault rupture. It will be important to capture all this information and that of similar events worldwide to inform the SURE database and ultimately PFDHA.

  13. Wavelet Packet based Detection of Surface Faults on Compact Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Wickerhauser, Mladen Victor


    In this paper the detection of faults on the surface of a compact disc is addressed. Surface faults like scratches and fingerprints disturb the on-line measurement of the pick-up position relative to the track. This is critical since the pick-up is focused on and tracked at the information track...... based on these measurements. A precise detection of the surface fault is a prerequisite to a correct handling of the faults in order to protect the pick-up of the compact disc player from audible track losses. The actual fault handling which is addressed in other publications can be carried out...... by the use of dedicated filters adapted to remove the faults from the measurements. In this paper detection using wavelet packet filters is demonstrated. The filters are designed using the joint best basis method. Detection using these filters shows a distinct improvement compared to detection using ordinary...

  14. Probability intervals for the top event unavailability of fault trees

    International Nuclear Information System (INIS)

    Lee, Y.T.; Apostolakis, G.E.


    The evaluation of probabilities of rare events is of major importance in the quantitative assessment of the risk from large technological systems. In particular, for nuclear power plants the complexity of the systems, their high reliability and the lack of significant statistical records have led to the extensive use of logic diagrams in the estimation of low probabilities. The estimation of probability intervals for the probability of existence of the top event of a fault tree is examined. Given the uncertainties of the primary input data, a method is described for the evaluation of the first four moments of the top event occurrence probability. These moments are then used to estimate confidence bounds by several approaches which are based on standard inequalities (e.g., Tchebycheff, Cantelli, etc.) or on empirical distributions (the Johnson family). Several examples indicate that the Johnson family of distributions yields results which are in good agreement with those produced by Monte Carlo simulation



    Takashi, NAKATA; Kiyoshi, YOMOGIDA; Professor, Department of Geography, Hiroshima University:Associate Professor, Department of Earth and Planetary Systems Science, Hiroshima University; Professor, Department of Geography, Hiroshima University:Associate Professor, Department of Earth and Planetary Systems Science, Hiroshima University


    Distinctive ruptures in the surface faulting that generated the destructive 1995 Hyogoken-nambu earthquake (Ms = 7.2) appeared along the Nojima fault, an active fault on the northwestern coast of Awaji Island, Japan. These surface fault ruptures extend continuously southwestward for 10 km from Ezaki lighthouse, near the epicenter to Toshima Town in Hokudan, and display prominent right-lateral off-sets of roads, paddy dikes and so on of 1.9 m maximum with vertical displacement of 1.2 m maximum...

  16. Fault type predictions from stress distributions on planetary surfaces - Importance of fault initiation depth (United States)

    Golombek, M. P.


    The prediction of fault type on planetary surfaces from model stresses calculated at depth is discussed. These fault-type predictions yield different faults than those predicted using the surface criteria commonly employed in geophysical models. For elastic-plate flexure models of mascon loading on the moon, stresses calculated at the surface predict the occurrence of strike-slip faulting at the radial distance where grabens are found. Normal faults bounding lunar grabens and thrust faults responsible for wrinkle ridges are analyzed. It is found that the former initiate at the mechanical discontinuity that separates the breccia of the megaregolith from in situ fractured rock and that the latter initiate at the mechanical discontinuity between basalt layers and the underlying basin floor. The difference between elastic constants for the outer few kilometers of brecciated megaregolith and the underlying lunar lithosphere are evaluated. Superposing nonisotropic stresses resulting from the weight of overburden to the depth of the relevant mechanical discontinuity yield stresses that predict wrinkle ridges in the basin centers and grabens outside the basin margin, and eliminate the predicted zone of strike-slip faults.

  17. Near-surface fault detection by migrating back-scattered surface waves with and without velocity profiles

    KAUST Repository

    Yu, Han


    We demonstrate that diffraction stack migration can be used to discover the distribution of near-surface faults. The methodology is based on the assumption that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. We first isolate the back-scattered surface waves by muting or FK filtering, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. We have also proposed a natural migration method that utilizes the intrinsic traveltime property of the direct and the back-scattered waves at faults. For the synthetic data sets and the land data collected in Aqaba, where surface wave velocity has unexpected perturbations, we migrate the back-scattered surface waves with both predicted velocity profiles and natural Green\\'s function without velocity information. Because the latter approach avoids the need for an accurate velocity model in event summation, both the prestack and stacked migration images show competitive quality. Results with both synthetic data and field records validate the feasibility of this method. We believe applying this method to global or passive seismic data can open new opportunities in unveiling tectonic features.

  18. Simultaneous Event-Triggered Fault Detection and Estimation for Stochastic Systems Subject to Deception Attacks

    Directory of Open Access Journals (Sweden)

    Yunji Li


    Full Text Available In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.

  19. Simultaneous Event-Triggered Fault Detection and Estimation for Stochastic Systems Subject to Deception Attacks. (United States)

    Li, Yunji; Wu, QingE; Peng, Li


    In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.

  20. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.


    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  1. Treatment of complementary events in constructing the linked Level 1 and Level 2 fault trees

    International Nuclear Information System (INIS)

    Jo, Young G.; Ahn, Kwang-Il


    Complementary events in the event trees for a PRA model should be treated properly in order to evaluate plant risk correctly. In this paper, the characteristics of the following three different cutset generation methods were investigated first in order to find the best practical way for treating complementary events: (1) exact method which treats complementary events logically, (2) no-delete term method which does not treat complementary events at all, and (3) delete term method which treats complementary events by deleting nonsense cutsets which are generated as a result of ignoring complementary events. Then, practical methods for treating complementary events in constructing linked fault trees for Level 1 and Level 2 PRA were suggested and demonstrated. The suggested methods deal with the following selected four typical cases: (1) Case 1-an event tree event (E) is represented by a fault tree gate whose inputs consist of only fault tree gates, (2) Case 2-E is represented by a single basic event, (3) Case 3-E is represented by an OR fault tree gate which has a single basic event and a fault tree gate as inputs, and (4) Case 4-E is represented by an AND fault tree gate which has a single basic event and a fault tree gate as inputs. In the suggested methods, first the high level logic structures of event tree events are examined and restructured, if needed. Then, the delete term method, the exact method, and the combination of the two methods are applied to through Case 1 to Case 4, respectively. As a result, it is recommended to treat complementary events, using the suggested methods, before Level 1 and Level 2 PRA fault trees are coupled

  2. Fracture surface energy of the Punchbowl fault, San Andreas system. (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K


    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  3. A Method to Quantify Plant Availability and Initiating Event Frequency Using a Large Event Tree, Small Fault Tree Model

    International Nuclear Information System (INIS)

    Kee, Ernest J.; Sun, Alice; Rodgers, Shawn; Popova, ElmiraV; Nelson, Paul; Moiseytseva, Vera; Wang, Eric


    South Texas Project uses a large fault tree to produce scenarios (minimal cut sets) used in quantification of plant availability and event frequency predictions. On the other hand, the South Texas Project probabilistic risk assessment model uses a large event tree, small fault tree for quantifying core damage and radioactive release frequency predictions. The South Texas Project is converting its availability and event frequency model to use a large event tree, small fault in an effort to streamline application support and to provide additional detail in results. The availability and event frequency model as well as the applications it supports (maintenance and operational risk management, system engineering health assessment, preventive maintenance optimization, and RIAM) are briefly described. A methodology to perform availability modeling in a large event tree, small fault tree framework is described in detail. How the methodology can be used to support South Texas Project maintenance and operations risk management is described in detail. Differences with other fault tree methods and other recently proposed methods are discussed in detail. While the methods described are novel to the South Texas Project Risk Management program and to large event tree, small fault tree models, concepts in the area of application support and availability modeling have wider applicability to the industry. (authors)

  4. Surface rupturing earthquakes repeated in the 300 years along the ISTL active fault system, central Japan (United States)

    Katsube, Aya; Kondo, Hisao; Kurosawa, Hideki


    Surface rupturing earthquakes produced by intraplate active faults generally have long recurrence intervals of a few thousands to tens of thousands of years. We here report the first evidence for an extremely short recurrence interval of 300 years for surface rupturing earthquakes on an intraplate system in Japan. The Kamishiro fault of the Itoigawa-Shizuoka Tectonic Line (ISTL) active fault system generated a Mw 6.2 earthquake in 2014. A paleoseismic trench excavation across the 2014 surface rupture showed the evidence for the 2014 event and two prior paleoearthquakes. The slip of the penultimate earthquake was similar to that of 2014 earthquake, and its timing was constrained to be after A.D. 1645. Judging from the timing, the damaged area, and the amount of slip, the penultimate earthquake most probably corresponds to a historical earthquake in A.D. 1714. The recurrence interval of the two most recent earthquakes is thus extremely short compared with intervals on other active faults known globally. Furthermore, the slip repetition during the last three earthquakes is in accordance with the time-predictable recurrence model rather than the characteristic earthquake model. In addition, the spatial extent of the 2014 surface rupture accords with the distribution of a serpentinite block, suggesting that the relatively low coefficient of friction may account for the unusually frequent earthquakes. These findings would affect long-term forecast of earthquake probability and seismic hazard assessment on active faults.

  5. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates. (United States)

    Ikari, Matt J; Kopf, Achim J


    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected.

  6. Detecting tangential dislocations on planar faults from traction free surface observations

    International Nuclear Information System (INIS)

    Ionescu, Ioan R; Volkov, Darko


    We propose in this paper robust reconstruction methods for tangential dislocations on planar faults. We assume that only surface observations are available, and that a traction free condition applies at that surface. This study is an extension to the full three dimensions of Ionescu and Volkov (2006 Inverse Problems 22 2103). We also explore in this present paper the possibility of detecting slow slip events (such as silent earthquakes, or earthquake nucleation phases) from GPS observations. Our study uses extensively an asymptotic estimate for the observed surface displacement. This estimate is first used to derive what we call the moments reconstruction method. Then it is also used for finding necessary conditions for a surface displacement field to have been caused by a slip on a fault. These conditions lead to the introduction of two parameters: the activation factor and the confidence index. They can be computed from the surface observations in a robust fashion. They indicate whether a measured displacement field is due to an active fault. We also infer a second, combined, reconstruction technique blending least square minimization and the moments method. We carefully assess how our reconstruction method is affected by the sensitivity of the observation apparatus and the stepsize for the grid of surface observation points. The maximum permissible stepsize for such a grid is computed for different values of fault depth and orientation. Finally we present numerical examples of reconstruction of faults. We demonstrate that our combined method is sharp, robust and computationally inexpensive. We also note that this method performs satisfactorily for shallow faults, despite the fact that our asymptotic formula deteriorates in that case

  7. A Revision of Mars Seismicity from Surface Faulting (United States)

    Golombek, M. P.


    The seismic moment release of Mars is estimated from slip on faults visible on the surface through time and calibrated by the number of marsquakes expected throughout the lithosphere. Results indicate Mars is presently seismically active and a promising prospect for future seismic investigations.

  8. Unified law of evolution of experimental gouge-filled fault for fast and slow slip events at slider frictional experiments (United States)

    Ostapchuk, Alexey; Saltykov, Nikolay


    Excessive tectonic stresses accumulated in the area of rock discontinuity are released while a process of slip along preexisting faults. Spectrum of slip modes includes not only creeps and regular earthquakes but also some transitional regimes - slow-slip events, low-frequency and very low-frequency earthquakes. However, there is still no agreement in Geophysics community if such fast and slow events have mutual nature [Peng, Gomberg, 2010] or they present different physical phenomena [Ide et al., 2007]. Models of nucleation and evolution of fault slip events could be evolved by laboratory experiments in which regularities of shear deformation of gouge-filled fault are investigated. In the course of the work we studied deformation regularities of experimental fault by slider frictional experiments for development of unified law of evolution of fault and revelation of its parameters responsible for deformation mode realization. The experiments were conducted as a classic slider-model experiment, in which block under normal and shear stresses moves along interface. The volume between two rough surfaces was filled by thin layer of granular matter. Shear force was applied by a spring which deformed with a constant rate. In such experiments elastic energy was accumulated in the spring, and regularities of its releases were determined by regularities of frictional behaviour of experimental fault. A full spectrum of slip modes was simulated in laboratory experiments. Slight change of gouge characteristics (granule shape, content of clay), viscosity of interstitial fluid and level of normal stress make it possible to obtained gradual transformation of the slip modes from steady sliding and slow slip to regular stick-slip, with various amplitude of 'coseismic' displacement. Using method of asymptotic analogies we have shown that different slip modes can be specified in term of single formalism and preparation of different slip modes have uniform evolution law. It is shown

  9. Slip Rates, Recurrence Intervals and Earthquake Event Magnitudes for the southern Black Mountains Fault Zone, southern Death Valley, California (United States)

    Fronterhouse Sohn, M.; Knott, J. R.; Bowman, D. D.


    The normal-oblique Black Mountain Fault zone (BMFZ) is part of the Death Valley fault system. Strong ground-motion generated by earthquakes on the BMFZ poses a serious threat to the Las Vegas, NV area (pop. ~1,428,690), the Death Valley National Park (max. pop. ~20,000) and Pahrump, NV (pop. 30,000). Fault scarps offset Holocene alluvial-fan deposits along most of the 80-km length of the BMFZ. However, slip rates, recurrence intervals, and event magnitudes for the BMFZ are poorly constrained due to a lack of age control. Also, Holocene scarp heights along the BMFZ range from 6 m suggesting that geomorphic sections have different earthquake histories. Along the southernmost section, the BMFZ steps basinward preserving three post-late Pleistocene fault scarps. Surveys completed with a total station theodolite show scarp heights of 5.5, 5.0 and 2 meters offsetting the late Pleistocene, early to middle Holocene, to middle-late Holocene surfaces, respectively. Regression plots of vertical offset versus maximum scarp angle suggest event ages of <10 - 2 ka with a post-late Pleistocene slip rate of 0.1mm/yr to 0.3 mm/yr and recurrence of <3300 years/event. Regression equations for the estimated geomorphically constrained rupture length of the southernmost section and surveyed event displacements provides estimated moment magnitudes (Mw) between 6.6 and 7.3 for the BMFZ.

  10. A prediction of mars seismicity from surface faulting (United States)

    Golombek, M.P.; Banerdt, W.B.; Tanaka, K.L.; Tralli, D.M.


    The shallow seismicity of Mars has been estimated by measurement of the total slip on faults visible on the surface of the planet throughout geologic time. Seismicity was calibrated with estimates based on surface structures on the moon and measured lunar seismicity that includes the entire seismogenic lithosphere. Results indicate that Mars is seismically active today, with a sufficient number of detectable marsquakes to allow seismic investigations of its interior.

  11. Dynamic surface fault tolerant control for underwater remotely operated vehicles. (United States)

    Baldini, Alessandro; Ciabattoni, Lucio; Felicetti, Riccardo; Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea


    In this paper, we present a two stages actuator Fault Tolerant Control (FTC) strategy for the trajectory tracking of a Remotely Operated Vehicle (ROV). Dynamic Surface Control (DSC) is used to generate the moment and forces required by the vehicle to perform the desired motion. In the second stage of the control system, a fault tolerant thruster allocation policy is employed to distribute moment and forces among the thrusters. Exhaustive simulations have been carried out in order to compare the performance of the proposed solution with respect to different control techniques (i.e., PID, backstepping and sliding mode approaches). Saturations, actuator dynamics, sensor noises and time discretization are considered, in fault-free and faulty conditions. Furthermore, in order to provide a fair and exhaustive comparison of the control techniques, the same meta-heuristic approach, namely Artificial Bee Colony algorithm (ABC), has been employed to tune the controllers parameters. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Control Surface Fault Diagnosis for Small Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren; Blanke, Mogens


    Small unmanned aerial vehicles require a large degree of fault-tolerance in order to fulfil their duties in an satisfactory way, both with respect to economy and safety in operation. Small aerial vehicles are commonly constructed without much redundancy in hardware, primarily for reasons of cost...... on hardware or are analytical, and formulates residuals from which faults can be prognosed or diagnosed. An approach is suggested where detailed modelling is not needed but normal behaviour is learned from short segments of flight data using adaptive methods for learning. Statistical characterisation...... of distributions and change detection methods are employed to reach decisions about not-normal behaviour and it is shown how control surface faults can be diagnosed for a specific UAV without adding additional hardware to the platform. Only telemetry data from the aircraft is used together with a basic model...

  13. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany (United States)

    Kübler, Simon; Friedrich, Anke M.; Gold, Ryan D.; Strecker, Manfred R.


    Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake ( M L 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault

  14. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event (United States)

    Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping


    Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.

  15. Feature-based handling of surface faults in compact disc players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle


    In this paper a novel method called feature-based control is presented. The method is designed to improve compact disc players’ handling of surface faults on the discs. The method is based on a fault-tolerant control scheme, which uses extracted features of the surface faults to remove those from...... the detector signals used for control during the occurrence of surface faults. The extracted features are coefficients of Karhunen–Loève approximations of the surface faults. The performance of the feature-based control scheme controlling compact disc players playing discs with surface faults has been...... validated experimentally. The proposed scheme reduces the control errors due to the surface faults, and in some cases where the standard fault handling scheme fails, our scheme keeps the CD-player playing....

  16. Trust Index Based Fault Tolerant Multiple Event Localization Algorithm for WSNs

    Directory of Open Access Journals (Sweden)

    Jian Wan


    Full Text Available This paper investigates the use of wireless sensor networks for multiple event source localization using binary information from the sensor nodes. The events could continually emit signals whose strength is attenuated inversely proportional to the distance from the source. In this context, faults occur due to various reasons and are manifested when a node reports a wrong decision. In order to reduce the impact of node faults on the accuracy of multiple event localization, we introduce a trust index model to evaluate the fidelity of information which the nodes report and use in the event detection process, and propose the Trust Index based Subtract on Negative Add on Positive (TISNAP localization algorithm, which reduces the impact of faulty nodes on the event localization by decreasing their trust index, to improve the accuracy of event localization and performance of fault tolerance for multiple event source localization. The algorithm includes three phases: first, the sink identifies the cluster nodes to determine the number of events occurred in the entire region by analyzing the binary data reported by all nodes; then, it constructs the likelihood matrix related to the cluster nodes and estimates the location of all events according to the alarmed status and trust index of the nodes around the cluster nodes. Finally, the sink updates the trust index of all nodes according to the fidelity of their information in the previous reporting cycle. The algorithm improves the accuracy of localization and performance of fault tolerance in multiple event source localization. The experiment results show that when the probability of node fault is close to 50%, the algorithm can still accurately determine the number of the events and have better accuracy of localization compared with other algorithms.

  17. Fault Detection in Surface PMSM with Applications to Heavy Hybrid Vehicles


    Johnson, Scott; Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve


    This report explores detecting inter-turn short circuit (ITSC) faults in surface permanent magnet synchronous machines (SPMSM). ITSC faults are caused by electrical insulation failures in the stator windings and can lead to shorts to ground and even fires. This report proposes methods for detecting these faults using a moving horizon observer (MHO) to reduce the chance of electrical shocks and fires. Specifically, this report constructs a MHO for ITSC fault detection in SPMSM. ITSC fault t...

  18. Microtopographic evolution of mineral surfaces as a tool to identify and date young fault scarps in bedrock (United States)

    Mayer, Larry; Rakovan, John; Rufe, Eric


    Faulting that results in surface ruptures through bedrock can be particularly difficult to date. For example, stratigraphic control on the age of faulting, based on the age of the bedrock, often leaves unacceptably large uncertainty on the age of the faulting. From a paleoseismological perspective, there is a clear need to determine if a bedrock fault scarp is actually a young feature. For young fault ruptures that create fresh mineral surfaces, analysis of microtopography developed by weathering of the mineral surface may provide a quantifiable method for determining the fault age. The direct quantitative measurement of mineral surface microtopography using Atomic Force Microscopy affords a novel method to study the rupture ages of active faults. The method for using microtopographic evolution of mineral surfaces depends on three conditions. The first condition is that freshly exposed mineral cleavage surfaces, which can be described geometrically as planes, are formed during a rupture event. The formation of these fresh surfaces is analogous to the initiation of a weathering 'clock' that defines time t=0. Following cleavage formation dissolution of the planar mineral surface occurs. The rate of dissolution for a mineral species under given climatic conditions, governs the rate of mineral surface alteration. Thus as dissolution proceeds, the roughness of the mineral surface increases. We suggest that the progression of microtopographic roughness over time, which can be estimated by computing quantitative statistics derived from digital mineral surface topography, will systematically vary until a steady state surface topography is reached. The fractal dimension, Df, is one such measure of surface roughness where, Df at time t=0 is 2. The dissolution of the mineral surface increases the fractal dimension as the removal of material proceeds. We posit that somewhere between Df=2 and Df=3, the microtopography reaches a steady state. Therefore, in the pre-steady state

  19. Microstructural and geochemical evolution of sliding surfaces in landslides and comparisons with crustal fault zones (United States)

    Schäbitz, Maike; Janssen, Christoph; Wirth, Richard; Dresen, Georg


    The formation of basal sliding surfaces in mass movements is known to be associated with chemical and physical alteration of rock and regolith. To evaluate their microstructural and geochemical evolution we collected samples from bedrock, the sliding surface (gouge) and adjacent deposits within two different landslides in Central China. The sample locations reflect different geological conditions. Comparing qualitative and quantitative geochemical analysis we found indications for weathering of the sliding surface area and the accumulation and genesis of clay minerals, explaining its reduced shear strength. The cataclasites (gouge) are mainly composed of quartz, illite, calcite, pyrophyllite, kaolinite and feldspar with grain sizes in the range 0.5 - 5μm. XRF data show an increase in Al2O3, Fe2O3, K2O and decrease in SiO2 and CaO contents towards the sliding surface, pointing to alteration processes. The existence and increase of pyrophyllite content in sliding surface samples may indicate its initial formation to be caused by a high energy event, because pyrophyllite forms by hydrothermal alteration at approximately 450 ° C. The accumulation of pyrophyllite at the sliding surface is expected to result in reduced shear strength. Comparison of the microstructures, using transmission electron microscopy and focused ion beam technique for sample preparation shows a significant reduction of grain size and increase of pore space due to grain comminution by creeping and moving processes. High- angle annular dark field images show the occurrence of amorphous carbon which may indicate the occurrence of graphite. Graphitization (crystallization) of amorphous carbon was recognized in the slip zone of several fault zones, which underwent frictional heating due to rapid sliding. Graphite is well known as a solid lubricant in fault zones with a friction coefficient as low as that of smectite (μ = 0.1). The process of sliding surface formation in some landslides seems to be

  20. Normal Fault Type Earthquakes Off Fukushima Region - Comparison of the 1938 Events and Recent Earthquakes - (United States)

    Murotani, S.; Satake, K.


    Off Fukushima region, Mjma 7.4 (event A) and 6.9 (event B) events occurred on November 6, 1938, following the thrust fault type earthquakes of Mjma 7.5 and 7.3 on the previous day. These earthquakes were estimated as normal fault earthquakes by Abe (1977, Tectonophysics). An Mjma 7.0 earthquake occurred on July 12, 2014 near event B and an Mjma 7.4 earthquake occurred on November 22, 2016 near event A. These recent events are the only M 7 class earthquakes occurred off Fukushima since 1938. Except for the two 1938 events, normal fault earthquakes have not occurred until many aftershocks of the 2011 Tohoku earthquake. We compared the observed tsunami and seismic waveforms of the 1938, 2014, and 2016 earthquakes to examine the normal fault earthquakes occurred off Fukushima region. It is difficult to compare the tsunami waveforms of the 1938, 2014 and 2016 events because there were only a few observations at the same station. The teleseismic body wave inversion of the 2016 earthquake yielded with the focal mechanism of strike 42°, dip 35°, and rake -94°. Other source parameters were as follows: source area 70 km x 40 km, average slip 0.2 m, maximum slip 1.2 m, seismic moment 2.2 x 1019 Nm, and Mw 6.8. A large slip area is located near the hypocenter, and it is compatible with the tsunami source area estimated from tsunami travel times. The 2016 tsunami source area is smaller than that of the 1938 event, consistent with the difference in Mw: 7.7 for event A estimated by Abe (1977) and 6.8 for the 2016 event. Although the 2014 epicenter is very close to that of event B, the teleseismic waveforms of the 2014 event are similar to those of event A and the 2016 event. While Abe (1977) assumed that the mechanism of event B was the same as event A, the initial motions at some stations are opposite, indicating that the focal mechanisms of events A and B are different and more detailed examination is needed. The normal fault type earthquake seems to occur following the

  1. Study on conditional probability of surface rupture: effect of fault dip and width of seismogenic layer (United States)

    Inoue, N.


    The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source

  2. The 2016 central Italy earthquake sequence: surface effects, fault model and triggering scenarios (United States)

    Chatzipetros, Alexandros; Pavlides, Spyros; Papathanassiou, George; Sboras, Sotiris; Valkaniotis, Sotiris; Georgiadis, George


    The results of fieldwork performed during the 2016 earthquake sequence around the karstic basins of Norcia and La Piana di Castelluccio, at an altitude of 1400 m, on the Monte Vettore (altitude 2476 m) and Vettoretto, as well as the three mapped seismogenic faults, striking NNW-SSW, are presented in this paper. Surface co-seismic ruptures were observed in the Vettore and Vettoretto segment of the fault for several kilometres ( 7 km) in the August earthquakes at high altitudes, and were re-activated and expanded northwards during the October earthquakes. Coseismic ruptures and the neotectonic Mt. Vettore fault zone were modelled in detail using images acquired from specifically planned UAV (drone) flights. Ruptures, typically with displacement of up to 20 cm, were observed after the August event both in the scree and weathered mantle (elluvium), as well as the bedrock, consisting mainly of fragmented carbonate rocks with small tectonic surfaces. These fractures expanded and new ones formed during the October events, typically of displacements of up to 50 cm, although locally higher displacements of up to almost 2 m were observed. Hundreds of rock falls and landslides were mapped through satellite imagery, using pre- and post- earthquake Sentinel 2A images. Several of them were also verified in the field. Based on field mapping results and seismological information, the causative faults were modelled. The model consists of five seismogenic sources, each one associated with a strong event in the sequence. The visualisation of the seismogenic sources follows INGV's DISS standards for the Individual Seismogenic Sources (ISS) layer, while strike, dip and rake of the seismic sources are obtained from selected focal mechanisms. Based on this model, the ground deformation pattern was inferred, using Okada's dislocation solution formulae, which shows that the maximum calculated vertical displacement is 0.53 m. This is in good agreement with the statistical analysis of the

  3. Surface Management System Departure Event Data Analysis (United States)

    Monroe, Gilena A.


    This paper presents a data analysis of the Surface Management System (SMS) performance of departure events, including push-back and runway departure events.The paper focuses on the detection performance, or the ability to detect departure events, as well as the prediction performance of SMS. The results detail a modest overall detection performance of push-back events and a significantly high overall detection performance of runway departure events. The overall detection performance of SMS for push-back events is approximately 55%.The overall detection performance of SMS for runway departure events nears 100%. This paper also presents the overall SMS prediction performance for runway departure events as well as the timeliness of the Aircraft Situation Display for Industry data source for SMS predictions.

  4. Mean importance measures for groups of events in fault trees

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E.; Huang, Min [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Sasser, M.K.; Stack, D.W. [Los Alamos National Lab., NM (United States)


    The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures.

  5. Mean importance measures for groups of events in fault trees

    International Nuclear Information System (INIS)

    Haskin, F.E.; Huang, Min


    The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures

  6. Mean importance measures for groups of events in fault trees

    International Nuclear Information System (INIS)

    Haskin, F.E.; Huang, Min


    The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures

  7. Event-Triggered Fault Detection Filter Design for a Continuous-Time Networked Control System. (United States)

    Wang, Yu-Long; Shi, Peng; Lim, Cheng-Chew; Liu, Yuan


    This paper studies the problem of event-triggered fault detection filter (FDF) and controller coordinated design for a continuous-time networked control system (NCS) with biased sensor faults. By considering sensor-to-FDF network-induced delays and packet dropouts, which do not impose a constraint on the event-triggering mechanism, and proposing the simultaneous network bandwidth utilization ratio and fault occurrence probability-based event-triggering mechanism, a new closed-loop model for the considered NCS is established. Based on the established model, the event-triggered H ∞ performance analysis, and FDF and controller coordinated design are presented. The combined mutually exclusive distribution and Wirtinger-based integral inequality approach is proposed for the first time to deal with integral inequalities for products of vectors. This approach is proved to be less conservative than the existing Wirtinger-based integral inequality approach. The designed FDF and controller can guarantee the sensitivity of the residual signal to faults and the robustness of the NCS to external disturbances. The simulation results verify the effectiveness of the proposed event-triggering mechanism, and the FDF and controller coordinated design.

  8. Multiple faulting events revealed by trench analysis of the seismogenic structure of the 1976 Ms7.1 Luanxian earthquake, Tangshan Region, China (United States)

    Guo, Hui; Jiang, Wali; Xie, Xinsheng


    The Ms7.8 Tangshan earthquake occurred on 28 July 1976 at 03:42 CST. Approximately 15 h later, the Ms7.1 Luanxian earthquake occurred approximately 40 km northeast of the main shock. The two earthquakes formed different surface rupture zones. The surface rupture of the Tangshan earthquake was NNE-trending and more than 47 km long. The surface rupture of the Luanxian earthquake was more than 6 km long and consisted of two sections, forming a protruding arc to the west. The north and south sections were NE- and NW-trending and 2 km and 4 km long, respectively. A trench was excavated in Sanshanyuan Village across the NE-trending rupture of the Luanxian earthquake, at the macroscopic epicenter of the Luanxian earthquake. Analysis of this trench revealed that the surface rupture is connected to the underground active fault. The following major conclusions regarding Late Quaternary fault activity have been reached. (1) The Sanshanyuan trench indicated that its fault planes trend NE30° and dip SE or NW at angles of approximately 69-82°. (2) The fault experienced four faulting events prior to the Luanxian earthquake at 27.98 ka with an average recurrence interval of approximately 7.5 ka. (3) The Ms7.1 Luanxian earthquake resulted from the activity of the Luanxian Western fault and was triggered by the Ms7.8 Tangshan earthquake. The seismogenic faults of the 1976 Ms7.1 Luanxian earthquake and the 1976 Ms7.8 Tangshan earthquake are not the same fault. This example of an M7 earthquake triggered by a nearly M8 earthquake after more than 10 h on a nearby fault is a worthy topic of research for the future prediction of strong earthquakes.

  9. Spatiotemporal evolution of slow slip events in a nonplanar fault model for northern Cascadia subduction zone (United States)

    Li, Duo; Liu, Yajing


    Slow slip events (SSEs) are identified as the quasi-stable fault deformation in the deep transition zone from locked to continuous sliding in many subduction zones. In the well-instrumented Cascadia margin, a class of Mw6.0 slow slip events arise beneath Port Angeles every ˜14 months, as inferred from two decades of continuous geodetic monitoring. The along-strike bending of the incoming oceanic plate beneath north Washington is a unique geometric feature whose influence on slow slip processes is still unknown. Here we incorporate a realistic fault geometry of northern Cascadia in the framework of rate- and state-dependent friction law, to simulate the spatiotemporal evolution of slow slip events on a nonplanar subduction fault. The modeled SSEs capture the major characteristics revealed by GPS observations. The central 150 km long fault segment beneath Port Angeles acts as a repetitive slip patch, where SSEs appear every ˜1.5 years with a maximum slip of ˜2.5 cm. Two minor slip patches with smaller areas and cumulative slips straddle this central slip patch. The along-strike segmentation of slow slip is inversely related to the local fault dip and strike angles of the slow slip zone, suggesting strong geometrical control on the slow slip process. This correlation holds even after removing the effect of W/h∗, ratio between velocity-weakening SSE fault width and characteristic nucleation size. Besides the GPS-detectable fast-spreading phase, we find that each SSE cycle consists of deep pre-SSE preparation and post-SSE relaxation phases, which may be the driving mechanism for the deep tremor activity between major SSE episodes discovered in Cascadia.

  10. Modeling of ESD events from polymeric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kent Bryant


    Transient electrostatic discharge (ESD) events are studied to assemble a predictive model of discharge from polymer surfaces. An analog circuit simulation is produced and its response is compared to various literature sources to explore its capabilities and limitations. Results suggest that polymer ESD events can be predicted to within an order of magnitude. These results compare well to empirical findings from other sources having similar reproducibility.

  11. Event and fault tree model for reliability analysis of the greek research reactor

    International Nuclear Information System (INIS)

    Fault trees and event trees are widely used in industry to model and to evaluate the reliability of safety systems. Detailed analyzes in nuclear installations require the combination of these two techniques. This work uses the methods of fault tree (FT) and event tree (ET) to perform the Probabilistic Safety Assessment (PSA) in research reactors. The PSA according to IAEA (International Atomic Energy Agency) is divided into Level 1, Level 2 and level 3. At Level 1, conceptually safety systems act to prevent the accident, at Level 2, the accident occurred and seeks to minimize the consequences, known as stage management of the accident, and at Level 3 are determined consequences. This paper focuses on Level 1 studies, and searches through the acquisition of knowledge consolidation of methodologies for future reliability studies. The Greek Research Reactor, GRR - 1, was used as a case example. The LOCA (Loss of Coolant Accident) was chosen as the initiating event and from there were developed the possible accident sequences, using event tree, which could lead damage to the core. Furthermore, for each of the affected systems, the possible accidents sequences were made fault tree and evaluated the probability of each event top of the FT. The studies were conducted using a commercial computational tool SAPHIRE. The results thus obtained, performance or failure to act of the systems analyzed were considered satisfactory. This work is directed to the Greek Research Reactor due to data availability. (author)

  12. Energy-Efficient Fault-Tolerant Dynamic Event Region Detection in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Enemark, Hans-Jacob; Zhang, Yue; Dragoni, Nicola


    Fault-tolerant event detection is fundamental to wireless sensor network applications. Existing approaches usually adopt neighborhood collaboration for better detection accuracy, while need more energy consumption due to communication. Focusing on energy efficiency, this paper makes an improvement...... to a hybrid algorithm for dynamic event region detection, such as real-time tracking of chemical leakage regions. Considering the characteristics of the moving away dynamic events, we propose a return back condition for the hybrid algorithm from distributed neighborhood collaboration, in which a node makes...

  13. Surface faulting during the August 24, 2016, central Italy earthquake (Mw 6.0: preliminary results

    Directory of Open Access Journals (Sweden)

    Franz A. Livio


    Full Text Available We present some preliminary results on the mapping of coseismically-induced ground ruptures following the Aug. 24, 2016, Central Italy earthquake (Mw 6.0. The seismogenic source, as highlighted by InSAR and seismological data, ruptured across two adjacent structures: the Vettore and Laga faults. We collected field data on ground breaks along the whole deformed area and two different scenarios of on-fault coseismic displacement arise from these observations. To the north, along the Vettore fault, surface faulting can be mapped quite continuously along a well-defined fault strand while such features are almost absent to the south, along the Laga fault, where flysch-like marly units are present. A major lithological control, affects the surface expression of faulting, resulting in a complex deformation pattern.

  14. Mapping the Qademah Fault with Traveltime, Surface-wave, and Resistivity Tomograms

    KAUST Repository

    Hanafy, Sherif M.


    Traveltime, surface-wave, and resistivity tomograms are used to track the buried Qademah fault located near King Abdullah Economic City (KAEC), Saudi Arabia. The fault location is confirmed by the 1) resistivity tomogram obtained from an electrical resistivity experiment, 2) the refraction traveltime tomogram, 3) the reflection image computed from 2D seismic data set recorded at the northern part of the fault, and 4) the surface-wave tomogram.

  15. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada (United States)

    Bender, Adrian M.; Haeussler, Peter J.


    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  16. Event-triggered platoon control of vehicles with time-varying delay and probabilistic faults (United States)

    Wei, Yue; Liyuan, Wang; Ge, Guo


    This paper investigates event-triggered platoon control of vehicles with probabilistic faults (i.e., sensor and actuator) and time-varying communication delay. A novel platoon model is established, in which the effect of time-varying delay, event-triggered scheme and probabilistic faults are involved. Based on the new model, criteria for the exponential stability and criteria for co-designing both the output feedback and the trigger parameters are derived by using Lyapunov functional. The obtained controller is complemented by additional conditions established for guaranteeing string stability and zero steady state velocity errors, yielding a useful string stable platoon control method. The effectiveness and advantage of the presented methodology are demonstrated by both numerical simulations and experiments with laboratory scale Arduino cars.

  17. Validation of meter-scale surface faulting offset measurements from high-resolution topographic data (United States)

    Salisbury, Barrett; Haddad, D.E.; Rockwell, T.K.; Arrowsmith, R.; Madugo, C.; Zielke, O.; Scharer, Katherine M.


    Studies of active fault zones have flourished with the availability of high-resolution topographic data, particularly where airborne light detection and ranging (lidar) and structure from motion (SfM) data sets provide a means to remotely analyze submeter-scale fault geomorphology. To determine surface offset at a point along a strike-slip earthquake rupture, geomorphic features (e.g., stream channels) are measured days to centuries after the event. Analysis of these and cumulatively offset features produces offset distributions for successive earthquakes that are used to understand earthquake rupture behavior. As researchers expand studies to more varied terrain types, climates, and vegetation regimes, there is an increasing need to standardize and uniformly validate measurements of tectonically displaced geomorphic features. A recently compiled catalog of nearly 5000 earthquake offsets across a range of measurement and reporting styles provides insight into quality rating and uncertainty trends from which we formulate best-practice and reporting recommendations for remote studies. In addition, a series of public and beginner-level studies validate the remote methodology for a number of tools and emphasize considerations to enhance measurement accuracy and precision for beginners and professionals. Our investigation revealed that (1) standardizing remote measurement methods and reporting quality rating schemes is essential for the utility and repeatability of fault-offset measurements; (2) measurement discrepancies often involve misinterpretation of the offset geomorphic feature and are a function of the investigator’s experience; (3) comparison of measurements made by a single investigator in different climatic regions reveals systematic differences in measurement uncertainties attributable to variation in feature preservation; (4) measuring more components of a displaced geomorphic landform produces more consistently repeatable estimates of offset; and (5

  18. Temporal fault slip rate and rupture patterns on the Genoa fault, central eastern Sierra Nevada, integrating ground-based LiDAR, Be-10 surface exposure dating, and paleoseismology (United States)

    Rood, D. H.; Harvey, J. E.; Ramelli, A.; Burbank, D. W.; Bookhagen, B.


    Using an integrated geomorphic-paleoseismic approach, we evaluate temporal patterns of fault-related, late Quaternary deformation along the Genoa fault at the eastern boundary of the central Sierra Nevada, California-Nevada. The Genoa fault is experiencing some of the highest strain rates and fastest Holocene slip rates in the western Great Basin. This fault was the site of at least two Holocene M~7 earthquakes, including a pre-historic, but less than ~600 yr BP event with co-seismic displacement of 4-6 m and a penultimate event at ~2000-2500 yr BP (Ramelli et al., 1999). Its long-term slip rate history is only well-studied at one site on the southern segment: 0.4 +0.3/-0.1 mm/yr over both ~20 ky and ~150 ky time scales along the West Fork of the Carson River at Woodfords, CA (Rood et al, 2011). Over 10- to 200-ky time scales, our geomorphic approach is to quantify fault displacements of multiple geomorphic features, including 2 glacial outwash terraces and 2 alluvial fans. We use dGPS and ground-based LiDAR topographic data to model fault slip at the Woodfords, Mott Canyon, and Corsser Creek sites. We determine the age of offset features using Be-10 surface exposure dating techniques, including ~50 new Be-10 analyses. Paired surface boulders and depth profiles for each landform allow more accurate, high-resolution chronologies to be developed. By comparing offsets of different ages along individual fault segments and modeling their slip rates and uncertainties, we define how the locus, magnitude, and rate of fault slip changes through time. Paleoseismic trench studies reduce uncertainty concerning how these geomorphic offsets are produced by fault rupture. New trench data from the Fay Canyon site permits comparison of rupture patterns on the neighboring central and southern fault segments, where differences in the timing of earthquake events, displacement magnitude/event, and geometry of underlying faults are compared to the slip-rates calculated from offset

  19. Validation of meter-scale surface faulting offset measurements from high-resolution topographic data

    KAUST Repository

    Salisbury, J. Barrett


    Studies of active fault zones have flourished with the availability of high-resolution topographic data, particularly where airborne light detection and ranging (lidar) and structure from motion (SfM) data sets provide a means to remotely analyze submeter- scale fault geomorphology. To determine surface offset at a point along a strike-slip earthquake rupture, geomorphic features (e.g., stream channels) are measured days to centuries after the event. Analysis of these and cumulatively offset features produces offset distributions for successive earthquakes that are used to understand earthquake rupture behavior. As researchers expand studies to more varied terrain types, climates, and vegetation regimes, there is an increasing need to standardize and uniformly validate measurements of tectonically displaced geomorphic features. A recently compiled catalog of nearly 5000 earthquake offsets across a range of measurement and reporting styles provides insight into quality rating and uncertainty trends from which we formulate best-practice and reporting recommendations for remote studies. In addition, a series of public and beginner-level studies validate the remote methodology for a number of tools and emphasize considerations to enhance measurement accuracy and precision for beginners and professionals. Our investigation revealed that (1) standardizing remote measurement methods and reporting quality rating schemes is essential for the utility and repeatability of fault-offset measurements; (2) measurement discrepancies often involve misinterpretation of the offset geomorphic feature and are a function of the investigator\\'s experience; (3) comparison of measurements made by a single investigator in different climatic regions reveals systematic differences in measurement uncertainties attributable to variation in feature preservation; (4) measuring more components of a displaced geomorphic landform produces more consistently repeatable estimates of offset; and (5

  20. Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China (United States)

    Li, Le; Chen, Qi-Fu; Cheng, Xin; Niu, Fenglin


    Spatial and temporal features of the seismicity occurring along the Tangshan fault in 2001-2006 were investigated with data recorded by the Beijing metropolitan digital Seismic Network. The relocated seismicity with the double difference method clearly exhibits a dextral bend in the middle of the fault. More than 85% of the earthquakes were found in the two clusters forming the northern segment where relatively small coseismic slips were observed during the 1976 M7.8 earthquake. The b values calculated from the seismicity occurring in the northern and southern segment are 1.03 +/- 0.02 and 0.85 +/- 0.03, respectively. The distinct seismicity and b values are probably the collective effect of the fault geometry and the regional stress field that has an ENE-WSW oriented compression. Using cross-correlation and fine relocation analyses, we also identified a total of 21 doublets and 25 multiplets that make up >50% of the total seismicity. Most of the sequences are aperiodic with recurrence intervals varying from a few minutes to hundreds of days. Based on a quasi-periodic sequence, we obtained a fault slip rate of <=2.6 mm/yr at ~15 km, which is consistent with surface GPS measurements.

  1. Optimum Sea Surface Displacement and Fault Slip Distribution of the 2017 Tehuantepec Earthquake (Mw 8.2) in Mexico Estimated From Tsunami Waveforms (United States)

    Gusman, Aditya Riadi; Mulia, Iyan E.; Satake, Kenji


    The 2017 Tehuantepec earthquake (Mw 8.2) was the first great normal fault event ever instrumentally recorded to occur in the Middle America Trench. The earthquake generated a tsunami with an amplitude of 1.8 m (height = 3.5 m) in Puerto Chiapas, Mexico. Tsunami waveforms recorded at coastal tide gauges and offshore buoy stations were used to estimate the optimum sea surface displacement without assuming any fault. Our optimum sea surface displacement model indicated that the maximum uplift of 0.5 m is located near the trench and the maximum subsidence of 0.8 m on the coastal side near the epicenter. We then estimated the fault slip distribution that can best explain the optimum sea surface displacement assuming 10 different fault geometries. The best model suggests that a compact region of large slip (3-6 m) extends from a depth of 30 km to 90 km, centered at a depth of 60 km.

  2. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan fault, Sichuan Province, China (United States)

    Dang, Jiaxiang; Zhou, Yongsheng; He, Changrong; Ma, Shengli


    There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province, southwest China. In this study, we report on the macrostructure of the fault rocks and results from X-ray powder diffraction analysis of minerals from rocks in the fault zone. The most recent fault gouge (the gouge produced by the most recent co-seismic fault movement) in all the studied outcrops is dark or grayish-black, totally unconsolidated and ultrafine-grained. Older fault gouges in the same outcrops are grayish or yellowish and weakly consolidated. X-ray powder diffraction analysis results show that mineral assemblages in both the old fault gouge and the new fault gouge are more complicated than the mineral assemblages in the bedrock as the fault gouge is rich in clay minerals. The fault gouge inherited its major rock-forming minerals from the parent rocks, but the clay minerals in the fault gouge were generated in the fault zone and are therefore authigenic and synkinematic. In profiles across the fault, clay mineral abundances increase as one traverses from the bedrock to the breccia to the old gouge and from the old gouge to the new gouge. Quartz and illite are found in all collected gouge samples. The dominant clay minerals in the new fault gouge are illite and smectite along the northern part of the surface rupture and illite/smectite mixed-layer clay in the middle part of the rupture. Illite/smectite mixed-layer clay found in the middle part of the rupture indicates that fault slip was accompanied by K-rich fluid circulation. The existence of siderite, anhydrite, and barite in the northern part of the rupture suggests that fault slip at this locality was accompanied by acidic fluids containing ions of Fe, Ca, and Ba.

  3. The Slip Behavior and Source Parameters for Spontaneous Slip Events on Rough Faults Subjected to Slow Tectonic Loading (United States)

    Tal, Yuval; Hager, Bradford H.


    We study the response to slow tectonic loading of rough faults governed by velocity weakening rate and state friction, using a 2-D plane strain model. Our numerical approach accounts for all stages in the seismic cycle, and in each simulation we model a sequence of two earthquakes or more. We focus on the global behavior of the faults and find that as the roughness amplitude, br, increases and the minimum wavelength of roughness decreases, there is a transition from seismic slip to aseismic slip, in which the load on the fault is released by more slip events but with lower slip rate, lower seismic moment per unit length, M0,1d, and lower average static stress drop on the fault, Δτt. Even larger decreases with roughness are observed when these source parameters are estimated only for the dynamic stage of the rupture. For br ≤ 0.002, the source parameters M0,1d and Δτt decrease mutually and the relationship between Δτt and the average fault strain is similar to that of a smooth fault. For faults with larger values of br that are completely ruptured during the slip events, the average fault strain generally decreases more rapidly with roughness than Δτt.

  4. Holocene surface-faulting earthquakes at the Spring Lake and North Creek Sites on the Wasatch Fault Zone: Evidence for complex rupture of the Nephi Segment (United States)

    Duross, Christopher; Hylland, Michael D.; Hiscock, Adam; Personius, Stephen; Briggs, Richard; Gold, Ryan D.; Beukelman, Gregg; McDonald, Geg N; Erickson, Ben; McKean, Adam; Angster, Steve; King, Roselyn; Crone, Anthony J.; Mahan, Shannon


    The Nephi segment of the Wasatch fault zone (WFZ) comprises two fault strands, the northern and southern strands, which have evidence of recurrent late Holocene surface-faulting earthquakes. We excavated paleoseismic trenches across these strands to refine and expand their Holocene earthquake chronologies; improve estimates of earthquake recurrence, displacement, and fault slip rate; and assess whether the strands rupture separately or synchronously in large earthquakes. Paleoseismic data from the Spring Lake site expand the Holocene record of earthquakes on the northern strand: at least five to seven earthquakes ruptured the Spring Lake site at 0.9 ± 0.2 ka (2σ), 2.9 ± 0.7 ka, 4.0 ± 0.5 ka, 4.8 ± 0.8 ka, 5.7 ± 0.8 ka, 6.6 ± 0.7 ka, and 13.1 ± 4.0 ka, yielding a Holocene mean recurrence of ~1.2–1.5 kyr and vertical slip rate of ~0.5–0.8 mm/yr. Paleoseismic data from the North Creek site help refine the Holocene earthquake chronology for the southern strand: at least five earthquakes ruptured the North Creek site at 0.2 ± 0.1 ka (2σ), 1.2 ± 0.1 ka, 2.6 ± 0.9 ka, 4.0 ± 0.1 ka, and 4.7 ± 0.7 ka, yielding a mean recurrence of 1.1–1.3 kyr and vertical slip rate of ~1.9–2.0 mm/yr. We compare these Spring Lake and North Creek data with previous paleoseismic data for the Nephi segment and report late Holocene mean recurrence intervals of ~1.0–1.2 kyr for the northern strand and ~1.1–1.3 kyr for the southern strand. The northern and southern strands have similar late Holocene earthquake histories, which allow for models of both independent and synchronous rupture. However, considering the earthquake timing probabilities and per-event vertical displacements, we have the greatest confidence in the simultaneous rupture of the strands, including rupture of one strand with spillover rupture to the other. Ultimately, our results improve the surface-faulting earthquake history of the Nephi segment and enhance our understanding of how structural barriers

  5. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    Directory of Open Access Journals (Sweden)

    P. Boncio


    Full Text Available The criteria for zoning the surface fault rupture hazard (SFRH along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike–slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9. Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding. For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r and the width of the rupture zone (WRZ were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ∼ 2150 m on the footwall and  ∼  3100 m on the hanging wall. Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( >   ∼  50 % at distances  <   ∼  250 m. The widest WRZ are recorded where sympathetic slip (Sy on distant faults occurs, and/or where bending-moment (B-M or flexural-slip (F-S fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength, are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to

  6. Comparison of event tree, fault tree and Markov methods for probabilistic safety assessment and application to accident mitigation

    International Nuclear Information System (INIS)

    James, H.; Harris, M.J.; Hall, S.F.


    Probabilistic safety assessment (PSA) is used extensively in the nuclear industry. The main stages of PSA and the traditional event tree method are described. Focussing on hydrogen explosions, an event tree model is compared to a novel Markov model and a fault tree, and unexpected implication for accident mitigation is revealed. (author)

  7. Near-Surface Fault Structures of the Seulimuem Segment Based on Electrical Resistivity Model (United States)

    Ismail, Nazli; Yanis, Muhammad; Idris, Syafrizal; Abdullah, Faisal; Hanafiah, Bukhari


    The Great Sumatran Fault (GSF) system is arc-parallel strike-slip fault system along the volcanic front related to the oblique subduction of the oceanic Indo-Australian plate. Large earthquakes along the southern GSF since 1892 have been reported, but the Seulimuem segment at the northernmost Sumatran has not produced large earthquakes in the past 100 years. The 200-km-long segment is considered to be a seismic gap. Detailed geological study of the fault and thus its surface trace locations, late Quaternary slip rate, and rupture history are urgently needed for earthquake disaster mitigation in the future. However, finding a suitable area for paleoseismic trenching is an obstacle when the fault traces are not clearly shown on the surface. We have conducted geoelectrical measurement in Lamtamot area of Aceh Besar District in order to locate the fault line for paleoseismic excavation. Apparent resistivity data were collected along 40 m profile parallel to the planned trenching site. The 2D electrical resistivity model provided evidence of some resistivity anomalies by high lateral contrast. This anomaly almost coincides with the topographic scarp which is modified by agriculture on the surface at the northern part of Lamtamot. The steep dipping electrical contrast may correspond to a fault. However, the model does not resolve well evidences from minor faults that can be related to the presence of surface ruptures. A near fault paleoseismic investigation requires trenching across the fault in order to detect and analyze the geological record of the past large earthquakes along the Seulimuem segment.

  8. Late Pleistocene surface rupture history of the Paeroa Fault, Taupo Rift, New Zealand

    International Nuclear Information System (INIS)

    Berryman, K.R.; Villamor, P.; Nairn, I.A.; Van Dissen, R.J.; Begg, J.G.; Lee, J.M.


    The 30 km long Paeroa Fault is one of the largest and fastest slipping (c. 1.5 mm/yr vertical displacement rate) normal faults of the currently active Taupo Rift of North Island, New Zealand. Along its northern section, seven trenches excavated across 5 of 11 subparallel fault strands show that successive ruptures of individual strands probably occurred at the same time, but were individually and collectively highly variable in size and recurrence, and most fault strands have ruptured three or four times in the past 16 kyr. In the c. 16 kyr timeframe, four surface-rupturing earthquakes took place when Okataina volcano was erupting, and six occurred between eruptions. Large earthquakes on the Paeroa Fault comprise a significant component of the seismic hazard in the region between the Okataina and Taupo Volcanic Centres, and there are partial associations between these large earthquakes and volcanism. (author). 36 refs., 15 figs., 2 tabs

  9. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai


    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  10. Fault-tolerant control with mixed aerodynamic surfaces and RCS jets for hypersonic reentry vehicles

    Directory of Open Access Journals (Sweden)

    Jingjing He


    Full Text Available This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems (RCS under external disturbances and subject to actuator faults. Aerodynamic surfaces are treated as the primary actuator in normal situations, and they are driven by a continuous quadratic programming (QP allocator to generate torque commanded by a nonlinear adaptive feedback control law. When aerodynamic surfaces encounter faults, they may not be able to provide sufficient torque as commanded, and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque. Partial loss of effectiveness and stuck faults are considered in this paper, and observers are designed to detect and identify the faults. Based on the fault identification results, an RCS control allocator using integer linear programming (ILP techniques is designed to determine the optimal combination of activated RCS jets. By treating the RCS control allocator as a quantization element, closed-loop stability with both continuous and quantized inputs is analyzed. Simulation results verify the effectiveness of the proposed method.

  11. Event-triggered fault detection for discrete-time T-S fuzzy systems. (United States)

    Wang, Xiao-Lei; Yang, Guang-Hong


    This paper is concerned with the design of piecewise fuzzy diagnostic observers for discrete-time T-S fuzzy systems under an event-triggered (ET) communication mechanism. Considering that the premise variables of the fuzzy diagnostic observer and the system may belong to different local space regions due to the introduction of ET mechanism, a partition method-based piecewise fuzzy diagnostic observer is designed to detect faults. The two-term approximation approach is introduced to approximate the time-varying delay. By transforming the augmented system into an input-output form consisting of two interconnected subsystems, the design condition of the piecewise fuzzy diagnostic observer is obtained by using the scaled small gain (SSG) theorem and a piecewise Lyapunov-Krasovskii functional. Furthermore, the L ∞ /L 2 and L ∞ fault detection (FD) scheme is used to optimize the FD performance. Finally, two simulation examples are provided to show the efficiency of the proposed design method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems (United States)

    Malin, Jane T.; Basham, Bryan D.


    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  13. Late Quaternary offset of alluvial fan surfaces along the Central Sierra Madre Fault, southern California (United States)

    Burgette, Reed J.; Hanson, Austin; Scharer, Katherine M.; Midttun, Nikolas


    The Sierra Madre Fault is a reverse fault system along the southern flank of the San Gabriel Mountains near Los Angeles, California. This study focuses on the Central Sierra Madre Fault (CSMF) in an effort to provide numeric dating on surfaces with ages previously estimated from soil development alone. We have refined previous geomorphic mapping conducted in the western portion of the CSMF near Pasadena, CA, with the aid of new lidar data. This progress report focuses on our geochronology strategy employed in collecting samples and interpreting data to determine a robust suite of terrace surface ages. Sample sites for terrestrial cosmogenic nuclide and luminescence dating techniques were selected to be redundant and to be validated through relative geomorphic relationships between inset terrace levels. Additional sample sites were selected to evaluate the post-abandonment histories of terrace surfaces. We will combine lidar-derived displacement data with surface ages to estimate slip rates for the CSMF.

  14. 2001 Bhuj-Kachchh earthquake: surface faulting and its relation with neotectonics and regional structures, Gujarat, Western India

    Directory of Open Access Journals (Sweden)

    M. G. Thakkar


    Full Text Available Primary and secondary surface deformation related to the 2001 Bhuj-Kachchh earthquake suggests that thrusting movement took place along an E-W fault near the western extension of the South Wagad Fault, a synthetic fault of the Kachchh Mainland Fault (KMF. Despite early reconnaissance reports that concluded there was no primary surface faulting, we describe an 830 m long, 15-35 cm high, east-west-trending thrust fault scarp near where the seismogenic fault plane would project to the surface, near Bharodiya village (between 23°34.912'N, 70°23.942'E and 23°34.304'N, 70°24.884'E. Along most of the scarp Jurassic bedrock is thrust over Quaternary deposits, but the fault scarp also displaces Holocene alluvium and an earth dam, with dips of 13° to 36° south. Secondary co-seismic features, mainly liquefaction and lateral spreading, dominate the area south of the thrust. Transverse right-lateral movement along the «Manfara Fault» and a parallel fault near Bharodiya suggests segmentation of the E-W master faults. Primary (thrust surface rupture had a length of 0.8 km, maximum displacement of about 35 cm, and average displacement of about 15 cm. Secondary (strike-slip faulting was more extensive, with a total end-to-end length of 15 km, maximum displacement of 35 cm, and average displacement of about 20 cm.

  15. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting (United States)

    Wong, Pei-Syuan; Lin, Ming-Lang


    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  16. Style of the surface deformation by the 1999 Chichi earthquake at the central segment of Chelungpu fault, Taiwan, with special reference to the presence of the main and subsidiary faults and their progressive deformation in the Tsauton area (United States)

    Ota, Y.; Watanabe, M.; Suzuki, Y.; Yanagida, M.; Miyawaki, A.; Sawa, H.


    We describe the style of surface deformation in the 1999 Chichi earthquake in the central segment of the Chelungpu Fault. The study covers the Kung-fu village, north of Han River, to the south of Tsauton area. A characteristic style of the surface deformation is a convex scarp in profile and sinuous plan view, due to the low angle thrust fault. Two subparallel faults, including the west facing Tsauton West fault, and the east facing Tsauton East fault, limit the western and eastern margin of the Tsauton terraced area. The Tsauton West fault is the continuation of the main Chelungpu fault and the Tsauton East fault is located about 2 km apart. Both faults record larger amounts of vertical displacement on the older terraces. The 1999 surface rupture occurred exactly on a pre-existing fault scarp of the Tsauton West and East faults. Thus, repeated activities of these two faults during the Holocene, possibly since the late Quaternary, are confirmed. The amount of vertical offset of the Tsauton East fault is smaller, and about 40-50% of that of the Tsauton West fault for the pre-existing fault. This indicates that the Tsauton East fault is a subsidiary fault and moved together with the main fault, but accommodated less amount.

  17. Basement Surface Faulting and Topography for Savannah River Site and Vicinity

    International Nuclear Information System (INIS)

    Cumbest, R.J.


    This report integrates the data from more than 60 basement borings and over 100 miles of seismic reflection profiling acquired on the Savannah River Site to map the topography of the basement (unweathered rock) surface and faulting recorded on this surface

  18. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.


    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  19. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.


    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  20. An integrated model for the assessment of unmitigated fault events in ITER's superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, S., E-mail: [Culham Centre for Fusion Energy, Culham Science Center, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Holmes, A. [Marcham Scientific Ltd., Sarum House, 10 Salisbury Rd., Hungerford RG17 0LH, Berkshire (United Kingdom); Cave-Ayland, K.; Ash, A.; Domptail, F.; Zheng, S.; Surrey, E.; Taylor, N. [Culham Centre for Fusion Energy, Culham Science Center, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Hamada, K.; Mitchell, N. [ITER Organization, Magnet Division, St Paul Lez Durance Cedex (France)


    A large amount of energy is stored in ITER superconducting magnet system. Faults which initiate a discharge are typically mitigated to quickly transfer away the stored magnetic energy for dissipation through a bank of resistors. In an extreme unlikely occurrence, an unmitigated fault event represents a potentially severe discharge of energy into the coils and the surrounding structure. A new simulation tool has been developed for the detailed study of these unmitigated fault events. The tool integrates: the propagation of multiple quench fronts initiated by an initial fault or by subsequent coil heating; the 3D convection and conduction of heat through the magnet structure; the 3D conduction of current and Ohmic heating both along the conductor and via alternate pathways generated by arcing or material melt. Arcs linking broken sections of conductor or separate turns are simulated with a new unconstrained arc model to balance electrical current paths and heat generation within the arc column in the multi-physics model. The influence under the high Lorenz forces present is taken into account. Simulation results for an unmitigated fault in a poloidal field coil are presented.

  1. Estimation of fault geometry of a slow slip event off the Kii Peninsula, southwest of Japan, detected by DONET (United States)

    Suzuki, K.; Nakano, M.; Hori, T.; Takahashi, N.


    The Japan Agency for Marine-Earth Science and Technology installed permanent ocean bottom observation network called Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) off the Kii Peninsula, southwest of Japan, to monitor earthquakes and tsunamis. We detected the long-term vertical displacements of sea floor from the ocean-bottom pressure records, starting from March 2013, at several DONET stations (Suzuki et al., 2014). We consider that these displacements were caused by the crustal deformation due to a slow slip event (SSE).  We estimated the fault geometry of the SSE by using the observed ocean-bottom displacements. The ocean-bottom displacements were obtained by removing the tidal components from the pressure records. We also subtracted the average of pressure changes taken over the records at stations connected to each science node from each record in order to remove the contributions due to atmospheric pressure changes and non-tidal ocean dynamic mass variations. Therefore we compared observed displacements with the theoretical ones that was subtracted the average displacement in the fault geometry estimation. We also compared observed and theoretical average displacements for the model evaluation. In this study, the observed average displacements were assumed to be zero. Although there are nine parameters in the fault model, we observed vertical displacements at only four stations. Therefore we assumed three fault geometries; (1) a reverse fault slip along the plate boundary, (2) a strike slip along a splay fault, and (3) a reverse fault slip along the splay fault. We obtained that the model (3) gives the smallest residual between observed and calculated displacements. We also observed that this SSE was synchronized with a decrease in the background seismicity within the area of a nearby earthquake cluster. In the future, we will investigate the relationship between the SSE and the seismicity change.

  2. The 2017/09/08 Mw 8.2 Tehuantepec, Mexico Earthquake: A Large but Compact Dip-Slip Faulting Event Severing the Slab (United States)

    Hjorleifsdottir, V.; Iglesias, A.; Suarez, G.; Santoyo, M. A.; Villafuerte, C. D.; Ji, C.; Franco-Sánchez, S. I.; Singh, S. K.; Cruz-Atienza, V. M.; Ando, R.


    The Mw 8.2 September 8 earthquake occurred in the middle of the "Tehuantepec Gap", a segment of the Mexican subduction zone that has no historical mentions of a large earthquake. It was, however, not the expected subduction megathrust earthquake, but rather an intraplate, normal faulting event, in the subducting oceanic Cocos plate. The earthquake rupture initiated at a depth of 50 km and propagated NW on a near-vertical plane, breaking towards the surface. Most of the slip was concentrated in the distance range 30-100 km from the hypocenter and at depth between 15 and 50 km, with maximum slip of 15m. The earthquake seems to have broken the entire lithosphere, estimated to be 35 km thick. The strike of the fault is about 20 degrees oblique to the trench but aligned with the existing fabric on the incoming oceanic plate, suggesting a structural control by preexisting intraslab fractures and activation by the extensional stress due to the slab bending and pulling. Aftershocks occurred along the fault plane during the first day after the event, with activation of other parallel structures within the subducting plate, towards the east, as well as in upper plate, in the following days. Coulomb stress modeling suggests that the stress on the plate interface above the rupture was significantly increased where shallow thrust aftershoks took place, and reduced updip of the earthquake. There are several other examples of large intraslab normal faulting earthquakes, near the downdip edge (1931 Mw 7.8 and 1999 Mw 7.5, Oaxaca) or directly below (1997 Mw 7.1, Michoacan) the coupled plate interface, along the Mexican subduction zone. The possibility of events of similar magnitude to the 2017 earthquake occurring close to the coastline, all along this part of the subduction zone, cannot be ruled out.

  3. Accommodation of repetitive sensor faults - applied to surface faults on compact discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle


    Surface defects such as scratches and fingerprints on compact discs (CDs) can cause CD players to lose focus and tracking on the discs. A scheme for handling these defects has previously been proposed. In this brief, adaptive and predictive versions of this scheme are developed. The adaptive sche...

  4. Single event upset tests of a RISC-based fault-tolerant computer

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J.R.; Butner, D.N.; Colella, N.J.; Kaschmitter, J.L.; Shaeffer, D.L.; McKnett, C.L.; Coakley, P.G.; Casteneda, C.


    The project successfully demonstrated that dual lock-step comparison of commercial RISC processors is a viable fault-tolerant approach to handling SEU in space environment. The fault tolerant approach on orbit error rate was 38 times less than the single processor error rate. The random nature of the upsets and appearance in critical code section show it is essential to incorporate both hardware and software in the design and operation of fault-tolerant computers.

  5. Are turtleback fault surfaces common structural elements of highly extended terranes? (United States)

    Çemen, Ibrahim; Tekeli, Okan; Seyitoğlu, Gűrol; Isik, Veysel


    The Death Valley region of the U.S.A. contains three topographic surfaces resembling the carapace of a turtle. These three surfaces are well exposed along the Black Mountain front and are named the Badwater, Copper Canyon, and Mormon Point Turtlebacks. It is widely accepted that the turtlebacks are also detachment surfaces that separate brittlely deformed Cenozoic volcanic and sedimentary rocks of the hanging wall from the strongly mylonitic, ductilely deformed pre-Cenozoic rocks of the footwall. We have found a turtleback-like detachment surface along the southern margin of the Alasehir (Gediz) Graben in western Anatolia, Turkey. This surface qualifies as a turtleback fault surface because it (a) is overall convex-upward and (b) separates brittlely deformed hanging wall Cenozoic sedimentary rocks from the ductilely to brittlely deformed, strongly mylonitic pre-Cenozoic footwall rocks. The surface, named here Horzum Turtleback, contains striations that overprint mylonitic stretching lineations indicating top to the NE sense of shear. This suggests that the northeasterly directed Cenozoic extension in the region resulted in a ductile deformation at depth and as the crust isostatically adjusted to the removal of the rocks in the hanging wall of the detachment fault, the ductilely deformed mylonitic rocks of the footwall were brought to shallower depths where they were brittlely deformed. The turtleback surfaces have been considered unique to the Death Valley region, although detachment surfaces, rollover folds, and other extensional structures have been well observed in other extended terranes of the world. The presence of a turtleback fault surface in western Anatolia, Turkey, suggests that the turtleback faults may be common structural features of highly extended terranes.

  6. Analog modeling of strike-slip surface ruptures: Implications for Greendale Fault (New Zealand) mechanics and paleoseismology (United States)

    Sasnett, P.; Quigley, M.; Cruden, A. R.; Boutelier, D. A.; Villamor, P.


    Analog modeling of strike-slip faulting provides insight into the development and behavior of surface ruptures with progressive slip, with relevance for understanding how coseismic displacements from fault ruptures are recorded in paleoseismic trenches. Patterns of surface deformation were investigated in analogue experiments using cohesive and non-cohesive granular materials above a vertical, planar, strike-slip basement fault. Surface deformation during the experiments was monitored by 3D PIV (Particle Imaging Velocimetry) and 2D time-lapse photography. Analysis of the experiments focused on fault zone morphology and development, as well as comparisons between the models and surface deformation observed along the Greendale Fault that resulted from the 2010 Darfield earthquake, New Zealand. Complex surface rupture patterns with similar characteristics to the Greendale Fault (en echelon fractures, Riedel shears, pop-up structures, etc.) were generated by a simple fault plane of uniform dip, slip, and frictional properties. The main controls on surface rupture morphology were found to be the properties and thickness of the overburden, the nature of the material surface, and the overall displacement of the underlying fault. Mapping the evolution of fracture patterns with progressive shear strain reveals that Riedel shears, striking 0-30° from the underlying basement fault, are more frequently reactivated during multiple displacement (earthquake) cycles, and are thus most likely to provide reliable paleoseismic records. This information will assist in the identification of suitable locations for paleoseismic trenches and in the interpretation of trench records from the Greendale Fault and other active, strike-slip faults in analogous geologic settings. The results also highlight the tendency of trenching studies of faults of this type to underestimate the number of and displacements on previous ruptures, which potentially leads to an underestimate of the magnitude

  7. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Colton; Dorsey, Alison; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish


    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  8. Preliminary study of the effects of fault properties and mining geometry on the stiffness of the loading system in fault slip seismic events as a basis for identifying situations prone to seismic activity.

    CSIR Research Space (South Africa)

    Esterhuizen, GS


    Full Text Available The mechanism of most seismic events is shear displacement along geological faults. Seismicity occurs if the slip takes place violently and kinetic energy is released into the surrounding rock. The rock surrounding the fault plane may be seen...

  9. Evaluation of the potential for surface faulting at TA-63. Final report

    International Nuclear Information System (INIS)

    Kolbe, T.; Sawyer, J.; Springer, J.; Olig, S.; Hemphill-Haley, M.; Wong, I.; Reneau, S.


    This report describes an investigation of the potential for surface faulting at the proposed sites for the Radioactive Liquid Waste Treatment Facility (RL)WF) and the Hazardous Waste Treatment Facility at TA-63 and TA-52 (hereafter TA-63), Los Alamos National Laboratory (LANL). This study was performed by Woodward-Clyde Federal Services (WCFS) at the request of the LANL. The projections of both the Guaje Mountain and Rendija Canyon faults are mapped in the vicinity of TA-63. Based on results obtained in the ongoing Seismic Hazard Evaluation Program of the LANL, displacement may have occurred on both the Guaje Mountain and Rendija Canyon faults in the past 11,000 years (Holocene time). Thus, in accordance with US Department of Energy (DOE) Orders and Standards for seismic hazards evaluations and the US Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) Regulations for seismic standard requirements, a geologic study of the proposed TA-63 site was conducted

  10. Historical evidence of faulting in Eastern Anatolia and Northern Syria

    Directory of Open Access Journals (Sweden)

    C. P. Melville


    Full Text Available Historical data show that like the North Anatolian fault zone, which was delineated by a series of earthquakes during this century from east to west, so was the conjugate Eastern Anatolian fault zone delineated from the northeast to the southwest by a succession of large earthquakes in earlier times, with a major event at its junction with the Dead Sea fault system. This event was associated with surface faulting and occurred in a region seismically quiescent for nearly two centuries.

  11. Response of faults to climate-driven changes in ice and water volumes on Earth's surface. (United States)

    Hampel, Andrea; Hetzel, Ralf; Maniatis, Georgios


    Numerical models including one or more faults in a rheologically stratified lithosphere show that climate-induced variations in ice and water volumes on Earth's surface considerably affect the slip evolution of both thrust and normal faults. In general, the slip rate and hence the seismicity of a fault decreases during loading and increases during unloading. Here, we present several case studies to show that a postglacial slip rate increase occurred on faults worldwide in regions where ice caps and lakes decayed at the end of the last glaciation. Of note is that the postglacial amplification of seismicity was not restricted to the areas beneath the large Laurentide and Fennoscandian ice sheets but also occurred in regions affected by smaller ice caps or lakes, e.g. the Basin-and-Range Province. Our results do not only have important consequences for the interpretation of palaeoseismological records from faults in these regions but also for the evaluation of the future seismicity in regions currently affected by deglaciation like Greenland and Antarctica: shrinkage of the modern ice sheets owing to global warming may ultimately lead to an increase in earthquake frequency in these regions.

  12. Device to detect faults on the surfaces of work pieces

    International Nuclear Information System (INIS)

    Savidge, D.H.; Wadsworth, E.


    The surface of a work piece, e.g. a steel block, can be scanned by a high-frequency induced eddy current probe. The probe forms the inductive part of a tuned high-frequency oscillator circuit. A buffer amplifier separates the frequency and the amplitude of the output signals received by the oscillator circuit and feeds these to a double-channel receiver. The scanning head can also have several probe coils. (RW) [de

  13. Energy/Reliability Trade-offs in Fault-Tolerant Event-Triggered Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Gan, Junhe; Gruian, Flavius; Pop, Paul


    and reliability simultaneously is especially challenging, since lowering the voltage to reduce the energy consumption has been shown to increase the transient fault rate. We presented a Tabu Search-based approach which uses an energy/reliability trade-off model to find reliable and schedulable implementations...... with limited energy and hardware resources. We evaluated the algorithm proposed using several synthetic and reallife benchmarks....... task, such that transient faults are tolerated, the timing constraints of the application are satisfied, and the energy consumed is minimized. Tasks are scheduled using fixed-priority preemptive scheduling, while replication is used for recovery from multiple transient faults. Addressing energy...

  14. Local geomagnetic events associated with displacements on the san andreas fault. (United States)

    Breiner, S; Kovach, R L


    The piezomagnetic properties of rock suggest that a change in subsurface stress will manifest itself as a change in the magnetic susceptibility and remanent magnetization and hence the local geomagnetic field. A differential array of magnetometers has been operating since late 1965 on the San Andreas fault in the search for piezomagnetic signals under conditions involving active fault stress. Local changes in the geomagnetic field have been observed near Hollister, California, some tens of hours preceding the onset of abrupt creep displacement on the San Andreas fault.

  15. Germanium cryogenic detectors: Alpha surface events rejection capabilities

    International Nuclear Information System (INIS)

    Fiorucci, S.; Broniatowski, A.; Chardin, G.; Censier, B.; Lesquen, A. de; Deschamps, H.; Fesquet, M.; Jin, Y.


    Alpha surface events and multiple compton gamma interactions are the two major background components in Ge detectors for double-beta decay investigations. Two different methods have been studied to identify such type of events, using cryogenic Ge detectors developed primarily for dark matter search: (i) combined heat and ionization measurements, and (ii) pulse-shape analysis of the charge collection signals. Both methods show strong separation between electron recoil events and surface alphas. Cryogenic heat-ionization detectors therefore appear able to reject virtually all surface alpha interactions

  16. Contemporaneous ring fault activity and surface deformation at subsiding calderas studied using analogue experiments (United States)

    Liu, Yuan-Kai; Ruch, Joël; Vasyura-Bathke, Hannes; Jónsson, Sigurjón


    Ground deformation analyses of several subsiding calderas have shown complex and overlapping deformation signals, with a broad deflation signal that affects the entire volcanic edifice and localized subsidence focused within the caldera. However, the relation between deep processes at subsiding calderas, including magmatic sources and faulting, and the observed surface deformation is still debated. Several recent examples of subsiding calderas in the Galápagos archipelago and at the Axial seamount in the Pacific Ocean indicate that ring fault activity plays an important role not only during caldera collapse, but also during initial stages of caldera subsidence. Nevertheless, ring fault activity has rarely been integrated into numerical models of subsiding calderas. Here we report on sandbox analogue experiments that we use to study the processes involved from an initial subsidence to a later collapse of calderas. The apparatus is composed of a subsiding half piston section connected to the bottom of a glass box and driven by a motor to control its subsidence. We analyze at the same time during the subsidence the 3D displacement at the model surface with a laser scanner and the 2D ring fault evolution on the side of the model (cross-section) with a side-view digital camera. We further use PIVLab, a time-resolved digital image correlation software tool, to extract strain and velocity fields at both the surface and in cross-section. This setup allows to track processes acting at depth and assess their relative importance as the collapse evolves. We further compare our results with the examples observed in nature as well as with numerical models that integrate ring faults.

  17. Late Quaternary Surface Rupture and Associated Transpressive Uplift on a Section of the State Line Fault in the south-central Amargosa Desert Basin, Southwestern Nevada (United States)

    Menges, C. M.; Fridrich, C.; Blakely, R. J.; Thompson, R. A.


    pressure ridges cored by internally deformed Tertiary strata. These scarps dip steeply up to 20° -30° downslope at the base of the uplifted ridges, vary in height from 0.2-2.7 m, and are associated with persistent right-lateral gully offsets of 0.5-5.2 m. The geomorphic data indicate varying amounts of lateral and vertical (reverse) surface displacements, depending on location and orientation within the overall left-stepping fault zone. Combined measurements of vertical and lateral displacement at 10 sites yield estimates of right-oblique net slip for the most recent faulting event that range from 1.9-5.2 m (averaging 3.1 m). A latest Holocene (age is estimated for this surface rupture based on both stratigraphic relations to surficial deposits and scarp morphology. Geomorphic evidence for prior ruptures is absent or poorly constrained, but generally suggests recurrence intervals at least on the order of 104 yrs. Paleoseismic interpretations of the net-slip displacement data suggest that the fault scarps are probably associated with a M 7.1-7.3 paleoearthquake along a rupture zone on the State Line fault that, although not studied in detail, most likely continued ˜ 35-40 km to the southeast from the Resting Spring area through Stewart and northwestern Pahrump Valleys. The Holocene surface rupture at the Resting Springs area is unlikely to extend northwest along the northeastern flank of the southeastern Funeral Mountains because upper to middle Pleistocene surfaces are only locally warped, with no detectable fault scarps, in that area.

  18. A Fault Diagnosis Model of Surface to Air Missile Equipment Based on Wavelet Transformation and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhheng Ni


    Full Text Available At present, the fault signals of surface to air missile equipment are hard to collect and the accuracy of fault diagnosis is very low. To solve the above problems, based on the superiority of wavelet transformation on processing non-stationary signals and the advantage of SVM on pattern classification, this paper proposes a fault diagnosis model and takes the typical analog circuit diagnosis of one power distribution system as an example to verify the fault diagnosis model based on Wavelet Transformation and SVM. The simulation results show that the model is able to achieve fault diagnosis based on a small amount of training samples, which improves the accuracy of fault diagnosis.

  19. Surface expression of intraplate postglacial faults in Sweden: from LiDAR data (United States)

    Abduljabbar, Mawaheb; Ask, Maria; Bauer, Tobias; Lund, Björn; Smith, Colby; Mikko, Henrik; Munier, Raymond


    Large intraplate earthquakes, up to magnitude 8.0±0.3 (Lindblom et al. 2015) are inferred to have occurred in northern Fennoscandia at the end of, or just after the Weichselian deglaciation. More than a dozen large so-called postglacial faults (PGF) have been found in the region. The present-day microseismic activity is rather high in north Sweden, and there is a correlation between microseismicity and mapped PGF scarps: 71% of the observed earthquakes north of 66°N locate within 30 km to the southeast and 10 km to the northwest of PGFs (Lindblom et al., 2015). Surface expressions of PGFs in Sweden have mainly been mapped using aerial photogrammetry and trenching (e.g. Lagerbäck & Sundh 2008). Their detailed surface geometry may be investigated using the new high-resolution elevation model of Sweden (NNH) that has a vertical- and lateral resolution of 2 m and 0.25 m, respectively. With NNH data, known PGFs have been modified, and a number of new potential PGFs have been identified (Smith et al. 2014; Mikko et al. 2015). However, the detailed variation of their surface expression remains to be determined. Our main objective is to constrain the strike and surface offset (i.e., apparent vertical throw because of soil cover overlays the bedrock) across the PGF scarps. We anticipate using the results to constrain direction of fault motion and paleomagnitudes of PGFs, and in numerical analyzes to investigate the nature of PGFs. We have developed a methodology for analyzing PGF-geomorphology from LiDAR data using two main software platforms (Ask et al. 2015): (1) Move2015 by Midland Valley has been used for constructing 3D models of the surface traces of the PGFs to determine apparent vertical throw. The apparent hanging- and footwall cut off lines are digitized, and subsequent computation of coordinates is rather time efficient and provide continuous data of fault and soil geomorphology that can be statistically analyzed; and (2) ArcGIS 10.3 by Esri has mostly been

  20. Probabilistic risk assessment course documentation. Volume 4. System reliability and analysis techniques sessions B/C - event trees/fault trees

    International Nuclear Information System (INIS)

    Haasl, D.; Young, J.


    This course will employ a combination of lecture material and practical problem solving in order to develop competence and understanding of th principles and techniques of event tree and fault tree analysis. The role of these techniques in the overall context of PRA will be described. The emphasis of this course will be on the basic, traditional methods of event tree and fault tree analysis


    Energy Technology Data Exchange (ETDEWEB)

    Dorsey, Alison; Dudley, Colton; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish [Optim


    Linear deposits of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake, Nevada. Throughout the Great Basin, faults appear to control the location of geothermal resources by providing pathways for fluid migration. Reservoir-depth (greater than 1 km) seismic imaging at Astor Pass reveals a fault that projects to one of the lines of tufa columns at the surface. The presence of the tufa deposits suggests this fault carried warm geothermal waters through the lakebed clay sediments in recent time. The warm fluids deposited the tufa when they hit cold Lake Lahontan water at the lakebed. Lake Lahontan covered this location 11 ka to a depth of at least 60 m. In collaboration with the Pyramid Lake Paiute Tribe, an Applied Geophysics class at UNR investigated the near-surface geophysical characteristics of this fault. The survey at and near the tufa columns comprises near-surface Pwave seismic reflection and refraction, electrical resistivity tomography, nearsurface refraction microtremor arrays, nine near-surface direct-current resistivity soundings, magnetic surveys, and gravity surveys. The refraction microtremor results show shear velocities near tufa and faults to be marginally lower, compared to Vs away from the faults. Overall, the 30-m depth-averaged shear velocities are low, less than 300 m/s, consistent with the lakebed clay deposits. These results indicate that no seismically fast (> 500 m/s) tufa deposits are present below the surface at or near the tufa columns. Vs30 averages were for example 274 ± 13 m/s on the fault, 287 ± 2 m/s at 150 m east of the fault, and 290 ± 15 m/s at 150 m west of the fault. The P-velocity refraction optimization results similarly indicate a lack of high-velocity tufa buried below the surface in the Lahontan sediments, reinforcing the idea that all tufa was deposited above the lakebed surface. The seismic results provide a negative test of the hypothesis that

  2. Sequential combination of multi-source satellite observations for separation of surface deformation associated with serial seismic events (United States)

    Chen, Qiang; Xu, Qian; Zhang, Yijun; Yang, Yinghui; Yong, Qi; Liu, Guoxiang; Liu, Xianwen


    Single satellite geodetic technique has weakness for mapping sequence of ground deformation associated with serial seismic events, like InSAR with long revisiting period readily leading to mixed complex deformation signals from multiple events. It challenges the observation capability of single satellite geodetic technique for accurate recognition of individual surface deformation and earthquake model. The rapidly increasing availability of various satellite observations provides good solution for overcoming the issue. In this study, we explore a sequential combination of multiple overlapping datasets from ALOS/PALSAR, ENVISAT/ASAR and GPS observations to separate surface deformation associated with the 2011 Mw 9.0 Tohoku-Oki major quake and two strong aftershocks including the Mw 6.6 Iwaki and Mw 5.8 Ibaraki events. We first estimate the fault slip model of major shock with ASAR interferometry and GPS displacements as constraints. Due to the used PALSAR interferogram spanning the period of all the events, we then remove the surface deformation of major shock through forward calculated prediction thus obtaining PALSAR InSAR deformation associated with the two strong aftershocks. The inversion for source parameters of Iwaki aftershock is conducted using the refined PALSAR deformation considering that the higher magnitude Iwaki quake has dominant deformation contribution than the Ibaraki event. After removal of deformation component of Iwaki event, we determine the fault slip distribution of Ibaraki shock using the remained PALSAR InSAR deformation. Finally, the complete source models for the serial seismic events are clearly identified from the sequential combination of multi-source satellite observations, which suggest that the major quake is a predominant mega-thrust rupture, whereas the two aftershocks are normal faulting motion. The estimated seismic moment magnitude for the Tohoku-Oki, Iwaki and Ibaraki evens are Mw 9.0, Mw 6.85 and Mw 6.11, respectively.

  3. Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event (United States)

    Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.


    The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol ( which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip

  4. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience (United States)

    Pantosti, Daniela


    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active

  5. Methods of evaluating segmentation characteristics and segmentation of major faults

    International Nuclear Information System (INIS)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok


    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary

  6. Methods of evaluating segmentation characteristics and segmentation of major faults

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kie Hwa; Chang, Tae Woo; Kyung, Jai Bok [Seoul National Univ., Seoul (Korea, Republic of)] (and others)


    Seismological, geological, and geophysical studies were made for reasonable segmentation of the Ulsan fault and the results are as follows. One- and two- dimensional electrical surveys revealed clearly the fault fracture zone enlarges systematically northward and southward from the vicinity of Mohwa-ri, indicating Mohwa-ri is at the seismic segment boundary. Field Geological survey and microscope observation of fault gouge indicates that the Quaternary faults in the area are reactivated products of the preexisting faults. Trench survey of the Chonbuk fault Galgok-ri revealed thrust faults and cumulative vertical displacement due to faulting during the late Quaternary with about 1.1-1.9 m displacement per event; the latest event occurred from 14000 to 25000 yrs. BP. The seismic survey showed the basement surface os cut by numerous reverse faults and indicated the possibility that the boundary between Kyeongsangbukdo and Kyeongsannamdo may be segment boundary.

  7. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions (United States)

    Vilotte, J. P.; Scala, A.; Festa, G.


    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  8. Modelling of Earthquake History of the Knidos Fault Zone SW Turkey Using in-situ 36Cl Surface Exposure Dating by R (United States)

    Sahin, S.; Yıldırım, C.; Sarıkaya, M. A.; Tuysuz, O.; Genç, S. C.; Aksoy, M. E.; Doksanaltı, M. E.; Benedetti, L.


    Cosmogenic surface exposure dating is based on the production of rare nuclides in exposed rocks, which interact with cosmic rays. Through modelling of measured 36Cl concentrations, we might obtain information of the history of the earthquake activity. Yet, there are several factors which may impact production of rare nuclides such as geometry of fault, topography, geographic location of study area, temporal variations of the Earth's magnetic field, self-cover and denudation rate on the scarp. Our study area, the Knidos Fault Zone, is located on the Datça Peninsula in the Southwestern Anatolia and contains several normal fault scarps formed within the limestone, which are appropriate to apply cosmogenic chlorine-36 dating. Since it has a well-preserved scarp, we have focused on the Mezarlık Segment of the fault zone, which has an average length of 300 m and height 12-15 m. 128 continuous samples from top to bottom of the fault scarp were collected to carry out analysis of cosmic 36Cl isotopes concentrations. Recent research elucidated each step of the application of this method by the Matlab (e.g. Schlagenhauf et al., 2010). It is vitally helpful to generate models activity of normal faults. We, however, wanted to build a user-friendly program through an open source programing language R that might be able to help those without knowledge of complex math, programming, making calculations as easy as possible. We have set out to obtain accurate conclusions to compare and contrast our results with synthetic profiles and previous studies of limestone fault scarps. The preliminary results indicate at least three major or more earthquakes/earthquakes cluster events occurred on the Mezarlık fault within the past 20 kyr; over 10 meters of displacement took place between early Holocene and late Pleistocene. Estimated ages of those three large slip events are 18.7, 15.1 and 10.8 ka respectively. This study was conducted with the Decision of the Council of Ministers with No

  9. Discontinuity surfaces and event stratigraphy of Okha Shell ...

    Indian Academy of Sciences (India)

    The events show depositional breaks represented by discontinuity surfaces, the taphofacies varieties and ichnological variations. The present study in the context of available geochrnological data of the region suggests a prominent depositional break representing low sea level stand (regression) during an Early Holocene ...

  10. On machine surface to the unit event causing residual stress

    International Nuclear Information System (INIS)

    Arunachalama, R.M.; Mannanb, M.A.; Spowageca, A.


    Integrity and reduce overall costs. Within the framework of surface integrity investigations, special emphasis is given to the measurement of residual stresses because they contribute directly to premature failure of components. Since the highest residual stresses are to be found in surface layers, these deserve special attention when dealing with dynamically, heavily loaded machine parts such as gas turbine components used in aero engines. Of the many techniques available for the measurement of residual stresses, the most highly developed and widely used non-destructive method is based on X-ray diffraction (XRD). However, it is not possible to use this technique for inspection of all the components, since it is time consuming, complicated as well as expensive. In this paper, a method is being proposed that augments the XRD method but at the same time capable of inspecting all the components. A non-destructive, visual inspection technique has been developed that can correlate the characteristic features on the surface to the unit event causing the residual stress and the type of residual stress generated on the machined surface. Pictures of the machined surfaces have been taken using a digital video microscope at a magnification of 500 and the surface feature correlated to the unit event causing the residual stress. Sharp and well defined long grooves indicate that the plastic deformation is dominated by a mechanical unit event while appearance of streaks and small areas of smeared material indicate that the plastic deformation is dominated by a thermal unit event. These trends have been confirmed by measuring the residual stresses using XRD. The proposed technique is an attempt at establishing a simple methodology that would be useful to industries manufacturing aerospace and other components that require good surface integrity. (Author)

  11. Role of Rock Mass Fabric and Faulting in the Development of Block Caving Induced Surface Subsidence (United States)

    Vyazmensky, Alexander; Elmo, Davide; Stead, Douglas


    Extraction of a large volume of ore during block caving can lead to the formation of significant surface subsidence. Current knowledge of the mechanisms that control subsidence development is limited as are our subsidence prediction capabilities. Mining experience suggests that, among other contributing factors, geological structures play a particularly important role in subsidence development. A conceptual modeling study has been undertaken to evaluate the significance of geological structure on surface subsidence. A hybrid finite/discrete element technique incorporating a coupled elasto-plastic fracture mechanics constitutive criterion is adopted; this allows physically realistic modeling of block caving through simulation of the transition from a continuum to a discontinuum. Numerical experiments presented emphasize the importance of joint orientation and fault location on mechanisms of subsidence development and the governing role of geological structure in defining the degree of surface subsidence asymmetry.

  12. Holocene Time-slip history of normal fault scarps in western Turkey: 36Cl surface exposure dating (United States)

    Mozafari Amiri, N.; Sümer, Ö.; Tikhomirov, D.; Özkaymak, Ç.; Uzel, B.; Ivy-Ochs, S.; Vockenhuber, C.; Sözbilir, H.; Akçar, N.


    Bedrock fault scarps built in carbonates are the most direct evidence of past earthquakes to reconstruct long-term seismic outline using 36Cl cosmogenic nuclides. The western Anatolia is an active seismic region, in which several major graben systems are formed mainly in carbonates commenced by roughly N-S extensional regime since the early Miocene. The oldest known earthquake in the Eastern Mediterranean and Middle East dates back to 464 B.C. However, to evaluate the earthquake pattern, a complete seismic data over a large time-scale is required. For modelling of seismic periods, a Matlab® code is used based on acceleration of production rate of 36Cl following exposure of fresh material to cosmic rays. By measuring the amount of cosmogenic 36Cl versus height on the fault surface, the timing of significant ruptures and vertical displacements are explored. The best scenario is obtained with the minimum difference between the modelled and measured 36Cl. An ideal target spot is a minimum-eroded surface with length of at least two meters from the intersection of the fault with colluvium. After continuous marking of 10 cm height and 15 cm width on the fault, the samples of 3 cm thick are collected. The geometrical factors of scarp dip, scarp height, top surface dip and colluvium dip are measured. Topographic shielding, density of the fault scarp and colluvium are also estimated. Afterwards, the samples are physically and chemically prepared in laboratory for elemental analysis and AMS measurements. In this study, we collected 584 samples from seven major faults in western Anatolia. Our first results indicate five earthquake sequences in the Priene-Sazlı fault since early Holocene with a recurrence interval of approximately 2000 years and slip of 1.3 to 2.9 meters. The two most recent ruptures are correlated with 1955 and 68 AD earthquakes. A slip rate of roughly 1 mm/yr throughout the activity periods is estimated. Regarding the rupture length, the fault has potential

  13. No Fault Found events in maintenance engineering Part 1: Current trends, implications and organizational practices

    International Nuclear Information System (INIS)

    Khan, Samir; Phillips, Paul; Jennions, Ian; Hockley, Chris


    This paper presents the first part of a state of the art review on the No Fault Found (NFF) phenomenon. The aim has been to compile a systematic reference point for burgeoning NFF literature, and to provide a comprehensive overview for gaining an understanding of NFF knowledge and concepts. Increasing systems complexities have seen a rise in the number of unknown failures that are being reported during operational service. Units tagged as ‘NFF’ are evidence that a serviceable component was removed, and attempts to troubleshoot the root cause have been unsuccessful. There are many reasons on how these failures manifest themselves and these papers describe the prominent issues that have persisted across a variety of industrial applications and processes for decades. This article, in particular, deals with the impact of NFF from an organizational culture and human factors point of view. It also highlights recent developments in NFF standards, its financial implications and safety concerns

  14. No Fault Found events in maintenance engineering Part 2: Root causes, technical developments and future research

    International Nuclear Information System (INIS)

    Khan, Samir; Phillips, Paul; Hockley, Chris; Jennions, Ian


    This is the second half of a two paper series covering aspects of the no fault found (NFF) phenomenon, which is highly challenging and is becoming even more important due to increasing complexity and criticality of technical systems. Part 1 introduced the fundamental concept of unknown failures from an organizational, behavioral and cultural stand point. It also reported an industrial outlook to the problem, recent procedural standards, whilst discussing the financial implications and safety concerns. In this issue, the authors examine the technical aspects, reviewing the common causes of NFF failures in electronic, software and mechanical systems. This is followed by a survey on technological techniques actively being used to reduce the consequence of such instances. After discussing improvements in testability, the article identifies gaps in literature and points out the core areas that should be focused in the future. Special attention is paid to the recent trends on knowledge sharing and troubleshooting tools; with potential research on technical diagnosis being enumerated

  15. Multiple Event Analysis of the 2008 Mw 7.9 Wenchuan Earthquake: Implications for Variations in Radiated Seismic Energy During Faulting

    Directory of Open Access Journals (Sweden)

    Ruey-Der Hwang


    Full Text Available A forward modeling of P-waves for the 2008 Wenchuan earthquake revealed at least seven sub-events that occurred during faulting with the largest event (i.e., the third sub-event located at a position ~50 km northeast of the epicenter. Simulations of P-waves showed that it would be more appropriate to model the P-waves using thrust faulting for the first three sub-events and using strike-slip faulting for the last four. In other words, the faulting for the 2008 Wenchuan earthquake was composed substantially of two mechanisms; the former was a thrust faulting and the latter was a strike-slip rupture. The mechanical transition was near the town of Beichuan, ~100 km northeast of the epicenter. Variations in radiated seismic energy (ES showed the largest ES released from the fourth sub-event. Results also indicated remarkable distinctions between ES and ES0 (called the available energy. On the whole, the total ES, which was higher than ES0 estimated from static stress drop, suggested that the earthquake should be interrupted by a stress model of abrupt-locking. Further, the former thrust faulting released a relatively lower amount of ES than the latter strike-slip event. Orowan¡¦s stress model, i.e., ES ≈ ES0, can specify former thrust ruptures implying a high rupture velocity. Because ES > ES0 for latter strike-slip ruptures, a stress model of abrupt-locking, implying higher dynamic stress drop and lower friction during an earthquake, can account for the feature of the latter ruptures. This might suggest that the 2008 Wenchuan earthquake should have a high rupture velocity, perhaps approaching the crustal S-wave velocity or even higher.

  16. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression (United States)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang


    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  17. Near-surface versus fault zone damage following the 1999 Chi-Chi earthquake: Observation and simulation of repeating earthquakes (United States)

    Chen, Kate Huihsuan; Furumura, Takashi; Rubinstein, Justin L.


    We observe crustal damage and its subsequent recovery caused by the 1999 M7.6 Chi-Chi earthquake in central Taiwan. Analysis of repeating earthquakes in Hualien region, ~70 km east of the Chi-Chi earthquake, shows a remarkable change in wave propagation beginning in the year 2000, revealing damage within the fault zone and distributed across the near surface. We use moving window cross correlation to identify a dramatic decrease in the waveform similarity and delays in the S wave coda. The maximum delay is up to 59 ms, corresponding to a 7.6% velocity decrease averaged over the wave propagation path. The waveform changes on either side of the fault are distinct. They occur in different parts of the waveforms, affect different frequencies, and the size of the velocity reductions is different. Using a finite difference method, we simulate the effect of postseismic changes in the wavefield by introducing S wave velocity anomaly in the fault zone and near the surface. The models that best fit the observations point to pervasive damage in the near surface and deep, along-fault damage at the time of the Chi-Chi earthquake. The footwall stations show the combined effect of near-surface and the fault zone damage, where the velocity reduction (2–7%) is twofold to threefold greater than the fault zone damage observed in the hanging wall stations. The physical models obtained here allow us to monitor the temporal evolution and recovering process of the Chi-Chi fault zone damage.

  18. Mud volcano monitoring and seismic events along the North Anatolian Fault (Sea of Marmara) (United States)

    Javad Fallahi, Mohammad; Lupi, Matteo; Mazzini, Adriano; Polonia, Alina; D'Alessandro, Antonino; D'Anna, Giuseppe; Gasperini, Luca


    The Sea of Marmara, a pull-apart basin formed along the northern strand of the North Anatolian Fault (NAF) system, is considered a seismic gap, that will be filled in the next decades by a large magnitude (M>7) earthquake, close to the Istanbul Metropolitan area (12 million inhabitants). For this reason, several marine geological and geophysical studies have been carried out in this region, starting from the destructive 1999 Mw 7.4 Izmit earthquake, to gather information relative to seismogenic potential of major fault strands. Together with these studies, in the frame of EC projects (i.e., MarmESONET and Marsite, among others), an intensive program of long-term monitoring of seismogenic faults was carried out using seafloor observatories deployed during several expeditions led by Italian, French and Turkish groups. These expeditions included MARM2013, on board of the R/V Urania, of the Italian CNR, when four ocean bottom seismometers (OBS) were deployed in the central part of the Sea of Marmara, at depths between 550 and 1000 m. One of the main aims of the experiment was to assess the long-term seismic activity along an active segment of the NAF, which connects the central and the western basins (depocenters), where the principal deformation zone appears relatively narrow and almost purely strike-slip. The present study shows the results of processing and analysis of continuous data records from these OBS stations during 50 days. We were able to detect seismic signal produced by an active mud volcano located close to the NAF trace, from about 3 to 6 km of distance from the OBS stations. Additionally, we captured the May 24, 2014, Mw 6.9 strike-slip earthquake occurred in the northern Aegean Sea between Greece and Turkey, which caused serious damage on the Turkish island of Imbros and the cities of Edirne and Çanakkale, as well as on the Greek island of Lemnos. The earthquake nucleated on the westward continuation of the NAF system in the NE Aegean Sea, and was

  19. Seismic constraints on a large dyking event and initiation of a transform fault zone in Western Gulf of Aden (United States)

    Ahmed, AbdulHakim; Doubre, Cecile; Leroy, Sylvie; Perrot, Julie; Audin, Laurence; Rolandone, Frederique; Keir, Derek; Al-Ganad, Ismael; Sholan, Jamal; Khanbari, Khaled; Mohamed, Kassim; Vergne, Jerome; Jacques, Eric; Nercessian, Alex


    that the geodetic moment is one order of magnitude higher than the seismic moment during such events, the seismic activity of this event of the Aden ridge represents a major rifting episode certainly associated with the opening of the segment by dyking estimated to be higher than 10 m. Several computed focal mechanisms are dextral strike-slip in the western part of the dyking area could be related to a nascent transform fault zone.

  20. A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry


    Highlights: • We propose a fuzzy-based reliability approach to evaluate basic event reliabilities. • It implements the concepts of failure possibilities and fuzzy sets. • Experts evaluate basic event failure possibilities using qualitative words. • Triangular fuzzy numbers mathematically represent qualitative failure possibilities. • It is a very good alternative for conventional reliability approach. - Abstract: Fault tree analysis has been widely utilized as a tool for nuclear power plant probabilistic safety assessment. This analysis can be completed only if all basic events of the system fault tree have their quantitative failure rates or failure probabilities. However, it is difficult to obtain those failure data due to insufficient data, environment changing or new components. This study proposes a fuzzy-based reliability approach to evaluate basic events of system fault trees whose failure precise probability distributions of their lifetime to failures are not available. It applies the concept of failure possibilities to qualitatively evaluate basic events and the concept of fuzzy sets to quantitatively represent the corresponding failure possibilities. To demonstrate the feasibility and the effectiveness of the proposed approach, the actual basic event failure probabilities collected from the operational experiences of the David–Besse design of the Babcock and Wilcox reactor protection system fault tree are used to benchmark the failure probabilities generated by the proposed approach. The results confirm that the proposed fuzzy-based reliability approach arises as a suitable alternative for the conventional probabilistic reliability approach when basic events do not have the corresponding quantitative historical failure data for determining their reliability characteristics. Hence, it overcomes the limitation of the conventional fault tree analysis for nuclear power plant probabilistic safety assessment

  1. Understanding the Hydromechanical Behavior of a Fault Zone From Transient Surface Tilt and Fluid Pressure Observations at Hourly Time Scales (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe


    Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.

  2. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault (United States)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.


    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  3. Luminescence chronologies for sediments recording paleoseismic events and slip rate for the central Garlock fault, California, USA (United States)

    Okubo, S. G.; Wolf, E.; Roder, B. J.; Rhodes, E. J.; McGill, S. F.; Dolan, J. F.; Mcauliffe, L. J.; Lawson, M. J.; Barrera, W. A.


    Luminescence dating has a significant role to play in providing chronological control for lacustrine and alluvial sediments that record both tectonic and climatic events. However, poor characteristics in some environments mean that the well-established method of OSL (optically stimulated luminescence) dating of quartz is not well-suited for the material available. In order to overcome this significant limitation, a range of methods based on the IRSL (infra-red stimulated luminescence) and ITL (isothermal thermoluminescence) of K-feldspar are currently under development. The site of El Paso Peaks, California has an established C-14 chronology spanning the last 7,000 years for a series of playa sediments comprising silts and fine sands, with occasional incursions of coarser sands and gravels from the alluvial fan that forms one side of the small ephemeral lake basin. Another barrier is formed by a shutter ridge of the left-lateral central Garlock fault, and this succession of sediments records at least six seismic events. Following collection of a suite of 24 luminescence samples distributed throughout the upper part of this succession, this site provides a rare opportunity to test different luminescence dating protocols in a rigorous fashion. At the site of Christmas Canyon West, a few miles further east, numerous small offsets of depositional and erosional alluvial fan features provide the opportunity to determine slip rates for a variety of timescales spanning the past couple of thousand years, besides forming a record of the timing of several discrete depositional episodes representing local high precipitation events. We review the challenges involved in developing a reliable luminescence chronology for sediment deposition in these contexts, and in relating this chronology to significant environmental events.

  4. Paleoseismology of silent faults in the Central Apennines (Italy: the Campo Imperatore Fault (Gran Sasso Range Fault System

    Directory of Open Access Journals (Sweden)

    M. Moro


    Full Text Available Paleoseismological analyses were performed along the Campo Imperatore Fault (part of the Gran Sasso Range Fault System in order to define the seismogenic behaviour (recurrence interval for surface faulting events, elapsed time since the last activation, maximum expected magnitude. Four trenches were excavated across secondary faults which are related to the main fault zone. The youngest event (E1 occurred after 3480-3400 years BP; a previous event (E2 occurred between 7155-7120/7035-6790 years BP and 5590-5565/5545-5475 years BP, while the oldest one (E3 has a Late Pleistocene age. The chronological interval between the last two displacement events ranges between 1995 and 6405 years. The minimum elapsed time since the last activation is 800 years, due to the absence of historical earthquakes which may have been caused by the Campo Imperatore Fault and based on the completeness of the historical catalogues for the large magnitude events in the last eight centuries. Based on the length of the fault surficial expression, earthquakes with M 6.95 may be expected from the activation of the entire Gran Sasso Range Fault System. The effects of the fault activation were investigated through the simulation of a damage scenario obtained by means of the FaCES computer code, made by the National Seismic Survey for civil protection purposes. The damage scenario shows that the activation of the Gran Sasso Range Fault System may be responsible for an earthquake with epicentral intensity I0 10.5 MCS, with a number of collapsed buildings ranging between 7900 and 31100 and a number of damaged buildings ranging between 99 000 and 234 000. The investigated case defines, therefore, a high risk level for the region affected by the Campo Imperatore Fault.

  5. Reconstructing the magnitude and timing of late Pleistocene and Holocene strike-slip events within the Marlborough Fault Zone, New Zealand (United States)

    Rhodes, Ed; Dolan, James; Van Dissen, Russ; Langridge, Rob; Zinke, Rob; Hatem, Alex; McGuire, Chris; Brown, Nathan


    In most instances, information about the timing of pre-historic earthquake events comes from palaeoseismic trenches located within sediments that were deposited gradually and are close to the fault. Earthquake events are recognised by disturbed stratigraphy, and the timing provided by radiocarbon dating of organic materials that constrain the youngest disturbances for each event. In contrast, fault slip rates are typically derived from the dating of geomorphic features that are offset by one or more slip events. In this latter case, it is often hard to locate suitable organic material for dating these features which often comprise fluvial terraces or channels, and a variety of alternative chronological approaches has been taken including the use of terrestrial cosmogenic nuclides (TCNs; 10Be, 36Cl), U-series dating of carbonate overgrowths on pebbles, and/or luminescence dating of sediments. Using luminescence dating based on single grains of K-feldspar and a post-IR IRSL (Infra-Red Stimulated Luminescence) measurement protocol, we have been able to control the age of several offset terrace units from a number of major strike slip faults of the Marlborough Fault Zone, New Zealand. In the past, arguments concerning the selection of which geomorphic terrace feature to date have been presented, and typically a single age estimate, or small number of dates were used to constrain the derived slip rate. In the Marlborough region, we have sampled several locations characterised by multiple fluvial terraces dating from the late Glacial period (c. 16,000 years ago) through the Holocene. By using a high sampling density involving multiple age estimates within each terrace, dating each one of the terraces, and applying a Bayesian statistical approach to constrain the age of deposition and incision events, we are able to approach a situation where we can derive slip-per-event data and event timing from the same dataset. This can overcome problems of relating observed slip

  6. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 5–24, San Andreas Fault Zone, southern California (2010–2012) (United States)

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.


    The Frazier Mountain paleoseismic site is located within the northern Big Bend of the southern San Andreas Fault (lat 34.8122° N., lon 118.9034° W.), in a small structural basin formed by the fault (fig. 1). The site has been the focus of over a decade of paleoseismic study due to high stratigraphic resolution and abundant dateable material. Trench 1 (T1) was initially excavated as a 50-m long, fault-perpendicular trench crossing the northern half of the basin (Lindvall and others, 2002; Scharer and others, 2014a). Owing to the importance of a high-resolution trench site at this location on a 200-km length of the fault with no other long paleoseismic records, later work progressively lengthened and deepened T1 in a series of excavations, or cuts, that enlarged the original excavation. Scharer and others (2014a) provide the photomosaics and event evidence for the first four cuts, which largely show the upper section of the site, represented by alluvial deposits that date from about A.D. 1500 to present. Scharer and others (2014b) discuss the earthquake evidence and dating at the site within the context of prehistoric rupture lengths and magnitudes on the southern San Andreas Fault. Here we present the photomosaics and event evidence for a series of cuts from the lower section, covering sediments that were deposited from about A.D. 500 to 1500 (fig. 2).

  7. Geologic investigations of Australian earthquakes: Paleoseismicity and the recurrence of surface faulting in the stable regions of continents (United States)

    Machette, Michael; Crone, Anthony


    Earthquakes that occur in the stable regions of continents are very rare compared to those that occur along plate margins, such as the San Andreas fault system of western California. Worldwide, only 11 historic earthquakes in stable continental regions are known to have produced surface ruptures. Five of these have occurred in Australia since 1968 (see map, next page).

  8. Paleoearthquakes on the Anninghe and Zemuhe fault along the southeastern margin of the Tibetan Plateau and implications for fault rupture behavior at fault bends on strike-slip faults (United States)

    Wang, Hu; Ran, Yongkang; Chen, Lichun; Li, Yanbao


    Fault bends can serve as fault segment boundaries and are used in seismic hazard assessment. Recent studies addressing whether rupture propagation would be arrested at such structural complexities have commonly focused on computational modeling. However, multi-cycle paleoseismic rupture observations through fault bends have seldom been reported. In this study, we used trenching and radiocarbon dating to reveal paleoseismic rupture histories on the southern segment of the Anninghe fault (ANHF) along the southeastern margin of the Tibetan Plateau to explore multi-cycle surface rupture behavior at an extensional fault bend (with an angle of about 30°) at Xichang between the ANHF and Zemuhe fault (ZMHF). Specifically, nine trenches were opened in a fault depression at Maoheshan site and five paleoseismic events were identified. These have been named E1 through E5 respectively corresponding to events at 1400-935 BCE, 420-875 CE, 830-1360 CE, 1295-1715 CE, and 1790 CE-Present. After comparison with the historical records of earthquakes around Xichang and previous paleoseismic results, we suggest that the five seismic events are constrained at: 1365 BCE-935 BCE, 814 CE, 950 CE- 1145 CE, 1536 CE and 1850 CE, respectively. The average recurrence interval of earthquakes along the southern segment of the ANHF is about 700-800 yr. Furthermore, the evidence indicates that surface-faulting events along the southern segment of the ANHF appear to be unevenly spaced in time. Moreover, based on comparisons of seismic events along the ANHF and ZMHF, we find that two fault segments simultaneous ruptured during the 814 CE and 1850 CE earthquakes, event E3 and the 1536 CE earthquake ruptured the ANHF but not rupture the ZMHF. We suggest that the Xichang fault bend is not a persistent fault boundary, indicating that extensional fault bends with an angle of about 30° may not effectively terminate seismic ruptures on strike-slip faults.

  9. Sensing of subsurface faults based on an imaging technique for teleseismic waveform data. 2. Feasibility study for application to oblique incidence, multi-event and noise data; Enchi jishin hakei data wo mochiita chika kozo imaging ni yoru chichu danso kenshutsu no kokoromi. 2. Naname nyusha, multi event, noise wo fukumu hakei eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, T.; Takenaka, H.; Saita, T. [Kyushu University, Fukuoka (Japan). Faculty of Science; Suetsugu, D. [Building Research Institute, Tokyo (Japan); Furumura, T. [Hokkaido University of Education, Sapporo (Japan)


    An examination was made on the method in which imaging of subsurface was carried out with teleseismic waveform data for sensing of faults. In the examination, an experiment was done on the sensing of faults with higher precision, by applying oblique incidence as well as perpendicular upward incidence of SH plane waves, and thereby stacking the imaging in plural events. In numerical experiments, 28 observation points were arranged at 500m spaces apart on the surface, and the incident waves were made the SH plane waves having a bell-shaped time function, with incidence made at an angle varied as 0{degree}, +15{degree} and -15{degree} from the lowest layer of a model. In the calculation of the wave motion field, a difference calculus with secondary accuracy was used for both time and space. In addition, data was prepared with a random noise added to a synthesized waveform to be used as observation data. The calculated waveform data were likened to the observation waveform, to which the method for imaging faults was applied. Consequently, it was noted that satisfactory results were obtained compared with the case where faults were sensed by one event alone. 5 refs., 4 figs.

  10. Intelligent monitoring and fault diagnosis for ATLAS TDAQ: a complex event processing solution

    CERN Document Server

    Magnoni, Luca; Luppi, Eleonora

    Effective monitoring and analysis tools are fundamental in modern IT infrastructures to get insights on the overall system behavior and to deal promptly and effectively with failures. In recent years, Complex Event Processing (CEP) technologies have emerged as effective solutions for information processing from the most disparate fields: from wireless sensor networks to financial analysis. This thesis proposes an innovative approach to monitor and operate complex and distributed computing systems, in particular referring to the ATLAS Trigger and Data Acquisition (TDAQ) system currently in use at the European Organization for Nuclear Research (CERN). The result of this research, the AAL project, is currently used to provide ATLAS data acquisition operators with automated error detection and intelligent system analysis. The thesis begins by describing the TDAQ system and the controlling architecture, with a focus on the monitoring infrastructure and the expert system used for error detection and automated reco...

  11. On Offset Stream Measurements and Recent Coseismic Surface Rupture in the Carrizo Section of the San Andreas Fault (United States)

    Brooks, B. A.; Hudnut, K. W.; Akciz, S. O.; Delano, J.; Glennie, C. L.; Prentice, C. S.; DeLong, S.


    Recent studies using airborne laser swath mapping (ALSM) topographic data have provoked debate about whether the Mw 7.9 Fort Tejon 1857 earthquake produced ~5m or ~10m of surface strike-slip displacement in the Carrizo section of the south-central San Andreas fault. Resolution of this discrepancy is important not only for understanding the proposed role of the Carrizo section in controlling repeated south-central San Andreas rupture but also for understanding the general utility of stream offset measurements for earthquake process studies. To explore if higher-resolution topographic data of the offset features would help reconcile the different interpretations, we used a mobile laser scanning (MLS) backpack-mounted system to survey 11 ~5m offset streams given 'high' quality rankings by previous studies. In our surveys, point density was on the order of 1000s pts/m^2 in comparison to 1-4 pts/m^2 for the ALSM data, enabling us to faithfully make digital elevation models with grid spacing smaller than 10cm. We adapt a geometric method that relies on a small number of user-dependent decisions to produce an offset estimate from a set of geomorphic markers (thalweg, channel margins, channel shoulders) from upstream and downstream locations. We typically derive an ensemble of at least 10 offset measurements per stream channel and from these calculate a mean and standard deviation. We also explore using gradient changes in long profiles of the offset stream reaches to diagnose the possibility of a ~10m channel experiencing 2 ~5m slip events. Preliminary results suggest a tendency towards the higher value offset estimates, although this does not necessarily preclude the possibility of two or more events causing the cumulative offset.

  12. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California (United States)

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.


    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at

  13. Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes (United States)

    Kumar, Senthil; Wesnousky, Steven G.; Jayangondaperumal, R.; Nakata, T.; Kumahara, Y.; Singh, Vimal


    The ˜2500 km long Himalayan arc has experienced three large to great earthquakes of Mw 7.8 to 8.4 during the past century, but none produced surface rupture. Paleoseismic studies have been conducted during the last decade to begin understanding the timing, size, rupture extent, return period, and mechanics of the faulting associated with the occurrence of large surface rupturing earthquakes along the ˜2500 km long Himalayan Frontal Thrust (HFT) system of India and Nepal. The previous studies have been limited to about nine sites along the western two-thirds of the HFT extending through northwest India and along the southern border of Nepal. We present here the results of paleoseismic investigations at three additional sites further to the northeast along the HFT within the Indian states of West Bengal and Assam. The three sites reside between the meizoseismal areas of the 1934 Bihar-Nepal and 1950 Assam earthquakes. The two westernmost of the sites, near the village of Chalsa and near the Nameri Tiger Preserve, show that offsets during the last surface rupture event were at minimum of about 14 m and 12 m, respectively. Limits on the ages of surface rupture at Chalsa (site A) and Nameri (site B), though broad, allow the possibility that the two sites record the same great historical rupture reported in Nepal around A.D. 1100. The correlation between the two sites is supported by the observation that the large displacements as recorded at Chalsa and Nameri would most likely be associated with rupture lengths of hundreds of kilometers or more and are on the same order as reported for a surface rupture earthquake reported in Nepal around A.D. 1100. Assuming the offsets observed at Chalsa and Nameri occurred synchronously with reported offsets in Nepal, the rupture length of the event would approach 700 to 800 km. The easternmost site is located within Harmutty Tea Estate (site C) at the edges of the 1950 Assam earthquake meizoseismal area. Here the most recent event

  14. Polynomials, Riemann surfaces, and reconstructing missing-energy events

    CERN Document Server

    Gripaios, Ben; Webber, Bryan


    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.

  15. Active transpressional tectonics in the Andean forearc of southern Peru quantified by 10Be surface exposure dating of an active fault scarp (United States)

    Benavente, Carlos; Zerathe, Swann; Audin, Laurence; Hall, Sarah R.; Robert, Xavier; Delgado, Fabrizio; Carcaillet, Julien; Team, Aster


    Our understanding of the style and rate of Quaternary tectonic deformation in the forearc of the Central Andes is hampered by a lack of field observations and constraints on neotectonic structures. Here we present a detailed analysis of the Purgatorio fault, a recently recognized active fault located in the forearc of southern Peru. Based on field and remote sensing analysis (Pléiades DEM), we define the Purgatorio fault as a subvertical structure trending NW-SE to W-E along its 60 km length, connecting, on its eastern end, to the crustal Incapuquio Fault System. The Purgatorio fault accommodates right-lateral transpressional deformation, as shown by the numerous lateral and vertical plurimetric offsets recorded along strike. In particular, scarp with a 5 m cumulative throw is preserved and displays cobbles that are cut and covered by slickensides. Cosmogenic radionuclide exposure dating (10Be) of quartzite cobbles along the vertical fault scarp yields young exposure ages that can be bracketed between 0 to 6 ka, depending on the inheritance model that is applied. Our preferred scenario, which takes in account our geomorphic observations, implies at least two distinct rupture events, each associated with 3 and 2 m of vertical offset. These two events plausibly occurred during the last thousand years. Nevertheless, an interpretation invoking more tectonic events along the fault cannot be ruled out. This work affirms crustal deformation along active faults in the Andean forearc of southern Peru during the last thousand years.

  16. Combining surface weathering analyses and cosmogenic 36Cl dating on the Pisia fault plane (Eastern Gulf of Corinth) to reveal the Holocene earthquake history (United States)

    Mechernich, Silke; Schneiderwind, Sascha; Mason, Jack; Papanikolaou, Ioannis; Binnie, Steven A.; Dunai, Tibor J.; Reicherter, Klaus


    The deformation of the Corinth rift (Greece) is distributed along several E-W trending active normal faults like the 25-km-long Pisia fault, which experienced up to 110 cm of coseismic displacement during the 1981 Alkyonides earthquake sequence (Mw 6.7). Ages of paleoearthquakes and slip rate estimates of the Pisia fault are not known so far, despite the faults recent strong shaking and its significant destruction that reached until Athens. We mapped the continuous bedrock fault scarp of the central Pisia fault and revealed at least six different weathering stripes, which are interpreted as coseismic slip that stepwise exhumed the Pisia fault plane. The stripes were detected by color changes, lichen colonization, karst features (pitting and solution flute termination), and by the laser backscatter intensity. Their width and thus the amount of coseismic displacement ranges from 50-110 cm suggesting that six to seven paleoearthquakes of Mw 6.5-6.7 have exhumed the lower 5.15 m of the free-face. Forward modeling of 32 36Cl concentrations indicates that the Pisia fault moved at an average slip rate of 0.7 mm/yr during the Holocene. Modeled ages of individual earthquake events reveal recurrence intervals ranging between 0.2 and 3.1 kyr and a declined tectonic activity from this fault during the past 4.5 kyr. The exposure time in between most events was too narrow to be able to differentiate consecutive events based on cusps in the cosmogenic 36Cl concentrations as there is a rather low local 36Cl production rate (38°N, 625 m a.s.l.). Since such recurrence intervals and earthquake clustering phenomena appear to be quite common on active faults, mapping of independent offset features are often necessary to accurately restore the earthquake history on similarly located bedrock fault planes.

  17. Paleoseismological investigations on a slow-moving active fault in central Anatolia, Tecer Fault, Sivas

    Directory of Open Access Journals (Sweden)

    Husnu Serdar Akyuz


    Full Text Available Tecer Fault is a N60˚-70˚E-trending, left-lateral, strike-slip fault to the south of the town of Sivas, Turkey. This fault is considered as the eastward continuation of Deliler Fault, which was classified as a probably active, left-lateral fault on the Active Fault Map of Turkey. We investigated the field characteristics and paleoseismic history of Tecer Fault in detail. After analyzing aerial photographs and satellite images, we mapped the exact fault trace on a 1/25,000 scale topographic map, between the towns of Deliilyas in southwest and Bogazdere in northeast. Tecer Fault is characterized by morphological features such as offset streams and gullies, linear depressions and scarps, and elongated hills. Four paleoseismological trenches were excavated on the northeastern extent of the fault. Two past earthquakes were identified in these trenches, and the dates of the collected charcoal samples suggested that the first of these earthquakes occurred about 8000 B.C. while the more recent event took place around 3500 B.C. Field observations and paleoseismic data indicate that Tecer Fault is an active, pure sinistral, strike-slip fault, and that there is about a 4500 years time span between the two earthquakes. It is also clear that there has not been any surface-ruptured faulting over the last 800 years. Compared with the earthquake characteristics of other strike-slip fault zones in Turkey in terms of time-slip relations, the slip rate can be estimated as about 1 mm/yr on Tecer Fault.

  18. Fault-tolerance thresholds for the surface code with fabrication errors (United States)

    Auger, James M.; Anwar, Hussain; Gimeno-Segovia, Mercedes; Stace, Thomas M.; Browne, Dan E.


    The construction of topological error correction codes requires the ability to fabricate a lattice of physical qubits embedded on a manifold with a nontrivial topology such that the quantum information is encoded in the global degrees of freedom (i.e., the topology) of the manifold. However, the manufacturing of large-scale topological devices will undoubtedly suffer from fabrication errors—permanent faulty components such as missing physical qubits or failed entangling gates—introducing permanent defects into the topology of the lattice and hence significantly reducing the distance of the code and the quality of the encoded logical qubits. In this work we investigate how fabrication errors affect the performance of topological codes, using the surface code as the test bed. A known approach to mitigate defective lattices involves the use of primitive swap gates in a long sequence of syndrome extraction circuits. Instead, we show that in the presence of fabrication errors the syndrome can be determined using the supercheck operator approach and the outcome of the defective gauge stabilizer generators without any additional computational overhead or use of swap gates. We report numerical fault-tolerance thresholds in the presence of both qubit fabrication and gate fabrication errors using a circuit-based noise model and the minimum-weight perfect-matching decoder. Our numerical analysis is most applicable to two-dimensional chip-based technologies, but the techniques presented here can be readily extended to other topological architectures. We find that in the presence of 8 % qubit fabrication errors, the surface code can still tolerate a computational error rate of up to 0.1 % .

  19. Fault-Related Sanctuaries (United States)

    Piccardi, L.


    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  20. A proposal of surveying and evaluating system of active faults for earthquake assessment

    International Nuclear Information System (INIS)

    Miyakoshi, Katsuyoshi; Ueta, Keiichi; Hataya; Ryuta; Abe, Shintaro; Miura, Daisuke; Hamada, Takaomi; Aoyagi, Yasuhira; Inoue, Daiei


    1. Paleoseismology of the Itoigawa-Shizuoka Tectonic Line active fault system: We investigated co-seismic faulting activity of the Itoigawa-Shizuoka Tectonic Line active fault system (ISTL) to clarify behavioral segmentation of long and massive faults. Geomorphologic and geologic surveys, trench excavation, and seismic reflection survey in the southern to central parts of ISTL revealed paleoseismologic faulting events occurred in the last thousands years and characteristics of geometric, structural, and geomorphologic segments. Each paleoseismic event, co-seismic displacement of deposit, average slip rate, and recurrence intervals suggest that the latest paleo-earthquake occurred in 1700 cal y BP and involved multiple segments in the Okaya to the Shimotsuburai faults. The estimated surface rupture length for this event is up to 77 km or possibly up to 94 km long. The another latest event occurred after 1200 cal y BP at the Ichinose fault and adjacent active faults. In addition, ca. 1200 cal y BP event at the Gofukuji fault occurred and involved multiple segments in the northern ISTL. Behavioral boundaries of these distinctive paleoseismic events were present in segment boundaries of geometric characters and slip rate variation. In the ISTL, geometric segmentation and slip-rate variation likely coincide with the estimated behavioral segmentation. Therefore, this finding suggests that geometric segment and slip-rate variation play an important role to determine the size of the maximum behavioral segment. 2. Active fault study on the 1999 Taiwan Chichi Earthquake area: The earthquake fault was appeared along the Chelungpu Fault while the 1999 Chichi Earthquake has occurred. The N-S striking fault has been recognized as an active fault, however E-W direction earthquake fault has not been described before the earthquake as an active fault. The later fault appeared just beneath the Shihkang Dam and the dam was destroyed by the fault. This study revealed that the E

  1. Striation and slickenline development on quartz fault surfaces at crustal conditions : Origin and effect on friction

    NARCIS (Netherlands)

    Toy, Virginia G.; Niemeijer, André; Renard, Francois; Morales, Luiz; Wirth, Richard

    Fragments of optically flat silica discs embedded in synthetic gouge were deformed to examine the relationship between the development of striations and slickenlines, and deformation mechanisms, conditions, and fault rheology. Experiments were performed under hydrothermal conditions in a rotary


    Directory of Open Access Journals (Sweden)

    V. V. Ruzhich


    Full Text Available Field experiments were carried out using TRIBO, a specially designed testing stand including a concrete plate that can be moved at different rates. In our experiment, the plate served as an artificial allochtonous wing placed at the uneven surface of the segment of the Angarsky fault in Pribaikalie. Tribological effects of contact interaction of the uneven surfaces in the zone of sliding movements of the plate were recorded by strain gauges, linear displacement gauges and four Baikal-7HR seismic stations; such stations are commonly used for earthquake recording. The effect of shocks in initiation of seismic oscillation sources was studied with changes of the regimes of destruction of the uneven surfaces (underneath the base of the plate which differ in size and strength. The study was focused on stages in the process of friction at preparation to transition from quasi-regular decelerated sliding movement of the plate to its breakaway and occurrence of a high-energy seismic impulse.The applied method of large-scale modelling at natural objects in field provides new data that may prove useful for stu­dies of mechanisms causing seismicity, identification of stages in occurrence of earthquakes in fault zones and interpretation of seismic monitoring data. Results of such physical tests can contribute to the development of methods aimed at forecasting of rock shocks and earthquakes and also for the development of new physical models showing formation of earthquake foci of various scales in tectonic faults.

  3. Major earthquakes occur regularly on an isolated plate boundary fault. (United States)

    Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar


    The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.

  4. Active faults, paleoseismology, and historical fault rupture in northern Wairarapa, North Island, New Zealand

    International Nuclear Information System (INIS)

    Schermer, E.R.; Van Dissen, R.; Berryman, K.R.; Kelsey, H.M.; Cashman, S.M.


    Active faulting in the upper plate of the Hikurangi subduction zone, North Island, New Zealand, represents a significant seismic hazard that is not yet well understood. In northern Wairarapa, the geometry and kinematics of active faults, and the Quaternary and historical surface-rupture record, have not previously been studied in detail. We present the results of mapping and paleoseismicity studies on faults in the northern Wairarapa region to document the characteristics of active faults and the timing of earthquakes. We focus on evidence for surface rupture in the 1855 Wairarapa (M w 8.2) and 1934 Pahiatua (M w 7.4) earthquakes, two of New Zealand's largest historical earthquakes. The Dreyers Rock, Alfredton, Saunders Road, Waitawhiti, and Waipukaka faults form a northeast-trending, east-stepping array of faults. Detailed mapping of offset geomorphic features shows the rupture lengths vary from c. 7 to 20 km and single-event displacements range from 3 to 7 m, suggesting the faults are capable of generating M >7 earthquakes. Trenching results show that two earthquakes have occurred on the Alfredton Fault since c. 2900 cal. BP. The most recent event probably occurred during the 1855 Wairarapa earthquake as slip propagated northward from the Wairarapa Fault and across a 6 km wide step. Waipukaka Fault trenches show that at least three surface-rupturing earthquakes have occurred since 8290-7880 cal. BP. Analysis of stratigraphic and historical evidence suggests the most recent rupture occurred during the 1934 Pahiatua earthquake. Estimates of slip rates provided by these data suggest that a larger component of strike slip than previously suspected is occurring within the upper plate and that the faults accommodate a significant proportion of the dextral component of oblique subduction. Assessment of seismic hazard is difficult because the known fault scarp lengths appear too short to have accommodated the estimated single-event displacements. Faults in the region are

  5. Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals (United States)

    Miraglia, Peter Q.; Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert


    Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to , and directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {1 0 0} and {0 0 1} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {1 0 0} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.

  6. Mixed-Mode Slip Behavior of the Altotiberina Low-Angle Normal Fault System (Northern Apennines, Italy) through High-Resolution Earthquake Locations and Repeating Events (United States)

    Valoroso, Luisa; Chiaraluce, Lauro; Di Stefano, Raffaele; Monachesi, Giancarlo


    We generated a 4.5-year-long (2010-2014) high-resolution earthquake catalogue, composed of 37,000 events with ML light on the mechanical behavior and seismic potential of this fault, which is capable of generating a M7 event. Seismicity defines the geometry of the fault system composed of the low-angle (15°-20°) ATF, extending for 50 km along strike and between 4 and 16 km at depth showing an 1.5 km thick fault zone made of multiple subparallel slipping planes, and a complex network of synthetic/antithetic higher-angle segments located in the ATF hanging wall (HW) that can be traced along strike for up to 35 km. Ninety percent of the recorded seismicity occurs along the high-angle HW faults during a series of minor, sometimes long-lasting (months) seismic sequences with multiple MW3+ mainshocks. Remaining earthquakes (ML < 2.4) are released instead along the low-angle ATF at a constant rate of 2.2 events per day. Within the ATF-related seismicity, we found 97 clusters of repeating earthquakes (RE), mostly consisting of doublets occurring during short interevent time (hours). RE are located within the geodetically recognized creeping portions of the ATF, around the main locked asperity. The rate of occurrence of RE seems quite synchronous with the ATF-HW seismic release, suggesting that creeping may guide the strain partitioning in the ATF system. The seismic moment released by the ATF seismicity accounts for 30% of the geodetic one, implying aseismic deformation. The ATF-seismicity pattern is thus consistent with a mixed-mode (seismic and aseismic) slip behavior.

  7. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data (United States)

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John


    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  8. The role of bed-parallel slip in the development of complex normal fault zones (United States)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros


    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  9. Current Microearthquake Activity on the Large Pärvie Endglacial Fault System, Northern Sweden (United States)

    Lindblom, E.; Lund, B.; Tryggvason, A.; Uski, M.; Juhlin, C.; Bodvarsson, R.; Kvaerna, T.


    The Pärvie fault is one of the largest known endglacial faults in the world. It is situated in northernmost Sweden and extends for over 160 km in a northeastward direction. The fault exhibits reverse faulting throw of more than 10 m and based on studies of Quaternary deposits, landslides and liquefaction structures it is inferred to have ruptured as a one-step event at the time of deglaciation in the area, approximately 10,000 years ago. An earthquake of this size would have had a magnitude of approximately 8. The mechanisms driving the endglacial faults are still not well understood. However, knowledge of the fault geometry at depth would significantly contribute to the understanding. In a seismological study of the Pärvie fault we have acquired both a 23 km long seismic reflection profile across the center of the fault, and deployed eight temporary seismic stations in the vicinity of the fault. The results of the reflection seismic processing images the fault system from the near surface down to about 2-3 km depth. The profile crosses three surface mapped faults where the westernmost, main fault strand, is dipping about 50 degrees to the east, the middle fault dipping 75 degrees east and the easternmost fault dipping 60 degrees to the west. The eight temporary seismic stations have recorded microearthquakes together with the six northernmost permanent stations of the Swedish National Seismic Network and a collaborating Finnish station. The seismic stations have recorded numerous small events, most of which are mining induced microearthquakes from the nearby Kiruna and Malmberget iron ore mines. About 800 microearthquakes are detected from the vicinity of the Pärvie fault system. Based on velocity structures estimated using 3D local earthquake tomography we will present locations, magnitudes and focal mechanisms of the events. The events are concentrated to the east side of the surface trace of the main Pärvie fault and spread along its whole north

  10. Soil-gas helium and surface-waves detection of fault zones in ...

    Indian Academy of Sciences (India)

    Soil-gas helium emanometry has been utilized in Wailapally watershed, near Hyderabad in southern India, for the detection of fracture and fault zones in a granite basement terrain having a thin regolith. Based on satellite imagery and geologic mapping, three sites were selected for detailed investigation. High spatial ...

  11. Soil-gas helium and surface-waves detection of fault zones in ...

    Indian Academy of Sciences (India)

    in southern India, for the detection of fracture and fault zones in a granite basement terrain having ... groundwater resource zone in hard rock terrains. A significant ..... 51 121–129. Xu C and Butt S D 2006 Evaluation of MASW techniques to image steeply dipping cavities in laterally inhomogeneous terrain; J. Appl. Geophys.

  12. Development, Interaction and Linkage of Normal Fault Segments along the 100-km Bilila-Mtakataka Fault, Malawi (United States)

    Fagereng, A.; Hodge, M.; Biggs, J.; Mdala, H. S.; Goda, K.


    Faults grow through the interaction and linkage of isolated fault segments. Continuous fault systems are those where segments interact, link and may slip synchronously, whereas non-continuous fault systems comprise isolated faults. As seismic moment is related to fault length (Wells and Coppersmith, 1994), understanding whether a fault system is continuous or not is critical in evaluating seismic hazard. Maturity may be a control on fault continuity: immature, low displacement faults are typically assumed to be non-continuous. Here, we study two overlapping, 20 km long, normal fault segments of the N-S striking Bilila-Mtakataka fault, Malawi, in the southern section of the East African Rift System. Despite its relative immaturity, previous studies concluded the Bilila-Mtakataka fault is continuous for its entire 100 km length, with the most recent event equating to an Mw8.0 earthquake (Jackson and Blenkinsop, 1997). We explore whether segment geometry and relationship to pre-existing high-grade metamorphic foliation has influenced segment interaction and fault development. Fault geometry and scarp height is constrained by DEMs derived from SRTM, Pleiades and `Structure from Motion' photogrammetry using a UAV, alongside direct field observations. The segment strikes differ on average by 10°, but up to 55° at their adjacent tips. The southern segment is sub-parallel to the foliation, whereas the northern segment is highly oblique to the foliation. Geometrical surface discontinuities suggest two isolated faults; however, displacement-length profiles and Coulomb stress change models suggest segment interaction, with potential for linkage at depth. Further work must be undertaken on other segments to assess the continuity of the entire fault, concluding whether an earthquake greater than that of the maximum instrumentally recorded (1910 M7.4 Rukwa) is possible.

  13. Fault-Tree Compiler (United States)

    Butler, Ricky W.; Boerschlein, David P.


    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  14. Active fault and other geological studies for seismic assessment: present state and problems

    Energy Technology Data Exchange (ETDEWEB)

    Kakimi, Toshihiro [Nuclear Power Engineering Corp., Tokyo (Japan)


    Evaluation system of earthquakes from an active fault is, in Japan, based on the characteristic earthquake model of a wide sense that postulates essentially the same (nearly the maximum) magnitude and recurrence interval during the recent geological times. Earthquake magnitude M is estimated by empirical relations among M, surface rupture length L, and surface fault displacement D per event of the earthquake faults on land in Japan. Recurrence interval R of faulting/earthquake is calculated from D and the long-term slip rate S of a fault as R=D/S. Grouping or segmentation of complicatedly distributed faults is an important, but difficult problem in order to distinguish a seismogenic fault unit corresponding to an individual characteristic earthquake. If the time t of the latest event is obtained, the `cautiousness` of a fault can be judged from R-t or t/R. According to this idea, several faults whose t/R exceed 0.5 have been designated as the `precaution faults` having higher probability of earthquake occurrence than the others. A part of above evaluation has been introduced at first into the seismic-safety examination system of NPPs in 1978. According to the progress of research on active faults, the weight of interest in respect to the seismic hazard assessment shifted gradually from the historic data to the fault data. Most of recent seismic hazard maps have been prepared in consideration with active faults on land in Japan. Since the occurrence of the 1995 Hyogoken-Nanbu earthquake, social attention has been concentrated upon the seismic hazard due to active faults, because this event was generated from a well-known active fault zone that had been warned as a `precaution fault`. In this paper, a few recent topics on other geological and geotechnical researches aiming at improving the seismic safety of NPPs in Japan were also introduced. (J.P.N.)

  15. Extremely Shallow Extensional Faulting Near Geothermal Fields (United States)

    Hudnut, K. W.; Wei, S.; Donnellan, A.; Fielding, E. J.; Graves, R. W.; Helmberger, D. V.; Liu, Z.; Parker, J. W.; Treiman, J. A.


    Surface faulting has been discovered in association with a shallow extensional M 4.9 earthquake, the source properties of which have also been studied by modeling of broadband seismic data and geodetic imagery. This M 4.9 and also a M 4.6 shallow normal event occurred late in the Brawley Swarm of August 2012, a dominantly strike-slip sequence with events up to M 5.5 (Hauksson et al., SRL 2013 and Wei et al., GRL 2013). The point source waveform inversions reveal normal mechanisms and centroid depths of ~2.5 km for both events, while the modeling of the geodetic data indicates a compatible depth of ~2.0 km. The M 4.9 event had unusually large (~40 cm) and sudden (~1.0 - 1.5 km/sec) slip, considering its extremely shallow depth. The earlier and larger strike-slip events during the Aug. 2012 swarm were on a left-lateral SW-NE oriented vertical planar cross-fault, whereas the M 4.6 and M 4.9 occurred on a SSW-NNE oriented, west-dipping plane. Airborne imagery obtained using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) revealed a surface fault rupture that was subsequently confirmed and documented in the field in May 2013. A pre-existing but previously un-mapped fault sustained west-down surface slip of up to 18 × 2 cm along breaks extending ~3.5 km along a NNE orientation, and ruptured beneath and under a railroad track and pipeline (without breaking them). UAVSAR and seismological data were used jointly to image the source properties of the M 4.9 earthquake in detail. Typically, the uppermost few kms of right-lateral faults in the Salton Trough exhibit creep, especially after larger earthquakes, as in 1979 and 1987. On this basis, general models of stable sliding within the uppermost few kms have been developed. In this case, however, the joint inversion indicates that seismic energy was radiated by slip of up to 40 cm on a fault plane extending from the surface to a depth of only ~3 km, extending ~4 km along-strike, and dipping ~45° west, with west

  16. Joint inversion of ambient noise surface wave and gravity data to image the upper crustal structure of the Tanlu fault zone to the southeast of Hefei, China (United States)

    Wang, K.; Gu, N.; Zhang, H.; Zhou, G.


    The Tanlu fault is a major fault located in the eastern China, which stretches 2400 km long from Tancheng in the north to Lujiang in the south. It is generally believed that the Tanlu fault zone was formed in Proterozoic era and underwent a series of complicated processes since then. To understand the upper crustal structure around the southern segment of the Tanlu fault zone, in 2017 we deployed 53 short period seismic stations around the fault zone to the southeast of Hefei, capital city of Anhui province. The temporary array continuously recorded the data for about one month from 17 March to 26 April 2017. The seismic array spans an area of about 30km x 30Km with an average station spacing of about 5-6km. The vertical component data were used for extracting Rayleigh wave phase and group velocity dispersion data for the period of 0.2 to 5 seconds. To improve imaging the upper crustal structure of the fault zone, we jointly inverted the surface wave dispersion data and the gravity data because they have complementary strengths. To combine surface wave dispersion data and gravity observations into a single inversion framework, we used an empirical relationship between seismic velocity and density of Maceira and Ammon (2009). By finding the optimal relative weighting between two data types, we are able to find a shear wave velocity (Vs) model that fits both data types. The joint inversion can resolve the upper crustal fault zone structure down to about 7 km in depth. The Vs model shows that in this region the Tanlu fault is associated with high velocity anomalies, corresponding well to the Feidong complex seen on the surface. This indicates that the Tanlu fault zone may provide a channel for the intrusion of hot materials.

  17. A 3000-year record of surface-rupturing earthquakes at Günalan: variable fault-rupture lengths along the 1939 Erzincan earthquake-rupture segment of the North Anatolian Fault, Turkey

    Directory of Open Access Journals (Sweden)

    Jeffrey George Fraser


    Full Text Available The North Anatolian Fault is a ca. 1200-km-long, right-lateral, strike-slip fault that forms the northern boundary of the Anatolian plate. A damaging sequence of earthquakes ruptured almost the entire fault in the twentieth century. This study adds to the growing number of paleoseismic investigations of the 350-km-long 1939 Erzincan earthquake-rupture segment, which is towards the eastern end of the North Anatolian Fault in Turkey. Using three paleoseismic trenches located along ca. 2 km of the principal fault strand, this study determines the timing of five earthquakes prior to the 1939 earthquake. The first three of these earthquakes are correlated to historical earthquakes in A.D. 1668, 1254 and 499, and two further events were identified as occurring from 881-673 B.C. and from 1406-1291 B.C. (2v age ranges. By comparing the earthquake timing determined in this study to results from other paleoseismic investigations of the 1939 rupture segment, it becomes clear that this historical rupture segment does not always rupture in unison. This analysis indicates that the A.D. 499 earthquake was the last time the 1939 rupture segment ruptured in unison; partial ruptures of the 1939 rupture segment occur more frequently, and can also produce large magnitude earthquakes (MW >7.

  18. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ (United States)

    Wilgus, J. T.; Brumbaugh, D. S.


    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.

  19. Near surface structure of the North Anatolian Fault Zone near 30°E from Rayleigh and Love wave tomography using ambient seismic noise. (United States)

    Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.


    By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.

  20. Quaternay faulting along the southern Lemhi fault near the Idaho National Engineering Laboratory Southeastern Idaho

    International Nuclear Information System (INIS)

    Hemphill-Haley, M.A.; Sawyer, T.L.; Wong, I.G.; Kneupfer, P.L.K.; Forman, S.L.; Smith, R.P.


    Four exploratory trenches excavated across the Howe and Fallen Springs segments of the southern Lemhi fault in southeastern Idaho provide data to characterize these potential seismic sources. Evidence for up to three surface faulting events is exposed in each trench. Thermoluminescence (TL) and radiocarbon analyses were performed to provide estimates of the timing of each faulting event. The most recent event (MRE) occurred at: (1) about 15,000 to 19,000 years B.P. at the East Canyon trench (southern Howe segment); (2) approximately 17,000 to 24,000 years. B.P. at the Black Canyon site (northern Howe segment); and (3) about 19,000 to 24,000 years B.P. at the Camp Creek trench (southern Fallen Springs segment). A Holocene event is estimated for the Coyote Springs trench (central Fallert Springs segment) based on degree of soil development and correlation of faulted and unfaulted deposits. The oldest Black Canyon event is constrained by a buried soil (Av) horizons with a TL age of 24,700 +/- 3,100 years B.P. Possibly three events occurred at this site between about 17,000 and 24,000 years ago followed by quiescence. Stratigraphic and soil relationships, and TL and 14 C dates are consistent with the following preliminary interpretations: (1) the MRE's for the southern segments are older than those for the central Lemhi fault; (2) the Black Canyon site may share rupture events with sites to the north and south as a result of a open-quotes leakyclose quotes segment boundary; (3) temporal clustering of seismic events separated by a long period of quiescence may be evident along the southern Lemhi fault; and (4) Holocene surface rupture is evident along the central part of the Fallert Springs segment but not at its southern end; and (5) the present segmentation model may need to be revised

  1. Investigation of the Meers fault in southwestern Oklahoma

    International Nuclear Information System (INIS)

    Luza, K.V.; Madole, R.F.; Crone, A.J.


    The Meers fault is part of a major system of NW-trending faults that form the boundary between the Wichita Mountains and the Anadarko basin in southwestern Oklahoma. A portion of the Meers fault is exposed at the surface in northern Comanche County and strikes approximately N. 60 0 W. where it offsets Permian conglomerate and shale for at least 26 km. The scarp on the fault is consistently down to the south, with a maximum relief of 5 m near the center of the fault trace. Quaternary stratigraphic relationships and 10 14 C age dates constrain the age of the last movement of the Meers fault. The last movement postdates the Browns Creek Alluvium, late Pleistocene to early Holocene, and predates the East Cache Alluvium, 100 to 800 yr B.P. Fan alluvium, produced by the last fault movement, buried a soil that dates between 1400 and 1100 yr B.P. Two trenches excavated across the scarp near Canyon Creek document the near-surface deformation and provide some general information on recurrence. Trench 1 was excavated in the lower Holocene part of the Browns Creek Alluvium, and trench 2 was excavated in unnamed gravels thought to be upper Pleistocene. Flexing and warping was the dominant mode of deformation that produced the scarp. The stratigraphy in both trenches indicates one surface-faulting event, which implies a lengthy recurrence interval for surface faulting on this part of the fault. Organic-rich material from two samples that postdate the last fault movement yielded 14 C ages between 1600 and 1300 yr B.P. These dates are in excellent agreement with the dates obtained from soils buried by the fault-related fan alluvium

  2. Correlation of geothermal springs with sub-surface fault terminations revealed by high-resolution, UAV-acquired magnetic data (United States)

    Glen, Jonathan; A.E. Egger,; C. Ippolito,; N.Athens,


    There is widespread agreement that geothermal springs in extensional geothermal systems are concentrated at fault tips and in fault interaction zones where porosity and permeability are dynamically maintained (Curewitz and Karson, 1997; Faulds et al., 2010). Making these spatial correlations typically involves geological and geophysical studies in order to map structures and their relationship to springs at the surface. Geophysical studies include gravity and magnetic surveys, which are useful for identifying buried, intra-basin structures, especially in areas where highly magnetic, dense mafic volcanic rocks are interbedded with, and faulted against less magnetic, less dense sedimentary rock. High-resolution magnetic data can also be collected from the air in order to provide continuous coverage. Unmanned aerial systems (UAS) are well-suited for conducting these surveys as they can provide uniform, low-altitude, high-resolution coverage of an area without endangering crew. In addition, they are more easily adaptable to changes in flight plans as data are collected, and improve efficiency. We have developed and tested a new system to collect magnetic data using small-platform UAS. We deployed this new system in Surprise Valley, CA, in September, 2012, on NASA's SIERRA UAS to perform a reconnaissance survey of the entire valley as well as detailed surveys in key transition zones. This survey has enabled us to trace magnetic anomalies seen in ground-based profiles along their length. Most prominent of these is an intra-basin magnetic high that we interpret as a buried, faulted mafic dike that runs a significant length of the valley. Though this feature lacks surface expression, it appears to control the location of geothermal springs. All of the major hot springs on the east side of the valley lie along the edge of the high, and more specifically, at structural transitions where the high undergoes steps, bends, or breaks. The close relationship between the springs

  3. How seismicity impacts the evolution and branching of strike-slip faults (United States)

    Preuss, S.; van Dinther, Y.; Ampuero, J. P.; Herrendoerfer, R.; Gerya, T.


    Strike-slip fault systems are capable of producing large earthquakes on both their main fault and on secondary and potentially unknown faults. A recent example is the 2016 Mw 7.8 Kaikōura earthquake that resulted in surface ruptures along at least 12 major crustal faults. Strike-slip faults are surrounded by inelastic off-fault deformation zones whose displacement accounts for up to 60% of the total displacement. Secondary faults in California accommodate up to 43% of the total fault slip rate of mapped faults taken from the SCEC catalog, while unknown faults arguably accommodate up to 30% of the long-term strain. To better understand these complexities and the long-term evolution of branching fault structures, we quantify the parameters influencing branching structure with a particular focus on the role of seismicity. We incorporate the relevant dynamics of both long-term fault evolution and short-term seismogenesis using the continuum visco-elasto-plastic tools of Seismo-Thermo-Mechanical (STM) modeling approach (van Dinther et al., 2013, Herrendörfer et al., in prep). Long-term fault evolution is governed by Drucker-Prager plasticity and plastic strain weakening of cohesion, while frictional weakening and rapid slip is governed by either strongly rate-dependent (RDF) or rate-and-state friction (RSF). We use a 2D, plane view, natural scale model setup (1200 km x 1000 km), which contains the end of a dextral mature strike-slip fault on one side. Episodic slip events on this pre-existing fault patch propagate into the undamaged host rock. As faults grow they develop a fan-like plastic strain envelope, whose width keeps growing with fault length and accumulated on-fault slip. We interpret this zone as a splay-fault network, which is typically seen ahead of propagating fault tips. We analyze the evolving faults in terms of dissipated strain energy GC, accumulated slip D and fault length L. Results show that a single event is capable of producing a several hundreds

  4. Assessment of faulting and seismic hazards at Yucca Mountain

    International Nuclear Information System (INIS)

    King, J.L.; Frazier, G.A.; Grant, T.A.


    Yucca Mountain is being evaluated for the nation's first high-level nuclear-waste repository. Local faults appear to be capable of moderate earthquakes at recurrence intervals of tens of thousands of years. The major issues identified for the preclosure phase (<100 yrs) are the location and seismic design of surface facilities for handling incoming waste. It is planned to address surface fault rupture by locating facilities where no discernible recent (<100,000 yrs) faulting has occurred and to base the ground motion design on hypothetical earthquakes, postulated on nearby faults, that represent 10,000 yrs of average cumulative displacement. The major tectonic issues identified for the postclosure phase (10,000 yrs) are volcanism (not addressed here) and potential changes to the hydrologic system resulting from a local faulting event which could trigger potential thermal, mechanical, and chemical interactions with the ground water. Extensive studies are planned for resolving these issues. 33 refs., 3 figs

  5. Correlation of clayey gouge in a surface exposure of the San Andreas fault with gouge at depth from SAFOD: Implications for the role of serpentinite in fault mechanics (United States)

    Moore, Diane E.; Rymer, Michael J.


    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  6. Geometry, slip distribution, and kinematics of surface rupture on the Sakarya fault segment during the 17 August 1999 İzmit, Turkey, earthquake (United States)

    Langridge, R.M.; Stenner, Heidi D.; Fumal, T.E.; Christofferson, S.A.; Rockwell, T.K.; Hartleb, R.D.; Bachhuber, J.; Barka, A.A.


    The Mw 7.4 17 August 1999 İzmit earthquake ruptured five major fault segments of the dextral North Anatolian Fault Zone. The 26-km-long, N86°W-trending Sakarya fault segment (SFS) extends from the Sapanca releasing step-over in the west to near the town of Akyazi in the east. The SFS emerges from Lake Sapanca as two distinct fault traces that rejoin to traverse the Adapazari Plain to Akyazi. Offsets were measured across 88 cultural and natural features that cross the fault, such as roads, cornfield rows, rows of trees, walls, rails, field margins, ditches, vehicle ruts, a dike, and ground cracks. The maximum displacement observed for the İzmit earthquake (∼5.1 m) was encountered on this segment. Dextral displacement for the SFS rises from less than 1 m at Lake Sapanca to greater than 5 m near Arifiye, only 3 km away. Average slip decreases uniformly to the east from Arifiye until the fault steps left from Sagir to Kazanci to the N75°W, 6-km-long Akyazi strand, where slip drops to less than 1 m. The Akyazi strand passes eastward into the Akyazi Bend, which consists of a high-angle bend (18°-29°) between the Sakarya and Karadere fault segments, a 6-km gap in surface rupture, and high aftershock energy release. Complex structural geometries exist between the İzmit, Düzce, and 1967 Mudurnu fault segments that have arrested surface ruptures on timescales ranging from 30 sec to 88 days to 32 yr. The largest of these step-overs may have acted as a rupture segmentation boundary in previous earthquake cycles.

  7. Active faults and related Late Quaternary deformation along the Northwestern Himalayan Frontal Zone, India

    Directory of Open Access Journals (Sweden)

    T. Nakata


    large magnitude (Mw 7 prehistoric earthquake. Taking into consideration the height of the Pinjore surface (20 to 25 m, tentative age (8.9 ± 1.9 ka, displacement during one event and average angle of fault dip (25° gives slip rate of about 6.3 ± 2 mm/yr, a rate of horizontal shortening of 5.8 ± 1.8 mm/yr and recurrence of faulting of 555 ± 118 years along the Himalayan Frontal Fault.

  8. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone of southwestern China determined from decades of fault-crossing short-baseline and short-level surveys (United States)

    Zhang, Jing; Wen, Xue-ze; Cao, Jian-ling; Yan, Wei; Yang, Yong-lin; Su, Qin


    This study examines the 200-km-long northwestern Xianshuihe fault zone (NWXFZ), southwestern China, using more than three decades of geodetic observations from fault-crossing short-baseline and short-leveling surveys at seven sites. These data enable estimates of creep rates and depths, and examination of the long-term slip behavior. The surface motion of the NWXFZ is dominated by sinistral creep, although sinistral, transverse, and vertical slip components show spatio-temporal variations. Combining these slip variations with data of earthquake rupture, coseismic slip, seismicity, fault geometry, and far-fault movement velocity, and using the velocity-and-state friction theory, our analysis indicates that the surface slip behavior of the NWXFZ is segmented along strike. The 1973 rupture section of this fault zone exhibits spatio-temporally variable slip behavior, showing time-decaying post-1973 afterslip on the northwestern and southeastern parts of the rupture at depths above 5.8 - 7.0 km with average sinistral-creep rates of 1.3 and 3.5 mm/yr, respectively, but being relocked in the central part of the rupture. The 1923/1981 rupture section is generally in locking state, with postseismic and interseismic sinistral-creep at 1.1 mm/yr on its central part at depths above 2.0-2.8 km. The 1893 rupture section has been tightly locked without creep since at least the early 1980s. The thickness of the shallow velocity-strengthening (or creep) layer and the restraining bend geometry of the NWXFZ are the key factors that control spatio-temporal variations in surface creep rates. Two surface-observed locked fault portions are located within two different restraining bends in the NWXFZ, both of which act as compressive asperities and hence have enabled the long-term locking of these portions. Creep along the NWXFZ has also been affected to varying degrees by M6.5 - Mw9.2 earthquakes at distances of 50 - 3800 km from the fault zone. Most of these effects have been removed

  9. Integrating optical finger motion tracking with surface touch events (United States)

    MacRitchie, Jennifer; McPherson, Andrew P.


    This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction. PMID:26082732

  10. Integrating optical finger motion tracking with surface touch events

    Directory of Open Access Journals (Sweden)

    Jennifer eMacRitchie


    Full Text Available This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterisation of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.

  11. Fault Slip Distribution and Optimum Sea Surface Displacement of the 2017 Tehuantepec Earthquake in Mexico (Mw 8.2) Estimated from Tsunami Waveforms (United States)

    Gusman, A. R.; Satake, K.; Mulia, I. E.


    An intraplate normal fault earthquake (Mw 8.2) occurred on 8 September 2017 in the Tehuantepec seismic gap of the Middle America Trench. The submarine earthquake generated a tsunami which was recorded by coastal tide gauges and offshore DART buoys. We used the tsunami waveforms recorded at 16 stations to estimate the fault slip distribution and an optimum sea surface displacement of the earthquake. A steep fault dipping to the northeast with strike of 315°, dip of 73°and rake of -96° based on the USGS W-phase moment tensor solution was assumed for the slip inversion. To independently estimate the sea surface displacement without assuming earthquake fault parameters, we used the B-spline function for the unit sources. The distribution of the unit sources was optimized by a Genetic Algorithm - Pattern Search (GA-PS) method. Tsunami waveform inversion resolves a spatially compact region of large slip (4-10 m) with a dimension of 100 km along the strike and 80 km along the dip in the depth range between 40 km and 110 km. The seismic moment calculated from the fault slip distribution with assumed rigidity of 6 × 1010 Nm-2 is 2.46 × 1021 Nm (Mw 8.2). The optimum displacement model suggests that the sea surface was uplifted up to 0.5 m and subsided down to -0.8 m. The deep location of large fault slip may be the cause of such small sea surface displacements. The simulated tsunami waveforms from the optimum sea surface displacement can reproduce the observations better than those from fault slip distribution; the normalized root mean square misfit for the sea surface displacement is 0.89, while that for the fault slip distribution is 1.04. We simulated the tsunami propagation using the optimum sea surface displacement model. Large tsunami amplitudes up to 2.5 m were predicted to occur inside and around a lagoon located between Salina Cruz and Puerto Chiapas. Figure 1. a) Sea surface displacement for the 2017 Tehuantepec earthquake estimated by tsunami waveforms. b

  12. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite (United States)

    Thompson, B.D.; Young, R.P.; Lockner, David A.


    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  13. Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe-Alagoas Basin, NE Brazil (United States)

    Destro, Nivaldo


    Two types of cross faults are herein recognized: transfer faults and the newly termed release faults. Transfer faults form where cross faults connect distinct normal faults and horizontal displacements predominate over vertical ones. In contrast, release faults form where cross faults associated with individual normal faults die out within the hangingwall before connecting to other normal faults, and have predominantly vertical displacements. Release faults are geometrically required to accommodate variable displacements along the strike of a normal fault. Thus, they form to release the bending stresses in the hangingwall, and do not cut normal fault planes nor detachment surfaces at depth. Release faults have maximum throws adjacent to normal faults, and may be nearly perpendicular or obliquely oriented to the strike of the latter. Such geometry appears not to depend upon pre-existing weaknesses, but such variable orientation to normal faults is an inherent property of release faults. Release faults commonly appear as simple normal faults in seismic sections, without implying extension along the strike of rift and basins. Three-dimensional strain deformation occurs in the hangingwall only between the terminations of an individual normal fault, but regionally, release faulting is associated with plane strain deformation in linked extensional fault systems.

  14. Bulk and surface event identification in p-type germanium detectors (United States)

    Yang, L. T.; Li, H. B.; Wong, H. T.; Agartioglu, M.; Chen, J. H.; Jia, L. P.; Jiang, H.; Li, J.; Lin, F. K.; Lin, S. T.; Liu, S. K.; Ma, J. L.; Sevda, B.; Sharma, V.; Singh, L.; Singh, M. K.; Singh, M. K.; Soma, A. K.; Sonay, A.; Yang, S. W.; Wang, L.; Wang, Q.; Yue, Q.; Zhao, W.


    The p-type point-contact germanium detectors have been adopted for light dark matter WIMP searches and the studies of low energy neutrino physics. These detectors exhibit anomalous behavior to events located at the surface layer. The previous spectral shape method to identify these surface events from the bulk signals relies on spectral shape assumptions and the use of external calibration sources. We report an improved method in separating them by taking the ratios among different categories of in situ event samples as calibration sources. Data from CDEX-1 and TEXONO experiments are re-examined using the ratio method. Results are shown to be consistent with the spectral shape method.

  15. Erosion influences the seismicity of active thrust faults. (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H


    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  16. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 1–4, San Andreas Fault Zone, southern California (2007–2009) (United States)

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.


    The Frazier Mountain paleoseismic site is located at the northwest end of the Mojave section of the San Andreas Fault, in a small, closed depression at the base of Frazier Mountain near Tejon Pass, California (lat 34.8122° N., long 118.9034° W.). The site was known to contain a good record of earthquakes due to previous excavations by Lindvall and others (2002). This report provides data resulting from four nested excavations, or cuts, along trench 1 (T1) in 2007 and 2009 at the Frazier Mountain site. The four cuts were excavated progressively deeper and wider in an orientation perpendicular to the San Andreas Fault, exposing distal fan and marsh sediments deposited since ca. A.D. 1200. The results of the trenching show that earthquakes that ruptured the site have repeatedly produced a small depression or sag on the surface, which is subsequently infilled with sand and silt deposits. This report provides high-resolution photomosaics and logs for the T1 cuts, a detailed stratigraphic column for the deposits, and a table summarizing all of the evidence for ground rupturing paleoearthquakes logged in the trenches.

  17. Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating

    International Nuclear Information System (INIS)

    Freiesleben, Trine; Sohbati, Reza; Murray, Andrew; Jain, Mayank; Al Khasawneh, Sahar; Hvidt, Søren; Jakobsen, Bo


    Interest in the optically stimulated luminescence (OSL) dating of rock surfaces has increased significantly over the last few years, as the potential of the method has been explored. It has been realized that luminescence-depth profiles show qualitative evidence for multiple daylight exposure and burial events. To quantify both burial and exposure events a new mathematical model is developed by expanding the existing models of evolution of luminescence–depth profiles, to include repeated sequential events of burial and exposure to daylight. This new model is applied to an infrared stimulated luminescence-depth profile from a feldspar-rich granite cobble from an archaeological site near Aarhus, Denmark. This profile shows qualitative evidence for multiple daylight exposure and burial events; these are quantified using the model developed here. By determining the burial ages from the surface layer of the cobble and by fitting the new model to the luminescence profile, it is concluded that the cobble was well bleached before burial. This indicates that the OSL burial age is likely to be reliable. In addition, a recent known exposure event provides an approximate calibration for older daylight exposure events. This study confirms the suggestion that rock surfaces contain a record of exposure and burial history, and that these events can be quantified. The burial age of rock surfaces can thus be dated with confidence, based on a knowledge of their pre-burial light exposure; it may also be possible to determine the length of a fossil exposure, using a known natural light exposure as calibration. - Highlights: • Evidence for multiple exposure and burial events in the history of a single cobble. • OSL rock surface dating model improved to include multiple burial/exposure cycles. • Application of the new model quantifies burial and exposure events.

  18. Development of direct dating methods of fault gouges: Deep drilling into Nojima Fault, Japan (United States)

    Miyawaki, M.; Uchida, J. I.; Satsukawa, T.


    It is crucial to develop a direct dating method of fault gouges for the assessment of recent fault activity in terms of site evaluation for nuclear power plants. This method would be useful in regions without Late Pleistocene overlying sediments. In order to estimate the age of the latest fault slip event, it is necessary to use fault gouges which have experienced high frictional heating sufficient for age resetting. It is said that frictional heating is higher in deeper depths, because frictional heating generated by fault movement is determined depending on the shear stress. Therefore, we should determine the reliable depth of age resetting, as it is likely that fault gouges from the ground surface have been dated to be older than the actual age of the latest fault movement due to incomplete resetting. In this project, we target the Nojima fault which triggered the 1995 Kobe earthquake in Japan. Samples are collected from various depths (300-1,500m) by trenching and drilling to investigate age resetting conditions and depth using several methods including electron spin resonance (ESR) and optical stimulated luminescence (OSL), which are applicable to ages later than the Late Pleistocene. The preliminary results by the ESR method show approx. 1.1 Ma1) at the ground surface and 0.15-0.28 Ma2) at 388 m depth, respectively. These results indicate that samples from deeper depths preserve a younger age. In contrast, the OSL method dated approx. 2,200 yr1) at the ground surface. Although further consideration is still needed as there is a large margin of error, this result indicates that the age resetting depth of OSL is relatively shallow due to the high thermosensitivity of OSL compare to ESR. In the future, we plan to carry out further investigation for dating fault gouges from various depths up to approx. 1,500 m to verify the use of these direct dating methods.1) Kyoto University, 2017. FY27 Commissioned for the disaster presentation on nuclear facilities (Drilling

  19. Lateral-torsional response of base-isolated buildings with curved surface sliding system subjected to near-fault earthquakes (United States)

    Mazza, Fabio


    The curved surface sliding (CSS) system is one of the most in-demand techniques for the seismic isolation of buildings; yet there are still important aspects of its behaviour that need further attention. The CSS system presents variation of friction coefficient, depending on the sliding velocity of the CSS bearings, while friction force and lateral stiffness during the sliding phase are proportional to the axial load. Lateral-torsional response needs to be better understood for base-isolated structures located in near-fault areas, where fling-step and forward-directivity effects can produce long-period (horizontal) velocity pulses. To analyse these aspects, a six-storey reinforced concrete (r.c.) office framed building, with an L-shaped plan and setbacks in elevation, is designed assuming three values of the radius of curvature for the CSS system. Seven in-plan distributions of dynamic-fast friction coefficient for the CSS bearings, ranging from a constant value for all isolators to a different value for each, are considered in the case of low- and medium-type friction properties. The seismic analysis of the test structures is carried out considering an elastic-linear behaviour of the superstructure, while a nonlinear force-displacement law of the CSS bearings is considered in the horizontal direction, depending on sliding velocity and axial load. Given the lack of knowledge of the horizontal direction at which near-fault ground motions occur, the maximum torsional effects and residual displacements are evaluated with reference to different incidence angles, while the orientation of the strongest observed pulses is considered to obtain average values.

  20. Single Event Analysis and Fault Injection Techniques Targeting Complex Designs Implemented in Xilinx-Virtex Family Field Programmable Gate Array (FPGA) Devices (United States)

    Berg, Melanie D.; LaBel, Kenneth; Kim, Hak


    An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.

  1. A method and example of seismically imaging near‐surface fault zones in geologically complex areas using Vp, Vs, and their ratios (United States)

    Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.; Sickler, Robert R.; Criley, Coyn J.


    The determination of near‐surface (vadose zone and slightly below) fault locations and geometries is important because assessment of ground rupture, strong shaking, geologic slip rates, and rupture histories occurs at shallow depths. However, seismic imaging of fault zones at shallow depths can be difficult due to near‐surface complexities, such as weathering, groundwater saturation, massive (nonlayered) rocks, and vertically layered strata. Combined P‐ and S‐wave seismic‐refraction tomography data can overcome many of the near‐surface, fault‐zone seismic‐imaging problems because of differences in the responses of elastic (bulk and shear) moduli of P and S waves to shallow‐depth, fault‐zone properties. We show that high‐resolution refraction tomography images of P‐ to S‐wave velocity ratios (VP/VS) can reliably identify near‐surface faults. We demonstrate this method using tomography images of the San Andreas fault (SAF) surface‐rupture zone associated with the 18 April 1906 ∼M 7.9 San Francisco earthquake on the San Francisco peninsula in California. There, the SAF cuts through Franciscan mélange, which consists of an incoherent assemblage of greywacke, chert, greenstone, and serpentinite. A near‐vertical zone (∼75° northeast dip) of high P‐wave velocities (up to 3000  m/s), low S‐wave velocities (∼150–600  m/s), high VP/VS ratios (4–8.8), and high Poisson’s ratios (0.44–0.49) characterizes the main surface‐rupture zone to a depth of about 20 m and is consistent with nearby trench observations. We suggest that the combined VP/VSimaging approach can reliably identify most near‐surface fault zones in locations where many other seismic methods cannot be applied.

  2. Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions (United States)

    Bradbury, Kelly K.; Davis, Colter R.; Shervais, John W.; Janecke, Susanne U.; Evans, James P.


    We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized

  3. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.


    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  4. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; Moridis, George J.


    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned towards conditions usually encountered in the Marcellus shale play in the Northeastern US at an approximate depth of 1500 m (~;;4,500 feet). Our modeling simulations indicate that when faults are present, micro-seismic events are possible, the magnitude of which is somewhat larger than the one associated with micro-seismic events originating from regular hydraulic fracturing because of the larger surface area that is available for rupture. The results of our simulations indicated fault rupture lengths of about 10 to 20 m, which, in rare cases can extend to over 100 m, depending on the fault permeability, the in situ stress field, and the fault strength properties. In addition to a single event rupture length of 10 to 20 m, repeated events and aseismic slip amounted to a total rupture length of 50 m, along with a shear offset displacement of less than 0.01 m. This indicates that the possibility of hydraulically induced fractures at great depth (thousands of meters) causing activation of faults and creation of a new flow path that can reach shallow groundwater resources (or even the surface) is remote. The expected low permeability of faults in producible shale is clearly a limiting factor for the possible rupture length and seismic magnitude. In fact, for a fault that is initially nearly-impermeable, the only possibility of larger fault slip event would be opening by hydraulic fracturing; this would allow pressure to penetrate the matrix along the fault and to reduce the frictional strength over a sufficiently large fault surface patch. However, our simulation results show that if the fault is initially impermeable, hydraulic fracturing along the fault results in numerous small micro-seismic events along with the propagation, effectively

  5. The bursts of high energy events observed by the telescope array surface detector (United States)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.


    The Telescope Array (TA) experiment is designed to detect air showers induced by ultra high energy cosmic rays. The TA ground Surface particle Detector (TASD) observed several short-time bursts of air shower like events. These bursts are not likely due to chance coincidence between single shower events. The expectation of chance coincidence is less than 10-4 for five-year's observation. We checked the correlation between these bursts of events and lightning data, and found evidence for correlations in timing and position. Some features of the burst events are similar to those of a normal cosmic ray air shower, and some are not. On this paper, we report the observed bursts of air shower like events and their correlation with lightning.

  6. Insights into the internal structure and formation of striated fault surfaces of oceanic detachments from in situ observations (13°20'N and 13°30'N, Mid-Atlantic Ridge) (United States)

    Escartin, J.; Bonnemains, D.; Mevel, C.; Cannat, M.; Petersen, S.; Augustin, N.; Bezos, A.; Chavagnac, V.; Choi, Y.; Godard, M.; Haaga, K.; Hamelin, C.; Ildefonse, B.; Jamieson, J. W.; John, B. E.; Leleu, T.; MacLeod, C. J.; Massot-Campos, M.; Nomikou, P.; Olive, J. A. L.; Paquet, M.; Rommevaux, C.; Rothenbeck, M.; Steinführer, A.; Tominaga, M.; Triebe, L.; Andreani, M.; Garcia, R.; Campos, R.


    Oceanic detachment faults (ODs) are known to play a significant role in oceanic crustal accretion along slow-spreading ridges, and many display a poorly understood corrugated fault surface. The ODEMAR cruise (Nov-Dec'14) studied the 13°20'N and 13°30'N ODs along the Mid-Atlantic Ridge via extensive microbathymetric surveys with AUV ABYSS (GEOMAR), combined with geological observations and sampling using ROV VICTOR (IFREMER). The 13°20'N OD is largely intact, with an undisrupted corrugated surface. An abrupt, continuous moat where the OD emerges from the seafloor sloping at ~12-18° continuously sheds rubble onto the OD fault plane, blanketing it. An apron surrounds the detachment dipping ~10-14° towards volcanic rift valley floor thus forming a thin wedge above the active OD fault, which uplifts hangingwall material. In contrast, the 13°30'N OD is cut by recent high-angle faults, and is likely inactive. The OD fault is well exposed along these recent high angle fault scarps, and along mass wasting scarps. The OD fault displays individual microbathymetric lineations throughout the >150 m of fault zone thickness, that are traced up to ~2 km in the spreading direction. Flanks of individual lineations display fault planes extending ~20-100 m laterally with well-developed, extension-parallel striae. At 13°20'N. These fault surfaces are primarily basalt fault breccias and minor serpentinite. At 13°30'N the scarps cutting the detachment system reveal highly heterogeneous deformation, with phacoidal blocks of undeformed peridotite, gabbro, and basalt enclosed in anastomosing shear zones. Basalt often shows greenschist grade alteration, and is only present in the upper 50 m of the OD fault zone. In detail, OD faults are characterized by anastomosing zones of localized, strongly anisotropic deformation at different scales (m to km), bounding bodies of largely undeformed rock (basalt, gabbro, peridotite) elongated in the extension direction. Hangingwall material

  7. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.


    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).

  8. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Illias, Hazlee A [Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chen, George; Lewin, Paul L, E-mail: [Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ (United Kingdom)


    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  9. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events. (United States)

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R


    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  10. Solar Irradiance Changes And Photobiological Effects At Earth's Surface Following Astrophysical Ionizing Radiation Events (United States)

    Thomas, Brian; Neale, Patrick


    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in

  11. Earthquake Hazard and Segmented Fault Evolution, Hat Creek Fault, Northern California (United States)

    Blakeslee, M. W.; Kattenhorn, S. A.


    Precise insight into surface rupture and the evolution and mechanical interaction of segmented normal fault systems is critical for assessing the potential seismic hazard. The Hat Creek fault is a ~35 km long, NNW trending segmented normal fault system located on the western boundary of the Modoc Plateau and within the extending backarc basin of the Cascadia subduction zone in northern California. The Hat Creek fault has a prominent surface rupture showing evidence of multiple events in the past 15 ka, although there have been no historic earthquakes. In response to interactions with volcanic activity, the fault system has progressively migrated several km westward, causing older scarps to become seemingly inactive, and producing three distinct, semi-parallel scarps with different ages. The oldest scarp, designated the “Rim”, is the farthest west and has up to 352 m of throw. The relatively younger “Pali” scarp has up to 174 m of throw. The young “Active” scarp has a maximum throw of 65 m in the 24±6 ka Hat Creek basalt, with 20 m of throw in ~15 ka glacial gravels (i.e., a Holocene slip rate of ~1.3 mm/yr). Changes in the geometry and kinematics of the separate scarps during the faulting history imply the orientation of the stress field has rotated clockwise, now inducing oblique right-lateral motion. Previous studies suggested that the Active scarp consists of 7 left-stepping segments with a cumulative length of 23.5 km. We advocate that the Active scarp is actually composed of 8 or 9 segments and extends 4 km longer than previous estimates. This addition to the active portion of the fault is based on detailed mapping of a young surface rupture in the northern portion of the fault system. This ~30 m high young scarp offsets lavas that erupted from Cinder Butte, a low shield volcano, but has a similar geometry and properties as the Active scarp in the Hat Creek basalt. At its northern end, the Active scarp terminates at Cinder Butte. Our mapping

  12. Guilt without fault

    DEFF Research Database (Denmark)

    Schrøder, Katja; la Cour, Karen; Jørgensen, Jan Stener


    -free approach is promoted in the aftermath of adverse events. The purpose is to illustrate how healthcare professionals may experience guilt without being at fault after adverse events, and Gamlund's theory on forgiveness without blame is used as the theoretical framework for this analysis. Philosophical...

  13. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California (United States)

    Pratt, Thomas L.; Shaw, John H.; Dolan, James F.; Christofferson, Shari A.; Williams, Robert A.; Odum, Jack K.; Plesch, Andreas


    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  14. Cryogenic germanium detectors for dark matter search: Surface events rejection by charge measurements

    International Nuclear Information System (INIS)

    Broniatowski, A.; Censier, B.; Juillard, A.; Berge, L.


    Test experiments have been performed on a Ge detector of the Edelweiss collaboration, combining time-resolved acquisition of the ionization signals with heat measurements. Pulse-shape analysis of the charge signals demonstrates the capability to reject surface events of poor charge collection with energies larger than 50 keV in ionization

  15. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition. (United States)

    Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B


    This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract

  16. Event-Triggered Fault Estimation for Stochastic Systems over Multi-Hop Relay Networks with Randomly Occurring Sensor Nonlinearities and Packet Dropouts. (United States)

    Li, Yunji; Peng, Li


    Wireless sensors have many new applications where remote estimation is essential. Considering that a remote estimator is located far away from the process and the wireless transmission distance of sensor nodes is limited, sensor nodes always forward data packets to the remote estimator through a series of relays over a multi-hop link. In this paper, we consider a network with sensor nodes and relay nodes where the relay nodes can forward the estimated values to the remote estimator. An event-triggered remote estimator of state and fault with the corresponding data-forwarding scheme is investigated for stochastic systems subject to both randomly occurring nonlinearity and randomly occurring packet dropouts governed by Bernoulli-distributed sequences to achieve a trade-off between estimation accuracy and energy consumption. Recursive Riccati-like matrix equations are established to calculate the estimator gain to minimize an upper bound of the estimator error covariance. Subsequently, a sufficient condition and data-forwarding scheme are presented under which the error covariance is mean-square bounded in the multi-hop links with random packet dropouts. Furthermore, implementation issues of the theoretical results are discussed where a new data-forwarding communication protocol is designed. Finally, the effectiveness of the proposed algorithms and communication protocol are extensively evaluated using an experimental platform that was established for performance evaluation with a sensor and two relay nodes.

  17. Improving Multiple Fault Diagnosability using Possible Conflicts (United States)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino


    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  18. Quaternary geology and neotectonic activity along the Fish Lake Valley Fault Zone, Nevada and California

    International Nuclear Information System (INIS)

    Sawyer, T.L.


    The right-divergent Fish Lake Valley fault zone (FLVFZ), a 80 KM-long component of the northern Death Valley fault system, comprises contemporaneous NW-striking dextral faults, N-striking normal faults, NE-striking left(?)-divergent faults, and locally WNW-striking contractional faults. The fault zone terminates in a horsetail splay where the minimum right-slip rate is 0.7--0.8 mm/yr. The styles and rates of faulting are based on a sequence of morphostratigraphic units disrupted by the FLVFZ. Geomorphic surface correlations, radiocarbon analyses, tephrochronology, and soil development studies were used to estimate unit ages. Paleoseismicity studies have identified three discrete slip events in the last 4 to 2 ka on the northern FLVFZ. The last two significant events were similar, suggesting a characteristic earthquake behavior and magnitudes of 7.1 ± 0.3. The last large event occurred 1 ka (±0.6, -0.5) and comparable events have repeated every 1.1 Ka (+2.3, -0.5). Source structure characteristics suggest a MCE of M 7.3 ± 0.4

  19. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin


    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  20. Frictional strength heterogeneity and surface heat flow: Implications for the strength of the creeping San Andreas fault (United States)

    d'Alessio, M. A.; Williams, C.F.; Burgmann, R.


    Heat flow measurements along much of the San Andreas fault (SAF) constrain the apparent coefficient of friction (??app) of the fault to 0.2 should be detectable even with the sparse existing observations, implying that ??app for the creeping section is as low as the surrounding SAF. Because the creeping section does not slip in large earthquakes, the mechanism controlling its weakness is not related to dynamic processes resulting from high slip rate earthquake ruptures. Copyright 2006 by the American Geophysical Union.

  1. Faults Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  2. The San Andreas Fault 'Supersite' (Invited) (United States)

    Hudnut, K. W.


    struck in 1992 (Landers), 1994 (Northridge) and 1999 (Hector Mine) as well as the 2010 El Mayor - Cucapah (EM-C) earthquake (just south of the US-Mexico border). Of these four notable events, all produced extensive surface faulting except for the 1994 Northridge event, which was close to the Los Angeles urban area on a buried thrust fault. Northridge caused by far the most destruction, topping $20B (US) and resulting in 57 fatalities due to its location under an urban area. The Landers, Hector Mine and EM-C events occurred in desert areas away from major urban centers, and each proved to be a new and unique test-bed for making rapid progress in earthquake science and creative use of geodetic imagery. InSAR studies were linked to GPS deformation and mapping of surface ruptures and seismicity in a series of important papers about these earthquakes. The hazard in California remains extremely high, with tens of millions of people living in close proximity to the San Andreas Fault system as it runs past both San Francisco and Los Angeles. Dense in-situ networks of seismic and geodetic instruments are continually used for research and earthquake monitoring, as well as development of an earthquake early warning capability. Principles of peer review from funding agencies and open data availability will be observed for all data. For all of these reasons, the San Andreas Fault system is highly appropriate for consideration as a world-class permanent Supersite in the GEO framework.

  3. Mathematical model quantifies multiple daylight exposure and burial events for rock surfaces using luminescence dating

    DEFF Research Database (Denmark)

    Freiesleben, Trine Holm; Sohbati, Reza; Murray, Andrew


    luminescence-depth profile from a feldspar-rich granite cobble from an archaeological site near Aarhus, Denmark. This profile shows qualitative evidence for multiple daylight exposure and burial events; these are quantified using the model developed here. By determining the burial ages from the surface layer...... of the cobble and by fitting the new model to the luminescence profile, it is concluded that the cobble was well bleached before burial. This indicates that the OSL burial age is likely to be reliable. In addition, a recent known exposure event provides an approximate calibration for older daylight exposure...

  4. Calibration and validation of a small-scale urban surface water flood event using crowdsourced images (United States)

    Green, Daniel; Yu, Dapeng; Pattison, Ian


    Surface water flooding occurs when intense precipitation events overwhelm the drainage capacity of an area and excess overland flow is unable to infiltrate into the ground or drain via natural or artificial drainage channels, such as river channels, manholes or SuDS. In the UK, over 3 million properties are at risk from surface water flooding alone, accounting for approximately one third of the UK's flood risk. The risk of surface water flooding is projected to increase due to several factors, including population increases, land-use alterations and future climatic changes in precipitation resulting in an increased magnitude and frequency of intense precipitation events. Numerical inundation modelling is a well-established method of investigating surface water flood risk, allowing the researcher to gain a detailed understanding of the depth, velocity, discharge and extent of actual or hypothetical flood scenarios over a wide range of spatial scales. However, numerical models require calibration of key hydrological and hydraulic parameters (e.g. infiltration, evapotranspiration, drainage rate, roughness) to ensure model outputs adequately represent the flood event being studied. Furthermore, validation data such as crowdsourced images or spatially-referenced flood depth collected during a flood event may provide a useful validation of inundation depth and extent for actual flood events. In this study, a simplified two-dimensional inertial based flood inundation model requiring minimal pre-processing of data (FloodMap-HydroInundation) was used to model a short-duration, intense rainfall event (27.8 mm in 15 minutes) that occurred over the Loughborough University campus on the 28th June 2012. High resolution (1m horizontal, +/- 15cm vertical) DEM data, rasterised Ordnance Survey topographic structures data and precipitation data recorded at the University weather station were used to conduct numerical modelling over the small (present during the flood event via the

  5. Fault finder (United States)

    Bunch, Richard H.


    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  6. Holocene rupture of the Repongaere Fault, Gisborne : implications for Raukumara Peninsula deformation and impact on the Waipaoa sedimentary system

    International Nuclear Information System (INIS)

    Berryman, K.R.; Marden, M.; Palmer, A.; Litchfield, N.J.


    The Repongaere Fault is one of a series of active normal faults within the Raukumara Peninsula, eastern North Island, New Zealand. These faults appear to form in response to rapid uplift of the Raukumara Range and related extensional strain. However, the activity of these normal faults is poorly constrained. This paper presents new mapping of the active surface trace of the Repongaere Fault, c. 18 km northwest of Gisborne, and the results of two paleoseismic trenches. These results are then used to assess the seismic hazard posed by this fault and impacts on the Waipaoa Sedimentary System in which the fault is situated. Active traces can be mapped for c. 4.5 km, but we infer the surface rupture length to be at least 9 km. Tephras within the trenches constrain the timing of the most recent surface rupture event to have occurred during deposition of the Waimihia Tephra (c. 3400 cal. yr BP), and at least one event in the period c. 13 800-C5470 cal. yr BP, with single-event displacements of ≥0.4-1.1 m. From these data a mean dip-slip rate of c. 0.1 mm/yr and a maximum recurrence interval of 4490-6900 yr, can be calculated. If the Repongaere Fault is representative of other Raukumara Peninsula normal faults, then this relatively low rate of activity supports the interpretation that these faults are not contributing significantly to the deformation of the Raukumara Peninsula. The low rate of activity is also consistent with the very localised evidence for landscape impacts, a calculated moderate M w of 6.3-6.7, and the fault's location within the lower part of the Waipaoa River catchment. Together, these observations suggest that Repongaere Fault earthquakes have minimal, localised impact on the Waipaoa Sedimentary System. (author). 64 refs., 4 figs., 2 tabs.

  7. Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw˜7.9 Kokoxili earthquake (United States)

    Haibing, Li; Van der Woerd, Jérôme; Tapponnier, Paul; Klinger, Yann; Xuexiang, Qi; Jingsui, Yang; Yintang, Zhu


    A field study of the surface rupture of the 14 November 2001, Mw∼7.9 Kokoxili (or Kunlun Shan) earthquake near Hongshui Gou (35.9° N, 92.2° E), a site with exceptional geomorphic offsets long identified on SPOT images, yields bounds on this earthquake return time and on the slip-rate along the Kusai Hu segment of the Kunlun Fault. Measurements of the sinistral coseismic and cumulative offsets of four distinct strath-terrace risers and of rill channels incised in the adjacent fan bajada, complemented by post-earthquake, metric-resolution satellite image restoration, are 3 ± 0.5 m, 6 ± 1 m, 31 ± 2 m, 63 ± 5 m, and 110 ± 10 m. The smallest offset is unambiguously that of the 14/11/2001 earthquake. The 31 and 63 m riser offsets, which have thermoluminescence ages of 2885 ± 285 and 5960 ± 450 yr, respectively, imply an average slip rate of 10.0 ± 1.5 mm/yr, almost identical to that found 200 km eastwards, in Xidatan, using 10Be cosmogenic dating of surface pebbles. The repetitive seismic slip (∼3 m) implies an average recurrence time of 300 ± 50 yrs for earthquakes comparable to the 14/11/2001 event. This new data increases the body of evidence suggestive of local characteristic slip during large earthquakes and firmly corroborates the millennial eastward extrusion rate (1 cm/yr) of north-central Tibet relative to the Qaidam.

  8. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf


    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  9. On the thermo-mechanical events during friction surfacing of high speed steels


    Bedford, G.M.; Vitanov, V.I.; Voutchkov, I.I.


    This paper is concerned with the friction surfacing of high-speed steels, BM2, BT15 and ASP30 onto plain carbon steel plate. The events that the matrix and carbides experience as the coating material pass from the coating rod to the substrate, in forming the coating, is described. The coating is observed to harden automatically within a few seconds of being deposited onto the cold substrate. This autohardening is observed to be an inherent feature of the friction surfacing process and the onl...

  10. The August 24th 2016 Accumoli earthquake: surface faulting and Deep-Seated Gravitational Slope Deformation (DSGSD in the Monte Vettore area

    Directory of Open Access Journals (Sweden)

    Domenico Aringoli


    Full Text Available On August 24th 2016 a Mw=6.0 earthquake hit central Italy, with the epicenter located at the boundaries between Lazio, Marche, Abruzzi and Umbria regions, near the village of Accumoli (Rieti, Lazio. Immediately after the mainshock, this geological survey has been focused on the earthquake environmental effects related to the tectonic reactivation of the previously mapped active fault (i.e. primary, as well as secondary effects mostly related to the seismic shaking (e.g. landslides and fracturing in soil and rock.This paper brings data on superficial effects and some preliminary considerations about the interaction and possible relationship between surface faulting and the occurrence of Deep-Seated Gravitational Slope Deformation (DSGSD along the southern and western slope of Monte Vettore.

  11. Source study of local coalfield events using the modal synthesis of shear and surface waves

    Energy Technology Data Exchange (ETDEWEB)

    MacBeth, C.D.; Redmayne, D.W.


    Results from the BGS LOWNET array from the Midlothian coalfield in Scotland have been studied. Vertical component seismograms have been analysed using a waveform matching technique based on the modal summation method for constructing synthetic seismograms. Results of the analysis are applied to S and surface wave portions of the seismogram. Effects of different earth structures, source depths, source orientation, and type of event, rockburst or triggered earthquake 2-3 km from the mine workings, can be evaluated.

  12. Frictional properties of DFDP-1 Alpine Fault rocks under hydrothermal conditions and high shear strain (United States)

    Niemeijer, André R.; Boulton, Carolyn; Toy, Virginia; Townend, John; Sutherland, Rupert


    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Paleoseismic evidence of large-displacement surface-rupturing events, as well as an absence of measurable contemporary surface deformation, indicates that the fault slips mostly in quasi-periodic large-magnitude earthquakes (architecture and rupture of the Alpine Fault, New Zealand, Geology,40, 1143-1146, doi:10.1130/G33614.1. Toy, V.G., Craw, D., Cooper, A.F., and R.J. Norris (2010), Thermal regime in the central Alpine Fault zone, New Zealand: Constraints from microstructures, biotite chemistry and fluid inclusion data, Tectonophysics, doi:10.1016/j.tecto.2009.12.013

  13. Geotechnical and Surface Wave Investigation of Liquefaction and Strong Motion Instrumentation sites of the Denali Fault, Mw 7.9, Earthquake (United States)

    Kayen, R.; Thompson, E.; Minasian, D.; Collins, B.; Moss, R.; Sitar, N.; Carver, G.


    fault crossing, liquefaction features are abundant. To characterize soil properties, we used a portable continuous sine wave-spectral analysis of surface waves (CSS-SASW) apparatus to profile the shear wave velocity of the ground, and an auger to profile the corresponding texture of the river deposits. We occupied 25 liquefaction evaluation test sites along with the three Alyeska seismometer sites. On the Nabesna, Delta and other rivers, we only find liquefaction features in soil deposits where normalized shear wave velocities fall below 225 m/s. Severity of fissures and lateral spreads dramatically increase in soils as the velocities fall, especially below 170 m/s. In some cases, the most pronounced ground failures are far from the fault zone (60-100 km) in extremely loose, low velocity fine sands. Geotechnical testing performed on field samples revealed that liquefied soils ranged from well graded sandy gravels in close proximity to the fault (plasticity silts at greater distances. At the Alyeska pump station seismometer sites, we are able to invert profiles of shear wave velocity to depths of 140-200 meters. The averaged NEHRP (30 meter) velocities for pump stations 9, 10, and 11 are 376 m/s, 316 m/s, and 362 m/s, respectively.

  14. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel


    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  15. Surface-mediated molecular events in material-induced blood-plasma coagulation (United States)

    Chatterjee, Kaushik

    Coagulation and thrombosis persist as major impediments associated with the use of blood-contacting medical devices. We are investigating the molecular mechanism underlying material-induced blood-plasma coagulation focusing on the role of the surface as a step towards prospective development of improved hemocompatible biomaterials. A classic observation in hematology is that blood/blood-plasma in contact with clean glass surface clots faster than when in contact with many plastic surfaces. The traditional biochemical theory explaining the underlying molecular mechanism suggests that hydrophilic surfaces, like that of glass, are specific activators of the coagulation cascade because of the negatively-charged groups on the surface. Hydrophobic surfaces are poor procoagulants or essentially "benign" because they lack anionic groups. Further, these negatively-charged surfaces are believed to not only activate blood factor XII (FXII), the key protein in contact activation, but also play a cofactor role in the amplification and propagation reactions that ultimately lead to clot formation. In sharp contrast to the traditional theory, our investigations indicate a need for a paradigm shift in the proposed sequence of contact activation events to incorporate the role of protein adsorption at the material surfaces. These studies have lead to the central hypothesis for this work proposing that protein adsorption to hydrophobic surfaces attenuates the contact activation reactions so that poorly-adsorbent hydrophilic surfaces appear to be stronger procoagulants relative to hydrophobic surfaces. Our preliminary studies measuring the plasma coagulation response of activated FXII (FXIIa) on different model surfaces suggested that the material did not play a cofactor role in the processing of this enzyme dose through the coagulation pathway. Therefore, we focused our efforts on studying the mechanism of initial production of enzyme at the procoagulant surface. Calculations for the

  16. Changes of the fluid regime behaviour through time in fault zones (Catalan Coastal Ranges, NE Spain) (United States)

    Cantarero, Irene; Lanari, Pierre; Alías, Gemma; Travé, Anna; Vidal, Olivier; Baqués, Vinyet


    Hospital fault. Fluids responsible of their precipitation had temperatures between 125 and 190°C. Regarding their origin, fluids of the Vallès fault are meteoric fluids which have been warmed at depth and have upflowed through the faults, whereas in the Hospital fault, these fluids have been mixed at the surface with marine waters, due to the situation of this fault in the Miocene shoreline. During the post-rift stage, the Hospital fault was dominated by low-temperature meteoric fluids whereas in the Vallès fault hydrothermalism remains active till nowadays. The estimated temperatures of crystallisation of chlorites indicate that during the two extensional events (Mesozoic and Neogene), faults acted as conduits for hot fluids producing anomalous high geothermal gradients (50°C/km minimum).

  17. Solar Particle Event Exposures and Local Tissue Environments in Free Space and on Martian Surface (United States)

    Kim, M. Y.; Shinn, J. L.; Singleterry, R. C.; Atwell, W.; Wilson, J. W.


    Solar particle events (SPEs) are a concern to space missions outside Earth s geomagnetic field. The September 29, 1989 SPE is the largest ground-level event since February 23, 1956. It is an iron-rich event for which the spectra are well measured. Because ten times this event matches the ground level data of the February 1956 SPE, it is suggested that an event with ten-times the scaled spectra of the September 29, 1989 SPE be used as a worst case SPE for spacecraft design. For the worst case SPE, the input spectra were reconstructed using Nymmik's (1995) model for protons, the O and Fe ion spectra of Tylka et al. (1997) to evaluate the iron enhancement ratio, and the Solar Energetic Particle Baseline (SEPB) composition of McGuire et al. (1986) for the heavy ions. The necessary transport properties of the shielding materials and the astronaut s body tissues are evaluated using the HZETRN code. Three shield configurations (assumed to be aluminum) are considered: space suit taken as 0.3 g/sq cm, helmet/pressure vessel as 1 g/sq cm, and equipment room of 5 g/sq cm. A shelter is taken as 10 g/sq cm on the Martian surface. The effect of shielding due to the Martian atmosphere is included. The astronaut geometry is taken from the computerized anatomical man (CAM) model.

  18. Characterization of the San Andreas Fault near Parkfield, California by fault-zone trapped waves (United States)

    Li, Y.; Vidale, J.; Cochran, E.


    by M6 earthquake episode at Parkfield although it probably represents the accumulated wear from many previous great earthquakes and other kinematical processes. The width of low-velocity waveguide likely represents the damage extent in dynamic rupture, consistent with the scale of process zone size to rupture length as existing model predicted. The variation in velocity reduction along the fault zone indicates an inference of changes in on-fault stress, fine-scale fault geometry, and fluid content at depths. On the other hand, a less developed and narrower low-velocity waveguide is on the north strand that experienced minor breaks at surface in the 1966 M6 event probably due to energy partitioning, strong shaking and dynamic strain by the earthquake on the main fault.

  19. On fault evidence for a large earthquake in the late fifteenth century, Eastern Kunlun fault, China (United States)

    Junlong, Zhang


    The EW-trending Kunlun Fault System (KFS) is one of the major left-lateral strike-slip faults on the Tibetan Plateau. It forms the northern boundary of the Bayan Har block. Heretofore, no evidence has been provided for the most recent event (MRE) of the 70-km-long eastern section of the KFS. The studied area is located in the north of the Zoige Basin (northwest Sichuan province) and was recognized by field mapping. Several trenches were excavated and revealed evidence of repeated events in late Holocene. The fault zone is characterized by a distinct 30-60-cm-thick clay fault gouge layer juxtaposing the hanging wall bedrock over unconsolidated late Holocene footwall colluvium and alluvium. The fault zone, hanging wall, and footwall were conformably overlain by undeformed post-MRE deposits. Samples of charred organic material were obtained from the top of the faulted sediments and the base of the unfaulted sediments. Modeling of the age of samples, earthquake yielded a calibrated 2σ radiocarbon age of A.D. 1489 ± 82. Combined with the historical earthquake record, the MRE is dated at A.D. 1488. Based on the over 50 km-long surface rupture, the magnitude of this event is nearly M w 7.0. Our data suggests that a 200-km-long seismic gap could be further divided into the Luocha and Maqu sections. For the last 1000 years, the Maqu section has been inactive, and hence, it is likely that the end of its seismic cycle is approaching, and that there is a potentially significant seismic hazard in eastern Tibet.

  20. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy. (United States)

    Brooks, Benjamin A; Minson, Sarah E; Glennie, Craig L; Nevitt, Johanna M; Dawson, Tim; Rubin, Ron; Ericksen, Todd L; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana


    Earthquake-related fault slip in the upper hundreds of meters of Earth's surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  1. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.


    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  2. Measuring pesticides in surface waters - continuous versus event-based sampling design (United States)

    Eyring, J.; Bach, M.; Frede, H.-G.


    Monitoring pesticides in surface waters is still a work- and cost-intensive procedure. Therefore, studies are normally carried out with a low monitoring frequency or with only a small selection of substances to be analyzed. In this case, it is not possible to picture the high temporal variability of pesticide concentrations, depending on application dates, weather conditions, cropping seasons and other factors. In 2007 the Institute of Landscape Ecology and Resource Management at Giessen University implemented a monitoring program during two pesticide application periods aiming to produce a detailed dataset of pesticide concentration for a wide range of substances, and which would also be suitable for the evaluation of catchment-scale pesticide exposure models. The Weida catchment in Thuringia (Eastern Germany) was selected as study area due to the availability of detailed pesticide application data for this region. The samples were taken from the river Weida at the gauge Zeulenroda, where it flows into a drinking water reservoir. The catchment area is 102 km². 67% of the area are in agricultural use, the main crops being winter wheat, maize, winter barley and winter rape. Dominant soil texture classes are loamy sand and loamy silt. About one third of the agricultural area is drained. The sampling was carried out in cooperation with the water supply agency of Thuringia (Fernwasserversorgung Thueringen). The sample analysis was done by the Institute of Environmental Research at Dortmund University. Two sampling schemes were carried out using two automatic samplers: continuous sampling with composite samples bottled two times per week and event-based sampling triggered by a discharge threshold. 53 samples from continuous sampling were collected. 19 discharge events were sampled with 45 individual samples (one to six per event). 34 pesticides and two metabolites were analyzed. 21 compounds were detected, nine of which having concentrations above the drinking water

  3. Fault-Tree Compiler Program (United States)

    Butler, Ricky W.; Martensen, Anna L.


    FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.

  4. Paleoseismology of the 1966 Varto Earthquake (Ms 6.8) and Structure of the Varto Fault Zone, Eastern Turkey (United States)

    Isik, V.; Caglayan, A.; Saber, R.; Yesilyurt, N.


    Turkey is a region of active faulting and contains several strike-slip fault zones, which have generated both historical and recent large earthquakes. Two active fault zones in Turkey, the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ), divide the area into the Anatolian micro-plate accommodating WSW-directed movement. The southeastern continuation of the NAFZ is often referred to the Varto Fault Zone (VFZ). The VFZ cuts mainly Pliocene volcano-sedimentary units and/or Quaternary deposits and is characterized by multiple fault strands and multiple, closely spaced, active seismogenic zones. Fault motions in the zone are primarily right-lateral, with a subordinate component of NNW-SSE shortening. Study area is Varto region in which indications of active faulting are very well preserved. We recognized three coseismic ruptures from five trench exposures. It is referred to these as events 1 (youngest) through 3 (oldest). The best evidence of event 3 comes from fault traces and its upward terminations. The major components of this fault are fault core and damage zone. The fault is not just one plane of discontinuity and bifurcates and creates additional slip surfaces, which propagate out of the plane of the original fault. Event 2 and event 1, referring to 1946 and 1966 earthquakes, are characterized primarily by discrete, regularly spaced normal faults with and 55-80 cm and 105-270 cm throws, respectively and geometry of growth strata. The VFZ in the study area include typical structures of strike-slip fault zone. It forms a number of parallel and slightly sub-parallel strands striking N50°-72°W including contractional and extensional brittle structures. Several meters to tens of meters wavelength active folds with ENE-WSW and WNW-ESE trending fold axis. These folds deform the Plio-Quaternary units and show classic asymmetry associated with both a south- and north-vergent fault propagation fold. Meso-scale normal faults are also well

  5. Earthquake mechanism and predictability shown by a laboratory fault (United States)

    King, C.-Y.


    Slip events generated in a laboratory fault model consisting of a circulinear chain of eight spring-connected blocks of approximately equal weight elastically driven to slide on a frictional surface are studied. It is found that most of the input strain energy is released by a relatively few large events, which are approximately time predictable. A large event tends to roughen stress distribution along the fault, whereas the subsequent smaller events tend to smooth the stress distribution and prepare a condition of simultaneous criticality for the occurrence of the next large event. The frequency-size distribution resembles the Gutenberg-Richter relation for earthquakes, except for a falloff for the largest events due to the finite energy-storage capacity of the fault system. Slip distributions, in different events are commonly dissimilar. Stress drop, slip velocity, and rupture velocity all tend to increase with event size. Rupture-initiation locations are usually not close to the maximum-slip locations. ?? 1994 Birkha??user Verlag.

  6. Late Pleistocene-Holocene paleoseismology of the Batang fault (central Tibet plateau, China) (United States)

    Huang, Xuemeng; Du, Yi; He, Zhongtai; Ma, Baoqi; Xie, Furen


    The Yushu segment of the Ganzi-Yushu fault system (central Tibet plateau) is mainly composed by the Yushu fault and the Batang fault. The 2010 Ms 7.1 Yushu earthquake occurred on the Yushu fault, causing huge loss of lives and widespread damages to the densely populated Yushu area. So far, much effort has been devoted to the surface rupture and paleoseismology of the Yushu fault, while the late Quaternary activity of the Batang fault has not received much attention. The Batang fault has a clear geomorphic expression with fault scarps, sag ponds, push-ups, systematic offset of fluvial terraces, and alluvial fans along its trace. Integrated methods of geomorphological mapping, outcrop analysis, trench excavation and logging, optically stimulated luminescence (OSL), and radiocarbon (14C) dating are employed to study the latest Pleistocene and Holocene paleoseismology of the Batang fault. Several paleoearthquakes are identified from geomorphic and stratigraphic evidence between 22 ka and after 2.7 ka. The oldest event (E1) occurred after 22 ka BP, E2 prior to 14 ka BP, E3 within 14 and 9.5 ka BP, E4 within 8.0-7.8 ka BP, E5 prior to 6.7 ka BP, the penultimate event (E6) occurred within 4.3-4.0 ka BP, and the most recent event (E7) occurred after 2.7 ka BP. The average recurrence interval of paleoearthquakes for the Batang fault is about 2000 a in the last ~ 8 ka BP, and the relapse time of the latest paleoearthquake is Empirical equations between co-seismic displacement and earthquake magnitude reveal that the average magnitude of these events is about 7.3. This study contributes important information for the seismic hazard assessment of the densely populated Yushu area.

  7. Fault linkage and continental breakup (United States)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia


    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  8. Development of CDMS-II Surface Event Rejection Techniques and Their Extensions to Lower Energy Thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Thomas James [Univ. of Minnesota, Minneapolis, MN (United States)


    The CDMS-II phase of the Cryogenic Dark Matter Search, a dark matter direct-detection experiment, was operated at the Soudan Underground Laboratory from 2003 to 2008. The full payload consisted of 30 ZIP detectors, totaling approximately 1.1 kg of Si and 4.8 kg of Ge, operated at temperatures of 50 mK. The ZIP detectors read out both ionization and phonon pulses from scatters within the crystals; channel segmentation and analysis of pulse timing parameters allowed e ective ducialization of the crystal volumes and background rejection su cient to set world-leading limits at the times of their publications. A full re-analysis of the CDMS-II data was motivated by an improvement in the event reconstruction algorithms which improved the resolution of ionization energy and timing information. The Ge data were re-analyzed using three distinct background-rejection techniques; the Si data from runs 125 - 128 were analyzed for the rst time using the most successful of the techniques from the Ge re-analysis. The results of these analyses prompted a novel \\mid-threshold" analysis, wherein energy thresholds were lowered but background rejection using phonon timing information was still maintained. This technique proved to have signi cant discrimination power, maintaining adequate signal acceptance and minimizing background leakage. The primary background for CDMS-II analyses comes from surface events, whose poor ionization collection make them di cult to distinguish from true nuclear recoil events. The novel detector technology of SuperCDMS, the successor to CDMS-II, uses interleaved electrodes to achieve full ionization collection for events occurring at the top and bottom detector surfaces. This, along with dual-sided ionization and phonon instrumentation, allows for excellent ducialization and relegates the surface-event rejection techniques of CDMS-II to a secondary level of background discrimination. Current and future SuperCDMS results hold great promise for mid- to low

  9. Preliminary U-series disequilibrium and thermoluminescence ages of surficial deposits and paleosols associated with Quaternary fault, Eastern Yucca Mountain

    International Nuclear Information System (INIS)

    Paces, J.B.; Menges, C.M.; Bush, C.A.; Futa, K.; Millard, H.T.; Maat, P.B.; Whitney, J.W.; Widmann, B.; Wesling, J.R.


    Geochronological control is an essential component of paleoseismic evaluation of faults in the Yucca Mountain region. New U-series disequilibrium and thermoluminescence age estimates for pedogenic deposits that bracket surface-rupture events are presented from four sites exposing the Paintbrush Canyon, Bow Ridge and Stagecoach Road faults. Ages show an internal consistency with stratigraphic relationships as well as an overall concordancy between the two independent geochronometers. Age estimates are therefore interpreted to date depositional events or episodes of pedogenic carbonate mobility that can be used to establish a paleoseismic fault chronology. Ultimately, this type of chronological information will be used to evaluate seismic hazards at Yucca Mountain

  10. Preliminary U-series disequilibrium and thermoluminescence ages of surficial deposits and paleosols associated with Quaternary fault, Eastern Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Paces, J.B.; Menges, C.M.; Bush, C.A.; Futa, K.; Millard, H.T.; Maat, P.B.; Whitney, J.W. [Geological Survey, Denver, CO (United States); Widmann, B. [Science Applications International Corp., Golden, CO (United States); Wesling, J.R. [Geomatrix Consultants, Inc., San Francisco, CA (United States)


    Geochronological control is an essential component of paleoseismic evaluation of faults in the Yucca Mountain region. New U-series disequilibrium and thermoluminescence age estimates for pedogenic deposits that bracket surface-rupture events are presented from four sites exposing the Paintbrush Canyon, Bow Ridge and Stagecoach Road faults. Ages show an internal consistency with stratigraphic relationships as well as an overall concordancy between the two independent geochronometers. Age estimates are therefore interpreted to date depositional events or episodes of pedogenic carbonate mobility that can be used to establish a paleoseismic fault chronology. Ultimately, this type of chronological information will be used to evaluate seismic hazards at Yucca Mountain.

  11. Retrospective Analysis of Recent Flood Events With Persistent High Surface Runoff From Hydrological Modelling (United States)

    Joshi, S.; Hakeem, K. Abdul; Raju, P. V.; Rao, V. V.; Yadav, A.; Diwakar, P. G.; Dadhwal, V. K.


    Floods are one of the most common and widespread disasters in India, with an estimated 40Mha of land prone to this natural disaster (National Flood Commission, India). Significant loss of property, infrastructure, livestock, public utilities resulting in large economic losses due to floods are recurrent every year in many parts of India. Flood forecasting and early warning is widely recognized and adopted as non-structural measure to lower the damages caused by the flood events. Estimating the rainfall excess that results into excessive river flow is preliminary effort in riverine flood estimation. Flood forecasting models are in general, are event based and do not fully account for successive and persistent excessive surface runoff conditions. Successive high rainfall events result in saturated soil moisture conditions, favourable for high surface runoff conditions. The present study is to explore the usefulness of hydrological model derived surface runoff, running on continuous times-step, to relate to the occurrence of flood inundation due to persistent and successive high surface runoff conditions. Variable Infiltration Capacity (VIC), a macro-scale hydrological model, was used to simulate daily runoff at systematic grid level incorporating daily meteorological data and land cover data. VIC is a physically based, semi-distributed macroscale hydrological model that represents surface and subsurface hydrologic process on spatially distributed grid cell. It explicitly represents sub-grid heterogeneity in land cover classes, taking their phenological changes into account. In this study, the model was setup for entire India using geo-spatial data available from multiple sources (NRSC, NBSS&LUP, NOAA, and IMD) and was calibrated with river discharge data from CWC at selected river basins. Using the grid-wise surface runoff estimates from the model, an algorithm was developed through a set of thresholds of successive high runoff values in order to identify grids

  12. Late Quaternary paleoseismology of the Milin fault: Implications for active tectonics along the Yarlung Zangbo Suture, Southeastern Tibet Plateau (United States)

    Li, Kang; Xu, Xiwei; Kirby, Eric; Tang, Fangtou; Kang, Wenjun


    How the eastward motion of crust in the central Tibetan Plateau is accommodated in the remote regions of the eastern Himalayan syntaxis remains uncertain. Although the Yarlung Zangbo suture (YZS) forms a striking lineament in the topography of the region, evidence for recent faulting along this zone has been equivocal. To understand whether faults along the YZS are active, we performed a geological investigation along the eastern segments of the YZS. Geomorphic observations suggest the presence of active faulting along several segments of the YZS, which we collectively refer to as the "Milin fault". Paleoseismologic data from trenches reveal evidence for one faulting event, which is constrained to occur between 5620 and 1945 a BP. The latest faulting event displaced alluvial surface T2 by 7 m. The offset on this earthquake place the minimum value on the vertical slip rate of 0.3 mm/yr. Empirical relationships between surface rupture length, displacement and magnitude, suggest that magnitude of the latest event could have been Mw 7.3-7.7. On the basis of this slip rate and the elapsed time since the last event, it is estimated that a seismic moment equivalent to Mw 7.0 has been accumulated on the Milin fault. It is pose a threat to the surrounding region. Our results suggest that shortening occurs in the vicinity of the eastern Himalayan syntaxis, and part of eastward motion of crust from the central Tibetan Plateau is absorbed by uplift of the eastern Himalayan syntaxis.

  13. Nitrate Deposition to Surface Snow at Summit, Greenland, Following the 9 November 2000 Solar Proton Event (United States)

    Duderstadt, Katharine A.; Dibb, Jack E.; Schwadron, Nathan A.; Spence, Harlan E.; Jackman, Charles Herbert; Randall, Cora E.; Solomon, Stanley C.; Mills, Michael J.


    This study considers whether spurious peaks in nitrate ions in snow sampled at Summit, Greenland from August 2000 to August 2002 are related to solar proton events. After identifying tropospheric sources of nitrate on the basis of correlations with sulfate, ammonium, sodium, and calcium, we use the three-dimensional global Whole Atmosphere Community Climate Model (WACCM) to examine unaccounted for nitrate spikes. Model calculations confirm that solar proton events significantly impact HOx, NOx, and O3 levels in the mesosphere and stratosphere during the weeks and months following the major 9 November 2000 solar proton event. However, SPE-enhanced NOy calculated within the atmospheric column is too small to account for the observed nitrate ion peaks in surface snow. Instead, our WACCM results suggest that nitrate spikes not readily accounted for by measurement correlations are likely of anthropogenic origin. These results, consistent with other recent studies, imply that nitrate spikes in ice cores are not suitable proxies for individual SPEs and motivate the need to identify alternative proxies.

  14. Laboratory scale micro-seismic monitoring of rock faulting and injection-induced fault reactivation (United States)

    Sarout, J.; Dautriat, J.; Esteban, L.; Lumley, D. E.; King, A.


    The South West Hub CCS project in Western Australia aims to evaluate the feasibility and impact of geosequestration of CO2 in the Lesueur sandstone formation. Part of this evaluation focuses on the feasibility and design of a robust passive seismic monitoring array. Micro-seismicity monitoring can be used to image the injected CO2plume, or any geomechanical fracture/fault activity; and thus serve as an early warning system by measuring low-level (unfelt) seismicity that may precede potentially larger (felt) earthquakes. This paper describes laboratory deformation experiments replicating typical field scenarios of fluid injection in faulted reservoirs. Two pairs of cylindrical core specimens were recovered from the Harvey-1 well at depths of 1924 m and 2508 m. In each specimen a fault is first generated at the in situ stress, pore pressure and temperature by increasing the vertical stress beyond the peak in a triaxial stress vessel at CSIRO's Geomechanics & Geophysics Lab. The faulted specimen is then stabilized by decreasing the vertical stress. The freshly formed fault is subsequently reactivated by brine injection and increase of the pore pressure until slip occurs again. This second slip event is then controlled in displacement and allowed to develop for a few millimeters. The micro-seismic (MS) response of the rock during the initial fracturing and subsequent reactivation is monitored using an array of 16 ultrasonic sensors attached to the specimen's surface. The recorded MS events are relocated in space and time, and correlate well with the 3D X-ray CT images of the specimen obtained post-mortem. The time evolution of the structural changes induced within the triaxial stress vessel is therefore reliably inferred. The recorded MS activity shows that, as expected, the increase of the vertical stress beyond the peak led to an inclined shear fault. The injection of fluid and the resulting increase in pore pressure led first to a reactivation of the pre

  15. SEISMOLOGY: Watching the Hayward Fault. (United States)

    Simpson, R W


    The Hayward fault, located on the east side of the San Francisco Bay, represents a natural laboratory for seismologists, because it does not sleep silently between major earthquakes. In his Perspective, Simpson discusses the study by Bürgmann et al., who have used powerful new techniques to study the fault. The results indicate that major earthquakes cannot originate in the northern part of the fault. However, surface-rupturing earthquakes have occurred in the area, suggesting that they originated to the north or south of the segment studied by Bürgmann et al. Fundamental questions remain regarding the mechanism by which plate tectonic stresses are transferred to the Hayward fault.

  16. Fault diagnosis (United States)

    Abbott, Kathy


    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  17. Pulsed strain release on the Altyn Tagh fault, northwest China (United States)

    Gold, Ryan D.; Cowgill, Eric; Arrowsmith, J. Ramón; Friedrich, Anke M.


    Earthquake recurrence models assume that major surface-rupturing earthquakes are followed by periods of reduced rupture probability as stress rebuilds. Although purely periodic, time- or slip-predictable rupture models are known to be oversimplifications, a paucity of long records of fault slip clouds understanding of fault behavior and earthquake recurrence over multiple ruptures. Here, we report a 16 kyr history of fault slip—including a pulse of accelerated slip from 6.4 to 6.0 ka—determined using a Monte Carlo analysis of well-dated offset landforms along the central Altyn Tagh strike-slip fault (ATF) in northwest China. This pulse punctuates a median rate of 8.1+1.2/−0.9 mm/a and likely resulted from either a flurry of temporally clustered ∼Mw 7.5 ground-rupturing earthquakes or a single large >Mw 8.2 earthquake. The clustered earthquake scenario implies rapid re-rupture of a fault reach >195 km long and indicates decoupled rates of elastic strain energy accumulation versus dissipation, conceptualized as a crustal stress battery. If the pulse reflects a single event, slip-magnitude scaling implies that it ruptured much of the ATF with slip similar to, or exceeding, the largest documented historical ruptures. Both scenarios indicate fault rupture behavior that deviates from classic time- or slip-predictable models.

  18. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan


    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  19. Naive Fault Tree : formulation of the approach

    NARCIS (Netherlands)

    Rajabalinejad, M


    Naive Fault Tree (NFT) accepts a single value or a range of values for each basic event and returns values for the top event. This accommodates the need of commonly used Fault Trees (FT) for precise data making them prone to data concerns and limiting their area of application. This paper extends

  20. Sedimentary evidence of historical and prehistorical earthquakes along the Venta de Bravo Fault System, Acambay Graben (Central Mexico) (United States)

    Lacan, Pierre; Ortuño, María; Audin, Laurence; Perea, Hector; Baize, Stephane; Aguirre-Díaz, Gerardo; Zúñiga, F. Ramón


    The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo Fault and provide new paleoseismological information, evaluate its earthquake history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive earthquakes along this fault, we found evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr- 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo Fault together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new slip rates, earthquake recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo Fault and provide new parameters for further hazard assessment.

  1. The management of urban surface water flood risks: SUDS performance in flood reduction from extreme events. (United States)

    Viavattene, C; Ellis, J B


    The need to improve the urban drainage network to meet recent urban growth and the redevelopment of old industrial and commercial areas provides an opportunity for managing urban surface water infrastructure in a more sustainable way. The use of sustainable urban drainage systems (SUDS) can reduce urban surface water flooding as well as the pollution impact of urban discharges on receiving waters. However, these techniques are not yet well known by many stakeholders involved in the decision-making process, or at least the evidence of their performance effectiveness may be doubted compared with more traditional engineering solutions often promoted by existing 1D/2D drainage models. The use of geographic information systems (GIS) in facilitating the inter-related risk analysis of sewer surface water overflows and urban flooding as well as in better communication with stakeholders is demonstrated in this paper. An innovative coupled 1D/2D urban sewer/overland flow model has been developed and tested in conjunction with a SUDS selection and location tool (SUDSLOC) to enable a robust management approach to surface water flood risks and to improve the resilience of the urban drainage infrastructure. The paper demonstrates the numerical and modelling basis of the integrated 1D/2D and SUDSLOC approach and the working assumptions and flexibility of the application together with some limitations and uncertainties. The role of the SUDSLOC modelling component in quantifying flow, and surcharge reduction benefits arising from the strategic selection and location of differing SUDS controls are also demonstrated for an extreme storm event scenario.

  2. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions (United States)

    Fiore, A. M.; Lin, M.; Cooper, O. R.; Horowitz, L. W.; Naik, V.; Levy, H.; Langford, A. O.; Johnson, B. J.; Oltmans, S. J.; Senff, C. J.


    to high surface O_{3} episodes in the western U.S., representing a major challenge if the NAAQS were to be tightened. We further demonstrate the potential for using satellite (AIRS and OMI) measurements of total column O_{3} to develop space-based criteria to define these exceptional events in support of regional air quality management.

  3. Active faulting Vs other surface displacing complex geomorphic phenomena. Case studies from a tectonically active area, Abruzzi Region, central Apennines, Italy (United States)

    Lo Sardo, Lorenzo; Gori, Stefano; Falcucci, Emanuela; Saroli, Michele; Moro, Marco; Galadini, Fabrizio; Lancia, Michele; Fubelli, Giandomenico; Pezzo, Giuseppe


    How can be univocally inferred the genesis of a linear surface scarp as the result of an active and capable fault (FAC) in tectonically active regions? Or, conversely, how it is possible to exclude that a scarp is the result of a capable fault activation? Trying to unravel this open questions, we show two ambiguous case studies about the problem of the identification of active and capable faults in a tectonically active area just based on the presence of supposed fault scarps at surface. The selected cases are located in the area comprised between the Middle Aterno Valley Fault (MAVF) and the Campo Imperatore Plain (Abruzzi Region, central Apennines), nearby the epicentral area of the April 6th, 2009 L'Aquila earthquake. In particular, the two case studies analysed are located in a region characterized by a widespread Quaternary faults and by several linear scarps: the case studies of (i) Prata D'Ansidonia area and (ii) Santo Stefano di Sessanio area. To assess the origin and the state of activity of the investigated geomorphic features, we applied a classical geological and geomorphological approach, based on the analysis of the available literature, the interpretation of the aerial photographs, field surveying and classical paleoseismological approach, the latter consisting in digging excavations across the analysed scarps. These analysis were then integrated by morphometrical analyses. As for case (i), we focused on determining the geomorphic "meaning" of linear scarps carved onto fluvial-deltaic conglomerates (dated to the Early Pleistocene; Bertini and Bosi, 1993), up to 3 meters high and up to 1,5 km long, that border a narrow, elongated and flat-bottom depressions, filled by colluvial deposits. These features groove the paleo-landsurface of Valle Daria (Bosi and Bertini, 1970), wide landsurface located between Barisciano and Prata D'Ansidonia. Entwining paleoseismological trenching with geophysical analyses (GPR, ERT and microgravimetrical prospections), it

  4. Experimental evidence that thrust earthquake ruptures might open faults. (United States)

    Gabuchian, Vahe; Rosakis, Ares J; Bhat, Harsha S; Madariaga, Raúl; Kanamori, Hiroo


    Many of Earth's great earthquakes occur on thrust faults. These earthquakes predominantly occur within subduction zones, such as the 2011 moment magnitude 9.0 eathquake in Tohoku-Oki, Japan, or along large collision zones, such as the 1999 moment magnitude 7.7 earthquake in Chi-Chi, Taiwan. Notably, these two earthquakes had a maximum slip that was very close to the surface. This contributed to the destructive tsunami that occurred during the Tohoku-Oki event and to the large amount of structural damage caused by the Chi-Chi event. The mechanism that results in such large slip near the surface is poorly understood as shallow parts of thrust faults are considered to be frictionally stable. Here we use earthquake rupture experiments to reveal the existence of a torquing mechanism of thrust fault ruptures near the free surface that causes them to unclamp and slip large distances. Complementary numerical modelling of the experiments confirms that the hanging-wall wedge undergoes pronounced rotation in one direction as the earthquake rupture approaches the free surface, and this torque is released as soon as the rupture breaks the free surface, resulting in the unclamping and violent 'flapping' of the hanging-wall wedge. Our results imply that the shallow extent of the seismogenic zone of a subducting interface is not fixed and can extend up to the trench during great earthquakes through a torquing mechanism.

  5. Paleoseismology of the Chelungpu Fault During the Past 1900 Years (United States)

    Chen, W.; Lee, K.; Lee, L.; Yang, C. B.; Chen, Y.; Chang, H.


    The 1999 earthquake brought about 80-km-long surface ruptures along the Shihkang, Chelungpu, and Tajienshan Faults, central Taiwan. Several trenches have been excavated across the Chelungpu Fault of the middle segment. The surface ruptures display clear scarps ranging from 0.2 m to 4 m high, showing a complex geomorphic pattern due to coseismic faulting and folding. In the study, measurement of the vertical offset or structural relief was taken with reference to the hanging wall beyond the trishear deformation zone. Therefore we suggest that, for the measurement of offset, we should leave out the trishear zone, and that structural relief on the hanging wall should be represented as a real vertical offset. The net slip is then calculated from the structural relief and dip angle of the thrust on a vertical plane along the slip direction. By the excavation of the pineapple field across the Chelungpu Fault, we are able to first provide evidence of at least four earthquake events for the past about 1900 years, including the 1999 earthquake. Furthermore, based on the radiocarbon dates and historical record, the timing of the penultimate event is bracketed to be between 430 and 150 years ago, and the average recurrence interval smaller than 700 years. These data indicate that the average slip rate is about 8.7 mm/yr for the past 1900 years.

  6. Geodetic constraints on frictional properties of the Imperial fault, Southern California (United States)

    Lindsey, E. O.; Fialko, Y. A.


    We analyze a suite of geodetic observations across the Imperial fault in Southern California that span the complete earthquake cycle. We record interseismic deformation using four separate ENVISAT InSAR viewing geometries and continuous and survey-mode GPS, resulting in a dense set of observations of both shallow creep and regional strain accumulation due to secular loading. These data are combined with observations of coseismic and postseismic surface slip due to the 1979 Mw 6.6 Imperial Valley earthquake. We compare the geodetic data to two-dimensional models of the earthquake cycle on a strike-slip fault obeying rate- and state-dependent friction. We find that data from all parts of the earthquake cycle are required to constrain key fault properties such as the rate-dependence parameter (a-b) as a function of depth; the extent of shallow creep; and the recurrence interval of large events. The data are inconsistent with a high (>30 mm/yr) slip rate on the Imperial fault, and we propose that an extension of the San Jacinto - Superstition Hills fault system through the town of El Centro may accommodate a significant portion of the slip previously attributed to the Imperial fault. Models including this additional sub-parallel fault are in better agreement with the available observations, implying that the long-term slip rate of the Imperial fault is lower than previously suggested, and that there may be a significant unmapped hazard in the western Imperial Valley.

  7. Fluid involvement in normal faulting (United States)

    Sibson, Richard H.


    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  8. Model-Based Fault Tolerant Control (United States)

    Kumar, Aditya; Viassolo, Daniel


    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  9. Sensitivity analysis of tall buildings in Semarang, Indonesia due to fault earthquakes with maximum 7 Mw (United States)

    Partono, Windu; Pardoyo, Bambang; Atmanto, Indrastono Dwi; Azizah, Lisa; Chintami, Rouli Dian


    Fault is one of the dangerous earthquake sources that can cause building failure. A lot of buildings were collapsed caused by Yogyakarta (2006) and Pidie (2016) fault source earthquakes with maximum magnitude 6.4 Mw. Following the research conducted by Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2016, Lasem, Demak and Semarang faults are three closest earthquake sources surrounding Semarang. The ground motion from those three earthquake sources should be taken into account for structural design and evaluation. Most of tall buildings, with minimum 40 meter high, in Semarang were designed and constructed following the 2002 and 2012 Indonesian Seismic Code. This paper presents the result of sensitivity analysis research with emphasis on the prediction of deformation and inter-story drift of existing tall building within the city against fault earthquakes. The analysis was performed by conducting dynamic structural analysis of 8 (eight) tall buildings using modified acceleration time histories. The modified acceleration time histories were calculated for three fault earthquakes with magnitude from 6 Mw to 7 Mw. The modified acceleration time histories were implemented due to inadequate time histories data caused by those three fault earthquakes. Sensitivity analysis of building against earthquake can be predicted by evaluating surface response spectra calculated using seismic code and surface response spectra calculated from acceleration time histories from a specific earthquake event. If surface response spectra calculated using seismic code is greater than surface response spectra calculated from acceleration time histories the structure will stable enough to resist the earthquake force.

  10. Using an Unmanned Aerial Vehicle (UAV) to capture ancient seismic offsets along the Altyn Tagh fault (United States)

    Gao, M.; Xu, X.; Tapponnier, P.; van der Woerd, J.; Klinger, Y.; Derrien, A.; Bradley, K. E.


    High resolution topographic data is a key ingredient to assess the amplitude of seismic displacements along strike-slip fault. For faults that slip during earthquakes with centennial to millennial recurrence time, erosion smoothes out the sharpness of both geomorphic markers and surface breaks. Co-registred, high resolution digital elevation models and ground images are thus necessary to reconstruct past displacements and deformations along faults. The recent explosion in centimeter resolution topographic data obtained by unmanned aerial vehicle (UAV) raises the possibility of mapping geomorphic offsets of active faults with unprecedented accuracy. Here we tested the technique to obtain high-resolution images and generate topographic data along the Altyn Tagh fault, main active strike-slip fault along the northern edge of Tibet. The existence of spectacular scarps, combined with the low level of instrumental seismicity and lack of well documented historical events requires especialy detailed studies of surface faulting. At several sites along the Altun segment of the fault we reconstruct well preserved offsets based on both 2D-orthophotos and 3D-views of the landscape. The results show that the UAV data provides centimeter resolution, allowing accurate mapping of past ruptures. We determine a co-seismic offset of 5.6 m for the last event south of Annanba. We also reconstruct cumulative offsets of 11±0.5 m, 22±1 m and 32±2 m. The horizontal offsets obtained suggest that last and penultimate events had similar slip amounts locally. The larger slip values deduced from the other offsets may also result from repeated 5-5.5 m co-seismic slip but more data is needed to confirm such a characteristic slip behavior. Clearly, UAV-based imagery shows great potential for high-resolution seismotectonic research and seismic hazard assessment.

  11. Late Holocene paleoseismicity of the Pahiatua section of the Wellington Fault, New Zealand

    International Nuclear Information System (INIS)

    Langridge, R.M.; Berryman, K.R.; Van Dissen, R.J.


    Six trenches and additional exposures have been investigated along a 23 km length of the Pahiatua section of the Wellington Fault. The sites show a consistent fault rupture record for the last four surface-faulting events along the Pahiatua section. This multi-site record of events, supported by 28 radiocarbon ages that span the last c. 4500 yr, is the most complete paleoseismic record for the Wellington Fault. From southwest to northeast, the trenches are called Death-1 and -2, Hughes-2 and -1, and Ebbett-2 and -1, named after local farmers. Additional data come from an exposure at the Army Depot northeast of Ebbett-1 and a stream cutting near the Death-1 trench. Earthquake events are recognised on the basis of upward terminations of faults and stratigraphic evidence (unconformities; scarp-derived colluvial deposits; 'co-seismically' generated, organic, poorly sorted units; and subsequent scarp-ponded units). On this basis, evidence for the most recent surface-faulting event is recognised at all sites (i.e., between Death-1 and the Army Depot site) and has a timing of AD 1670-1800 (150-280 cal. yr BP). The penultimate faulting event has been recognised at all six trenches and occurred between AD 690 and 1170 (780-1260 cal. yr BP). Clear evidence, and datable material associated with events III and IV, is observed only in the older records of the Ebbett-1 and Hughes trenches. Event III is bracketed by faulting and two ages on co-seismic deposits to the interval AD 65 to 400 BC (1885-2350 cal. yr BP). Event IV is bracketed by three key ages in the Hughes-1 trench to the interval 1600-2140 BC (3550-4090 cal. yr BP). The trench-derived recurrence interval based on these four events is c. 1200 ± 110 yr, which is consistent with, though longer than, an estimate of the recurrence interval based on slip rate (5.1-6.2 mm/yr) and single-event displacement (4.5 ± 1 m), which gave a range of 820 ± 260 yr. When the current paleoseismic data for the Wellington Fault are

  12. Implications of Seismically Active Fault Structures in Ankay and Alaotra Regions of Northern and Central Madagascar (United States)

    Malloy, S.; Stamps, D. S.


    The purpose of the study is to gain a better understanding of the seismically active fault structures in central and northern Madagascar. We study the Ankay and Lake Alaotra regions of Madagascar, which are segmented by multiple faults that strike N-S. In general, normal seismic events occur on faults bounding the Alaotra-Ankay rift basin where Quaternary alluvium is present. Due to this pattern and moderate amounts of low magnitude seismic activity along these faults, it is hypothesized the region currently undergoes E-W extension. In this work we test how variations in fault strength and net slip changes influence expected crustal movement in the region. Using the Coulomb stress failure point as a test of strength we are able to model the Alaotra-Ankay region using MATLAB Coulomb 3.3.01. This program allows us to define realistic Poisson's ratio and Young's modulus of mapped rock compositions in the region, i.e. paragneiss and orthogneiss, create 3D fault geometries, and calculate static stress changes with coinciding surface displacements. We impose slip along multiple faults and calculate seismic moment that we balance by the 3 observed earthquake magnitudes available in the USGS CMT database. Our calculations of surface displacements indicate 1-3 millimeters could be observed across the Alaotra-Ankay rift. These values are within the observable range of precision GNSS observations, therefore our results will guide future research into the area and direct potential GNSS station installation.

  13. Earthquake geology of the Bulnay Fault (Mongolia) (United States)

    Rizza, Magali; Ritz, Jean-Franciois; Prentice, Carol S.; Vassallo, Ricardo; Braucher, Regis; Larroque, Christophe; Arzhannikova, A.; Arzhanikov, S.; Mahan, Shannon; Massault, M.; Michelot, J-L.; Todbileg, M.


    The Bulnay earthquake of July 23, 1905 (Mw 8.3-8.5), in north-central Mongolia, is one of the world's largest recorded intracontinental earthquakes and one of four great earthquakes that occurred in the region during the 20th century. The 375-km-long surface rupture of the left-lateral, strike-slip, N095°E trending Bulnay Fault associated with this earthquake is remarkable for its pronounced expression across the landscape and for the size of features produced by previous earthquakes. Our field observations suggest that in many areas the width and geometry of the rupture zone is the result of repeated earthquakes; however, in those areas where it is possible to determine that the geomorphic features are the result of the 1905 surface rupture alone, the size of the features produced by this single earthquake are singular in comparison to most other historical strike-slip surface ruptures worldwide. Along the 80 km stretch, between 97.18°E and 98.33°E, the fault zone is characterized by several meters width and the mean left-lateral 1905 offset is 8.9 ± 0.6 m with two measured cumulative offsets that are twice the 1905 slip. These observations suggest that the displacement produced during the penultimate event was similar to the 1905 slip. Morphotectonic analyses carried out at three sites along the eastern part of the Bulnay fault, allow us to estimate a mean horizontal slip rate of 3.1 ± 1.7 mm/yr over the Late Pleistocene-Holocene period. In parallel, paleoseismological investigations show evidence for two earthquakes prior to the 1905 event with recurrence intervals of ~2700-4000 years.

  14. Effects of healing on the seismogenic potential of carbonate fault rocks : Experiments on samples from the Longmenshan Fault, Sichuan, China

    NARCIS (Netherlands)

    Chen, Jianye; Verberne, Berend A.; Spiers, Christopher J.


    Fault slip and healing history may crucially affect the fault seismogenic potential in the earthquake nucleation regime. Here we report direct shear friction tests on simulated gouges derived from a carbonate fault breccia, and from a clay/carbonate fault-core gouge, retrieved from a surface

  15. Surface Water Impacted by Rural Activities Induces Genetic Toxicity Related to Recombinagenic Events in Vivo

    Directory of Open Access Journals (Sweden)

    José Lopes Soares Neto


    Full Text Available This investigation assessed the interaction of surface water samples with DNA to quantitatively and qualitatively characterize their mutagenic and/or recombinagenic activity. Samples were obtained at three different sites along the Tocantins River (Tocantins State, Brazil. The area has withstood the impact mainly of rural activities, which release different chemical compounds in the environment. The Drosophila melanogaster Somatic Mutation and Recombination Test (SMART was performed in standard (ST and high bioactivation (HB crosses. SMART is useful for the detection of mutational and recombinational events induced by genotoxins of direct and indirect action. Results demonstrated that samples collected in both seasons were able to induce increments on the mutant spot frequencies in the larvae of the HB cross. Genotoxicity was related to a massive recombinagenic activity. The positive responses ascribed to only the HB cross means that it is linked to pro-genotoxins requiring metabolic activation. The SMART wing test in Drosophila melanogaster was shown to be highly sensitive to detect genotoxic agents present in the aquatic environment impacted by agriculture.

  16. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam


    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...... of a containership on which a decision support system has been installed and it will be demonstrated that all the faults can be isolated. The paper shows how a shipboard decision support system could become highly reliable and comprise built-in supervision of the quality of the sensor signals that are crucial...

  17. Fault failure with moderate earthquakes (United States)

    Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.


    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.

  18. Fault failure with moderate earthquakes (United States)

    Johnston, M. J. S.; Linde, A. T.; Gladwin, M. T.; Borcherdt, R. D.


    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake ( ML = 6.7, Δ = 51 km), the August 4, 1985, Kettleman Hills earthquake ( ML = 5.5, Δ = 34 km), the April 1984 Morgan Hill earthquake ( ML = 6.1, Δ = 55 km), the November 1984 Round Valley earthquake ( ML = 5.8, Δ = 54 km), the January 14, 1978, Izu, Japan earthquake ( ML = 7.0, Δ = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10 -8), with borehole dilatometers (resolution 10 -10) and a 3-component borehole strainmeter (resolution 10 -9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure.

  19. Terrestrial cosmogenic surface exposure dating of moraines at Lake Tahoe in the Sierra Nevada of California and slip rate estimate for the West Tahoe Fault (United States)

    Pierce, Ian K. D.; Wesnousky, Steven G.; Owen, Lewis A.


    Two sets of Pleistocene moraines (Tioga and Tahoe) are preserved at Cascade Lake along the west side of Lake Tahoe. The 10Be terrestrial cosmogenic nuclide surface exposure ages for two younger Tioga moraines yield an average age of 22.3 ± 1.2 ka, coincident with the global Last Glacial Maximum. The ages suggest that the Tioga glaciation may have reached its maximum several thousand years earlier in the Lake Tahoe basin than to the south along the east flank of the Sierra Nevada. The oldest 10Be age (120 ± 8 ka) determined for an additional suite of 10 boulders exhibiting significant scatter in 10Be ages is interpreted to be the minimum age of formation for older Tahoe moraines in the Tahoe basin, suggesting they were deposited during marine oxygen isotope stage 6. The moraines at Cascade Lake are displaced by the West Tahoe Fault that strikes northward for 45 km along the western edge of the Lake Tahoe basin. Vertical displacements of the crests of the Tahoe and Tioga moraines are 59 ± 10 and 32 ± 12 m respectively. Averaged over the time since the formation of the Tahoe and Tioga moraines, the average vertical separation rates are < 0.5 ± 0.1 and 1.4 ± 0.7 mm/y respectively. The measured vertical separation across the broad graben on the Tioga moraine may be accentuated by its deposition on a preexisting scarp and, in this regard, the increase in slip rate since the Tioga glaciation may be apparent rather than real. The fault slip rate and accompanying horizontal rate of extension averaged over the time since the formation of the older Tahoe moraines are respectively 0.6 ± 0.2 and 0.3 ± 0.2 mm/y. The slip rate averaged over the time since emplacement of the Tahoe moraine is in general accord with prior geologic studies reporting slip rate estimates elsewhere along the fault, and the horizontal extension rate is at the lower end of extension rates estimated by others with geodesy across the Tahoe basin.

  20. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...... the applicability of the presented methods. The theoretical results are illustrated by two running examples which are used throughout the book. The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault...... that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Four case studies on pilot processes show...

  1. The 2009 L'Aquila sequence (Central Italy): fault system anatomy by aftershock distribution. (United States)

    Chiaraluce, Lauro


    On April 6 (01:32 UTC) 2009 a destructive MW 6.13 earthquake struck the Abruzzi region in Central Italy, causing nearly 300 deaths, 40.000 homeless people and strong damage to the cultural heritage of the L'Aquila city and its province. Two strong earthquakes hit the same area in historical times (e.g. the 1461 and 1703 events), but the main fault that drives the extension in this portion of the Apennines was unknown. Seismic data was recorded at both permanent stations of the Centralised Italian National Seismic Network managed by the INGV and 45 temporary stations installed in the epicentral area together with the LGIT of Grenoble (Fr). The resulting geometry of the dense monitoring network allows us to gain very high resolution earthquake locations that we use to investigate the geometry of the activated fault system and to report on seismicity pattern and kinematics of the whole sequence. The mainshock was preceded by a foreshock sequence that activated the main fault plane during the three months before, while the largest foreshock (MW 4.08) occurred one week before (30th of March) nucleated on a antithetic (e.g. off-fault) segment. The distribution of the aftershocks defines a complex, 50 km long, NW-trending normal fault system, with seismicity nucleating within the upper 10-12 km of the crust. There is an exception of an event (MW 5.42) nucleating a couple of kilometers deeper that the 7th of April that activates a high angle normal fault antithetic to the main system. Its role is still unclear. We reconstruct the geometry of the two major SW-dipping normal faults forming a right lateral en-echelon system. The main fault (L'Aquila fault) is activated by the 6th of April mainshock unluckily located right below the city of L'Aquila. A 50°SW-dipping plane with planar geometry about 16 km long. The related seismicity interests the entire first 12 km of the upper crust from the surface. The ground surveys carried out soon after the occurrence of the earthquake

  2. Quantifying offshore fore-arc deformation and splay-fault slip using drowned Pleistocene shorelines, Arauco Bay, Chile (United States)

    Jara-Muñoz, Julius; Melnick, Daniel; Zambrano, Patricio; Rietbrock, Andreas; González, Javiera; Argandoña, Boris; Strecker, Manfred R.


    Most of the deformation associated with the seismic cycle in subduction zones occurs offshore and has been therefore difficult to quantify with direct observations at millennial timescales. Here we study millennial deformation associated with an active splay-fault system in the Arauco Bay area off south central Chile. We describe hitherto unrecognized drowned shorelines using high-resolution multibeam bathymetry, geomorphic, sedimentologic, and paleontologic observations and quantify uplift rates using a Landscape Evolution Model. Along a margin-normal profile, uplift rates are 1.3 m/ka near the edge of the continental shelf, 1.5 m/ka at the emerged Santa María Island, -0.1 m/ka at the center of the Arauco Bay, and 0.3 m/ka in the mainland. The bathymetry images a complex pattern of folds and faults representing the surface expression of the crustal-scale Santa María splay-fault system. We modeled surface deformation using two different structural scenarios: deep-reaching normal faults and deep-reaching reverse faults with shallow extensional structures. Our preferred model comprises a blind reverse fault extending from 3 km depth down to the plate interface at 16 km that slips at a rate between 3.0 and 3.7 m/ka. If all the splay-fault slip occurs during every great megathrust earthquake, with a recurrence of 150-200 years, the fault would slip 0.5 m per event, equivalent to a magnitude 6.4 earthquake. However, if the splay-fault slips only with a megathrust earthquake every 1000 years, the fault would slip 3.7 m per event, equivalent to a magnitude 7.5 earthquake.

  3. 6.5 Years of Slow Slip Events in Cascadia: A Catalogue of SSE Surface Expressions, Interface Slip Distributions, Event Magnitudes and Relationship to Tremor. (United States)

    Dimitrova, L. L.; Wallace, L. M.; Haines, A. J.; Bartlow, N. M.


    Slow slip events (SSEs) in Cascadia occur at ~30-50 km depth, every 10-19 months, and typically involve slip of a few cm, producing surface displacements on the order of a few mm up to ~1cm. Are there smaller SSE signals that are currently not recognized geodetically? What is the spatial, temporal and size distribution of SSEs, and how are SSE related to tremor? We address these questions with a catalogue of all detectable SSEs spanning the last 6.5 years using a new methodology based on Vertical Derivatives of Horizontal Stress (VDoHS) rates obtained from cGPS times series. VDoHS rates, calculated by solving the force balance equations at the Earth's surface, represent the most inclusive and spatially compact surface expressions of subsurface deformation sources: VDoHS rate vectors are tightly localized above the sources and point in the direction of push or pull. We compare our results with those from the Network Inversion Filter (NIF) for selected events. We identify and characterize a spectrum of SSEs, including events with moment release at least two orders of magnitudes smaller than has been previously identified with GPS data. We catalogue events timing, interface slip distribution and moment release, and compare our results with existing tremor catalogues. VDoHS rates also reveal the boundaries between the locked and unlocked portions of the megathrust, and we can track how this varies throughout the SSE cycle. Above the locked interface, the pull of the subducted plate generates shear tractions in the overlying plate in the direction of subduction, while above the creeping section shear tractions are in the opposite direction, which is reflected in the VDoHS rates. We show that sections of the Cascadia megathrust unlock prior to some SSEs and lock thereafter, with the locked zone propagating downdip and eastward after the SSEs over weeks to months. The catalogue and movies of events will be available at

  4. Transfer fault earthquake in compressionally reactivated back-arc failed rift: 1948 Fukui earthquake (M7.1), Japan (United States)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin


    Back-arc rift structures in many subduction zones are recognized as mechanically and thermally weak zones that possibly play important roles in strain accommodation at later post-rift stages within the overriding plates. In case of Miocene back-arc failed rift structures in the Sea of Japan in the Eurasian-Pacific subduction system, the mechanical contrasts between the crustal thrust wedges of the pre-rift continental crust and high velocity lower crust have fundamentally controlled the styles of post-rift, Quaternary active deformation (Ishiyama et al. 2016). In this study, we show a possibility that strike-slip M>7 devastating earthquakes in this region have been gregion enerated by reactivation of transfer faults highly oblique to the rift axes. The 1948 Fukui earthquake (M7.1), onshore shallow seismic event with a strike-slip faulting mechanism (Kanamori, 1973), resulted in more than 3,500 causalities and destructive damages on the infrastructures. While geophysical analyses on geodetic measurements based on leveling and triangulation networks clearly show coseismic left-lateral fault slip on a NNW striking vertical fault plane beneath the Fukui plain (Sagiya, 1999), no evidence for coseismic surface rupture has been identified based on both post-earthquake intensive fieldwork and recent reexamination of stereopair interpretations using 1/3,000 aerial photographs taken in 1948 (Togo et al., 2000). To find recognizable fault-related structures that deform Neogene basin fill sediments, we collected new 9.6-km-long high-resolution seismic reflection data across the geodetically estimated fault plane and adjacent subparallel active strike slip faults, using 925 offline recorders and Envirovib truck as a seismic source. A depth-converted section to 1.5 km depth contains discontinuous seismic reflectors correlated to Miocene volcaniclastic deposits and depression of the overlying Plio-Pleistocene sediments above the geodetically determined fault plane. We interpreted

  5. Early Healing Events around Titanium Implant Devices with Different Surface Microtopography: A Pilot Study in an In Vivo Rabbit Model

    Directory of Open Access Journals (Sweden)

    Ester Orsini


    Full Text Available In the present pilot study, the authors morphologically investigated sandblasted, acid-etched surfaces (SLA at very early experimental times. The tested devices were titanium plate-like implants with flattened wide lateral sides and jagged narrow sides. Because of these implant shape and placement site, the device gained a firm mechanical stability but the largest portion of the implant surface lacked direct contact with host bone and faced a wide peri-implant space rich in marrow tissue, intentionally created in order to study the interfacial interaction between metal surface and biological microenvironment. The insertion of titanium devices into the proximal tibia elicited a sequence of healing events. Newly formed bone proceeded through an early distance osteogenesis, common to both surfaces, and a delayed contact osteogenesis which seemed to follow different patterns at the two surfaces. In fact, SLA devices showed a more osteoconductive behavior retaining a less dense blood clot, which might be earlier and more easily replaced, and leading to a surface-conditioning layer which promotes osteogenic cell differentiation and appositional new bone deposition at the titanium surface. This model system is expected to provide a starting point for further investigations which clarify the early cellular and biomolecular events occurring at the metal surface.

  6. Analytical value of detecting an individual molecular binding event: The case of the surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Vrba, David; Homola, Jiří


    Roč. 84, č. 1 (2012), s. 30-33 ISSN 0003-2700 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : Binding events * Biosensing * Surface plasmon resonance biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.695, year: 2012

  7. Paleoseismology of the 2010 Mw 7.1 Darfield (Canterbury) earthquake source, Greendale Fault, New Zealand (United States)

    Hornblow, S.; Quigley, M.; Nicol, A.; VanDissen, R.


    aggrading last glacial maximum alluvial landscape sometime between ca. 22 and 28 ka, and was possibly of a similar magnitude to the Darfield earthquake, based on similarity of displacements. The fault scarp was buried, and possibly eroded, following the penultimate event, such that no surface evidence of faulting was present at the study site prior to the 2010 Darfield earthquake. The long interevent time of Greendale Fault earthquakes with respect to the rates of surface processes in this particular alluvial setting at the time of the penultimate rupture, coupled with the relatively small component of discrete displacement, highlights the challenges of detecting paleo-earthquakes and estimating paleo-magnitudes for similar faults worldwide.

  8. The fault-tree compiler (United States)

    Martensen, Anna L.; Butler, Ricky W.


    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  9. 3D Dynamic Rupture Simulation Across a Complex Fault System: the Mw7.0, 2010, Haiti Earthquake (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.


    Earthquakes ruptures sometimes take place on a secondary fault and surprisingly do not activate an adjacent major one. The 1989 Loma Prieta earthquake is a classic case where rupture occurred on a blind thrust while the adjacent San Andreas Fault was not triggered during the process. Similar to Loma Prieta, the Mw7.0, January 12 2010, Haiti earthquake also ruptured a secondary blind thrust, the Léogâne fault, adjacent to the main plate boundary, the Enriquillo Plantain Garden Fault, which did not rupture during this event. Aftershock relocalizations delineate the Léogâne rupture with two north dipping segments with slightly different dip, where the easternmost segment had mostly dip-slip motion and the westernmost one had mostly strike-slip motion. In addition, an offshore south dipping structure inferred from the aftershocks to the west of the rupture zone coincides with the offshore Trois Baies reverse fault, a region of increase in Coulomb stress increase. In this study, we investigate the rupture dynamics of the Haiti earthquake in a complex fault system of multiple segments identified by the aftershock relocations. We suppose a background stress regime that is consistent with the type of motion of each fault and with the regional tectonic regime. We initiate a nucleation on the east segment of the Léogâne fault by defining a circular region with a 2 km radius where shear stress is slightly greater than the yield stress. By varying friction on faults and background stress, we find a range of plausible scenarios. In the absence of near-field seismic records of the event, we score the different models against the static deformation field derived from GPS and InSAR at the surface. All the plausible simulations show that the rupture propagates from the eastern to the western segment along the Léogâne fault, but not on the Enriquillo fault nor on the Trois Baies fault. The best-fit simulation shows a significant increase of shear stresses on the Trois Baies

  10. Structure and seismic hazard of the Ventura Avenue anticline and Ventura fault, California (United States)

    Hubbard, J.; Shaw, J. H.; Dolan, J. F.; Pratt, T. L.; McAuliffe, L. J.


    seismic dataset across the Dos Cuadras field, which lies along the trend, shows that it is a fault-propagation fold, structurally similar to the Ventura Avenue anticline. Dos Cuadras is also underlain by a north-dipping thrust fault, known as the Pitas Point thrust. Based on our and others' mapping, the Ventura and Pitas Point faults form an en echelon system that extends at least 40 km offshore. Other regional faults, including the San Cayetano, Lion, and Red Mountain faults, link with the Ventura/Pitas Point system at depth; we suggest that at 15 km depth, these faults may all link into a single, continuous fault surface. One of the greatest hazards in fold-and-thrust belts is the risk of large, multi-segment ruptures. Linkage of the Ventura/Pitas Point fault could generate a M7.3 earthquake, while rupture in association with other regional faults could produce even larger events. We provide 3D models of these faults and estimate the magnitudes of potential multi-segment earthquakes. Finally, we show that GPS data are consistent with a very high shortening rate (> 6 mm/yr) across the anticline, reinforcing the hazardous nature of the system.

  11. Spatiotemporal evolution of water content at the rainfall-event scale under soil surface sealing conditions (United States)

    Sela, S.; Svoray, T.; Assouline, S.


    Surface water content dynamics rules the partitioning between infiltration, runoff, and evaporation fluxes. Extending the knowledge on factors controlling top-soil water content temporal stability (TS) is needed to calibrate and validate various remote sensing technologies. Spatiotemporal evolution of water content is highly non-linear, being affected by various factors at different spatial and temporal scales. In semi-arid climates, this evolution is significantly affected by the formation of surface seals, shown in previous studies to significantly reduce both infiltration and evaporation fluxes from the soil. The drying regime in a natural sealed soil system exerts a sharp contrast in the soil profile - a very dry seal is superimposed on top of a wetter soil layer. One question is thus, whether seal layers contribute to or destroy temporal stability of top soil water content at the hillslope scale. To address this question, a typical hillslope (0.115 km2) was chosen at the LTER Lehavim site in the south of Israel (31020' N, 34045' E) offering different aspects and a classic geomorphologic banding. The annual rainfall is 297 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically based modelling. To explore the effect of soil surface sealing, Mualem and Assouline [1989] model describing the change in hydraulic parameters resulting from soil seal formation were applied. This spatio-temporal database was used to characterise 8240 spatial cells (3X3m2) serving as

  12. Eleven-month-old infants infer differences in the hardness of object surfaces from observation of penetration events.

    Directory of Open Access Journals (Sweden)

    Tomoko eImura


    Full Text Available Previous studies have shown different developmental trajectories for object recognition of solid and non-solid objects. However, there is no evidence as to whether infants have expectations regarding certain attributes of objects, such as surface hardness, in the absence of tactile information. In the present study, we examined infants’ perception of the hardness of object surfaces from visually presented penetration events using the familiarization–novelty preference procedure. Experiment 1 showed that by 11 months old infants distinguished a relatively soft surface from a crusty surface based on changes in the velocity of a moving object as the moving object penetrated the surface of the target object. Experiment 2 ruled out the possibility that infants were merely sensitive to differences in the velocity changes in the stimuli.

  13. Paleoseismic investigations of Stagecoach Road fault, southeastern Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Menges, C.M.; Oswald, J.A.; Coe, J.A.; Lundstrom, S.C.; Paces, J.B.; Mahan, S.A.; Widmann, B.; Murray, M.


    This report summarizes the results of paleoseismic investigations at two trenches (SCR-T1 and SCR-T3) excavated across the Stagecoach Road (SCR) fault at the southeastern margin of Yucca Mountain. The results of these studies are based on detailed mapping or logging of geologic and structural relationships exposed in trench walls, combined with descriptions of lithologic units, associated soils, and fault-related deformation. The ages of trench deposits are determined directly from geochronologic dating of selected units and soils, supplemented by stratigraphic and soil correlations with other surficial deposits in the Yucca Mountain area. The time boundaries used in this report for subdivision of the Quaternary period are listed in a table. These data and interpretations are used to identify the number, amounts, timing, and approximately lengths of late to middle Quaternary (less than 200 ka) surface-faulting events associated with paleoearthquakes at the trench sites. This displacement history forms the basis for calculating paleoearthquake recurrence intervals and fault-slip rates for the Stagecoach Road fault and allows comparison with fault behavior on other Quaternary faults at or near Yucca Mountain.

  14. Simulations of The Extreme Precipitation Event Enhanced by Sea Surface Temperature Anomaly over the Black Sea (United States)

    Hakan Doǧan, Onur; Önol, Barış


    Istanbul Technical University, Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul, Turkey In this study, we examined the extreme precipitation case over the Eastern Black Sea region of Turkey by using regional climate model, RegCM4. The flood caused by excessive rain in August 26, 2010 killed 12 people and the landslides in Rize province have damaged many buildings. The station based two days total precipitation exceeds 200 mm. One of the usual suspects for this extreme event is positive anomaly of sea surface temperature (SST) over the Black Sea where the significant warming trend is clear in the last three decades. In August 2010, the monthly mean SST is higher than 3 °C with respect to the period of 1981-2010. We designed three sensitivity simulations with RegCM4 to define the effects of the Black Sea as a moisture source. The simulation domain with 10-km horizontal resolution covers all the countries bordering the Black Sea and simulation period is defined for entire August 2010. It is also noted that the spatial variability of the precipitation produced by the reference simulation (Sim-0) is consistent with the TRMM data. In terms of analysis of the sensitivity to SST, we forced the simulations by subtracting 1 °C (Sim-1), 2 °C (Sim-2) and 3 °C (Sim-3) from the ERA-Interim 6-hourly SST data (considering only the Black Sea). The sensitivity simulations indicate that daily total precipitation for all these simulations gradually decreased based on the reference simulation (Sim-0). 3-hourly maximum precipitation rates for Sim-0, Sim-1, Sim-2 and Sim-3 are 32, 25, 13 and 10.5 mm respectively over the hotspot region. Despite the fact that the simulations signal points out the same direction, degradation of the precipitation intensity does not indicate the same magnitude for all simulations. It is revealed that 2 °C (Sim-2) threshold is critical for SST sensitivity. We also calculated the humidity differences from the simulation and these

  15. Influence of fault heterogeneity on the frequency-magnitude statistics of earthquake cycle simulations (United States)

    Norbeck, Jack; Horne, Roland


    Numerical models are useful tools for investigating natural geologic conditions can affect seismicity, but it can often be difficult to generate realistic earthquake sequences using physics-based earthquake rupture models. Rate-and-state earthquake cycle simulations on planar faults with homogeneous frictional properties and stress conditions typically yield single event sequences with a single earthquake magnitude characteristic of the size of the fault. In reality, earthquake sequences have been observed to follow a Gutenberg-Richter-type frequency-magnitude distribution that can be characterized by a power law scaling relationship. The purpose of this study was to determine how fault heterogeneity can affect the frequency-magnitude distribution of simulated earthquake events. We considered the effects fault heterogeneity at two different length-scales by performing numerical earthquake rupture simulations within a rate-and-state friction framework. In our first study, we investigated how heterogeneous, fractal distributions of shear and normal stress resolved along a two-dimensional fault surface influenced the earthquake nucleation, rupture, and arrest processes. We generated a catalog of earthquake events by performing earthquake cycle simulations for 90 random realizations of fractal stress distributions. Typical realizations produced between 4 to 6 individual earthquakes ranging in event magnitudes between those characteristic of the minimum patch size for nucleation and the size of the model fault. The resulting aggregate frequency-magnitude distributions were characterized well by a power-law scaling behavior. In our second study, we performed simulations of injection-induced seismicity using a coupled fluid flow and rate-and-state earthquake model. Fluid flow in a two-dimensional reservoir was modeled, and the fault mechanics was modeled under a plane strain assumption (i.e., one-dimensional faults). We generated a set of faults with an average strike of

  16. Fuzzy set theoretic approach to fault tree analysis | Tyagi ...

    African Journals Online (AJOL)

    Research in conventional fault tree analysis (FTA) is based mainly on failure probability of basic events, which uses classical probability distributions for the failure probability of basic events. In the present paper the probabilistic consideration of basic events is replaced by possibilities, thereby leading to fuzzy fault tree ...

  17. Evolution features of the surface latent heat flux anomalies over the tropical Pacific associated with two types of ENSO events (United States)

    Liu, Zhiyuan; Zhou, Lian-Tong


    The present study investigates the features of the surface latent heat flux (LHF) anomalies and their related variables over the tropical Pacific during two types of El Niño-Southern Oscillation (ENSO) events and seeks a possible candidate for the main contributions to the LHF anomalies. During El Niño Modoki and canonical El Niño events, the LHFs show positive anomalies over the equatorial central Pacific and in the areas immediately south of the equatorial eastern Pacific. In addition, the largest magnitudes and widest ranges of positive LHF anomalies for both types of events occur during their mature stages rather than during their developing or decaying phases. Analyses show that the positive LHF anomalies associated with both events are largely affected by the positive sea-air humidity difference anomalies. However, the negative surface wind speed anomalies associated with the canonical El Niño events clearly contribute to the decreases in the positive LHF anomalies over the central Pacific and in the area immediately north of the equatorial eastern Pacific due to the presence of westerly and northerly anomalies, respectively. Moreover, over the equatorial central Pacific and in the area immediately south of the eastern Pacific, the LHF anomalies are mainly influenced by oceanic variables during both types of ENSO events, indicating an atmospheric response to oceanic forcing. In contrast, outside of the area spanning 10° north and south of the equator in the tropical Pacific and with the exception of the southeastern region, the LHF anomalies are greatly influenced by atmospheric variables, suggesting an oceanic response to atmospheric forcing. Distinct differences exist during the mature event phase, with oceanic forcing dominating the equatorial central Pacific during El Niño Modoki events and the area immediately south of the equatorial eastern Pacific during canonical El Niño events. In addition, both types of ENSO events suggest the increasing

  18. Machine Fault Signature Analysis

    Directory of Open Access Journals (Sweden)

    Pratesh Jayaswal


    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  19. Development of Ge/NbSi detectors for EDELWEISS-II with identification of near-surface events

    International Nuclear Information System (INIS)

    Juillard, A.; Marnieros, S.; Dolgorouky, Y.; Berge, L.; Collin, S.; Fiorucci, S.; Lalu, F.; Dumoulin, L.


    The actual limitation of Ge ionization heat cryogenic detectors for direct WIMP detection such as EDELWEISS arises from incomplete charge collection for near-surface events. We present results on Ge/NbSi detectors that are fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Three such bolometers were studied in the low-background cryostat of the EDELWEISS collaboration in the LSM: analysis of the athermal signals allows us to identify and reject events occurring in the first millimeter under the electrodes

  20. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.


    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  1. Strain on the san andreas fault near palmdale, california: rapid, aseismic change. (United States)

    Savage, J C; Prescott, W H; Lisowski, M; King, N E


    Frequently repeated strain measurements near Palmdale, California, during the period from 1971 through 1980 indicate that, in addition to a uniform accumulation of right-lateral shear strain (engineering shear, 0.35 microradian per year) across the San Andreas fault, a 1-microstrain contraction perpendicular to the fault that accumulated gradually during the interval 1974 through 1978 was aseismically released between February and November 1979. Subsequently (November 1979 to March 1980), about half of the contraction was recovered. This sequence of strain changes can be explained in terms of south-southwestward migration of a slip event consisting of the south-southwestward movement of the upper crust on a horizontal detachment surface at a depth of 10 to 30 kilometers. The large strain change in 1979 corresponds to the passage of the slip event beneath the San Andreas fault.

  2. Deciphering the paleoseismic history of the central Dead Sea fault (Yammouneh fault, Lebanon) based on multiple luminescence dating techniques (United States)

    Le Beon, M.; Tseng, Y. C.; Klinger, Y.; Elias, A.; Kunz, A.; Sursock, A.; Daeron, M.; Tapponnier, P.; Jomaa, R.


    The Yammouneh fault is the main strike-slip branch of the Dead Sea fault system in Lebanon. The morphology of the northern Yammouneh fault is characterized by a series of basins that represent archives for Late Pleistocene paleo-environments and paleo-earthquakes. We excavated a 4-m-deep trench across the fault in the Jbab el-Homr basin that revealed a succession of remarkable, very thin palustrine and lacustrine layers, ruptured by at least 17 earthquakes. Absolute ages of 4 samples from 0.5 to 3.7 m depth are obtained by optically stimulated luminescence dating on fine-grain quartz and on fine-grain K-feldspar using both infrared luminescence at 50˚C (IRSL50) and at a high temperature of 225˚C (pIRIR225). A fair agreement is obtained between the quartz ages (from 26.5 ± 3.1 ka at 0.5 m depth to 30.3 ± 3.4 ka at 3.7 m depth) and the pIRIR225 ages (from 26.2 ± 2.3 ka at 0.5 m depth to 25.8 ± 2.1 ka at 3.7 m depth), while the fading-corrected IRSL50 ages are systematically younger (from 18.3 ± 1.6 ka at 0.5 m depth to 21.4 ± 1.8 ka at 3.7 m depth). As proposed in earlier studies, we hypothesize that the IRSL50 fading rate is underestimated. The sedimentary sequence may reflect deposition in a marsh or shallow lake in a pro-glacial environment at a time when a glacier may have occupied the summits of Mount Lebanon. Erosion may have been dominant after the Last Glacial Maximum. Regarding paleo-earthquakes, 14 surface-rupturing events occurred during 3.8 ka with a mean return time of 270 years and probable clustering, while only 2-11 events occurred since 26.5 ka. Firstly, we explain the lack of events since 26.5 ka by the existence of another fault branch, which suggests that the active fault zone migrated with time. Secondly, the shorter mean recurrence time in Jbab compared to the Yammouneh site, located 30 km south may be explained by temporal variations in the earthquake cycle, different locations relative to fault segmentation, or by high-resolution of

  3. Diagnosis and Fault-tolerant Control, 3rd Edition

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...... that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata....

  4. Paleoseismologic evidence for large-magnitude (Mw 7.5-8.0) earthquakes on the Ventura blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern California (United States)

    McAuliffe, Lee J.; Dolan, James F.; Rhodes, Edward J.; Hubbard, Judith; Shaw, John H.; Pratt, Thomas L.


    Detailed analysis of continuously cored boreholes and cone penetrometer tests (CPTs), high-resolution seismic-reflection data, and luminescence and 14C dates from Holocene strata folded above the tip of the Ventura blind thrust fault constrain the ages and displacements of the two (or more) most recent earthquakes. These two earthquakes, which are identified by a prominent surface fold scarp and a stratigraphic sequence that thickens across an older buried fold scarp, occurred before the 235-yr-long historic era and after 805 ± 75 yr ago (most recent folding event[s]) and between 4065 and 4665 yr ago (previous folding event[s]). Minimum uplift in these two scarp-forming events was ∼6 m for the most recent earthquake(s) and ∼5.2 m for the previous event(s). Large uplifts such as these typically occur in large-magnitude earthquakes in the range of Mw7.5–8.0. Any such events along the Ventura fault would likely involve rupture of other Transverse Ranges faults to the east and west and/or rupture downward onto the deep, low-angle décollements that underlie these faults. The proximity of this large reverse-fault system to major population centers, including the greater Los Angeles region, and the potential for tsunami generation during ruptures extending offshore along the western parts of the system highlight the importance of understanding the complex behavior of these faults for probabilistic seismic hazard assessment.

  5. Stream/Bounce Event Perception Reveals a Temporal Limit of Motion Correspondence Based on Surface Feature over Space and Time

    Directory of Open Access Journals (Sweden)

    Yousuke Kawachi


    Full Text Available We examined how stream/bounce event perception is affected by motion correspondence based on the surface features of moving objects passing behind an occlusion. In the stream/bounce display two identical objects moving across each other in a two-dimensional display can be perceived as either streaming through or bouncing off each other at coincidence. Here, surface features such as colour (Experiments 1 and 2 or luminance (Experiment 3 were switched between the two objects at coincidence. The moment of coincidence was invisible to observers due to an occluder. Additionally, the presentation of the moving objects was manipulated in duration after the feature switch at coincidence. The results revealed that a postcoincidence duration of approximately 200 ms was required for the visual system to stabilize judgments of stream/bounce events by determining motion correspondence between the objects across the occlusion on the basis of the surface feature. The critical duration was similar across motion speeds of objects and types of surface features. Moreover, controls (Experiments 4a–4c showed that cognitive bias based on feature (colour/luminance congruency across the occlusion could not fully account for the effects of surface features on the stream/bounce judgments. We discuss the roles of motion correspondence, visual feature processing, and attentive tracking in the stream/bounce judgments.

  6. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke


    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  7. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Niu, Hongya [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, Hebei 056038 (China); Zhang, Daizhou [Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Wu, Zhijun [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Chen, Chen [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Beijing Municipal Environmental Monitoring Center, Beijing 100044 (China); Wu, Yusheng; Shang, Dongjie [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Hu, Min, E-mail: [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China)


    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1–7 μm with a peak of number concentration at about 3.5 μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm{sup −3}, which was much lower than that in heavily polluted days (6300 cm{sup −3}). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2–0.5 μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. - Highlights: • A dust event transported at high altitude through Beijing was investigated. • The dust event caused high variation in surface aerosol number concentrations. • Fine particles in the floating dust period probably consisted of ammonium sulfate. • Passage of the dust induced a favorable condition for new particle formation.

  8. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols

    International Nuclear Information System (INIS)

    Hu, Wei; Niu, Hongya; Zhang, Daizhou; Wu, Zhijun; Chen, Chen; Wu, Yusheng; Shang, Dongjie; Hu, Min


    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1–7 μm with a peak of number concentration at about 3.5 μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm −3 , which was much lower than that in heavily polluted days (6300 cm −3 ). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2–0.5 μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. - Highlights: • A dust event transported at high altitude through Beijing was investigated. • The dust event caused high variation in surface aerosol number concentrations. • Fine particles in the floating dust period probably consisted of ammonium sulfate. • Passage of the dust induced a favorable condition for new particle formation.

  9. Surface deformation measured with interferometric synthetic aperture radar: Case studies of basin and range and Garlock-San Andreas fault (United States)

    Greene, Fernando

    Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) is widely used to detect ground deformation from varieties of geophysical origins. However, most studies lack the spatial and temporal resolutions to better characterize such observations. The purpose of this research is to use multi-track satellite radar imagery to generate time series to study and monitor vertical ground deformation over large regions such as the Nevada portion of the Basin and Range Province and the western end of the Mojave Desert. We developed an innovative method to remove horizontal movements from InSAR line-of-sight (LOS) observations using a GPS velocity field and subsequently combine the multi-track imagery resulting in one single high spatial resolution map of observed vertical crustal and surface movements. By implementing this technique we detect vertical deformation signals with short and intermediate wavelength signals associated to tectonic processes such as interseismic and postseismic deformation. In Central Nevada Seismic Belt we detect in three independent orbits a broad area of uplift that confirms results of previous studies that associate the origin of this signal to post-seimic deformation of the historic earthquakes at this region. In south-central Nevada we detect several valleys that show a gradual eastward tilt of the valley floors due to deep geodynamical processes. The valleys located at the eastern side of Ruby Mountains show a range decrease that could indicate uplift related to magma intrusion or post-seismic deformation due to older, unrecognized earthquakes. In the Big Bend segment in southern California we detect vertical uplift as expected by mechanical models of interseismic deformation. Additionaly all our velocity maps reveal small wavelength deformation signals of anthropogenic origin.

  10. Diagnosing the extreme surface melt event over southwestern Greenland in 2007

    Directory of Open Access Journals (Sweden)

    M. Tedesco


    Full Text Available Analysis of passive microwave brightness temperatures from the space-borne Special Sensor Microwave Imager (SSM/I documents a record surface snowmelt over high elevations (above 2000 m of the Greenland ice sheet during summer of 2007. To interpret this record, results from the SSM/I are examined in conjunction with fields from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and output from a regional climate model. The record surface melt reflects unusually warm conditions, seen in positive summertime anomalies of surface air temperatures, downwelling longwave radiation, 1000–500 hPa atmospheric thickness, and the net surface energy flux, linked in turn to southerly airflow over the ice sheet. Low snow accumulation may have contributed to the record through promoting anomalously low surface albedo.

  11. Earthquake swarms near eastern Himalayan Syntaxis along Jiali Fault in Tibet: A seismotectonic appraisal

    Directory of Open Access Journals (Sweden)

    Basab Mukhopadhyay


    Full Text Available The seismotectonic characteristics of ten repeated earthquake swarm sequence within a seismic cluster along Jiali Fault in eastern Himalayan Syntaxis (EHS have been analysed. The swarms are spatially disposed in and around Yigong Lake (a natural lake formed by blocking of Yigong River by landslide and are characterized by low magnitude, crustal events with low to moderate b values. Ms : mb discriminant functions though indicate anomalous nature of the earthquakes within swarm but are considered as natural events that occurred under condition of high apparent stress and stress gradients. Composite fault plane solutions of selected swarms indicate strike–slip sense of shear on fault planes; solution parameters show low plunging compression and tensional axes along NW–SE and NE–SW respectively with causative fault plane oriented ENE–WSW, dipping steeply towards south or north. The fault plane is in excellent agreement with the disposition and tectonic movement registered by right lateral Jiali Fault. The process of pore pressure perturbation and resultant ‘r–t plot’ with modelled diffusivity (D = 0.12 m2/s relates the diffusion of pore pressure to seismic sequence in a fractured poro-elastic fluid saturated medium at average crustal depth of 15–20 km. The low diffusivity depicts a highly fractured interconnected medium that is generated due to high stress activity near the eastern syntaxial bent of Himalaya. It is proposed that hydro fracturing with respect to periodic pore pressure variations is responsible for generation of swarms in the region. The fluid pressure generated due to shearing and infiltrations of surface water within dilated seismogenic fault (Jiali Fault are causative factors.

  12. Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling (United States)

    Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo


    Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.

  13. GPR measurements to assess the Emeelt active fault's characteristics in a highly smooth topographic context, Mongolia (United States)

    Dujardin, Jean-Rémi; Bano, Maksim; Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Tsend-Ayush, Nyambayar; Enkhee, Bayarsaikhan


    To estimate the seismic hazard, the geometry (dip, length and orientation) and the dynamics (type of displacements and amplitude) of the faults in the area of interest need to be understood. In this paper, in addition to geomorphologic observations, we present the results of two ground penetrating radar (GPR) campaigns conducted in 2010 and 2011 along the Emeelt fault in the vicinity of Ulaanbaatar, capital of Mongolia, located in an intracontinental region with low deformation rate that induces long recurrence time between large earthquakes. As the geomorphology induced by the fault activity has been highly smoothed by erosion processes since the last event, the fault location and geometry is difficult to determine precisely. However, by using GPR first, a non-destructive and fast investigation, the fault and the sedimentary deposits near the surface can be characterized and the results can be used for the choice of trench location. GPR was performed with a 50 MHz antenna over 2-D lines and with a 500 MHz antenna for pseudo-3-D surveys. The 500 MHz GPR profiles show a good consistency with the trench observations, dug next to the pseudo-3-D surveys. The 3-D 500 MHz GPR imaging of a palaeochannel crossed by the fault allowed us to estimate its lateral displacement to be about 2 m. This is consistent with a right lateral strike-slip displacement induced by an earthquake around magnitude 7 or several around magnitude 6. The 2-D 50 MHz profiles, recorded perpendicular to the fault, show a strong reflection dipping to the NE, which corresponds to the fault plane. Those profiles provided complementary information on the fault such as its location at shallow depth, its dip angle (from 23° to 35°) and define its lateral extension.

  14. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...... in a standard setup and a synthesis method for fault detectors is given. Further, fault detection problems with both parametric faults and faults described by external input signals are also shortly considered....

  15. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.


    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as

  16. Implications for San Andreas Fault Ruptures Based on New Evidence from the Cabazon, CA Paleoseismic Site, San Gorgonio Pass Fault Zone (United States)

    Scharer, K. M.; Yule, D.; Humbert, L. R.; Witkowsky, R.


    The 10-km section of the San Gorgonio Pass fault zone (SGPFZ) between the Banning and San Bernardino strands of the San Andreas fault is composed of roughly orthogonal, alternating strike slip and thrust fault sections. In order to investigate whether the complexity of the fault system is a barrier to thoroughgoing ruptures and consequently a limit on earthquake magnitude, we excavated a mega-trench across a compressional section of the SGPFZ approximately 2 km northeast of Cabazon, CA. The mega-trench was located at the base of the San Bernardino Mountains and exposed Pleistocene Cabazon Formation in the hanging wall block, thrust over Holocene alluvial units. Sediments in the 9-m-deep trench consisted of boulder to cobble debris flow deposits and silty sand fluvial sequences, which buried and were interbedded with incipient soil horizons. We present evidence for five earthquakes in the mega-trench, determined by several generations of fault scarps buried by progressively younger sediments. Vertical separation for each event was small, on the order of 30 to 60 cm at the paleo-ground surfaces. Preliminary radiocarbon dating of charcoal collected from the deformed sediments constrains the five observed events to the past ~6000 years and the most recent event to ca. 500-700 years ago; additional dates are pending that will enable us to determine the age of each earthquake. Based on the existing age control, the average earthquake recurrence interval for the SGPFZ is ~1400 years, seven times longer than the average interval for neighboring sections on the southern San Andreas fault. If the earthquakes recorded at the Cabazon site record great San Andreas fault ruptures like those modeled in the 2008 ShakeOut Scenario, much of the vertical slip must occur within the bedrock in the hanging wall or in blind faults in the alluvium below the site. Alternatively, these earthquakes may represent more local, M6-M7 events that rupture the San Gorgonio Pass and possibly

  17. The GALATEA test facility and a first study of α-induced surface events in a germanium detector

    International Nuclear Information System (INIS)

    Irlbeck, Sabine


    Germanium detectors are a choice technology in fundamental research. They are suitable for the search for rare events due to their high sensitivity and excellent energy resolution. As an example, the GERDA (GERmanium Detector Array) experiment searching for neutrinoless double beta decay is described. The observation of this decay would resolve the fundamental question whether the neutrino is its own antiparticle. Especially adapted detector technologies and low background rates needed to detect very rare events such as neutrinoless double beta decays are discussed. The identification of backgrounds originating from the interaction of radiation, especially α-particles, is a focus of this thesis. Low background experiments face problems from α-particles due to unavoidable surface contaminations of the germanium detectors. The segmentation of detectors is used to obtain information about the special characteristics of selected events. The high precision test stand GALATEA was especially designed for surface scans of germanium detectors. As part of this work, GALATEA was completed and commissioned. The final commissioning required major upgrades of the original design which are described in detail. Collimator studies with two commercial germanium detectors are presented. Different collimation levels for a β-source were investigated and crystal axis effects were examined. The first scan with an α-source of the passivated end-plate of a special 19-fold segmented prototype detector mounted in GALATEA is described. The α-induced surface events were studied and characterized. Crosstalk and mirror pulses seen in the segments of the germanium detector were analyzed. The detector studies presented in this thesis will help to further improve the design of germanium detectors for low background experiments.

  18. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam


    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...... of a containership on which a decision support system has been installed and it will be demonstrated that all the faults can be isolated. The paper shows how a shipboard decision support system could become highly reliable and comprise built-in supervision of the quality of the sensor signals that are crucial...

  19. Characteristics of the near-surface turbulence during a bora event

    Directory of Open Access Journals (Sweden)

    Ž. Večenaj


    Full Text Available During a bora event, the turbulence is strongly developed in the lee of the Dinaric Alps at the eastern Adriatic coast. In order to study its properties, a 3-D ultrasonic anemometer operating at 4 Hz sampling frequency was placed in the town of Senj at 13 m above ground. The strong bora case that occurred on 7 January and lasted till 11 January 2006 is analyzed here. This data set is used for evaluation of the turbulent kinetic energy, TKE, and its dissipation rate, ε. The computation of ε is performed using the inertial dissipation method. The empirical length scale parameter for this event is estimated with respect to ε and TKE. Some considerations about defining turbulent perturbations of the bora wind velocity are also pointed out.

  20. Reactive Transport Analysis of Fault 'Self-sealing' Associated with CO2 Storage (United States)

    Patil, V.; McPherson, B. J. O. L.; Priewisch, A.; Franz, R. J.


    We present an extensive hydrologic and reactive transport analysis of the Little Grand Wash fault zone (LGWF), a natural analog of fault-associated leakage from an engineered CO2 repository. Injecting anthropogenic CO2 into the subsurface is suggested for climate change mitigation. However, leakage of CO2 from its target storage formation into unintended areas is considered as a major risk involved in CO2 sequestration. In the event of leakage, permeability in leakage pathways like faults may get sealed (reduced) due to precipitation or enhanced (increased) due to dissolution reactions induced by CO2-enriched water, thus influencing migration and fate of the CO2. We hypothesize that faults which act as leakage pathways can seal over time in presence of CO2-enriched waters. An example of such a fault 'self-sealing' is found in the LGWF near Green River, Utah in the Paradox basin, where fault outcrop shows surface and sub-surface fractures filled with calcium carbonate (CaCO3). The LGWF cuts through multiple reservoirs and seal layers piercing a reservoir of naturally occurring CO2, allowing it to leak into overlying aquifers. As the CO2-charged water from shallower aquifers migrates towards atmosphere, a decrease in pCO2 leads to supersaturation of water with respect to CaCO3, which precipitates in the fractures of the fault damage zone. In order to test the nature, extent and time-frame of the fault sealing, we developed reactive flow simulations of the LGWF. Model parameters were chosen based on hydrologic measurements from literature. Model geochemistry was constrained by water analysis of the adjacent Crystal Geyser and observations from a scientific drilling test conducted at the site. Precipitation of calcite in the top portion of the fault model led to a decrease in the porosity value of the damage zone, while clay precipitation led to a decrease in the porosity value of the fault core. We found that the results were sensitive to the fault architecture

  1. Critical speed for the dynamics of truck events on bridges with a smooth road surface


    González, Arturo; O'Brien, Eugene J.; Cantero, Daniel; Li, Yingyan; Dowling, Jason; Znidaric, Ales


    Simple numerical models of point loads are used to represent single and multiple vehicle events on two-lane bridges with a good road profile. While such models are insufficiently complex to calculate dynamic amplification accurately, they are presented here to provide an understanding of the influence of speed and distance between vehicles on the bridge dynamic response. Critical combinations of speed as a function of main bridge natural frequency and meeting point of two vehicles travelling ...

  2. Fault Management Techniques in Human Spaceflight Operations (United States)

    O'Hagan, Brian; Crocker, Alan


    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  3. Repeated fault rupture recorded by paleoenvironmental changes in a wetland sedimentary sequence ponded against the Alpine Fault, New Zealand (United States)

    Clark, K.; Berryman, K. R.; Cochran, U. A.; Bartholomew, T.; Turner, G. M.


    cycles were repeated 18 times at Hokuri Creek. Evidence that fault rupture was responsible for the cyclical paleoenvironmental changes at Hokuri Creek include: the average time period for each organic- and clastic-rich couplet to be deposited approximately equals the long-term average Alpine Fault recurrence interval, and the most recent events recorded at Hokuri correlate to an earthquake dated in paleoseismic trenches 100 km along strike; fault rupture is the only mechanism that can create accommodation space for 18 m of sediment to accumulate, and the sedimentary units can be traced from the outcrop to the fault trace and show tectonic deformation. The record of 18 fault rupture events at Hokuri Creek is one of the longest records of surface ruptures on a major plate boundary fault. High-resolution dating and statistical treatment of the radiocarbon data (Biasi et al., this meeting) has resulted in major advances in understanding the long-term behaviour of the Alpine Fault (Berryman et al., this meeting).

  4. Spatial and temporal variability in faulting along a Quaternary fault transect across the Northern Walker Lane, California-Nevada (United States)

    Gold, R. D.; Briggs, R. W.; Crone, A. J.


    What are the temporal and spatial patterns of faulting across shear zones with overlapping parallel faults that are preferentially oriented to accommodate regional shear? How should earthquake hazard be modeled if these systems have variable earthquake recurrence? We explore these questions in the Northern Walker Lane, a 100-km-wide zone of dextral shear along the eastern side of the Sierra Nevada, which accommodates ~15% of the 50 mm/yr of relative motion between the Pacific and North American plates. We used high-resolution airborne Light Distance and Ranging (LiDAR) data to create surficial geologic maps, conducted paleoseismic trenching, applied Quaternary geochronology, and collected high-resolution seismic-reflection profiles along a fault-perpendicular transect across the principal, subparallel, northwest-striking Mohawk Valley, Grizzly Valley, Honey Lake, and Warm Springs Valley dextral-slip faults. Key results along this transect from southwest-to-northeast are: (1) trenching at the Sulphur Creek Sidehill Bench site on the Mohawk Valley fault system indicates four surface-rupturing earthquakes since ~14 ka, which is fewer events than inferred from the slip rate of 2.9 mm/yr from geodetic block-models. To reconcile these results, we suggest that strain is widely distributed on numerous uncharacterized fault strands or that the contemporary (geodetic block model) rate is a young phenomena and hasn't been sustained since 14 ka. (2) High-resolution shallow seismic-reflection imaging and topographic analysis using the LiDAR data provide the first conclusive evidence that the Grizzly Valley fault system is an active Quaternary structure, with probable motion in the latest Quaternary. This result is significant because this fault system is not presently included in the USGS Quaternary fault-and-fold database, is not specified as a seismic source in most regional hazard models, and is also not defined as a boundary in regional geodetic block models. (3) New

  5. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California (United States)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.


    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  6. Lognormal Approximations of Fault Tree Uncertainty Distributions. (United States)

    El-Shanawany, Ashraf Ben; Ardron, Keith H; Walker, Simon P


    Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed-form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling-based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed-form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks's method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models. © 2018 Society for Risk Analysis.

  7. Growth Normal Faulting at the Western Edge of the Metropolitan Taipei Basin since the Last Glacial Maximum, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-Tung Chen


    Full Text Available Growth strata analysis is an useful tool in understanding kinematics and the evolution of active faults as well as the close relationship between sedimentation and tectonics. Here we present the Shanchiao Fault as a case study which is an active normal fault responsible for the formation of the 700-m-thick late Quaternary deposits in Taipei Basin at the northern tip of the Taiwan mountain belt. We compiled a sedimentary record, particularly the depositional facies and their dated ages, at three boreholes (SCF-1, SCF-2 and WK-1, from west to east along the Wuku Profile that traverses the Shanchiao Fault at its central segment. By incorporating the global sea level change curve, we find that thickness changes of sediments and changes of depositional environments in the Wuku area are in a good agreement with a rapid sea level rise since the Last Glacial Maximum (LGM of about 23 ka. Combining depositional facies changes and their ages with their thickness, we are able to introduce a simple back-stripping method to reconstruct the evolution of growing strata across the Shanchiao Fault since the LGM. We then estimate the vertical tectonic slip rate since 23 ka, which exhibits 2.2 mm yr-1 between SCF-2 and WK-1 and 1.1 mm yr-1 between SCF-1 and SCF-2. We also obtain the Holocene tectonic subsidence rate of 2.3 mm yr-1 at WK-1 and 0.9 mm yr-1 at SCF-2 since 8.4 ka. We thus conclude that the fault zone consists of a high-angle main fault to the east between SCF-2 and WK-1 and a western lower-angle branch fault between SCF-1 and SCF-2, resembling a tulip structure developed under sinistral transtensional tectonism. We find that a short period of 600-yr time span in 9 - 8.4 ka shows important tectonic subsidence of 7.4 and 3.3 m for the main and branch fault, respectively, consistent with possible earthquake events proposed by previous studies during that time. A correlation between geomorphology and subsurface geology in the Shanchiao Fault zone shows

  8. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA (United States)

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.


    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  9. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating (United States)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.


    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  10. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia

    International Nuclear Information System (INIS)

    Forkel, Matthias; Beer, Christian; Thonicke, Kirsten; Cramer, Wolfgang; Bartalev, Sergey; Schmullius, Christiane


    Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires can degrade the forest, affect human values, emit huge amounts of carbon and aerosols and alter the land surface albedo. Usually, wind, slope and dry air conditions have been recognized as factors determining fire spread. Here we identify surface moisture as an additional important driving factor for the evolution of extreme fire events in the Baikal region. An area of 127 000 km 2 burned in this region in 2003, a large part of it in regions underlain by permafrost. Analyses of satellite data for 2002–2009 indicate that previous-summer surface moisture is a better predictor for burned area than precipitation anomalies or fire weather indices for larch forests with continuous permafrost. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil, and how coupled mechanisms can lead to extreme events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, vegetation functioning, and fire activity in Earth system models for projecting climate change impacts over the next century. (letter)

  11. Investigation of n{sup +} surface events in HPGe detectors for liquid argon background rejection in GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern [TU-Dresden, Dresden (Germany); Collaboration: GERDA-Collaboration


    The GERDA experiment is searching for neutrinoless double beta decay (0νββ) in {sup 76}Ge using an array of germanium detectors immersed in liquid argon (LAr). Phase II of the experiment aims to improve the background level by a factor 10 in order to reach 10{sup -3} counts / (kg.keV.yr). A strong suppression technique is required to suppress the intrinsic LAr background of {sup 42}Ar/{sup 42}K. 30 newly produced p-type Broad Energy Germanium (BEGe) detectors will be deployed in Phase II. The n{sup +} electrode of the GERDA BEGe detectors is covering 96-98 % of the surface and is between 0.5 and 1.2 mm thick. Betas from the {sup 42}K decay can penetrated the detector surface and deposit energies within the 0νββ region. Experiences from GERDA Phase I show that these surface events are the dominate background component without suppression. Energy depositions inside the n{sup +} layer create pulse shapes that are slower than those from interactions in the bulk. This talk presents a rejection technique for those events. The signal development inside the n{sup +} layer is modeled and applied in Geant4 Monte Carlo simulations. The simulations are compared with data for {sup 241}Am and {sup 90}Sr calibration source measurements. The suppression capabilities are extrapolated for {sup 42}K in GERDA Phase II.

  12. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews


    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  13. Constraining the age of rock art by dating a rockfall event using sediment and rock-surface luminescence dating techniques

    DEFF Research Database (Denmark)

    Chapot, Melissa; Sohbati, Reza; Murray, A.S.


    Optically stimulated luminescence (OSL) is used to determine the age of a rockfall event that removed part of the pictograph figures at the Great Gallery rock art panel in Canyonlands National Park, Utah, USA. Analyses from the outer millimeter of the buried surface of a rockfall boulder and quartz...... that there is no detectable increase in the OSL signal to a depth of at least 3 mm suggesting that the OSL signal was fully reset to this depth before burial. Consistent OSL and radiocarbon ages for this rockfall event provide a minimum age of w900 a for the Great Gallery, which is the type locality of Barrier Canyon Style...... rock art with a controversial and unknown origin....

  14. Pattern Recognition of Signals for the Fault-Slip Type of Rock Burst in Coal Mines

    Directory of Open Access Journals (Sweden)

    X. S. Liu


    Full Text Available The fault-slip type of rock burst is a major threat to the safety of coal mining, and effectively recognizing its signals patterns is the foundation for the early warning and prevention. At first, a mechanical model of the fault-slip was established and the mechanism of the rock burst induced by the fault-slip was revealed. Then, the patterns of the electromagnetic radiation, acoustic emission (AE, and microseismic signals in the fault-slip type of rock burst were proposed, in that before the rock burst occurs, the electromagnetic radiation intensity near the sliding surface increases rapidly, the AE energy rises exponentially, and the energy released by microseismic events experiences at least one peak and is close to the next peak. At last, in situ investigations were performed at number 1412 coal face in the Huafeng Mine, China. Results showed that the signals patterns proposed are in good agreement with the process of the fault-slip type of rock burst. The pattern recognition can provide a basis for the early warning and the implementation of relief measures of the fault-slip type of rock burst.

  15. Linkages between Land Surface Phenology Metrics and Natural and Anthropogenic Events in Drylands (Invited) (United States)

    de Beurs, K.; Brown, M. E.; Ahram, A.; Walker, J.; Henebry, G. M.


    Tracking vegetation dynamics across landscapes using remote sensing, or 'land surface phenology,' is a key mechanism that allows us to understand ecosystem changes. Land surface phenology models rely on vegetation information from remote sensing, such as the datasets derived from the Advanced Very High Resolution Radiometer (AVHRR), the newer MODIS sensors on Aqua and Terra, and sometimes the higher spatial resolution Landsat data. Vegetation index data can aid in the assessment of variables such as the start of season, growing season length and overall growing season productivity. In this talk we use Landsat, MODIS and AVHRR data and derive growing season metrics based on land surface phenology models that couple vegetation indices with satellite derived accumulated growing degreeday and evapotranspiration estimates. We calculate the timing and the height of the peak of the growing season and discuss the linkage of these land surface phenology metrics with natural and anthropogenic changes on the ground in dryland ecosystems. First we will discuss how the land surface phenology metrics link with annual and interannual price fluctuations in 229 markets distributed over Africa. Our results show that there is a significant correlation between the peak height of the growing season and price increases for markets in countries such as Nigeria, Somalia and Niger. We then demonstrate how land surface phenology metrics can improve models of post-conflict resolution in global drylands. We link the Uppsala Conflict Data Program's dataset of political, economic and social factors involved in civil war termination with an NDVI derived phenology metric and the Palmer Drought Severity Index (PDSI). An analysis of 89 individual conflicts in 42 dryland countries (totaling 892 individual country-years of data between 1982 and 2005) revealed that, even accounting for economic and political factors, countries that have higher NDVI growth following conflict have a lower risk of

  16. Turbulent Flow and Large Surface Wave Events in the Marine Boundary Layers (United States)


    AIAA, 2011 • Gulf of Mexico Oil Spill and Ecosystem Conference, 2013 150 s time averaged streamlines (U,W) Vectors and Pressure over Incipient...observations78 of the sea surface from field campaigns ( Romero and Melville 2010). Although our main79 computational target is building a turbulence resolving...the LES; this observational data is generally unknown. In the absence of a full description228 of the wavefield kinematics and dynamics (e.g., Romero

  17. Cell fitting to adhesive surfaces: A prerequisite to firm attachment and subsequent events

    Directory of Open Access Journals (Sweden)

    Pierres A.


    Full Text Available Cell adhesion usually involves extensive shape reorganization. This process is important because i it is required for efficient cross-linking of interacting surfaces by adhesion receptors the length of which does not exceed several tens of nanometers and ii it influences subsequent cell differentiation and activation. This review focuses on the initial phase of cell deformation, preceding the extensive reorganization process known as spreading. This first phase includes local flattening at the micrometer scale and membrane alignment at the nanometer level, resulting in fitting of the cell to an adhesive surface. Three main points are considered. First, experimental methods available to study cell apposition to a surface are described, with an emphasis on interference reflection microscopy. Second, selected experimental evidence is presented to show that there is a quantitative relationship between "adhesiveness" and "contact extension", and some theoretical models aimed at relating these parameters are briefly sketched. Third, experimental data on the kinetics of initial contact extension are described and possible mechanisms for driving this extension are discussed, including nonspecific forces, receptor-mediated interactions, active cell movements or passive membrane fluctuations. It is concluded that both passive physical phenomena and random active cell movements are possible candidates for the initial triggering of contact extension.

  18. Remote sensing estimates of impervious surfaces for hydrological modelling of changes in flood risk during high-intensity rainfall events

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Fensholt, Rasmus; Drews, Martin

    areas at different geographical locations within Europe, and to be applicable for cities with diverse morphologies and dissimilar climatic and vegetative conditions. Detailed data on urban land cover changes can be used to examine the diverse environmental impacts of past and present urbanisation......This paper addresses the accuracy and applicability of medium resolution (MR) remote sensing estimates of impervious surfaces (IS) for urban land cover change analysis. Landsat-based vegetation indices (VI) are found to provide fairly accurate measurements of sub-pixel imperviousness for urban......, including the importance of such changes for the exposure of cities towards the occurrence and impacts of climate extremes like high-intensity rainfall events....

  19. Characterising the Alpine Fault Damage Zone using Fault Zone Guided Waves, South Westland, New Zealand (United States)

    Eccles, J. D.; Gulley, A.; Boese, C. M.; Malin, P. E.; Townend, J.; Thurber, C. H.; Guo, B.; Sutherland, R.


    Fault Zone Guided Waves (FZGWs) are observed within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Distinctive dispersive seismic coda waves (~7-35 Hz), trapped within the low-velocity fault damage zone, have been recorded on three component 2 Hz borehole seismometers installed within 20 m of the principal slip zone in the shallow (SAMBA and WIZARD seismometer arrays allows spatio-temporal patterns of 2013 events to be analysed and the segmentation and low velocity zone depth extent further explored. Three layer, dispersion modeling of the low-velocity zone indicates a waveguide width of 60-200 m with a 10-40% reduction in S-wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.

  20. New slip rate estimates for the Mission Creek strand of the San Andreas fault zone (United States)

    Blisniuk, K.; Scharer, K. M.; Sharp, W. D.; Burgmann, R.; Rymer, M. J.; Williams, P. L.


    The potential for a large-magnitude earthquake (Mw ≥ 6.7) on the southern San Andreas fault zone (SAFZ) is generally considered high (Working Group on California Earthquake Probabilities, 2007). However, the proportion of slip accommodated by each of its three major fault strands (Mission Creek, Banning, and Garnet Hill, from north to south) in the Indio Hills is poorly constrained. Each of these strands cut through San Gorgonio Pass west to the Los Angeles metropolitan region. To better assess the relative importance of these faults and their potential for a major earthquake, we dated offsets at two sites on the Mission Creek fault in the central Indio Hills, an offset channel at Pushawalla Canyon and an offset debris cone at a small unnamed canyon located ~1.5 km farther southeast. Previous work on this strand at Biskra Palms, in the southern Indio Hills, demonstrated a slip rate between 12 and 22 mm/yr, with a preferred rate of 14-17 mm/yr (Behr et al., GSAB, 2010). It is generally assumed that the slip rate on the Mission Creek fault decreases northwestwards from Biskra Palms (e.g. Fumal et al., BSSA, 2002) towards these two sites in the central Indio Hills. However, our initial results from uranium-series dating of pedogenic carbonate and 10Be cosmogenic exposure dating of surface clasts from deposits offset 1.3-1.6 km since ~70 ka and 44-50 m since ~2.5 ka indicate that during the late Pleistocene and Holocene slip on the Mission Creek fault in the central Indio Hills has occurred at a relatively constant and unexpectedly high rate of ~20 mm/yr. Combined with published paleoseismic studies for the Mission Creek fault, which show an average earthquake recurrence interval of 225 years for the past 5 events since 900 AD (Fumal et al., 2002), these data imply an average slip-per-event of ~4.5 m. The last earthquake to rupture this section of the Mission Creek fault occurred over 300 years ago (ca. 1690), which indicates that ca. 5.0 to 7.5 m of strain may have

  1. Geology of the Elephanta Island fault zone, western Indian rifted ...

    Indian Academy of Sciences (India)

    distinct faults ∼70 m apart. The inner (western) fault (figure 4a, b) is best observed at the south- western top edge of the quarry. It has an overall. N25. ◦. E trend, and a steep ... Mumbai harbour, with parts of Nhava–Sheva port immedi- ately to the east ... to and parallel with the fault surface; view looking down along the fault ...

  2. Active fault traces along Bhuj Fault and Katrol Hill Fault, and ...

    Indian Academy of Sciences (India)

    face, passing through the alluvial-colluvial fan at location 2. The gentle warping of the surface was completely modified because of severe cultivation practice. Therefore, it was difficult to confirm it in field. To the south ... scarp has been modified by present day farming. At location 5 near Wandhay village, an active fault trace ...

  3. Correlation of Coral Bleaching Events and Remotely-Sensed Sea Surface Temperatures (United States)


    corals , Pacific Science, 30(2), 159-166, 1976. Coles, S.L., and P.L. Jokiel, Effects of temperature on photosynthesis and respiration in hermatypic ...compounds (S-320) in a hermatypic scleractinian, Coral Reefs, 5, 155-159, 1986. Elms, J.D. and R.G. Quayle, Multi-decade sea surface temperature...effluent on hermatypic corals at Kahe Point, Oahu, Pacific Science, 28, 1-18, 1974 57 Jokiel, P.L. and S.L, Coles, Effects of temperature on the

  4. Postglacial seismic activity along the Isovaara-Riikonkumpu fault complex (United States)

    Ojala, Antti E. K.; Mattila, Jussi; Ruskeeniemi, Timo; Palmu, Jukka-Pekka; Lindberg, Antero; Hänninen, Pekka; Sutinen, Raimo


    Analysis of airborne LiDAR-based digital elevation models (DEMs), trenching of Quaternary deposits, and diamond drilling through faulted bedrock was conducted to characterize the geological structure and full slip profiles of the Isovaara-Riikonkumpu postglacial fault (PGF) complex in northern Finland. The PGF systems are recognized from LiDAR DEMs as a complex of surface ruptures striking SW-NE, cutting through late-Weichselian till, and associated with several postglacial landslides within 10 km. Evidence from the terrain rupture characteristics, the deformed and folded structure of late-Weichselian till, and the 14C age of 11,300 cal BP from buried organic matter underneath the Sotka landslide indicates a postglacial origin of the Riikonkumpu fault (PGF). The fracture frequency and lithology of drill cores and fault geometry in the trench log indicate that the Riikonkumpu PGF dips to WNW with a dip angle of 40-45° at the Riikonkumpu site and close to 60° at the Riikonvaara site. A fault length of 19 km and the mean and maximum cumulative vertical displacement of 1.3 m and 4.1 m, respectively, of the Riikonkumpu PGF system indicate that the fault potentially hosted an earthquake with a moment magnitude MW ≈ 6.7-7.3 assuming that slip was accumulated in one seismic event. Our interpretation further suggests that the Riikonkumpu PGF system is linked to the Isovaara PGF system and that, together, they form a larger Isovaara-Riikonkumpu fault complex. Relationships between the 38-km-long rupture of the Isovaara-Riikonkumpu complex and the fault offset parameters, with cumulative displacement of 1.5 and 8.3 m, respectively, indicate that the earthquake(s) contributing to the PGF complex potentially had a moment magnitude of MW ≈ 6.9-7.5. In order to adequately sample the uncertainty space, the moment magnitude was also estimated for each major segment within the Isovaara-Riikonkumpu PGF complex. These estimates vary roughly between MW ≈ 5-8 for the individual

  5. Continuity of the West Napa Fault Zone Inferred from Aftershock Recordings on Fault-Crossing Arrays (United States)

    Catchings, R.; Goldman, M.; Slad, G. W.; Criley, C.; Chan, J. H.; Fay, R. P.; Fay, W.; Svitek, J. F.


    In an attempt to determine the continuity and lateral extent of the causative fault(s) of the 24 August 2014 Mw 6.0 Napa earthquake and possible interconnections with other mapped faults, we recorded aftershocks on three closely spaced (100 m) seismograph arrays that were positioned across the coseismic rupture zone and across mapped faults located north and south of coseismic rupture. Array 1 was located in northwest Napa, between Highway 29 and the intersection of Redwood and Mt. Veeder roads, array 2 was located southwest of Napa, ~1 km north of Cuttings Wharf, and array 3 was located south of San Pablo Bay, within the town of Alhambra. Our intent was to record high-amplitude guided waves that only travel within the causative fault zone and its extensions (Li and Vidale, 1996). Preliminary analysis of seismic data from an M 3.2 aftershock shows high-amplitude (up to 1 cm/s) seismic waves occurred on seismographs within 100 m of mapped surface ruptures and fault zones. Northwest of Napa, the high amplitudes along array 1 coincide with zones of structural damage and wide spread surface ground cracking, and along array 2 near Cuttings Wharf, the high amplitudes occur slightly east of surface ruptures seen along Los Amigas Road. We also observe relatively high-amplitude seismic waves across the Franklin Fault (array 3), approximately 32 km southeast of the mainshock epicenter; this observation suggests the West Napa and the Franklin faults may be continuous or connected. Existing fault maps show that the Franklin Fault extends at least 15 km southward to the Calaveras Fault zone and the West Napa Fault extends at least 25 km north of our array 1. Collectively, the mapped faults, surface ruptures, and guided waves suggest that the West Napa- Franklin Fault zone may extend more than 85 km before it merges with the Calaveras Fault. Assuming a continuous fault zone, the West Napa - Franklin Fault zone may be capable of generating a much larger magnitude earthquake that

  6. TREDRA, Minimal Cut Sets Fault Tree Plot Program

    International Nuclear Information System (INIS)

    Fussell, J.B.


    1 - Description of problem or function: TREDRA is a computer program for drafting report-quality fault trees. The input to TREDRA is similar to input for standard computer programs that find minimal cut sets from fault trees. Output includes fault tree plots containing all standard fault tree logic and event symbols, gate and event labels, and an output description for each event in the fault tree. TREDRA contains the following features: a variety of program options that allow flexibility in the program output; capability for automatic pagination of the output fault tree, when necessary; input groups which allow labeling of gates, events, and their output descriptions; a symbol library which includes standard fault tree symbols plus several less frequently used symbols; user control of character size and overall plot size; and extensive input error checking and diagnostic oriented output. 2 - Method of solution: Fault trees are generated by user-supplied control parameters and a coded description of the fault tree structure consisting of the name of each gate, the gate type, the number of inputs to the gate, and the names of these inputs. 3 - Restrictions on the complexity of the problem: TREDRA can produce fault trees with a minimum of 3 and a maximum of 56 levels. The width of each level may range from 3 to 37. A total of 50 transfers is allowed during pagination

  7. Using Earthquake Data to map Faults in 3-D: Applications and Results (United States)

    Carena, S.; Suppe, J.; Kao, H.


    Knowledge of the 3-D shape of active faults is of fundamental importance in many fields, from earthquake hazards, to oil exploration, to regional tectonics and seismotectonics. We have developed techniques in 3-D fault modeling whose applications range from models of single fault surfaces or small groups of faults, which can be used in earthquake hazards evaluation, to regional tectonic models. An example of how these techniques can be applied to the imaging of individual structures is that of the Northridge thrust in southern California. We were able to determine the 3-D geometry of the fault that generated the M 6.8, 1994 Northridge earthquake from the aftershocks of this event. It was also possible to determine the geometry of several nearby faults, some of which were previously unknown and are capable of producing damaging earthquakes. Complex fault networks can be modeled too, and the interactions between faults studied in detail. An example of this is the San Andreas fault system near San Gorgonio Pass in southern California. At San Gorgonio Pass we imaged the fault network using over 43,000 relocated small earthquakes. We then applied our knowledge of the network geometry to examine possible earthquake triggering scenarios in order to determine the likelihood of a major rupture of the San Andreas fault from the Salton Sea Los Angeles. A study of the 3-D structure of the crust in central Taiwan, where the M 7.6, 1999 Chi-Chi earthquake produced a large number of aftershocks, is an example of modeling applied to regional tectonics, and mountain building in particular. We imaged for the first time the large detachment beneath Taiwan. This detachment had been postulated by several authors, but never seen directly before, thus its exact geometry was unknown. Most faults capable of producing major earthquakes are connected to this detachment at depth. The results obtained from 3- D imaging allowed us a new test of critical-taper wedge mechanics, and suggest that

  8. Causative Fault of 2016 ML 5.8 Gyeongju Earthquake (SE Korea): Structural and Seismic characteristics (United States)

    Ha, S.; Cheon, Y.; Lee, Y.; Kim, J.; Kim, K. H.; Son, M.


    A ML 5.8 earthquake, the largest instrumental earthquake in the Korean peninsula, occurred on 12 September 2016 in the Gyeongju-city, SE Korea, where is regarded as a stable intraplate region. The earthquake was widely felt in the southern peninsula and had a maximum MMI VIII in the epicentral region. Most of the intraplate earthquakes occur along preexisting weaknesses, but the potentially seismogenic structures are mostly not exposed at the surface. This study focuses on (1) the structural features in the neighboring area of the epicenter, (2) the distribution of earthquake hypocenter locations during the first 10 days of the aftershock sequence of the Gyeongju earthquake, and (3) the focal mechanism solution of select events to reveal the geometry and kinematics of its causative fault. The earthquake hypocenters in plan view clearly show a linear distribution of N 28°E, which extends about 7 km southwestward from the Yangsan Fault to the Deokcheon Fault. In cross-sectional views along N28°E and perpendicularly, the hypocenters at depths between 11 and 16 km clearly delineate a subsurface fault which has a rupturing size of about 3 ´ 3 km2 and a dip of 78°SE. Based on focal mechanism solutions, the fault acted as dextral strike-slip fault under ENE-WSW compressional stress that has been widely known as the major component of current stress field in and around Korean peninsula. The general trend, N 28°E, of the seismogenic fault slightly differs from the strike of the adjacent NNE-striking Yangsan Fault with an angular difference of 15°. The Yangsan fault is the most prominent dextral strike-slip fault in SE Korea, which can be traced for 170 km with a right-lateral offset of 30 km. The strike-slip movement is well-reported to have occurred during the Paleogene. At that time, probably numerous subsidiary fractures, such as Y-, R-, R'-, and T fractures, in various directions were produced along the Yangsan master fault. It is thus interpreted that a large R

  9. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice. (United States)

    Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier


    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.

  10. Characteristics of the recent seismic activity on a near-shore fault south of Malta, Central Mediterranean (United States)

    Bozionelos, George; Galea, Pauline; D'Amico, Sebastiano; Agius, Matthew


    The tectonic setting of the Maltese islands is mainly influenced by two dominant rift systems belonging to different ages and having different trends. The first and older rift created the horst and graben structure in northern Malta. The second rift generation, in the south, including the Maghlaq Fault, is associated with the Pantelleria Rift. The Maghlaq Fault is a spectacular NW - SE trending and left-stepping normal fault running along the southern coastline of the Maltese islands, cutting the Oligo-Miocene pre to syn-rift carbonates. Its surface expression is traceable along 4 km of the coastline, where vertical displacements of the island's Tertiary stratigraphic sequence are clearly visible and exceed 210m. These displacements have given rise to sheer, slickensided fault scarps, as well as isolating the small island of Filfla 4km offshore the southern coast. Identification and assessment of the seismic activity related with Maghlaq fault, for the recent years, is performed, re-evaluating and redetermining the hypocentral locations and the source parameters of both recent and older events. The earthquakes that have affected the Maltese islands in the historical past, have occurred mainly at the Sicily Channel, at eastern Sicily, even as far away as the Hellenic arc. Some of these earthquakes also have caused considerable damage to buildings. The Maghlaq fault is believed to be one of the master faults of the Sicily Channel Rift, being parallel to the Malta graben, which passes around 20km south of Malta and shows continuous seismic activity. Despite the relationship of this fault with the graben system, no seismic activity on the Maghlaq fault had been documented previous to 2015. On the July 30nth 2015, an earthquake was widely felt in the southern half of Malta and was approximately located just offshore the southern coast. Since then, a swarm of seismic events lasting several days, as well as other isolated events have occurred, indicating the fault to be

  11. Geometry of the Gerede Segment, North Anatolian Fault Zone, Turkey (United States)

    Caglayan, A.; ISIK, V.


    The North Anatolian Fault Zone (NAFZ) is an active dextral strike-slip fault zone in northern Turkey. The NAFZ is approximately 1200 km in length which extends from Karliova in the east and to reach as far as the Gulf of Saros in the west. The NAFZ becomes wider geometry from east to west which are characterized by 9 destructive earthquake of Ms>7 in the 20th century. An earthquake on 1944 February 1 (Ms 7,3) caused 180 km long surface rupture associated with 2-6.5 m of right-lateral slip between Bayramören in the east and Abant Lake in the west along the NAFZ, which is called the Gerede Segment. This study describes internal geometrical characteristics and deformation mechanism of faults with fault surfaces in the Gerede Segment. The faults along the segment variously cut across Mesozoic-Cenozoic basement rocks and Quaternary alluvium deposits. They juxtapose not only different units of basement but also basement rocks and alluvium. We select typical fault surface that have been formed the best exposures in limestone in different locality, which define exhumed main faults along the segment. These faults strike N70°-80°E and dip 50°-85°NW. Slickenlines on these fault surface plunge shallowly to the NE and/or SW. Fault surface include brittle kinematic indicators indicating right-lateral strike-slip displacements. Some typical Riedel shear fractures (R- and P-fractures) around the main faults also show dextral displacements. Along the main faults two main architectural elements including fault core and fault damage zone is typical. The fault damage zones of these faults are characterized by both fault-related fracturing and fluid-assisted deformation processes. Although breccia is common fault rock in fault zones, gouge and cataclasite are seen in variable exposures. We have defined crackle, mosaic and chaotic type breccias using clast-size and clast proportion. Rock fragments within breccias have occurred mm-cm scale from angular to rounded clast. Sub

  12. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir


    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.


    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin


    -block’ dilemma is stated for the recent geodynamics of faults in view of interpretations of monitoring results. The matter is that either a block is an active element generating anomalous recent deformation and a fault is a ‘passive’ element, or a fault zone itself is a source of anomalous displacements and blocks are passive elements, i.e. host medium. ‘Paradoxes’ of high and low strain velocities are explainable under the concept that the anomalous recent geodynamics is caused by parametric excitation of deformation processes in fault zones in conditions of a quasi-static regime of loading.Based on empirical data, it is revealed that recent deformation processes migrate in fault zones both in space and time. Two types of waves, ‘inter-fault’ and ‘intra-fault’, are described. A phenomenological model of auto-wave deformation processes is proposed; the model is consistent with monitoring data. A definition of ‘pseudo-wave’ is introduced. Arrangements to establish a system for monitoring deformation auto-waves are described.When applied to geological deformation monitoring, new measurement technologies are associated with result identification problems, including ‘ratios of uncertainty’ such as ‘anomaly’s dimensions – density of monitoring stations’ and ‘anomaly’s duration – details of measurements in time’. It is shown that the RSA interferometry method does not provide for an unambiguous determination of ground surface displacement vectors. 

  14. Cosmic muon imaging of hidden seismic fault zones: Rainwater permeation into the mechanical fractured zones in Itoigawa-Shizuoka Tectonic Line, Japan (United States)

    Tanaka, Hiroyuki K. M.; Miyajima, Hiroshi; Kusagaya, Taro; Taketa, Akimichi; Uchida, Tomohisa; Tanaka, Manobu


    We have developed a novel radiographic imaging method to survey the seismic fault hidden beneath the surface by measuring the rainfall permeation around the fault zone with cosmic-ray muon radiography. As an example, we performed measurements in Itoigawa-Shizuoka Tectonic Line (ISTL), Japan, and studied the feasibility of using this method. In this method, muons after passing through a fault zone are measured for different depths after major rain-fall events. When large amount of rain permeated gravitationally into the mechanical fractured zone around the fault gouge, the average density increases, hence, decreasing the number of muon events. The principle of the technique is that by measuring the time-dependent changes in muon absorption along different paths through the fault, one can image the permeable region in the interior of the object. A muon detector with an area of 3969 cm 2 was located 6 m from the fault outcrop in UNESCO Itoigawa Geopark. The outcrop is geologically well studied and the direction of the fault is approximately determined by linear extrapolation from the site, but is not parallel to the ISTL. An angular resolution of the muon detector of 100 milliradians (mrad) corresponds to a spatial resolution of 10 m at a distance of 100 m. The measurements would be ideal for studying the vertical or near-vertical strike-slip faults which cannot be well resolved by the conventional standard seismic reflection acquisition and processing that are designed to image reflectors that are close to horizontal. In this work, we have radiographically imaged the fault zone up to 50 m below the surface. A systematic delay in response to the rain-fall events was observed with increasing depth only along the fault zone, which corresponds to the position and direction of the seismic fault estimated from the geometry of the fault outcrop. Applying the same method to another direction, we discovered a new permeable region that is parallel to the ISTL. This permeable

  15. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.


    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  16. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977. (United States)

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G


    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude San Andreas fault near Palmdale, California. This swarm was the first observed along this section of the San Andreas since cataloging of instrumental data began in 1932. The activity followed partial subsidence of the 35-centimeter vertical crustal uplift known as the Palmdale bulge along this "locked" section of the San Andreas, which last broke in the great (surface-wave magnitude = 8(1/4)+) 1857 Fort Tejon earthquake. The swarm events exhibit characteristics previously observed for some foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown.

  17. Influence of host lithofacies on fault rock variation in carbonate fault zones: A case study from the Island of Malta (United States)

    Michie, E. A. H.


    Relatively few studies have examined fault rock microstructures in carbonates. Understanding fault core production helps predict the hydraulic behaviour of faults and the potential for reservoir compartmentalisation. Normal faults on Malta, ranging from fracture networks that develop into breccias. Alternatively, this lithofacies is commonly recrystallised. In contrast, in the coarse-grained, heterogeneous grain-dominated carbonates the development of faulting is characterised by localised deformation, creating protocataclasite and cataclasite fault rocks. Cementation also occurs within some grain-dominated carbonates close to and on slip surfaces. Fault rock variation is a function of displacement as well as juxtaposed lithofacies. An increase in fault rock variability is observed at higher displacements, potentially creating a more transmissible fault, which opposes what may be expected in siliciclastic and crystalline faults. Significant heterogeneity in the fault rock types formed is likely to create variable permeability along fault-strike, potentially allowing across-fault fluid flow. However, areas with homogeneous fault rocks may generate barriers to fluid flow.

  18. Earthquake-induced crustal deformation and consequences for fault displacement hazard analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Gürpinar, Aybars; Serva, Leonello; Livio, Franz; Rizzo, Paul C.


    Highlights: • A three-step procedure to incorporate coseismic deformation into PFDHA. • Increased scrutiny for faults in the area permanently deformed by future strong earthquakes. • These faults share with the primary structure the same time window for fault capability. • VGM variation may occur due to tectonism that has caused co-seismic deformation. - Abstract: Readily available interferometric data (InSAR) of the coseismic deformation field caused by recent seismic events clearly show that major earthquakes produce crustal deformation over wide areas, possibly resulting in significant stress loading/unloading of the crust. Such stress must be considered in the evaluation of seismic hazards of nuclear power plants (NPP) and, in particular, for the potential of surface slip (i.e., probabilistic fault displacement hazard analysis - PFDHA) on both primary and distributed faults. In this study, based on the assumption that slip on pre-existing structures can represent the elastic response of compliant fault zones to the permanent co-seismic stress changes induced by other major seismogenic structures, we propose a three-step procedure to address fault displacement issues and consider possible influence of surface faulting/deformation on vibratory ground motion (VGM). This approach includes: (a) data on the presence and characteristics of capable faults, (b) data on recognized and/or modeled co-seismic deformation fields and, where possible, (c) static stress transfer between source and receiving faults of unknown capability. The initial step involves the recognition of the major seismogenic structures nearest to the site and their characterization in terms of maximum expected earthquake and the time frame to be considered for determining their “capability” (as defined in the International Atomic Energy Agency - IAEA Specific Safety Guide SSG-9). Then a GIS-based buffer approach is applied to identify all the faults near the NPP, possibly influenced by

  19. Earthquake-induced crustal deformation and consequences for fault displacement hazard analysis of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gürpinar, Aybars, E-mail: [Nuclear & Risk Consultancy, Anisgasse 4, 1221 Vienna (Austria); Serva, Leonello, E-mail: [Independent Consultant, Via dei Dauni 1, 00185 Rome (Italy); Livio, Franz, E-mail: [Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, Via Velleggio, 11, 22100 Como (Italy); Rizzo, Paul C., E-mail: [RIZZO Associates, 500 Penn Center Blvd., Suite 100, Pittsburgh, PA 15235 (United States)


    Highlights: • A three-step procedure to incorporate coseismic deformation into PFDHA. • Increased scrutiny for faults in the area permanently deformed by future strong earthquakes. • These faults share with the primary structure the same time window for fault capability. • VGM variation may occur due to tectonism that has caused co-seismic deformation. - Abstract: Readily available interferometric data (InSAR) of the coseismic deformation field caused by recent seismic events clearly show that major earthquakes produce crustal deformation over wide areas, possibly resulting in significant stress loading/unloading of the crust. Such stress must be considered in the evaluation of seismic hazards of nuclear power plants (NPP) and, in particular, for the potential of surface slip (i.e., probabilistic fault displacement hazard analysis - PFDHA) on both primary and distributed faults. In this study, based on the assumption that slip on pre-existing structures can represent the elastic response of compliant fault zones to the permanent co-seismic stress changes induced by other major seismogenic structures, we propose a three-step procedure to address fault displacement issues and consider possible influence of surface faulting/deformation on vibratory ground motion (VGM). This approach includes: (a) data on the presence and characteristics of capable faults, (b) data on recognized and/or modeled co-seismic deformation fields and, where possible, (c) static stress transfer between source and receiving faults of unknown capability. The initial step involves the recognition of the major seismogenic structures nearest to the site and their characterization in terms of maximum expected earthquake and the time frame to be considered for determining their “capability” (as defined in the International Atomic Energy Agency - IAEA Specific Safety Guide SSG-9). Then a GIS-based buffer approach is applied to identify all the faults near the NPP, possibly influenced by

  20. Effects of Fault Displacement on Emplacement Drifts

    International Nuclear Information System (INIS)

    Duan, F.


    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10 -5 adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M and O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure

  1. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham


    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  2. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.


    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...

  3. A note on the effect of fault gouge thickness on fault stability (United States)

    Byerlee, J.; Summers, R.


    At low confining pressure, sliding on saw cuts in granite is stable but at high pressure it is unstable. The pressure at which the transition takes place increases if the thickness of the crushed material between the sliding surfaces is increased. This experimental result suggests that on natural faults the stability of sliding may be affected by the width of the fault zone. ?? 1976.

  4. The effects of the Rulison event on buildings and other surface structures

    International Nuclear Information System (INIS)

    Lee, Lloyd A.; Skjei, Roger E.


    Project RULISON is a joint experiment sponsored, by Austral Oil Company Incorporated, Houston, Texas, the U.S. Atomic Energy Commission and the Department of the Interior, with the Program Management provided by CER Geonuclear Corporation of Las Vegas, Nevada under contract to Austral. Its purpose is to study the economic and technical feasibility of using underground nuclear explosions to stimulate production of natural gas from the low productivity, gas bearing Mesaverde formation in the RULISON Field. The nuclear explosive for Project RULISON was detonated successfully at 3:00 p.m. plus 0.1 seconds Mountain Daylight Time, September 10, 1969, at a depth of 8425.5 feet below ground level and was completely contained. Preliminary results indicate that the RULISON device behaved about as expected; i.e., with a yield of about 40 kt. The wellhead of the emplacement well, Hayward 25-95A, is at an elevation of 8154 feet above mean sea level (MSL) and is located 1976.31 feet east of west line and 1813.19 feet north of south line of Section 25, Township 7 South, Range 95 west of 6th P.M., Garfield County, Colorado which corresponds to geodetic coordinates of longitude 107 deg. 56'53'' west and latitude 39 deg. 24'21'' north. John A. Blume and Associates Research Division, under contract with the Nevada Operations Office of the U.S. Atomic Energy Commission, has been assigned responsibility for structural inventories in the range of probable damage, structural response and damage predictions, surface earth structure hazard evaluations, and recommendations for safety measures in these particular aspects. The predictions were based on field data, office studies, ground motion predictions from the Environmental Research Corporation (ERC), and pertinent published information. This paper is essentially an interim report of currently available data. Studies are continuing to further develop the relationship of ground motion, structural properties, and damage. (author)

  5. Fault Detection and Isolation for a Supermarket Refrigeration System - Part One

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Rasmussen, Karsten B.; Kieu, Anh T.


    , namely freeze-over/dirty built-up, is considered for one heat transfer coefficient between the inside air and the evaporator surface. For fault detection purpose, the fault residual is generated through a KF and then evaluated through CUSUM method. All fault scenarios can be detected clearly. For fault...

  6. Active Faulting at the Northeast Margin of the Greater Puget Lowland: A Paleoseismic and Magnetic-Anomaly Study of the Kendall scarp, Whatcom County, Northwest Washington (United States)

    Barnett, E. A.; Kelsey, H. M.; Sherrod, B. L.; Blakely, R. J.; Hughes, J. F.; Schermer, E. R.; Haugerud, R. A.; Weaver, C. S.; Siedlecki, E.


    Paleoseismic trenching studies document an active east-west oriented fault located at the northeast margin of the Puget Lowland, approximately 35 miles northeast of Bellingham, Washington. Thrust faulting of Late Pleistocene glacial outwash sediments over Holocene soils produced the south-side up Kendall scarp, initially revealed by LiDAR surveys of the North Fork of the Nooksack River. Trenching and coring of adjacent wetlands suggest a minimum of two surface-rupture events within the latter half of the Holocene with combined vertical offset of at least two meters. The Kendall scarp occurs along trend and within 500 m of the inferred location of the previously mapped Boulder Creek fault, a north-side up normal fault juxtaposing Eocene Chuckanut Formation to the south against pre-Tertiary Chilliwack Group and Bell Pass Melange to the north. We infer that the Kendall scarp is a strand of the Boulder Creek fault, although the Boulder Creek fault is largely concealed in the Nooksack Valley by a thick blanket of glacial sediments. The opposing sense of displacement, north- side up on the Boulder Creek fault and south-side up on the Kendall scarp, may reflect Holocene reactivation of the Boulder Creek fault as a north-verging thrust fault. A preliminary crustal model based on geologic, aeromagnetic, and ground-magnetic data supports this interpretation. Refinement of magnetic model constraints and discovery and trenching of additional scarps along the trend of the Kendall scarp and Boulder Creek fault would help test this hypothesis and improve our understanding of active faulting in this region.

  7. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  8. Iowa Bedrock Faults (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  9. Design of fault simulator

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Sayed, Hanaa E.; Osunleke, Ajiboye S.; Masanobu, Hara


    Fault simulator is proposed to understand and evaluate all possible fault propagation scenarios, which is an essential part of safety design and operation design and support of chemical/production processes. Process models are constructed and integrated with fault models, which are formulated in qualitative manner using fault semantic networks (FSN). Trend analysis techniques are used to map real time and simulation quantitative data into qualitative fault models for better decision support and tuning of FSN. The design of the proposed fault simulator is described and applied on experimental plant (G-Plant) to diagnose several fault scenarios. The proposed fault simulator will enable industrial plants to specify and validate safety requirements as part of safety system design as well as to support recovery and shutdown operation and disaster management.

  10. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos


    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  11. Holocene paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand

    International Nuclear Information System (INIS)

    Howard, M.; Nicol, A.; Campbell, J.; Pettinga, J.R.


    The Porters Pass Fault comprises a series of discontinuous Holocene active traces which extend for c. 40 km between the Rakaia and Waimakariri Rivers in the foothills of the Southern Alps. There have been no historical earthquakes on the Porters Pass Fault (i.e., within the last 150 yr), and the purpose of this paper is to establish the timing and magnitudes of displacements on the fault at the ground surface during Holocene paleoearthquakes. Displaced geomorphic features (e.g., relict streams, stream channels, and ridge crests), measured using either tape measure (n = 20) or surveying equipment (n = 5), range from 5.5 to 33 m right lateral strike slip and are consistent with six earthquakes characterised by slip per event of c. 5-7 m. The timing of these earthquakes is constrained by radiocarbon dates from four trenches excavated across the fault and two auger sites from within swamps produced by ponding of drainage along the fault scarp. These data indicate markedly different Holocene earthquake histories along the fault length separated by a behavioural segment boundary near Lake Coleridge. On the eastern segment at least six Holocene earthquakes were identified at 8400-9000, 5700-6700, 4500-6000, 2300-2500, 800-1100, and 500-600 yr BP, producing an average recurrence interval of c. 1500 yr. On the western segment of the fault in the Rakaia River valley, a single surface-rupturing earthquake displaced Acheron Advance glacial deposits (c.10,000-14,000 yr in age) and may represent the southward continuation of the 2300-2500 yr event identified on the eastern segment. These data suggest Holocene slip rates of 3.2-4.1 mm/yr and 0.3-0.9 mm/yr on the eastern and western sections of the fault, respectively. Displacement and timing data suggest that earthquakes ruptured the western segment of the fault in no more than one-sixth of cases and that for a sample period of 10,000 yr the recurrence intervals were not characteristic. (auth). 45 refs., 10 figs., 3 tabs

  12. Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Antonio P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cappa, Frédéric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Nice Sophia-Antipolis, Nice (France). Cote d' Azur Observatory. GeoAzur


    The importance of geomechanics—including the potential for faults to reactivate during large-scale geologic carbon sequestration operations—has recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO2 to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this paper extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO2 to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO2 injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Finally, and consequently, even if some changes in permeability occur, this does not mean that the CO2 will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

  13. Uranium-Series Dating of the East Franklin Mountain's Fault Carbonates in El Paso, Texas (United States)

    Garcia, V. H.; Ma, L.; Pavlis, T. L.; Hurtado, J. M., Jr.


    Direct dating of fault activity is a fundamentally important part of many paleoseismic studies and has potential implications on the quantity, magnitude, recurrence intervals, and timing of earthquake occurrences in the past and future. Faults in the Rio Grande Rift (RGR) in southern New Mexico and West Texas have often been overlooked in seismic hazard assessments due to inferred low tectonic rates and long recurrence intervals. However, there is geologic evidence from surface ruptures that at least 22 large earthquakes (M > 6.25) have occurred in the RGR within the last 10,000 kyrs. The binational conurbation of the El Paso-Juarez region (home to 2.3 million people) lies in the southern extent of the RGR and is traversed by many Quaternary faults, which pose a potentially catastrophic hazard for the region. One fault in particular, the East Franklin Mountains fault (EFMF), is made up of many smaller fault segments that cross through heavily populated areas of the El Paso-Juarez region. Direct dating of past movement on a central segment of the EFMF is a fundamental and important piece of the puzzle in understanding when and how often seismic activity occurred in the fault. In this study, we applied Uranium-series (U-series) dating of fault carbonates collected from a trench that was dug on the central segment of the EFMF. Fault related calcite precipitants and pedogenic carbonates from a nearby soil profile were collected to (1) constraint the timing of past fault activity and (2) understand the relationship and timing of pedogenic carbonate formation away from the EFMF. U-series dating reveals that pedogenic carbonates collected from colluvial wedges along the fault are approximately half the optically stimulated luminescence age of the deposits, suggesting the U-Series dates record a relatively continuous accumulation of carbonates post-deposition. U-Series dates from within the EFMF, however, provided potentially the best estimates for the age of the most

  14. Analysis of likely Frost Events and day-to-night Variability in near-surface Water Vapor at Gale (United States)

    Martinez, G.; Fischer, E.; Renno, N. O.; Sebastian, E.; Kemppinen, O.; Bridges, N.; Borlina, C.; Meslin, P. Y.; Genzer, M.; Harri, A. M.; Vicente-Retortillo, A.; de la Torre-Juárez, M.; Ramos, M.; Gomez, F.; Gomez-Elvira, J.


    We analyze REMS simultaneous measurements of relative humidity and ground temperature with the highest confidence to identify frost events at Gale crater during the first 1000 sols of the MSL mission. The relative humidity sensor has recently been recalibrated (June 2015), providing relative humidity values slightly lower than those in the previous release (Dec 2014). Here we only use relative humidity data obtained with the latest recalibration parameters. We find that the most likely frost events occurred at four different locations: Dingo Gap during sols 529-535, an unnamed place during sols 554-560, Kimberley during sols 609-617, and an unnamed place during sols 673-676. At these four locations, the terrain features thermal inertia of ~200 SI units, a value much lower than that of 365 ± 50 SI units obtained from satellite measurements at the landing ellipse. We estimate a maximum thickness of the frost layer likely developed at these four locations of the order of tenths of μm, with the precipitable water content (PWC) showing values of a few pr-μm. Since water vapor pressure values derived from REMS measurements present high uncertainties during the daytime, the day-to-night variability in the near-surface water content at Gale cannot be analyzed using only REMS products. By comparing the nighttime PWC values obtained from REMS with the daytime PWC values obtained from satellite, we estimate a day-to-night ratio of the near-surface water vapor pressure at Gale of about 5.


    Directory of Open Access Journals (Sweden)

    Yaşar EREN


    Full Text Available The Yazır fault, located to the east of the Konya fault zone bordering west side of the Konya basin, is approximately 10 km in length and is formed by en echelon groupings of the sub-parallel fault sets. NNE-SSW trending Yazır fault cuts the Miocene-Pleistocene aged lacustrine rocks and Quaternary alluvial deposits of Konya basin. In the quarries opened between the Parsana and Yazır districts, the fault brought the lacustrine and Quaternary alluvial deposits side by side. Due to faulting, the lacustrine rocks were moved upwards relative to the alluvial deposits. The Yazır and Çiftlikbaşı faults formed a small triangular shaped graben structure in the area. Between the Parsana and Yazır districts, the fault surface is nearly vertical, and has NNE-SSW orientatiton. Although the slickenlines indicate that the fault has a small right hand strike slip movement, the fault mainly is a high angle east dipping normal fault. Surface data demonstrates that, due to this faulting, at least 25-30 m of vertical displacement was taken place in the area. Depending on the movements of the Yazır fault, two extensional sets of filled fissures were formed, one set is paralel to the main fault plane the other set erpendicular. These fissures are filled by alluvial deposits, and are triangular in shape closing downward. Their width range from 15 cm to 2 m, and their length reach up to 10 m, in vertical plane. The fissures have N10E, 90 and N80 W, 85 SW main orientation. Field observations indicate that these filled fissures were formed as surface cracks during movements of the Yazır fault at least twice. The orientations of these extensional cracks show that this part of the Konya plain was affected by east-west and north-south horizontally oriented tensional stresses.

  16. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.


    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  17. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  18. Synthetic aperture radar interferometry observations of the M = 6.0 Orta earthquake of 6 June 2000 (NW Turkey): Reactivation of a listric fault (United States)

    Cakir, Ziyadin; Akoglu, Ahmet Murat


    We study the coseismic surface displacement field due to the Orta earthquake of 6 June 2000, a moderate-sized (Mw 6.0) oblique-slip event that took place on a previously unknown fault located about 70 km north of the capital, Ankara (Turkey), and about 35 km south of the North Anatolian Fault. We use European Space Agency ERS synthetic aperture radar (SAR) data to generate high-resolution maps of the surface displacements by a two-pass differential SAR interferometry method. The surface displacement field reaching up to 15 cm line of sight subsidence is captured in several coseismic interferograms from descending orbits and is inverted to determine the source parameters of the earthquake using elastic dislocations on rectangular fault surfaces with a nonlinear minimization procedure based on simulating annealing algorithm. Modeling of the coseismic interferograms indicates that the earthquake was associated with a shallow (<6 km) left-lateral oblique normal displacement that occurred on a north-south striking, eastward dipping, listric fault trending at a high angle to the plate boundary, right-lateral strike-slip North Anatolian fault. Careful analyses of multiple interferograms together with the field observations allow us to infer the rupture geometry in fine detail. Modeling shows that coseismic slip occurs nearly only on the lower portion of the listric fault at a centroid depth of about 5 km but partially reaches to the surface along the surface trace of the Dodurga fault, in agreement with the field observations. We show that in the absence of field observations, additional measurements, or multiple interferograms that capture the surface deformation from different look angles, SAR interferometry alone may not be sufficient to constrain earthquake rupture geometry if there is no clear surface faulting. The results suggest that the Dodurga fault developed most probably as a result of a restraining bend along the North Anatolian fault and its left

  19. Modeling Spatial and Temporal Fault Zone Evolution in Basement Rocks (United States)

    Lunn, R. J.; Moir, H.; Shipton, Z. K.; Willson, J. P.


    There is considerable industrial interest in assessing the permeability of faults for the purpose of oil and gas production, deep well injection of waste liquids, underground storage of natural gas and disposal of radioactive waste. Deterministic prior estimation of fault hydraulic properties is highly error prone. Faults zones are formed through a complex interaction of mechanical, hydraulic and chemical processes and their permeability varies considerably over both space and time. Algorithms for predicting fault seal potential using throw and host rock property data exist for clay-rich fault seals but are contentious. In the case of crystalline rocks and sand-sand contacts, no such algorithms exist. In any case, the study of fault growth processes does not suggest that there is a clear or simple relationship between fault throw and the fault zone permeability. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones through development and application of a 2D hydro-mechanical finite element model. The temporal development of fault zone damage is simulated perpendicular to the main slip surface using Navier's equation for mechanical deformation. The model is applied to study development of fault zones in basement rocks. We simulate the evolution of fault zones from pre-existing joints and explore controls on the growth rate and locations of multiple splay fractures which link-up to form complex damage zones. We explore the temporal evolution of the stress field surrounding the fault tip for both propagation of isolated small faults and for fault linkage Results from these simulations have been validated using outcrop data.

  20. Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework (United States)

    Aydin, Orhun; Caers, Jef Karel


    Faults are one of the building-blocks for subsurface modeling studies. Incomplete observations of subsurface fault networks lead to uncertainty pertaining to location, geometry and existence of faults. In practice, gaps in incomplete fault network observations are filled based on tectonic knowledge and interpreter's intuition pertaining to fault relationships. Modeling fault network uncertainty with realistic models that represent tectonic knowledge is still a challenge. Although methods that address specific sources of fault network uncertainty and complexities of fault modeling exists, a unifying framework is still lacking. In this paper, we propose a rigorous approach to quantify fault network uncertainty. Fault pattern and intensity information are expressed by means of a marked point process, marked Strauss point process. Fault network information is constrained to fault surface observations (complete or partial) within a Bayesian framework. A structural prior model is defined to quantitatively express fault patterns, geometries and relationships within the Bayesian framework. Structural relationships between faults, in particular fault abutting relations, are represented with a level-set based approach. A Markov Chain Monte Carlo sampler is used to sample posterior fault network realizations that reflect tectonic knowledge and honor fault observations. We apply the methodology to a field study from Nankai Trough & Kumano Basin. The target for uncertainty quantification is a deep site with attenuated seismic data with only partially visible faults and many faults missing from the survey or interpretation. A structural prior model is built from shallow analog sites that are believed to have undergone similar tectonics compared to the site of study. Fault network uncertainty for the field is quantified with fault network realizations that are conditioned to structural rules, tectonic information and partially observed fault surfaces. We show the proposed

  1. UML Statechart Fault Tree Generation By Model Checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Herbert-Hansen, Zaza Nadja Lee

    Creating fault tolerant and efficient process work-flows poses a significant challenge. Individual faults, defined as an abnormal conditions or defects in a component, equipment, or sub-process, must be handled so that the system may continue to operate, and are typically addressed by implementing...... engineers imagine what undesirable events can occur under which conditions. Fault Tree Analysis (FTA) attempts to analyse the failure of systems by composing logic diagrams of separate individual faults to determine the probabil-ity of larger compound faults occurring. FTA is a commonly used method......-pleteness). To avoid these deficiencies, our approach derives the fault tree directly from the formal system model, under the assumption that any state can fail. We present a framework for the automated gener-ation of fault trees from models of real-world pro-cess workflows, expressed in a formalised subset...

  2. Near-Surface Geophysical Mapping of the Hydrological Response to an Intense Rainfall Event at the Field Scale (United States)

    Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.


    Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind

  3. Identification of the meta-instability stage via synergy of fault displacement: An experimental study based on the digital image correlation method (United States)

    Zhuo, Yan-Qun; Ma, Jin; Guo, Yan-Shuang; Ji, Yun-Tao

    In stick-slip experiments modeling the occurrence of earthquakes, the meta-instability stage (MIS) is the process that occurs between the peak differential stress and the onset of sudden stress drop. The MIS is the final stage before a fault becomes unstable. Thus, identification of the MIS can help to assess the proximity of the fault to the earthquake critical time. A series of stick-slip experiments on a simulated strike-slip fault were conducted using a biaxial servo-controlled press machine. Digital images of the sample surface were obtained via a high speed camera and processed using a digital image correlation method for analysis of the fault displacement field. Two parameters, A and S, are defined based on fault displacement. A, the normalized length of local pre-slip areas identified by the strike-slip component of fault displacement, is the ratio of the total length of the local pre-slip areas to the length of the fault within the observed areas and quantifies the growth of local unstable areas along the fault. S, the normalized entropy of fault displacement directions, is derived from Shannon entropy and quantifies the disorder of fault displacement directions along the fault. Based on the fault displacement field of three stick-slip events under different loading rates, the experimental results show the following: (1) Both A and S can be expressed as power functions of the normalized time during the non-linearity stage and the MIS. The peak curvatures of A and S represent the onsets of the distinct increase of A and the distinct reduction of S, respectively. (2) During each stick-slip event, the fault evolves into the MIS soon after the curvatures of both A and S reach their peak values, which indicates that the MIS is a synergetic process from independent to cooperative behavior among various parts of a fault and can be approximately identified via the peak curvatures of A and S. A possible application of these experimental results to field conditions

  4. Implications from palaeoseismological investigations at the Markgrafneusiedl Fault (Vienna Basin, Austria) for seismic hazard assessment (United States)

    Hintersberger, Esther; Decker, Kurt; Lomax, Johanna; Lüthgens, Christopher


    Intraplate regions characterized by low rates of seismicity are challenging for seismic hazard assessment, mainly for two reasons. Firstly, evaluation of historic earthquake catalogues may not reveal all active faults that contribute to regional seismic hazard. Secondly, slip rate determination is limited by sparse geomorphic preservation of slowly moving faults. In the Vienna Basin (Austria), moderate historical seismicity (Imax, obs / Mmax, obs = 8/5.2) concentrates along the left-lateral strike-slip Vienna Basin Transfer Fault (VBTF). In contrast, several normal faults branching out from the VBTF show neither historical nor instrumental earthquake records, although geomorphological data indicate Quaternary displacement along those faults. Here, located about 15 km outside of Vienna, the Austrian capital, we present a palaeoseismological dataset of three trenches that cross one of these splay faults, the Markgrafneusiedl Fault (MF), in order to evaluate its seismic potential. Comparing the observations of the different trenches, we found evidence for five to six surface-breaking earthquakes during the last 120 kyr, with the youngest event occurring at around 14 ka. The derived surface displacements lead to magnitude estimates ranging between 6.2 ± 0.5 and 6.8 ± 0.4. Data can be interpreted by two possible slip models, with slip model 1 showing more regular recurrence intervals of about 20-25 kyr between the earthquakes with M ≥ 6.5 and slip model 2 indicating that such earthquakes cluster in two time intervals in the last 120 kyr. Direct correlation between trenches favours slip model 2 as the more plausible option. Trench observations also show that structural and sedimentological records of strong earthquakes with small surface offset have only low preservation potential. Therefore, the earthquake frequency for magnitudes between 6 and 6.5 cannot be constrained by the trenching records. Vertical slip rates of 0.02-0.05 mm a-1 derived from the

  5. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao


    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  6. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  7. Structural analysis of cataclastic rock of active fault damage zones: An example from Nojima and Arima-Takatsuki fault zones (SW Japan) (United States)

    Satsukawa, T.; Lin, A.


    Most of the large intraplate earthquakes which occur as slip on mature active faults induce serious damages, in spite of their relatively small magnitudes comparing to subduction-zone earthquakes. After 1995 Kobe Mw7.2 earthquake, a number of studies have been done to understand the structure, physical properties and dynamic phenomenon of active faults. However, the deformation mechanics and related earthquake generating mechanism in the intraplate active fault zone are still poorly understood. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for reconstructing the complex framework of brittle deformation. Here, we present two examples of active fault damage zones: Nojima fault and Arima-Takatsuki active fault zone in the southwest Japan. We perform field investigations, combined with meso-and micro-structural analyses of fault-related rocks, which provide the important information in reconstructing the long-term seismic faulting behavior and tectonic environment. Our study shows that in both sites, damage zone is observed in over 10m, which is composed by the host rocks, foliated and non-foliated cataclasites, fault gouge and fault breccia. The slickenside striations in Asano fault, the splay fault of Nojima fault, indicate a dextral movement sense with some normal components. Whereas, those of Arima-Takatsuki active fault shows a dextral strike-slip fault with minor vertical component. Fault gouges consist of brown-gray matrix of fine grains and composed by several layers from few millimeters to a few decimeters. It implies that slip is repeated during millions of years, as the high concentration and physical interconnectivity of fine-grained minerals in brittle fault rocks produce the fault's intrinsic weakness in the crust. Therefore, faults rarely express only on single, discrete deformation episode, but are the cumulative result of several superimposed slip events.

  8. Fracture energy of stick-slip events in a large scale biaxial experiment

    International Nuclear Information System (INIS)

    Okubo, P.G.; Dieterich, J.H.


    The concept of apparent fracture energy for the shear failure process is employed by many authors in modeling earthquake sources as dynamically extending shear cracks. Using records of shear strain and relative displacement from stick-slip events generated along a simulated, prepared fault surface in a large (1.5m x 1.5m x 0.4m) granite block and a slip-weakening model for the fault, direct estimates of the apparent shear fracture energy of the stick-slip events have been obtained. For events generated on a finely ground fault surface, apparent fracture energy ranges from 0.06 J/m 2 at a normal stress of 1.1 MPa to 0.8 J/m 2 at a normal stress of 4.6 MPa. In contrast to estimates for tensile crack formation, we find that the apparent fracture energy of stick-slip events increases linearly with normal stress. The results for the slip-weakening model for the stick-slip events are generally consistent with constitutive fault models suggested by observations of stable sliding in smaller scale experiments

  9. Stress near geometrically complex strike-slip faults - Application to the San Andreas fault at Cajon Pass, southern California (United States)

    Saucier, Francois; Humphreys, Eugene; Weldon, Ray, II


    A model is presented to rationalize the state of stress near a geometrically complex major strike-slip fault. Slip on such a fault creates residual stresses that, with the occurrence of several slip events, can dominate the stress field near the fault. The model is applied to the San Andreas fault near Cajon Pass. The results are consistent with the geological features, seismicity, the existence of left-lateral stress on the Cleghorn fault, and the in situ stress orientation in the scientific well, found to be sinistral when resolved on a plane parallel to the San Andreas fault. It is suggested that the creation of residual stresses caused by slip on a wiggle San Andreas fault is the dominating process there.

  10. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  11. Interim reliability evaluation program, Browns Ferry fault trees

    International Nuclear Information System (INIS)

    Stewart, M.E.


    An abbreviated fault tree method is used to evaluate and model Browns Ferry systems in the Interim Reliability Evaluation programs, simplifying the recording and displaying of events, yet maintaining the system of identifying faults. The level of investigation is not changed. The analytical thought process inherent in the conventional method is not compromised. But the abbreviated method takes less time, and the fault modes are much more visible

  12. Earthquake fault superhighways (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.


    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  13. Neotectonic fault structures in the Lake Thun area (Switzerland) (United States)

    Fabbri, Stefano C.; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Merz, Kaspar; Anselmetti, Flavio S.


    Strong historic earthquakes (i.e. intensities I0 ≥ V) in Switzerland are well documented by the earthquake catalogue of Switzerland ECOS-09 (e.g. Frutigen, 1729 AD, Mw=5.2, I0=VI). Many of these strong events can be recognized paleoseismically by large subaquatic, earthquake-triggered mass movements that occur frequently in Swiss Lakes. Some of these represent the occasional occurrence of even stronger earthquakes (i.e. Mw ˜6.5) in the Alpine region (Strasser et al., 2013), which are expected to produce noticeable surface ruptures. However, convincing evidence for Quaternary displacements with offset surface expressions have scarcely been found (e.g., Wiemer et al., 2009). Applying a multi-disciplinary approach, this study presents potential candidates for such faults in the larger Lake Thun area at the edge of the Alps. The overdeepened basin of Lake Thun is situated at the northern Alpine front, which extends orthogonally to the general strike direction of the Alpine nappe front. The northern shoreline is predominantly shaped by the front of the Subalpine Molasse, which is in strong contrast to the south western shore built by the structurally higher units of the Middle and Lower Penninic nappes. This pattern with obvious differences of both lake sides suggests a major fault along the lake axis and high tectonic activity during nappe emplacement, i.e. from Eocene times throughout the Late Miocene. The area is dominated today by a strike-slip stress regime with a slight normal faulting component (Kastrup et al., 2004). As part of a multi-disciplinary study, attempting to find potential neotectonically active fault structures in the Lake Thun area, a 2D ground penetrating radar (GPR) survey was conducted. The aim of the GPR survey was to link observations from a multichannel reflection seismic survey and a multibeam bathymetric survey carried out in Lake Thun with findings in a nearby gravel quarry revealing suspicious deformation features such as rotated gravel

  14. Millennium recurrence interval of morphogenic earthquakes on the Qingchuan fault, northeastern segment of the Longmen Shan Thrust Belt, China (United States)

    Lin, Aiming; Yan, Bing; Rao, Gang


    The 2008 M w 7.9 Wenchuan produced a ˜285-300-km-long coseismic surface rupture zone, including a 60-km-long segment along the Qingchuan fault, the northeastern segment of the Longmen Shan Thrust Belt (LSTB), Sichuan Basin, central China. Field investigations, trench excavations, and radiocarbon dating results reveal that (i) the Qingchuan fault is currently active as a seismogenic fault, along which four morphogenic earthquakes including the 2008 Wenchuan earthquake occurred in the past ca. 3500 years, suggesting an average millennium recurrence interval of morphogenic earthquakes in the late Holocene; (ii) the most recent event prior to the 2008 Wenchuan earthquake took place in the period between AD 1400 and AD 1100; (iii) the penultimate paleoseismic event occurred in the period around 2000 years BP in the Han Dynasty (206 BC-AD 220); (iv) the third paleoseismic event occurred in the period between 900 and 1800 BC; and (v) at least three seismic faulting events occurred in the early Holocene. The present results are comparable with those inferred in the central and southwestern segments of the LSTB within which the Wenchuan magnitude earthquakes occurred in a millennium recurrence interval, that are in contrast with previous estimates of 2000-10,000 years for the recurrence interval of morphogenic earthquakes within the LSTB and thereby necessitating substantial modifications to existing seismic hazard models for the densely populated region at the Sichuan region.

  15. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan (United States)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.


    structures of the MTLFZ based on newly obtained data and previous research results. And then, we discuss how the relationship between the surface fault geometry and the deep subsurface structures changes through the MTLFZ which is under the heterogeneous regional stress condition.

  16. Crustal Density Variation Along the San Andreas Fault Controls Its Secondary Faults Distribution and Dip Direction (United States)

    Yang, H.; Moresi, L. N.


    The San Andreas fault forms a dominant component of the transform boundary between the Pacific and the North American plate. The density and strength of the complex accretionary margin is very heterogeneous. Based on the density structure of the lithosphere in the SW United States, we utilize the 3D finite element thermomechanical, viscoplastic model (Underworld2) to simulate deformation in the San Andreas Fault system. The purpose of the model is to examine the role of a big bend in the existing geometry. In particular, the big bend of the fault is an initial condition of in our model. We first test the strength of the fault by comparing the surface principle stresses from our numerical model with the in situ tectonic stress. The best fit model indicates the model with extremely weak fault (friction coefficient 200 kg/m3) than surrounding blocks. In contrast, the Mojave block is detected to find that it has lost its mafic lower crust by other geophysical surveys. Our model indicates strong strain localization at the jointer boundary between two blocks, which is an analogue for the Garlock fault. High density lower crust material of the Great Valley tends to under-thrust beneath the Transverse Range near the big bend. This motion is likely to rotate the fault plane from the initial vertical direction to dip to the southwest. For the straight section, north to the big bend, the fault is nearly vertical. The geometry of the fault plane is consistent with field observations.

  17. Paleoseismology of Crack-in-the-Ground Fault, Central Oregon (United States)

    Castonguay, S. R.; Mackey, B. H.; Weldon, R. J.


    Central Oregon exhibits both extensive active faulting and Quaternary volcanism, yet the relations between them are complex and poorly constrained. The N15W striking North Christmas Valley fault system is a Basin and Range type structure offsetting High Lava Plains volcanics forming a ~3 km wide graben that bounds Christmas Lake. Several young volcanic vents, including Green Mountain (GM), Four Craters (4C), and East Lava Field, are aligned parallel with and bounded by the graben. We focus on Crack-in-the-Ground (CITG) fault which vertically displaces the GM and FC basalts. The GM basalt is dated at 740 +/- 59 ka by 40Ar/39Ar (Jordan, 2002). Our preliminary dating of the 4C basalt yields an average age of 12 +/- 2 ka, determined by cosmogenic 3He exposure dating of olivine from flow surfaces. Since emplacement of the GM basalts, the fault has developed a ~10 m hanging wall monocline and a vertical hinge crack which yields the 0.013 mm/yr slip rate suggested in Jordan (2002). The 4C basalt has also been cracked by the CITG fault, producing a 30 +/-10 cm vertical offset. A trench excavated across a section of CITG exposed the stratigraphy of the upper 2.25 m. The upper 1.25 m is a modern soil developed on ~7 ka Mt. Mazama ash. The whole unit is offset ~12 cm as the result of a presumed co-seismic graben structure in the crack. The lower one meter is a palesol developed on windblown sandy silt. The 4C cinder cones may have produced a basaltic tephra that is not seen in the trench, therefore we think the lower unit is post-4C. The paleo-surface has a shallow east dip caused by co-seismic deformation. The two events seen in the trench are likely post-4C, suggesting the 4C offset is cumulative between two events, yielding a slip rate of 0.025 mm/yr. Comparison of the two slip rates suggests an increased slip rate post-4C. Our results are consistent with a potential volcano-tectonic relationship in which slip rate increased during the Late Pleistocene associated with

  18. Inherited discontinuities and fault kinematics of a multiphase, non-colinear extensional setting: Subsurface observations from the South Flank of the Golfo San Jorge basin, Patagonia (United States)

    Paredes, José Matildo; Aguiar, Mariana; Ansa, Andrés; Giordano, Sergio; Ledesma, Mario; Tejada, Silvia


    We use three-dimensional (3D) seismic reflection data to analyze the structural style, fault kinematics and growth fault mechanisms of non-colinear normal fault systems in the South Flank of the Golfo San Jorge basin, central Patagonia. Pre-existing structural fabrics in the basement of the South Flank show NW-SE and NE-SW oriented faults. They control the location and geometry of wedge-shaped half grabens from the "main synrift phase" infilled with Middle Jurassic volcanic-volcaniclastic rocks and lacustrine units of Late Jurassic to Early Cretaceous age. The NE-striking, basement-involved normal faults resulted in the rapid establishment of fault lenght, followed by gradual increasing in displacement, and minor reactivation during subsequent extensional phases; NW-striking normal faults are characterized by fault segments that propagated laterally during the "main rifting phase", being subsequently reactivated during succesive extensional phases. The Aptian-Campanian Chubut Group is a continental succession up to 4 km thick associated to the "second rifting stage", characterized by propagation and linkage of W-E to WNW-ESE fault segments that increase their lenght and displacement in several extensional phases, recognized by detailed measurement of current throw distribution of selected seismic horizons along fault surfaces. Strain is distributed in an array of sub-parallel normal faults oriented normal to the extension direction. A Late Cretaceous-Paleogene (pre-late Eocene) extensional event is characterized by high-angle, NNW-SSE to NNE-SSW grabens coeval with intraplate alkali basaltic volcanism, evidencing clockwise rotation of the stress field following a ∼W-E extension direction. We demonstrate differences in growth fault mechanisms of non-colinear fault populations, and highlight the importance of follow a systematic approach to the analysis of fault geometry and throw distribution in a fault network, in order to understand temporal-spatial variations

  19. Qademah Fault Passive Data

    KAUST Repository

    Hanafy, Sherif M.


    OBJECTIVE: In this field trip we collect passive data to 1. Convert passive to surface waves 2. Locate Qademah fault using surface wave migration INTRODUCTION: In this field trip we collected passive data for several days. This data will be used to find the surface waves using interferometry and then compared to active-source seismic data collected at the same location. A total of 288 receivers are used. A 3D layout with 5 m inline intervals and 10 m cross line intervals is used, where we used 12 lines with 24 receivers at each line. You will need to download the file (rec_times.mat), it contains important information about 1. Field record no 2. Record day 3. Record month 4. Record hour 5. Record minute 6. Record second 7. Record length P.S. 1. All files are converted from original format (SEG-2) to matlab format P.S. 2. Overlaps between records (10 to 1.5 sec.) are already removed from these files

  20. Stability of fault submitted to fluid injections (United States)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.


    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes

  1. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato


    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  2. Effect of extreme sea surface temperature events on the demography of an age-structured albatross population. (United States)

    Pardo, Deborah; Jenouvrier, Stéphanie; Weimerskirch, Henri; Barbraud, Christophe


    Climate changes include concurrent changes in environmental mean, variance and extremes, and it is challenging to understand their respective impact on wild populations, especially when contrasted age-dependent responses to climate occur. We assessed how changes in mean and standard deviation of sea surface temperature (SST), frequency and magnitude of warm SST extreme climatic events (ECE) influenced the stochastic population growth rate log( λ s ) and age structure of a black-browed albatross population. For changes in SST around historical levels observed since 1982, changes in standard deviation had a larger (threefold) and negative impact on log( λ s ) compared to changes in mean. By contrast, the mean had a positive impact on log( λ s ). The historical SST mean was lower than the optimal SST value for which log( λ s ) was maximized. Thus, a larger environmental mean increased the occurrence of SST close to this optimum that buffered the negative effect of ECE. This 'climate safety margin' (i.e. difference between optimal and historical climatic conditions) and the specific shape of the population growth rate response to climate for a species determine how ECE affect the population. For a wider range in SST, both the mean and standard deviation had negative impact on log( λ s ), with changes in the mean having a greater effect than the standard deviation. Furthermore, around SST historical levels increases in either mean or standard deviation of the SST distribution led to a younger population, with potentially important conservation implications for black-browed albatrosses.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  3. 3D Dynamic Rupture Simulations along the Wasatch Fault, Utah, Incorporating Rough-fault Topography (United States)

    Withers, Kyle; Moschetti, Morgan


    Studies have found that the Wasatch Fault has experienced successive large magnitude (>Mw 7.2) earthquakes, with an average recurrence interval near 350 years. To date, no large magnitude event has been recorded along the fault, with the last rupture along the Salt Lake City segment occurring 1300 years ago. Because of this, as well as the lack of strong ground motion records in basins and from normal-faulting earthquakes worldwide, seismic hazard in the region is not well constrained. Previous numerical simulations have modeled deterministic ground motion in the heavily populated regions of Utah, near Salt Lake City, but were primarily restricted to low frequencies ( 1 Hz). Our goal is to better assess broadband ground motions from the Wasatch Fault Zone. Here, we extend deterministic ground motion prediction to higher frequencies ( 5 Hz) in this region by using physics-based spontaneous dynamic rupture simulations along a normal fault with characteristics derived from geologic observations. We use a summation by parts finite difference code (Waveqlab3D) with rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) and include off-fault plasticity to simulate ruptures > Mw 6.5. Geometric complexity along fault planes has previously been shown to generate broadband sources with spectral energy matching that of observations. We investigate the impact of varying the hypocenter location, as well as the influence that multiple realizations of rough-fault topography have on the rupture process and resulting ground motion. We utilize Waveqlab3's computational efficiency to model wave-propagation to a significant distance from the fault with media heterogeneity at both long and short spatial wavelengths. These simulations generate a synthetic dataset of ground motions to compare with GMPEs, in terms of both the median and inter and intraevent variability.

  4. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone (United States)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.


    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger

  5. Postglacial faulting and paleoseismicity in the Landsjaerv area, northern Sweden

    International Nuclear Information System (INIS)

    Lagerbaeck, R.


    Post-glacial fault scarps, up to about 20 m in height and forming a 50 km long fault set with a SSW-NNE orientation, occur in the Lansjaerv area in northern Sweden. By trenching across the fault scarps it has been possible to date fault movement relative to the Quaternary stratigraphy. It is concluded that the fault scarps generally developed as single event movements shortly after the deglaciation about 9000 years ago. At one location there are indications that minor fault movements may have occurred earlier during a previous glaciation but this is uncertain. The fault scarps are, at least partially, developed in strongly fractured and chemically weathered zones of presumed pre-Quaternary age. To judge from the appearance of the bedrock fault scarps, and the deformation of the Quaternary deposits, the faults are reverse and have dips between some 40-50 0 and the vertical. The faulting was co-seismic and earthquakes in the order of M 6.5-7.0, or higher, are inferred from fault dimensions and the distribution of seismically triggered landslides in a wider region. Distortions in different types of sediment, interpreted as caused by the influence of seismic shock, occur frequently in the area. Examples of these are briefly described. (orig.)

  6. Fault locator of an allyl chloride plant

    Directory of Open Access Journals (Sweden)

    Savković-Stevanović Jelenka B.


    Full Text Available Process safety analysis, which includes qualitative fault event identification, the relative frequency and event probability functions, as well as consequence analysis, was performed on an allye chloride plant. An event tree for fault diagnosis and cognitive reliability analysis, as well as a troubleshooting system, were developed. Fuzzy inductive reasoning illustrated the advantages compared to crisp inductive reasoning. A qualitative model forecast the future behavior of the system in the case of accident detection and then compared it with the actual measured data. A cognitive model including qualitative and quantitative information by fuzzy logic of the incident scenario was derived as a fault locator for an ally! chloride plant. The obtained results showed the successful application of cognitive dispersion modeling to process safety analysis. A fuzzy inductive reasoner illustrated good performance to discriminate between different types of malfunctions. This fault locator allowed risk analysis and the construction of a fault tolerant system. This study is the first report in the literature showing the cognitive reliability analysis method.

  7. Synthetic seismicity for the San Andreas fault

    Directory of Open Access Journals (Sweden)

    S. N. Ward


    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  8. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California (United States)

    Cronin, V. S.; Strasser, M. P.


    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine

  9. Quaternary Slip History for the Agua Blanca Fault, northern Baja California, Mexico (United States)

    Gold, P. O.; Behr, W. M.; Rockwell, T. K.; Fletcher, J. M.


    The Agua Blanca Fault (ABF) is the primary structure accommodating San Andreas-related right-lateral slip across the Peninsular Ranges of northern Baja California. Activity on this fault influences offshore faults that parallel the Pacific coast from Ensenada to Los Angeles and is a potential threat to communities in northern Mexico and southern California. We present a detailed Quaternary slip history for the ABF, including new quantitative constraints on geologic slip rates, slip-per-event, the timing of most recent earthquake, and the earthquake recurrence interval. Cosmogenic 10Be exposure dating of clasts from offset fluvial geomorphic surfaces at 2 sites located along the western, and most active, section of the ABF yield preliminary slip rate estimates of 2-4 mm/yr and 3 mm/yr since 20 ka and 2 ka, respectively. Fault zone geomorphology preserved at the younger site provides evidence for right-lateral surface displacements measuring 2.5 m in the past two ruptures. Luminescence dating of an offset alluvial fan at a third site is in progress, but is expected to yield a slip rate relevant to the past 10 kyr. Adjacent to this third site, we excavated 2 paleoseismic trenches across a sag pond formed by a right step in the fault. Preliminary radiocarbon dates indicate that the 4 surface ruptures identified in the trenches occurred in the past 6 kyr, although additional dating should clarify earthquake timing and the mid-Holocene to present earthquake recurrence interval, as well as the likely date of the most recent earthquake. Our new slip rate estimates are somewhat lower than, but comparable within error to, previous geologic estimates based on soil morphology and geodetic estimates from GPS, but the new record of surface ruptures exposed in the trenches is the most complete and comprehensively dated earthquake history yet determined for this fault. Together with new and existing mapping of tectonically generated geomorphology along the ABF, our constraints

  10. Mechanical Analysis of Fault Interaction in the Puente Hills Region, Los Angeles Basin, California (United States)

    Griffith, W. A.; Cooke, M.


    A three-dimensional model of the Puente Hills thrust system (PHT) and the Whittier fault has been constructed using published cross sections, surface trace maps [Shaw (1999); Shaw and Suppe (1996); Wright (1991)] and products of the Southern California Earthquake Center. This study utilizes boundary element method models to validate the proposed fault geometry of the Puente Hills region via investigating fault interaction. The interaction between PHT and Whittier faults is evaluated within an elastic half-space under horizontal contraction and evidenced by slip rates on faults, strain energy density (SED), and Navier-Coulomb stress (NC) throughout the host rock. Modeled slip rates are compared to paleoseismic estimates to validate the proposed fault configuration while maps of SED and NC highlight regions of high strain in the host rock and likely faulting. Subsequently, the sensitivity of SED and NC distribution to changes in fault geometry illuminate the nature of fault interaction within this complex system of interacting faults. We explore interaction of faults within the PHT region using two sets of models. The first examines slip rates and SED and NC distribution within a local model of the PHT region while the second set incorporates the PHT faults within the context of the Los Angeles basin. Both sets explore the response of the fault system to systematic addition of faults. Adding faults within regions of high SED and NC does not influence slip on neighboring faults; however the addition of fault surfaces in regions of low/moderate SED and NC reduces slip along adjacent faults. The sensitivity of fault slip rates to direction of remote contraction in the Los Angeles Basin is examined with contraction directions of 036, 017, and 006.5 [Bawden (2001), Argus (1999), and Feigl (1993)]. Furthermore, variations on intersection geometry between the PHT and Whittier fault are explored. Portions of the PHT and Whittier faults show reasonable match to available

  11. Fault-tolerant Sensor Fusion for Marine Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens


    Reliability of navigation data are critical for steering and manoeuvring control, and in particular so at high speed or in critical phases of a mission. Should faults occur, faulty instruments need be autonomously isolated and faulty information discarded. This paper designs a navigation solution...... events where the fault-tolerant sensor fusion provided uninterrupted navigation data despite temporal instrument defects...

  12. Evaporation/SST Sensitivity Over the Tropical Oceans During ENSO Events as Estimated from the da Silva, Young, Levitus Surface Marine Data Set (United States)

    Robertson, F. R.; Fitzjarrald, D. E.; Sohn, B.-J.; Arnold, James E. (Technical Monitor)


    The da Silva, Young and Levitus Surface Marine Atlas, based on observations from the Comprehensive Ocean Atmosphere Data Set (COADS) Release 1, has been used to investigate the relationship between evaporation and sea-surface temperature (SST) over the global oceans. For the period 1950 to 1987 SST, surface latent heat flux, and other related variables have been filtered to minimize data uncertainties and to focus upon interannual variations associated with warm (El Nino) and cold (La Nina) ENSO events. Compositing procedures have enabled identification of systematic variations in latent heat fluxes accompanying these events and the relationship to spatial anomalies in ocean surface wind speed and humidity. The evaporation response associated with ENSO sea surface temperature (SST) variability is systematic in nature and composed of offsetting contributions from the surface wind and humidity variations. During warm events exceeding 1.0 S.D. delta SST, increases in the surface humidity deficit, delta(qs-qa), between the surface and 2m height dominate regions of positive SST anomalies and lead to increases in evaporation of almost 2 Wm (exp -2) at deltaSST = 0.23 K. Despite the increases in specific humidity, relative humidity decreases slightly in regions of elevated SSTs. For the most part, variations in wind speed are consistent with previous investigations. Weakening of the equatorial easterlies (and generation of westerlies) between 160 degrees E and 140 degrees W dominates during the early phases of warm events. Elevated wind speeds in adjacent subtropical regions and in the eastern equatorial Pacific subsequently develop too. The net contribution of these winds, which reflect adjustments in Hadley and Walker circulation components is toward reduced evaporation. Results for cold periods are approximately similar, but opposite in sign to warm events, though evidence of different temporal evolution is noted.

  13. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy) (United States)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio


    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  14. Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle: Insights from a strike-slip fault laboratory model (United States)

    Caniven, Yannick; Dominguez, Stéphane; Soliva, Roger; Peyret, Michel; Cattin, Rodolphe; Maerten, Frantz


    We use a strike-slip fault analog model to study experimentally the role played by along-fault non-uniform and asymmetric applied normal stress on both coseismic slip and long-term fault behavior. Our model is based on a visco-elasto-plastic multi-layered rheology that allows to produce several hundreds of scaled analog microquakes and associated seismic cycles. Uniform or heterogeneous applied normal stress along the fault plane is imposed and maintained constant during the whole experiment durations. Our results suggest that coseismic slip patterns are strongly controlled by spatial normal stress variations and subsequent accumulated shear stress along fault strike. Major microquakes occur preferentially in zones of major shear stress asperities. Coseismic slip distributions exhibit a pattern similar to the along-fault applied normal stress distribution. The occurrence of isolated low to moderate microquakes where residual stresses persist around secondary stress asperities, indicates that stress conditions along the fault also control the whole variability of fault slip events. Moreover, when fault slip stability conditions are modulated by normal stress distribution, our experiments suggest that the along-fault stress heterogeneity influences the seismic cycle regularity and, consequently, long-term fault slip behavior. Uniform applied normal stress favors irregular seismic cycles and the occurrence of earthquakes clustering, whereas non-uniform normal stress with a single high amplitude stress asperity generates strong characteristic microquake events with stable return periods. Together our results strengthen the assumption that coseismic slip distribution and earthquake variability along an active fault may provide relevant information on long term tectonic stress and could thus improve seismic hazard assessment.

  15. High Resolution Seismic Reflection Survey for Coal Mine: fault detection (United States)

    Khukhuudei, M.; Khukhuudei, U.


    High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.

  16. Missing link between the Hayward and Rodgers Creek faults. (United States)

    Watt, Janet; Ponce, David; Parsons, Tom; Hart, Patrick


    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface-a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake ( M = 7.4) that would cause extensive damage and loss of life with global economic impact.

  17. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  18. Recognition of Paleoearthquakes on the Puente Hills Blind Thrust Fault, California (United States)

    Dolan, James F.; Christofferson, Shari A.; Shaw, John H.


    Borehole data from young sediments folded above the Puente Hills blind thrust fault beneath Los Angeles reveal that the folding extends to the surface as a discrete zone (-145 meters wide). Buried fold scarps within an upward- narrowing zone of deformation, which extends from the upward termination of the thrust ramp at 3 kilometers depth to the surface, document the occurrence of at least four large (moment-magnitude 7.2 to 7.5) earthquakes on this fault during the past 11,000 years. Future events of this type pose a seismic hazard to metropolitan Los Angeles. Moreover, the methods developed in this study can be used to refine seismic hazard assessments of blind thrusts in other metropolitan regions.

  19. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault. (United States)

    Zielke, Olaf; Arrowsmith, J Ramón; Grant Ludwig, Lisa; Akçiz, Sinan O


    The moment magnitude (Mw) 7.9 Fort Tejon earthquake of 1857, with a approximately 350-kilometer-long surface rupture, was the most recent major earthquake along the south-central San Andreas Fault, California. Based on previous measurements of its surface slip distribution, rupture along the approximately 60-kilometer-long Carrizo segment was thought to control the recurrence of 1857-like earthquakes. New high-resolution topographic data show that the average slip along the Carrizo segment during the 1857 event was 5.3 +/- 1.4 meters, eliminating the core assumption for a linkage between Carrizo segment rupture and recurrence of major earthquakes along the south-central San Andreas Fault. Earthquake slip along the Carrizo segment may recur in earthquake clusters with cumulative slip of approximately 5 meters.

  20. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays (United States)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.


    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  1. A New Perspective on Fault Geometry and Slip Distribution of the 2009 Dachaidan Mw 6.3 Earthquake from InSAR Observations. (United States)

    Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum


    On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth's surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 10(18) Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment.


    Directory of Open Access Journals (Sweden)

    Chan Shi Jing


    Full Text Available Fault Tolerance (FT enables system to continue operating despite in the event of failures. Therefore, FT serves as a backup component or procedure that can immediately play its role to minimize any service lost. FT exists in many forms, where it can either be in the software form or hardware form or both hardware and software form. Fault Tolerance is an umbrella term for fault detection, fault isolation, fault identification and fault solving. To better visualize the fault detection and isolation process, a two wheel robot is used in this study to represent the complex system. The aim of this research is to construct and design a Fault Tolerance algorithm considered to speed up the fault isolation procedure and it might identify multiple fault with the same static fault signature. The Finite State Machine (FSM model, a wide library of reusable model for the fault tolerant is used in this study to solve the fault in actuator or in the sensor by resetting and adjusting it to the correct position. Using the system sensors or actuators, the technique used is able to recognize the fault from its data. This FSM method is capable to avoid, replace, reset and recover any possible faults occurred in the system, offering an innovative solution to identify and solve a fault immediately.

  3. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A. [Atomic Energy of Canada Limited, Ontario (Canada)] [and others


    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  4. Identification of Lembang fault, West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT) (United States)

    Sanny, Teuku A.


    The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as


    Directory of Open Access Journals (Sweden)

    Gevorg G. Kocharyan


    Full Text Available Association of earthquake hypocenters with fault zones appears more pronounced in cases with more accurately determined positions of the earthquakes. For complex, branched structures of major fault zones, it is assumed that some of the earthquakes occur at feathering fractures of smaller scale.It is thus possible to develop a «seismological» criterion for definition of a zone of dynamic influence of faults, i.e. the zone containing the majority of earthquakes associated with the fault zone under consideration.In this publication, seismogenic structures of several fault zones located in the San-Andreas fault system are reviewed. Based on the data from a very dense network of digital seismic stations installed in this region and with application of modern data processing methods, differential coordinates of microearthquakes can be determined with errors of about first dozens of meters.It is thus possible to precisely detect boundaries of the areas wherein active deformation processes occur and to reveal spatial patterns of seismic event localization.In our analyses, data from the most comprehensive seismic catalog were used. The catalogue includes information on events which occurred and were registered in North California in the period between January 1984 and May 2003. In this publication, the seismic data processing results and regularities revealed during the analyses are compared with the data obtained from studies of fault structures, modeling and numerical simulation results. Results of quantitative research of regularities of localization of seismic sources inside fault zones are presented.It is demonstrated by 3D models that seismic events are localized in the vicinity of an almost plain surface with a nearly constant angle of dip, the majority of events being concentrated at that conventional surface.Detection of typical scopes of seismicity localization may prove critical for solution of problems of technogenic impact on fault zones

  6. Off-fault seismicity suggests creep below 10 km on the northern San Jacinto Fault (United States)

    Cooke, M. L.; Beyer, J. L.


    Within the San Bernardino basin, CA, south of the juncture of the San Jacinto (SJF) and San Andreas faults (SAF), focal mechanisms show normal slip events that are inconsistent with the interseismic strike-slip loading of the region. High-quality (nodal plane uncertainty faults [Anderson et al., 2004]. However, the loading of these normal slip events remains enigmatic because the region is expected to have dextral loading between large earthquake events. These enigmatic normal slip events may be loaded by deep (> 10 km depth) spatially creep along the northern SJF. Steady state models show that over many earthquake cycles, the dextral slip rate on the northern SJF increases southward, placing the San Bernardino basin in extension. In the absence of recent large seismic events that could produce off-fault normal focal mechanisms in the San Bernardino basin, non-uniform deep aseismic slip on the SJF could account for this seismicity. We develop interseismic models that incorporate spatially non-uniform creep below 10 km on the SJF based on steady-state slip distribution. These model results match the pattern of deep normal slip events within the San Bernardino basin. Such deep creep on the SJF may not be detectable from the geodetic signal due to the close proximity of the SAF, whose lack of seismicity suggests that it is locked to 20 km. Interseismic models with 15 km locking depth on both faults are indistinguishable from models with 10 km locking depth on the SJF and 20 km locking depth on the SAF. This analysis suggests that the microseismicity in our multi-decadal catalog may record both the interseismic dextral loading of the region as well as off-fault deformation associated with deep aseismic creep on the northern SJF. If the enigmatic normal slip events of the San Bernardino basin are included in stress inversions from the seismic catalog used to assess seismic hazard, the results may provide inaccurate information about fault loading in this region.

  7. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997-1998, 2012-2013, and 2014-2015 ENSO events (United States)

    Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.


    Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.

  8. How Faults Shape the Earth. (United States)

    Bykerk-Kauffman, Ann


    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  9. Remote triggering of fault-strength changes on the San Andreas fault at Parkfield. (United States)

    Taira, Taka'aki; Silver, Paul G; Niu, Fenglin; Nadeau, Robert M


    Fault strength is a fundamental property of seismogenic zones, and its temporal changes can increase or decrease the likelihood of failure and the ultimate triggering of seismic events. Although changes in fault strength have been suggested to explain various phenomena, such as the remote triggering of seismicity, there has been no means of actually monitoring this important property in situ. Here we argue that approximately 20 years of observation (1987-2008) of the Parkfield area at the San Andreas fault have revealed a means of monitoring fault strength. We have identified two occasions where long-term changes in fault strength have been most probably induced remotely by large seismic events, namely the 2004 magnitude (M) 9.1 Sumatra-Andaman earthquake and the earlier 1992 M = 7.3 Landers earthquake. In both cases, the change possessed two manifestations: temporal variations in the properties of seismic scatterers-probably reflecting the stress-induced migration of fluids-and systematic temporal variations in the characteristics of repeating-earthquake sequences that are most consistent with changes in fault strength. In the case of the 1992 Landers earthquake, a period of reduced strength probably triggered the 1993 Parkfield aseismic transient as well as the accompanying cluster of four M > 4 earthquakes at Parkfield. The fault-strength changes produced by the distant 2004 Sumatra-Andaman earthquake are especially important, as they suggest that the very largest earthquakes may have a global influence on the strength of the Earth's fault systems. As such a perturbation would bring many fault zones closer to failure, it should lead to temporal clustering of global seismicity. This hypothesis seems to be supported by the unusually high number of M >or= 8 earthquakes occurring in the few years following the 2004 Sumatra-Andaman earthquake.

  10. High resolution shallow imaging of the mega-splay fault in the central Nankai Trough off Kumano (United States)

    Ashi, J.


    Steep slopes are continuously developed at water depths between 2200 to 2800 m at the Nankai accretionary prism off Kumano. These slopes are interpreted to be surface expressions caused by the megasplay fault on seismic reflection profiles. The fault plane has been drilled at multiple depths below seafloor by IODP NanTroSEIZE project. Mud breccias only recognized at the hanging wall of the fault (Site C0004) by Xray CT scanner are interpreted be formed by strong ground shaking and the age of the shallowest event of mud breccia layers suggests deformation in 1944 Tonankai earthquake (Sakaguchi et al., 2011). Detailed structures around the fault have been examined by seismic reflection profiles including 3D experiments. Although the fault plane deeper than 100 m is well imaged, the structure shallower than 100 m is characterized by obscure sediment veneer suggesting no recent fault activity. Investigation of shallow deformation structures is significant for understanding of recent tectonic activity. Therefore, we carried out deep towed subbottom profile survey by ROV NSS (Navigable Sampling System) during Hakuho-maru KH-11-9 cruise. We introduced a chirp subbottom profiling system of EdgeTech DW-106 for high resolution mapping of shallow structures. ROV NSS also has capability to take a long core with a pinpoint accuracy. The subbottom profiler crossing the megasplay fault near Site C0004 exhibits a landward dipping reflector suggesting the fault plane. The shallowest depth of the reflector is about 10 m below seafloor and the strata above it shows reflectors parallel to the seafloor without any topographic undulation. The fault must have displaced the shallow formation because intense deformation indicated by mud breccia was restricted to near fault zone. Slumping or sliding probably modified the shallow formation after the faulting. The shallow deformations near the megasplay fault were well imaged at the fault scarp 20 km southwest of Site C0004. Although the

  11. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Multi-conditions (United States)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Wang, Xiaochen; Zhu, Ma


    Intelligent diagnosis system is applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing conditional functional events into ordinary DUCG to deal with spacecraft multi-conditions. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  12. Fault Predictive Control of Compact Disk Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, Mladen Victor


    Optical disc players such as CD-players have problems playing certain discs with surface faults like scratches and fingerprints. The problem is to be found in the servo controller which positions the optical pick-up, such that the laser beam is focused on the information track. A scheme handling...... this problem, called feature based control, has been presented in an other publications of the first author. This scheme is based on an assumption that the surface faults do not change from encounter to encounter. This assumption is unfortunately not entirely true. This paper proposes an improvement...... of the feature based control scheme, such that a prediction step is included. The proposed scheme is compared with the feature based control scheme, in the perspective of handling surface faults, by simulations. These simulations show the improvements given by the proposed algorithm....

  13. Tidal Sensitivity of Declustered Low Frequency Earthquake Families and Inferred Creep Episodes on the San Andreas Fault (United States)

    Babb, A.; Thomas, A.; Bletery, Q.


    Low frequency earthquakes (LFEs) are detected at depths of 16-30 km on a 150 km section of the San Andreas Fault centered at Parkfield, CA. The LFEs are divided into 88 families based on waveform similarity. Each family is thought to represent a brittle asperity on the fault surface that repeatedly slips during aseismic slip of the surrounding fault. LFE occurrence is irregular which allows families to be divided into continuous and episodic. In continuous families a burst of a few LFE events recurs every few days while episodic families experience essentially quiescent periods often lasting months followed by bursts of hundreds of events over a few days. The occurrence of LFEs has also been shown to be sensitive to extremely small ( 1kPa) tidal stress perturbations. However, the clustered nature of LFE occurrence could potentially bias estimates of tidal sensitivity. Here we re-evaluate the tidal sensitivity of LFE families on the deep San Andreas using a declustered catalog. In this catalog LFE bursts are isolated based on the recurrence intervals between individual LFE events for each family. Preliminary analysis suggests that declustered LFE families are still highly sensitive to tidal stress perturbations, primarily right-lateral shear stress (RLSS) and to a lesser extent fault normal stress (FNS). We also find inferred creep episodes initiate preferentially during times of positive RLSS.

  14. Software fault tolerance in computer operating systems (United States)

    Iyer, Ravishankar K.; Lee, Inhwan


    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  15. The magnitude distribution of earthquakes near Southern California faults (United States)

    Page, M.T.; Alderson, D.; Doyle, J.


    We investigate seismicity near faults in the Southern California Earthquake Center Community Fault Model. We search for anomalously large events that might be signs of a characteristic earthquake distribution. We find that seismicity near major fault zones in Southern California is well modeled by a Gutenberg-Richter distribution, with no evidence of characteristic earthquakes within the resolution limits of the modern instrumental catalog. However, the b value of the locally observed magnitude distribution is found to depend on distance to the nearest mapped fault segment, which suggests that earthquakes nucleating near major faults are likely to have larger magnitudes relative to earthquakes nucleating far from major faults. Copyright 2011 by the American Geophysical Union.

  16. Long Return Periods for Earthquakes in San Gorgonio Pass and Implications for Large Ruptures of the San Andreas Fault in Southern California (United States)

    Yule, J.; McBurnett, P.; Ramzan, S.


    The largest discontinuity in the surface trace of the San Andreas fault occurs in southern California at San Gorgonio Pass. Here, San Andreas motion moves through a 20 km-wide compressive stepover on the dextral-oblique-slip thrust system known as the San Gorgonio Pass fault zone. This thrust-dominated system is thought to rupture during very large San Andreas events that also involve strike-slip fault segments north and south of the Pass region. A wealth of paleoseismic data document that the San Andreas fault segments on either side of the Pass, in the San Bernardino/Mojave Desert and Coachella Valley regions, rupture on average every ~100 yrs and ~200 yrs, respectively. In contrast, we report here a notably longer return period for ruptures of the San Gorgonio Pass fault zone. For example, features exposed in trenches at the Cabezon site reveal that the most recent earthquake occurred 600-700 yrs ago (this and other ages reported here are constrained by C-14 calibrated ages from charcoal). The rupture at Cabezon broke a 10 m-wide zone of east-west striking thrusts and produced a >2 m-high scarp. Slip during this event is estimated to be >4.5 m. Evidence for a penultimate event was not uncovered but presumably lies beneath ~1000 yr-old strata at the base of the trenches. In Millard Canyon, 5 km to the west of Cabezon, the San Gorgonio Pass fault zone splits into two splays. The northern splay is expressed by 2.5 ± 0.7 m and 5.0 ± 0.7 m scarps in alluvial terraces constrained to be ~1300 and ~2500 yrs old, respectively. The scarp on the younger, low terrace postdates terrace abandonment ~1300 yrs ago and probably correlates with the 600-700 yr-old event at Cabezon, though we cannot rule out that a different event produced the northern Millard scarp. Trenches excavated in the low terrace reveal growth folding and secondary faulting and clear evidence for a penultimate event ~1350-1450 yrs ago, during alluvial deposition prior to the abandonment of the low terrace

  17. The pulsed migration of hydrocarbons across inactive faults

    Directory of Open Access Journals (Sweden)

    S. D. Harris


    Full Text Available Geological fault zones are usually assumed to influence hydrocarbon migration either as high permeability zones which allow enhanced along- or across-fault flow or as barriers to the flow. An additional important migration process inducing along- or across-fault migration can be associated with dynamic pressure gradients. Such pressure gradients can be created by earthquake activity and are suggested here to allow migration along or across inactive faults which 'feel' the quake-related pressure changes; i.e. the migration barriers can be removed on inactive faults when activity takes place on an adjacent fault. In other words, a seal is viewed as a temporary retardation barrier which leaks when a fault related fluid pressure event enhances the buoyancy force and allows the entry pressure to be exceeded. This is in contrast to the usual model where a seal leaks because an increase in hydrocarbon column height raises the buoyancy force above the entry pressure of the fault rock. Under the new model hydrocarbons may migrate across the inactive fault zone for some time period during the earthquake cycle. Numerical models of this process are presented to demonstrate the impact of this mechanism and its role in filling traps bounded by sealed faults.

  18. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Donald Sweetkind; Ronald M. Drake II


    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  19. Uncovering dynamic fault trees

    NARCIS (Netherlands)

    Junges, Sebastian; Guck, Dennis; Katoen, Joost P.; Stoelinga, Mariëlle Ida Antoinette

    Fault tree analysis is a widespread industry standard for assessing system reliability. Standard (static) fault trees model the failure behaviour of systems in dependence of their component failures. To overcome their limited expressive power, common dependability patterns, such as spare management,

  20. Fault Predictive Control of Compact Disk Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, Mladen Victor


    Optical disc players such as CD-players have problems playing certain discs with surface faults like scratches and fingerprints. The problem is to be found in the servo controller which positions the optical pick-up, such that the laser beam is focused on the information track. A scheme handling ...... of the feature based control scheme, such that a prediction step is included. The proposed scheme is compared with the feature based control scheme, in the perspective of handling surface faults, by simulations. These simulations show the improvements given by the proposed algorithm....

  1. Influence of fault steps on rupture termination of strike-slip earthquake faults (United States)

    Li, Zhengfang; Zhou, Bengang


    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  2. Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India

    Directory of Open Access Journals (Sweden)

    M. Lei


    Full Text Available We investigate whether explicit representation of the urban land surface improves the simulation of the record-breaking 24-h heavy rain event that occurred over Mumbai, India on 26 July 2005 as the event has been poorly simulated by operational weather forecasting models. We conducted experiments using the Regional Atmosphere modeling system (RAMS 4.3, coupled with and without explicit urban energy balance model-town energy budget (TEB to study the role of urban land – atmosphere interactions in modulating the heavy rain event over the Indian monsoon region. The impact of including an explicit urban energy balance on surface thermodynamic, boundary layer, and circulation changes are analyzed. The results indicate that even for this synoptically active rainfall event, the vertical wind and precipitation are significantly influenced by heterogeneity in surface temperatures due to urbanization, and the effect is more significant during the storm initiation. Interestingly, precipitation in the upwind region of Mumbai city is increased in the simulation, possibly as a feedback from the sea breeze – urban landscape convergence. We find that even with the active monsoon, the representation of urbanization contributes to local heavy precipitation and mesoscale precipitation distribution over the Indian monsoon region. Additional experiments within a statistical dynamical framework show that an urban model by itself is not the dominant factor for the enhanced rainfall for a Mumbai heavy rain event; the combination of updated SST fields using Tropical Rainfall Measurement Mission (TRMM data with the detailed representation of urban effects simulated by the TEB model created realistic gradients that successfully maintained the convergence zone over Mumbai. Further research will require more detailed morphology data for simulating weather events in such urban regions. The results suggest that urbanization can significantly contribute to extremes in

  3. Solar system fault detection (United States)

    Farrington, R.B.; Pruett, J.C. Jr.


    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  4. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  5. The use of outcrop data in fault prediction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Steen, Oeystein


    This thesis begins by describing deformation structures formed by gravitational sliding in partially lithified sediments by studying the spatial variation in frequency of deformation structures, as well as their geometries and kinematics, the sequential development of an ancient slide is outlined. This study brings to light a complex deformation history which was associated with block gliding, involving folding, listric faulting, small-scale boudinage and clastic dyke injection. The collapse deformation which is documented in the basal part of a gliding sheet is described for the first time. Further, rift-related normal faults formed in a continental sequence of normal beds are described and there is a focus on the scaling behaviour of faults in variably cemented sandstones. It is shown that the displacement population coefficients of faults are influenced by the local lithology and hence scaling of faults is not uniform on all scales and is variable in different parts of a rock volume. The scaling behaviour of small faults is linked to mechanical heterogeneities in the rock and to the deformation style. It is shown that small faults occur in an aureole around larger faults. Strain and scaling of the small faults were measured in different structural positions relative to the major faults. The local strain field is found to be variable and can be correlated with drag folding along the master faults. A modeling approach is presented for prediction of small faults in a hydrocarbon reservoir. By modeling an outcrop bedding surface on a seismic workstation, outcrop data could be compared with seismic data. Further, well data were used to test the relationships inferred from the analogue outcrops. The study shows that seismic ductile strain can be correlated with the distribution of small faults. Moreover, the use of horizontal structural well data is shown to calibrate the structural interpretation of faulted seismic horizons. 133 refs., 64 figs., 3 tabs.

  6. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake (United States)

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.


    The April 4, 2010 (Mw7.2), El Mayor-Cucapah, Baja California, Mexico, earthquake is the strongest earthquake to shake the Salton Trough area since the 1992 (Mw7.3) Landers earthquake. Similar to the Landers event, ground-surface fracturing occurred on multiple faults in the trough. However, the 2010 event triggered surface slip on more faults in the central Salton Trough than previous earthquakes, including multiple faults in the Yuha Desert area, the southwestern section of the Salton Trough. In the central Salton Trough, surface fracturing occurred along the southern San Andreas, Coyote Creek, Superstition Hills, Wienert, Kalin, and Imperial Faults and along the Brawley Fault Zone, all of which are known to have slipped in historical time, either in primary (tectonic) slip and/or in triggered slip. Surface slip in association with the El Mayor-Cucapah earthquake is at least the eighth time in the past 42 years that a local or regional earthquake has triggered slip along faults in the central Salton Trough. In the southwestern part of the Salton Trough, surface fractures (triggered slip) occurred in a broad area of the Yuha Desert. This is the first time that triggered slip has been observed in the southwestern Salton Trough.

  7. 3D Fault modeling of the active Chittagong-Myanmar fold belt, Bangladesh (United States)

    Peterson, D. E.; Hubbard, J.; Akhter, S. H.; Shamim, N.


    The Chittagong-Myanmar fold belt (CMFB), located in eastern Bangladesh, eastern India and western Myanmar, accommodates east-west shortening at the India-Burma plate boundary. Oblique subduction of the Indian Plate beneath the Burma Plate since the Eocene has led to the development of a large accretionary prism complex, creating a series of north-south trending folds. A continuous sediment record from ~55 Ma to the present has been deposited in the Bengal Basin by the Ganges-Brahmaputra-Meghna rivers, providing an opportunity to learn about the history of tectonic deformation and activity in this fold-and-thrust belt. Surface mapping indicates that the fold-and-thrust belt is characterized by extensive N-S-trending anticlines and synclines in a belt ~150-200 km wide. Seismic reflection profiles from the Chittagong and Chittagong Hill Tracts, Bangladesh, indicate that the anticlines mapped at the surface narrow with depth and extend to ~3.0 seconds TWTT (two-way travel time), or ~6.0 km. The folds of Chittagong and Chittagong Hill Tracts are characterized by doubly plunging box-shaped en-echelon anticlines separated by wide synclines. The seismic data suggest that some of these anticlines are cored by thrust fault ramps that extend to a large-scale décollement that dips gently to the east. Other anticlines may be the result of detachment folding from the same décollement. The décollement likely deepens to the east and intersects with the northerly-trending, oblique-slip Kaladan fault. The CMFB region is bounded to the north by the north-dipping Dauki fault and the Shillong Plateau. The tectonic transition from a wide band of E-W shortening in the south to a narrow zone of N-S shortening along the Dauki fault is poorly understood. We integrate surface and subsurface datasets, including topography, geological maps, seismicity, and industry seismic reflection profiles, into a 3D modeling environment and construct initial 3D surfaces of the major faults in this

  8. Pulse-Like Rupture Induced by Three-Dimensional Fault Zone Flower Structures

    KAUST Repository

    Pelties, Christian


    © 2014, Springer Basel. Faults are often embedded in low-velocity fault zones (LVFZ) caused by material damage. Previous 2D dynamic rupture simulations (Huang and Ampuero, 2011; Huang et al., 2014) showed that if the wave velocity contrast between the LVFZ and the country rock is strong enough, ruptures can behave as pulses, i.e. with local slip duration (rise time) much shorter than whole rupture duration. Local slip arrest (healing) is generated by waves reflected from the LVFZ–country rock interface. This effect is robust against a wide range of fault zone widths, absence of frictional healing, variation of initial stress conditions, attenuation, and off-fault plasticity. These numerical studies covered two-dimensional problems with fault-parallel fault zone structures. Here, we extend previous work to 3D and geometries that are more typical of natural fault zones, including complexities such as flower structures with depth-dependent velocity and thickness, and limited fault zone depth extent. This investigation requires high resolution and flexible mesh generation, which are enabled here by the high-order accurate arbitrary high-order derivatives discontinuous Galerkin method with an unstructured tetrahedral element discretization (Peltieset al., 2012). We show that the healing mechanism induced by waves reflected in the LVFZ also operates efficiently in such three-dimensional fault zone structures and that, in addition, a new healing mechanism is induced by unloading waves generated when the rupture reaches the surface. The first mechanism leads to very short rise time controlled by the LVFZ width to wave speed ratio. The second mechanism leads to generally longer, depth-increasing rise times, is also conditioned by the existence of an LVFZ, and persists at some depth below the bottom of the LVFZ. Our simulations show that the generation of slip pulses by these two mechanisms is robust to the depth extent of the LVFZ and to the position of the hypocenter

  9. Fault Detection and Isolation and Fault Tolerant Control of Wind Turbines Using Set-Valued Observers

    DEFF Research Database (Denmark)

    Casau, Pedro; Rosa, Paulo Andre Nobre; Tabatabaeipour, Seyed Mojtaba


    and Isolation (FDI) and Fault Tolerant Control (FTC) of wind turbines, by taking advantage of the recent advances in SVO theory for model invalidation. A simple wind turbine model is presented along with possible faulty scenarios. The FDI algorithm is built on top of the described model, taking into account......Research on wind turbine Operations & Maintenance (O&M) procedures is critical to the expansion of Wind Energy Conversion systems (WEC). In order to reduce O&M costs and increase the lifespan of the turbine, we study the application of Set-Valued Observers (SVO) to the problem of Fault Detection...... process disturbances, uncertainty and sensor noise. The FTC strategy takes advantage of the proposed FDI algorithm, enabling the controller reconfiguration shortly after fault events. Additionally, a robust controller is designed so as to increase the wind turbine's performance during low severity faults...

  10. Slip partitioning on the Enriquillo and Lamentin faults during the 2010 Haiti earthquake (United States)

    Saint Fleur, Newdeskarl; Feuillet, Nathalie; Grandin, Raphaël; Jacques, Éric; Weil-Accardo, Jennifer; Klinger, Yann


    A general consensus has emerged from the study of the 12 January 2010, Mw 7.0 Haiti earthquake: the coseismic rupture was complex, portraying both reverse and strike-slip motion, but lacking unambiguous surface break. Based on seismological, geodetic and geologic data, numerous slip models have been proposed for that event. However, using an incomplete fault map, the latter models were preliminary, proposing a rupture on unmapped buried faults. Here, using bathymetric data offshore Port-au-Prince along with a digital elevation model derived from LiDAR on-land, we identified the south-dipping Lamentin thrust in the Bay of Port-au-Prince. The fault prolongs on-land where it deforms active alluvial fans in the city of Carrefour. The geometry and distribution of the aftershocks of the 2010 earthquake and the analysis of the regional geology allow us to place constraints on the connection at depth between the Lamentin thrust and the sinistral strike-slip Enriquillo -Plantain Garden Fault (EPGF). Inversion of geodetic data suggests that both faults may have broken in 2010, consistently with the regional geodynamical setting. The rupture initiated along the Lamentin thrust and further propagated along the EPGF due to instantaneous unclamping at depth. The corals uplifted around the Léogâne Delta Fan, contributing to the build-up of long-term topography between the Lamentin thrust and the EPGF. The 2010 earthquake increased the stress toward failure on unruptured EPGF segments as well as on the thrust fault sitting in the middle of the city of Carrefour, in the direct vicinity of Port-au-Prince, thereby increasing the seismic hazard in these areas.

  11. Preliminary results of paleoseismic investigations of Quaternary faults on eastern Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Menges, C.M.; Oswald, J.A.; Coe, J.A.


    Site characterization of the potential nuclear waste repository at Yucca Mountain, Nevada, requires detailed knowledge of the displacement histories of nearby Quaternary faults. Ongoing paleoseismic studies provide data on the amount and rates of Quaternary activity on the Paintbrush Canyon, Bow Ridge, and Stagecoach Road faults along the eastern margin of the mountain over varying time spans of 0-700 ka to perhaps 0-30 ka, depending on the site. Preliminary stratigraphic interpretations of deposits and deformation at many logged trenches and natural exposures indicate that each of these faults have experienced from 3 to 8 surface-rupturing earthquakes associated with variable dip-slip displacements per event ranging from 5 to 115 cm, and commonly in the range of 20 to 85 cm. Cumulative dip-slip offsets of units with broadly assigned ages of 100-200 ka are typically less than 200 cm, although accounting for the effects of possible left normal-oblique slip could increase these displacements by factors of 1.1 to 1.7. Current age constraints indicate recurrence intervals of 10 4 to 10 5 years (commonly between 30 and 80 k.y.) and slip rates of 0.001 to 0.08 mm/yr (typically 0.01-0.02 mm/yr). Based on available timing data, the ages of the most recent ruptures varies among the faults; they appear younger on the Stagecoach Road Fault (∼5-20 ka) relative to the southern Paintbrush Canyon and Bow Ridge faults (∼30-100 ka)

  12. Morphology and slip rate of the Hurunui section of the Hope Fault, South Island, New Zealand

    International Nuclear Information System (INIS)

    Langridge, R.M.; Berryman, K.R.


    The Hurunui section of the Hope Fault is a newly defined, 42 km long geomorphic fault section which extends from Harper Pass to the Hope-Boyle River confluence. Reconnaissance mapping along the Hurunui section from Hope Shelter to Harper Pass provided new data on its location, geomorphology, displacement, and slip rate. More than 200 previously published field observations of dextrally and vertically displaced landforms along the fault provide data on the distribution of displacement along the fault trace. Five radiocarbon dates found in association with offset geomorphic features are presented and two new measures of dextral slip rate are calculated. At McKenzie Stream, a late Holocene fan complex is cut by the Hope Fault. Young abandoned and active channels on this surface show dextral offsets of up to 22 ± 2 m along a south-facing scarp with a height of up to 5 m. Woody litter from a unit in this complex has yielded a radiocarbon age of 2331 ± 55 yr BP and a corresponding minimum horizontal slip rate of 8.1-11.0 mm/yr. At Macs Knob, large dextral deflections of stream catchments are linked to episodes of glacial resetting of the landscape. Correlation of the offset of 'Macs stream' (166 ± 17 m) with a post-Aranuian age peat (10,782 ± 60 yr BP) yields a maximum horizontal slip rate of 13.0 ± 1.5 mm/yr. The single-event dextral displacement, based on offset stream channels at McKenzie fan, is 3.2-3.8 m (av. c. 3.4 m). The ratio of dextral to vertical slip is c. 7 ± 2:1, indicating that the Hope Fault has a dominantly strike-slip sense of motion. The average recurrence interval for the last 5-7 events (i.e., to produce 19-24 m slip at McKenzie fan) is 310-490 yr. The age of the most recent surface-rupturing earthquake at this site is not known, though felt effects, fault scaling, and landscape arguments indicate it was not the AD 1888 North Canterbury earthquake. (author). 48 refs., 10 figs., 2 tabs

  13. Broadband Ground Motion Simulations for the Puente Hills Fault System (United States)

    Graves, R. W.


    Recent geologic studies have identified the seismic potential of the Puente Hills fault system. This system is comprised of multiple blind thrust segments, a portion of which ruptured in the Mw 5.9 Whittier-Narrows earthquake. Rupture of the entire system could generate a Mw 7.2 (or larger) earthquake. To assess the potential hazard posed by the fault system, we have simulated the response for several earthquake scenarios. These simulations are unprecedented in scope and scale. Broadband (0-10 Hz) ground motions are computed at 66,000 sites, covering most of the LA metropolitan region. Low frequency (f 1 Hz) motions are calculated using a stochastic approach. We consider scenarios ranging from Mw 6.7 to Mw 7.2, including both high and low stress drop events. Finite-fault rupture models for these scenarios are generated following a wavenumber filtering technique (K-2 model) that has been calibrated against recent earthquakes. In all scenarios, strong rupture directivity channels large amplitude pulses of motion directly into the Los Angeles basin, which then propagate southward as basin surface waves. Typically, the waveforms near downtown Los Angeles are dominated by a strong, concentrated pulse of motion. At Long Beach (across the LA basin from the rupture) the waveforms are dominated by late arriving longer period surface waves. The great density of sites used in the calculation allows the construction of detailed maps of various ground motion parameters (PGA, PGV, SA), as well as full animations of the propagating broadband wave field. Additionally, the broadband time histories are available for use in non-linear response analyses of built structures.

  14. Stacking fault growth of FCC crystal: The Monte-Carlo simulation approach

    International Nuclear Information System (INIS)

    Jian Jianmin; Ming Naiben


    The Monte-Carlo method has been used to simulate the growth of the FCC (111) crystal surface, on which is presented the outcrop of a stacking fault. The comparison of the growth rates has been made between the stacking fault containing surface and the perfect surface. The successive growth stages have been simulated. It is concluded that the outcrop of stacking fault on the crystal surface can act as a self-perpetuating step generating source. (author). 7 refs, 3 figs

  15. A finite difference method for off-fault plasticity throughout the earthquake cycle (United States)

    Erickson, Brittany A.; Dunham, Eric M.; Khosravifar, Arash


    We have developed an efficient computational framework for simulating multiple earthquake cycles with off-fault plasticity. The method is developed for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial effects captured through the radiation-damping approximation. Both rate-independent plasticity and viscoplasticity are considered, where stresses are constrained by a Drucker-Prager yield condition. The off-fault volume is discretized using finite differences and tectonic loading is imposed by displacing the remote side boundaries at a constant rate. Time-stepping combines an adaptive Runge-Kutta method with an incremental solution process which makes use of an elastoplastic tangent stiffness tensor and the return-mapping algorithm. Solutions are verified by convergence tests and comparison to a finite element solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magnitude and off-fault extent of plastic strain that develops over many ruptures. If hardening is included, plastic strain saturates after the first event and the response during subsequent ruptures is effectively elastic. For viscoplasticity without hardening, however, successive ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the shallow sub-surface is diminished compared to slip accumulated at depth during interseismic loading. The evolution of this slip deficit with each subsequent event, however, is dictated by the plasticity model. Integration of the off-fault plastic strain from the viscoplastic model reveals that a significant amount of tectonic offset is accommodated by inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget).

  16. Map and Data for Quaternary Faults and Fault Systems on the Island of Hawai`i (United States)

    Cannon, Eric C.; Burgmann, Roland; Crone, Anthony J.; Machette, Michael N.; Dart, Richard L.


    Introduction This report and digitally prepared, GIS-based map is one of a series of similar products covering individual states or regions of United States that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. It is part of a continuing the effort to compile a comprehensive Quaternary fault and fold map and database for the United States, which is supported by the U.S. Geological Survey's (USGS) Earthquake Hazards Program. Guidelines for the compilation of the Quaternary fault and fold maps for the United States were published by Haller and others (1993) at the onset of this project. This compilation of Quaternary surface faulting and folding in Hawai`i is one of several similar state and regional compilations that were planned for the United St