WorldWideScience

Sample records for surface facility operations

  1. Design and operational considerations of United States commercial nea-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, Sandra M.

    1997-01-01

    Low-level radioactive waste disposal standards and techniques in the United States have evolved significantly since the early 1960's. Six commercial LLW disposal facilities(Barnwell, Richland, Ward Valley, Sierra Blanca, Wake County and Boyd County) operated and proposed between 1962 and 1997. This report summarizes each site's design and operational considerations for near-surface disposal of low-level radioactive waste. These new standards and mitigating efforts at closed facilities (Sheffield, Maxey Flats, Beatty and West Valley) have helped to ensure that the public has been safely protected from LLW. 15 refs

  2. Improvement of safety approach for accident during operation of LILW disposal facility: Application for operational safety assessment of the near-surface LILW disposal facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Kim, Min Seong; Park, Jin Beak [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2017-06-15

    To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classifcation logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper.

  3. Improvement of safety approach for accident during operation of LILW disposal facility: Application for operational safety assessment of the near-surface LILW disposal facility in Korea

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Kim, Min Seong; Park, Jin Beak

    2017-01-01

    To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classifcation logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper

  4. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    Directory of Open Access Journals (Sweden)

    M. V. Vedernikova

    2017-01-01

    Full Text Available This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on data collected during operation of near-surface disposal facilities for short-lived intermediate-, lowand very low-level waste in France, as well as nearsurface disposal facilities for long-lived waste in Russia. Further analysis of occupational and public doses calculated at the design stage was completed covering a near-surface disposal facility in Belgium and deep disposal facilities in the United Kingdom and the Nizhne-Kansk rock massive (Russia. The results show that engineering and technical solutions enable almost complete elimination of internal occupational exposure, whereas external exposure doses would fall within the range of values typical for a basic nuclear facility. Conclusion: radioactive waste disposal facilities being developed, constructed and operated meet the safety requirements effective in the Russian Federation and consistent with relevant international recommendations. It has been found that individual occupational exposure doses commensurate with those received by personnel of similar facilities abroad. Furthermore, according to the forecasts, mean individual doses for personnel during radioactive waste disposal would be an order of magnitude lower than the dose limit of 20 mSv/year. As for the public exposure, during normal operation, potential impact is virtually impossible by delaminating boundaries of a nuclear facility sanitary protection zone inside which the disposal facility is located and can be solely attributed to the use

  5. Designing Facilities for Collaborative Operations

    Science.gov (United States)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  6. Fuel conditioning facility electrorefiner cadmium vapor trap operation

    International Nuclear Information System (INIS)

    Vaden, D. E.

    1998-01-01

    Processing sodium-bonded spent nuclear fuel at the Fuel Conditioning Facility at Argonne National Laboratory-West involves an electrometallurgical process employing a molten LiCl-KCl salt covering a pool of molten cadmium. Previous research has shown that the cadmium dissolves in the salt as a gas, diffuses through the salt layer and vaporizes at the salt surface. This cadmium vapor condenses on cool surfaces, causing equipment operation and handling problems. Using a cadmium vapor trap to condense the cadmium vapors and reflux them back to the electrorefiner has mitigated equipment problems and improved electrorefiner operations

  7. Impacts of Continuous Electron Beam Accelerator Facility operations on groundwater and surface water: Appendix 9

    International Nuclear Information System (INIS)

    Lee, D.W.

    1986-04-01

    The operation of the proposed Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, is expected to result in the activation and subsequent contamination of water resources in the vicinity of the accelerator. Since the proposed site is located in the headwaters of the watershed supplying Big Bethel Reservoir, concern has been expressed about possible contamination of water resources used for consumption. Data characterizing the surface water and groundwater regime in the site area are limited. A preliminary geotechnical investigation of the site has been completed (LAW 1985). This investigation concluded that groundwater flow is generally towards the southeast at an estimated velocity of 2.5 m/y. This conclusion is based on groundwater and soil boring data and is very preliminary in nature. This analysis makes use of the data and conclusions developed during the preliminary geotechnical investigation to provide an upper-bound assessment of radioactive contamination from CEBAF operations. A site water balance was prepared to describe the behavior of the hydrologic environment that is in close agreement with the observed data. The transport of contamination in the groundwater regime is assessed using a one-dimensional model. The groundwater model includes the mechanisms of groundwater flow, groundwater recharge, radioactive decay, and groundwater activation. The model formulation results in a closed-form, exact, analytic solution of the concentration of contamination in the groundwater. The groundwater solution is used to provide a source term for a surface-water analysis. The surface-water and groundwater models are prepared for steady state conditions such that they represent conservative evaluations of CEBAF operations

  8. Near-surface facilities for disposal radioactive waste from non-nuclear application

    International Nuclear Information System (INIS)

    Barinov, A.

    2000-01-01

    The design features of the near-surface facilities of 'Radon', an estimation of the possible emergency situations, and the scenarios of their progress are given. The possible safety enhancing during operation of near-surface facilities, so called 'Historical facilities', and newly developed ones are described. The Moscow SIA 'Radon' experience in use of mobile module plants for liquid radioactive waste purification and principal technological scheme of the plant are presented. Upgrading of the technological scheme for treatment and conditioning of radioactive waste for new-developed facilities is shown. The main activities related to management of spent ionizing sources are mentioned

  9. Technical considerations in the design of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    2001-11-01

    Good design is an important step towards ensuring operational as well as long term safety of low and intermediate level waste (LILW) disposal. The IAEA has produced this report with the objective of outlining the most important technical considerations in the design of near surface disposal facilities and to provide some examples of the design process in different countries. This guidance has been developed in light of experience gained from the design of existing near surface disposal facilities in a range of Member States. In particular the report provide information on design objective, design requirements, and design phases. The report focuses on: near surface disposal facilities accepting solidified LILW; disposal facilities on or just below the ground surface, where the final protective covering is of the order of a few metres thick; and disposal facilities several tens of metres below the ground surface (including rock cavern type facilities)

  10. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  11. Initial operation of the Holifield facility

    International Nuclear Information System (INIS)

    Ball, J.B.

    1982-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new Pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility

  12. Initial operation of the Holifield Facility

    International Nuclear Information System (INIS)

    Ball, J.B.

    1983-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility

  13. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  14. Engineered surface barriers for waste disposal sites: lysimeter facility design and construction

    International Nuclear Information System (INIS)

    Phillips, S.J.; Ruben, M.S.; Kirkham, R.R.

    1988-01-01

    A facility to evaluate performance of engineered surface carriers for confinement of buried wastes has been designed, constructed, and operations initiated. The Field Lysimeter Test Facility is located at the US Department of Energy's Hanford Site in Richland, Washington. The facility consists of 18 one-dimensional drainage and weighing lysimeters used to evaluate 7 replicated barrier treatments. Distinct layers of natural earth materials were used to construct layered soil and rock barriers in each lysimeter. These barrier designs are capable in principal of significantly reducing or precluding infiltration of meteoric water through barriers into underlying contaminated zones. This paper summarizes salient facility design and construction features used in testing of the Hanford Site's engineered surface barriers

  15. ANDRA's Centre de l'Aube: Design, construction, operation of a state of the art surface disposal facility for low and intermediate level waste

    International Nuclear Information System (INIS)

    Potier, J.M.

    2001-01-01

    The ANDRA's Centre de I'Aube disposal facility for low and intermediate level radioactive waste may be considered as a state-of-the-art repository. Since its implementation in the early nineties, the French facility has been used as a model by many countries worldwide for the surface disposal of radioactive waste. The disposal concept developed by ANDRA, the French Radioactive Waste Management Agency, consists of a multiple-barrier system designed to isolate radioactivity and provide protection to the public and to the environment. Waste operations at ANDRA's Centre de I'Aube are largely automated to ensure better protection to site workers. The paper reviews all aspects of the repository implementation: siting, design, construction, operation and future closure, and environmental monitoring. (author)

  16. APET methodology for Defense Waste Processing Facility: Mode C operation

    International Nuclear Information System (INIS)

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF

  17. Operating procedures: Fusion Experiments Analysis Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, R.A.; Carey, R.W.

    1984-03-20

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility.

  18. Operating procedures: Fusion Experiments Analysis Facility

    International Nuclear Information System (INIS)

    Lerche, R.A.; Carey, R.W.

    1984-01-01

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility

  19. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  20. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  1. Facility design, construction, and operation

    International Nuclear Information System (INIS)

    1995-04-01

    France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l'Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l'Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, including uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec's contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides' all of the basic information in these areas and reflects actual experience to date

  2. SARDA: An Integrated Concept for Airport Surface Operations Management

    Science.gov (United States)

    Gupta, Gautam; Hoang, Ty; Jung, Yoon Chul

    2013-01-01

    The Spot and Runway Departure Advisor (SARDA) is an integrated decision support tool for airlines and air traffic control tower enabling surface collaborative decision making (CDM) and departure metering in order to enhance efficiency of surface operations at congested airports. The presentation describes the concept and architecture of the SARDA as a CDM tool, and the results from a human-in-the-loop simulation of the tool conducted in 2012 at the FutureFlight Central, the tower simulation facility. Also, presented is the current activities and future plan for SARDA development. The presentation was given at the meeting with the FAA senior advisor of the Surface Operations Office.

  3. Facility approach to tokamak operation

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Gabbard, W.A.

    1981-01-01

    In anticipation of the appearance of more advanced tokamaks and other fusion relevant experiments, program has been established at ORNL to systemically identify the requirements of an effective machine operations group. This program is presently applied to the ISX-B experiment. With its continuing development, it is expected to provide major support in the identification of potential problem areas and to assist in the generation of the necessary procedures for forthcoming devices. The present and future generations of large plasma devices will function as facilities, operated by an operations group as service to the plasma physicists and diagnosticians. The purpose of the program discussed here is to develop and to encourage an orderly transition to the facility-like style of operation

  4. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  5. Defense waste processing facility radioactive operations. Part 1 - operating experience

    International Nuclear Information System (INIS)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge trademark level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs

  6. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    International Nuclear Information System (INIS)

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage

  7. Maintenance, repair and operation (MRO) of shutdown facilities

    International Nuclear Information System (INIS)

    Kenny, S.

    2006-01-01

    What level of maintenance does one apply to a shutdown facility? Well it depends on who you ask. Operations staff sees facilities that have completed their useful life cycle as a cost drain while Decommissioning staff sees this as the start of a new life cycle. Based on the decommissioning plan for the particular facility the building could complete another full life cycle while under decommissioning whether it is in storage with surveillance mode or under active decommissioning. This paper will explore how you maintain a facility and systems for many years after its useful life until final decommissioning is completed. When a building is declared redundant, who looks after it until the final decommissioning end state is achieved? At the AECL, Chalk River Labs site the safe shutdown and turnover process is one key element that initiates the decommissioning process. The real trick is orchestrating maintenance, repair and operation plans for a facility that has been poorly invested in during its last years of useful life cycle. To add to that usually shutdowns are prolonged for many years beyond the expected turnover period. During this presentation I will cover what AECL is doing to ensure that the facilities are maintained in a proper state until final decommissioning can be completed. All facilities or systems travel through the same life cycle, design, construction, commissioning, operation, shutdown and demolition. As we all know, nuclear facilities add one more interesting twist to this life cycle called Decommissioning that lands between shutdown and demolition. As a facility nears the shutdown phase, operations staff loose interest in the facility and stop investing in upgrades, repairs and maintenance but continue to invest and focus on maximizing operations. Facility maintenance standards produced by the International Facility Maintenance Association (IFMA) based on a survey done every year state that 2.2% of the total operating costs for the site should be

  8. High level waste facilities - Continuing operation or orderly shutdown

    International Nuclear Information System (INIS)

    Decker, L.A.

    1998-04-01

    Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed

  9. Establishment and Operation of User Facilities

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Kye Ryung

    2008-05-01

    PEFP(Proton Engineering Frontier Project) has launched on a new enterprise to develop the technologies for the future relating to the proton beam and spin-off technologies in 2002. PEFP planned to supply 20MeV and 100MeV proton beam by the development of the 100MeV, 20mA linear accelerator during ten years from 2002 to 2012. The final goal of this project is establishment of 20MeV and 100MeV user facilities. To do this, we must develop the key technologies for establishing user facilities. Before the main facilities are normally operated, we have established the test user facilities to support various kinds of users' basic experiments and pilot studies. The necessity of this research are as follows; - Domestic achievement of key technologies for the development and design of the user facilities for the several tens to hundreds MeV class high current proton beam - Beam application researches can be revitalized and improved the efficiency by the establishment and operation of user facilities and test facilities. - Ion implantation facilities have contributed to increase Industrial applications - It is more effective in saving money that users use the PEFP's user facility than other country's user facilities. - It is possible to contribute to the local society and commercialize the beam application technologies by the establishment of PEFP's research branch in Kyungju

  10. Development of cloud-operating platform for detention facility design

    Science.gov (United States)

    Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping

    2017-04-01

    In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.

  11. PROJECTIZING AN OPERATING NUCLEAR FACILITY

    International Nuclear Information System (INIS)

    Adams, N

    2007-01-01

    This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully

  12. Performance confirmation operation of water environment control facility

    International Nuclear Information System (INIS)

    Magome, Hirokatsu; Okada, Yuji; Tomita, Kenji; Iida, Kazuhiro; Ando, Hitoshi; Yonekawa, Akihisa; Ueda, Haruyasu; Hanawa, Hiroshi; Kanno, Masaru; Sakuta, Yoshiyuki

    2015-09-01

    In Japan Atomic Energy Agency, in order to solve the problem in the long-term operation of a light water reactor, preparation which does the irradiation experiment of light-water reactor fuel and material was advanced. JMTR stopped after the 165th operation cycle in August 2006, and is advancing renewal of the irradiation facility towards re-operation. The material irradiation test facility was installed from 2008 fiscal year to 2012 fiscal year in JMTR. The material irradiation test facility is used for IASCC study, and consists of mainly three equipments. This report described performance operating test of the water environmental control facilities for IASCC study carried out 2013 fiscal year. (author)

  13. Facility design, installation and operation

    International Nuclear Information System (INIS)

    Fleischmann, A.W.

    1985-01-01

    Problems that may arise when considering the design, construction and use of a facility that could contain up to tens of petabecquerel of either cobalt-60 or caesium-137 are examined. The safe operation of an irradiation facility depends on an appreciation of the in built safety systems, adequate training of personnel and the existence of an emergency system

  14. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.; Torres-Vidal, C.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators

  15. Fuel Supply Shutdown Facility Interim Operational Safety Requirements

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2000-01-01

    The Interim Operational Safety Requirements for the Fuel Supply Shutdown (FSS) Facility define acceptable conditions, safe boundaries, bases thereof, and management of administrative controls to ensure safe operation of the facility

  16. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-01-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. The authors emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities

  17. ASAM - The international programme on application of safety assessment methodologies for near surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.

    2002-01-01

    The IAEA has launched a new Co-ordinated Research Project (CRP) on Application of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ASAM). The CRP will focus on the practical application of the safety assessment methodology, developed under the ISAM programme, for different purposes, such as developing design concepts, licensing, upgrading existing repositories, reassessment of operating disposal facilities. The overall aim of the programme is to assist safety assessors, regulators and other specialists involved in the development and review of safety assessment for near surface disposal facilities in order to achieve transparent, traceable and defendable evaluation of safety of these facilities. (author)

  18. Operation of post-irradiation examination facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ka; Park, Kwang Joon; Jeon, Yong Bum [and others; Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    In 1995, the post-irradiation examination (PIE) of nuclear fuels was performed as follows. The relation between burnup and top nozzle spring force of fuel assembly was obtained by measuring the holddown spring force on the Kori-1 reactor fuel assemblies. The resonance ultrasonic test for inspection of defect and moisture in fuel rod was carried out on fuel rods of C15 and J14 assemblies, and the change of fuel rod condition by storing in pool has been analyzed on the intentionally defected fuel rods (ID-C and ID-L) as well as intact fuel rod (1-2) by NDT in ht cell. The oxide layer thickness on cladding surface of J44-L12 fuel rod was measured by NDT method and metallography to reveal the oxidation as a function of temperature in the fuel rod, and the burnup of J44 fuel assembly was measured by chemical analysis. HVAC system and pool water treatment system of the PIE facility were continuously operated for air filtration and water purification. The monitoring of radiation and pool water in PIE facility has been carried out to maintain the facility safety, and electric power supply system was checked and maintained to supply the electric power to the facility normally. The developed measurement techniques of oxide layer thickness on fuel rod cladding and holddown spring force of top nozzle in fuel assembly were applied to examine the nuclear fuels. Besides, a radiation shielding glove box was designed and a hot cell compressor for volume reduction of radioactive materials was fabricated. 19 tabs., 38 figs., 7 refs. (Author) .new.

  19. Remote operation and maintenance demonstration facility at ORNL

    International Nuclear Information System (INIS)

    Harvey, H.W.; Floyd, S.D.; Kuban, D.P.; Singletary, B.H.; Stradley, J.G.

    1978-01-01

    The Remote Operation and Maintenance Facility is a versatile facility arranged to mock up various hot cell configurations. Modular units of simulated shielding and viewing windows were built to provide flexibility in arrangement. The facility is fully equipped with hoists, manipulators, television, and other basic equipment and services necessary to provide capability for both remote operation and maintenance of several selected functional process equipment groups

  20. Decommissioning high-level waste surface facilities

    International Nuclear Information System (INIS)

    1978-04-01

    The protective storage, entombment and dismantlement options of decommissioning a High-Level Waste Surface Facility (HLWSF) was investigated. A reference conceptual design for the facility was developed based on the designs of similar facilities. State-of-the-art decommissioning technologies were identified. Program plans and cost estimates for decommissioning the reference conceptual designs were developed. Good engineering design concepts were on the basis of this work identified

  1. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-10-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  2. Remote Operation and Maintenance Demonstration Facility at ORNL

    International Nuclear Information System (INIS)

    Harvey, H.W.; Floyd, S.D; Kuban, D.P.; Singletary, B.H.; Stradley, J.G.

    1978-01-01

    The Remote Operation and Maintenance Facility is a versatile facility arranged to mock-up various hot-cell configurations. Modular units of simulated shielding and viewing windows were built to provide flexibility in arrangement. The facility is fully equipped with hoists, manipulators, television, and the other basic equipment and services necessary to provide capability for both remote operation and maintenance of several selected functional process equipment groups. 6 figures

  3. Construction and operational experiences of engineered barrier test facility for near surface disposal of LILW

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Se Moon; Kim, Chang Lak

    2003-01-01

    Engineered barrier test facility is specially designed to demonstrate the performance of engineered barrier system for the near-surface disposal facility under the domestic environmental conditions. Comprehensive measurement systems are installed within each test cell. Long-and short-term monitoring of the multi-layered cover system can be implemented according to different rainfall scenarios with artificial rainfall system. Monitoring data on the water content, temperature, matric potential, lateral drainage and percolation of cover-layer system can be systematically managed by automatic data acquisition system. The periodic measurement data are collected and will be analyzed by a dedicated database management system, and provide a basis for performance verification of the disposal cover design

  4. Enhanced operator-training simulator for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Schrader, F.D.; Swanson, C.D.

    1983-01-01

    The FFTF Plant Operator Training Simulator Facility has proven to be a valuable asset throughtout the testing, startup and early operational phases of the Fast Flux Test facility. However, limitations inherent in the existing simulation facility, increased emphasis on the required quality of operator training, and an expanded scope of applications (e.g., MNI development) justify an enhanced facility. Direct use of plant operators in the development of improved reactor control room displays and other man/machine interface equipment and procedures increases the credibility of proposed techniques and reported results. The FFTF Plant Operator Training Simulator provides a key element in this development program

  5. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  6. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  7. The operation of post-irradiation examination facility

    International Nuclear Information System (INIS)

    Kim, Eun Ka; Min, Duk Ki; Lee, Young Kil

    1994-12-01

    The operation of post-irradiation examination facility was performed as follow. HVAC and pool water treatment system were continuously operated, and radiation monitoring in PIE facility has been carried out to maintain the facility safely. Inspection of the fuel assembly (F02) transported from Kori Unit 1 was performed in pool, and fuel rods extracted from the fuel assembly (J44) of Kori Unit 2 NPP were examined in hot cell. A part of deteriorated pipe line of drinking water was exchanged for stainless steel pipe to prevent leaking accidents. Halon gas system was also installed in the exhausting blower room for fire fighting. And IAEA inspection camera for safeguard of nuclear materials was fixed at the wall in pool area. Radiation monitoring system were improved to display the area radioactive value at CRT monitor in health physics control room. And automatic check system for battery and emergency diesel generator was developed to measure the voltage and current of them. The performance test of oxide thickness measuring device installed in hot cell for irradiated fuel rod and improvement of the device were performed, and good measuring results using standard sample were obtained. The safeguard inspection of nuclear materials and operation inspection of the facility were carried out through the annual operation inspection, quarterly IAEA inspection and quality assurance auditing. 26 tabs., 43 figs., 14 refs. (Author) .new

  8. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  9. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  10. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  11. Identification of facility constraints that impact transportation operations

    International Nuclear Information System (INIS)

    Peterson, R.W.; Pope, R.B.

    1990-01-01

    As Federal waste Management Systems (FWMS) receiving facilities become available, the US Department of Energy (DOE) intends to begin accepting spent nuclear fuel from US utilities for eventual permanent disposal. Transporting the radioactive spent fuel to the repository will require development of a complex network of equipment, services, and operations personnel that will comprise the Transportation Operations System. This paper identifies and discusses, in a qualitative manner, the key reactor facility constraints that will eventually need to be assessed in detail on a site-specific basis to guide the development of the FWMS transportation cask fleet. This evaluation of constraints is needed to assess their impact on the size, composition, availability, and use of the cask fleet and to assist in the development of the transportation system support facilities such as a cask maintenance facility. Such assessment will also be needed to support decisions on modifying shipping facilities (i.e., reactors), identification and design of interface hardware, and on the designs of receiving facilities

  12. Insights from the Probabilistic Safety Assessment Application to Subsurface Operations at the Preclosure Facilities

    International Nuclear Information System (INIS)

    Hwang, Mee Jeong; Jung, Jong Tae

    2009-01-01

    In this paper, we present the insights obtained through the PSA (Probabilistic Safety Assessment) application to subsurface operation at the preclosure facilities of the repository. At present, medium-low level waste repository has been constructed in Korea, and studies for disposal of high level wastes are under way. Also, safety analysis for repository operation has been performed. Thus, we performed a probabilistic safety analysis for surface operation at the preclosure facilities with PSA methodology for a nuclear power plant. Since we don't have a code to analyze the waste repository safety analysis, we used the codes, AIMS (Advanced Information Management System for PSA) and FTREX (Fault Tree Reliability Evaluation eXpert) which are developed for a nuclear power plant's PSA to develop ET (Event Tree) and FT (Fault Tree), and to quantify for an example analysis

  13. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  14. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  15. Spent nuclear fuel project cold vacuum drying facility operations manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  16. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  17. Design, Fabrication, and Initial Operation of a Reusable Irradiation Facility

    International Nuclear Information System (INIS)

    Heatherly, D.W.; Thoms, K.R.; Siman-Tov, I.I.; Hurst, M.T.

    1999-01-01

    A Heavy-Section Steel Irradiation (HSSI) Program project, funded by the US Nuclear Regulatory Commission, was initiated at Oak Ridge National Laboratory to develop reusable materials irradiation facilities in which metallurgical specimens of reactor pressure vessel steels could be irradiated. As a consequence, two new, identical, reusable materials irradiation facilities have been designed, fabricated, installed, and are now operating at the Ford Nuclear Reactor at the University of Michigan. The facilities are referred to as the HSSI-IAR facilities with the individual facilities being designated as IAR-1 and IAR-2. This new and unique facility design requires no cutting or grinding operations to retrieve irradiated specimens, all capsule hardware is totally reusable, and materials transported from site to site are limited to specimens only. At the time of this letter report, the facilities have operated successfully for approximately 2500 effective full-power hours

  18. Establishment and operation of a photovoltaic cell test facility

    Energy Technology Data Exchange (ETDEWEB)

    Pearsall, N.M.; Forbes, I.

    1999-07-01

    This report describes the setting up of a test facility at the University of Northumbria. Details of the equipment specification and procurement are given, and the commissioning and initial operation of the facility, and the measurement procedures for I-V characteristics, spectral response measurements, optical scanning and test charges are outlined. The business plan for the test facility is discussed, and operating experience is reviewed in terms of publicity, services provided, and collaboration.

  19. Operator bosonization on Riemann surfaces: new vertex operators

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1989-01-01

    A new formalism is proposed for the construction of an operator theory of generalized ghost systems (bc theories of spin J) on Riemann surfaces (loop diagrams of the theory of closed strings). The operators of the bc system are expressed in terms of operators of the bosonic conformal theory on a Riemann surface. In contrast to the standard bosonization formulas, which have meaning only locally, operator Baker-Akhiezer functions, which are well defined globally on a Riemann surface of arbitrary genus, are introduced. The operator algebra of the Baker-Akhiezer functions generates explicitly the algebraic-geometric τ function and correlation functions of bc systems on Riemann surfaces

  20. Operating manual for the critical experiments facility

    International Nuclear Information System (INIS)

    1986-01-01

    The operation of the Critical Experiments Facility (CEF) requires careful attention to procedures in order that all safety precautions are observed. Since an accident could release large amounts of radioactivity, careful operation and strict enforcement of procedures are necessary. To provide for safe operation, detailed procedures have been written for all phases of the operation of this facility. The CEF operating procedures are not to be construed to constitute a part ofthe Technical Specifications. In the event of any discrepancy between the information given herein and the Technical Specifications, limits set forth in the Technical Specifications apply. All normal and most emergency operation conditions are covered by procedures presented in this manual. These procedures are designed to be followed by the operating personnel. Strict adherence to these procedures is expected for the following reasons. (1) To provide a standard, safe method of performing all operations, the procedures were written by reactor engineers experienced in supervising the operation of reactors and were reviewed by an organization with over 30 years of reactor operating experience. (2) To have an up-to-date description of operating techniques available at all times for reference and review, it is necessary that the procedures be written

  1. Operating manual for the critical experiments facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The operation of the Critical Experiments Facility (CEF) requires careful attention to procedures in order that all safety precautions are observed. Since an accident could release large amounts of radioactivity, careful operation and strict enforcement of procedures are necessary. To provide for safe operation, detailed procedures have been written for all phases of the operation of this facility. The CEF operating procedures are not to be construed to constitute a part ofthe Technical Specifications. In the event of any discrepancy between the information given herein and the Technical Specifications, limits set forth in the Technical Specifications apply. All normal and most emergency operation conditions are covered by procedures presented in this manual. These procedures are designed to be followed by the operating personnel. Strict adherence to these procedures is expected for the following reasons. (1) To provide a standard, safe method of performing all operations, the procedures were written by reactor engineers experienced in supervising the operation of reactors and were reviewed by an organization with over 30 years of reactor operating experience. (2) To have an up-to-date description of operating techniques available at all times for reference and review, it is necessary that the procedures be written.

  2. Spent Nuclear Fuel Project Cold Vacuum Drying Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, (Cold Vacuum Drying Facility Design Requirements), Rev. 4. and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  3. Optimum operation of a small power production facility

    Energy Technology Data Exchange (ETDEWEB)

    Capehart, B.L.; Mahoney, J.F.; Sivazlian, B.D.

    1983-09-01

    To help reduce the U.S.A.'s dependence on imported oil for electrical power generation, the 1978 National Energy Act established regulations to promote construction and operation of cogeneration and small power production facilities. Many of these facilities are presently under construction, with a great number planned. This paper examines the operation of a small power production facility with on-site generation and storage, on-site use, and connection to an electric utility grid system for the purpose of both selling excess power and buying power. It is assumed that the buying and selling price of electricity varies frequently during the day and that the relevant price and demand data may be accurately projected into the near future. With this system description, a mathematical model is formulated and solved by linear programming to obtain a series of periodic buy and sell decisions so as to maximize the profit from operating the small power production facility. Results are presented to illustrate the methodology for determining potential profits.

  4. Annual Report of Radioactive Waste Facilities Operation in 2013

    Institute of Scientific and Technical Information of China (English)

    DU; Hong-ming; GAO; Zhi-gang; LIU; Fu-guo

    2013-01-01

    301,a section of Department of Radiochemistry,which manages 15 facilities and undertakes the administrative tasks of radioactive waste,is the important guarantee of scientific research production and safety in CIAE.1 The safe operation of the radioactive waste management facilities In 2013,in order to ensure the operation safety,we formulated the inspection regulations,which included regular operation inspection,week safety inspection from the leaders of the section and

  5. An overview of technical requirements on durable concrete production for near surface disposal facilities for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Tello, Cledola Cassia Oliveira de

    2013-01-01

    Radioactive waste can be generated by a wide range of activities varying from activities in hospitals to nuclear power plants, to mines and mineral processing facilities. General public have devoted nowadays considerable attention to the subject of radioactive waste management due to heightened awareness of environmental protection. The preferred strategy for the management of all radioactive waste is to contain it and to isolate it from the accessible biosphere. The Federal Government of Brazil has announced the construction for the year of 2014 and operation for the year of 2016 of a near surface disposal facility for low and intermediate level radioactive waste. The objective of this paper is to provide an overview of technical requirements related to production of durable concrete to be used in near surface disposal facilities for radioactive waste concrete structures. These requirements have been considered by researchers dealing with ongoing designing effort of the Brazilian near surface disposal facility. (author)

  6. 26 CFR 1.132-7 - Employer-operated eating facilities.

    Science.gov (United States)

    2010-04-01

    ... Employer-operated eating facilities. (a) In general—(1) Condition for exclusion—(i) General rule. The value... dining room or cafeteria in which meals are served is treated as a separate eating facility, whether each such dining room or cafeteria has its own kitchen or other food-preparation area. (2) Employer-operated...

  7. Operation manual for the INEL on-line mass-separator facility

    International Nuclear Information System (INIS)

    Anderl, R.A.

    1984-06-01

    This report is an operation manual for an on-line mass-separator facility which is located in Building 661 at the Test Reactor Area of the Idaho National Engineering Laboratory. The facility provides mass-separated sources of short-lived fission-product radionuclides whose decay properties can be studied using a variety of nuclear spectroscopic techniques. This facility is unique in that it utilizes the gas-jet technique to transport fission products from a 252 Cf source located in a hot cell to the ion source of the mass separator. This document includes the following: (a) a detailed description of the facility, (b) identification of equipment hazards and safety controls, (c) detailed operating procedures for startup, continuous operation and shutdown, (d) operating procedures for the californium hot cell, and (e) an operator's manual for the automated moving tape collector/data acquisition system. 7 references, 16 figures, 8 tables

  8. French en engineering and operation rules for plutonium facilities

    International Nuclear Information System (INIS)

    Bertolotti, G.; Drain, F.; Dubois, G.; Monnatte, J.; Mathieu, P.

    1998-01-01

    COGEMA is operating large size purifying and conditioning plutonium facilities at LA HAGUE and MOX fuels fabrication plant at Marcoule. A high safety standard is recognised for these facilities. It is mainly based on : - prevention of spreading of radioactive materials to workers and environment by physical barriers ensuring static containment and by a cascade of pressure differentials ensuring dynamic containment, - radiation shielding and remote controlled processes ensuring very low dose to workers, - prevention of criticality accident by criticality control methods and double contingency principle, - prevention of fire risks by control of ignition sources, adequate management of combustible materials, physical separation between zones where there is a risk of fire and the remainder of the facility. The facilities are operated while respecting safety requirements as described in the General Operating Rules. The equipment involved in safety functions are monitored and periodically checked. Continuous improvement by incorporation of feed back of safety experience results in: - effective decrease of exposure to operating staff; - reduction of solid waste, liquid and gaseous effluents; - no significant incident recorded. (author)

  9. Suspension, abandonment, decontamination, and surface land reclamation of upstream oil and gas facilities : informational letter IL 98-2

    International Nuclear Information System (INIS)

    1998-01-01

    This release of the Alberta Energy and Utilities Board (EUB) is intended to clarify the jurisdictional roles of Alberta Environmental Protection (AEP) and the EUB with regard to their respective responsibilities for the regulation of the suspension, abandonment, decontamination and surface land reclamation of active and inactive upstream oil and gas facilities. The EUB, AEP and industrial operators all have separate roles and responsibilities when active and inactive upstream facilities are suspended or reclaimed. In the future, industry operators will have more interaction with the AEP during the decontamination of a site, while the EUB will concentrate on pollution prevention and abandonment of non-economic facilities. All oilfield waste generated from suspension, abandonment, decontamination, and surface land reclamation of an active or inactive upstream oil and gas facility will fall under the jurisdiction of the EUB. Contaminated soils, sludges, and waters that are physically removed as a result of decontamination activities are considered to be oilfield wastes. The regulatory responsibility between the AEP and the EUB remains unchanged for the reclamation process of on-lease and off-lease spills, releases or pipeline breaks. Industry operators are no longer allowed to discharge any produced liquid to earthen pits or ponds and are encouraged to reclaim existing ones. 3 figs

  10. Construction and operation of an improved radiation calibration facility at Brookhaven National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1994-10-01

    Calibration of instruments used to detect and measure ionizing radiation has been conducted over the last 20 years at Brookhaven National Laboratory's (BNL) Radiation Calibration Facility, Building 348. Growth of research facilities, projects in progress, and more stringent Department of Energy (DOE) orders which involve exposure to nuclear radiation have placed substantial burdens on the existing radiation calibration facility. The facility currently does not meet the requirements of DOE Order 5480.4 or American National Standards Institute (ANSI) N323-1978, which establish calibration methods for portable radiation protection instruments used in the detection and measurement of levels of ionizing radiation fields or levels of radioactive surface contaminations. Failure to comply with this standard could mean instrumentation is not being calibrated to necessary levels of sensitivity. The Laboratory has also recently obtained a new neutron source and gamma beam irradiator which can not be made operational at existing facilities because of geometry and shielding inadequacies. These sources are needed to perform routine periodic calibrations of radiation detecting instruments used by scientific and technical personnel and to meet BNL's substantial increase in demand for radiation monitoring capabilities. To place these new sources into operation, it is proposed to construct an addition to the existing radiation calibration facility that would house all calibration sources and bring BNL calibration activities into compliance with DOE and ANSI standards. The purpose of this assessment is to identify potential significant environmental impacts associated with the construction and operation of an improved radiation calibration facility at BNL

  11. Assessment of surface contamination level in an operating uranium ore processing facility of Jaduguda, India

    International Nuclear Information System (INIS)

    Meena, J.S.; Patnaik, R.L.; Jha, V.N.; Sahoo, S.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Radiological concern of the occupational workers and the area is given priority over other safety issue in confirmation with the stipulated guideline of national regulatory agency (AERB/FEFCF/SG-2, 2007). The key concern from the radiological hazard evaluation point of view is air activity, external gamma level and surface contamination. Present investigations was carried out to ascertain the surface contamination level of uranium ore processing facility at Jaduguda, Jharkhand. For a low grade uranium ore processing industry surface contamination is a major concern in product precipitation and recovery section. In view of this, the ore processing plant can broadly be classified into three areas i.e. ion exchange area, precipitation and product recovery section and other areas. The monitoring results incorporate the level of surface contamination of the plant during the last five years. The geometric mean activity of surface contamination level was 31.1, 34.5 and 9.8 Bq dm -2 in ion exchange, product precipitation and recovery and other areas with GSD of 2, 2.5 and 1.9. In most of the cases the surface contamination level was well within the recommended limit of 100 Bq dm -2 for M class uranium compound. Occasional cases of surface contamination levels exceeding the recommended limit were addressed and areas were decontaminated. Based on the study, modification in the design feature of the surface of the finished product section was also suggested so that the decontamination procedure can be more effectively implemented

  12. Report on operation of nuclear facilities in 1991

    International Nuclear Information System (INIS)

    1992-06-01

    The Slovenian Nuclear Safety Administration (SNSA) prepared a report on nuclear safety in the republic of Slovenia in 1991 as part of its regular practice of reporting on its work to the Government and the National Assembly of the Republic of Slovenia. The report is divided into three thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activity of international missions in Slovenia and the operation of nuclear facilities around the world.

  13. Radiological dose assessment from the operation of Daeduk nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Choi, Young Gil [Korea Atomic Energy Research Institute, Taejon (Korea)

    2000-02-01

    The objective of this project is to assure the public acceptance for nuclear facilities, and the environmental safety from the operation of Daeduk nuclear facilities, such as HANARO research reactor, nuclear fuel processing facilities and others. For identifying the integrity of their facilities, the maximum individual doses at the site boundary and on the areas with high population density were assessed. Also, the collective doses within radius 80 km from the site were assessed. The radiation impacts for residents around the site from the operation of Daeduk nuclear facilities in 1999 were neglectable. 8 refs., 10 figs., 27 tabs. (Author)

  14. Operating procedures for the Pajarito Site Critical Assembly Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1983-03-01

    Operating procedures consistent with DOE Order 5480.2, Chapter VI, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Pajarito Site Critical Assembly Facility of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1973 and apply to any criticality experiment performed at the facility

  15. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  16. 30 CFR 71.404 - Application for waiver of surface facilities requirements.

    Science.gov (United States)

    2010-07-01

    ... requirements. 71.404 Section 71.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS... Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a...

  17. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  18. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    International Nuclear Information System (INIS)

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology

  19. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Byrne

    2000-07-25

    This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M&O (1998a).

  20. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY

    International Nuclear Information System (INIS)

    C.J. Byrne

    2000-01-01

    This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M andO] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M andO (1998a)

  1. Fuel supply shutdown facility interim operational safety requirements

    International Nuclear Information System (INIS)

    Besser, R.L.; Brehm, J.R.; Benecke, M.W.; Remaize, J.A.

    1995-01-01

    These Interim Operational Safety Requirements (IOSR) for the Fuel Supply Shutdown (FSS) facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls to ensure safe operation. The IOSRs apply to the fuel material storage buildings in various modes (operation, storage, surveillance)

  2. Effect of facility on the operative costs of distal radius fractures.

    Science.gov (United States)

    Mather, Richard C; Wysocki, Robert W; Mack Aldridge, J; Pietrobon, Ricardo; Nunley, James A

    2011-07-01

    The purpose of this study was to investigate whether ambulatory surgery centers can deliver lower-cost care and to identify sources of those cost savings. We performed a cost identification analysis of outpatient volar plating for closed distal radius fractures at a single academic medical center. Multiple costs and time measures were taken from an internal database of 130 consecutive patients and were compared by venue of treatment, either an inpatient facility or an ambulatory, stand-alone surgery facility. The relationships between total cost and operative time and multiple variables, including fracture severity, patient age, gender, comorbidities, use of bone graft, concurrent carpal tunnel release, and surgeon experience, were examined, using multivariate analysis and regression modeling to identify other cost drivers or explanatory variables. The mean operative cost was considerably greater at the inpatient facility ($7,640) than at the outpatient facility ($5,220). Cost drivers of this difference were anesthesia services, post-anesthesia care unit, and operating room costs. Total surgical time, nursing time, set-up, and operative times were 33%, 109%, 105%, and 35% longer, respectively, at the inpatient facility. There was no significant difference between facilities for the additional variables, and none of those variables independently affected cost or operative time. The only predictor of cost and time was facility type. This study supports the use of ambulatory stand-alone surgical facilities to achieve efficient resource utilization in the operative treatment of distal radius fractures. We also identified several specific costs and time measurements that differed between facilities, which can serve as potential targets for tertiary facilities to improve utilization. Economic and Decisional Analysis III. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Development of operation control expert system for off-site facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Masaaki

    1988-09-01

    Concerning off-site facilities of oil refinary, changes of facilities and equipment are frequently made in order to cope flexibly with the market trends and changes of the social environment. In addition, it is desirable to introduce computerization into control and manipulation of off-site facilities for its fast, safe and sure operation. In order to achieve the above, against the existing exclusively control-oriented system, it is necessary to add the processing and generating functions to combinations between valves to be shut and piping as well as equipment to be used along the whole extent of the oil flow in the system and to add the function which makes verification of the above functions easy through a dialogue between users and the system. In order to realize the above, Cosmo Oil and Yokokawa Denki developed jointly an operation control expert system for off-site facilities and the system started its actual operation from October 1986. This article is an outline of the system. The result of its actual operation for one and a half years since its inception showed that the system was operated only by the staff responsible for the operation of the facilities, the workload was reduced to 1/3-1/4 of the workload before the adoption of the system and absolutely no omission of work nor mistake was experienced. (2 figs)

  4. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-02

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  5. Developing operating procedures for a low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  6. Developing operating procedures for a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G.

    1993-10-01

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures

  7. Storage fee analysis for a retrievable surface storage facility

    International Nuclear Information System (INIS)

    Field, B.B.; Rosnick, C.K.

    1973-12-01

    Conceptual design studies are in progress for a Water Basin Concept (WBC) and an alternative Sealed Storage Cask Concept (SSCC) of a Retrievable Surface Storage Facility (RSSF) intended as a Federal government facility for storing high-level radioactive wastes until a permanent disposal method is established. The RSSF will be a man-made facility with a design life of at least 100 y, and will have capacity to store all of the high-level waste from the reprocessing of nuclear power plant spent fuels generated by the industry through the year 2000. This report is a basic version of ARH-2746, ''Retrievable Surface Storage Facility, Water Basin Concept, User Charge Analysis.'' It is concerned with the issue of establishing a fee to cover the cost of storing nuclear wastes both in the RSSF and at the subsequent disposal facility. (U.S.)

  8. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C.; Rokni, Sayed H.; /SLAC; Vylet, Vaclav; /Jefferson Lab

    2009-12-11

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power ({approx} 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  9. Operational Radiation Protection in Synchrotron Light and Free Electron Laser Facilities

    International Nuclear Information System (INIS)

    Liu, James C.; Rokni, Sayed H.; Vylet, Vaclav

    2009-01-01

    The 3rd generation synchrotron radiation (SR) facilities are storage ring based facilities with many insertion devices and photon beamlines, and have low injection beam power (< few tens of watts), but extremely high stored beam power (∼ 1 GW). The 4th generation x-ray free electron laser (FEL) facilities are based on an electron Linac with a long undulator and have high injection beam power (a few kW). Due to its electron and photon beam characteristics and modes of operation, storage ring and photon beamlines have unique safety aspects, which are the main subjects of this paper. The shielding design limits, operational modes, and beam losses are first reviewed. Shielding analysis (source terms and methodologies) and interlocked safety systems for storage ring and photon beamlines (including SR and gas bremsstrahlung) are described. Specific safety issues for storage ring top-off injection operation and FEL facilities are discussed. The operational safety program, e.g., operation authorization, commissioning, training, and radiation measurements, for SR facilities is also presented.

  10. Facility Operations 1993 fiscal year work plan: WBS 1.3.1

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO{sub 3}) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP).

  11. Facility Operations 1993 fiscal year work plan: WBS 1.3.1

    International Nuclear Information System (INIS)

    1992-11-01

    The Facility Operations program is responsible for the safe, secure, and environmentally sound management of several former defense nuclear production facilities, and for the nuclear materials in those facilities. As the mission for Facility Operations plants has shifted from production to support of environmental restoration, each plant is making a transition to support the new mission. The facilities include: K Basins (N Reactor fuel storage); N Reactor; Plutonium-Uranium Reduction Extraction (PUREX) Plant; Uranium Oxide (UO 3 ) Plant; 300 Area Fuels Supply (N Reactor fuel supply); Plutonium Finishing Plant (PFP)

  12. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  13. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    Science.gov (United States)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  14. Training manual for process operation and management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J. S.; Kim, K. J.; Ahn, S. J. [and others

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure.

  15. Training manual for process operation and management of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure

  16. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  17. 78 FR 29393 - University of Missouri-Columbia Facility Operating License No. R-103

    Science.gov (United States)

    2013-05-20

    ... Facility Operating License No. R-103 AGENCY: Nuclear Regulatory Commission. ACTION: License renewal... the renewal of Facility Operating License No. R-103 (``Application''), which currently authorizes the... application for the renewal of Facility Operating License No. R-103, which, currently authorizes the licensee...

  18. Establishment and Operation of User Facilities

    International Nuclear Information System (INIS)

    Kim, Kye Ryung; Park, B. S.; Lim, Y. K.; Lee, S. K.; Jung, J. P.

    2005-08-01

    The final goal of this project is to establish the proton beam user facility which can offer the suitable proton beam for the user's demand. In the first phase we developed the key technologies that were required for the establishment of 20MeV and 100MeV proton user facilities. The user's demand survey was also achieved, and the test user facility was established on the results of the demand survey. Using the test facility, the users performed their pilot studies. Now, we have finished the conceptual design for 20MeV proton user facility. During the first phase we performed the user's demand survey and produced many materials related to the proton beam utilizations in domestic or abroad. The survey results were reflected on the establishment of the test user facility and the conceptual design of 20MeV/100MeV proton beam user facilities. We have developed the key technologies which concern to beam energy control, flux control, uniform irradiation, dose and uniformity measurement, proton energy measurement, SOBP(Spread-out Bragg Peak) system using a rotating range modulator, and carried out the conceptual design of 20MeV proton user facility. The test user facility has been constructed and operated for both verifying the developed key technologies and performing the user's preliminary experiments. 45MeV low flux user facility was constructed in 2003 and has performed a lot of irradiation experiments. The development of 1.8MeV test user facility was completed. Also the low energy user facility that KAERI kept was upgraded and used for many users. Therefore, we provided our users with various beams. On the other hand, the following activities were carried out, such as, inviting the oversea researchers, giving support to users to use the beam in domestic and abroad, discussing the beam utilization technologies by visiting the foreign user facilities, etc

  19. First operations of the LNS heavy ions facility

    International Nuclear Information System (INIS)

    Calabretta, L.; Ciavola, G.; Cuttone, G.; Gammino, S.; Gmaj, P.; Migneco, E.; Raia, G.; Rifuggiato, D.; Rovelli, A.; Sura, J.; Scuderi, V.; Acerbi, E.; Alessandria, F.; Bellomo, G.; Bosotti, A.; Martinis, C. de; Giove, D.; Michelato, P.; Pagani, C.; Rossi, L.

    1996-01-01

    A heavy ion facility is now available at laboratorio nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15 MV HVEC tandem and a K=800 superconducting cyclotron as booster. During the last year, the facility came into operation. A 58 Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported. (orig.)

  20. Operational status of nuclear facilities in Japan. 2012 edition

    International Nuclear Information System (INIS)

    2012-01-01

    This document is a compilation which provides an outline of the administration of nuclear facility safety regulations as well as various data including operational status, the status of periodical and safety inspections, the status of issues, and radiation management on nuclear power reactor facilities, reactor facilities in the research and development stage, and fabrication, reprocessing, disposal, and storage facilities in fiscal year 2011 (from April 2011 to March 2012). (J.P.N.)

  1. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  2. Operating a production facility without a CO and O agreement

    International Nuclear Information System (INIS)

    Smith, M. R.

    2000-01-01

    Issues that arise when an oil or natural gas facility is operated without a specific construction, ownership and operating (CO and O) agreement was explored. The lack of such an agreement may be due to the parties' inability to reach agreement, reliance on the land operating agreement, or the lack of diligent follow-up on the drafting, revision and execution of operating agreements. The paper examines the nature of ownership interests that obtain in the absence of a CO and O, the common situation in respect to CO and O agreements where the document has been circulated but has not been signed by the owners. A number of actual cases were cited to illustrate the effects of such an omission. It was concluded that ideally, a fully executed CO and O for each facility which deals specifically with the owners involved with the particular facility is the best of all worlds. However given the nature of some facilities, the expense, time and effort required to prepare and execute a separate CO and O, it is frequently omitted; in such situations it is convenient to fall back on the 1990 Operating Procedure of CAPL, which while general in nature and cannot adequately deal with every situation, deals with many common problems associated with the operation of facilities. It is recommended that even if a complete CO and O agreement cannot be executed, interim binding agreements should be used to avoid uncertainty until such time as a complete agreement can be finalized. A clause-by-clause comparison of the 1990 CAPL Operating Procedure and a 1996 model CO and O agreement, prepared by the Petroleum Joint Venture Association (PJVA), is appended

  3. Operating experience of steam generator test facility

    International Nuclear Information System (INIS)

    Sureshkumar, V.A.; Madhusoodhanan, G.; Noushad, I.B.; Ellappan, T.R.; Nashine, B.K.; Sylvia, J.I.; Rajan, K.K.; Kalyanasundaram, P.; Vaidyanathan, G.

    2006-01-01

    Steam Generator (SG) is the vital component of a Fast Reactor. It houses both water at high pressure and sodium at low pressure separated by a tube wall. Any damage to this barrier initiates sodium water reaction that could badly affect the plant availability. Steam Generator Test Facility (SGTF) has been set up in Indira Gandhi Centre for Atomic Research (IGCAR) to test sodium heated once through steam generator of 19 tubes similar to the PFBR SG dimension and operating conditions. The facility is also planned as a test bed to assess improved designs of the auxiliary equipments used in Fast Breeder Reactors (FBR). The maximum power of the facility is 5.7 MWt. This rating is arrived at based on techno economic consideration. This paper covers the performance of various equipments in the system such as Electro magnetic pumps, Centrifugal sodium pump, in-sodium hydrogen meters, immersion heaters, and instrumentation and control systems. Experience in the system operation, minor modifications, overall safety performance, and highlights of the experiments carried out etc. are also brought out. (author)

  4. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  5. Operating Cigeo

    International Nuclear Information System (INIS)

    Launeau, F.

    2016-01-01

    The CIGEO facility dedicated to the geological disposal of high- and intermediate-level radioactive wastes will be composed of 2 parts: an underground facility at a depth of 500 m to dispose the waste packages in tunnels and a surface facility to take delivery of the wastes and prepare the packages. The underground facility will be built progressively and will cover a surface of 15 km 2 at the end of Cigeo operating-life. A large part of the surface facility (located a few km away from the waste reception place) will be dedicated to the works led deep underground to build the tunnels and will receive drilling cuttings. The article describes also the ramp and carts to lead waste packages underground. Most of the operations will be automated. The definitive closure of the tunnels will be made with swelling clay and concrete plugs. (A.C.)

  6. Technological Advances, Human Performance, and the Operation of Nuclear Facilities

    Science.gov (United States)

    Corrado, Jonathan K.

    Many unfortunate and unintended adverse industrial incidents occur across the United States each year, and the nuclear industry is no exception. Depending on their severity, these incidents can be problematic for people, the facilities, and surrounding environments. Human error is a contributing factor in many such incidents. This dissertation first explored the hypothesis that technological changes that affect how operators interact within the systems of the nuclear facilities exacerbate the cost of incidents caused by human error. I conducted a review of nuclear incidents in the United States from 1955 through 2010 that reached Level 3 (serious incident) or higher on the International Nuclear Events Scale (INES). The cost of each incident at facilities that had recently undergone technological changes affecting plant operators' jobs was compared to the cost of events at facilities that had not undergone changes. A t-test determined a statistically significant difference between the two groups, confirming the hypothesis. Next, I conducted a follow-on study to determine the impact of the incorporation of new technologies into nuclear facilities. The data indicated that spending more money on upgrades increased the facility's capacity as well as the number of incidents reported, but the incident severity was minor. Finally, I discuss the impact of human error on plant operations and the impact of evolving technology on the 21st-century operator, proposing a methodology to overcome these challenges by applying the systems engineering process.

  7. First operations of the LNS heavy ions facility

    Energy Technology Data Exchange (ETDEWEB)

    Calabretta, L. [INFN-LNS, Catania (Italy); Ciavola, G. [INFN-LNS, Catania (Italy); Cuttone, G. [INFN-LNS, Catania (Italy); Gammino, S. [INFN-LNS, Catania (Italy); Gmaj, P. [INFN-LNS, Catania (Italy); Migneco, E. [INFN-LNS, Catania (Italy); Raia, G. [INFN-LNS, Catania (Italy); Rifuggiato, D. [INFN-LNS, Catania (Italy); Rovelli, A. [INFN-LNS, Catania (Italy); Sura, J. [INFN-LNS, Catania (Italy); Scuderi, V. [INFN-LNS, Catania (Italy); Acerbi, E. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Alessandria, F. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Bellomo, G. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Bosotti, A. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Martinis, C. de [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Giove, D. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Michelato, P. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Pagani, C. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy); Rossi, L. [INFN-sezione di Milano (Italy)]|[Univ. degli studi di Milano, Lab. LASA (Italy)

    1996-11-11

    A heavy ion facility is now available at laboratorio nazionale del Sud (LNS) of Catania. It can deliver beams with an energy up to 100 MeV/amu. The facility is based on a 15 MV HVEC tandem and a K=800 superconducting cyclotron as booster. During the last year, the facility came into operation. A {sup 58}Ni beam delivered by the tandem has been radially injected in the SC and then has been accelerated and extracted at 30 MeV/amu. In this paper the status of the facility together with the experience gained during the commissioning will be extensively reported. (orig.).

  8. Operation technology of the ventilation system of the radioactive waste treatment facility(II) - Design and operation note

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Lee, B. C.; Bae, S. M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    As the radioactive waste treatment work, such as compaction and/or solidification of wastes, are done directly by the workers in the Radioactive Waste Treatment Facility, the reasonable design and operation of the ventilation system is essential. In this report, the design criteria and specification of the ventilation equipment, system operation method are described for the effective design and operation of ventilation system in the radioactive waste treatment facility. And the anti-vibration work which was done in the Radioactive Waste Treatment Facility in KAERI to reduce the effect of vibration due to the continuous operation of big rotational equipment, the intake fans and the exhaust fans, are described in the report. 11 refs., 10 figs., 12 tabs. (Author)

  9. Confirming competence of operators - A regulatory approach to fuel cycle facilities

    International Nuclear Information System (INIS)

    Vesely, M.; Sigetich, J.

    2013-01-01

    For the past 40 years the Canadian Nuclear Safety Commission (CNSC), formerly the Atomic Energy Control Board, has certified workers in nuclear facilities. The requirement for certified personnel has ensured that workers assigned to positions that have a direct impact on the safe operation of the facility are fully qualified to perform their duties. This certification regime is defined in the regulatory framework under which the CNSC operates. Traditionally, this certification regime has been applied to Reactor Operators, Shift Supervisors and Health Physicists in Nuclear Power Plants and research reactors as well as to Exposure Device Operators who use nuclear substances for the purposes of industrial radiography. Stemming from progress made in implementing risk-informed regulatory oversight activities as well as a formal suggestion from the International Atomic Energy Agency - International Regulatory Review Service (IRRS) conducted on the CNSC in 2009, a regulatory approach to confirming the competence of Operators at Fuel Cycle Facilities has been initiated by CNSC staff. In the first stage of the implementation of this new regulatory approach, the CNSC had Cameco Corporation implement a formal internal qualification programme for the UF6 Operators at its Port Hope Conversion Facility (PHCF) in Port Hope, Ontario. In the future, following a review of the results of the qualification programme at the PHCF, the CNSC staff will evaluate the need for the application of a similar regulatory approach to confirm the competence of the Operators at other Fuel Cycle Facilities in Canada. (authors)

  10. Design and operation of the Surry Radwaste Facility

    International Nuclear Information System (INIS)

    Morris, L.L.; Halverson, W.C.

    1993-01-01

    In September 1991, Virginia Power started processing radioactive waste with a new Radwaste Facility at the Surry Power Station near Norfolk, Virginia. The Surry Radwaste Facility (SRF) was designed to process and store liquid waste, laundry waste, dry active waste, radioactive filters and spent ion-exchange resin. It also provides on-site decontamination services and a fully equipped hot machine shop. The NRC has recognized that the amount of planning and design, and the attention to detail, that was expended on the SRF Project in order to minimize personnel exposure and ensure efficient operation, is a licensee strength. Through its first year of operation, the facility has proven very successful. Using evaporation and demineralization, over 30 million liters of liquid have been released with no chemical impurities or detectable radioactivity (excluding tritium). Over 623,000 liters of concentrated boric acid waste liquid have been processed with the Bitumen Solidification System yielding 139,880 liters (660 drums) of low level Class A-Stable waste. Additional economic benefits will be realized as the effectiveness of the processing systems continues to improve due to increased operational experience and ergonomics

  11. Bubbling surface operators and S-duality

    International Nuclear Information System (INIS)

    Gomis, Jaume; Matsuura, Shunji

    2007-01-01

    We construct smooth asymptotically /ADS solutions of Type IIB supergravity corresponding to all the half-BPS surface operators in N = 4 SYM. All the parameters labeling a half-BPS surface operator are identified in the corresponding bubbling geometry. We use the supergravity description of surface operators to study the action of the SL(2,Z) duality group of N 4 SYM on the parameters of the surface operator, and find that it coincides with the recent proposal by Gukov and Witten in the framework of the gauge theory approach to the geometrical Langlands with ramification. We also show that whenever a bubbling geometry becomes singular that the path integral description of the corresponding surface operator also becomes singular

  12. Surface Operations Systems Improve Airport Efficiency

    Science.gov (United States)

    2009-01-01

    With Small Business Innovation Research (SBIR) contracts from Ames Research Center, Mosaic ATM of Leesburg, Virginia created software to analyze surface operations at airports. Surface surveillance systems, which report locations every second for thousands of air and ground vehicles, generate massive amounts of data, making gathering and analyzing this information difficult. Mosaic?s Surface Operations Data Analysis and Adaptation (SODAA) tool is an off-line support tool that can analyze how well the airport surface operation is working and can help redesign procedures to improve operations. SODAA helps researchers pinpoint trends and correlations in vast amounts of recorded airport operations data.

  13. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  14. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual; FINAL

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B-Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  15. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  16. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    OpenAIRE

    J. Kujanpää; N. Kalakoski

    2015-01-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSA...

  17. Radiation dose evaluation based on exposure scenario during the operation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun; Kim Chang Lak; Choi, Heui Joo; Park, Joo Wan

    1999-01-01

    Radiation dose to worker in disposal facility was calculated by using point kernel MICROSHIELD V5.02 computer code based on exposure scenarios. An conceptual design model for disposal vaults in disposal facility was used for object of shielding calculation model. Selected radionuclides and their activities among radioactive wastes from nuclear power plants were assumed as radiation sources for the exposure calculation. Annual radiation doses to crane workers and to people working on disposal vaults were calculated according to exposure time and distance from the sources with conservative operation scenarios. The scenarios used for this study were based on assumption for representing disposal activities in a future Korean near surface disposal facility. Calculated exposure rates to worker during normal disposal work were very low comparing with annual allowable limit for radiation worker

  18. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    Energy Technology Data Exchange (ETDEWEB)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  19. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  20. The operation of post-irradiation examination facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Ka; Park, Kwang Jun; Lee, Won Sang [and others; Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-01-01

    The operation and management of PIE facility was executed in 1993. An indigenous 16 x 16 PWR type fuel assembly (ID No. J44) which was discharged from Kori unit 2 power reactor was transported to KAERI`s PIE facility and in-pool nondestructive examination and hot cell examination for the fuel were carried out. Because the above-mentioned 16 x 16 fuel is different from 14 x 14 fuel in its size and array of fuel rods, several examination and handling equipment for the 16 x 16 type fuel were designed and fabricated. PIE facility was operated in normal condition with the periodical check and inspection of the devices. The filter housing on the roof hood in chemical analysis hot cell was modified mounting air pressure gauge to indicate the optimal filter exchanging time. The burst air heating coil plate and the broken blowing fan of the HVAC system were repaired. The defaced grand packing in pool water circulation pump was replaced with the mechanical seal to prevent the leakage from the pump shaft sealing. The radiation monitoring in the facility was carried out to maintain the safe working condition and several radiation monitors were repaired. Spare parts for the radiation monitoring system were prepared to maintain the facility safely. The performance test of the emergency electric power supply system including UPS, battery and diesel generator was carried out. Oxide layer thickness measuring device for the performance test. Several devices including spent fuel handling equipment for the 17 x 17 PWR type fuel assembly were designed and fabricated for the subsequent PIE of nuclear fuels. 35 tabs., 17 figs., 7 refs. (Author) .new.

  1. Site selection report basalt waste isolation program near-surface test facility

    International Nuclear Information System (INIS)

    Sharpe, S.D.

    1978-01-01

    A site selection committee was established to review the information gathered on potential sites and to select a site for the Near-Surface Test Facility Phase I. A decision was made to use a site on the north face of Gable Mountain located on the Hanford Site. This site provided convenient access to the Pomona Basalt Flow. This flow was selected for use at this site because it exhibited the characteristics established in the primary criteria. These criteria were: the flows thickness; its dryness; its nearness to the surface; and, its similarities to basalt units which are candidates for the repository. After the selection of the Near-Surface Test Facility Phase I Site, the need arose for an additional facility to demonstrate safe handling, storage techniques, and the physical effects of radioactive materials on an in situ basalt formation. The committee reviewed the sites selected for Phase I and chose the same site for locating Phase II of the Near-Surface Test Facility

  2. Recent operational experiments at the LANSCE facility

    Energy Technology Data Exchange (ETDEWEB)

    Rybarcyk, Lawrence J [Los Alamos National Laboratory

    2010-09-15

    The Los Alamos Neutron Science Center (LANSCE) consists of a pulsed 800-MeV room-temperature linear accelerator and an 800-MeV accumulator ring. It simultaneously provides H{sup +} and H{sup -} beams to several user facilities that have their own distinctive requirements, e.g. intensity, chopping pattern, duty factor, etc.. This multibeam operation presents challenges both from the standpoint of meeting the individual requirements but also achieving good overall performance for the integrated operation. Various aspects of more recent operations including the some of these challenges will be discussed.

  3. Design and operations at the National Tritium Labelling Facility

    International Nuclear Information System (INIS)

    Morimoto, H.; Williams, P.G.

    1991-09-01

    The National Tritium Labelling Facility (NTLF) is a multipurpose facility engaged in tritium labeling research. It offers to the biomedical research community a fully equipped laboratory for the synthesis and analysis of tritium labeled compounds. The design of the tritiation system, its operations and some labeling techniques are presented

  4. 7 CFR 70.110 - Requirements for sanitation, facilities, and operating procedures in official plants.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Requirements for sanitation, facilities, and operating... Requirements for sanitation, facilities, and operating procedures in official plants. (a) The requirements for sanitation, facilities, and operating procedures in official plants shall be the applicable provisions stated...

  5. Report on operation of nuclear facilities in Slovenia in 1991

    International Nuclear Information System (INIS)

    1992-11-01

    Slovenian Nuclear Safety Administration (SNSA) is responsible for: nuclear safety, transport of nuclear and radioactive materials, safeguarding nuclear materials, and conducting regulatory process related to liability for nuclear damage, qualification and training of operators at nuclear facilities, quality assurance and inspection of nuclear facilities. The major nuclear facility supervised by SNSA is the Nuclear Power Plant in Krsko with a pressurized water reactor of 632 MW electric power. Beside the nuclear power plant, TRIGA Mark 11 Research Reactor of 250 kW thermal power operates within the Reactor Center of Jozef Stefan Institute. There is an interim storage of low and medium radioactive waste at the Reactor Center. Also the Uranium mine Zirovski Vrh was supervised by SNSA. All the nuclear power facilities in Republic of Slovenia were operating safely in 1991. There were no significant events that could be evaluated as a safety problem or a breach of technical specifications. A great part of activities of SNSA was focused on the next visit of the IAEA OSART team (Operational Safety Assessment Review Team) in Krsko Nuclear Power Plant and on the visit of the INSARR mission (Integrated Safety Assessment of Research Reactors) for the TRIGA Mark 11 Research Reactor. (author)

  6. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  7. Operator-machine interface at a large laser-fusion facility

    International Nuclear Information System (INIS)

    Sutton, J.G.; Howell, J.A.

    1982-01-01

    The operator-machine interface at the Antares Laser Facility provides the operator with a means of controlling the laser system and obtaining operational and performance information. The goal of this interface is to provide an operator with access to the control system in a comfortable way, and to facilitate meeting operational requirements. We describe the philosophy and requirements behind this interface, the hardware used in building it, and the software environment

  8. Facility operations transparency and remote monitoring

    International Nuclear Information System (INIS)

    Beddingfield, David

    2006-01-01

    Remote monitoring technologies offer many opportunities, not only to strengthen IAEA safeguards, but also to improve national, industrial and local oversight of various nuclear operations. Remote monitoring benefits in greater timeliness, reduced inspector presence and improved state-of-health awareness are well-known attributes. However, there is also the capability to organize data into a comprehensive knowledge of the 'normal operating envelope' of a facility. In considering future applications of remote monitoring there is also a need to develop a better understanding of the potential cost-savings versus higher up-front costs and potential long-term maintenance or upgrade costs. (author)

  9. Decommissioning of the nuclear licensed facilities at the Fontenay aux Roses CEA Center; cleanup of nuclear licensed facility 57 and monitoring of operations and operating feedback

    International Nuclear Information System (INIS)

    Estivie, D.; Bohar, M.P.; Jeanjacques, M.; Binet, C.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.

    2008-01-01

    This is a summary of the program for the decommissioning of all the CEA Licensed Nuclear Facilities in Fontenay aux Roses. The particularity of this center is now it is located in a built-up area. It is presented like example the operations to clean up the equipment of the Nuclear Licensed Facility 57 (NLF 57). Due to the diversity of the research and development work carried out on the reprocessing of spent fuel in it, this installation is emblematic of many of the technical and organizational issues liable to be encountered in the final closure of nuclear facilities. It was developed a method applied to establish the multi-annual budget, monitor the progress of operations and integrate, as work continues, the operating feedback. (author)

  10. Microcomputer simulation model for facility performance assessment: a case study of nuclear spent fuel handling facility operations

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Otis, P.T.

    1985-10-01

    A microcomputer based simulation model was recently developed at the Pacific Northwest Laboratory (PNL) to assist in the evaluation of design alternatives for a proposed facility to receive, consolidate and store nuclear spent fuel from US commercial power plants. Previous performance assessments were limited to deterministic calculations and Gantt chart representations of the facility operations. To insure that the design of the facility will be adequate to meet the specified throughput requirements, the simulation model was used to analyze such factors as material flow, equipment capability and the interface between the MRS facility and the nuclear waste transportation system. The simulation analysis model was based on commercially available software and application programs designed to represent the MRS waste handling facility operations. The results of the evaluation were used by the design review team at PNL to identify areas where design modifications should be considered. 4 figs

  11. Techniques for controlling air pollution from the operation of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    1966-03-01

    This manual is provided for the guidance of those persons or authorities who are responsible for the organization, control and operation of ventilation systems and air-cleaning installations in nuclear establishments. It is intended to generalize about existing experience in the operation of such systems at nuclear facilities including reactors and laboratories for production, use and handling of radionuclides and other toxic materials. This manual will provide designers and operators of nuclear facilities in which ventilation and air-cleaning systems are used with the factors which have to be considered to create safe working conditions inside facilities and without polluting the atmosphere or the environment to a hazardous level. Refs, 24 figs, 5 tabs.

  12. Remotely operated facility for in situ solidification of fissile uranium

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Collins, E.D.; Patton, B.D.

    1986-01-01

    A heavily shielded, remotely operated facility, located within the Radiochemical processing Plant at Oak Ridge National Laboratory (ORNL), has been designed and is being operated to convert approx.1000 kg of fissile uranium (containing approx.75% 235 U, approx.10% 233 U, and approx.140 ppM 232 U) from a nitrate solution (130 g of uranium per L) to a solid oxide form. This project, the Consolidated Edison Uranium Solidification Program (CEUSP), is being carried out in order to prepare a stable uranium form for longterm storage. This paper describes the solidification process selected, the equipment and facilities required, the experimental work performed to ensure successful operation, some problems that were solved, and the initial operations

  13. Consideration of Criteria for a Conceptual Near Surface Radioactive Waste disposal Facility in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nderitu, Stanley Werugia; Kim, Changlak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures. This study will present an approach for establishing radiological waste acceptance criteria using a safety assessment methodology and illustrate some of its application in establishing limits on the total activity and the activity concentrations of radioactive waste to be disposed in a conceptual near surface disposal facility in Kenya. The approach will make use of accepted methods and computational schemes currently used in assessing the safety of near surface disposal facilities. The study will mainly focus on post-closure periods. The study will employ some specific inadvertent human intrusion scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. The specific performance assessments will use modified scenarios and data to establish acceptable disposal concentrations for specific disposal sites and conditions. Safety and environmental impacts assessments is required in the post-closure phase to support particular decisions in development, operation, and closure of a near surface repository.

  14. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  15. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  16. Operational experiences and upgradation of waste management facilities Trombay, India

    International Nuclear Information System (INIS)

    Chander, Mahesh; Bodke, S.B.; Bansal, N.K.

    2001-01-01

    Full text: Waste Management Facilities Trombay provide services for the safe management of radioactive wastes generated from the operation of non power sources at Bhabha Atomic Research Centre, India. The paper describes in detail the current operational experience and facility upgradation by way of revamping of existing processes equipment and systems and augmentation of the facility by way of introducing latest processes and technologies to enhance the safety. Radioactive wastes are generated from the operation of research reactors, fuel fabrication, spent fuel reprocessing, research labs. manufacture of sealed sources and labeled compounds. Use of radiation sources in the field of medical, agriculture and industry also leads to generation of assorted solid waste and spent sealed radiation sources which require proper waste management. Waste Management Facilities Trombay comprise of Effluent Treatment Plant (ETP), Decontamination Centre (DC) and Radioactive Solid Waste Management Site (RSMS). Low level radioactive liquid effluents are received at ETP. Plant has 100 M 3 /day treatment capacity. Decontamination of liquid effluents is effected by chemical treatment method using co- precipitation as a process. Plant has 1800 M 3 of storage capacity. Chemical treatment system comprises of clarifloculator, static mixer and chemical feed tanks. Plant has concentrate management facility where chemical sludge is centrifuged to effect volume reduction of more that 15. Thickened sludge is immobilized in cement matrix. Decontamination Centre caters to the need of equipment decontamination from research reactors. Process used is ultrasonic chemical decontamination. Besides this DC provides services for decontamination of protective wears. Radioactive Solid Waste Management Site is responsible for the safe management of solid waste generated at various research reactors, plants, laboratories in Bhabha Atomic Research Centre. Spent sealed radiation sources are also stored

  17. Radiation protection -Operation of chemical wastewater treatment facility

    International Nuclear Information System (INIS)

    Lee, M. J.; Lim, M. H.; Ahn, S. S.; Jeong, Y. S.

    1996-12-01

    The wastewater and sewage treatment facility have been operated. From the results of operation, it was confirmed that the quality of treated wastewater was 1/5 or 1/10 lower than that of regulation of law for environmental conservation. The quality of treated sewage has been maintained to 70% of regulation of law for environmental conservation. (author). 14 tabs., 8 figs

  18. Umatilla hatchery satellite facilities operation and maintenance. Annual report 1996

    International Nuclear Information System (INIS)

    Rowan, G.D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinook and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996

  19. New requirements to collect operational data that are essential for facility decommissioning

    International Nuclear Information System (INIS)

    Kristofova, K.; Valcuha, P.

    2017-01-01

    The paper describes the features of the first nuclear regulatory safety guide to be released by the Nuclear Regulatory Authority of the Slovak Republic (UJD SR) in field of decommissioning. This safety guide specifies requirements to collect those nuclear facility operational data that are essential for its decommissioning. Recommendations of international organisations as well as experience in selected countries are provided. The following operational data types necessary for decommissioning process are identified and analysed: design documentation including modifications and changes during operation, photo-documentation, operational events and material and radiological inventory of the nuclear facility. The guide establishes requirements for collection of the operational data that can be recorded in interconnected database modules. In addition, a structure of decommissioning database is proposed, representing material and radiological inventory of a nuclear facility. This inventory database forms a basis for planning of the decommissioning process. At last, the guide summarises recommendations for data collection, archiving and maintenance of database records and also their applications in safety documentation necessary for decommissioning of nuclear facilities in Slovakia. (authors)

  20. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  1. Retrievable surface storage facility conceptual system design description

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts.

  2. Retrievable surface storage facility conceptual system design description

    International Nuclear Information System (INIS)

    1977-03-01

    The studies evaluated several potentially attractive methods for processing and retrievably storing high-level radioactive waste after delivery to the Federal repository. These studies indicated that several systems could be engineered to safely store the waste, but that the simplest and most attractive concept from a technical standpoint would be to store the waste in a sealed stainless steel canister enclosed in a 2 in. thick carbon steel cask which in turn would be inserted into a reinforced concrete gamma-neutron shield, which would also provide the necessary air-cooling through an air annulus between the cask and the shield. This concept best satisfies the requirements for safety, long-term exposure to natural phenomena, low capital and operating costs, retrievability, amenability to incremental development, and acceptably small environmental impact. This document assumes that the reference site would be on ERDA's Hanford reservation. This document is a Conceptual System Design Description of the facilities which could satisfy all of the functional requirements within the established basic design criteria. The Retrievable Surface Storage Facility (RSSF) is planned with the capacity to process and store the waste received in either a calcine or glass/ceramic form. The RSSF planning is based on a modular development program in which the modular increments are constructed at rates matching projected waste receipts

  3. Operational Readiness Review: Savannah River Replacement Tritium Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members

  4. Operation of a low-level waste disposal facility and how to prevent problems in future facilities

    International Nuclear Information System (INIS)

    Di Sibio, R.

    1985-01-01

    Operation of a low-level waste facility is an ever increasing problem nationally, and specifically one that could grow to crisis proportion in Pennsylvania. There have been, nevertheless, a variety of changes over the years in the management of low level radioactive waste, particularly with regard to disposal facilities that can avert a crisis condition. A number of companies have been organized thru possible a broad range of services to the nuclear industry, including those that emphasize solidification of waste materials, engineering services, waste management, and transportation to disposal sites across the United States. This paper addresses one particular site and the problems which evolved at that site from an environmental perspective. It is important that it is clearly understood that, although these problems are resolvable, the lessons learned here are critical for the prevention of problems at future facilities. The focus of this paper is on the Maxey Flats, Kentucky disposal facility which was closed in 1977. It must be understood that the regulations for siting, management, burial techniques, waste classification, and the overall management of disposal sites were limited when this facility was in operation

  5. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    Energy Technology Data Exchange (ETDEWEB)

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  6. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    International Nuclear Information System (INIS)

    Tyner, C.J.; Birk, S.M.

    1995-09-01

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs

  7. Preparation of safety analysis reports (SARs) for near surface radioactive waste disposal facilities. Format and content of SARs

    International Nuclear Information System (INIS)

    1995-02-01

    All facilities at which radioactive wastes are processed, stored and disposed of have the potential for causing hazards to humans and to the environment. Precautions must be taken in the siting, design and operation of the facilities to ensure that an adequate level of safety is achieved. The processes by which this is evaluated is called safety assessment. An important part of safety assessment is the documentation of the process. A well prepared safety analysis report (SAR) is essential if approval of the facility is to be obtained from the regulatory authorities. This TECDOC describes the format and content of a safety analysis report for a near surface radioactive waste disposal facility and will serve essentially as a checklist in this respect

  8. Environmental analysis of the operation of the ERDA facilities in Oak Ridge

    International Nuclear Information System (INIS)

    McWherter, J.R.

    1975-01-01

    An analysis of the environmental effects of current ERDA operations in Oak Ridge is being conducted to establish a baseline for the consideration of the environmental effects of additional facilities or modified operations in the future. An extensive ecological survey has been conducted for about one year; social and economic data were obtained; and an archaeological survey of the area was made. The facilities were described and the effluents associated with operations were quantified to the extent practical. The effects of effluent releases to the environment are being analyzed. The social effects of the ERDA facilities in Oak Ridge are also being studied. (auth)

  9. Dosimetry and operation of irradiation facilities

    International Nuclear Information System (INIS)

    Vidal, P.E.

    1985-01-01

    The industrial use of ionizing radiation has required, from the very first, the measurement of delivered and absorbed doses; hence the necessity of providing dosimetric systems. Laboratories, scientists, industries and potential equipment manufacturers have all collaborated in this new field of activity. Dosimetric intercomparisons have been made by each industry at their own facilities and in collaboration with specialists, national organizations and the IAEA. Dosimetry has become a way of ensuring that treatment by irradiation has been carried out in accordance with the rules. It has become in effect assurance of quality. Routine dosimetry should determine a maximum and minimum dose. Numerous factors play a part in dosimetry. Industry is currently in possession of routine dosimetric systems that are sufficiently accurate, fairly easy to handle and reasonable in cost, thereby satisfying all the requirements of industry and the need for control. Dosimetry is important in the process of marketing irradiated products. The operator of an industrial irradiation facility bases his dosimetry on comparison with reference systems. Research aimed at simplifying the practice of routine dosimetry should be continued. New physical and chemical techniques will be incorporated into systems already in use. The introduction of microcomputers into the operation of radiation facilities has increased the value of dosimetry and made the conditions of treatment more widespread. Stress should be placed on research in several areas apart from reference systems, for example: dosimetric systems at temperatures from +8 deg. C to -45 deg. C, over the dose range 100 krad to a little more than 1 Mrad, liquids and fluidized solids carried at high speed through ducts, thin-film liquids circulating at a high flow rate, and various other problems. (author)

  10. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility)

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S.

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  11. Operational and safety requirement of radiation facility

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    Gamma and electron irradiation facilities are the most common industrial sources of ionizing radiation. They have been used for medical, industrial and research purposes since the 1950s. Currently there are more than 160 gamma irradiation facilities and over 600 electron beam facilities in operation worldwide. These facilities are either used for the sterilization of medical and pharmaceutical products, the preservation of foodstuffs, polymer synthesis and modification, or the eradication of insect infestation. Irradiation with electron beam, gamma ray or ultra violet light can also destroy complex organic contaminants in both liquid and gaseous waste. EB systems are replacing traditional chemical sterilization methods in the medical supply industry. The ultra-violet curing facility, however, has found more industrial application in printing and furniture industries. Gamma and electron beam facilities produce very high dose rates during irradiation, and thus there is a potential of accidental exposure in the irradiation chamber which can be lethal within minutes. Although, the safety record of this industry has been relatively very good, there have been fatalities recorded in Italy (1975), Norway (1982), El Salvador (1989) and Israel (1990). Precautions against uncontrolled entry into irradiation chamber must therefore be taken. This is especially so in the case of gamma irradiation facilities those contain large amounts of radioactivity. If the mechanism for retracting the source is damaged, the source may remain exposed. This paper will, to certain extent, describe safety procedure and system being installed at ALURTRON, Nuclear Malaysia to eliminate accidental exposure of electron beam irradiation. (author)

  12. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    International Nuclear Information System (INIS)

    Bissani, M; O'Kelly, D S

    2006-01-01

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  13. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to

  14. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  15. Experience in startup and operation of fast flux facility

    International Nuclear Information System (INIS)

    Moffitt, W.C.

    1980-01-01

    The testing program was structured to perform all testing under formal testing procedures with a test engineer as the test director and the plant operators operating the systems and equipment. This provided excellent training and experience for the operators in preparation for eventual reactor operation. Operations preparations for the testing and operation activities has consisted of academic training, formal on-the-job training including systems operation and examinations by persons with an expert knowledge on that portion of the plant, training at EBR-II and the High Temperature Sodium Facility for selected senior operators, operating procedure preparation, training on an FFTF Control Room operator training simulator, and formal written, oral and operating examinations

  16. Environmental aspects based on operation performance of nuclear fuel fabrication facilities

    International Nuclear Information System (INIS)

    2001-07-01

    This publication was prepared within the framework of the IAEA Project entitled Development and Upgrading of Guidelines, Databases and Tools for Integrating Comparative Assessment into Energy System Analysis and Policy Making, which included the collection, review and input of data into a database on health and environmental impacts related to operation of nuclear fuel cycle facilities. The objectives of the report included assembling environmental data on operational performance of nuclear fabrication facilities in each country; compiling and arranging the data in a database, which will be easily available to experts and the public; and presenting data that may be of value for future environmental assessment of nuclear fabrication facilities

  17. Gamma irradiation facility: Evaluation of operational modes

    International Nuclear Information System (INIS)

    Adesanmi, C.A.; Ali, M.S.; Shonowo, O.A.; Akueche, E.C.; Sadare, O.O.; Mustapha, T.K.; Yusuf, U.; Inyanda, A.K.

    2007-01-01

    The multipurpose Gamma Irradiation Facility (GIF) at the Nuclear Technology Centre (NTC), Sheda Science and Technology Complex (SHETSCO), Abuja, Nigeria is designed as a semi-commercial plant with facilities for research and development (R and D). The design takes into account the different needs of the various research applications which require a wide dose range, a variety of techniques, different product sizes, shapes, mass, volume, densities and types. Programmable doses are used for food irradiation (0.04 - 10 kGy), biological seed mutation breeding and sterile insect technique (STI) (0.01- 5 kGy) sterilization of medical, pharmaceutical and cosmetic products and packages (up to 25 kGy) and cross-linking of polymers (up to 100 kGy). The six different modes of operations (sample elevator, stationary, swiveling, 2-path inner lane and 2-path outer lane and 4-path line) were evaluated. The dose range, mass range and range of irradiation time practicable were established and advantages for radiation processing of food and industrial products were enumerated for the six modes of operations for the first time

  18. Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho

    1994-12-01

    The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new

  19. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  20. Radiative cooling test facility and performance evaluation of 4-MIL aluminized polyvinyl fluoride and white-paint surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kruskopf, M.S.; Berdahl, P.; Martin, M.; Sakkal, F.; Sobolewski, M.

    1980-11-01

    A test facility designed to measure the amount of radiative cooling a specific material or assembly of materials will produce when exposed to the sky is described. Emphasis is placed upon assemblies which are specifically designed to produce radiative cooling and which therefore offer promise for the reduction of temperatures and/or humidities in occupied spaces. The hardware and software used to operate the facility are documented and the results of the first comprehensive experiments are presented. A microcomputer-based control/data acquisition system was employed to study the performance of two prototype radiator surfaces: 4-mil aluminized polyvinyl fluoride (PVF) and white painted surfaces set below polyethylene windscreens. The cooling rates for materials tested were determined and can be approximated by an equation (given). A computer model developed to simulate the cooling process is presented. (MCW)

  1. Study of plasma-surface interaction at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S., E-mail: asarakcheev@gmail.com [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arzhannikov, A.V., E-mail: A.V.Arzhannikov@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V., E-mail: a.v.burdakov@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Ivanov, I.A., E-mail: I.A.Ivanov@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kasatov, A.A., E-mail: a.a.kasatov@gmail.com [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kuklin, K.N., E-mail: K.N.Kuklin@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V., E-mail: S.V.Polosatkin@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Postupaev, V.V., E-mail: V.V.Postupaev@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Sinitsky, S.L., E-mail: S.L.Sinitsky@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); and others

    2017-01-15

    The review presents experimental studies of plasma-surface interaction and materials behavior under plasma loads done in the multiple-mirror trap of the GOL-3 facility. In the experiments for the PSI, the energy density in the extracted plasma stream varies from 0.5 to 30 MJ/m{sup 2}. Parameters of near-surface plasma measured by a set of diagnostics are reviewed. Surface patterns of targets exposed to the plasma are analyzed. The erosion depth depends on the energy loads—it rises from 0 to 600 μm at 0.5 and 30 MJ/m{sup 2}, correspondingly. Cracking and evolution of graphite and tungsten surface morphology are discussed. The enthalpy of brittle destruction of graphite (10 kJ/g), which determines the threshold of bulk damage of targets irradiated with a charged-particle flux with large penetration depth, was determined. Comparison of different facilities for PSI studies are presented. Heat flux play a key role to the target surface erosion.

  2. Selection of the reference concept for the surface examination stations in the fuels and materials examination facility

    International Nuclear Information System (INIS)

    Frandsen, G.B.; Nash, C.R.

    1978-01-01

    The prototype surface examination station for the Fuels and Materials Examination Facility (FMEF) will use closed circuit television (CCTV) for routine modes of operation along with a nuclear periscope for special examination needs. The CCTV and the nuclear periscope were evaluated against prescribed station requirements and compared in a side-by-side demonstration. A quantitative evaluation of their outputs showed that both systems were capable of meeting surface anomaly detection requirements. The CCTV system was superior in its ability to collect, suppress and present data into a more useful form for the experimenters

  3. General Models for Assessing Hazards Aircraft Pose to Surface Facilities

    International Nuclear Information System (INIS)

    Ragan, G.E.

    2002-01-01

    This paper derives formulas for estimating the frequency of accidental aircraft crashes into surface facilities. Objects unintentionally dropped from aircraft are also considered. The approach allows the facility to be well within the flight area; inside the flight area, but close to the edge; or completely outside the flight area

  4. Report on the operation of nuclear facilities in Slovenia in 1993

    International Nuclear Information System (INIS)

    Lovincic, D.

    1994-01-01

    The Slovenian Nuclear Safety Administration (SNSA) prepared a Report on Nuclear Safety in 1993 as part of its regular practice of reporting on its work to the Government and the National Assembly of the Republic of Slovenia. The report is divided into five thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activity of international missions in Slovenia, the Posavje - 93 exercise and the operation of nuclear facilities around the world. (author)

  5. Report on the operation of nuclear facilities in Slovenia in 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lovincic, D [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    1994-07-01

    The Slovenian Nuclear Safety Administration (SNSA) prepared a Report on Nuclear Safety in 1993 as part of its regular practice of reporting on its work to the Government and the National Assembly of the Republic of Slovenia. The report is divided into five thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activity of international missions in Slovenia, the Posavje - 93 exercise and the operation of nuclear facilities around the world. (author)

  6. The Pajarito Site operating procedures for the Los Alamos Critical Experiments Facility

    International Nuclear Information System (INIS)

    Malenfant, R.E.

    1991-12-01

    Operating procedures consistent with DOE Order 5480.6, and the American National Standard Safety Guide for the Performance of Critical Experiments are defined for the Los Alamos Critical Experiments Facility (LACEF) of the Los Alamos National Laboratory. These operating procedures supersede and update those previously published in 1983 and apply to any criticality experiment performed at the facility. 11 refs

  7. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program

  8. Operators guide: Atmospheric Release Advisory Capability (ARAC) site facility

    International Nuclear Information System (INIS)

    Cassaro, E.; Lomonaco, L.

    1979-01-01

    The Atmospheric Release Advisory Capability (ARAC) is designed to help officials at designated DOE sites and other locations in estimating the effects of atmospheric releases of radionuclides or other hazardous materials by issuing real-time advisories to guide them in their planning. This report outlines the capabilities and sources of ARAC, and in more detail describes an ARAC Site Facility, its operating procedures and interactions with the ARAC Central Facility (ACF) located at LLL

  9. Remote operations in a Fusion Engineering Research Facility (FERF)

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1975-01-01

    The proposed Fusion Engineering Research Facility (FERF) has been designed for the test and evaluation of materials that will be exposed to the hostile radiation environment created by fusion reactors. Because the FERF itself must create a very hostile radiation environment, extensive remote handling procedures will be required as part of its routine operations as well as for both scheduled and unscheduled maintenance. This report analyzes the remote-handling implications of a vertical- rather than horizontal-orientation of the FERF magnet, describes the specific remote-handling facilities of the proposed FERF installation and compares the FERF remote-handling system with several other existing and proposed facilities. (U.S.)

  10. Decommissioning of nuclear facilities involving operations with uranium and thorium

    International Nuclear Information System (INIS)

    Shum, E.Y.; Neuder, S.M.

    1990-01-01

    When a licensed nuclear facility ceases operation, the U.S. Nuclear Regulatory Commission (NRC) ensures that the facility and its site are decontaminated to acceptable levels so they may safely be released for unrestricted public use. Because specific environmental standards or broad federal guidelines governing release of residual radioactive contamination have not been issued, NRC has developed ad hoc cleanup criteria for decommissioning nuclear facilities that involved uranium and thorium. Cleanup criteria include decontamination of buildings, equipment, and land. We will address cleanup criteria and their rationale; procedures for decommissioning uranium/thorium facilities; radiological survey designs and procedures; radiological monitoring and measurement; and cost-effectiveness to demonstrate compliance

  11. Operability test procedure for PFP wastewater sampling facility

    International Nuclear Information System (INIS)

    Hirzel, D.R.

    1995-01-01

    Document provides instructions for performing the Operability Test of the 225-WC Wastewater Sampling Station which monitors the discharge to the Treated Effluent Disposal Facility from the Plutonium Finishing Plant. This Operability Test Procedure (OTP) has been prepared to verify correct configuration and performance of the PFP Wastewater sampling system installed in Building 225-WC located outside the perimeter fence southeast of the Plutonium Finishing Plant (PFP). The objective of this test is to ensure the equipment in the sampling facility operates in a safe and reliable manner. The sampler consists of two Manning Model S-5000 units which are rate controlled by the Milltronics Ultrasonic flowmeter at manhole No.C4 and from a pH measuring system with the sensor in the stream adjacent to the sample point. The intent of the dual sampling system is to utilize one unit to sample continuously at a rate proportional to the wastewater flow rate so that the aggregate tests are related to the overall flow and thereby eliminate isolated analyses. The second unit will only operate during a high or low pH excursion of the stream (hence the need for a pH control). The major items in this OTP include testing of the Manning Sampler System and associated equipment including the pH measuring and control system, the conductivity monitor, and the flow meter

  12. The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)

    International Nuclear Information System (INIS)

    1994-12-01

    The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration

  13. 77 FR 68155 - The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R-84

    Science.gov (United States)

    2012-11-15

    ... Research Institute TRIGA Reactor: Facility Operating License No. R-84 AGENCY: Nuclear Regulatory Commission... considering an application for the renewal of Facility Operating License No. R-84 (Application), which... the renewal of Facility Operating License No. R-84, which currently authorizes the licensee to operate...

  14. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charles Park

    2006-01-01

    This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy

  15. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Science.gov (United States)

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  16. Primary Criteria for Near Surface Disposal Facility in Egypt Proposal approach

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media to protect human health and environment from the harmful effect of the ionizing radiation. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. The primary goal of the sitting process is to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  17. Operation of the Brookhaven national laboratory accelerator test facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Botke, I.; Chou, T.S.; Fernow, R.; Fischer, J.; Fisher, A.; Gallardo, J.; Ingold, G.; Malone, R.; Palmer, R.; Parsa, Z.; Pogorelsky, I.; Rogers, J.; Sheehan, J.; Srinivasan-Rao, T.; Tsang, T.; Ulc, S.; Van Steenbergen, A.; Wang, X.J.; Woodle, M.; Yu, L.H.

    1992-01-01

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program. (Author) 5 refs., 4 figs., tab

  18. Evaluation of physical facilities and processing operations of major ...

    African Journals Online (AJOL)

    ADEYEYE

    abattoirs were as a result of failure to enforce the use of standard facilities in carrying out abattoir operations and general maintenance ... incinerator, chemical treatment and disposal. Sub- .... Veterinary laboratory .... sustainable food security.

  19. Ten years of cryo-magnetic W7-X test facility construction and operation

    International Nuclear Information System (INIS)

    Renard, B.; Dispau, G.; Donati, A.; Genini, L.; Gournay, J.F.; Kuster, O.; Molinie, F.; Schild, T.; Touzery, R.; Vieillard, L.; Walter, C.

    2011-01-01

    The construction, commissioning, and operation phases of the W7-X cryo-magnetic test facility in CEA Saclay lasted ten years. The large diversity of equipments called, specialties involved and problems solved attest the expertise that was required to operate the test facility and test the coils. Nearly one hundred cryogenic tests were performed on the seventy W7-X coils, at a rate always increasing, using two cryostats each holding two coils. This paper presents the test facility and its operation first, the cryogenic difficulties that were confronted with their solutions, the electro-magnetic difficulties encountered along with corrective actions, and finally the instrumentation and data acquisition aspects. (authors)

  20. Low-level wastewater treatment facility process control operational test report

    International Nuclear Information System (INIS)

    Bergquist, G.G.

    1996-01-01

    This test report documents the results obtained while conducting operational testing of a new TK 102 level controller and total outflow integrator added to the NHCON software that controls the Low-Level Wastewater Treatment Facility (LLWTF). The test was performed with WHC-SD-CP-OTP 154, PFP Low-Level Wastewater Treatment Facility Process Control Operational Test. A complete test copy is included in appendix A. The new TK 102 level controller provides a signal, hereafter referred to its cascade mode, to the treatment train flow controller which enables the water treatment process to run for long periods without continuous operator monitoring. The test successfully demonstrated the functionality of the new controller under standard and abnormal conditions expected from the LLWTF operation. In addition, a flow totalizer is now displayed on the LLWTF outlet MICON screen which tallies the process output in gallons. This feature substantially improves the ability to retrieve daily process volumes for maintaining accurate material balances

  1. Surface radiation survey and soil sampling of the 300-FF-1 operable unit, Hanford Site, southeastern Washington: A case study

    International Nuclear Information System (INIS)

    Teel, S.S.; Olsen, K.B.

    1990-10-01

    The methods used for conducting a radiological characterization of the soil surface for the Phase I Remedial Investigation of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site is presented via a case study. The study site is an operable unit (300-FF-1) located in and adjacent to the 300 Area of the US Department of Energy's Hanford Site in southeastern Washington State. The operable unit contains liquid and solid waste disposal facilities associated with nuclear fuels fabrication. Continuous surface radiation surveying and soil sampling of selected locations were conducted. Contamination was found in several locations within the operable unit including areas near the liquid and solid waste disposal facilities. Instruments used during surveying included portable beta/gamma (P-11) detectors, and the Ultrasonic Ranging and Data System using an NaI (Tl) detector. Laboratory analyses results indicate that above-background radiation levels were primarily due to the presence of uranium. Both types of field instruments used in the study were effective in detecting surface contamination from radionuclides; however, each had specific advantages. Guidelines are presented for the optimum use of these instruments when performing a radiological characterization of the soil surface. 4 refs., 3 figs., 3 tabs

  2. KSC facilities status and planned management operations. [for Shuttle launches

    Science.gov (United States)

    Gray, R. H.; Omalley, T. J.

    1979-01-01

    A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

  3. Occupational and Public Exposure During Normal Operation of Radioactive Waste Disposal Facilities

    OpenAIRE

    M. V. Vedernikova; I. A. Pron; M. N. Savkin; N. S. Cebakovskaya

    2017-01-01

    This paper focuses on occupational and public exposure during operation of disposal facilities receiving liquid and solid radioactive waste of various classes and provides a comparative analysis of the relevant doses: actual and calculated at the design stage. Occupational and public exposure study presented in this paper covers normal operations of a radioactive waste disposal facility receiving waste. Results: Analysis of individual and collective occupational doses was performed based on d...

  4. Operations aspects of the Fermilab Central Helium Liquefier facility

    International Nuclear Information System (INIS)

    Geynisman, M.G.; Makara, J.N.

    1996-09-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 K and LN 2 for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed

  5. Operations aspects of the Fermilab Central Helium Liquefier Facility

    International Nuclear Information System (INIS)

    Geynisman, M.G.; Makara, J.N.

    1995-03-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 degrees K and LN 2 for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed

  6. Preliminary analysis of the operating characteristics of a generic repository receiving facility: Status report

    International Nuclear Information System (INIS)

    1985-10-01

    The operating characteristics of a repository receiving facility structured around current technology and practices have been reviewed. Cask turnaround times and operator doses were estimated. Large throughout and long-term receiving operations at a nuclear waste repository result in an unprecedented number of casks being handled. While the current generation of material-handling equipment is adequate to process the casks, personnel radiation exposures for the generic facility analyzed are unacceptably high. This emphasizes the need for development of occupational radiation exposure control concepts for application in repository receiving facilities. 3 refs., 22 figs., 6 tabs

  7. Licence applications for low and intermediate level waste predisposal facilities: A manual for operators

    International Nuclear Information System (INIS)

    2009-07-01

    This publication covers all predisposal waste management facilities and practices for receipt, pretreatment (sorting, segregation, characterization), treatment, conditioning, internal relocation and storage of low and intermediate level radioactive waste, including disused sealed radioactive sources. The publication contains an Annex presenting the example of a safety assessment for a small radioactive waste storage facility. Facilities dealing with both short lived and long lived low and intermediate level waste generated from nuclear applications and from operation of small nuclear research reactors are included in the scope. Processing and storage facilities for high activity disused sealed sources and sealed sources containing long lived radionuclides are also covered. The publication does not cover facilities processing or storing radioactive waste from nuclear power plants or any other industrial scale nuclear fuel cycle facilities. Disposal facilities are excluded from the scope of this publication. Authorization process can be implemented in several stages, which may start at the site planning and the feasibility study stage and will continue through preliminary design, final design, commissioning, operation and decommissioning stages. This publication covers primarily the authorization needed to take the facility into operation

  8. Start of operation of the barrel measuring facility II-01. Implementation into operational processes

    International Nuclear Information System (INIS)

    Buesing, B.; Escher, M.

    2013-01-01

    For the operation of the barrel measuring facility (FAME) II-01 a variety requirements to the measuring techniques were defined and tested in the frame of start-up. The used mechanical engineering and measuring technique complies with the state-of-the-art. Using the barrel measuring facility quality assured determinations of the dose rate and the nuclide-specific activity inventory were performed. For the evaluation of the gamma spectrometric measurements of FAME II-01 appropriately qualified personnel is available. The implementation of the facility in combination with the connection to the data base system PIK-AS and AVK it guaranteed that important data are available in real-time for the measuring process and the subsequent work steps. Besides this it is guaranteed that using the import/export functions relevant data are reviewed, supplemented and exchanged between the systems without transfer errors. The determined data of the dose rate and gamma spectrometric measurements allow an activity determination of the waste package with quality assurance and close to reality. Conservative assumptions in the frame of activity calculations for the later final disposal can be reduced. The automated operation of FAME allows also the reduction of radiation exposure of the personnel.

  9. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    Science.gov (United States)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  10. French experience of regulation and operation on reprocessing facilities of LWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, J P [DES/SESUL (France)

    1992-02-01

    This presentation describes the French experience of regulation and operation on reprocessing facilities: how the safety assessment was made of UP3-A plant of the La Hague establishment for the building permit and operating license within the context of French nuclear regulations and the national debate on the need for reprocessing. Other factors discussed are how the public was involved, how the regulations were improved in the process and what the different stages of commissioning consisted of. In the design studies of a reprocessing facility, three complementary approaches are used: - observance of regulations born of technical considerations, and good practice, - analysis of the hazards, using deterministic and probabilistic methods, within the framework of a safety report, - review of experience feedback from such a facility or like plants. The design of the facility must permit the prevention of accidents and limit their consequences. Moreover, during all foreseeable cases (normal operating, incidents and accidents), the safety of the staff, the public and the environment with regard to consequences of radioactive releases and ionising radiations must be ensured. In the evaluation of these consequences, the approach used is voluntarily pessimistic in order to take into account every possible case. It is based on the main following principles: definition of the events considered for the dimensioning of the facility; redundancy and diversification; defense in depth which consists of the multiplication of the barriers. The experience feedback comes, on the one hand from operator's findings aiming at improving its facility, on the other hand from incidents, the lessons of which being taken into account after careful analysis. These incidents are analyzed by the Safety Authority upon presentation of the data by the operator and on site findings of inspections. In other respects, the aim of inspections is to check that the plant and its operating practices are

  11. Risk assessment associated to possible concrete degradation of a near surface disposal facility

    Directory of Open Access Journals (Sweden)

    Wacquier W.

    2013-07-01

    Full Text Available This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste – short-lived low and intermediate level waste – in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years, which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.

  12. Risk assessment associated to possible concrete degradation of a near surface disposal facility

    Science.gov (United States)

    Capra, B.; Billard, Y.; Wacquier, W.; Gens, R.

    2013-07-01

    This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste - short-lived low and intermediate level waste - in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years), which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.

  13. Nuclear Facilities Management Section Mutsu Office, Aomori Research and Development Center operations report. FY 2012 and 2013

    International Nuclear Information System (INIS)

    Tajima, Yoshihiro; Kuwabara, Jun; Oyokawa, Atsushi; Kabuto, Shoji; Araya, Naoyuki; Kikuchi, Kaoru; Miyamoto, Shingo; Nemoto, Hideyuki; Ohe, Osamu

    2016-05-01

    Nuclear Facilities Management Section implements the operation, maintenance and decommissioning of the first nuclear ship “MUTSU” and the operation and maintenance of the liquid waste facility and the solid waste facility where a small amount of nuclear fuel is used. This is the report on the operations of the Nuclear Facilities Management Section for FY 2012 and FY 2013. (author)

  14. Operation and Maintenance of Water Pollution Control Facilities: A WPCF White Paper.

    Science.gov (United States)

    Hill, William R.; And Others

    1979-01-01

    Presented are the recommendations of the Water Pollution Control Federation for operation and maintenance consideration during the planning design, construction, and operation of wastewater treatment facilities. (CS)

  15. Impacts of ramping inflexibility of conventional generators on strategic operation of energy storage facilities

    DEFF Research Database (Denmark)

    Nasrolahpour, Ehsan; Kazempour, Jalal; Zareipour, Hamidreza

    2016-01-01

    This paper proposes an approach to assist a pricemaker merchant energy storage facility in making its optimal operation decisions. The facility operates in a pool-based electricity market, where the ramping capability of other resources is limited. Also, wind power resources exist in the system...

  16. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  17. Reliability Considerations for the Operation of Large Accelerator User Facilities

    CERN Document Server

    Willeke, F.J.

    2016-01-01

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. The article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  18. 76 FR 62868 - Washington State University; Notice of Issuance of Renewed Facility Operating License No. R-76

    Science.gov (United States)

    2011-10-11

    ...; Notice of Issuance of Renewed Facility Operating License No. R-76 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance of renewed facility operating license No. R- 76. ADDRESSES: You can access.... Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility Operating License No. R-76...

  19. Trial operation of the advanced volume reduction facilities for LLW at JAEA

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Higuchi, Hidekazu; Momma, Toshiyuki; Kozawa, Kazushige; Touhei, Toshio; Sudou, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Kou; Ishikawa, Joji; Kato, Mitsugu; Sato, Motoaki

    2007-01-01

    The Japan Atomic Energy Agency (JAEA) constructed the Advanced Volume Reduction Facilities (AVRF), in which volume reduction techniques are applied and achieved high volume reduction ratio, homogenization and stabilization by means of melting or super compaction processes for low level radioactive solid wastes. It will be able to produce waste packages for final disposal and to reduce the volume of stored wastes by operating the AVRF. The AVRF consist of the Waste Size Reduction and Storage Facilities (WSRSF) and the Waste Volume Reduction Facilities (WVRF); the former has cutting installations for large size wastes and the latter has melting units and a super compactor. Cutting installations in the WSRSF have been operating since July 1999. Radioactive wastes treated so far amount to 750 m 3 and the volume reduction ratio is from 1.7 to 3.7. The WVRF has been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation of the pretreatment system in the WVRF with radioactive wastes has partly started in FY2005. (author)

  20. The ITER Neutral Beam Test Facility towards SPIDER operation

    Science.gov (United States)

    Toigo, V.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; Pomaro, N.; Serianni, G.; Agostinetti, P.; Agostini, M.; Antoni, V.; Aprile, D.; Baltador, C.; Barbisan, M.; Battistella, M.; Boldrin, M.; Brombin, M.; Dalla Palma, M.; De Lorenzi, A.; Delogu, R.; De Muri, M.; Fellin, F.; Ferro, A.; Gambetta, G.; Grando, L.; Jain, P.; Maistrello, A.; Manduchi, G.; Marconato, N.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pimazzoni, A.; Piovan, R.; Recchia, M.; Rizzolo, A.; Sartori, E.; Siragusa, M.; Spada, E.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valente, M.; Veltri, P.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.; Boilson, D.; Graceffa, J.; Svensson, L.; Schunke, B.; Decamps, H.; Urbani, M.; Kushwah, M.; Chareyre, J.; Singh, M.; Bonicelli, T.; Agarici, G.; Garbuglia, A.; Masiello, A.; Paolucci, F.; Simon, M.; Bailly-Maitre, L.; Bragulat, E.; Gomez, G.; Gutierrez, D.; Mico, G.; Moreno, J.-F.; Pilard, V.; Chakraborty, A.; Baruah, U.; Rotti, C.; Patel, H.; Nagaraju, M. V.; Singh, N. P.; Patel, A.; Dhola, H.; Raval, B.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Nocentini, R.; Riedl, R.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Cavenago, M.; Croci, G.; Gorini, G.; Rebai, M.; Muraro, A.; Tardocchi, M.; Hemsworth, R.

    2017-08-01

    SPIDER is one of two projects of the ITER Neutral Beam Test Facility under construction in Padova, Italy, at the Consorzio RFX premises. It will have a 100 keV beam source with a full-size prototype of the radiofrequency ion source for the ITER neutral beam injector (NBI) and also, similar to the ITER diagnostic neutral beam, it is designed to operate with a pulse length of up to 3600 s, featuring an ITER-like magnetic filter field configuration (for high extraction of negative ions) and caesium oven (for high production of negative ions) layout as well as a wide set of diagnostics. These features will allow a reproduction of the ion source operation in ITER, which cannot be done in any other existing test facility. SPIDER realization is well advanced and the first operation is expected at the beginning of 2018, with the mission of achieving the ITER heating and diagnostic NBI ion source requirements and of improving its performance in terms of reliability and availability. This paper mainly focuses on the preparation of the first SPIDER operations—integration and testing of SPIDER components, completion and implementation of diagnostics and control and formulation of operation and research plan, based on a staged strategy.

  1. Radiological and the other safety aspects in the operation of electron beam facility

    International Nuclear Information System (INIS)

    Loterina, Roel Alamares

    2003-01-01

    The radiological safety aspects of the operation of an electron beam facility in general and the 3 MeV ALURTRON electron beam facility of the Malaysian Institute of Nuclear Technology Research (MINT) in particular were reviewed and evaluated. Evaluation was made based on existing records as well as actual monitoring around facility. Area monitoring results using TLDs are within permissible levels. The maximum reading of 7.29 mSv measured in year 2000 is very low as compared to the annual dose limit of 50 mSv/year. In general, the shielding for the installation is adequate and no significant radiation leakage were detected based on radiation survey results. However, measured radiation levels with a maximum of 1.9 mSv/h at the sampling ports easily exceed the limit of 25μSv/h. The facility is equipped with safety features, such as interlocked system, adequate shielding, engineered safety design of irradiation and accelerator rooms, and accessories such as conveyor system and product handling system. Warning lights and signals are adequately installed around the facility. Other identified hazards that may affect the operator, workers, and personnel were also evaluated based on previous records of monitoring. The ozone concentration levels with a maximum reading of 0.05 ppm measured in the environment of the facility are within the threshold limit value of 0.1 ppm. The measured noise levels at all locations around facility are generally below the maximum permissible level of 80dB. The ALURTRON has achieved a minimum safety requirement to warrant its full operation without relying on administrative controls and procedures to ensure safety in operation. (Auth.)

  2. Radiological operating experience at FFTF [Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bunch, W.L.; Prevo, P.R.

    1986-11-01

    The Fast Flux Test Facility has been in operation for approximately five years, including about one thousand days of full power operation of the Fast Test Reactor. During that time the collective dose equivalents received by operating personnel have been about two orders of magnitude lower than those typically received at commercial light water reactors. No major contamination problems have been encountered in operating and maintaining the plant, and release of radioactive gas to the environment has been minimal and well below acceptable limits. All shields have performed satisfactorily. Experience to date indicates an apparent radiological superiority of liquid metal reactor systems over current light water plants

  3. Clinton P. Anderson Meson Physics Facility and its operational safety program

    International Nuclear Information System (INIS)

    Putnam, T.M.

    1975-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) at the Los Alamos Scientific Laboratory consists of/ (1) a medium-energy, high-intensity linear proton accelerator; (2) experimental areas designed to support a multidisciplined program of research and practical applications; and (3) support facilities for accelerator operations and the experimental program. The high-intensity primary and secondary beams at LAMPF and the varied research program create many interesting and challenging problems for the Health Physics staff. A brief overview of LAMPF is presented, and the Operational Safety Program is discussed, with emphasis on the radiological safety and health physics aspects

  4. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  5. Operation of post-irradiation examination facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. G.; Jeon, Y. B.; Ku, D. S.

    1996-12-01

    In 1996, the post-irradiation examination(PIE) of nuclear fuels was performed as follows. It has been searched for the caution of defection of defected fuel rods of Youngkwang-4 reactor through NDT and metallographic examination that had been required by KEPCO. And in-pool inspection of Kori-1 spent fuel assembly(FO2) was carried out. HVAC system and pool water treatment system have been operated to maintain the facility safely, and electric power supply system was checked and maintained for the normal and steady supply electric power to the facility. Image processing software was developed for measurement of defection of spent fuel rods. Besides, a radiation shielding glove box was fabricated and a hot cell compressor for volume reduction of radioactive materials was fabricated and installed in hot cell. Safeguards of nuclear materials were implemented in strict accordance with the relevant Korean rules and regulations as well as the international non-proliferation regime. Also the IAEA inspection was carried out on the quarterly basis. (author). 31 tabs., 71 figs., 4 refs.

  6. Helium turbomachinery operating experience from gas turbine power plants and test facilities

    International Nuclear Information System (INIS)

    McDonald, Colin F.

    2012-01-01

    The closed-cycle gas turbine, pioneered and deployed in Europe, is not well known in the USA. Since nuclear power plant studies currently being conducted in several countries involve the coupling of a high temperature gas-cooled nuclear reactor with a helium closed-cycle gas turbine power conversion system, the experience gained from operated helium turbomachinery is the focus of this paper. A study done as early as 1945 foresaw the use of a helium closed-cycle gas turbine coupled with a high temperature gas-cooled nuclear reactor, and some two decades later this was investigated but not implemented because of lack of technology readiness. However, the first practical use of helium as a gas turbine working fluid was recognized for cryogenic processes, and the first two small fossil-fired helium gas turbines to operate were in the USA for air liquefaction and nitrogen production facilities. In the 1970's a larger helium gas turbine plant and helium test facilities were built and operated in Germany to establish technology bases for a projected future high efficiency large nuclear gas turbine power plant concept. This review paper covers the experience gained, and the lessons learned from the operation of helium gas turbine plants and related test facilities, and puts these into perspective since over three decades have passed since they were deployed. An understanding of the many unexpected events encountered, and how the problems, some of them serious, were resolved is important to avoid them being replicated in future helium turbomachines. The valuable lessons learned in the past, in many cases the hard way, particularly from the operation in Germany of the Oberhausen II 50 MWe helium gas turbine plant, and the technical know-how gained from the formidable HHV helium turbine test facility, are viewed as being germane in the context of current helium turbomachine design work being done for future high efficiency nuclear gas turbine plant concepts. - Highlights:

  7. Modelling and operation strategies of DLR's large scale thermocline test facility (TESIS)

    Science.gov (United States)

    Odenthal, Christian; Breidenbach, Nils; Bauer, Thomas

    2017-06-01

    In this work an overview of the TESIS:store thermocline test facility and its current construction status will be given. Based on this, the TESIS:store facility using sensible solid filler material is modelled with a fully transient model, implemented in MATLAB®. Results in terms of the impact of filler site and operation strategies will be presented. While low porosity and small particle diameters for the filler material are beneficial, operation strategy is one key element with potential for optimization. It is shown that plant operators have to ponder between utilization and exergetic efficiency. Different durations of the charging and discharging period enable further potential for optimizations.

  8. Operating manual for the High Flux Isotope Reactor. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    1965-06-01

    This report contains a comprehensive description of the High Flux Isotope Reactor facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procedures are presented in another report.

  9. National Ignition Facility Control and Information System Operational Tools

    International Nuclear Information System (INIS)

    Marshall, C.D.; Beeler, R.G.; Bowers, G.A.; Carey, R.W.; Fisher, J.M.; Foxworthy, C.B.; Frazier, T.M.; Mathisen, D.G.; Lagin, L.J.; Rhodes, J.J.; Shaw, M.J.

    2009-01-01

    The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a ∼2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint the size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.

  10. Design and operation of radiation facilities

    International Nuclear Information System (INIS)

    Gay, H.G.

    1983-01-01

    The design, manufacture, and operation of Cobalt-60 Radiation Processing Facilities is a well established technology. However, the products requiring radiation processing are constantly increasing. Product and dose variations create different requirements in the irradiator design. Several basic design concepts which have been developed and installed by Atomic Energy of Canada Limited are discussed. Irradiators are most efficient when designed to handle a limited product density range at an established dose. Requirements for irradiators to process a multitude of different products at different doses leads to a reduction of irradiator efficiency with resultant increase in processing costs

  11. Operator training facilities for CEGB advanced gas cooled reactors

    International Nuclear Information System (INIS)

    Green, J.F.; Birnie, S.

    1980-01-01

    The facilities provided at the Nuclear Power Training Centre of the CEGB for the training of operators fo the AGR are described. The simulator control desks are replicas of three AGR designs with, in addition, simulation of the Data Processing System for each station. Three modes of operation are envisaged: a.) Demonstration where the simulator is used by the tutor to illustrate lecture on plant behaviour. b.) Interaction where the student carries out normal procedures and experiences plant failure situations. c.) Investigation where engineering staff use the simulator for validation of modified operational procedures, ergonomic studies etc. (orig./HP)

  12. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    Science.gov (United States)

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.

  13. ARM Operations and Engineering Procedure Mobile Facility Site Startup

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Jimmy W

    2015-05-01

    This procedure exists to define the key milestones, necessary steps, and process rules required to commission and operate an Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF), with a specific focus toward on-time product delivery to the ARM Data Archive. The overall objective is to have the physical infrastructure, networking and communications, and instrument calibration, grooming, and alignment (CG&A) completed with data products available from the ARM Data Archive by the Operational Start Date milestone.

  14. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  15. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    International Nuclear Information System (INIS)

    1981-12-01

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs

  16. Decontamination and recovery of a nuclear facility to allow continued operation

    International Nuclear Information System (INIS)

    Cavaghan, Josh

    2017-01-01

    A power supply failure caused a loss of power to key ventilation systems in an operating nuclear facility. The in-cell depression was lost, which led to an egress of activity through prepared areas and into the normal operating areas. After an initial programme of radiological monitoring to quantify and categorise the activity in the operating areas, a plan was developed for the decontamination and remediation of the plant. The scope of the recovery plan was substantial and featured several key stages. The contamination was almost entirely "1"3"7Cs, reflecting the α:β/γ ratio for the facility. In addition to the physical remediation work, several administrative controls were introduced such as new local rules, safety signage to indicate abnormal radiological conditions in certain areas and training of the decontamination teams. All areas of plant, which were contaminated, were returned to normal access arrangements and the plant was successfully returned to full operational capability, <12 months from the date of the event. (authors)

  17. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    Energy Technology Data Exchange (ETDEWEB)

    Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}. Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  18. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    Energy Technology Data Exchange (ETDEWEB)

    Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}, Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  19. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF6)

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G.

    2017-01-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF 6 ) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation

  20. Operating manual for the Tower Shielding Facility

    International Nuclear Information System (INIS)

    1985-12-01

    This manual provides information necessary to operate and perform maintenance on the reactor systems and all equipment or systems which can affect their operation or the safety of personnel at the Tower Shielding Facility. The first four chapters consist of introductory and descriptive material of benefit to personnel in training, the qualifications required for training, the responsibilities of the personnel in the organization, and the procedures for reviewing proposed experiments. Chapter 8, Emergency Procedures, is also a necessary part of the indoctrination of personnel. The procedures for operation of the Tower Shielding Reactor (TSR-II), its water cooling system, and the main tower hoists are outlined in Chapters 5, 6, and 7. The Technical Specification surveillance requirements for the TSR-II are summarized in Chapter 9. The maintenance and calibration schedule is spelled out in Chapter 10. The procedures for assembly and disassembly of the TSR-II are outlined in Chapter 11

  1. Waste Encapsulation and Storage Facility interim operational safety requirements

    CERN Document Server

    Covey, L I

    2000-01-01

    The Interim Operational Safety Requirements (IOSRs) for the Waste Encapsulation and Storage Facility (WESF) define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt and inspection of cesium and strontium capsules from private irradiators; decontamination of the capsules and equipment; surveillance of the stored capsules; and maintenance activities. Controls required for public safety, significant defense-in-depth, significant worker safety, and for maintaining radiological consequences below risk evaluation guidelines (EGs) are included.

  2. Map of gas facilities and operators in Northeast British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-06-01

    This map represents 57 gas facilities and operators and references location on the map to the facility and operator. The Northern Rockies Regional district is indicated, as is the Peace River Regional district. Roads, truck trails, railroads, pipeline and airstrips are indicated as well as oil and gas fields. Various protected areas and First Nations settlement areas and regions are also indicated. The following companies placed advertisements on the map, detailing the services they provide: Wellco Energy Services; C.E. Franklin Ltd.; the City of Fort St. John, Region of Chetwynd; Smith Bits; the City of Dawson Creek, Economic Development and Tourism; Fort Nelson and Northern Rockies Regional District; Pipetech Corp.; Kenwood; Hughes Christensen; Spartan Controls; FI Canada Oil Services Ltd.; Northstar Drillstem Testers Inc.; Rainbow Transport Ltd.1 fig.

  3. Investigation of plasma–surface interaction at plasma beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kurnaev, V., E-mail: kurnaev@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Vizgalov, I.; Gutorov, K. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I. [Institute of Atomic Energy, National Nuclear Center the Republic of Kazakhstan, Street Krasnoarmejsky, 10, 071100 Kurchatov (Kazakhstan); Klimov, N. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, 142190 Moscow (Russian Federation)

    2015-08-15

    The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m{sup 2}. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ⋅ 10{sup 22} m{sup −2} s{sup −1}. Initial tests of the KTM PBF’s capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF)

  4. Los Alamos DP West Plutonium Facility decontamination project

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-01-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico, was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  5. Integrated safeguards and facility design and operations

    International Nuclear Information System (INIS)

    Tape, J.W.; Coulter, C.A.; Markin, J.T.; Thomas, K.E.

    1987-01-01

    The integration of safeguards functions to deter or detect unauthorized actions by an insider requires the careful communication and management of safeguards-relevant information on a timely basis. The traditional separation of safeguards functions into physical protection, materials control, and materials accounting often inhibits important information flows. Redefining the major safeguards functions as authorization, enforcement, and verification, and careful attention to management of information from acquisition to organization, to analysis, to decision making can result in effective safeguards integration. The careful inclusion of these ideas in facility designs and operations will lead to cost-effective safeguards systems. The safeguards authorization function defines, for example, personnel access requirements, processing activities, and materials movements/locations that are permitted to accomplish the mission of the facility. Minimizing the number of authorized personnel, limiting the processing flexibility, and maintaining up-to-date flow sheets will facilitate the detection of unauthorized activities. Enforcement of the authorized activities can be achieved in part through the use of barriers, access control systems, process sensors, and health and safety information. Consideration of safeguards requirements during facility design can improve the enforcement function. Verification includes the familiar materials accounting activities as well as auditing and testing of the other functions

  6. A Facile Surface Reconstruction Mechanism toward Better Electrochemical Performance of Li

    NARCIS (Netherlands)

    Qian, Kun; Tang, Linkai; Wagemaker, M.; He, Yan Bing; Liu, Dongqing; Li, Hai; Shi, Ruiying; Li, Baohua; Kang, Feiyu

    2017-01-01

    Through a facile sodium sulfide (Na2S)-assisted hydrothermal treatment, clean and nondefective surfaces are constructed on micrometer-sized Li4Ti5O12 particles. The remarkable improvement of surface quality shows a higher first cycle Coulombic

  7. Operational safety assessment of underground test facilities for mined geologic waste disposal

    International Nuclear Information System (INIS)

    Elder, H.K.

    1993-01-01

    This paper describes the operational safety assessment for the underground facilities for the exploratory studies facility (ESF) at the Yucca Mountain Project. The systematic identification and evaluation of hazards related to the ESF is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach based on the analysis of potential accidents was used since radiological safety analysis was not required. The risk assessment summarized credible accident scenarios and the design provides mitigation of the risks to a level that the facility can be constructed and operated with an adequate level of safety. The risk assessment also provides reasonable assurance that all identifiable major accident scenarios have been reviewed and design mitigation features provided to ensure an adequate level of safety

  8. Disposal of disused sealed sources and approach for safety assessment of near surface disposal facilities (national practice of Ukraine)

    International Nuclear Information System (INIS)

    Alekseeva, Z.; Letuchy, A.; Tkachenko, N.V.

    2003-01-01

    The main sources of wastes are 13 units of nuclear power plants under operation at 4 NPP sites (operational wastes and spent sealed sources), uranium-mining industry, area of Chernobyl exclusion zone contaminated as a result of ChNPP accident, and over 8000 small users of sources of ionising radiation in different fields of scientific, medical and industrial applications. The management of spent sources is carried out basing on the technology from the early sixties. In accordance with this scheme accepted sources are disposed of either in the near surface concrete vaults or in borehole facilities of typical design. Radioisotope devices and gamma units are placed into near surface vaults and sealed sources in capsules into borehole repositories respectively. Isotope content of radwaste in the repositories is multifarious including Co-60, Cs-137, Sr-90, Ir-192, Tl-204, Po-210, Ra-226, Pu-239, Am-241, H-3, Cf-252. A new programme for waste management has been adopted. It envisions the modifying of the 'Radon' facilities for long-term storage safety assessment and relocation of respective types of waste in 'Vector' repositories.Vector Complex will be built in the site which is located within the exclusion zone 10Km SW of the Chernobyl NPP. In Vector Complex two types of disposal facilities are designed to be in operation: 1) Near surface repositories for short lived LLRW and ILRW disposal in reinforced concrete containers. Repositories will be provided with multi layer waterproofing barriers - concrete slab on layer composed of mixture of sand and clay. Every layer of radwaste is supposed to be filled with 1cm clay layer following disposal; 2) Repositories for disposal of bulky radioactive waste without cans into concrete vaults. Approaches to safety assessment are discussed. Safety criteria for waste disposal in near surface repositories are established in Radiation Protection Standards (NRBU-97) and Addendum 'Radiation protection against sources of potential exposure

  9. Assessment of Radionuclides Release from Inshas LILW Disposal Facility Under Normal and Unusual Operational Conditions

    International Nuclear Information System (INIS)

    Zaki, A.A.

    2008-01-01

    Disposing of low and intermediate radioactive waste (LILW) is a big concern for Egypt due to the accumulated waste as a result of past fifty years of peaceful nuclear applications. Assessment of radionuclides release from Inshas LILW disposal facility under normal and unusual operational conditions is very important in order to apply for operation license of the facility. Aqueous release of radionuclides from this disposal facility is controlled by water flow, access of the water to the wasteform, release of the radionuclides from the wasteform, and transport to the disposal facility boundary. In this work, the release of 137 Cs , 6C o, and 90 Sr radionuclides from the Inshas disposal facility was studied under the change of operational conditions. The release of these radio contaminants from the source term to the unsaturated and saturated zones , to groundwater were studied. It was found that the concentration of radionuclides in a groundwater well located 150 m away from the Inshas disposal facility is less than the maximum permissible concentration in groundwater in both cases

  10. Operation of Temporary Radioactive waste stoprage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kinseem, A A; Abulfaraj, W H; Sohsah, M A; Kamal, S M; Mamoon, A M [Nuclear Engineering Department, Faculty of Engineering, King Abdelazizi University jeddah-21413, Saudi Arabia (Saudi Arabia)

    1997-12-31

    Radionuclides of various half lives have been in use for several years years at different Departments of king Abdulaziz university, the university hospital, and research center. The use of unsealed radionuclides in many laboratories, resulted in considerable amounts of solid and liquid radwaste, mainly radiopharmaceuticals. To avoid accumulation of radwastes in working areas, a temporary radioactive waste storage facility was built. Segregation of radwastes according to type was carried out, followed by collection into appropriate containers and transfer to the storage facility. Average radiation dose rate inside the store was maintained at about 75 {mu} h{sup -1} through use of appropriate shielding. The dose rates at points one meter outside the store walls were maintained at about 15-20 {mu}Sv h{sup -1}. Utilization of radioisotopes during the period of 1991-1995 resulted in a volume of about 1.8 m{sup 3} of solid radwaste and about 200 L of liquid radwaste. Records of the store inventory are maintained in a computer database, listing dates, types, activities and packaging data pertinent to the radwastes delivered to the store. Quality assurance procedures are implemented during the different stages of the radwaste collection, transportation, and storage. Construction and operation of the storage facility comply with radiation safety requirements for the workers handling the radwastes, the public and the environment. The capacity of the storage facility is such that it will accommodate storage of generated radwastes of long half life up to year 2016. Permanent disposal of such radwastes may be indicated afterwards. 2 figs., 3 tabs.

  11. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  12. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  13. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R.

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  14. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    Energy Technology Data Exchange (ETDEWEB)

    Nissley, Paul; Berry, Joanne [EnergySolutions, 2345 Stevens Dr. Richland, WA 99354 (United States)

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying

  15. Review of Regulatory Quality Assurance Requirements for the Operation of Nuclear R and D Facilities

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Lim, Nam Jin

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has many R and D facilities in operation, including HANARO research reactor, radioactive waste treatment facility (RWTF), post-irradiation examination facility (PIEF) and irradiated material test facility (IMEF). Recently, nation-wide interest is focused on the safety and security of major industrial facilities. Safe operation of nuclear facilities is imperative because of the consequence of public disaster by radiological release/ contamination, in case of an accident. Recently, Ministry of Science and Technology (MOST) of the Korean government announced amendments of Atomic Energy laws to enforce requirements of the physical protection and radiological emergency. In this paper, the context of amended Atomic Energy laws were reviewed to confirm quality assurance measures and identify additional QA activities, if any, that is required by the amendment

  16. Techniques for controlling air pollution from the operation of nuclear facilities. Report of a panel

    International Nuclear Information System (INIS)

    1966-01-01

    This manual is provided for the guidance of those persons or authorities who are responsible for the organization, control and operation of ventilation systems and air-cleaning installations in nuclear establishments. It is intended to generalize about existing experience in the operation of such systems at nuclear facilities including reactors and laboratories for production, use and handling of radionuclides and other toxic materials. This manual will provide designers and operators of nuclear facilities in which ventilation and air-cleaning systems are used with the factors which have to be considered to create safe working conditions inside facilities and without polluting the atmosphere or the environment to a hazardous level.

  17. 9 CFR 354.210 - Minimum standards for sanitation, facilities, and operating procedures in official plants.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Minimum standards for sanitation, facilities, and operating procedures in official plants. 354.210 Section 354.210 Animals and Animal Products... sanitation, facilities, and operating procedures in official plants. The provisions of §§ 354.210 to 354.247...

  18. Regulatory quality assurance requirements for the operation of nuclear R and D facilities in Korea

    International Nuclear Information System (INIS)

    Kwon, H.I.; Lim, N.J.

    2006-01-01

    Full text: Korea Atomic Energy Research Institute (KAERI) has many R and D facilities in operation. including HANARO research reactor, radioactive waste treatment facility (RWTF), post-irradiation examination facility (PIEF) and irradiated material test facility (IMEF). Recently. nation-wide interest is focused on the safety and security of major industrial facilities. Safe operation of nuclear facilities is imperative because of the consequence of public disaster by radiological release/contamination, in case of an accident. Recently, Ministry of Science and Technology (MOST) of the Korean government announced amendments of Atomic Energy laws to enforce requirements of the physical protection and radiological emergency. All provisions on nuclear safety regulation and radiation protection are entrusted to the Atomic Energy Act(AEA). The Act is enacted as the main law concerning the safety regulation of nuclear installations, and is supplemented by the Enforcement Decree and Enforcement Regulation of the Act. These Atomic Energy laws include provisions on the construction permission and the operation license of nuclear installations, such as nuclear power reactors, research reactors, nuclear ships, nuclear fuel fabrication facilities, spent fuel treatment facilities, etc. Regulatory requirements for the regulatory inspection and the safety measures for operation are also defined in the laws. The Notice of the MOST prescribes specific issues including regulatory requirements and technical standards, as entrusted by the AEA, the Decree and the Regulation. Detailed QA requirements for nuclear installations are specified differently, depending upon the type of facility. The guidelines for safety reviews and regulatory inspections are developed by the Korea Institute of Nuclear Safety (KINS), which is an exclusive organization for safety regulation of nuclear installations in Korea. In this paper, the context of the Atomic Energy laws were reviewed to confirm the

  19. The waste disposal facility in the Aube District

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-06-01

    The waste disposal facility in the Aube district is the second surface waste disposal facility built in France. It is located in the Aube district, and has been operated by Andra since 1992. With a footprint of 95 hectares, it is licensed for the disposal of 1 million cubic meters of low- and intermediate-level, short-lived waste packages. The CSA is located a few kilometers away another Andra facility, currently in operation for very-low-level waste, and collection and storage of non-nuclear power waste (the Cires). Contents: Andra in the Aube district, an exemplary industrial operator - The waste disposal facility in the Aube district (CSA); Low- and intermediate-level, short-lived radioactive waste (LILW-SL); The LILW-SL circuit; Protecting present and future generations

  20. Operational characteristics of the OMEGA short-wavelength laser fusion facility

    International Nuclear Information System (INIS)

    Soures, J.M.; Hutchison, R.; Jacobs, S.; McCrory, R.L.; Peck, R.; Seka, W.

    1984-01-01

    Twelve beams of the OMEGA, 24 beam direct-drive laser facility have been converted to 351-nm wavelength operation. The performance characteristics of this short-wavelength facility will be discussed. Beam-to-beam energy balance of +-2.3% and on-target energy, at 351-nm, in excess of 70 J per beam have been demonstrated. Long-term performance (>600 shots) of the system has been optimized by appropriate choice of index matching liquid, optical materials and coatings. The application of this system in direct-drive laser fusion experiments will be discussed

  1. The emergence of care facilities in Thailand for older German-speaking people: structural backgrounds and facility operators as transnational actors.

    Science.gov (United States)

    Bender, Désirée; Hollstein, Tina; Schweppe, Cornelia

    2017-12-01

    This paper presents findings from an ethnographic study of old age care facilities for German-speaking people in Thailand. It analyses the conditions and processes behind the development and specific designs of such facilities. It first looks at the intertwinement, at the socio-structural level, of different transborder developments in which the facilities' emergence is embedded. Second, it analyses the processes that accompany the emergence, development and organisation of these facilities at the local level. In this regard, it points out the central role of the facility operators as transnational actors who mediate between different frames of reference and groups of actors involved in these facilities. It concludes that the processes of mediation and intertwining are an important and distinctive feature of the emergence of these facilities, necessitated by the fact that, although the facilities are located in Thailand, their 'markets' are in the German-speaking countries of their target groups.

  2. A Facile Way to Fabricate Transparent Superhydrophobic Surfaces.

    Science.gov (United States)

    Shi, Wentao; He, Ran; Yunus, Doruk E; Yang, Jie; Liu, Yaling

    2018-07-01

    A fast, easy, and low-cost way to fabricate transparent superhydrophobic (SHP) surfaces is developed. By simply mixing silica nanoparticles (SiNPs), polydimethylsiloxane (PDMS) and heptane to form a suspension, dip- or drop-coating the suspension onto different surfaces, transparent SHP surfaces can be obtained. By tuning the ratio of the three components above, transparency of the coating can reach more than 90% transmittance in the visible region, while static water contact angle of the coating can reach as high as 162°. Dynamic contact angle study shows the advancing contact angle and receding contact angle of water can be as high as 168° and 161°, and the resulting contact angle hysteresis can be as low as 7°. The reported facile way of fabricating transparent superhydrophobic (SHP) surfaces is potential for applications which need both optical transparency and self-cleaning capability, such as solar cells, optical equipment, and visible microfluidic chips.

  3. Operation, maintenance and upgrading of SUNY facilities at the National Synchrotron Light Source. Final report, 1 October 1980-31 May 1986

    International Nuclear Information System (INIS)

    Prewitt, C.T.

    1986-01-01

    A general facility is how operating and generating research results in x-ray scattering, diffraction, and spectroscopy. The contract just completed involved the construction and development of a single beamlines at NSLS subdivided to allow for diversity of experimental techniques. These include single-crystal diffraction at low temperatures and at high pressures, uhv surface studies using standing waves, time-resolved, small-angle scattering, and x-ray spectroscopy

  4. Study of the Relevance of the Quality of Care, Operating Efficiency and Inefficient Quality Competition of Senior Care Facilities.

    Science.gov (United States)

    Lin, Jwu-Rong; Chen, Ching-Yu; Peng, Tso-Kwei

    2017-09-11

    The purpose of this research is to examine the relation between operating efficiency and the quality of care of senior care facilities. We designed a data envelopment analysis, combining epsilon-based measure and metafrontier efficiency analyses to estimate the operating efficiency for senior care facilities, followed by an iterative seemingly unrelated regression to evaluate the relation between the quality of care and operating efficiency. In the empirical studies, Taiwan census data was utilized and findings include the following: Despite the greater operating scale of the general type of senior care facilities, their average metafrontier technical efficiency is inferior to that of nursing homes. We adopted senior care facility accreditation results from Taiwan as a variable to represent the quality of care and examined the relation of accreditation results and operating efficiency. We found that the quality of care of general senior care facilities is negatively related to operating efficiency; however, for nursing homes, the relationship is not significant. Our findings show that facilities invest more in input resources to obtain better ratings in the accreditation report. Operating efficiency, however, does not improve. Quality competition in the industry in Taiwan is inefficient, especially for general senior care facilities.

  5. Process pump operating problems and equipment failures, F-Canyon Reprocessing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    Durant, W.S.; Starks, J.B.; Galloway, W.D.

    1987-02-01

    A compilation of operating problems and equipment failures associated with the process pumps in the Savannah River Plant F-Canyon Fuel Reprocessing Facility is presented. These data have been collected over the 30-year operation of the facility. An analysis of the failure rates of the pumps is also presented. A brief description of the pumps and the data bank from which the information was sorted is also included

  6. 42 CFR 412.405 - Preadmission services as inpatient operating costs under the inpatient psychiatric facility...

    Science.gov (United States)

    2010-10-01

    ... under the inpatient psychiatric facility prospective payment system. 412.405 Section 412.405 Public... Services of Inpatient Psychiatric Facilities § 412.405 Preadmission services as inpatient operating costs under the inpatient psychiatric facility prospective payment system. The prospective payment system...

  7. A proposed regulatory policy statement on human factors requirements in the design and operation of Canadian nuclear facilities

    International Nuclear Information System (INIS)

    1986-10-01

    With the increasing complexity of new nuclear facilities and the extent to which automation is being applied, it is essential that the staff who operate a facility be considered as integral components in the design and safety analyses. This policy statement is proposed to indicate those areas of facility design and operation where the role of the human operator must be especially examined

  8. Construction and initial operation of the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Bell, G.L.; Bell, J.D.; Benson, R.D.

    1989-08-01

    The Advanced Toroidal Facility (ATF) torsatron was designed on a physics basis for access to the second stability regime and on an engineering basis for independent fabrication of high-accuracy components. The actual construction, assembly, and initial operation of ATF are compared with the characteristics expected during the design of ATF. 31 refs., 19 figs., 2 tabs

  9. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  10. Operational experience of the fuel cleaning facility of Joyo

    International Nuclear Information System (INIS)

    Mukaibo, R.; Matsuno, Y.; Sato, I.; Yoneda, Y.; Ito, H.

    1978-01-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 ∼ 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  11. Operational experience of the fuel cleaning facility of Joyo

    Energy Technology Data Exchange (ETDEWEB)

    Mukaibo, R; Matsuno, Y; Sato, I; Yoneda, Y; Ito, H [O-arai Engineering Centre, PNC, Ibaraki-ken, Tokio (Japan)

    1978-08-01

    Spent fuel assemblies in 'Joyo', after they are taken out of the core, are taken to the Fuel Cleaning Facility in the reactor service building and sodium removal is done. The cleaning process is done by cooling the assembly with argon gas, steam charging and rinsing by demineralized water. Deposited sodium was 50 {approx} 60 g per assembly. The sodium and steam reaction takes about 15 minutes to end and the total time the fuel is placed in the pot is about an hour. The total number of assemblies cleaned in the facility was 95 as of November 1977. In this report the operational experience together with discussions of future improvements are given. (author)

  12. Derivation of Waste Acceptance Criteria for Low and Intermediate Level Waste in Surface Disposal Facility

    International Nuclear Information System (INIS)

    Gagner, L.; Voinis, S.

    2000-01-01

    In France, low- and intermediate-level radioactive wastes are disposed in a near-surface facility, at Centre de l'Aube disposal facility. This facility, which was commissioned in 1992, has a disposal capacity of one million cubic meters, and will be operated up to about 2050. It took over the job from Centre de la Manche, which was commissioned in 1969 and shut down in 1994, after having received about 520,000 cubic meters of wastes. The Centre de l'Aube disposal facility is designed to receive a many types of waste produced by nuclear power plants, reprocessing, decommissioning, as well as by the industry, hospitals and armed forces. The limitation of radioactive transfer to man and the limitation of personnel exposure in all situations considered plausible require limiting the total activity of the waste disposed in the facility as well as the activity of each package. The paper presents how ANDRA has derived the activity-related acceptance criteria, based on the safety analysis. In the French methodology, activity is considered as end-point for deriving the concentration limits per package, whereas it is the starting point for deriving the total activity limits. For the concentration limits (called here LMA) the approach consists of five steps: the determination of radionuclides important for safety with regards to operational and long-term safety, the use of relevant safety scenarios as a tool to derive quantitative limits, the setting of dose constraint per situation associated with scenarios, the setting of contribution factor per radionuclide, and the calculation of concentration activity limits. An exhaustive survey has been performed and has shown that the totality of waste packages which should be delivered by waste generators are acceptable in terms of activity limits in the Centre de l'Aube. Examples of concentration activity limits derived from this methodology are presented. Furthermore those limits have been accepted by the French regulatory body and

  13. Ontario hydro waste storage concepts and facilities

    International Nuclear Information System (INIS)

    Carter, T.J.; Mentes, G.A.

    1976-01-01

    Ontario Hydro presently operates 2,200 MWe of CANDU heavy water reactors with a further 11,000 MWe under design or construction. The annual quantities of low and medium level solid wastes expected to be produced at these stations are tabulated. In order to manage these wastes, Ontario Hydro established a Radioactive Waste Operations Site within the Bruce Nuclear Power Development located on Lake Huron about 250 km northwest of Toronto. The Waste Operations Site includes a 19-acre Storage Site plus a Radioactive Waste Volume Reduction Facility consisting of an incinerator and waste compactor. Ontario has in use or under construction both in-ground and above-ground storage facilities. In-ground facilities have been used for a number of years while the above-ground facilities are a more recent approach. Water, either in the form of precipitation, surface or subsurface water, presents the greatest concern with respect to confinement integrity and safe waste handling and storage operations

  14. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces.

    Science.gov (United States)

    Tsai, Hui-Jung; Lee, Yuh-Lang

    2007-12-04

    A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.

  15. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  16. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Nixon, Archie E.; Dodge, Robert L.; Fife, Keith W.; Sandoval, Arnold M.; Garcia, Vincent E.

    2010-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National

  17. Transuranic (TRU) waste volume reduction operations at a plutonium facility

    International Nuclear Information System (INIS)

    Cournoyer, Michael E.; Nixon, Archie E.; Fife, Keith W.; Sandoval, Arnold M.; Garcia, Vincent E.; Dodge, Robert L.

    2011-01-01

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actinide Processing Group at TA-55 uses one-meter or longer glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glovebox as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste volume generation by almost 2½ times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos

  18. Meeting the challenges of bringing a new base facility operation model to Gemini Observatory

    Science.gov (United States)

    Nitta, Atsuko; Arriagada, Gustavo; Adamson, A. J.; Cordova, Martin; Nunez, Arturo; Serio, Andrew; Kleinman, Scot

    2016-08-01

    The aim of the Gemini Observatory's Base Facilities Project is to provide the capabilities to perform routine night time operations with both telescopes and their instruments from their respective base facilities without anyone present at the summit. Tightening budget constraints prompted this project as both a means to save money and an opportunity to move toward increasing remote operations in the future. We successfully moved Gemini North nighttime operation to our base facility in Hawaii in Nov., 2015. This is the first 8mclass telescope to completely move night time operations to base facility. We are currently working on implementing BFO to Gemini South. Key challenges for this project include: (1) This is a schedule driven project. We have to implement the new capabilities by the end of 2015 for Gemini North and end of 2016 for Gemini South. (2) The resources are limited and shared with operations which has the higher priority than our project. (3) Managing parallel work within the project. (4) Testing, commissioning and introducing new tools to operational systems without adding significant disruptions to nightly operations. (5) Staff buying to the new operational model. (6) The staff involved in the project are spread on two locations separated by 10,000km, seven time zones away from each other. To overcome these challenges, we applied two principles: "Bare Minimum" and "Gradual Descent". As a result, we successfully completed the project ahead of schedule at Gemini North Telescope. I will discuss how we managed the cultural and human aspects of the project through these concepts. The other management aspects will be presented by Gustavo Arriagada [2], the Project Manager of this project. For technical details, please see presentations from Andrew Serio [3] and Martin Cordova [4].

  19. Operational safety analysis of the Olkiluoto encapsulation plant and disposal facility

    International Nuclear Information System (INIS)

    Rossi, J.; Suolanen, V.

    2012-11-01

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facilities to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. In addition the results for unfiltered releases are also presented. This research is limited to the deterministic analysis. During about 30 operation years of our four nuclear power plant units there have been found 58 broken fuel pins. Roughly estimating there has been one fuel leakage per year in a facility (includes two units). Based on this and adopting a conservative approach, it is estimated that one fuel pin per year could leak in normal operation during encapsulation process. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The most exposed group of inhabitants is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and it will receive the largest doses in most dispersion conditions. The dose value to a member of the most exposed group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the most exposed group is less than 0.001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety

  20. Conjunctive operation of river facilities for integrated water resources management in Korea

    Directory of Open Access Journals (Sweden)

    H. Kim

    2016-10-01

    Full Text Available With the increasing trend of water-related disasters such as floods and droughts resulting from climate change, the integrated management of water resources is gaining importance recently. Korea has worked towards preventing disasters caused by floods and droughts, managing water resources efficiently through the coordinated operation of river facilities such as dams, weirs, and agricultural reservoirs. This has been pursued to enable everyone to enjoy the benefits inherent to the utilization of water resources, by preserving functional rivers, improving their utility and reducing the degradation of water quality caused by floods and droughts. At the same time, coordinated activities are being conducted in multi-purpose dams, hydro-power dams, weirs, agricultural reservoirs and water use facilities (featuring a daily water intake of over 100 000 m3 day−1 with the purpose of monitoring the management of such facilities. This is being done to ensure the protection of public interest without acting as an obstacle to sound water management practices. During Flood Season, each facilities contain flood control capacity by limited operating level which determined by the Regulation Council in advance. Dam flood discharge decisions are approved through the flood forecasting and management of Flood Control Office due to minimize flood damage for both upstream and downstream. The operational plan is implemented through the council's predetermination while dry season for adequate quantity and distribution of water.

  1. Operational readiness review for the Waste Experimental Reduction Facility. Final report

    International Nuclear Information System (INIS)

    1993-11-01

    An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory's (INEL's) Waste Experimental Reduction Facility (WERF) was conducted by EG ampersand G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report

  2. An operator calculus for surface and volume modeling

    Science.gov (United States)

    Gordon, W. J.

    1984-01-01

    The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.

  3. Two years of operating experience with the Seattle clinical neutron therapy facility

    International Nuclear Information System (INIS)

    Risler, R.; Brossard, S.; Eenmaa, J.; Kalet, I.; Wootton, P.

    1987-01-01

    After five years of planning, equipment acquisition, facility construction and beam testing the Seattle Clinical Neutron Therapy facility became operational in October 1984. In the past two years nearly 300 people have been treated in clinical trials. During this time 82 % of the planned treatment sessions were performed on schedule, 3 % had to be rescheduled for patient related reasons and 15 % because of equipment problems. The facility is at present running on a 5 days/week schedule: Three ten-hour treatment days, one maintenance day and one research day (radiobiology, therapy related physics). Short runs for short lived isotopes are done between patient treatments. The isocentric gantry, capable of 360 rotation is equipped with a variable collimator with 40 independent leaves. This collimation system allows the use of complex field shapes without the necessity of handling radioactive components like collimator inserts or blocks. It has turned out to be a very essential part for the efficient operation of the facility. Major causes for equipment downtime were associated with the control system, the beryllium target system, RF and magnet systems and the treatment gantry. (author)

  4. Feasibility study for a transportation operations system cask maintenance facility

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.

  5. Feasibility study for a transportation operations system cask maintenance facility

    International Nuclear Information System (INIS)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1991-01-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the cask systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs

  6. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  7. Near-facility environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the routine near-facility environmental monitoring programs which are presently being conducted at the Hanford Site. Several types of environmental media are sampled near nuclear facilities to monitor the effectiveness of waste management and restoration activities, and effluent treatment and control practices. These media include air, surface water and springs, surface contamination, soil and vegetation, investigative sampling (which can include wildlife), and external radiation. Sampling and analysis information and analytical results for 1994 for each of these media are summarized in this section. Additional data and more detailed information may be found in Westinghouse Hanford Company Operational Environmental Monitoring Annual Report, Calendar Year 1994.

  8. Operation of the cryogenic system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Chronis, W.C.; Slack, D.S.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system

  9. Characterization of uranium in surface-waters collected at the Rocky Flats Facility

    International Nuclear Information System (INIS)

    Efurd, D.W.; Rokop, D.J.; Aguilar, R.D.; Roensch, F.R.; Perrin, R.E.; Banar, J.C.

    1994-01-01

    The Rocky Flats Plant (RFP) is a Department of Energy (DOE) facility where plutonium and uranium components were manufactured for nuclear weapons. During plant operations radioactivity was inadvertently released into the environment. This study was initiated to characterize the uranium present in surface-waters at RFP. Three drainage basins and natural ephemeral streams transverse RFP. The Woman Creek drainage basin traverses and drains the southern portion of the site. The Rock Creek drainage basin drains the northwestern portion of the plant complex. The Walnut Creek drainage basin traverses the western, northern, and northeastern portions of the RFP site. Dams, detention ponds, diversion structures, and ditches have been constructed at RFP to control the release of plant discharges and surface (storm water) runoff. The ponds located downstream of the plant complex on North Walnut Creek are designated A-1 through A-4. Ponds on South Walnut Creek are designated B-1 through B-5. The ponds in the Woman Creek drainage basin are designated C-1 and C-2. Water samples were collected from each pond and the uranium was characterized by TIMS measurement techniques

  10. 75 FR 71545 - Changes to NARA Facilities' Hours of Operation

    Science.gov (United States)

    2010-11-24

    ... National Archives at Philadelphia is located at the Robert N.C. Nix Federal Building, 900 Market St... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION 36 CFR Parts 1253, 1254, and 1280 [NARA-10-0004] RIN 3095-AB68 Changes to NARA Facilities' Hours of Operation AGENCY: National Archives and Records...

  11. Diagnostics of PF-1000 facility operation and plasma concentration on the basis of spectral measurements

    International Nuclear Information System (INIS)

    Skladnik-Sadowska, E.; Malinowski, K.; Sadowski, M.J.; Scholz, M.; Tsarenko, A.V.

    2005-01-01

    The paper concerns the monitoring of the operation of high-current pulse discharges and the determination of the plasma concentration within the dense magnetized plasma column by means of optical spectroscopy methods. In experiments performed within the large PF-1000 facility, which is operated at IPPLM in Warsaw, particular attention was paid to possibility of the determination of correctness of the operational mode. In order to measure the visible radiation (VR), as emitted from the collapsing current sheath and the dense pinch region, the use was made of the MECHELLE R 900-optical-spectrometer, which was equipped with a CCD measuring head. The spectral measurements were performed at an angle of about 650 to the symmetry axis of the PF electrode system, through an optical window and a special collimator coupled with the quartz optical-cable. The observed VR emission originated from a part of the inner- and outer-electrode surfaces, the collapsing current-sheath layer and a portion of the dense plasma pinch-region (located a distance of 40-50 mm from the electrode ends). Considerable differences were found in the optical spectra recorded for so-called good shots and for cases of some failures. In the case of a breakdown (damage) of the main insulator there were observed different Al-lines, which originated from the eroded insulator material. At so-called bad vacuum conditions there were recorded various C-lines, and at an uncontrolled air-leakage into the experimental chamber there appeared numerous N-lines. The appearance of these characteristic spectral lines made possible to determine whether the operation of the PF-1000 facility was correct or incorrect. The paper reports also on estimates of plasma concentration values, which have been performed on the basis of a quantitative analysis of the Stark broadening of the selected spectral lines. (author)

  12. Los Alamos DP West Plutonium Facility decontamination project, 1978-1981

    International Nuclear Information System (INIS)

    Garde, R.; Cox, E.J.; Valentine, A.M.

    1982-09-01

    The DP West Plutonium Facility operated by the Los Alamos National Laboratory, Los Alamos, New Mexico was decontaminated between April 1978 and April 1981. The facility was constructed in 1944 to 1945 to produce plutonium metal and fabricate parts for nuclear weapons. It was continually used as a plutonium processing and research facility until mid-1978. Decontamination operations included dismantling and removing gloveboxes and conveyor tunnels; removing process systems, utilities, and exhaust ducts; and decontaminating all remaining surfaces. This report describes glovebox and conveyor tunnel separations, decontamination techniques, health and safety considerations, waste management procedures, and costs of the operation

  13. Operational Experience of an Open-Access, Subscription-Based Mass Spectrometry and Proteomics Facility

    Science.gov (United States)

    Williamson, Nicholas A.

    2018-03-01

    This paper discusses the successful adoption of a subscription-based, open-access model of service delivery for a mass spectrometry and proteomics facility. In 2009, the Mass Spectrometry and Proteomics Facility at the University of Melbourne (Australia) moved away from the standard fee for service model of service provision. Instead, the facility adopted a subscription- or membership-based, open-access model of service delivery. For a low fixed yearly cost, users could directly operate the instrumentation but, more importantly, there were no limits on usage other than the necessity to share available instrument time with all other users. All necessary training from platform staff and many of the base reagents were also provided as part of the membership cost. These changes proved to be very successful in terms of financial outcomes for the facility, instrument access and usage, and overall research output. This article describes the systems put in place as well as the overall successes and challenges associated with the operation of a mass spectrometry/proteomics core in this manner. [Figure not available: see fulltext.

  14. Stress relieving procedure and facility by shot-peening the inside surface of NPP steam generators tubes

    International Nuclear Information System (INIS)

    Banica, I.; Maioru, H.

    1994-01-01

    Residual stress relieving of the transition zones between the deformed part and the non deformed part of the heat exchanger tubes expanded in tube sheets of the NPP equipment, is a technological problem attacked on international level as well as on national level through the continuing programme initiated by ICEMENERG. The most recent statistical data point out that over 75% of tube failures are taking place in the tube-to-tubesheet connection zone, a great number of them being produced in this area by intergranular attack and stress corrosion cracking. The increased occurrence of these incidents is explained first by the existence of residual stresses inside tube surfaces, induced by expanding the tubes. Relieving these residual stresses is the purpose of the outlined procedure and it is achieved by overlapping effects (compression stresses added over tensile stresses). In this paper aspects of the procedure are presented and also a facility is described for stress relieving by introducing compressive stresses from uniform and generalized collisions of the inside surface with micro balls of great kinetic energy carried by a pressurized gas. The stress relieving facility can be acted by remote control, the whole process being completely automatic. The procedure aims to the operation maintenance of the NPP steam generators. (Author)

  15. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.

  16. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    1982-09-01

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  17. Waste isolation facility description for the spent fuel cycle, bedded salt

    International Nuclear Information System (INIS)

    1977-05-01

    Details are given on surface facilities, shafts and hoists, mine facilities, ventilation systems, land improvements, and utilities. Accidents, confinement, and safety criteria are covered. Appendices are provided on mine layout and development, mine operations, shaft construction information, and analysis concerning canister rupture inside the proposed waste isolation facility

  18. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Science.gov (United States)

    2012-02-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-264; NRC-2012-0026] Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company...

  19. Basis for Interim Operation for Fuel Supply Shutdown Facility

    International Nuclear Information System (INIS)

    BENECKE, M.W.

    2003-01-01

    This document establishes the Basis for Interim Operation (BIO) for the Fuel Supply Shutdown Facility (FSS) as managed by the 300 Area Deactivation Project (300 ADP) organization in accordance with the requirements of the Project Hanford Management Contract procedure (PHMC) HNF-PRO-700, ''Safety Analysis and Technical Safety Requirements''. A hazard classification (Benecke 2003a) has been prepared for the facility in accordance with DOE-STD-1027-92 resulting in the assignment of Hazard Category 3 for FSS Facility buildings that store N Reactor fuel materials (303-B, 3712, and 3716). All others are designated Industrial buildings. It is concluded that the risks associated with the current and planned operational mode of the FSS Facility (uranium storage, uranium repackaging and shipment, cleanup, and transition activities, etc.) are acceptable. The potential radiological dose and toxicological consequences for a range of credible uranium storage building have been analyzed using Hanford accepted methods. Risk Class designations are summarized for representative events in Table 1.6-1. Mitigation was not considered for any event except the random fire event that exceeds predicted consequences based on existing source and combustible loading because of an inadvertent increase in combustible loading. For that event, a housekeeping program to manage transient combustibles is credited to reduce the probability. An additional administrative control is established to protect assumptions regarding source term by limiting inventories of fuel and combustible materials. Another is established to maintain the criticality safety program. Additional defense-in-depth controls are established to perform fire protection system testing, inspection, and maintenance to ensure predicted availability of those systems, and to maintain the radiological control program. It is also concluded that because an accidental nuclear criticality is not credible based on the low uranium enrichment

  20. 2d index and surface operators

    International Nuclear Information System (INIS)

    Gadde, Abhijit; Gukov, Sergei

    2014-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role

  1. Operational experience at the Sludge Treatment Facility

    International Nuclear Information System (INIS)

    Sy, D.J.

    1987-01-01

    The Sludge Treatment Facility (STF) at the Oak Ridge Gaseous Diffusion Plant has been in operation since April 1987. The facility was designed to encapsulate hazardous sludge wastes in a cement matrix. Fixation will allow the waste to meet or exceed applicable compressive strength and leachability requirements. Thus, the grout mixture complies with the Resource Conservation and Recovery Act (RCRA) guidelines as a nonhazardous waste. The grout mixture is based upon a recipe formulation developed after several years of waste stream characterization and formulation studies. The wastes to be treated at the STF are wastes impounded in two ponds. The ponds have a combined capacity of 4.5 million gallons of sludge. The sludge is transferred from the ponds to a 15,000-gallon capacity storage tank by the use of a dredge. The grout mixture recipe dictates the amount of sludge, cement, fly ash, and admixture required for weighing per batch. All ingredients are weighed and then transferred to a tilt or high energy mixer for mixing. The grout mixture is then transferred to 89- or 96-gallon steel drums. The drums are placed in a storage yard designed for a point source discharge from the yard

  2. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility

    International Nuclear Information System (INIS)

    Liu, Pingsheng; Chen, Qiang; Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong; Shen, Jian

    2013-01-01

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. Highlights: • Facile surface modification of silicone rubber with functional brushes • Modified SR surfaces have improved resistance to nonspecific protein adsorption. • Modified SR surfaces have excellent resistance to platelet adhesion. • Zwitteironic surface significant improvement in blood compatibility • Could inspire many creative uses of SR based materials for biomedical

  3. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pingsheng [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen, Qiang, E-mail: chem100@nju.edu.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); High Technology Research Institute of Nanjing University, Changzhou 213164 (China); Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Shen, Jian, E-mail: shenj1957@yahoo.com.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2013-10-15

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. Highlights: • Facile surface modification of silicone rubber with functional brushes • Modified SR surfaces have improved resistance to nonspecific protein adsorption. • Modified SR surfaces have excellent resistance to platelet adhesion. • Zwitteironic surface significant improvement in blood compatibility • Could inspire many creative uses of SR based materials for biomedical.

  4. Interactive CD based training on NDA instruments for facility operators and international inspectors

    International Nuclear Information System (INIS)

    Horley, E.C.; Smith, H.A.

    1996-01-01

    Interactive multimedia training is rapidly becoming a popular and highly effective medium for learning. An interactive CD based training module on the Active Well Coincidence counter is being developed for on-site training at nuclear facility, including foreign facilities. The training module incorporates interactive text, graphics and video that demonstrate the operating principles, and the use and set-up of the instrument. The user is in control of the pace of learning and of the directions taken to acquire information based on personal need. By being in control, the user stays highly motivated. A mix of visuals (text and graphics), audio clips (in different languages), and video (with audio) clips also keeps the interest level high. Skill reviews and evaluations can be incorporated into the training to provide feedback to the student. In addition, general background information is provided on gamma and neutron based MC and A measurements. This material serves as a condensed MC and A encyclopedia. By supplying an interactive CD with an NDA instrument, nuclear facilities will have greater assurance operators are properly trained in the set-up and operation of the NDA-equipment

  5. A probabilistic risk assessment of the LLNL Plutonium Facility's evaluation basis fire operational accident. Revision 1

    International Nuclear Information System (INIS)

    Brumburgh, G.P.

    1995-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous programmatic activities involving plutonium to include device fabrication, development of improved and/or unique fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed in July 1994 to address operational safety and acceptable risk to employees, the public, government property, and the environmental. This paper outlines the PRA analysis of the Evaluation Basis Fire (EBF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  6. The FAO/IAEA interactive spreadsheet for design and operation of insect mass rearing facilities

    International Nuclear Information System (INIS)

    Caceres, Carlos; Rendon, Pedro

    2006-01-01

    An electronic spreadsheet is described which helps users to design, equip and operate facilities for the mass rearing of insects for use in insect pest control programmes integrating the sterile insect technique. The spreadsheet was designed based on experience accumulated in the mass rearing of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), using genetic sexing strains based on a temperature sensitive lethal (tsl) mutation. The spreadsheet takes into account the biological, production, and quality control parameters of the species to be mass reared, as well as the diets and equipment required. All this information is incorporated into the spreadsheet for user-friendly calculation of the main components involved in facility design and operation. Outputs of the spreadsheet include size of the different rearing areas, rearing equipment, volumes of diet ingredients, other consumables, as well as personnel requirements. By adding cost factors to these components, the spreadsheet can estimate the costs of facility construction, equipment, and operation. All the output parameters can be easily generated by simply entering the target number of sterile insects required per week. For other insect species, the biological and production characteristics need to be defined and inputted accordingly to obtain outputs relevant to these species. This spreadsheet, available under http://www-naweb.iaea.org/nafa/ipc/index.html, is a powerful tool for project and facility managers as it can be used to estimate facility cost, production cost, and production projections under different rearing efficiency scenarios. (author)

  7. The FAO/IAEA interactive spreadsheet for design and operation of insect mass rearing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Carlos, E-mail: carlos.e.caceres@aphis.usda.co [International Atomic Energy Agency (IAEA), Seibersdorf (Austria). Agency' s Labs. Programme of Nuclear Techniques in Food and Agriculture; Rendon, Pedro [U.S. Department of Agriculture (USDA/APHIS/CPHST), Guatemala City (Guatemala). Animal and Plant Health Inspection. Center for Plant Health Science and Technology

    2006-07-01

    An electronic spreadsheet is described which helps users to design, equip and operate facilities for the mass rearing of insects for use in insect pest control programmes integrating the sterile insect technique. The spreadsheet was designed based on experience accumulated in the mass rearing of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), using genetic sexing strains based on a temperature sensitive lethal (tsl) mutation. The spreadsheet takes into account the biological, production, and quality control parameters of the species to be mass reared, as well as the diets and equipment required. All this information is incorporated into the spreadsheet for user-friendly calculation of the main components involved in facility design and operation. Outputs of the spreadsheet include size of the different rearing areas, rearing equipment, volumes of diet ingredients, other consumables, as well as personnel requirements. By adding cost factors to these components, the spreadsheet can estimate the costs of facility construction, equipment, and operation. All the output parameters can be easily generated by simply entering the target number of sterile insects required per week. For other insect species, the biological and production characteristics need to be defined and inputted accordingly to obtain outputs relevant to these species. This spreadsheet, available under http://www-naweb.iaea.org/nafa/ipc/index.html, is a powerful tool for project and facility managers as it can be used to estimate facility cost, production cost, and production projections under different rearing efficiency scenarios. (author)

  8. 30 CFR 71.500 - Sanitary toilet facilities at surface work sites; installation requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sanitary toilet facilities at surface work sites; installation requirements. 71.500 Section 71.500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND...

  9. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    2012-02-01

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  10. Radioactive Operations Committee Review of the Intermediate-Level Waste Evaporator Facility, Building 2531 February 17, 1972

    International Nuclear Information System (INIS)

    Liberman, B.; Brooksbank, R.E.

    1972-01-01

    A subcommittee of the Radioactive Operations Committee met with the Operators of the Intermediate Level Waste Evaporator Facility on February 17, 1972, to discuss the status of the facility and its operations since the review of October 7, 1970, and reported in ORNL-CF-70-11-12. This review was made to determine the status of the ILWEF since the last review, to discuss compliance with previously recommended changes, and to review any new items of safety significance. Several recommendations were made.

  11. Facility Description 2012. Summary report of the encapsulation plant and disposal facility designs

    International Nuclear Information System (INIS)

    Palomaeki, J.; Ristimaeki, L.

    2013-10-01

    The purpose of the facility description is to be a specific summary report of the scope of Posiva's nuclear facilities (encapsulation plant and disposal facility) in Olkiluoto. This facility description is based on the 2012 designs and completing Posiva working reports. The facility description depicts the nuclear facilities and their operation as the disposal of spent nuclear fuel starts in Olkiluoto in about 2020. According to the decisions-in-principle of the government, the spent nuclear fuel from Loviisa and Olkiluoto nuclear power plants in operation and in future cumulative spent nuclear fuel from Loviisa 1 and 2, Olkiluoto 1, 2, 3 and 4 nuclear power plants, is permitted to be disposed of in Olkiluoto bedrock. The design of the disposal facility is based on the KBS-3V concept (vertical disposal). Long-term safety concept is based on the multi-barrier principle i.e. several release barriers, which ensure one another so that insufficiency in the performance of one barrier doesn't jeopardize long-term safety of the disposal. The release barriers are the following: canister, bentonite buffer and deposition tunnel backfill, and the host rock around the repository. The canisters are installed into the deposition holes, which are bored to the floor of the deposition tunnels. The canisters are enveloped with compacted bentonite blocks, which swell after absorbing water. The surrounding bedrock and the central and access tunnel backfill provide additional retardation, retention, and dilution. The nuclear facilities consist of an encapsulation plant and of underground final disposal facility including other aboveground buildings and surface structures serving the facility. The access tunnel and ventilation shafts to the underground disposal facility and some auxiliary rooms are constructed as a part of ONKALO underground rock characterization facility during years 2004-2014. The construction works needed for the repository start after obtaining the construction

  12. Summary of facility and operating experience on helium engineering demonstration loop (HENDEL)

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Yoshihiro; Fujisaki, Katsuo; Kobayashi, Toshiaki; Kato, Michio; Ota, Yukimaru; Watanabe, Syuji; Kobayashi, Hideki; Mogi, Haruyoshi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1996-07-01

    The HENDEL is a test facility to perform full scale demonstration tests on the core internals and high temperature components for the High Temperature Engineering Test Reactor(HTTR). The main systems consist of Mother(M) and Adapter(A), fuel stack Test(T{sub 1}) and in-core structure Test(T{sub 2}) sections. The (M+A) section can supply high temperature helium gas to the test section. The M+A section completed in March 1982 has been operated for about 22900 hours till February 1995. The T{sub 1} and T{sub 2} sections, completed in March 1983 and June 1986, have been operated for about 19400 and 16700 hours, respectively. In this period, a large number of tests have been conducted to verify the performance and safety features of the HTTR components. The results obtained from these tests have been effectively applied to the detailed design, licensing procedures and construction of the HTTR. The operating experience of the HENDEL for more than 10 years also brought us establishment of the technique of operation of a large scale helium gas loop, handling of helium gas and maintenance of high temperature facilities. The technique will be available for the operation of the HTTR. This paper mainly describes the summary of plant facirities, operating experience and maintenance on the HENDEL. (author)

  13. Nuclear Safety Co-Ordination within Oak Ridge Operations Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W. A.; Pryor, W. A. [Research and Development Division, United States Atomic Energy Commission, Oak Ridge, TN (United States)

    1966-05-15

    The Oak Ridge Operations Office of the USAEC has within its jurisdiction multiple contractors and facilities for research and for the production of fissile materials for the atomic energy programme. Among these facilities are gaseous diffusion plants for the production of {sup 235}U-enriched uranium hexafluoride, plants for the fabrication of special components and fuel for research and production reactors, and laboratories for pilot plant studies and basic research in nuclear technology. One research laboratory is also actively engaged in criticality experimental programmes and has been a major contributor of criticality data for safety applications. These diversified programmes include the processing, fabrication and transport of practically all forms and isotopic enrichments of uranium in quantities commensurate with both laboratory and volume production requirements. Consequently, adequate nuclear safety control with reasonable economy for operations of this magnitude demands not only co-ordination and liaison between contractor and USAEC staffs, but a continuing reappraisal of safety applications in light of the most advanced information. This report outlines the role of the Oak Ridge Operations Office in these pursuits and describes as examples some specific problems in which this office co-ordinated actions necessary for their resolution. Other examples are given of parametric and procedural applications in plant processes and fissile shipments emphasizing the use of recent experimental or calculated data. These examples involve the use of mass and geometric variables, neutron absorbers and moderation control. Departures from limits specified in existing nuclear safety guides are made to advantage in light of new data, special equipment design, contingencies and acceptable risks. (author)

  14. SUPERCONDUCTING RADIO-FREQUENCY MODULES TEST FACILITY OPERATING EXPERIENCE

    International Nuclear Information System (INIS)

    Soyars, W.; Bossert, R.; Darve, C.; Degraff, B.; Klebaner, A.; Martinez, A.; Pei, L.; Theilacker, J.

    2008-01-01

    Fermilab is heavily engaged and making strong technical contributions to the superconducting radio-frequency research and development program (SRF R and D). Four major SRF test areas are being constructed to enable vertical and horizontal cavity testing, as well as cryomodule testing. The existing Fermilab cryogenic infrastructure has been modified to service the SRF R and D needs. The project's first stage has been successfully completed, which allows for distribution of cryogens for a single-cavity cryomodule using the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at Meson Detector Building (MDB) results from the liquefaction capacity of the CTF cryogenic system. The cryogenic system for a single 9-cell cryomodule is currently operational. The paper describes the status, challenges and operational experience of the initial phase of the project

  15. 200 Area Treated Effluent Disposal Facility operational test specification. Revision 2

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters

  16. Recommended radiological controls for tritium operations

    International Nuclear Information System (INIS)

    Mansfield, G.

    1992-01-01

    This informal report presents recommendations for an adequate radiological protection program for tritium operations. Topics include hazards analysis, facility design, personnel protection equipment, training, operational procedures, radiation monitoring, to include surface and airborne tritium contamination, and program management

  17. Development and implementation of the waste diversion program at MDS Nordion's Cobalt Operations Facility

    International Nuclear Information System (INIS)

    Wasiak, T.

    2004-01-01

    Historically, the MDS Nordion (MDSN) Cobalt Operations Facility sent solid waste for disposal to Atomic Energy of Canada Ltd.'s Chalk River Laboratories (AECL-CRL). A large portion of this waste was not contaminated. Because this non-contaminated waste originated in the 'active area' of the MDSN facility, it was routinely disposed of as low-level active waste. In 2002, MDSN undertook an initiative to develop and implement a more sophisticated and more economical waste management program. The Waste Diversion Program (WDP) ensures continued environmental and public protection, and reduces the demand on Canada's limited capacity for storage of radioactive material and the associated operating costs. The goal of the WDP is to reduce the volume of waste currently being shipped to AECL-CRL's Waste Management Operation as low-level active waste. The presentation discusses key elements of both the development and the implementation of WDP. It focuses on the following areas: the regulatory environment surrounding the waste disposal issues in Canada and abroad. Methods used by MDSN for determination of radionuclides, which could be present in the facility. Choice of equipment and calculation of individual alarm levels for each identified radionuclide. Key elements of the practical implementation of the program. CNSC Regulatory approval process. The bottom line - dollars and cents. The primary objective of the WDP is to ensure that only waste, which meets regulatory requirements, is diverted from the solid active waste stream. This has been successfully accomplished in MDSN's Cobalt Operations Facility. The objective of the presentation is to share the knowledge and experience obtained in the development process, and thus provide a guideline for other nuclear facilities interested in establishing similar proactive and cost effective programs. (author)

  18. Operators guide: Atmospheric Release Advisory Capability (ARAC) site facility

    International Nuclear Information System (INIS)

    Lawver, B.S.

    1977-01-01

    In this report capabilities and services are described for the Atmospheric Release Advisory Capability (ARAC). The ARAC site system and its operating procedures and interactions with the ARAC central facility located at LLL is outlined. ARAC is designed to help officials at designated ERDA sites and other locations in estimating the effects of atmospheric releases of radionuclides or other hazardous materials by issuing real-time advisories to guide them in their planning

  19. 77 FR 33782 - License Amendment To Construct and Operate New In Situ Leach Uranium Recovery Facility; Uranium...

    Science.gov (United States)

    2012-06-07

    ... and Operate New In Situ Leach Uranium Recovery Facility; Uranium One Americas; Ludeman AGENCY: Nuclear... provided the first time that a document is referenced. The Ludeman facility In Situ Leach Uranium Recovery... request to amend Source Material License SUA-1341 to construct and operate a new in situ leach uranium...

  20. Lunar Transportation Facilities and Operations Study, option 1

    Science.gov (United States)

    1991-05-01

    Throughout the Option I period of the Lunar Transportation Facilities and Operations Study (LTFOS), McDonnell Douglas Space Systems Company - Kennedy Space Center (MDSSC-KSC) provided support to both the Planetary Surface Systems (PSS) Office at the National Aeronautics and Space Administration (NASA) at the Johnson Space Center and to the Flight and Ground Systems Projects Office (Payload Projects Management) at the Kennedy Space Center. The primary objective of the Option I phase of the study was to assist the above NASA centers in developing Space Exploration Initiative (SEI) concepts. MDSSC-KSC conducted three analyses which provided launch and landing detail to the proposed exploration concepts. One analysis, the Lunar Ejecta Assessment, was conducted to determine the effects of launch and landing a vehicle in a dusty environment. A second analysis, the Thermal/Micrometeoroid Protection Trade Study, was refined to determine the impacts that Reference Architecture Option 5A would have on thermal/micrometeoroid protection approaches. The third analysis, the Centaur Prelaunch Procedure Analysis, used a Centaur prelaunch test and checkout flow to identify key considerations that would be important if a Lunar Excursion Vehicle (LEV) was to use an expander cycle liquid oxygen-liquid hydrogen engine. Several 'quick look' assessments were also conducted. One quick look assessment, the Storable Propellant Quick Look Assessment, was conducted to identify design considerations that should be made if storable propellants were to be used instead of liquid oxygen and liquid hydrogen. The LEV Servicer Maintenance Analysis provided an early look at the effort required to maintain an LEV Servicer on the lunar surface. Also, support was provided to the PSS Logistics Manager to develop initial LEV Servicer cost inputs. Consideration was given to the advanced development that must be provided to accomplish a lunar and/or Mars mission. MDSS-KSC also provided support to both MASE

  1. Operating experience with superconducting cavities at the TESLA test facility

    International Nuclear Information System (INIS)

    Moeller, Wolf-Dietrich

    2003-01-01

    A description of the TESLA Test Facility, which has been set up at DESY by the TeV Energy Superconducting Accelerator (TESLA) collaboration, will be given as it is now after five years of installation and operation. The experience with the first three modules, each containing 8 superconducting 9-cell cavities, installed and operated in the TTF-linac will be described. The measurements in the vertical and horizontal cryostats as well as in the modules will be compared. Recent results of the operation at the TESLA design current, macropulses of 800 μsec with bunches of 3.2 nC at a rate of 2.25 MHz are given. New measurement results of the higher order modes (HOM) will be presented. The operation and optimisation of the TTF Free Electron Laser (TTF-FEL) will also be covered in this paper. (author)

  2. Operation method for wall surface of pressure suppression chamber of reactor container and floating scaffold used for the method

    International Nuclear Information System (INIS)

    Matsuzaki, Tetsuo; Kounomaru, Toshimi; Saito, Koichi.

    1996-01-01

    A floating scaffold is provisionally disposed in adjacent with the wall surface of pool water of a pressure suppression chamber while being floated on the surface of the pool water before the drainage of the pool water from the pressure vessel. The floating scaffold has guide rollers sandwiching a bent tube of an existent facility so that the horizontal movement is restrained, and is movable only in a vertical direction depending on the change of water level of the pool water. In addition, a handrail for preventing dropping, and a provisional illumination light are disposed. When pool water in the pressure suppression chamber is drained, the water level of the pool water is lowered in accordance with the amount of drained water. The floating scaffold floating on the water surface is lowered while being guided by the bent tube, and the operation position is lowered. An operator riding on the floating scaffold inspects the wall surfaces of the pressure chamber and conducts optional repair and painting. (I.N.)

  3. Deep repository for spent nuclear fuel. Facility description - Layout E. Spiral ramp with one operational area

    International Nuclear Information System (INIS)

    Pettersson, Stig; Forsgren, Ebbe; Lange, Fritz

    2002-04-01

    ground. The proposal is based on a hypothetical inland location with a rail link. The report describes a layout with a spiral ramp as access to the deposition area and with a single operational area above ground. The ramp will be used as a transport route for heavy and bulky transports. A shaft, that connects the operational area with the central area of the deposition area, is used for utility systems and for staff transports between the surface and the deposition area. It has been assumed that the deposition areas and the central area are on the same level. The appendix, describing a two level alternative, shows how the underground area could be arranged if the deposition area for regular operation were to be divided into two levels. The facility description concentrates on the situation during regular operation. It also describes the gradual expansion programme, including land requirements and connections to existing infrastructure. The report concludes with some perspective sketches, which give a vision of how the repository might look when ready for operation. This facility description is a translation of the Swedish SKB report R-02-18. It is important to note that the report gives an example of one possible design for the deep repository. Many issues concerning system design, functional solutions, layout and design ought to be investigated further before deciding on the final design

  4. Deep repository for spent nuclear fuel. Facility description - Layout E. Spiral ramp with one operational area

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Stig [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Forsgren, Ebbe [SwedPower AB, Stockholm (Sweden); Lange, Fritz [Lange Art AB, Stockholm (Sweden)

    2002-04-01

    below ground. The proposal is based on a hypothetical inland location with a rail link. The report describes a layout with a spiral ramp as access to the deposition area and with a single operational area above ground. The ramp will be used as a transport route for heavy and bulky transports. A shaft, that connects the operational area with the central area of the deposition area, is used for utility systems and for staff transports between the surface and the deposition area. It has been assumed that the deposition areas and the central area are on the same level. The appendix, describing a two level alternative, shows how the underground area could be arranged if the deposition area for regular operation were to be divided into two levels. The facility description concentrates on the situation during regular operation. It also describes the gradual expansion programme, including land requirements and connections to existing infrastructure. The report concludes with some perspective sketches, which give a vision of how the repository might look when ready for operation. This facility description is a translation of the Swedish SKB report R-02-18. It is important to note that the report gives an example of one possible design for the deep repository. Many issues concerning system design, functional solutions, layout and design ought to be investigated further before deciding on the final design.

  5. 78 FR 40519 - Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving...

    Science.gov (United States)

    2013-07-05

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-298; NRC-2013-0139] Cooper Nuclear Station; Application and Amendment to Facility Operating License Involving Proposed No Significant Hazards..., issued to Nebraska Public Power District (the licensee), for operation of the Cooper Nuclear Station (CNS...

  6. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    Science.gov (United States)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  7. Surface effects in controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1975-08-01

    During the operation of large size plasma facilities and future controlled thermonuclear fusion reactors the surfaces of such major components as container walls, beam limiters, diverter walls and beam-dump walls of the injector region will be exposed to particle and photon bombardment from primary plasma radiations and from secondary radiations. Such radiations can cause, for example, physical and chemical sputtering, blistering, particle- and photon-impact induced desorption, secondary electron and x-ray emission, backscattering, nuclear reactions, photo-decomposition of surface compounds, photocatalysis, and vaporization. Such effects in turn can (a) seriously damage and erode the bombarded surface and (b) release major quantities of impurities which will contaminate the plasma. The effects of some of the major surface phenomena on the operation of plasma facilities and future fusion reactors are discussed

  8. RISK ASSESSMENT BY STRUCTURAL ANALYSIS AND VIBRATION MEASUREMENT EQUIPMENT OPERATING AT OIL FACILITIES

    OpenAIRE

    Marius STAN

    2013-01-01

    Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.

  9. Outsourcing strategy and tendering methodology for the operation and maintenance of CERN’s cryogenic facilities

    Science.gov (United States)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.

    2017-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.

  10. Defense Waste Processing Facility staged operations: environmental information document

    International Nuclear Information System (INIS)

    1981-11-01

    Environmental information is presented relating to a staged version of the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The information is intended to provide the basis for an Environmental Impact Statement. In either the integral or the staged design, the DWPF will convert the high-level waste currently stored in tanks into: a leach-resistant form containing about 99.9% of all the radioactivity, and a residual, slightly contaminated salt, which is disposed of as saltcrete. In the first stage of the staged version, the insoluble sludge portion of the waste and the long lived radionuclides contained therein will be vitrified. The waste glass will be sealed in canisters and stored onsite until shipped to a Federal repository. In the second stage, the supernate portion of the waste will be decontaminated by ion exchange. The recovered radionuclides will be transferred to the Stage 1 facility, and mixed with the sludge feed before vitrification. The residual, slightly contaminated salt solution will be mixed with Portland cement to form a concrete product (saltcrete) which will be buried onsite in an engineered landfill. This document describes the conceptual facilities and processes for producing glass waste and decontaminated salt. The environmental effects of facility construction, normal operations, and accidents are then presented. Descriptions of site and environs, alternative sites and waste disposal options, and environmental consultations and permits are given in the base Environmental Information Document

  11. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  12. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice

  13. The optimum operating conditions of the phased double-rotor facility at the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K.; Habib, N.; Wahba, M.; Kilany, M.; Adib, M. [National Research Centre, Cairo (Egypt). Reactor and Neutron Physics Dept.

    1997-02-07

    A pulsed neutron polyenergetic thermal beam at ET-RR-1 is produced by a phased double-rotor facility. One of the rotors has two diametrically opposite curved slots, while the second is designed to operate as a rotating collimator. The dimensions of the phased rotating collimator are selected to match the curved slot rotor. The calculated collimator transmissions at different operating conditions are found to be in good agreement with the experimental ones. The optimum operating conditions of the double-rotor facility are deduced. The calculations were carried out using a computer program RCOL. The RCOL was designed in FORTRAN-77 to operate on PCs. (author).

  14. The optimum operating conditions of the phased double-rotor facility at the ET-RR-1 reactor

    International Nuclear Information System (INIS)

    Naguib, K.; Habib, N.; Wahba, M.; Kilany, M.; Adib, M.

    1997-01-01

    A pulsed neutron polyenergetic thermal beam at ET-RR-1 is produced by a phased double-rotor facility. One of the rotors has two diametrically opposite curved slots, while the second is designed to operate as a rotating collimator. The dimensions of the phased rotating collimator are selected to match the curved slot rotor. The calculated collimator transmissions at different operating conditions are found to be in good agreement with the experimental ones. The optimum operating conditions of the double-rotor facility are deduced. The calculations were carried out using a computer program RCOL. The RCOL was designed in FORTRAN-77 to operate on PCs. (author)

  15. Research and development of power reactor technology supporting work, 3; Development of utility facility operation management technique

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Demands on utility facilities for nuclear technology development are increasingly sophisticated and diversified. It is important to meet requirements of securing the reliability of utility supply and ensuring the safety of facility operation and maintenance by means of technical supporting, data supply and quick contingency responses. A New computer system to make practicable man-machine interface, real-time data acquisition and operation data centralization has been developed based on the knowledge. Obtained from data base information and operation experience for the purpose of operation efficiency and labor saving. (author).

  16. A probabilistic risk assessment of the LLNL Plutonium facility's evaluation basis fire operational accident

    International Nuclear Information System (INIS)

    Brumburgh, G.

    1994-01-01

    The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility

  17. Treatment and conditioning of low-level radioactive waste in Belgium: initial operating results of the Cilva facility

    International Nuclear Information System (INIS)

    Monsch, O.; Renard, C.; Deckers, J.; Luycx, P.

    1995-01-01

    The Belgian National Radioactive Waste and Enriched Fissile Material Agency (ONDRAF), which is responsible for the management of all radioactive waste in Belgium, recently decided to commission the CILVA facility. Operation of this facility, which comprises a number of units for the treatment of low-level radwaste, has been contracted to ONDRAF's Belgoprocess subsidiary based at the Dessel site. A consortium comprising SGN and Fabricom was in charge of building the CILVA facility's waste preparation and conditioning (concrete solidification) units. The concrete solidification processes, which were devised and developed by SGN, have been qualified to secure ONDRAF certification of the process and the facility. This enabled active commissioning of the waste conditioning unit in mid-August 1994. Active commissioning of the waste preparation unit was carried out in several stages up to the beginning of 1995 in accordance with operating requirements. Initial operating results of the two units are presented. (author)

  18. Design and operating technique for ventilating system of irradiated materials examination facility

    International Nuclear Information System (INIS)

    Hwang, Yong Hwa; Hong, Kwon Pyo; Eom, Sung Ho

    1999-08-01

    Ventilation and air filtering system is installed at IMEF to maintain optimized operating condition of the facility by keeping different negative pressure condition depending on contamination level in the IMEF due to its treatment of radioactive materials. Inspection on each system, air flow measurement, filter leak test and other related test are periodically performed as the performance test for increasing operational efficiency and safety. (Author). 16 refs., 21 tabs., 9 figs

  19. The design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    Patterson, J.A.; Fong, M.; Koehler, G.W.; Low, W.; Purgalis, P.; Wells, R.P.

    1983-01-01

    The Neutral Beam Engineering Test Facility (NBETF) at the Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. The thermal hydraulic design of the panels permits the dissipation of 2 kW/cm 2 anywhere on the panel surface. The cooling water requirements of the actively cooled dump system are provided by the closed loop Primary High Pressure Cooling Water System. To minimize the operating costs of continuously running this high power system, a variable speed hydraulic drive is used for the main pump. During beam pulses, the pump rotates at high speed, then cycles to low speed upon completion of the beam shot. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline also has an inertially cooled duct calorimeter assembly. This assembly is a moveable hinged matrix of copper plates that can be used as a beam stop up to pulse lengths of 50 ms. The beamline is also equipped with many beam scraper plates of differing detail design and dissipation capabilities

  20. Directions in low-level radioactive waste management. Low level-radioactive waste disposal: currently operating commercial facilities

    International Nuclear Information System (INIS)

    1983-09-01

    This publication discusses three commercial facilities that receive and dispose of low-level radioactive waste. The facilities are located in Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington. All three facilities initiated operations in the 1960s. The three facilities have operated without such major problems as those which led to the closure of three other commercial disposal facilities located in the United States. The Beatty site could be closed in 1983 as a result of a Nevada Board of Health ruling that renewal of the site license would be inimical to public health and safety. The site remains open pending federal and state court hearings, which began in January 1983, to resolve the Board of Health ruling. The three sites may also be affected by NRC's 10 CFR Part 61 regulations, but the impact of those regulations, issued in December 1982, has not yet been assessed. This document provides detailed information on the history and current status of each facility. This information is intended, primarily, to assist state officials - executive, legislative, and agency - in planning for, establishing, and managing low-level waste disposal facilities. 12 references

  1. Heating facility for blanket and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Sato, Satoshi; Hatano, Toshihisa; Takatsu, Hideyuki; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hara, Shigemitsu

    1999-03-01

    A design and a fabrication of heating test facility for a mock-up of the blanket module to be installed in International Thermonuclear Experimental Reactor (ITER) have been conducted to evaluate/demonstrate its heat removal performance and structural soundness under cyclic heat loads. To simulate surface heat flux to the blanket module, infrared heating method is adopted so as to heat large surface area uniformly. The infrared heater is used in vacuum environment (10{sup -4} Torr{approx}), and the lamps are cooled by air flowing through an annulus between the lamp and a cover tube made of quartz glass. Elastomer O rings (available to be used up to {approx}300degC) and used for vacuum seal at outer surface of the cover tube. To prevent excessive heating of the O ring, the end part of the cover tube is specially designed including the tube shape, flow path of air and gold coating on the surface of the cover tube to protect the O ring against thermal radiation from glowing tungsten filament. To examine the performance of the facility, steady state and cyclic operation of the infrared heater were conducted using a small-scaled shielding blanket mock-up as a test specimen. The important results are as follows: (1) Heat flux at the surface of the small-scaled mock-up measured by a calorimeter was {approx}0.2 MW/m{sup 2}. (2) A comparison of thermal analysis results and measured temperature responses showed that the small-scaled mock-up had good heat removal performance. (3) Steady state operation and cyclic operation with step response between the rated and zero powers of the infrared heater were successfully performed, and it was confirmed that this heating facility was well-prepared and available for the thermal cyclic test of a blanket module. (author)

  2. RISK ASSESSMENT BY STRUCTURAL ANALYSIS AND VIBRATION MEASUREMENT EQUIPMENT OPERATING AT OIL FACILITIES

    Directory of Open Access Journals (Sweden)

    Marius STAN

    2013-05-01

    Full Text Available Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.

  3. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ashley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bland, Arthur S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Gary, Jeff D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Hack, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; McNally, Stephen T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Rogers, James H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Straatsma, T. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Sukumar, Sreenivas Rangan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Thach, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Tichenor, Suzy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Wells, Jack C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility

    2016-03-01

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatest number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern

  4. Waste isolation facility description: bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria. (LK)

  5. Waste isolation facility description: bedded salt

    International Nuclear Information System (INIS)

    1976-09-01

    The waste isolation facility is designed to receive and store three basic types of solidified wastes: high-level wastes, intermediate level high-gamma transuranic waste, and low-gamma transuranic wastes. The facility under consideration in this report is designed for bedded salt at a depth of approximately 1800 ft. The present design for the facility includes an area which would be used initially as a pilot facility to test the viability of the concept, and a larger facility which would constitute the final storage area. The total storage area in the pilot facility is planned to be 77 acres and in the fuel facility 1601 acres. Other areas for shaft operations and access would raise the overall size of the total facility to slightly less than 2,000 acres. The following subjects are discussed in detail: surface facilities, shaft design and characteristics, design and construction of the underground waste isolation facility, ventilation systems, and design requirements and criteria

  6. Facility Will Help Transition Models Into Operations

    Science.gov (United States)

    Kumar, Mohi

    2009-02-01

    The U.S. National Oceanic and Atmospheric Administration's Space Weather Prediction Center (NOAA SWPC), in partnership with the U.S. Air Force Weather Agency (AFWA), is establishing a center to promote and facilitate the transition of space weather models to operations. The new facility, called the Developmental Testbed Center (DTC), will take models used by researchers and rigorously test them to see if they can withstand continued use as viable warning systems. If a model used in a space weather warning system crashes or fails to perform well, severe consequences can result. These include increased radiation risks to astronauts and people traveling on high-altitude flights, national security vulnerabilities from the loss of military satellite communications, and the cost of replacing damaged military and commercial spacecraft.

  7. Nuclear safety and radiation protection report of the Tricastin operational hot base nuclear facilities - 2013

    International Nuclear Information System (INIS)

    2014-01-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2013, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions

  8. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. General report

    International Nuclear Information System (INIS)

    2011-12-01

    of the proposals made by NAGRA (see the annexes volume) requires an understanding of the functioning of the components of the repository, supported by relevant basic data. This general report, which is independent of the proposed siting regions, provides an overview of the facilities and their functioning for both the L/ILW and the HLW repositories, the operating procedures and the impacts associated with construction and operation. The report (i) summarises the legal framework and the waste management programme and recaps the result of Stage 1 of the siting process; the waste management programme sets out the individual work steps leading to geological disposal of radioactive waste, (ii) provides a generic description of the function of the geological repositories and the components of the entire facility, to allow a general understanding of the surface facility and its access infrastructure, (iii) describes the surface infrastructure, particularly the different components of the surface facility for both the L/ILW and HLW repositories, as well as for a combined repository for co-disposal of L/ILW and HLW (in which the spatially separated underground installations for HLW and L/ILW are accessed from a common surface facility), (iv) outlines the general possibilities for configuring the surface facility and its access using the existing transport network (road, rail), (v) provides background information as a basis for discussing the possible effects of a repository at the surface during construction and operation at the siting location, (vi) presents the criteria and indicators used by NAGRA for making the proposals for the selection of the locations for the surface facility within the planning perimeters and (vii) presents the input data provided by NAGRA for the generic section of the socio-economic-ecological impact studies (economy). In the case where the input data differ for the individual siting regions, the information is presented in the annexes volume

  9. Estimation of radon concentration in various operating areas of a reprocessing facility

    International Nuclear Information System (INIS)

    Jayan, M.P.; Ashok Kumar, P.; Raman, Anand; Gopalakrishnan, R.K.

    2010-01-01

    This paper reports 222 Rn concentration of various operating areas of a reprocessing facility and also the U-processing area, measured using a microcontroller based Continuous Radon Monitor (CRM) built indigenously by Radiation Safety Systems Division, Bhabha Atomic Research Centre

  10. RCRA facility investigation/corrective measures study work plan for the 100-DR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations. Some of the TSD facilities are included in the operable units. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-DR-1 source operable unit Source operable units include facilities and unplanned release sites that are potential sources of contamination

  11. 4D and 2D superconformal index with surface operator

    Science.gov (United States)

    Nakayama, Yu

    2011-08-01

    We study the superconformal index of the mathcal{N} = 4 super-Yang-Milles theory on S 3 × S 1 with the half BPS superconformal surface operator (defect) inserted at the great circle of S 3. The half BPS superconformal surface operators preserve the same supersymmetry as well as the symmetry of the chemical potential used in the definition of the superconformal index, so the structure and the parameterization of the superconformal index remain unaffected by the presence of the surface operator. On the surface defect, a two-dimensional (4, 4) superconformal field theory resides, and the four-dimensional super-conformal index may be regarded as a superconformal index of the two-dimensional (4, 4) superconformal field theory coupled with the four-dimensional bulk system. We construct the matrix model that computes the superconformal index with the surface operator when it couples with the bulk mathcal{N} = 4 super-Yang-Milles theory through the defect hypermultiplets on it.

  12. Hazard and operability study of the multi-function Waste Tank Facility. Revision 1

    International Nuclear Information System (INIS)

    Hughes, M.E.

    1995-01-01

    The Multi-Function Waste Tank Facility (MWTF) East site will be constructed on the west side of the 200E area and the MWTF West site will be constructed in the SW quadrant of the 200W site in the Hanford Area. This is a description of facility hazards that site personnel or the general public could potentially be exposed to during operation. A list of preliminary Design Basis Accidents was developed

  13. Facile Dry Surface Cleaning of Graphene by UV Treatment

    Science.gov (United States)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  14. An independent safety assessment of Department of Energy nuclear reactor facilities: Procedures, operations and maintenance

    International Nuclear Information System (INIS)

    Toto, G.; Lindgren, A.J.

    1981-02-01

    The 1979 accident at the Three Mile Island commercial nuclear power plant has led to a number of studies of nuclear reactors, in both the public and private sectors. One of these is that of the Department of Energy's (DOE) Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, which has outlined tasks for assessment of 13 reactors owned by DOE and operated by contractors. This report covers one of the tasks, the assessment of procedures, operations, and maintenance at the DOE reactor facilities, based on a review of actual documents used at the reactor sites

  15. Comparison of discrete Hodge star operators for surfaces

    KAUST Repository

    Mohamed, Mamdouh S.

    2016-05-10

    We investigate the performance of various discrete Hodge star operators for discrete exterior calculus (DEC) using circumcentric and barycentric dual meshes. The performance is evaluated through the DEC solution of Darcy and incompressible Navier–Stokes flows over surfaces. While the circumcentric Hodge operators may be favorable due to their diagonal structure, the barycentric (geometric) and the Galerkin Hodge operators have the advantage of admitting arbitrary simplicial meshes. Numerical experiments reveal that the barycentric and the Galerkin Hodge operators retain the numerical convergence order attained through the circumcentric (diagonal) Hodge operators. Furthermore, when the barycentric or the Galerkin Hodge operators are employed, a super-convergence behavior is observed for the incompressible flow solution over unstructured simplicial surface meshes generated by successive subdivision of coarser meshes. Insofar as the computational cost is concerned, the Darcy flow solutions exhibit a moderate increase in the solution time when using the barycentric or the Galerkin Hodge operators due to a modest decrease in the linear system sparsity. On the other hand, for the incompressible flow simulations, both the solution time and the linear system sparsity do not change for either the circumcentric or the barycentric and the Galerkin Hodge operators.

  16. Sodium Fire Demonstration Facility Design and Operation

    International Nuclear Information System (INIS)

    Cho, Youngil; Kim, Jong-Man; Lee, Jewhan; Hong, Jonggan; Yeom, Sujin; Cho, Chungho; Jung, Min-Hwan; Gam, Da-Young; Jeong, Ji-Young

    2014-01-01

    Although sodium has good characteristics such as high heat transfer rate and stable nuclear property, it is difficult to manage because of high reactivity. Sodium is solid at the room temperature and it easily reacts with oxygen resulting in fire due to the reaction heat. Thus, sodium must be stored in a chemically stable place, i.e., an inert gas-sealed or oil filled vessel. When a sodium fire occurs, the Na 2 O of white fume is formed. It is mainly composed of Na 2 O 2 , NaOH, and Na 2 CO 3 , ranging from 0.1 to several tens of micrometers in size. It is known that the particle size increases by aggregation during floating in air. Thus, the protection method is important and should be considered in the design and operation of a sodium system. In this paper, sodium fire characteristics are described, and the demonstration utility of outbreak of sodium fire and its extinguishing is introduced. In this paper, sodium fire characteristics and a demonstration facility are described. The introduced sodium fire demonstration facility is the only training device used to observe a sodium fire and extinguish it domestically. Furthermore, the type of sodium fire will be diversified with the enhancement of the utility. It is expected that this utility will contribute to experience in the safe treatment of sodium by the handlers

  17. High heat flux facility GLADIS

    International Nuclear Information System (INIS)

    Greuner, H.; Boeswirth, B.; Boscary, J.; McNeely, P.

    2007-01-01

    The new ion beam facility GLADIS started the operation at IPP Garching. The facility is equipped with two individual 1.1 MW power ion sources for testing actively cooled plasma facing components under high heat fluxes. Each ion source generates heat loads between 3 and 55 MW/m 2 with a beam diameter of 70 mm at the target position. These parameters allow effective testing from probes to large components up to 2 m length. The high heat flux allows the target to be installed inclined to the beam and thus increases the heated surface length up to 200 mm for a heat flux of 15 MW/m 2 in the standard operating regime. Thus the facility has the potential capability for testing of full scale ITER divertor targets. Heat load tests on the WENDELSTEIN 7-X pre-series divertor targets have been successfully started. These tests will validate the design and manufacturing for the production of 950 elements

  18. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  19. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-01-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al 2 O 3 and Fe 3 O 4 , on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  20. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  1. Siting of near surface disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The Safety Standards are supplemented by a number of Safety Guides and Safety Practices. This Safety Guide defines the site selection process and criteria for identifying suitable near surface disposal facilities for low and intermediate level solid wastes. Management of the siting process and data needed to apply the criteria are also specified. 4 refs

  2. Listeria monocytogenes contamination of the environment and surfaces of the equipment in the meat processing facilities in republic of Macedonia

    OpenAIRE

    Dean Jankuloski; Pavle Sekulovski; Risto Prodanov; Zehra Hajrulai Musliu; Biljana Stojanovska Dimzovska

    2007-01-01

    Listeria monocytogenes contamination of the environment and surfaces of the equipment was examined in seven meat processing facilities. Up to date prevalence of this foodborn pathogen in meat processing facilities facilities in Republic of Macedonia was unknown. Biofilms are composed from food spoilage microorganisms and food born pathogens. They are located on the surfaces of the equipment that come in contact with food and in facilities environment. Microorganisms in biofilm presenting micr...

  3. The insertion device magnetic measurement facility: Prototype and operational procedures

    International Nuclear Information System (INIS)

    Burkel, L.; Dejus, R.; Maines, J.; O'Brien, J.; Vasserman, I.; Pfleuger, J.

    1993-03-01

    This report is a description of the current status of the magnetic measurement facility and is a basic instructional manual for the operation of the facility and its components. Please refer to the appendices for more detailed information about specific components and procedures. The purpose of the magnetic measurement facility is to take accurate measurements of the magnetic field in the gay of the IDs in order to determine the effect of the ID on the stored particle beam and the emitted radiation. The facility will also play an important role when evaluating new ideas, novel devices, and inhouse prototypes as part of the ongoing research and development program at the APS. The measurements will be performed with both moving search coils and moving Hall probes. The IDs will be evaluated by computer modeling of the emitted radiation for any given (measured) magnetic field map. The quality of the magnetic field will be described in terms of integrated multipoles for the effect on Storage Ring performance and in terms of the derived trajectories for the emitted radiation. Before being installed on the Storage Ring, every device will be measured and characterized to assure that it is compatible with Storage Ring requirements and radiation specifications. The accuracy that the APS needs to achieve for magnetic measurements will be based on these specifications

  4. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  5. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1994-06-01

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft 2 waste storage facility for RCRA waste, one 42,000 ft 2 waste storage facility for toxic waste (TSCA), and one 200,000 ft 2 mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required

  6. RCRA facility investigation/corrective measures study work plan for the 100-HR-3 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order, signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations, under the authority of Chapter 173-303 Washington Administrative Code (WAC). Some of the TSD facilities are included in the operable units. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-HR-3 operable unit. The 100-HR-3 operable unit underlies the D/DR and H Areas, the 600 Area between them, and the six source operable units these areas contain. The 100-HR-3 operable unit includes all contamination found in the aquifer soils and water within its boundary. Source operable units include facilities and unplanned release sites that are potential sources of contamination. Separate work plans have been initiated for the 100-DR-1 (DOE-RL 1992a) and 100-HR-1 (DOE-RL 1992b) source operable units

  7. Operational Circular nr 5 - October 2000 USE OF CERN COMPUTING FACILITIES

    CERN Multimedia

    Division HR

    2000-01-01

    New rules covering the use of CERN Computing facilities have been drawn up. All users of CERN’s computing facilites are subject to these rules, as well as to the subsidiary rules of use. The Computing Rules explicitly address your responsibility for taking reasonable precautions to protect computing equipment and accounts. In particular, passwords must not be easily guessed or obtained by others. Given the difficulty to completely separate work and personal use of computing facilities, the rules define under which conditions limited personal use is tolerated. For example, limited personal use of e-mail, news groups or web browsing is tolerated in your private time, provided CERN resources and your official duties are not adversely affected. The full conditions governing use of CERN’s computing facilities are contained in Operational Circular N° 5, which you are requested to read. Full details are available at : http://www.cern.ch/ComputingRules Copies of the circular are also available in the Divis...

  8. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. Annexes

    International Nuclear Information System (INIS)

    2011-12-01

    discussion of the proposals made by NAGRA (in the annexes volume) requires an understanding of the functioning of the components of the repository, supported by relevant basic data. The general report, which is independent of the proposed siting regions, provides an overview of the facilities and their functioning for both the L/ILW and the HLW repositories, the operating procedures and the impacts associated with construction and operation. The general report (i) summarises the legal framework and the waste management programme and recaps the result of Stage 1 of the siting process; the waste management programme sets out the individual work steps leading to geological disposal of radioactive waste, (ii) provides a generic description of the function of the geological repositories and the components of the entire facility, to allow a general understanding of the surface facility and its access infrastructure, (iii) describes the surface infrastructure, particularly the different components of the surface facility for both the L/ILW and HLW repositories, as well as for a combined repository for co-disposal of L/ILW and HLW (in which the spatially separated underground installations for HLW and L/ILW are accessed from a common surface facility), (iv) outlines the general possibilities for configuring the surface facility and its access using the existing transport network (road, rail), (v) provides background information as a basis for discussing the possible effects of a repository at the surface during construction and operation at the siting location, (vi) presents the criteria and indicators used by NAGRA for making the proposals for the selection of the locations for the surface facility within the planning perimeters and (vii) presents the input data provided by NAGRA for the generic section of the socio-economic-ecological impact studies (economy). In the case where the input data differ for the individual siting regions, the information is presented in the present

  9. SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K

    Energy Technology Data Exchange (ETDEWEB)

    Degraff, Brian D. [ORNL; Howell, Matthew P. [ORNL; Kim, Sang-Ho [ORNL; Neustadt, Thomas S. [ORNL

    2017-07-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinney pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.

  10. SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K

    Science.gov (United States)

    DeGraff, B.; Howell, M.; Kim, S.; Neustadt, T.

    2017-12-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinney pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.

  11. Operational analysis and improvement of a spent nuclear fuel handling and treatment facility using discrete event simulation

    International Nuclear Information System (INIS)

    Garcia, H.E.

    2000-01-01

    Spent nuclear fuel handling and treatment often require facilities with a high level of operational complexity. Simulation models can reveal undesirable characteristics and production problems before they become readily apparent during system operations. The value of this approach is illustrated here through an operational study, using discrete event modeling techniques, to analyze the Fuel Conditioning Facility at Argonne National Laboratory and to identify enhanced nuclear waste treatment configurations. The modeling approach and results of what-if studies are discussed. An example on how to improve productivity is presented.

  12. Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977

    International Nuclear Information System (INIS)

    Mullins, L.J.; Morgan, A.N.

    1981-12-01

    This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed

  13. 77 FR 33243 - Applications and Amendments to Facility Operating Licenses and Combined Licenses Involving...

    Science.gov (United States)

    2012-06-05

    ... expansion process, thermal expansion mismatch between the tube and tubesheet, and from the differential... NUCLEAR REGULATORY COMMISSION [NRC-2012-0125] Applications and Amendments to Facility Operating...

  14. Improvement in performance and operational experience of 14 UD Pelletron accelerator facility, BARC-TIFR

    International Nuclear Information System (INIS)

    Bhagwat, P.V.

    2002-01-01

    14 UD Pelletron accelerator facility at Mumbai has been operational since 1989. The project MEHIA (Medium Energy Heavy Ion Accelerator) started in 1982 and was formally inaugurated on 30th December 1988. Since then the accelerator has been working round the clock. Improvement in accelerator performance and operational experience are described. (author)

  15. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Timothy L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire

  16. Reports and operational engineering: An independent safety assessment of Department of Energy nuclear reactor facilities

    International Nuclear Information System (INIS)

    Rochman, A.; Washburn, B.W.

    1981-02-01

    The Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee, established via an October 24, 1979 memorandum from the Department of Energy (DOE) Under Secretary, was instructed to review the ''Kemeny Commission'' recommendations and to identify possible implications for DOE's nuclear facilities. As a result of this review, the Committee recommended that DOE carry out assessments in seven categories. The assessments would address specific topics identified for each category as delineated in the NFPQT ''Guidelines for Assessing the Safe Operation of DOE-Owned Reactors,'' dated May 7, 1980. The Committee recognized that similar assessments had been ongoing in the DOE program and safety overview organizations since the Three Mile Island nuclear accident and it was the Committee's intent to use the results of those ongoing assessments as an input to their evaluations. This information would be supplemented by additional studies consisting of the subject-related documents used at each reactor facility studied, and an on-site review of these reactor facilities by professional personnel within the Department of Energy, its operating contractors and independent consultants. 1 tab

  17. Design and operation of radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this guide is to provide safety guidance for the design and operation of radioactive waste incineration facilities. The guide emphasizes the design objectives and system requirements to be met and provides recommendations for the procedure of process selection and equipment design and operation. It is recognized that some incinerators may handle only very low or 'insignificant' levels of radioactivity, and in such cases some requirements or recommendations of this guide may not fully apply. Nevertheless, it is expected that any non-compliance with the guide will be addressed and justified in the licensing process. It is also recognized that the regulatory body may place a limit on the level of the radioactivity of the waste to be incinerated at a specific installation. For the purpose of this guide an insignificant level of release of radioactivity may typically be defined as either the continuous or single event release of the design basis radionuclide inventory that represents a negligible risk to the population, the operating personnel, and/or the environment. The guidance on what constitutes a negligible risk and how to translate negligible risk or dose into level of activity can be found in Safety Series No. 89, IAEA, Vienna. 20 refs, 1 fig

  18. Seismic qualification program plan for continued operation at DOE-SRS nuclear material processing facilities

    International Nuclear Information System (INIS)

    Talukdar, B.K.; Kennedy, W.N.

    1991-01-01

    The Savannah River Facilities for the most part were constructed and maintained to standards that were developed by Du Pont and are not rigorously in compliance with the current General Design Criteria (GDC); DOE Order 6430.IA requirements. In addition, many of the facilities were built more than 30 years ago, well before DOE standards for design were issued. The Westinghouse Savannah River Company (WSRC) his developed a program to address the evaluation of the Nuclear Material Processing (NMP) facilities to GDC requirements. The program includes a facility base-line review, assessment of areas that are not in compliance with the GDC requirements, planned corrective actions or exemptions to address the requirements, and a safety assessment. The authors from their direct involvement with the Program, describe the program plan for seismic qualification including other natural phenomena hazards,for existing NMP facility structures to continue operation Professionals involved in similar effort at other DOE facilities may find the program useful

  19. Operating experience with remote handling equipment in a typical hot facility

    International Nuclear Information System (INIS)

    Ravishankar, A.; Balasubramanian, G.R.

    1990-01-01

    Large number of articulated arm manipulators and special purpose remote tools have been used either alone or in combination in a recent campaign of treatment of irradiated J rods of CIRUS for separation of 233 U. These equipments were used for operations such as remote maintenance of centrifuge, centrifugal extractor, direct sampling, assistance for sample conveying operations etc. Paper discusses problems encountered in using articulated arm manipulators of type MAll,AMl and how they were overcome. Problems encountered in use of model-8 manipulator for chopper maintenence in a mockup facility are also highlighted. (author). 4 figs., 1 tab

  20. Operational improvement to the flue gas cleaning system in radioactive waste incineration facilities

    International Nuclear Information System (INIS)

    Zheng Bowen; Li Xiaohai; Wang Peiyi

    2012-01-01

    After years of operation, some problems, such as corrosion and waste water treatment, have been found in the first domestic whole-scale radioactive waste incineration facility. According to the origin of the problems, the flue gas cleaning system has been optimized and improved in terms of technical process, material and structure. It improves the operational stability, extends the equipment life-time, and also reduces the amount of secondary waste. In addition, as major sources of problems, waste management, operational experiences and information exchange deserve more attention. (authors)

  1. Electrochemical cleaning of Sv-08G2S wire surface

    International Nuclear Information System (INIS)

    Kozlov, E.I.; Degtyarev, V.G.; Novikov, M.P.

    1981-01-01

    Results of industrial tests of the Sv-08G2S wire with different state of surface fwith technological lubrication, after mechanical cleaning, with electrochemically cleaned surface) are presented. Advantages of welding-technological properties of the wire with electroe chemically cleaned surface are shown. An operation principle of the electrochemical cleaning facility is described. A brief specf ification f of the facility is given [ru

  2. Management aspects of Gemini's base facility operations project

    Science.gov (United States)

    Arriagada, Gustavo; Nitta, Atsuko; Adamson, A. J.; Nunez, Arturo; Serio, Andrew; Cordova, Martin

    2016-08-01

    Gemini's Base Facilities Operations (BFO) Project provided the capabilities to perform routine nighttime operations without anyone on the summit. The expected benefits were to achieve money savings and to become an enabler of the future development of remote operations. The project was executed using a tailored version of Prince2 project management methodology. It was schedule driven and managing it demanded flexibility and creativity to produce what was needed, taking into consideration all the constraints present at the time: Time available to implement BFO at Gemini North (GN), two years. The project had to be done in a matrix resources environment. There were only three resources assigned exclusively to BFO. The implementation of new capabilities had to be done without disrupting operations. And we needed to succeed, introducing the new operational model that implied Telescope and instrumentation Operators (Science Operations Specialists - SOS) relying on technology to assess summit conditions. To meet schedule we created a large number of concurrent smaller projects called Work Packages (WP). To be reassured that we would successfully implement BFO, we initially spent a good portion of time and effort, collecting and learning about user's needs. This was done through close interaction with SOSs, Observers, Engineers and Technicians. Once we had a clear understanding of the requirements, we took the approach of implementing the "bare minimum" necessary technology that would meet them and that would be maintainable in the long term. Another key element was the introduction of the "gradual descent" concept. In this, we increasingly provided tools to the SOSs and Observers to prevent them from going outside the control room during nighttime operations, giving them the opportunity of familiarizing themselves with the new tools over a time span of several months. Also, by using these tools at an early stage, Engineers and Technicians had more time for debugging

  3. The high current test facility injector operation to 40 mA dc

    International Nuclear Information System (INIS)

    Ungrin, J.; Ormrod, J.H.; Michel, W.L.

    1976-01-01

    The high current test facility injector is a 750 keV proton accelerator designed to investigate the problems involved in the acceleration of intense dc proton beams. The performance of the injector and the experience gained in operation with dc beams up to 40 mA are described. (author)

  4. Routing of platforms in a maritime surface surveillance operation

    NARCIS (Netherlands)

    Grob, M.J.H.B.

    2006-01-01

    Maritime surface surveillance is the process of obtaining and maintaining information about surface ships in a certain sea area. It is carried out by maritime platforms such as frigates, helicopters or maritime patrol aircraft. Surface surveillance plays a vital role in maritime operations like

  5. Materials selection of surface coatings in an advanced size reduction facility

    International Nuclear Information System (INIS)

    Briggs, J.L.; Younger, A.F.

    1980-01-01

    A materials selection test program was conducted to characterize optimum interior surface coatings for an advanced size reduction facility. The equipment to be processed by this facility consists of stainless steel apparatus (e.g., glove boxes, piping, and tanks) used for the chemical recovery of plutonium. Test results showed that a primary requirement for a satisfactory coating is ease of decontamination. A closely related concern is the resistance of paint films to nitric acid - plutonium environments. A vinyl copolymer base paint was the only coating, of eight paints tested, with properties that permitted satisfactory decontamination of plutonium and also performed equal to or better than the other paints in the chemical resistance, radiation stability, and impact tests

  6. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces

    Directory of Open Access Journals (Sweden)

    DUSAN LOSIC

    2008-10-01

    Full Text Available The fabrication of microstructured surfaces using biological templates was investigated with the aim of exploring of a facile and low cost approach for the fabrication of structured surfaces with superhydrophobic properties. Two soft lithographic techniques, i.e., replica moulding and nano-imprinting, were used to replicate the surfaces of a biological substrate. Leaves of the Agave plant (Agave attenuate, a cost-free biological template, were used as a model of a biosurface with superhydrophobic properties. The replication process was performed using two polymers: an elastomeric polymer, poly(dimethylsiloxane (PDMS, and a polyurethane (PU based, UV-curable polymer (NOA 60. In the first replication step, negative polymer replicas of the surface of leaves were fabricated, which were used as masters to fabricate positive polymer replicas by moulding and soft imprinting. The pattern with micro and nanostructures of the surface of the leaf possesses superhydrophobic properties, which was successfully replicated into both polymers. Finally, the positive replicas were coated with a thin gold film and modified with self-assembled monolayers (SAMs to verify the importance of the surface chemistry on the hydrophobic properties of the fabricated structures. Wetting (contact angle and structural (light microscopy and scanning electron microscopy characterisation was performed to confirm the hydrophobic properties of the fabricated surfaces (> 150°, as well as the precision and reproducibility of the replication process.

  7. Methicillin-resistant Staphylococcus aureus isolates from surfaces and personnel at a hospital laundry facility.

    Science.gov (United States)

    Michael, K E; No, D; Roberts, M C

    2016-09-01

    Examine a clinical laundry facility for the presence of methicillin-resistant Staphylococcus aureus (MRSA) on environmental surfaces and among personnel. Nasal and face samples along with surface samples were collected four times in 2015. MRSA isolates were confirmed using standardized biochemical assays and molecular characterization. MRSA was identified in 33/120 (28%) samples from the dirty and 3/120 (3%) samples from the clean environmental areas. MRSA isolates included: (dirty) ST5 SCCmec type II, ST8 SCCmec type IV, ST231 SCCmec type II, ST239 SCCmec type III, ST239 SCCmec type IV, ST256 SCCmec type IV and (clean) ST5 SCCmec type II and ST8 SCCmec type IV. Five different employees were MRSA positive, 4/8 (50%) from the dirty: and 1/15 (6·7%) from the clean, but there was a 10-fold higher MRSA carriage 6/22 (27%) dirty vs 1/38 (2·6%) clean when all 50 human samples were combined. MRSA prevalence was significantly higher (28 vs 3%) in dirty vs clean areas within the laundry facility suggesting a greater risk for personnel on the dirty side. This is the first report of isolation and characterization of MRSA from surfaces and personnel from a clinical laundry facility. © 2016 The Society for Applied Microbiology.

  8. Suitability of natural soils for foundations for surface facilities at the prospective Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Ho, D.M.; Sayre, R.L.; Wu, C.L.

    1986-11-01

    In this report, the natural soils at the Yucca Mountain site are evaluated for the purpose of assessing the suitability of the soils for the foundations of the surface facilities at the prospective repository. The areas being considered for locating the surface facilities are situated on an alluvial plain at the base of Yucca Mountain. Preliminary parameters for foundation design have been developed on the basis of limited field and laboratory study of soils at four test pit locations conducted during May and June 1984. Preliminary recommendations for construction are also included in this report. The gravel-sand alluvial deposits were found to be in a dense to very dense state, which is suitable for foundations of the surface facilities. The design parameters described in this report have been developed for conceptual design, but need to be verified before final design

  9. Repository surface design site layout analysis

    International Nuclear Information System (INIS)

    Montalvo, H.R.

    1998-01-01

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond

  10. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    Science.gov (United States)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  11. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-17

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  12. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  13. A description of the BNL active surface analysis facility

    International Nuclear Information System (INIS)

    Tyler, J.W.

    1989-11-01

    Berkeley Nuclear Laboratories has a responsibility for the assessment of radioactive specimens arising both from post irradiation examination of power reactor components and structures and experimental programmes concerned with fission and activation product transport. Existing analytical facilities have been extended with the commissioning of an active surface analysis instrument (XSAM 800pci, Kratos Analytical). Surface analysis involves the characterisation of the outer few atomic layers of a solid surface/interface whose chemical composition and electronic structure will probably be different from the bulk. The new instrument consists three interconnected chambers positioned in series; comprising of a high vacuum sample introduction chamber, an ultra-high vacuum sample treatment/fracture chamber and an ultra-high vacuum sample analysis chamber. The sample analysis chamber contains the electron, X-ray and ion-guns and the electron and ion detectors necessary for performing X-ray photoelectron spectroscopy, scanning Auger microscopy and secondary-ion mass spectroscopy. The chamber also contains a high stability manipulator to enable sub-micron imaging of specimens to be achieved and provide sample heating and cooling between - 180 and 600 0 C. (author)

  14. Surface Operations Data Analysis and Adaptation Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort undertook the creation of a Surface Operations Data Analysis and Adaptation (SODAA) tool to store data relevant to airport surface research and...

  15. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  16. Characterization of groundwater flow for near surface disposal facilities

    International Nuclear Information System (INIS)

    2001-02-01

    The main objective of this report is to provide a description of the site investigation techniques and modelling approaches that can be used to characterise the flow of subsurface water at near surface disposal facilities in relation to the various development stages of the repositories. As one of the main goals of defining groundwater flow is to establish the possible contaminant migration, certain aspects related to groundwater transport are also described. Secondary objectives are to discuss the implications of various groundwater conditions with regard to the performance of the isolation systems

  17. Monitored retrievable storage (MRS) facility and salt repository integration: Engineering study report

    International Nuclear Information System (INIS)

    1987-07-01

    This MRS Facility and Salt Repository Integration Study evaluates the impacts of an integrated MRS/Salt Repository Waste Management System on the Salt Repository Surface facilities' design, operations, cost, and schedule. Eight separate cases were studied ranging from a two phase repository design with no MRS facility to a design in which the repository only received package waste from the MRS facility for emplacement. The addition of the MRS facility to the Waste Management System significantly reduced the capital cost of the salt repository. All but one of the cases studied were capable of meeting the waste acceptance data. The reduction in the size and complexity of the Salt Repository waste handling building with the integration of the MRS facility reduces the design and operating staff requirements. 7 refs., 35 figs., 43 tabs

  18. Operation of Cryogenic Facility in e-way at Tata Institute of Fundamental Research, Mumbai, India

    International Nuclear Information System (INIS)

    Srinivasan, K V

    2012-01-01

    In an attempt towards the development of modern, model and paperless cryogenic facility, the Low Temperature Facility of Tata Institute of Fundamental Research, at Mumbai, India; carried out many automation works using programmable logic controller (PLC) and other modern electronic tools, with the objective of bringing the entire plant operation to your palm whenever and wherever you are. Efficiency in the plant operation by keeping a watch on the plant healthiness, advance indication about the possible plant problem by means of pre-warning alarms, so that the remedial action can be taken well prior to the actual failure affects the plant operation, reduction in plant down time were achieved by the automation works. Large size in our cryogen production, controlling the complicated helium liquefier, meeting the uninterrupted supply of cryogen to the users on “any time availability basis,” safety in handling cryogens and high pressure gas, effective usage of limited skilled manpower etc., all these requirements call for the definite need of modern electronic gears and gadgets. This paper will describe in details about the automation works carried out at our cryogenic facility at TIFR.

  19. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    International Nuclear Information System (INIS)

    Dobson, Darwin; Churby, Al; Krieger, Ed; Maloy, Donna; White, Kevin

    2012-01-01

    Highlights: ► NIF is a complex experimental facility composed of ∼4 million components. ► We describe business tools to define, build, operate, and maintain all components. ► CAD tools generate virtual models and assemblies under configuration control. ► Items requiring preventive, reactive, and/or calibration maintenance are tracked. ► Radiological or hazardous materials undergo additional controls. - Abstract: The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of experimental data and the safe operation of the facility. A major programmatic challenge is to deploy software solutions to effectively manage the definition, build, operation, and maintenance, and configuration control of all components of NIF. The strategy for meeting this challenge involves deploying and integrating an enterprise application suite of solutions consisting of both Commercial-Off-The-Shelf (COTS) products and custom developed software.This paper describes how this strategy has been implemented along with a discussion on the successes realized and the ongoing challenges associated with this approach.

  20. Risk management for operations of the LANL Critical Experiments Facility

    International Nuclear Information System (INIS)

    Paternoster, R.; Butterfield, K.

    1998-01-01

    The Los Alamos Critical Experiments Facility (LACEF) currently operates two burst reactors (Godiva-IV and Skua), one solution assembly [the Solution High-Energy Burst Assembly (SHEBA)], two fast-spectrum benchmark assemblies (Flattop and Big Ten), and five general-purpose remote assembly machines that may be configured with nuclear materials and assembled by remote control. Special nuclear materials storage vaults support these and other operations at the site. With this diverse set of operations, several approaches are possible in the analysis and management of risk. The most conservative approach would be to write a safety analysis report (SAR) for each assembly and experiment. A more cost-effective approach is to analyze the probability and consequences of several classes of operations representative of operations on each critical assembly machine and envelope the bounding case accidents. Although the neutron physics of these machines varies widely, the operations performed at LACEF fall into four operational modes: steady-state mode, approach-to-critical mode, prompt burst mode, and nuclear material operations, which can include critical assembly fuel loading. The operational sequences of each mode are very nearly identical, whether operated on one assembly machine or another. The use of an envelope approach to accident analysis is facilitated by the use of classes of operations and the use of bounding case consequence analysis. A simple fault tree analysis of operational modes helps resolve which operations are sensitive to human error and which are initiated by hardware of software failures. Where possible, these errors and failures are blocked by TSR LCOs. Future work will determine the probability of accidents with various initiators

  1. Operating experience review -- Conduct of operations at Department of Energy facilities

    International Nuclear Information System (INIS)

    1994-08-01

    This research examined human error related occurrences, reported in the ORPS database, for the purpose of identifying weaknesses in the implementation of the guidance regarding the Conduct of Operations contained in DOE 5480.19. Specifically, this research examined three separate samples of occurrence reports from Defense Program facilities, which cited human error as a direct or contributing cause. These reports were evaluated using a coding scheme which incorporated the guidelines present in 5480.19, as well as a number of generic human factors concerns. The second chapter of this report summarizes the coding scheme which was used to evaluate the occurrence reports. Since the coding scheme is quite lengthy, only the parts of the scheme needed to make the remainder of the report clear are included in this chapter. Details on the development and content of the coding scheme are reported in Appendices A, B, and C. Chapter 3 presents the analysis of three different data sets. This chapter demonstrates that similar results were obtained across different data sets, collected at different points in time, and coded by different raters. The implications of the results obtained in Chapter 3 are discussed in Chapter 4. This chapter makes a number of suggestions for reducing the problems found in the occurrence reports. Chapter 5 applies the methodology that has been developed in this report to two facilities at Los Alamos National Laboratory. Finally, Chapter 6 reiterates the major findings of this report. Several additional analyses appear in appendices at the end of this report

  2. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    International Nuclear Information System (INIS)

    Ledoux, M. R.; Cade, M. S.

    2002-01-01

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations

  3. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  4. 41 CFR 102-74.55 - Are vending facilities authorized under the Randolph-Sheppard Act operated by permit or contract?

    Science.gov (United States)

    2010-07-01

    ... vending facilities (including vending machines) on Federal property. ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are vending facilities....55 Are vending facilities authorized under the Randolph-Sheppard Act operated by permit or contract...

  5. Safety evaluation of the NSRR facility relevant to the modification for improved pulse operation and preirradiated fuel experiments

    International Nuclear Information System (INIS)

    Inabe, Teruo; Terakado, Yoshibumi; Tanzawa, Sadamitsu; Katagiri, Hiroshi; Kobayashi, Hideo

    1988-11-01

    The Nuclear Safety Research Reactor (NSRR) is a pulse reactor for the inpile experiments to study the fuel behavior under reactivity initiated accident conditions. The present operation modes of the NSRR consist of the steady state operation up to 300 kW and the natural pulse operation in which a sharp pulsed power is generated from substantially zero power level. In addition to these, two new modes of shaped pulse operation and combined pulse operation will be conducted in the near future as the improved pulse operations. A transient power up to 10 MW will be generated in the shaped pulse operation, and a combination of a transient power up to 10 MW and a sharp pulsed power will be generated in the combined pulse operation. Furthermore, preirradiated fuel rods will be employed in the future experiments whereas the present experiments are confined to the test specimens of unirradiated fuel rods. To provide for these programs, the fundamental design works relevant to the modification of the reactor facility including the reactor instrumentation and control systems and experimental provision were developed. The reactor safety evaluation is prerequisite for confirming the propriety of the fundamental design of the reactor facility from the safety point of view. The safety evaluation was therefore conducted postulating such events that would bring about abnormal conditions in the reactor facility. As a result of the safety evaluation, it has been confirmed as to the NSRR facility after modification that the anticipated transients, the postulated accidents, the major accident and the hypothetical accident do not result respectively in any serious safety problem and that the fundamental design principles and the reactor siting are adequate and acceptable. (author)

  6. A Study on an appropriate operating system of environmental basic facility service industry

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyun Joo [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The environmental basic facility service industry is designed to have a structural reorganization of general operating system and the efficient and effective participation of private industry and regulation of industry in connection with the general system. 35 refs., 9 figs., 20 tabs.

  7. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  8. Guidance for preparation of safety analysis reports for nonreactor facilities and operations

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) Orders 5480.23, ''Nuclear Safety Analysis Reports,'' and 5481.1B, ''Safety Analysis and Review System'' require the preparation of appropriate safety analyses for each DOE operation and subsequent significant modifications including decommissioning, and independent review of each safety analysis. The purpose of this guide is to assist in the preparation and review of safety documentation for Oak Ridge Field Office (OR) nonreactor facilities and operation. Appendix A lists DOE Orders, NRC Regulatory Guides and other documents applicable to the preparation of safety analysis reports

  9. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  10. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    Janardhanan, S.; Watamwar, S.B.; Mehta, S.K.; Pillai, P.M.B.; John, Jacob; Kutty, K.N.

    1977-01-01

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  11. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes

    Science.gov (United States)

    Nakayama, Katsutoshi; Hiraga, Takuya; Zhu, Chunyu; Tsuji, Etsushi; Aoki, Yoshitaka; Habazaki, Hiroki

    2017-11-01

    Herein we report simple electrochemical processes to fabricate a self-healing superhydrophobic CeO2 coating on Type 304 stainless steel. The CeO2 surface anodically deposited on flat stainless steel surface is hydrophilic, although high temperature-sintered and sputter-deposited CeO2 surface was reported to be hydrophobic. The anodically deposited hydrophilic CeO2 surface is transformed to hydrophobic during air exposure. Specific accumulation of contaminant hydrocarbon on the CeO2 surface is responsible for the transformation to hydrophobic state. The deposition of CeO2 on hierarchically rough stainless steel surface produces superhydrophobic CeO2 surface, which also shows self-healing ability; the surface changes to superhydrophilic after oxygen plasma treatment but superhydrophobic state is recovered repeatedly by air exposure. This work provides a facile method for preparing a self-healing superhydrophobic surface using practical electrochemical processes.

  12. The operator interface for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Lang, N.C.

    1986-12-01

    The uncertain and most likely changing nature of a large experimental facility like MFTF, as well as its large number of control and monitor points, ruled against the traditional hardware approach involving walls of knobs, dials, oscilloscopes, and strip chart recorders. Rather, from the beginning, project management specified computer control of all systems, and operation of the complete MFTF under an integrated computer control system became a major engineering goal. The Integrated Controls and Diagnostics (ICADS) group was charged with the design and implementation of this control system. We designed a control system with an extremely flexible operator interface which uses computer generated CRT displays for output and pointing devices such as touch sensitive CRT overlays, mice, and joysticks for input. Construction of MFTF was completed at the end of 1985 within the project budget of $241.6M and was followed immediately by a 5 month long acceptance test. During this period (known as PACE test) operators, engineers, and physicists successfully used our computer control system daily to test MFTF. Much of their willingness to forsake the traditional hands-on hardware approach to testing was a result of the powerful and flexible operator interface to the MFTF control system. In this paper, we describe the operator interface with emphasis on the displays, the touch screens, and the mouse. We also report the experiences of users and, in particular, stress those aspects of the user interface they strongly liked and disliked

  13. Durability test of geomembrane liners presumed to avail near surface disposal facilities for low-level waste generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Kurosawa, Ryohei; Sakamoto, Yoshiaki; Kanno, Naohiro; Kashima, Takahiro

    2014-02-01

    The Low-level Radioactive Waste Disposal Project Center will construct near surface disposal facilities for radioactive wastes from research, industrial and medical facilities. The disposal facilities consist of “concrete pit type” for low-level radioactive wastes and “trench type” for very low level radioactive wastes. As for the trench type disposal facility, two kinds of facility designs are on projects – one for a normal trench type disposal facility without any of engineered barriers and the other for a trench type disposal facility with geomembrane liners that could prevent from causing environmental effects of non radioactive toxic materials contained in the waste packages. The disposal facility should be designed taking basic properties of durability on geomembrane liners into account, for it is exposed to natural environment on a long-term basis. This study examined mechanical strength and permeability properties to assess the durability on the basis of an indoor accelerated exposure experiment targeting the liner materials presumed to avail the conceptual design so far. Its results will be used for the basic and detailed design henceforth by confirming the empirical degradation characteristic with the progress of the exposure time. (author)

  14. Present Situation and Problems of Land Improvement District as an Operation and Maintenance Organization of Land Improvement Facilities

    OpenAIRE

    長堀, 金造; 赤江, 剛夫; 大田, 征六

    1994-01-01

    Land improvement districts originally started as organizations after World War II: They are in charge of construction and operation of irrigation and drainage facilities, Development of agricultural land, reclamation from sea water, reclamation by filling, Recovery from disaster, exchange and consolidation of agricultural land and so on. As the Main construction projects were completed, the purpose of land improvement districts Has shifted from facilities construction to operation and mainten...

  15. Optimization of the cold trap design for the KASOLA sodium facility

    International Nuclear Information System (INIS)

    Onea, Alexandru; Lux, Martin; Hering, Wolfgang

    2012-01-01

    The KASOLA (KArlsruhe SOdium LAboratory) experimental facility is currently under construction at Karlsruhe Institute of Technology. The facility serves for research activities on thermal-hydraulics for liquid metal operated systems for transmutation (fast systems, normal operation, transient behaviour, testing of emergency cooling systems), accelerator target development, applications and development of free surface liquid metal targets for accelerators, as well as feasibility studies of liquid metals for solar applications. Supporting heat transfer studies regarding the development of turbulent liquid metal heat transfer models for CFD tools are also foreseen. In sodium operated facilities several impurities can be released during operation, e.g. argon, oxygen, hydrogen, carbon etc., with several adverse effects such as reducing the thermal performance and/or damaging structural materials. The major impurities monitored are sodium oxide Na 2 O and sodium hydride NaH. Hydrogen can diffuse through the steel pipes of the sodium-air heat exchanger or, in a worse case can be generated by a sodium-water reaction, denoting therefore a leak in the tubes of the heat exchanger. Oxygen may origin from the contact with air during maintenance or from the oxide layer of metallic structures initially exposed to sodium during set into operation procedures. The oxygen as an impurity leads to the corrosion of the steel surfaces, therefore values < 2 ppm have to be ensured, while for hydrogen the accepted amount is about 50 ppb (Hemanath et al.). The sodium purification is performed in a cold trap that allows the agglomeration of sodium oxide and sodium hydride on the large surface of a wire mesh. (orig.)

  16. Operational experience of gamma radiation processing facility

    International Nuclear Information System (INIS)

    Patel, Nilesh

    2014-01-01

    Universal lSO-MED is now proud to announce an extension of its irradiation service for low-dose applications specifically in agriculture commodities, food and healthcare applications with the start of Gujarat Agro Radiation Processing Facility at Village: Bavla, Ahmedabad (A Government Enterprise) Operated, Maintained and Managed by Universal Medicap Ltd. Availability of hygienic, safe and nutritious food commodities is essential for any sustainable human development. Food stability is an important element of economic stability and self-reliance of a nation. Though the need to preserve food has been felt by the mankind since the time immemorial, it is even stronger in today's context. The rising population and increasing gap between demand and supply, agro-climatic conditions, in adequate post-harvest practices, seasonal nature of produce and long distances between production and consumption centers underscore the need to device improved conservation and preservation strategies

  17. Conceptual design of a test facility for the remote handling operations of the ITER Test Blanker Modules

    International Nuclear Information System (INIS)

    Marqueta, A.; Garcia, I.; Gomez, A.; Garcia, L.; Sedano, E.; Fernandez, I.

    2012-01-01

    Conceptual Design of a test facility for the remote handling operations of the ITER Test Blanket Modules. Conditions inside a fusion reactor are incompatible with conventional manual maintenance tasks. the same applies for ancillary equipment. As a consequence, it will become necessary to turn to remote visualization and remote handling techniques, which will have in consideration the extreme conditions, both physical and operating, of ITER. Main goal of the project has been the realization of the conceptual design for the test facility for the Test Blanket Modules of ITER and their associated systems, related to the Remote Handling operations regarding the Port Cell area. Besides the definition of the operations and the specification of the main components and ancillary systems of the TBM graphical simulation have been used for the design, verification and validation of the remote handling operations. (Author)

  18. Beam line 4: A dedicated surface science facility at Daresbury Laboratory

    International Nuclear Information System (INIS)

    Dhanak, V.R.; Robinson, A.W.; van der Laan, G.; Thornton, G.

    1992-01-01

    We describe a beam line currently under construction at the Daresbury Laboratory which forms part of a surface science research facility for the Interdisciplinary Research Centre in Surface Science. The beam line has three branches, two of which are described here. The first branch covers the high-energy range 640 eV≤hν≤10 keV, being equipped with a double-crystal monochromator and a novel multicoated premirror system. The second branch line is optimized for the energy range 15≤hν≤250 eV, using cylindrical focusing mirrors, a spherical diffraction grating and an ellipsoidal refocusing mirror to achieve high resolution with a small spot size

  19. MagLev Cobra: Test Facilities and Operational Experiments

    Science.gov (United States)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  20. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    Directory of Open Access Journals (Sweden)

    Xiaofeng Cheng

    2014-01-01

    Full Text Available The large high-power solid lasers, such as the National Ignition Facility (NIF of America and the Shenguang-III (SG-III laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic surface of beam tubes can be transmitted to the optical surfaces and lead to damage of optical components. For the high-power solid-state laser facilities, contamination control focuses on the slab amplifiers, spatial filters, and final-optical assemblies. In this paper, an effective solution to control contaminations including the whole process of the laser driver is put forward to provide the safe operation of laser facilities, and the detailed technical methods of contamination control such as washing, cleanliness metrology, and cleanliness protecting are also introduced to reduce the probability of laser-induced damage of optics. The experimental results show that the cleanliness level of SG-III laser facility is much better to ensure that the laser facility can safely operate at high energy flux.

  1. Generic description of facilities at the shaft head (auxiliary entrance installations) of deep geological repositories

    International Nuclear Information System (INIS)

    2016-10-01

    In a deep geological repository, the access structures function as the link between the surface and the installations and structures at the disposal level. In the planned implementation scenarios, at least two access structures will be in operation up to the time of closure of the repository. The radioactive waste will be transported via the main access from the surface to the disposal level during emplacement operations. For the construction and operation of a deep geological repository, additional access structures are required. These auxiliary accesses and the associated surface infrastructure (e.g. shaft head installations) form the subject of this report. To provide as broad and comprehensive a description as possible, seven types of auxiliary access facilities are defined; these are characterised in line with the current status of planning and their functions and impacts are described. During construction, operation and dismantling of auxiliary access facilities, the usual conventional safety measures (inter alia) have to be observed (e.g. groundwater protection, fire prevention, facility security, accident prevention). Regarding the 'Ordinance on Protection against Major Accidents' no large quantities of hazardous materials, i.e. above the corresponding threshold quantities, are to be expected in the auxiliary access facilities. Proper handling and compliance with applicable regulations in all phases will ensure no hazard to humans and the environment. As no handling of radioactive materials is foreseen in the auxiliary access facilities, and because exhaust air and waste water from the controlled zones of a repository will, in principle, be removed via the main access and not the auxiliary accesses, a safety-relevant emission of radioactive substances and transport of contaminated material can be ruled out for the auxiliary access facilities during both normal operation and also in the case of an accident. Based on the information presented in

  2. Licensing and Operations of the Clive, Utah Low-Level Containerized Radioactive Waste Disposal Facility- A Continuation of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, M. R.; Cade, M. S.

    2002-02-25

    Envirocare's Containerized Waste Facility (CWF) is the first commercial low-level radioactive waste disposal facility to be licensed in the 21st century and the first new site to be opened and operated since the late 1970's. The licensing of this facility has been the culmination of over a decade's effort by Envirocare of Utah at their Clive, Utah site. With the authorization to receive and dispose of higher activity containerized Class A low-level radioactive waste (LLRW), this facility has provided critical access to disposal for the nuclear power industry, as well as the related research and medical communities. This paper chronicles the licensing history and operational efforts designed to address the disposal of containerized LLRW in accordance with state and federal regulations.

  3. Listeria monocytogenes contamination of the environment and surfaces of the equipment in the meat processing facilities in republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Dean Jankuloski

    2007-11-01

    Full Text Available Listeria monocytogenes contamination of the environment and surfaces of the equipment was examined in seven meat processing facilities. Up to date prevalence of this foodborn pathogen in meat processing facilities facilities in Republic of Macedonia was unknown. Biofilms are composed from food spoilage microorganisms and food born pathogens. They are located on the surfaces of the equipment that come in contact with food and in facilities environment. Microorganisms in biofilm presenting micro eco system and are source of dissemination and contamination of food born pathogens in final meat products. During the preparation of this study we have covered a 7 meat processing facilities and we took a total of 39 swabs from surfaces that come in direct or indirect contact with food. Listeria monocytogenes was discovered in 10 (25,64% swabs (locations. Prevalence of other Listeria spp. compared with total number of taken samples was 15 (38,46% Listeria innocua, 3 (7,69% Listeria welshimeri and 1 (2,65% isolate Listeria seeligeri.

  4. Radiation protection problems by the operation of the cyclotron facility

    International Nuclear Information System (INIS)

    Durcik, M.; Nikodemova, D.

    1998-01-01

    The Cyclotron Center in Bratislava will consist of two cyclotrons. First - cyclotron DC-72 with maximal energy of 72 MV for protons for making experiments, for teaching process, for radioisotope production as 123 I and for neutron and proton therapy. Second - compact cyclotron with maximal proton energy of 18 MeV will be used for radioisotopes production for medical diagnosis as 1 *F (fluorodeoxyglucose), 81 Rb/ 81 Kr generator. This paper deals with the radiation protection problems by the operation of tis cyclotron facility as radiation protection of workers, monitoring plan, ventilation, safety lock and limitation and radiation monitoring. For proposed and continuing practices at the accelerator facility, the following general principles have to be fulfilled: (1) practices should produce sufficient benefit to offset the radiation detriment they case (justification); (2) the magnitude of the individual doses should be kept as low as achievable (optimization of protection); (3) individual exposures are subject to dose limits and some control of risk from potential exposures (dose and risk limits)

  5. Assessing and addressing increased stakeholder and operator information needs in nuclear fuel cycle facilities: two concepts

    Energy Technology Data Exchange (ETDEWEB)

    Saltiel, David H. [Sandia National Laboratories, Albuquerque (United States)

    2007-12-15

    Nuclear energy programs around the world increasingly find themselves at the nexus of potentially conflicting demands from both domestic and international stakeholders. On one side, the rapid growth in demand for electricity coupled with the goal of reducing carbon emissions calls for a significant expansion of nuclear energy. On the other, stakeholders are seeking ever greater safety, environmental, security, and nonproliferation assurances before consenting to the construction of new nuclear energy facilities. Satisfying the demand for clean energy supplies will require nuclear energy operators to find new and innovative ways to build confidence among stakeholders. This paper discusses two related concepts which can contribute to meeting the needs of key stakeholders in cost effective and efficient ways. Structured processes and tools for assessing stakeholder needs can build trust and confidence while facilitating the 'designing-in' of information collection systems for new facilities to achieve maximum efficiency and effectiveness. Integrated approaches to monitoring facilities and managing the resulting data can provide stakeholders with continued confidence while offering operators additional facility and process information to improve performance.

  6. Assessing and addressing increased stakeholder and operator information needs in nuclear fuel cycle facilities: two concepts

    International Nuclear Information System (INIS)

    Saltiel, David H.

    2007-01-01

    Nuclear energy programs around the world increasingly find themselves at the nexus of potentially conflicting demands from both domestic and international stakeholders. On one side, the rapid growth in demand for electricity coupled with the goal of reducing carbon emissions calls for a significant expansion of nuclear energy. On the other, stakeholders are seeking ever greater safety, environmental, security, and nonproliferation assurances before consenting to the construction of new nuclear energy facilities. Satisfying the demand for clean energy supplies will require nuclear energy operators to find new and innovative ways to build confidence among stakeholders. This paper discusses two related concepts which can contribute to meeting the needs of key stakeholders in cost effective and efficient ways. Structured processes and tools for assessing stakeholder needs can build trust and confidence while facilitating the 'designing-in' of information collection systems for new facilities to achieve maximum efficiency and effectiveness. Integrated approaches to monitoring facilities and managing the resulting data can provide stakeholders with continued confidence while offering operators additional facility and process information to improve performance

  7. Examination on establishment of safety culture for operating nuclear facilities

    International Nuclear Information System (INIS)

    Taniguchi, Taketoshi

    1997-01-01

    For safely operating nuclear power facilities, in addition to the technical countermeasures, the performance of the organizations that operate and manage them is important. In this paper, the spontaneous cooperation type management system that supported the introduction and development of nuclear power generation in electric power business is analyzed from the viewpoints of organization science and behavioral psychology, and based on the results of the investigation of the sense of value and psychological characteristics of young organization members who bear future nuclear power generation, on how to foster and establish safety culture which is called second safety principle in organizations, the subjects for hereafter are discussed from the viewpoints of respect of individuals and their integration with organizations, upbringing of talents and systematic learning. The factors which compose the safety culture are shown. The form of operating and managing the organizations are seen in first generation nuclear power generation, the similarity to Japanese type enterprise operation system, the change of the prerequisite of spontaneous cooperation type management and the difference of conscience among the generations of organization members are discussed. The above subjects for hereafter are discussed. (K.I.)

  8. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  9. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    International Nuclear Information System (INIS)

    Dobson, D.; Churby, A.; Krieger, E.; Maloy, D.; White, K.

    2011-01-01

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance and Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  10. Surface facilities for geological deep repositories - Measures against dangers during construction and operation

    International Nuclear Information System (INIS)

    2013-09-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the measures that are to be taken to address the dangers encountered during the construction and operation of deep geological repositories for nuclear wastes. Firstly, the operation of such repositories during the emplacement of nuclear wastes is discussed and examples of possible repositories for fuel rods and highly-radioactive waste are presented. Various emission-protection issues and safety measures to be taken during construction of such repositories are looked at as is the protection of ground water. Safety considerations during the operational phase are discussed, including inclusion methods used for the wastes and radiation protection. The handling of radioactive wastes, the recognition of dangers and measures to be taken to counteract them are discussed. Various possible accidents are looked at

  11. Modification of preheated tungsten surface after irradiation at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Arzhannikov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Huber, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Ivanov, I.A. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kuklin, K.N. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V.; Postupaev, V.V.; Sinitsky, S.L. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vasilyev, A.A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-12-15

    Highlights: • Preheated tungsten was irradiated at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. • The crack pattern and the quantity of bubbles depend on the initial temperatures of the target. • The orientation of major crack networks correlates with the direction of machining of the samples. • Dust impact craters were found. - Abstract: The study is devoted to tungsten surface modification after irradiation at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. In order to emulate heating with a steady plasma flux in the ITER divertor, some of the tungsten samples were preheated up to 500 °C. It was found out that the behavior of the surface modification (the crack pattern and the number of bubbles) depends on the initial temperature of the targets. While the orientation of major crack networks correlates with the direction of machining of the samples. Afterwards we have observed the process of craters’ formation caused by dust particle impacts.

  12. Construction and initial operation of MHD PbLi facility at UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu; Li, F.-C.; Morley, N.; Ueki, Y.; Abdou, M.; Sketchley, T.

    2013-06-15

    Highlights: • New MHD PbLi loop has been constructed and tested at UCLA. • Pressure diagnostics system has been developed and successfully tested. • Ultrasound Doppler velocimeter is tested as velocity diagnostics. • Experiments on pressure drop reduction have been performed. • Experiments on MHD flow in a duct with SiC flow channel insert are underway. -- Abstract: A magnetohydrodynamic flow facility MaPLE (Magnetohydrodynamic PbLi Experiment) that utilizes molten eutectic alloy lead–lithium (PbLi) as working fluid has been constructed and tested at University of California, Los Angeles. The loop operation parameters are: maximum magnetic field 1.8 T, PbLi temperature up to 350 °C, maximum PbLi flow rate with/without a magnetic field 15/50 l/min, maximum pressure head 0.15 MPa. The paper describes the loop itself and its major components, basic operation procedures, experience of handling PbLi, initial loop testing, flow diagnostics and current and near-future experiments. The obtained test results of the loop and its components have demonstrated that the new facility is fully functioning and ready for experimental studies of magnetohydrodynamic, heat and mass transfer phenomena in PbLi flows and also can be used in mock up testing in conditions relevant to fusion applications.

  13. Operational safety of near surface waste disposal facilities in the Republic of Moldova

    International Nuclear Information System (INIS)

    Ursulean, I.; Balaban, V.

    2000-01-01

    Over the last few years, the Republic of Moldova, with assistance from the IAEA, undertook the establishment of the legislative and normative basis consisting of a regulatory body infrastructure, including a monitoring optimization strategy concerning radioactive waste management safety. At present the following work is underway: the introduction of a new law 'About Radiation Safety and Population Protection', the re-implementation of a normative base, and the incorporation of the IAEA Basic Safety Standards through the national legislation. Presently in the Republic of Moldova, there exists a system of radioactive waste management, comprising collection, disposal, transportation and storage. This system consists of the radioactive material users, the designated disposal facility and the regulatory bodies. (author)

  14. Advanced Space Surface Systems Operations

    Science.gov (United States)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  15. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  16. Nuclear safety and radiation protection report of EdF's Tricastin operational hot base nuclear facilities (BCOT) - 2010

    International Nuclear Information System (INIS)

    2011-06-01

    This safety report was established under the article 21 of the French law no. 2006-686 of June 13, 2006 relative to nuclear safety and information transparency. It presents, first, the Tricastin operational hot base facility (INB no. 157, Bollene, Vaucluse (FR)), a nuclear workshop for storage and maintenance and qualification operations on some EdF equipments. Then, the nuclear safety and radiation protection measures taken regarding the facility are reviewed: nuclear safety definition, radiation protection of intervening parties, safety and radiation protection improvement paths, crisis management, external and internal controls, technical situation of facilities, administrative procedures in progress. The incidents and accidents which occurred in 2010, if some, are reported as well as the effluents discharge in the environment. Finally, The radioactive materials and wastes generated by the facility is presented and sorted by type of waste, quantities and type of conditioning. The document concludes with a glossary and a list of recommendations from the Committees for health, safety and working conditions. (J.S.)

  17. Technical critique on radiation test facilities for the CTR surface and materials program

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1975-02-01

    Major radiation test facilities will be necessary in the near-term (5 years) and long-term (greater than 10 years) future for the timely development and understanding of fusion confinement systems and of prototype fusion power reactors. The study includes the technical justifications and requirements for CTR Neutron and Plasma Radiation Test Facilities. The initial technical critique covers the feasibility and design problems: in upgrading the performance of the accelerator-rotating (solid TiT) target systems, and in transforming the accelerator-supersonic jet target concept into a radiation testing facility. A scoping assessment on the potential of a pulsed high-beta plasma device (dense plasma focus) is introduced to explore plasma concepts as near-term neutron and plasma radiation sources for the CTR Surface and Materials Program. (U.S.)

  18. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  19. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  20. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck

    2016-12-01

    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  1. Augmented reality in the slaughterhouse - A future operation facility?

    Directory of Open Access Journals (Sweden)

    Lars Bager Christensen

    2016-05-01

    Full Text Available The present case study sums up the results of an initial attempt to adapt the emerging technology of Augmented Reality (AR to support routine operations performed in Danish slaughterhouse facilities. Our aim is to reveal the applicability of off-the-shelf components and programming platforms to the trimming and boning process for pork bellies. The AR technology has demonstrated lucrative applications in industrial QA procedures and even farm management applications (Wu, Xiao & Guo, 2013 appear to benefit from applying the technology. With the ever-increasing turnover of labour in the meat industry, we investigate here the application of AR-assisted production procedures as a potential management tool and support tool to assist a novice operator in a specific trimming operation. The case study concerns the trimming and cutting of pork bellies, a widely used and versatile procedure in the Danish pork meat industry. Many similar belly products made from similar raw materials are exported to specific customers and markets. Due to biological variability between pigs, final products are produced with variability in yield, despite the fact that the final product qualities are similar. The best management option is to use the correct raw material for each product, thus generating fewer by-products and increasing the volume/weight of the final product. The application of AR to the cutting operation appears to increase the production yield; however, the operators need training in order to benefit fully from the efficiency and capacity of the application rather than adopting the standard procedure of oral communication of instructions.

  2. Risk management for operations of the Los Alamos critical experiments facility

    International Nuclear Information System (INIS)

    Paternoster, R.; Butterfield, K.

    1998-01-01

    The Los Alamos Critical Experiments Facility (LACEF) currently operates two burst reactors (Godiva-IV and Skua), one solution assembly (SHEBA 2--Solution high-Energy Burst Assembly), two fast-spectrum benchmark assemblies (Flattop and Big Ten), and five general-purpose remote assembly machines which may be configured with nuclear materials and assembled by remote control. SNM storage vaults support these and other operations at the site. With this diverse set of operations, several approaches are possible in the analysis and management of risk. The most conservative approach would be to write a safety analysis report (SAR) for each assembly and experiment. A more cost-effective approach is to analyze the probability and consequences of several classes of operations representative of operations on each critical assembly machine and envelope the bounding case accidents. Although the neutron physics of these machines varies widely, the operations performed at LACEF fall into four operational modes: steady-state mode, approach-to-critical mode, prompt burst mode, and nuclear material operations which can include critical assembly fuel loading. The operational sequences of each mode are very nearly the same, whether operated on one assembly machine or another. The use of an envelope approach to accident analysis is facilitated by the use of classes of operations and the use of bounding case consequence analysis. A simple fault tree analysis of operational modes helps resolve which operations are sensitive to human error and which are initiated by hardware of software failures. Where possible, these errors and failures are blocked by TSR LCOs

  3. Operational experience in the non-destructive assay of fissile material in General Electric's nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Stewart, J.P.

    1976-01-01

    Operational experience in the non-destructive assay of fissile material in a variety of forms and containers and incorporation of the assay devices into the accountability measurement system for General Electric's Wilmington Fuel Fabrication Facility measurement control programme is detailed. Description of the purpose and related operational requirements of each non-destructive assay system is also included. In addition, the accountability data acquisition and processing system is described in relation to its interaction with the various non-destructive assay devices and scales used for accountability purposes within the facility. (author)

  4. Optimizing integrated airport surface and terminal airspace operations under uncertainty

    Science.gov (United States)

    Bosson, Christabelle S.

    In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is

  5. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  6. Facility transition instruction

    International Nuclear Information System (INIS)

    Morton, M.R.

    1997-01-01

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  7. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  8. Thermal operations conditions in a national waste terminal storage facility

    International Nuclear Information System (INIS)

    1976-09-01

    Some of the major technical questions associated with the burial of radioactive high-level wastes in geologic formations are related to the thermal environments generated by the waste and the impact of this dissipated heat on the surrounding environment. The design of a high level waste storage facility must be such that the temperature variations that occur do not adversely affect operating personnel and equipment. The objective of this investigation was to assist OWI by determining the thermal environment that would be experienced by personnel and equipment in a waste storage facility in salt. Particular emphasis was placed on determining the maximum floor and air temperatures with and without ventilation in the first 30 years after waste emplacement. The assumed facility design differs somewhat from those previously analyzed and reported, but many of the previous parametric surveys are useful for comparison. In this investigation a number of 2-dimensional and 3-dimensional simulations of the heat flow in a repository have been performed on the HEATING5 and TRUMP heat transfer codes. The representative repository constructs used in the simulations are described, as well as the computational models and computer codes. Results of the simulations are presented and discussed. Comparisons are made between the recent results and those from previous analyses. Finally, a summary of study limitations, comparisons, and conclusions is given

  9. Automatic Management Systems for the Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Tovar-Gonzalez, A; Herblin, L; Lamboy, J P; Vullierme, B

    2006-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine shall be entirely tested at reception on modular test facilities. The operation 24 hours per day of the cryogenic test facilities is conducted in turn by 3-operator teams, assisted in real time by the use of the Test Bench Priorities Handling System, a process control application enforcing the optimum use of cryogenic utilities and of the "Tasks Tracking System", a web-based e-traveller application handling 12 parallel 38-task test sequences. This paper describes how such computer-based management systems can be used to optimize operation of concurrent test benches within technical boundary conditions given by the cryogenic capacity, and how they can be used to study the efficiency of the automatic steering of all individual cryogenic sub-systems. Finally, this paper presents the overall performance of the cryomagnet test station for the first complete year of operation at high produ...

  10. Description and Operational Experiences of the Engineering Test Facility - Helium Technology (ETF-HT)

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Yang Mingde; Bo Hanliang; Duan Riqqiang; Zhu Hongye

    2014-01-01

    This paper presents the configuration of the Engineering Test Facility - Helium Technology (ETF-HT) and the information of its key components and subsystems, which is located in the Changping campus of Tsinghua University. The ETF-HT facility began to be constructed in Jan. 2009. The main objective of the facility is to test and verify the thermo-hydraulic performance of one full-sized modular unit of HTR-PM helically coiled SG assembly. In the ETF-HT facility, electricity energy is used to heat the loop helium, centrifugal blower is used to circulate the helium medium, and the heat sink is one would-tested SG module. Up to now, except for the tested SG module, preheater and hot gas duct under way of construction, the other components has been installed in situ. Via the temporary connection of the installed components, the preliminary operation of the loop has been carried out to test its performances as can be done, which include the loop leak tightness, blower pneumatic performance and electrical heater at partial thermal load. (author)

  11. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D ampersand D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D ampersand D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS

  12. MagLev Cobra: Test Facilities and Operational Experiments

    International Nuclear Information System (INIS)

    Sotelo, G G; Dias, D H J N; De Oliveira, R A H; Ferreira, A C; De Andrade, R Jr; Stephan, R M

    2014-01-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa 2 Cu 3 O 7−δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  13. Diamond Ordinance Radiation Facility (DORF) reactor operating experiences

    International Nuclear Information System (INIS)

    Gieseler, Walter

    1970-01-01

    The Diamond Ordnance Radiation Facility Mark F Reactor is described and some of the problems encountered with its operation are discussed. In a period from reactor startup in September 1961 to June 1964, when the aluminum-clad core was changed to a stainless-steel clad core, a total of 30 fuel elements were removed from reactor service because of excessive growth. One leaking fuel element was detected during the lifetime of the aluminum- clad core. In June 1964, the core was changed to the stainless-steel-clad high hydride fuel elements. Since the installation of the stainless-steel-clad fuel element core, there has been a gradual decline of excess reactivity. Various theories were discussed as the cause but the investigations have resulted in no definitive conclusion that could account for the total reactivity loss

  14. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training.

  15. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training

  16. An operational analysis of Lake Surface Water Temperature

    Directory of Open Access Journals (Sweden)

    Emma K. Fiedler

    2014-07-01

    Full Text Available Operational analyses of Lake Surface Water Temperature (LSWT have many potential uses including improvement of numerical weather prediction (NWP models on regional scales. In November 2011, LSWT was included in the Met Office Operational Sea Surface Temperature and Ice Analysis (OSTIA product, for 248 lakes globally. The OSTIA analysis procedure, which has been optimised for oceans, has also been used for the lakes in this first version of the product. Infra-red satellite observations of lakes and in situ measurements are assimilated. The satellite observations are based on retrievals optimised for Sea Surface Temperature (SST which, although they may introduce inaccuracies into the LSWT data, are currently the only near-real-time information available. The LSWT analysis has a global root mean square difference of 1.31 K and a mean difference of 0.65 K (including a cool skin effect of 0.2 K compared to independent data from the ESA ARC-Lake project for a 3-month period (June to August 2009. It is demonstrated that the OSTIA LSWT is an improvement over the use of climatology to capture the day-to-day variation in global lake surface temperatures.

  17. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Jimmy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Individual datastreams from instrumentation at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research observatories (sites) are collected and routed to the ARM Data Center (ADC). The Data Management Facility (DMF), a component of the ADC, executes datastream processing in near-real time. Processed data are then delivered approximately daily to the ARM Data Archive, also a component of the ADC, where they are made freely available to the research community. For each instrument, ARM calculates the ratio of the actual number of processed data records received daily at the ARM Data Archive to the expected number of data records. DOE requires national user facilities to report time-based operating data.

  18. Final environmental impact statement, construction and operation of the Spallation Neutron Source Facility. Summary

    International Nuclear Information System (INIS)

    1999-04-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed, spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulator ring and a second target. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this FEIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL; Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  19. NASA Research on an Integrated Concept for Airport Surface Operations Management

    Science.gov (United States)

    Gupta, Gautam

    2012-01-01

    Surface operations at airports in the US are based on tactical operations, where departure aircraft primarily queue up and wait at the departure runways. There have been attempts to address the resulting inefficiencies with both strategic and tactical tools for metering departure aircraft. This presentation gives an overview of Spot And Runway Departure Advisor with Collaborative Decision Making (SARDA-CDM): an integrated strategic and tactical system for improving surface operations by metering departure aircraft. SARDA-CDM is the augmentation of ground and local controller advisories through sharing of flight movement and related operations information between airport operators, flight operators and air traffic control at the airport. The goal is to enhance the efficiency of airport surface operations by exchanging information between air traffic control and airline operators, while minimizing adverse effects on stakeholders and passengers. The presentation motivates the need for departure metering, and provides a brief background on the previous work on SARDA. Then, the concept of operations for SARDA-CDM is described. Then the preliminary results from testing the concept in a real-time automated simulation environment are described. Results indicate benefits such as reduction in taxiing delay and fuel consumption. Further, the preliminary implementation of SARDA-CDM seems robust for two minutes delay in gate push-back times.

  20. First operational tests of an oxycoal hot gas cleaning facility; Erste Betriebstests einer Oxycoal-Heissgasreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, A.; Habermehl, M.; Foerster, M.; Kneer, R. [RWTH Aachen University (Germany). Lehrstuhl fuer Waerme- und Stoffuebertragung

    2009-07-01

    An oxyfuel power plant process using a ceramic high temperature membrane for oxygen supply is investigated within the scope of the OXYCOAL-AC project at RWTH Aachen Uni-versity. Implementing the membrane requires a clean gas at a temperature of 850 C. There-fore a hot gas cleaning facility based on porous ceramic candle filters is used, which is state-of-the-art for the gas cleaning of synthesis gas or for flue gas cleaning in pressurised fluid-ised bed furnaces. However, these applications operate at lower temperatures and in a sig-nificantly different atmosphere. Thus, experiences for dust removal at high temperatures in oxyfuel atmoshere are not available. Experiments with a hot gas cleaning facility were con-ducted at the experimental combustion plant of the Institute of Heat and Mass Transfer, us-ing different candle filter materials. The flue gas was provided by a coal fired 100 kW{sub th} oxy-fuel furnace. The operational behaviour of the filtration facility, the adhesion and dedusting properties of the filter cake were investigated. (orig.)

  1. The optimum operating conditions of the phased double-rotor facility at the et-R R-1 reactor. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Naguib, K; Habib, N; Kilany, M; Adib, M [Reactor and Neutron Physics Department, Nuclear Research Center, AEA., Cairo (Egypt); Wahba, M [Dept. of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo (Egypt)

    1996-03-01

    The pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a phased double-rotor facility. One of the rotors has two diametrically opposite curved slots, while the second is designed to operate as a rotating collimator, the dimensions of the phased rotating collimator are selected to match the curved slot rotor. The calculated collimator transmissions at different operating conditions are found to be in good agreement with the experimental ones. The optimum operating conditions of double-rotor facility are deduced. The calculations were carried out using a computer programme RCOL. The RCOL was designed in Fortran-77 to operate on PCs. 6 figs.

  2. The optimum operating conditions of the phased double-rotor facility at the et-R R-1 reactor. Vol. 2

    International Nuclear Information System (INIS)

    Naguib, K.; Habib, N.; Kilany, M.; Adib, M.; Wahba, M.

    1996-01-01

    The pulsed neutron polyenergetic thermal beam at ET-R R-1 is produced by a phased double-rotor facility. One of the rotors has two diametrically opposite curved slots, while the second is designed to operate as a rotating collimator, the dimensions of the phased rotating collimator are selected to match the curved slot rotor. The calculated collimator transmissions at different operating conditions are found to be in good agreement with the experimental ones. The optimum operating conditions of double-rotor facility are deduced. The calculations were carried out using a computer programme RCOL. The RCOL was designed in Fortran-77 to operate on PCs. 6 figs

  3. Design data sheets Near-Surface Test Facility Bottom Loading Transporter (BLT): Title 1

    International Nuclear Information System (INIS)

    Young, G.M.

    1979-01-01

    This document is an accumulation of all the Design Data Sheets relative to the handling equipment in the transporter for the Near-Surface Test Facility. The Data Sheets are in ascending numerical order. Each Data Sheet, regardless of the number of pages, shall stand by itself within this document

  4. Design of a system for examinations of the history of operation of selected WWER primary circuit facilities. Stage I: requirements

    International Nuclear Information System (INIS)

    Brumovsky, M.; Kraus, V.; Ruscak, M.; Vejvoda, S.

    1994-01-01

    A survey is presented of data required for the evaluation and control of nuclear power plant aging and service life, and a data acquisition and record-keeping system is proposed. The data fall in 3 classes: (i) information on the initial status, including design data and status data at the beginning of the operational lifetime of the facilities; (ii) data on the history of operation, including operating conditions at the level of the corresponding system and facility, as well as operating test and failure data; and (iii) data on the history of maintenance, including data on the monitoring of the facility condition and on maintenance. Basic information requirements for the evaluation of the service life of the pressure vessel, steam generator, pressurizer, and main circulation pipe are given; the way of processing this information is outlined. (J.B.). 2 figs

  5. Transportation-Driven Mars Surface Operations Supporting an Evolvable Mars Campaign

    Science.gov (United States)

    Toups, Larry; Brown, Kendall; Hoffman, Stephen J.

    2015-01-01

    This paper describes the results of a study evaluating options for supporting a series of human missions to a single Mars surface destination. In this scenario the infrastructure emplaced during previous visits to this site is leveraged in following missions. The goal of this single site approach to Mars surface infrastructure is to enable "Steady State" operations by at least 4 crew for up to 500 sols at this site. These characteristics, along with the transportation system used to deliver crew and equipment to and from Mars, are collectively known as the Evolvable Mars Campaign (EMC). Information in this paper is presented in the sequence in which it was accomplished. First, a logical buildup sequence of surface infrastructure was developed to achieve the desired "Steady State" operations on the Mars surface. This was based on a concept of operations that met objectives of the EMC. Second, infrastructure capabilities were identified to carry out this concept of operations. Third, systems (in the form of conceptual elements) were identified to provide these capabilities. This included top-level mass, power and volume estimates for these elements. Fourth, the results were then used in analyses to evaluate three options (18t, 27t, and 40t landed mass) of Mars Lander delivery capability to the surface. Finally, Mars arrival mass estimates were generated based upon the entry, descent, and landing requirements for inclusion in separate assessments of in-space transportation capabilities for the EMC.

  6. 30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.

    Science.gov (United States)

    2010-07-01

    ... flush toilet facilities. 71.400 Section 71.400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE... installations and at the surface worksites of such mine. (Note: Sanitary facilities at surface work areas of...

  7. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  8. Nuclear facilities of EdF's operational hot base of Tricastin. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    This annual report is established on account of article 21 of the 2006-686 French law from June 13, 2006, relative to the transparency and safety in the nuclear domain. It describes, first, the nuclear facilities of the EdF operational hot base of Tricastin, then, the measures taken to ensure their safety (personnel radioprotection, actions implemented for nuclear safety improvement, organisation in crisis situation, external and internal controls, technical assessment of the facilities), and finally the procedures of management of radioactive wastes. A glossary and the viewpoint of the Committee of Hygiene, safety and working conditions about the content of the document conclude the report. (J.S.)

  9. An operator training simulator based on interactive virtual teleoperation: nuclear facilities maintenance applications

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Kim, Seung Ho

    1997-01-01

    Remote manipulation in nuclear hazardous environment is very often complex and difficult to operate and requires excessively careful preparation. Remote slave manipulators for unstructured work are manually controlled by a human operator. Small errors made by the operator via the master manipulator during operation can cause the slave to be surffered from excessive forces and result in considerable damages to the slave iteself and its environment. In this paper, we present a prototype of an operator training simulator for use in nuclear facilities maintenance applications, as part of the ongoing Nuclear Robotics Development Program at Korea Atomic Energy Research Institute (KAERI). The operator training simulator provides a means by which, in virtual task simulation, the operator can try out and train for expected remote tasks that the real slave manipulator will perform in advance. The operator interacts with both the virtual slave and task environment through the real master. Virtual interaction force feedback is provided to the operator. We also describe a man-in-the loop control scheme to realize bilateral force reflection in virtual teleoperation

  10. Modifications for water management guidance based on an assessment of swimming pool water consumption of an operational facility in the UK

    OpenAIRE

    Lewis, L; Chew, J; Woodley, I; Colbourne, J; Pond, K

    2015-01-01

    Water use is a significant operational cost factor for large swimming pool facilities, however it has been overshadowed by the recent focus on energy consumption and carbon emissions. Currently it is difficult for operators to make decisions in relation to water efficiency due to the lack of information on the relationship between pool operation and water use. This study has started to address this issue by reviewing water use at a fully operational facility. The analysis of the consumption d...

  11. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  12. RCRA facility investigation/corrective measures study work plan for the 100-HR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US. Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order, signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-HR-1 source operable unit. Source operable units include facilities and unplanned release sites that are potential sources of contamination. The 100-HR-3 operable unit underlies the D/DR and H Areas, the 600 Area between them, and the six source operable units these areas contain. The 100-HR-3 operable unit includes all contamination found in the aquifer soils and water within its boundary. Separate work plans have been initiated for the 100-HR-3 groundwater operable unit (DOE-RL 1992a) and the 100-DR-1 (DOE-RL 1992b) source operable units

  13. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  14. Remote Operation and Maintenance Demonstration Facility at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Burgess, T.W.

    1986-01-01

    The Remote Operation and Maintenance Demonstration (ROMD) Facility at the Oak Ridge National Laboratory has been developed by the Consolidated Fuel Reprocessing Program to demonstrate remote handling concepts on advanced nuclear fuel reprocessing equipment and for other programs of national interest. The ROMD facility is a large-volume high-bay area that encloses a complete, technologically advanced remote maintenance system and full-scale development reprocessing equipment. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the US Department of Energy (DOE), the Power Reactor and Nuclear Fuels Development Corporation of Japan, the US Navy, and the National Aeronautics and Space Administration. Extensive tests of manipulative systems and remote maintainability of process equipment have been performed. This paper describes the ROMD facility and key remote maintenance equipment and presents a summary of major experimental activities. 7 refs., 6 figs

  15. The TRIUMF thermal neutron facility as planned for operation by 1978

    International Nuclear Information System (INIS)

    Arrott, A.S.; Templeton, T.L.; Thorson, I.M.; Blaby, R.E.; Burgerjon, J.J.

    1977-08-01

    The concepts of the thermal neutron facility have been considerably modified since they were first put forth in 1971. The move has been toward simplification. This report describes the basic vacuum tank structure, its surrounding steel shielding and the concrete structure. The vacuum tank contains a target, moderator and reflector and has ports for the extraction of thermal neutron beams. It also has capabilities for producing mesons and for irradiation of targets in the primary proton beam. The system has been designed with flexibility for modification to meet possible future demands for irradiation facilities, radiography, or pulsed operation. The targets can be easily changed, and it is planned to do this to meet the heat transfer problems as they arise on going to higher beam currents. Feasibility studies for Pb-Bi and Pb targets have been carried out. The Pb target was chosen because of safety considerations and simpler design. (author)

  16. CJSC ECOMET-S facility for reprocessing and utilisation of radioactive metal waste: operating experience

    International Nuclear Information System (INIS)

    Gelbutovsky, A.B.; Kishkin, S.A.; Mochenov, M.I.; Troshev, A.V.; Cheremisin, P.I.; Chernichenko, A.A.

    2006-01-01

    The principal objective of the paper is to present operating experience in management of radioactive metal waste, originating at nuclear power facilities of the Russian Federation. Issues of radioactive metal waste recycling by melting, with the purpose of unrestricted re-use in industry, or restricted re-use within the nuclear industry, have been considered. The necessity for using a method of melting at the final stage of radioactive metal waste recycling has been proved. Priority measures to be taken and results achieved in the implementation of the Governmental purpose-oriented programme 'Radioactive Metal Waste Reprocessing and Utilization' have been considered, the CJSC ECOMET-S being the main contractor on the Programme. Main specifications and results of operating a commercial melting facility, owned by CJSC 'ECOMET-S' and used to recycle low-level radioactive metal waste originated at the Leningrad Nuclear Power Plant, have been presented. (author)

  17. Site independent considerations on safety and protection of the groundwater - Basis for the fundamental evaluation of the licence granting for the surface buildings of a geological repository

    International Nuclear Information System (INIS)

    2013-08-01

    This report explains how the protection of man and the environment can be assured for the surface facility of a deep geological repository. The report is intended primarily for the federal authorities, but also provides important information for the siting Cantons and siting regions. Nagra has also prepared an easily understandable brochure on the topic for the general public. The report was prepared at the request of the Swiss Federal Office of Energy (SFOE), with the aim of allowing the responsible federal authorities to evaluate, in a general manner, the aspects of safety and groundwater protection during the construction and operation of the surface facility of a geological repository, and the ability of the facility to fulfill the licensing requirements. The information is based on preliminary design concepts. The report presents the main features of a surface facility (design, activities), taking into account the waste to be emplaced in the repository and the potential conditions at the site. It is not a formal safety report for a facility at a real site within the context of licensing procedures as specified in the nuclear energy legislation. In line with the different legal and regulatory requirements, the following aspects are the subject of a qualitative analysis for the surface facility: (i) Nuclear safety and radiological protection during operation; (ii) Safety with respect to conventional (non-nuclear) accidents during operation and (iii) Protection of the groundwater during the construction and operational phases. The analysis highlights the fundamental requirements relating to the design of the surface facility, the operating procedures and the waste to be emplaced that have to be implemented in order to ensure the safety and protection of the groundwater. The influence of site-specific features and factors on the safety of the surface facility and on a possible impact on groundwater is also considered. To summarise, the report reaches the

  18. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL

    2011-08-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and

  19. Calculation of Operations Efficiency Factors for Mars Surface Missions

    Science.gov (United States)

    Layback, Sharon L.

    2014-01-01

    For planning of Mars surface missions, to be operated on a sol-by-sol basis by a team on Earth (where a "sol" is a Martian day), activities are described in terms of "sol types" that are strung together to build a surface mission scenario. Some sol types require ground decisions based on a previous sol's results to feed into the activity planning ("ground in the loop"), while others do not. Due to the differences in duration between Earth days and Mars sols, for a given Mars local solar time, the corresponding Earth time "walks" relative to the corresponding times on the prior sol/day. In particular, even if a communication window has a fixed Mars local solar time, the Earth time for that window will be approximately 40 minutes later each succeeding day. Further complexity is added for non-Mars synchronous communication relay assets, and when there are multiple control centers in different Earth time zones. The solution is the development of "ops efficiency factors" that reflect the efficiency of a given operations configuration (how many and location of control centers, types of communication windows, synchronous or non-synchronous nature of relay assets, sol types, more-or-less sustainable operations schedule choices) against a theoretical "optimal" operations configuration for the mission being studied. These factors are then incorporated into scenario models in order to determine the surface duration (and therefore minimum spacecraft surface lifetime) required to fulfill scenario objectives. The resulting model is used to perform "what-if" analyses for variations in scenario objectives. The ops efficiency factor is the ratio of the figure of merit for a given operations factor to the figure of merit for the theoretical optimal configuration. The current implementation is a pair of models in Excel. The first represents a ground operations schedule for 500 sols in each operations configuration for the mission being studied (500 sols was chosen as being a long

  20. Demonstration test operation of Feed Materials Production Center Biodenitrification Facility

    International Nuclear Information System (INIS)

    Benear, A.K.; Patton, J.B.

    1987-01-01

    A fluidized-bed biological denitrification (BDN) system was used to treat high-nitrate wastewater streams from a DOE owned uranium processing plant. A two-column system was used to demonstrate BDN operation on a production scale. In a continuous 200 hour rate determination period, the BDN processed over 1.6 million gallons that contained over 4700 kilograms of nitrate and nitrite nitrogen. The BDN removed an average 97% of the incoming nitrate and nitrite. The BDN effluent was discharged to the FMPC sewage treatment plant where it caused increased levels of TOD, TSS and fecal coliforms in the STP discharge. This indicated the BDN effluent will require treatment prior to discharge to the environment. Preliminary chemical consumption rates and associated costs of operation were determined. Several modifications and additions to the system were identified as necessary for the permanent production facility. 3 refs., 11 figs., 2 tabs

  1. Operation and maintenance manual of the accelerator installed in the facility of radiation standards

    International Nuclear Information System (INIS)

    Fujii, Katsutoshi; Kawasaki, Katsuya; Kowatari, Munehiko; Tanimura, Yoshihiko; Kajimoto, Yoichi; Shimizu, Shigeru

    2006-08-01

    4MV Van de Graff accelerator was installed in the Facility of Radiation Standards (FRS) in June 2000, and monoenergetic neutron calibration fields and high energy γ-ray calibration fields have been developed. The calibration fields are provided for R and D on dosimetry, and for the calibration and type-test of radiation protection instruments. This article describes the operational procedure, the maintenance work and the operation of the related apparatuses of the accelerator. This article focuses on the sufficient safety and radiation control for the operators, the maintenance performance of the accelerator, and on the prevention of the malfunction due to the mistakes of the operators. This article targets the unexperienced engineers in charge of operation and maintenance of the accelerator. (author)

  2. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  3. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    Science.gov (United States)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-10-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.

  4. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1979-05-01

    A detailed consideration of the Skua burst assembly is presented, thereby supplementing the facility safety analysis report covering the operation of other critical assemblies at Los Alamos. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  5. Standard protocol for conducting pre-operational environmental surveillance around nuclear facilities

    International Nuclear Information System (INIS)

    Hegde, A.G.; Verma, P.C.; Rajan, M.P.

    2009-02-01

    This document presents the standard procedures for evaluation of site specific environmental transfer factors around NPP sites. The scope of this document is to provide standard protocol to be followed for conducting pre-operational environmental surveillance around nuclear facilities. Such surveillances have been proposed to be carried out by university professionals under DAE-BRNS projects. This document contains a common methodology in terms of sampling, processing, measurements and analysis of elemental/radionuclides, while keeping the site specific requirements also in place. (author)

  6. Standard protocol for conducting pre-operational environmental surveillance around nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, A G; Verma, P C; Rajan, M P [Health Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai (India)

    2009-02-15

    This document presents the standard procedures for evaluation of site specific environmental transfer factors around NPP sites. The scope of this document is to provide standard protocol to be followed for conducting pre-operational environmental surveillance around nuclear facilities. Such surveillances have been proposed to be carried out by university professionals under DAE-BRNS projects. This document contains a common methodology in terms of sampling, processing, measurements and analysis of elemental/radionuclides, while keeping the site specific requirements also in place. (author)

  7. Guidelines for the development of natural phenomena hazards design criteria for surface facilities

    International Nuclear Information System (INIS)

    Nelson, T.A.; Hossain, Q.A.; Murray, R.C.

    1992-01-01

    This paper discusses the rationale behind the guidelines, criteria, and methodologies that are currently used for natural phenomena hazard design and evaluation of DOE nuclear and non-nuclear facilities. The bases for the performance goals and usage categories specified in UCRL-15910 are examined, and the sources of intentional conservatism in the analyses, design, and evaluation methods and criteria are identified. Outlines of recent developments/changes in DOE Orders related to Natural Phenomena hazard mitigation are also presented. Finally, the authors recommend the use of DOE methodologies as embodied in UCRL-15910 for design and evaluation of surface facilities of the high level nuclear waste repository site

  8. An independent safety assessment of Department of Energy nuclear reactor facilities: Training of operating personnel and personnel selection

    International Nuclear Information System (INIS)

    Drain, J.F.

    1981-02-01

    This study has been prepared for the Department of Energy's Nuclear Facilities Personnel Qualification and Training (NFPQT) Committee. Its purpose is to provide the Committee with background information on, and assessment of, the selection, training, and qualification of nuclear reactor operating personnel at DOE-owned facilities

  9. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, 90 Sr and 137 Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the 137 Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF

  10. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    Energy Technology Data Exchange (ETDEWEB)

    COVEY, L.I.

    2000-11-28

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

  11. Characterization of the radiation environment at the UNLV accelerator facility during operation of the Varian M6 linac

    International Nuclear Information System (INIS)

    Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.

    2016-01-01

    The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit. - Highlights: • A 3/6 MeV electron accelerator equipped with a high energy x-ray target was studied. • Monte Carlo modeling of photon flux was carried out for three accelerator configurations. • Human biological equivalent doses were evaluated within the accelerator facility building.

  12. Code of practice for the design and safe operation of non-medical irradiation facilities (1988)

    International Nuclear Information System (INIS)

    1988-01-01

    This Code establishes requirements for the design and operation of irradiation facilities which use X-rays, electrons or gamma radiation for non-medical purposes such as the sterilisation of therapeutic goods. These requirements aim to ensure that exposure of workers and members of the public to ionizing and non-ionizing radiation as well as to noxious gases and radioactive contamination of the environment and facilities are controlled through the design of engineering safety features, approved administrative controls and appropriate radiation monitoring [fr

  13. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.

    2014-01-01

    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  14. 76 FR 45301 - PSEG Nuclear LLC, Hope Creek Generating Station; Notice of Issuance of Renewed Facility Operating...

    Science.gov (United States)

    2011-07-28

    ... NUCLEAR REGULATORY COMMISSION Docket No. 50-354 [NRC-2009-0391] PSEG Nuclear LLC, Hope Creek... operator of the Hope Creek Generating Station (HCGS). Renewed Facility Operating License No. NPF- 57... Renewal of Nuclear Power Plants, Supplement 45, Regarding Hope Creek Generating Station and Salem Nuclear...

  15. Heater test planning for the Near Surface Test Facility at the Hanford reservation. Volume II. Appendix

    International Nuclear Information System (INIS)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-04-01

    Volume II contains the following information: theoretical support for radioactive waste storage projects - development of data analysis methods and numerical models; injectivity temperature profiling as a means of permeability characterization; geophysical holes at the Near Surface Test Facility (NSTF), Hanford; proposed geophysical and hydrological measurements at NSTF; suggestions for characterization of the discontinuity system at NSTF; monitoring rock property changes caused by radioactive waste storage using the electrical resistivity method; microseismic detection system for heated rock; Pasco Basin groundwater contamination study; a letter to Mark Board on Gable Mountain Faulting; report on hydrofracturing tests for in-situ stress measurement, NSTF, Hole DC-11, Hanford Reservation; and borehole instrumentation layout for Hanford Near Surface Test Facility

  16. Safety analysis of the Los Alamos critical experiments facility: burst operation of Skua

    International Nuclear Information System (INIS)

    Orndoff, J.D.; Paxton, H.C.; Wimett, T.F.

    1980-12-01

    Detailed consideration of the Skua burst assembly is provided, thereby supplementing the facility Safety Analysis Report covering the operation of other critical assemblies at the Los Alamos Scientific Laboratory. As with these assemblies the small fission-product inventory, ambient pressure, and moderate temperatures in Skua are amenable to straightforward measures to ensure the protection of the public

  17. Classification of Reactor Facility Operational State Using SPRT Methods with Radiation Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Aviles, Camila A. [ORNL; Rao, Nageswara S. [ORNL

    2018-01-01

    We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventional majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.

  18. Staff Technical Position on geological repository operations area underground facility design: Thermal loads

    International Nuclear Information System (INIS)

    Nataraja, M.S.

    1992-12-01

    The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design

  19. Facile Fabrication of Durable Copper-Based Superhydrophobic Surfaces via Electrodeposition.

    Science.gov (United States)

    Jain, R; Pitchumani, R

    2018-03-13

    Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been limited by their poor mechanical durability and longevity. We present a low-cost, facile process to develop superhydrophobic copper-based coatings via an electrodeposition route, that addresses this limitation. Through electrodeposition, a stable, multiscale, cauliflower shaped fractal morphology was obtained and upon modification by stearic acid, the prepared coatings show extreme water repellency with contact angle of 162 ± 2° and roll-off angle of about 3°. Systematic studies are presented on coatings fabricated under different processing conditions to demonstrate good durability, mechanical and underwater stability, corrosion resistance, and self-cleaning effect. The study also presents an approach for rejuvenation of slippery superhydrophobic nature (roll-off angle <10°) on the surfaces after long-term water immersion. The presented process can be scaled to larger, durable coatings with controllable wettability for diverse applications.

  20. Elements for designing ALARA programmes for the maintenance and routine operations of nuclear facilities

    International Nuclear Information System (INIS)

    Lefaure, C.; Croft, J.R.

    1991-01-01

    This article briefly reviews the three fundamental elements for designing ALARA programmes for the maintenance and routine operations of nuclear facilities. These are the need for commitment of all parties involved, the need for specific ALARA organizational structures and the systematic use of ALARA tools. (UK)

  1. 76 FR 73727 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Science.gov (United States)

    2011-11-29

    ..., Donald C. Cook Nuclear Plant, Unit 2 (DCCNP-2), Berrien County, Michigan; Date of amendment request... Counsel, Indiana Michigan Power Company, One Cook Place, Bridgman, MI 49106. NRC Acting Branch Chief: Thomas J. Wengert. Notice of Issuance of Amendments to Facility Operating Licenses During the period...

  2. Facility effluent monitoring plan for 242-A evaporator facility

    International Nuclear Information System (INIS)

    Crummel, G.M.; Gustavson, R.D.

    1995-02-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years

  3. Report on operation of nuclear facilities in 1991; Porocilo o jedrski varnosti pri obratovanju jedrskih objektov v letu 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-15

    The Slovenian Nuclear Safety Administration (SNSA) prepared a report on nuclear safety in the republic of Slovenia in 1991 as part of its regular practice of reporting on its work to the Government and the National Assembly of the Republic of Slovenia. The report is divided into three thematic chapters covering the activities of the SNSA, the operation of nuclear facilities in Slovenia, the activity of international missions in Slovenia and the operation of nuclear facilities around the world.

  4. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    Science.gov (United States)

    Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.

    2015-01-01

    The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  5. Evaluation of controlled areas in the fuel element facility IPEN/CNEN/SP by the technique of surface contamination

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da; Sordi, Gian Maria A.A.; Almeida, Claudio C.; Brasil, Paulo; Paiva, Julio E.

    2013-01-01

    Working with radioactive materials makes the safety culture is present in everyday life of nuclear facilities. The radiological protection management provides the monitoring program for individual occupational exposure (IOE) and for the working place. The facilities are monitored by the radiometric surface and air survey. This paper presents a surface monitoring technique which assesses the workplace and estimates the dose in real time that the worker is subject to, considering the radionuclides used in the process. In this study, the radionuclide is uranium enriched to 19.5%. (author)

  6. Evaluation of controlled areas in the fuel element facility IPEN/CNEN/SP by the technique of surface contamination

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Teresinha de Moraes da; Sordi, Gian Maria A.A.; Almeida, Claudio C.; Brasil, Paulo; Paiva, Julio E., E-mail: tmsilva@ipen.br, E-mail: calmeida@ipen.br, E-mail: cambises@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Working with radioactive materials makes the safety culture is present in everyday life of nuclear facilities. The radiological protection management provides the monitoring program for individual occupational exposure (IOE) and for the working place. The facilities are monitored by the radiometric surface and air survey. This paper presents a surface monitoring technique which assesses the workplace and estimates the dose in real time that the worker is subject to, considering the radionuclides used in the process. In this study, the radionuclide is uranium enriched to 19.5%. (author)

  7. Criticality assessment of initial operations at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ha, B.C.; Williamson, T.G.

    1993-01-01

    At the Savannah River Site (SRS), high level radioactive wastes will be immobilized into borosilicate glass for long term storage and eventual disposal. Since the waste feed streams contain uranium and plutonium, the Defense Waste Processing Facility (DWPF) process has been evaluated to ensure that a subcritical condition is maintained. It was determined that the risk of nuclear criticality in the DWPF during initial, sludge-only operations is minimal due to the dilute concentration of fissile material in the sludge combined with excess neutron absorbers

  8. Development of protection system for power supply facilities in JT-60U P-NBI for long pulse operation

    International Nuclear Information System (INIS)

    Ohshima, Katsumi; Okano, Fuminori; Honda, Atsushi; Shinozaki, Shin-ichi; Usui, Katsutomi; Noto, Katsuya; Kawai, Mikito; Ikeda, Yoshitaka

    2007-06-01

    In the positive ion based NBI (P-NBI) system, we have developed a protection system to protect the power supply facilities from over load during long pulse operation. The protection system monitors the voltage (V) and current (I) in the power supply facilities, and calculates the parameters of V2t and I2t in real-time, where T is the pulse duration. It turns off the power supply facilities when V2t and I2t are beyond the critical values. After two development stages, we have completed the protection system using a package typed PLC (Programmable Logic Controller) which has a high expandability of multi-unit operation. Moreover, we have constructed a user-friendly system by using a SCADA (Supervisory Control and Data Acquisition) system. (author)

  9. Operational status of nuclear facilities in Japan. 2008 edition

    International Nuclear Information System (INIS)

    2008-01-01

    This document is a summary of the outline of the safety regulation administration of nuclear facilities as well as various data on the commercial nuclear power reactor facilities, research and development nuclear power reactor facilities, fabrication facilities, reprocessing facilities, and disposal facilities in fiscal year 2007 (from April 2007 to March 2008). I sincerely hope this document is used widely by many people engaged in work related to ensuring nuclear safety. (J.P.N.)

  10. Operational status of nuclear facilities in Japan. 2010 edition

    International Nuclear Information System (INIS)

    2010-01-01

    This document is a summary of the outline of the safety regulation administration of nuclear facilities as well as various data on the commercial nuclear power reactor facilities, research and development nuclear power reactor facilities, fabrication facilities, reprocessing facilities, and disposal facilities in fiscal year 2009 (from April 2009 to March 2010). We sincerely hope this document is used widely by many people engaged in work related to ensuring nuclear safety. (author)

  11. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  12. Facile surface glycosylation of PVDF microporous membrane via direct surface-initiated AGET ATRP and improvement of antifouling property and biocompatibility

    International Nuclear Information System (INIS)

    Yuan Jing; Meng Jianqiang; Kang Yinlin; Du Qiyun; Zhang Yufeng

    2012-01-01

    This paper describes a facile and novel approach for the surface glycosylation of poly(vinylidene difluoride) (PVDF) microporous membrane. A glycopolymer poly(D-gluconamidoethyl methacrylate) (PGAMA) was tethered onto the membrane surface via activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) directly initiated from the PVDF surface. Chemical changes of membrane surface were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It was revealed that PGAMA was successfully grafted onto the membrane surface and its grafting density can be modulated in a wide range up to 2.4 μmol/cm 2 . The effects of glycosylation on membrane morphology, flux and surface hydrophilicity were investigated. Field emission scanning electron microscopy (FESEM) results indicated shrinkage of the surface pore diameters and the growth of the glycopolymer layer on the membrane surface. The static water contact angle (WCA) of the membrane surface decreased from 110° to 30.4° with the increase of grafting density, indicating that the PGAMA grafts dramatically improved the surface hydrophilicity. The protein adsorption and platelets adhesion experiments indicated that the grafted PGAMA could effectively improve the membrane antifouling property and biocompatibility.

  13. RCRA facility investigation report for the 200-PO-1 operable unit. Revision 1

    International Nuclear Information System (INIS)

    1997-05-01

    This Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) report is prepared in support of the RFI/corrective measures study process for the 200-PO-1 Groundwater Operable Unit in the 200 East Area of the Hanford Site. This report summarizes existing information on this operable unit presented in the 200 East and PUREX Aggregate Area Management Study Reports, contaminant specific studies, available modeling data, and groundwater monitoring data summary reports. Existing contaminant data are screened against current regulatory limits to determine contaminants of potential concern (COPC). Each identified COPC is evaluated using well-specific and plume trend analyses

  14. Wastewater Facilities Operation and Management. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Long, David A.

    Local communities must be willing to spend funds to assure the proper operation and management of wastewater treatment facilities. Designed for citizen advisory groups, the one-hour learning session described in this instructor's manual covers problem areas, federal requirements, and responsibilities for wastewater plant operations and management.…

  15. Radiation protection at nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Endo, K.; Momose, T.; Furuta, S.

    2011-01-01

    Radiation protection methodologies concerning individual monitoring, workplace monitoring and environmental monitoring in nuclear fuel facilities have been developed and applied to facilities in the Nuclear Fuel Cycle Engineering Laboratories (NCL) of Japan Atomic Energy Agency (JAEA) for over 40 y. External exposure to photon, beta ray and neutron and internal exposure to alpha emitter are important issues for radiation protection at these facilities. Monitoring of airborne and surface contamination by alpha and beta/photon emitters at workplace is also essential to avoid internal exposure. A critical accident alarm system developed by JAEA has been proved through application at the facilities for a long time. A centralised area monitoring system is effective for emergency situations. Air and liquid effluents from facilities are monitored by continuous monitors or sampling methods to comply with regulations. Effluent monitoring has been carried out for 40 y to assess the radiological impacts on the public and the environment due to plant operation. (authors)

  16. Use of real-time tools to support field operations of NSF's Lower Atmosphere Observing Facilities

    Science.gov (United States)

    Daniels, M.; Stossmeister, G.; Johnson, E.; Martin, C.; Webster, C.; Dixon, M.; Maclean, G.

    2012-12-01

    NCAR's Earth Observing Laboratory (EOL) operates Lower Atmosphere Observing Facilities (LAOF) for the scientific community, under sponsorship of the National Science Foundation. In order to obtain the highest quality dataset during field campaigns, real-time decision-making critically depends on the availability of timely data and reliable communications between field operations staff and instrument operators. EOL incorporates the latest technologies to monitor the health of instrumentation, facilitate remote operations of instrumentation and keep project participants abreast of changing conditions in the field. As the availability of bandwidth on mobile communication networks and the capabilities of their associated devices (smart phone, tablets, etc.) improved, so has the ability of researchers to respond to rapidly changing conditions and coordinate ever more detailed measurements from multiple remote fixed, portable and airborne platforms. This presentation will describe several new tools that EOL is making available to project investigators and how these tools are being used in a mobile computing environment to support enhanced data collection during field campaigns. LAOF platforms such as radars, aircraft, sondes, balloons and surface stations all rely on displays of real-time data for their operations. Data from sondes are ingested into the Global Telecommunications System (GTS) for assimilation into regional forecasting models that help guide project operations. Since many of EOL's projects occur around the globe and at the same time instrument complexity has increased, automated monitoring of instrumentation platforms and systems has become essential. Tools are being developed to allow remote instrument control of our suite of observing systems where feasible. The Computing, Data and Software (CDS) Facility of EOL develops and supports a Field Catalog used in field campaigns for nearly two decades. Today, the Field Catalog serves as a hub for the

  17. Groundwater flow modeling for near-field of a hypothetical near-surface disposal facility

    International Nuclear Information System (INIS)

    Park, H. Y.; Park, J. W.; Jang, G. M.; Kim, C. R.

    2000-01-01

    For a hypothetical near-surface radioactive disposal facility, the behavior of groundwater flow around the near-field of disposal vault located at the unsaturated zone were analyzed. Three alternative conceptual models proposed as the hydraulic barrier layer design were simulated to assess the hydrologic performance of engineered barriers for the facility. In order to evaluate the seepage possibility of the infiltrated water passed through the final disposal cover after the facility closure, the flow path around and water flux through each disposal vault were compared. The hydrologic parameters variation that accounts for the long-term aging and degradation of the cover and engineered materials was considered in the simulations. The results showed that it is necessary to construct the hydraulic barrier at the upper and sides of the vault, and that, for this case, achieving design hydraulic properties of bentonite/sand mixture barrier in the as-built condition is crucial to limit the seepage into the waste

  18. Operational assimilation of ASCAT surface soil wetness at the Met Office

    Directory of Open Access Journals (Sweden)

    I. Dharssi

    2011-08-01

    Full Text Available Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  19. Regulation imposed to nuclear facility operators for the elaboration of 'waste studies' and 'waste statuses'

    International Nuclear Information System (INIS)

    2001-01-01

    This decision from the French authority of nuclear safety (ASN) aims at validating the new versions of the guidebook for the elaboration of 'waste studies' for nuclear facilities and of the specifications for the elaboration of 'waste statuses' for nuclear facilities. This paper includes two documents. The first one is a guidebook devoted to nuclear facility operators which fixes the rules of production of waste studies according to the articles 20 to 26 of the inter-ministry by-law from December 31, 1999 (waste zoning conditions and ASN's control modalities). The second document concerns the specifications for the establishment of annual waste statuses according to article 27 of the inter-ministry by-law from December 31, 1999 (rational management of nuclear wastes). (J.S.)

  20. Operation of the Nuclear Radiation Center as an all-university facility

    International Nuclear Information System (INIS)

    Hinman, G.W.

    1972-01-01

    The TRIGA at WSU is part of an all university research unit and its structure and work organization are presented. The facility seeks users from the university and from outside the university. In many cases projects are jointly sponsored by NRC faculty together with faculty from elsewhere on campus. In other cases neutrons or free use of other equipment is provided. The promotional efforts are rather sharply focused on environmental and health related problems. The effects of the institutional arrangement on the operation of the Centre are discussed