Surface dose extrapolation measurements with radiographic film
International Nuclear Information System (INIS)
Butson, Martin J; Cheung Tsang; Yu, Peter K N; Currie, Michael
2004-01-01
Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size. (note)
NOTE: Surface dose extrapolation measurements with radiographic film
Butson, Martin J.; Cheung, Tsang; Yu, Peter K. N.; Currie, Michael
2004-07-01
Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size.
Extrapolated renormalization group calculation of the surface tension in square-lattice Ising model
International Nuclear Information System (INIS)
Curado, E.M.F.; Tsallis, C.; Levy, S.V.F.; Oliveira, M.J. de
1980-06-01
By using self-dual clusters (whose sizes are characterized by the numbers b=2, 3, 4, 5) within a real space renormalization group framework, the longitudinal surface tension of the square-lattice first-neighbour 1/2-spin ferromagnetic Ising model is calculated. The exact critical temperature T sub(c) is recovered for any value of b; the exact assymptotic behaviour of the surface tension in the limit of low temperatures is analytically recovered; the approximate correlation length critical exponents monotonically tend towards the exact value ν=1 (which, at two dimensions, coincides with the surface tension critical exponent μ) for increasingly large cells; the same behaviour is remarked in what concerns the approximate values for the surface tension amplitude in the limit T→T sub(c). Four different numerical procedures are developed for extrapolating to b→infinite the renormalization group results for the surface tension, and quite satisfactory agreement is obtained with Onsager's exact expression (error varying from zero to a few percent on the whole temperature domain). Furthermore the set of RG surface tensions is compared with a set of biased surface tensions (associated to appropriate misfit seams), and find only fortuitous coincidence among them. (Author) [pt
On the homology length spectrum of surfaces
Massart, Daniel; Parlier, Hugo
2014-01-01
On a surface with a Finsler metric, we investigate the asymptotic growth of the number of closed geodesics of length less than L which minimize length among all geodesic multicurves in the same homology class. An important class of surfaces which are of interest to us are hyperbolic surfaces.
Topographical length scales of hierarchical superhydrophobic surfaces
Energy Technology Data Exchange (ETDEWEB)
Dhillon, P.K. [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India); Brown, P.S.; Bain, C.D.; Badyal, J.P.S. [Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, England (United Kingdom); Sarkar, S., E-mail: sarkar@iitrpr.ac.in [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India)
2014-10-30
Highlights: • Hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using AFM. • Micro, Nano, and Micro + Nano topographies generated by altering plasma power and duration. • Dynamic scaling theory and FFT analysis used to characterize these surfaces quantitatively. • Roughnesses are different for different length scales of the surfaces considered. • Highest local roughness obtained from scaling analysis for shorter length scales of about 500 nm explains the superhydrophobicity for the Micro + Nano surface. - Abstract: The morphology of hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent α = 0.42 for length scales shorter than ∼500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170°) and low hysteresis (<1°))
Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results
Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro
2014-05-01
We report on numerical simulations of a zincblende InP surface quantum dot (QD) on \\text{I}{{\\text{n}}_{0.48}}\\text{G}{{\\text{a}}_{0.52}}\\text{P} buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, \\vec{k}\\;\\cdot \\;\\vec{p} bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband \\vec{k}\\;\\cdot \\;\\vec{p} approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further
Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results.
Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro
2014-05-16
We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In₀.₄₈Ga₀.₅₂ buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, [Formula: see text] bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband [Formula: see text] approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental
Hydrodynamic slip length as a surface property
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2016-02-01
Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.
Extrapolated surface dose measurements using a NdFeB magnetic deflector for 6 MV x-ray beams.
Damrongkijudom, N; Butson, M; Rosenfeld, A
2007-03-01
Extrapolated surface dose measurements have been performed using radiographic film to measure 2-Dimensional maps of skin and surface dose with and without a magnetic deflector device aimed at reducing surface dose. Experiments are also performed using an Attix parallel plate ionisation chamber for comparison to radiographic film extrapolation surface dose analysis. Extrapolated percentage surface dose assessments from radiographic film at the central axis of a 6 MV x-ray beam with magnetic deflector for field size 10 x 10 cm2, 15 x 15 cm2 and 20 x 20 cm2 are 9 +/- 3%, 13 +/- 3% and 16 +/- 3%, these compared to 14 +/- 3%, 19 +/- 3%, and 27 +/- 3% for open fields, respectively. Results from Attix chamber for the same field size are 12 +/- 1%, 15 +/- 1% and 18 +/- 1%, these compared to 16 +/- 1%, 21 +/- 1% and 27 +/- 1% for open fields, respectively. Results are also shown for profiles measured in-plane and cross-plane to the magnetic deflector and compared to open field data. Results have shown that the surface dose is reduced at all sites within the treatment field with larger reductions seen on one side of the field due to the sweeping nature of the designed magnetic field. Radiographic film extrapolation provides an advanced surface dose assessment and has matched well with Attix chamber results. Film measurement allows for easy 2 dimensional dose assessments.
Horne, Joseph E; Lavrik, Nickolay V; Terrones, Humberto; Fuentes-Cabrera, Miguel
2015-06-30
In an effort to enhance our knowledge on how to control the movement of metallic nanodroplets, here we have used classical molecular dynamics simulations to investigate whether Cu nanostructures deposited on nanopillared substrates can be made to jump at desired angles. We find that such control is possible, especially for Cu nanostructures that are symmetric; for asymmetric nanostructures, however, control is more uncertain. The work presented here borrows ideas from two seemingly different fields, metallic droplets and water droplets in the dynamic Leidenfrost regime. Despite the differences in the respective systems, we find common ground in their behavior on nanostructured surfaces. Due to this, we suggest that the ongoing research in Leidenfrost droplets is a fertile area for scientists working on metallic nanodroplets.
Zhang, Lu-Lu; Song, Yu-Zhi; Gao, Shou-Bao; Meng, Qing-Tian
2018-04-16
A global potential energy surface (PES) representation of the C( 3 P) + SH(X 2 ∏) → H( 2 S) + CS(a 3 ∏) system is developed by fitting a wealth of accurate ab initio energies calculated at the multireference configuration interaction level using aug-cc-pVQZ and aug-cc-pV5Z basis sets via extrapolation to the complete basis set limit. The topographical features of the present PES are examined in detail and found to be in good agreement with previous calculations available in the literature. By utilizing the PES of HCS(A2A''), the corresponding reaction is investigated using quasi-classical trajectory (QCT) method in the collision energy range of 0.08 - 1.0 eV. The minimum energy paths (MEPs) calculated based on the present PES indicate that the titled reaction is exothermic, with the exothermicity being ∼ 0.204 eV. The calculation for the capture time indicates that at lower collision energy, the reaction is mainly governed by the indirect mechanism, while for higher collision energy, the direct mechanism and indirect mechanisms coexist with the latter being the dominant contributor.
Measurement of surface crack length using image processing technology
International Nuclear Information System (INIS)
Nahm, Seung Hoon; Kim, Si Cheon; Kim, Yong Il; Ryu, Dae Hyun
2001-01-01
The development of a new experimental method is required to easily observe the growth behavior of fatigue cracks. To satisfy the requirement, an image processing technique was introduced to fatigue testing. The length of surface fatigue crack could be successfully measured by the image processing system. At first, the image data of cracks were stored into the computer while the cyclic loading was interrupted. After testing, crack length was determined using image processing software which was developed by ourselves. Block matching method was applied to the detection of surface fatigue cracks. By comparing the data measured by image processing system with the data measured by manual measurement with a microscope, the effectiveness of the image processing system was established. If the proposed method is used to monitor and observe the crack growth behavior automatically, the time and efforts for fatigue test could be dramatically reduced
Assessing Telomere Length Using Surface Enhanced Raman Scattering
Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping
2014-11-01
Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.
Analysis of surface bond lengths reported for chemisorption on metal surfaces
Mitchell, K. A. R.
1985-01-01
A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.
Directory of Open Access Journals (Sweden)
T. Gerken
2012-04-01
Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.
Principles of animal extrapolation
Energy Technology Data Exchange (ETDEWEB)
Calabrese, E.J.
1991-01-01
Animal Extrapolation presents a comprehensive examination of the scientific issues involved in extrapolating results of animal experiments to human response. This text attempts to present a comprehensive synthesis and analysis of the host of biomedical and toxicological studies of interspecies extrapolation. Calabrese's work presents not only the conceptual basis of interspecies extrapolation, but also illustrates how these principles may be better used in selection of animal experimentation models and in the interpretation of animal experimental results. The book's theme centers around four types of extrapolation: (1) from average animal model to the average human; (2) from small animals to large ones; (3) from high-risk animal to the high risk human; and (4) from high doses of exposure to lower, more realistic, doses. Calabrese attacks the issues of interspecies extrapolation by dealing individually with the factors which contribute to interspecies variability: differences in absorption, intestinal flora, tissue distribution, metabolism, repair mechanisms, and excretion. From this foundation, Calabrese then discusses the heterogeneticity of these same factors in the human population in an attempt to evaluate the representativeness of various animal models in light of interindividual variations. In addition to discussing the question of suitable animal models for specific high-risk groups and specific toxicological endpoints, the author also examines extrapolation questions related to the use of short-term tests to predict long-term human carcinogenicity and birth defects. The book is comprehensive in scope and specific in detail; for those environmental health professions seeking to understand the toxicological models which underlay health risk assessments, Animal Extrapolation is a valuable information source.
Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip
International Nuclear Information System (INIS)
Hendy, S C; Lund, N J
2009-01-01
We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.
Surface tension in microsystems engineering below the capillary length
Lambert, Pierre
2014-01-01
This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.
High-resolution TOF-SIMS study of varying chain length self-assembled monolayer surfaces.
Wolf, Kurt V; Cole, David A; Bernasek, Steven L
2002-10-01
A high-resolution time-of-flight secondary ionization mass spectrometer (TOF-SIMS) has been used to investigate chain length effects in hydrocarbon seff-assembled monolayer (SAM) surfaces on gold substrates. A wide range of n-alkanethiols was used to make homogeneous SAM surfaces, which included both odd and even hydrocarbon chain length thiols. Variations in coverage, extent of oxidation, and high-mass cluster formation as a function of hydrocarbon chain length of the alkanethiol SAM surfaces were investigated. Long-short chain length effects were observed for the relative coverage of the SAM surfaces, which directly influences the extent of oxidation for the thin films. The formation of gold-sulfur and gold-adsorbate cluster ions was also observed, since the mass range of the TOF-SIMS made it possible to monitor all of the cluster ions that were formed following the high-energy ion/surface interactions.
Ecotoxicological effects extrapolation models
Energy Technology Data Exchange (ETDEWEB)
Suter, G.W. II
1996-09-01
One of the central problems of ecological risk assessment is modeling the relationship between test endpoints (numerical summaries of the results of toxicity tests) and assessment endpoints (formal expressions of the properties of the environment that are to be protected). For example, one may wish to estimate the reduction in species richness of fishes in a stream reach exposed to an effluent and have only a fathead minnow 96 hr LC50 as an effects metric. The problem is to extrapolate from what is known (the fathead minnow LC50) to what matters to the decision maker, the loss of fish species. Models used for this purpose may be termed Effects Extrapolation Models (EEMs) or Activity-Activity Relationships (AARs), by analogy to Structure-Activity Relationships (SARs). These models have been previously reviewed in Ch. 7 and 9 of and by an OECD workshop. This paper updates those reviews and attempts to further clarify the issues involved in the development and use of EEMs. Although there is some overlap, this paper does not repeat those reviews and the reader is referred to the previous reviews for a more complete historical perspective, and for treatment of additional extrapolation issues.
Directory of Open Access Journals (Sweden)
Xiangju Cheng
2014-12-01
Full Text Available One of the most uncertain parameters in stepped spillway design is the length (from the crest of boundary layer development. The normal velocity profiles responding to the steps as bed roughness are investigated in the developing non-aerated flow region. A detailed analysis of the logarithmic vertical velocity profiles on stepped spillways is conducted through experimental data to verify the computational code and numerical experiments to expand the data available. To determine development length, the hydraulic roughness and displacement thickness, along with the shear velocity, are needed. This includes determining displacement height d and surface roughness length z0 and the relationship of d and z0 to the step geometry. The results show that the hydraulic roughness height ks is the primary factor on which d and z0 depend. In different step height, step width, discharge and intake Froude number, the relations d/ks = 0.22–0.27, z0/ks = 0.06–0.1 and d/z0 = 2.2–4 result in a good estimate. Using the computational code and numerical experiments, air inception will occur over stepped spillway flow as long as the Bauer-defined boundary layer thickness is between 0.72 and 0.79.
Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation
International Nuclear Information System (INIS)
Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong
2013-01-01
Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)
Flame Treatment of Low-Density Polyethylene: Surface Chemistry Across the Length Scale
Song, Jing; Gunst, Ullrich; Arlinghaus, Heinrich F.; Vancso, Gyula J.
2007-01-01
The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron
Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer
Matilainen, Mika; Tuononen, Ari
2015-02-01
We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.
Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length
Energy Technology Data Exchange (ETDEWEB)
Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.
2010-04-30
One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.
Turbulent flows over superhydrophobic surfaces with shear-dependent slip length
Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre
2015-11-01
Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).
Tan, Bernice Mei Jin; Chan, Lai Wah; Heng, Paul Wan Sia
2018-03-06
Surface roughness is well recognized as a critical physical property of particulate systems, particularly in relation to adhesion, friction, and flow. An example is the surface property of carrier particles in carrier-based dry powder inhaler (DPI) formulations. The numerical characterization of roughness remains rather unsatisfactory due to the lack of spatial (or length scale) information about surface features when a common amplitude parameter such as average roughness ( R a ) is used. An analysis of the roughness of lactose carrier particles at three different length scales, designed for specificity to the study of interactive mixtures in DPI, was explored in this study. Three R a parameters were used to represent the microscale, intermediate scale, and macroscale roughness of six types of surface-modified carriers. Coating of micronized lactose fines on coarse carrier particles increased their microroughness from 389 to 639 nm while the macroroughness was not affected. Roller compaction at higher roll forces led to very effective surface roughening, particularly at longer length scales. Changes in R a parameters corroborated the visual observations of particles under the scanning electron microscope. Roughness at the intermediate scale showed the best correlation with the fine particle fraction (FPF) of DPI formulations. From the range of 250 to 650 nm, every 100 nm increase in the intermediate roughness led to ∼8% increase in the FPF. However, the effect of surface roughness was greatly diminished when fine lactose (median size, 9 μm) of comparable amounts to the micronized drug were added to the formulation. The combination of roughness parameters at various length scales provided much discriminatory surface information, which then revealed the "quality" of roughness necessary for improving DPI performance.
Surface Properties of Silane-Treated Diatomaceous Earth Coatings: Effect of Alkyl Chain Length.
Perera, Helanka J; Mortazavian, Hamid; Blum, Frank D
2017-03-21
Modification of diatomaceous earth (DE) was performed using alkyltrimethoxysilanes of different chain lengths (C3, C8, C12, C16, and C18), and their resultant properties were determined. The thermal properties of these alkyltrimethoxysilane-treated DE powders were probed using thermogravimetric analysis and temperature-modulated differential scanning calorimetry, and the surface/porosity was studied using nitrogen adsorption and electron microscopy. Crystallinity of the hydrocarbon tails occurred when the chain lengths were C12 or larger, and the adsorbed hydrocarbon amounts were 1.6 mg/m 2 or more. The wettability of functionalized DE-containing surfaces was studied using water contact angle measurements. At larger adsorbed amounts of 2.2 mg/m 2 or more, the treated DE formed superhydrophobic coatings (with water contact angles ≥150°) with a polyurethane binder. These coatings required a minimum of 30% particle loadings, which allowed the DE particles to dominate the surface. At loadings larger than approximately 50%, there was a decrease in the contact angles corresponding to a reduction in roughness on the surface. Samples with adsorbed amounts less than 2.2 mg/m 2 or chain lengths shorter than C12 were only hydrophobic. These results were in agreement with scanning electron microscopy and Brunauer-Emmett-Teller specific surface area and pore volume measurements.
Full Length Amelogenin Binds to Cell Surface LAMP-1 on Tooth Root/Periodontium Associated Cells
Zhang, Hai; Tompkins, Kevin; Garrigues, Jacques; Snead, Malcolm L.; Gibson, Carolyn W.; Somerman, Martha J.
2010-01-01
Objectives Lysosome-associated membrane protein-1 (LAMP-1) has been suggested to be a cell surface receptor for a specific amelogenin isoform, leucine-rich amelogenin peptide or LRAP. However, it is unclear if LAMP-1 is an amelogenin receptor for dental mesenchymal cells. The goal of this study was to determine if LAMP-1 serves as a cell surface binding site for full length amelogenin on tooth root/periodontium associated mesenchymal cells. Design Murine dental follicle cells and cementoblasts (OCCM-30) were cultured for 2 days followed by addition of full length recombinant mouse amelogenin, rp(H)M180. Dose-response (0 to 100 μg/ml) and time course (0 to 120 minutes) assays were performed to determine the optimal conditions for live cell surface binding using immuno-fluorescent microscopy. A competitive binding assay was performed to determine binding specificity by adding Emdogain (1 mg/ml) to the media. An antibody against LAMP-1 was used to detect the location of LAMP-1 on the cell surface and the pattern was compared to cell surface bound amelogenin. Both amelogenin and cell surface LAMP-1 were immuno-co-localized to compare the amount and distribution pattern. Results Maximum surface binding was achieved with 50 μg/ml of rp(H)M180 for 120 minutes. This binding was specific as demonstrated by competitive inhibition (79% lower) with the addition of Emdogain. The binding pattern for rp(H)M180 was similar to the distribution of surface LAMP-1 on dental follicle cells and cementoblasts. The high co-localization coefficient (0.92) for rp(H)M180 and LAMP-1 supports rp(H)M180 binding to cell surface LAMP-1. Conclusions The data from this study suggest that LAMP-1 can serve as a cell surface binding site for amelogenin on dental follicle cells and cementoblasts. PMID:20382373
Fairhall, Chris; Garcia-Mayoral, Ricardo
2017-11-01
We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.
Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux
Directory of Open Access Journals (Sweden)
Sang-Jong Park
2010-01-01
Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.
Wavefield extrapolation in pseudodepth domain
Ma, Xuxin
2013-02-01
Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.
Li, Zhaoguo; Lyu, Shihua; Wen, Lijuan; Zhao, Lin; Meng, Xianhong; Ao, Yinhuan
2017-08-01
The special climate environment creates a distinctive air-lake interaction characteristic in the Tibetan Plateau (TP) lakes, where the variations of surface roughness lengths also differ somewhat from those of other regions. However, how different categories of roughness lengths affect the lake surface energy exchange and the planetary boundary layer height (PBLH) remains unclear in the TP lakes. In this study, we used a tuned Weather Research and Forecasting (WRF) model version 3.6.1 to investigate the responses of the freeze-up date, turbulent fluxes, meteorological variables, and PBLH to surface roughness length variations in Ngoring Lake. Of all meteorological variables, the lake surface temperature responded to roughness length variations most sensitively; increasing roughness lengths can put the lake freeze-up date forward. The effect of momentum roughness length on wind speed was significantly affected by the fetch length. The increase in the roughness length for heat can induce the increment of the nightly PBLH in most months, especially for the central lake area in autumn. The primary factors that contribute to sensible heat flux (H) and latent heat flux (LE) were the roughness lengths for heat and momentum during the ice-free period, respectively. Increasing roughness length for heat can increase the nightly PBLH, and decreasing roughness length for moisture can also promote growth of the PBLH, but there was no obvious correlation between the momentum roughness length and the PBLH.
Elementary calculation of the extrapolation
International Nuclear Information System (INIS)
Boffi, V.C.; Haggag, M.H.; Spiga, G.
1985-01-01
A simple projectional technique combined with an equally simple parametric representation of the transient part of the neutron total flux is proposed for an elementary straightforward calculation of the extrapolation distance in diffusing media. (author)
Effects of surface hydrophobicity on the conformational changes of polypeptides of different length.
Mu, Yan
2011-09-01
We studied the effects of surface hydrophobicity on the conformational changes of different length polypeptides by calculating the free energy difference between peptide structures using the bias-potential Monte Carlo technique and the probability ratio method. It was found that the hydrophobic surface plays an important role in the stability of secondary structures of the polypeptides with hydrophobic side chains. For short GAAAAG peptides, the hydrophobic surface destabilizes the α helix but stabilizes the β hairpin in the entire temperature region considered in our study. Interestingly, when the surface hydrophobic strength ε(hpsf)≥ε(hp), the most stable structure in the low temperature region changes from α helix to β hairpin, and the corresponding phase transition temperature increases slightly. For longer GAAAAAAAAAAG peptides, the effects of the relatively weak hydrophobic surface (ε(hpsf) ε(hp)) may further disturb the formation of both α-helical and β structures. Moreover, the phase transition temperature between α-helical structures and random coils significantly decreases due to the helicity loss when ε(hpsf)>ε(hp). Our findings provide a basic and quantitative picture for understanding the effects of a hydrophobic surface on the conformational changes of the polypeptides with hydrophobic side chains. From an application viewpoint, the present study is helpful in developing alternative strategies of producing high-quality biological fibrillar materials and functional nanoscale devices by the self-assembly of the polypeptides on hydrophobic surfaces.
Li, Yongqing; Yuan, Jiuchuang; Chen, Maodu; Ma, Fengcai; Sun, Mengtao
2013-07-15
An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system. A switching function formalism has been used to warrant the correct behavior at the H2(X1Σg+)+N(2D) and NH (X3Σ-)+H(2S) dissociation channels involving nitrogen in the ground N(4S) and first excited N(2D) states. The topographical features of the novel global potential energy surface are examined in detail, and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel surface can be using to treat well the Renner-Teller degeneracy of the 12A″ and 12A' states of NH 2. Such a work can both be recommended for dynamics studies of the N(2D)+H2 reaction and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen-containing systems. In turn, a test theoretical study of the reaction N(2D)+H2(X1Σg+)(ν=0,j=0)→NH (X3Σ-)+H(2S) has been carried out with the method of quantum wave packet on the new potential energy surface. Reaction probabilities, integral cross sections, and differential cross sections have been calculated. Threshold exists because of the energy barrier (68.5 meV) along the minimum energy path. On the curve of reaction probability for total angular momentum J = 0, there are two sharp peaks just above threshold. The value of integral cross section increases quickly from zero to maximum with the increase of collision energy, and then stays stable with small oscillations. The differential cross section result shows that the reaction is a typical forward and backward scatter in agreement with experimental measurement result. Copyright © 2013 Wiley Periodicals, Inc..
Surface modification and laser pulse length effects on internal energy transfer in DIOS.
Luo, Guanghong; Chen, Yong; Siuzdak, Gary; Vertes, Akos
2005-12-29
Benzyl-substituted benzylpyridinium (BP) chloride salts were used as a source of thermometer ions to probe the internal energy (IE) transfer in desorption/ionization on porous silicon (DIOS). To modify their wetting properties and the interaction energies with the thermometer ions, the DIOS surfaces were silylated to produce trimethylsilyl- (TMS), amine- (NH2), perfluoroalkyl- (PFA), and perfluorophenyl-derivatized (PFP) surfaces. Two laser sources--a nitrogen laser with pulse length of 4 ns and a mode locked 3 x omega Nd:YAG laser with a pulse length of 22 ps--were utilized to induce desorption/ionization and fragmentation at various laser fluence levels. The corresponding survival yields were determined as indicators of the IE transfer and the IE distributions were extracted. In most cases, with increasing the laser fluence in a broad range (approximately 20 mJ/cm2), no change in IE transfer was observed. For ns excitation, this was in remarkable contrast with MALDI, where increasing the laser fluence resulted in sharply (within approximately 5 mJ/cm2) declining survival yields. Derivatization of the porous silicon surface did not affect the survival yields significantly but had a discernible effect on the threshold fluence for ion production. The IE distributions determined for DIOS and MALDI from alpha-cyano-4-hydroxycinnamic acid reveal that the mean IE value is always lower for the latter. Using the ps laser, the IE distribution is always narrower for DIOS, whereas for ns laser excitation the width depends on surface modification. Most of the differences between MALDI and DIOS described here are compatible with the different dimensionality of the plume expansion and the differences in the activation energy of desorption due to surface modifications.
Extrapolation methods theory and practice
Brezinski, C
1991-01-01
This volume is a self-contained, exhaustive exposition of the extrapolation methods theory, and of the various algorithms and procedures for accelerating the convergence of scalar and vector sequences. Many subroutines (written in FORTRAN 77) with instructions for their use are provided on a floppy disk in order to demonstrate to those working with sequences the advantages of the use of extrapolation methods. Many numerical examples showing the effectiveness of the procedures and a consequent chapter on applications are also provided - including some never before published results and applicat
Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces.
Liu, Runhui; Masters, Kristyn S; Gellman, Samuel H
2012-04-09
Nylon-3 polymers have a polyamide backbone reminiscent of that found in proteins (β- vs α-amino acid residues, respectively), which makes these materials interesting for biological applications. Because of the versatility of the ring-opening polymerization process and the variety of β-lactam starting materials available, the structure of nylon-3 copolymers is highly amenable to alteration. A previous study showed that relatively subtle changes in the structure or ratio of hydrophobic and cationic subunits that comprise these polymers can result in significant changes in the ability of nylon-3-bearing surfaces to support cell adhesion and spreading. In the present study, we have exploited the highly tailorable nature of these polymers to synthesize new versions possessing a wide range of chain lengths, with the intent of optimizing these materials for use as cell-supportive substrates. We find that longer nylon-3 chains lead to better fibroblast attachment on modified surfaces and that at the optimal chain lengths less hydrophobic subunits are superior. The best polymers we identified are comparable to an RGD-containing peptide in supporting fibroblast attachment. The results described here will help to focus future efforts aimed at refining nylon-3 copolymer substrates for specific tissue engineering applications.
Modeling of liquid–gas meniscus for textured surfaces: effects of curvature and local slip length
International Nuclear Information System (INIS)
Gaddam, Anvesh; Garg, Mayank; Agrawal, Amit; Joshi, Suhas S
2015-01-01
Surface texturing at the micro/nanolevel allows air to be trapped in sufficiently small cavities, thereby reducing the flow resistance over the surface in the laminar regime. The nature of the liquid–gas meniscus plays an important role in defining the boundary condition and it depends on the flow conditions and geometrical properties of textures. In the present work, we employ the unsteady volume of fluid model to investigate the behavior of the liquid–gas meniscus for ridges arranged normal to the flow direction to substantiate the frictional resistance of flow in a microchannel. It is found that the assumption of ‘zero shear stress’ at the liquid–gas interface grossly overpredicts the effective slip length with meniscus curvature and local partial slip length playing the dominant role. Numerical simulations performed in the laminar regime (20 < Re < 120) over single layered ridges normal to the flow direction revealed the effect of texture geometry on the reduction in pressure drop. In single layered structures, lotus-like geometries exhibited a greater reduction in drag (more than 30%) when compared to all other texture geometries. It is recognized that the flow experiences expansion and contraction cycles as it flows over the transverse ridges increasing the frictional resistance. Our findings will help to modify the boundary condition at the liquid–gas meniscus for accurate modeling in the laminar regime and to optimize the texture geometry to improve drag reduction. (paper)
Directory of Open Access Journals (Sweden)
Meichun Cao
2014-01-01
Full Text Available In this paper, the impact of urban surface roughness length z0 parameterization scheme on the atmospheric environment simulation over Beijing has been investigated through two sets of numerical experiments using the Weather Research and Forecasting model coupled with the Urban Canopy Model. For the control experiment (CTL, the urban surface z0 parameterization scheme used in UCM is the model default one. For another experiment (EXP, a newly developed urban surface z0 parameterization scheme is adopted, which takes into account the comprehensive effects of urban morphology. The comparison of the two sets of simulation results shows that all the roughness parameters computed from the EXP run are larger than those in the CTL run. The increased roughness parameters in the EXP run result in strengthened drag and blocking effects exerted by buildings, which lead to enhanced friction velocity, weakened wind speed in daytime, and boosted turbulent kinetic energy after sunset. Thermal variables (sensible heat flux and temperature are much less sensitive to z0 variations. In contrast with the CTL run, the EXP run reasonably simulates the observed nocturnal low-level jet. Besides, the EXP run-simulated land surface-atmosphere momentum and heat exchanges are also in better agreement with the observation.
Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer
Zeira, Assaf
The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.
2010-01-01
Surface-bound nucleic acid probes designed to adopt specific secondary structures are becoming increasingly important in a range of biosensing applications but remain less well characterized than traditional single-stranded probes, which are typically designed to avoid secondary structure. We report the hybridization efficiency for surface-immobilized hairpin DNA probes. Our probes are molecular beacons, carrying a 3′ dye moiety and a 5′ thiol for attachment to gold nanowires, which serve as both scaffolds for probe attachment and quenchers. Hybridization efficiency was dependent on probe surface coverage, reaching a maximum of ∼90% at intermediate coverages of (1−2) × 1012 probes/cm2 and dropping to ≤20% at higher or lower coverages. Fluorescence intensity did not track with the number of target molecules bound, and was highest for high probe coverage despite the lower bound targets per square centimeter. Backfilling with short thiolated oligoethylene glycol spacers increased hybridization efficiency at low hairpin probe coverages (∼(3−4) × 1011 probes/cm2), but not at higher probe coverages (1 × 1012/cm2). We also evaluated the effect of target length by adding up to 50 nonhybridizing nucleotides to the 3′ or 5′ end of the complementary target sequence. Additional nucleotides on the 3′ end of the complementary target sequence (i.e., the end near the nanowire surface) had a much greater impact on hybridization efficiency as compared to nucleotides added to the 5′ end. This work provides guidance in designing sensors in which surface-bound probes designed to adopt secondary structures are used to detect target sequences from solution. PMID:21038880
Directory of Open Access Journals (Sweden)
Gbureck Uwe
2007-07-01
Full Text Available Abstract Background Chemical bonding of the drug onto surfaces by means of spacer molecules is accompanied with a reduction of the biological activity of the drug due to a constricted mobility since normally only short spacer molecule like aminopropyltrimethoxysilane (APMS are used for drug coupling. This work aimed to study covalent attachment of heparin to titanium(oxide surfaces by varying the length of the silane coupling agent, which should affect the biological potency of the drug due to a higher mobility with longer spacer chains. Methods Covalent attachment of heparin to titanium metal and TiO2 powder was carried out using the coupling agents 3-(Trimethoxysilyl-propylamine (APMS, N- [3-(Trimethoxysilylpropyl]ethylenediamine (Diamino-APMS and N1- [3-(Trimethoxy-silyl-propyl]diethylenetriamine (Triamino-APMS. The amount of bound coupling agent and heparin was quantified photometrically by the ninhydrin reaction and the tolidine-blue test. The biological potency of heparin was determined photometrically by the chromogenic substrate Chromozym TH and fibrinogen adsorption to the modified surfaces was researched using the QCM-D (Quartz Crystal Microbalance with Dissipation Monitoring technique. Results Zeta-potential measurements confirmed the successful coupling reaction; the potential of the unmodified anatase surface (approx. -26 mV shifted into the positive range (> + 40 mV after silanisation. Binding of heparin results in a strongly negatively charged surface with zeta-potentials of approx. -39 mV. The retaining biological activity of heparin was highest for the spacer molecule Triamino-APMS. QCM-D measurements showed a lower viscosity for adsorbed fibrinogen films on heparinised surfaces by means of Triamino-APMS. Conclusion The remaining activity of heparin was found to be highest for the covalent attachment with Triamino-APMS as coupling agent due to the long chain of this spacer molecule and therefore the highest mobility of the drug
Extrapolative Expectations and Market Stability.
Vega-Redondo, Fernando
1989-01-01
An auctioneer model of market adjustment is proposed which, unlike the standard formulation, has prices react to extrapolated (rather than prevailing) excess demands. If expectations are sufficiently sensitive to current rates of change, every regular market equilibrium is shown to be locally stable. The model can be regarded as providing an institutional interpretation to Newton-like methods of market adjustment that, as the Newton process itself, ensure stability of every regular zero of a ...
UFOs: Observations, Studies and Extrapolations
Baer, T; Barnes, M J; Bartmann, W; Bracco, C; Carlier, E; Cerutti, F; Dehning, B; Ducimetière, L; Ferrari, A; Ferro-Luzzi, M; Garrel, N; Gerardin, A; Goddard, B; Holzer, E B; Jackson, S; Jimenez, J M; Kain, V; Zimmermann, F; Lechner, A; Mertens, V; Misiowiec, M; Nebot Del Busto, E; Morón Ballester, R; Norderhaug Drosdal, L; Nordt, A; Papotti, G; Redaelli, S; Uythoven, J; Velghe, B; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zerlauth, M; Fuster Martinez, N
2012-01-01
UFOs (“ Unidentified Falling Objects”) could be one of the major performance limitations for nominal LHC operation. Therefore, in 2011, the diagnostics for UFO events were significantly improved, dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge is summarized and extrapolations for LHC operation in 2012 and beyond are presented. Mitigation strategies are proposed and related tests and measures for 2012 are specified.
Relevant time- and length scale of touch-down for drops impacting on a heated surface
van Limbeek, Michiel A. J.; Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef
2015-11-01
The vapor generated from a liquid drop impacting a hot solid surface can prevent it to make contact, depending on the solid temperature. The minimum temperature when no contact is made between the drop and the solid is called the dynamic Leidenfrost temperature. The latent heat needed to generated the vapor is drawn from the solid, and in general the Leidenfrost temperature depends on the solid thermal properties. Here we show experiments conducted on a sapphire plate, to minimize the cooling of the solid and ensuring nearly isothermal conditions. By using high speed total internal reflection imaging, we observe the drop base during impact up to about 100nm above the substrate surface. By this technique we are able to study the processes responsible for the transition between fully wetting and fully levitating drop impact conditions as the solid temperature increases. We reveal the relevant length- and time-scales for the dimple formation under the drop and explain their relevance for the late-time dynamics. As the transition regime is traversed from low to high temperature, the liquid-solid contact gradually decreases which reduces the friction with the solid, enhancing the spreading of the drop considerably.
Vector extrapolation methods. Applications and numerical comparison
Jbilou, K.; Sadok, H.
2000-10-01
The present paper is a survey of the most popular vector extrapolation methods such as the reduced rank extrapolation (RRE), the minimal polynomial extrapolation (MPE), the modified minimal polynomial extrapolation (MMPE), the vector [var epsilon]-algorithm (VEA) and the topological [var epsilon]-algorithm (TEA). Using projectors, we derive a different interpretation of these methods and give some theoretical results. The second aim of this work is to give a numerical comparison of the vector extrapolation methods above when they are used for practical large problems such as linear and nonlinear systems of equations.
Extrapolated stabilized explicit Runge-Kutta methods
Martín-Vaquero, J.; Kleefeld, B.
2016-12-01
Extrapolated Stabilized Explicit Runge-Kutta methods (ESERK) are proposed to solve multi-dimensional nonlinear partial differential equations (PDEs). In such methods it is necessary to evaluate the function nt times per step, but the stability region is O (nt2). Hence, the computational cost is O (nt) times lower than for a traditional explicit algorithm. In that way stiff problems can be integrated by the use of simple explicit evaluations in which case implicit methods usually had to be used. Therefore, they are especially well-suited for the method of lines (MOL) discretizations of parabolic nonlinear multi-dimensional PDEs. In this work, first s-stages first-order methods with extended stability along the negative real axis are obtained. They have slightly shorter stability regions than other traditional first-order stabilized explicit Runge-Kutta algorithms (also called Runge-Kutta-Chebyshev codes). Later, they are used to derive nt-stages second- and fourth-order schemes using Richardson extrapolation. The stability regions of these fourth-order codes include the interval [ - 0.01nt2, 0 ] (nt being the number of total functions evaluations), which are shorter than stability regions of ROCK4 methods, for example. However, the new algorithms neither suffer from propagation of errors (as other Runge-Kutta-Chebyshev codes as ROCK4 or DUMKA) nor internal instabilities. Additionally, many other types of higher-order (and also lower-order) methods can be obtained easily in a similar way. These methods also allow adaptation of the length step with no extra cost. Hence, the stability domain is adapted precisely to the spectrum of the problem at the current time of integration in an optimal way, i.e., with minimal number of additional stages. We compare the new techniques with other well-known algorithms with good results in very stiff diffusion or reaction-diffusion multi-dimensional nonlinear equations.
Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku
2017-07-01
Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.
Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers
Mohammadi, V.; Nihtianov, S.
2016-01-01
The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and
Extrapolating Satellite Winds to Turbine Operating Heights
DEFF Research Database (Denmark)
Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.
2016-01-01
Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long...... effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important...
The impacts of thermal roughness length on land surface climate in IPSL-CM
Wand, Fuxing; Cheruy, Frédérique; Vuichard, Nicolas; Sima, Adriana; Hourdin, Frederic
2016-04-01
The aerodynamic and thermal roughness lengths (z0m and z0h) are the two crucial parameters for bulk transfer equations to calculate turbulent flux. The exchange of momentum is usually different with scalars as heat (or water vapor, carbon dioxide, traces gas). In general, the transport of scalars (by molecular diffusion) is considered less efficient than momentum (by pressure fluctuations), owing to the absence of bluff-body forces for scalar exchange. However, the z0h and z0m are equal in the current IPSL-CM model. The objective of the study is to investigate the impacts of z0h parameterizations on the land surface climate. Several sensitivity experiments that accounting for different z0h and z0m are carried out with IPSL-CM: (1) z0h = z0m/10; (2) z0h = z0m/100; (3) a more physically based z0h parameterizations. A nudging approach is used in order to avoid the time-consuming long-term simulations required to account for the natural variability of the climate. The results show that the seasonal mean surface temperature (Ts) increases 0.5-1 K (for z0h = z0m/10) and 1-2 K (for z0h = z0m/100) over JJA due to the decrease of z0h. The most significant variation is over the Sahara. During the daytime, the increase of Ts (around 1-2 K) is higher than the air temperature (Tair, ~0.2 K) for z0h = z0m/10. During the night time, the increase of Ts and Tair are very close (around 0.3-0.6 K) for z0h = z0m/10. The asymmetric variation of Tair during night and day causes a decrease (~0.3 K for z0h = z0m/10; ~0.6 K for z0h = z0m/100) of diurnal temperature range (DTR). The seasonal mean sensible heat flux decreases by ~4-6 W/m2 (for z0h = z0m/10) with the decrease of z0h as well. The change of latent heat flux is the most significant over the tropics with the seasonal mean decrease of 4-8 W/m2 for z0h = z0m/10 over both JJA and DJF. Besides the change of mean climate, the human thermal comfort is also affected by z0h. A smaller z0h corresponds to a higher wet-bulb temperature
Flavor extrapolation in lattice QCD
International Nuclear Information System (INIS)
Duffy, W.C.
1984-01-01
Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors
Rufin, M A; Gruetzner, J A; Hurley, M J; Hawkins, M L; Raymond, E S; Raymond, J E; Grunlan, M A
2015-04-14
Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO) 3 Si(CH 2 ) 2 -oligodimethylsiloxane 13 - block -poly(ethylene oxide) n -OCH 3 ( n = 3, 8, and 16). Conventional PEO-silane analogues ( n = 3, 8 and 16) as well as a siloxane tether-silane (i.e. no PEO segment) were prepared as controls. When surface-grafted onto silicon wafer, PEO-silane amphiphiles produced surfaces that were more hydrophobic and thus more adherent towards fibrinogen versus the corresponding PEO-silane. However, when blended into a silicone, PEO-silane amphiphiles exhibited rapid restructuring to the surface-water interface and excellent protein resistance whereas the PEO-silanes did not. Silicones modified with PEO-silane amphiphiles of PEO segment lengths n = 8 and 16 achieved the highest protein resistance.
DEFF Research Database (Denmark)
Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito
2012-01-01
this calibration to make a regional reconstruction of paleosalinity in the Black Sea, calculated by averaging out process length variation observed at four core sites from the Black Sea with high sedimentation rates and dated by multiple mollusk shell ages. Results show a very gradual change of salinity from ∼14...
Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length
Energy Technology Data Exchange (ETDEWEB)
Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)
2016-05-23
Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.
Smooth extrapolation of unknown anatomy via statistical shape models
Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.
2015-03-01
Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.
Zhou, S.
2017-12-01
Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of
Builtin vs. auxiliary detection of extrapolation risk.
Energy Technology Data Exchange (ETDEWEB)
Munson, Miles Arthur; Kegelmeyer, W. Philip,
2013-02-01
A key assumption in supervised machine learning is that future data will be similar to historical data. This assumption is often false in real world applications, and as a result, prediction models often return predictions that are extrapolations. We compare four approaches to estimating extrapolation risk for machine learning predictions. Two builtin methods use information available from the classification model to decide if the model would be extrapolating for an input data point. The other two build auxiliary models to supplement the classification model and explicitly model extrapolation risk. Experiments with synthetic and real data sets show that the auxiliary models are more reliable risk detectors. To best safeguard against extrapolating predictions, however, we recommend combining builtin and auxiliary diagnostics.
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Li, Calvin H.; Rioux, Russell P.
2016-01-01
Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322
Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A
2013-01-01
The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.
Energy Technology Data Exchange (ETDEWEB)
Placidi, E., E-mail: ernesto.placidi@ism.cnr.it; Arciprete, F. [Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Latini, V.; Latini, S.; Patella, F. [Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Magri, R. [Dipartimento di Scienze Fisiche, Informatiche e Matematiche (FIM), Università di Modena e Reggio Emilia, and Centro S3 CNR-Istituto Nanoscienze, Via Campi 213/A, 4100 Modena (Italy); Scuderi, M.; Nicotra, G. [CNR-IMM, Strada VIII, 5, 95121 Catania (Italy)
2014-09-15
An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surface occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.
Bonnemains, Laurent; Mandry, Damien; Menini, Anne; Stos, Bertrand; Felblinger, Jacques; Marie, Pierre-Yves; Vuissoz, Pierre-Andre
2013-09-01
To validate a new index, the surface-length index (SLI) based on area change in a short-axis view and length reduction in the horizontal long-axis view, which is used to quickly (right ventricles with an abnormal ejection fraction (EF) during a cardiac MRI examination. SLI can be used to avoid a complete delineation of the endocardial contours of normal right ventricles. Sixty patients (group A) were retrospectively included to calibrate the SLI formula by optimisation of the area under the ROC curves and SLI thresholds were chosen to obtain 100 % sensitivity. Another 340 patients (group B) were prospectively recruited to test SLI's capacity to detect right ventricles (RVs) with an abnormal EF (right ventricle ejection fraction (RVEF) with cine-MRI is time consuming. • Therefore, RVEF is not always assessed during cardiac MRI. • Surface-length index (SLI) allows rapid detection of abnormal RVEF during cardiac MRI. • SLI saves one third of the operator time. • Every cardiac MRI could include RVEF assessment by means of SLI.
Czech Academy of Sciences Publication Activity Database
Toušek, J.; Toušková, J.; Remeš, Zdeněk; Čermák, Jan; Kousal, J.; Kindl, Dobroslav; Kuřitka, I.
2012-01-01
Roč. 552, NOV (2012), s. 49-52 ISSN 0009-2614 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional research plan: CEZ:AV0Z10100521 Keywords : surface photovoltage * Kelvin probe force microscopy * conjugated polymers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2012
Interaction between two solid surfaces across PDMS : influence of chain length and end group
Sun, G.X.; Stark, R.; Kappl, M.; Leermakers, F.A.M.; Butt, H.J.
2005-01-01
Forces between solid surfaces across polymer melts are poorly understood despite their importance for adhesion and composite materials. Using an atomic force microscope (AFM) this force was measured for poly(dimethyl siloxane) (PDMS) on silicon oxide. The influence of molecular weight (4.0-40 kDa)
One-step lowrank wave extrapolation
Sindi, Ghada Atif
2014-01-01
Wavefield extrapolation is at the heart of modeling, imaging, and Full waveform inversion. Spectral methods gained well deserved attention due to their dispersion free solutions and their natural handling of anisotropic media. We propose a scheme a modified one-step lowrank wave extrapolation using Shanks transform in isotropic, and anisotropic media. Specifically, we utilize a velocity gradient term to add to the accuracy of the phase approximation function in the spectral implementation. With the higher accuracy, we can utilize larger time steps and make the extrapolation more efficient. Applications to models with strong inhomogeneity and considerable anisotropy demonstrates the utility of the approach.
Darinskii, A N; Weihnacht, M; Schmidt, H
2013-07-01
A numerical study is carried out of the surface acoustic wave generation by a bulk acoustic wave in a half-infinite anisotropic half-space without piezoeffect. The efficient conversion of bulk waves into surface waves occurs due to a grating area created on the surface of the substrate. Our simulations are fully based on the finite element method. Given the incident bulk wave, we directly determine the amplitude of the surface wave and investigate its dependence on various parameters specifying the situation under consideration, such as the frequency and the polarization of the bulk wave, the length of the grating, the geometrical size of grooves or strips forming the grating. Copyright © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Shantonu Biswas
2016-03-01
Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.
Endangered species toxicity extrapolation using ICE models
The National Research Council’s (NRC) report on assessing pesticide risks to threatened and endangered species (T&E) included the recommendation of using interspecies correlation models (ICE) as an alternative to general safety factors for extrapolating across species. ...
International Nuclear Information System (INIS)
Hassan, I.M.; Que, L.; Rutland, M.D.
2002-01-01
Aim: To create nomograms for renal size as measured from DMSA renal studies, and to test the nomograms for their ability to separate normal from abnormal kidneys. Method: Renal length was measured from posterior oblique views and renal area from posterior views. Results from 253 patients with bilateral normal kidneys were used to create nomograms for renal size relative to patient age, body height, weight or body surface area (BSA). The nomograms enclosed 95% of the normal kidneys, thus indicating the range for 95% confidence limits, and hence the specificity. Each nomogram was then tested against 46 hypertrophied kidneys and 46 damaged kidneys. Results: The results from nomograms of renal length and renal area, compared to age, body height, body weight and BSA are presented. For each nomogram, the range is presented as a fraction of the mean value, and the number of abnormal kidneys (hypertrophied or damaged) outside the normal range is presented as a percentage (indicating the sensitivity). Conclusion: Renal Area was no better than renal length for detecting abnormal kidneys. Patient age was the least useful method of normalisation. BSA normalisation produced the best results most frequently (narrower ranges and highest detection of abnormal kidneys)
Foveal to peripheral extrapolation of brightness within objects.
Toscani, Matteo; Gegenfurtner, Karl R; Valsecchi, Matteo
2017-08-01
Peripheral viewing is characterized by poor resolution and distortions as compared to central viewing; nevertheless, when we move our gaze around, the visual scene does not appear to change. One possible mechanism leading to perceptual uniformity would be that peripheral appearance is extrapolated based on foveal information. Here we investigate foveal-to-peripheral extrapolation in the case of the perceived brightness of an object's surface. While fixating a spot on the rendered object, observers were asked to adjust the brightness of a disc to match a peripherally viewed target area on the surface of the same object. Being forced to fixate a better illuminated point led to brighter matches as compared to fixating points in the shadow, indicating that foveal brightness information was extrapolated. When observers fixated additional points outside of the object on the scene's background, fixated brightness had no effect on the brightness match. Results indicate that our visual system uses the brightness of the foveally viewed surface area to estimate the brightness of areas in the periphery. However, this mechanism is selectively applied within an object's boundary.
Mori, Taizo; Sharma, Anshul; Hegmann, Torsten
2016-01-26
surface is diminished as the size of the particle is reduced. However, in comparison to the free ligands, per chiral molecule all tested gold nanoparticles induce helical distortions in a 10- to 50-fold larger number of liquid crystal host molecules surrounding each particle, indicating a significantly enhanced chiral correlation length. We propose that both the helicity and the chirality transfer efficiency of axially chiral binaphthyl derivatives can be controlled at metal nanoparticle surfaces by adjusting the particle size and curvature as well as the number and density of the chiral ligands to ultimately measure and tune the chiral correlation length.
Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.
2011-01-01
This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American
Jonckheere, R
1999-01-01
In addition to the statistical bounds discussed, thermal history analysis based on the projected and etchable length distributions of surface intersecting fission tracks is limited by systematic factors related to track revelation, observation and measurement. The effects of track revelation, in particular, distort these distributions in the length intervals of interest. An observation threshold poses a problem if it is described by a critical angle theta sub c , but not if it is described by other criteria proposed in the literature. Measurement imprecisions, predictably, blur the thermal history information contained in these distributions. Measurements of semi-confined tracks, added as a result of surface etching, are a more promising alternative to confined track length measurements for accessing the thermal history record in the fission track length distribution. On the other hand, measurements of the projected lengths of surface intersecting tracks offer the theoretical possibility of determining the tr...
Wind Velocity Vertical Extrapolation by Extended Power Law
Directory of Open Access Journals (Sweden)
Zekai Şen
2012-01-01
Full Text Available Wind energy gains more attention day by day as one of the clean renewable energy resources. We predicted wind speed vertical extrapolation by using extended power law. In this study, an extended vertical wind velocity extrapolation formulation is derived on the basis of perturbation theory by considering power law and Weibull wind speed probability distribution function. In the proposed methodology not only the mean values of the wind speeds at different elevations but also their standard deviations and the cross-correlation coefficient between different elevations are taken into consideration. The application of the presented methodology is performed for wind speed measurements at Karaburun/Istanbul, Turkey. At this location, hourly wind speed measurements are available for three different heights above the earth surface.
Wavefield extrapolation in pseudo-depth domain
Ma, Xuxin
2012-01-01
Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.
Learning and extrapolating a periodic function.
Kalish, Michael L
2013-08-01
How people learn continuous functional relationships remains a poorly understood capacity. In this article, I argue that the mere presence of nonmonotonic extrapolation of periodic functions neither threatens existing theories of function learning nor distinguishes between them. However, I show that merely learning periodic functions is extremely difficult. It is only when stimuli are presented numerically, rather than as numberless quantities, that participants learn anything like a periodic function. In addition, I show that even then, people do not regularly extrapolate periodically. The lesson is that careful methodologies will be required to understand a psychological capacity that is as idiosyncratic as the learning of complex functions appears to be.
Load Extrapolation During Operation for Wind Turbines
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
2008-01-01
In the recent years load extrapolation for wind turbines has been widely considered in the wind turbine industry. Loads on wind turbines during operations are normally dependent on the mean wind speed, the turbulence intensity and the type and settings of the control system. All these parameters...... must be taken into account when characteristic load effects during operation are determined. In the wind turbine standard IEC 61400-1 a method for load extrapolation using the peak over threshold method is recommended. In this paper this method is considered and some of the assumptions are examined...
Energy Technology Data Exchange (ETDEWEB)
Noda, Yuta; Hayakawa, Tomokatsu, E-mail: hayatomo@nitech.ac.jp [Nagoya Institute of Technology, Department of Frontier Materials, Field of Advanced Energy Conversion (Japan)
2016-10-15
Triangular gold (Au) nanoprisms of various sizes were synthesized in a controlled way using a modified three-step seed-mediated method with different volumes of starting seed solution and subsequent first step’s growth solution. The structures and optical properties of the triangular Au nanoprisms were investigated using transmission electron microscopy (TEM), atomic force microscopy, and UV–Vis–NIR spectrophotometry. The Au nanoprisms synthesized also varied in optical response frequency of localized surface plasmon resonance (LSPR) owing to electric dipole polarizations of the Au nanoprisms. This variation depended nonlinearly on the volume of the seed solution. From optical extinction spectra and careful TEM observations, the dipole LSPR peak frequency was found to be linearly proportional to the edge length of the Au nanoprisms. Consequently, it was experimentally shown that the LSPR optical response frequency of their colloidal solutions could be controlled in the near-infrared region (700–1200 nm), corresponding to an edge length of 40–180 nm of the Au nanoprisms. It was also demonstrated that the tip sharpness of triangular Au nanoprisms was improved by using fine Au seeds instead of coarse Au seeds, and the resulting Au nanoprisms were smaller and thinner. A formation mechanism of triangular Au nanoprisms shall also be discussed with a prospect of synthesizing very tiny Au nanoprisms.Graphical Abstract.
Cosmogony as an extrapolation of magnetospheric research
International Nuclear Information System (INIS)
Alfven, H.
1984-03-01
A theory of the origin and evolution of the Solar System (Alfven and Arrhenius, 1975: 1976) which considered electromagnetic forces and plasma effects is revised in the light of new information supplied by space research. In situ measurements in the magnetospheres and solar wind have changed our views of basic properties of cosmic plasmas. These results can be extrapolated both outwards in space, to interstellar clouds, backwards in time, to the formation of the solar system. The first extrapolation leads to a revision of some cloud properties which are essential for the early phases in the formation of stars and solar nebule. The latter extrapolation makes possible to approach the cosmogonic processes by extrapolation of (rather) well-known magnetospheric phenomena. Pioneer-Voyager observations of the Saturnian rings indicate that essential parts of their structure are fossils from cosmogonic times. By using detailed information from these space missions, it seems possible to reconstruct certain events 4-5 billion years ago with an accuracy of a few percent. This will cause a change in our views of the evolution of the solar system.(author)
The risks of extreme load extrapolation
Bos, R.; Bierbooms, W.A.A.M.
2017-01-01
An important problem in wind turbine design is the prediction of the 50-year load, as set by the IEC 61400-1 Design Load Case (DLC) 1.1. In most cases, designers work with limited simulation budgets and are forced to use extrapolation schemes to obtain the required return level. That this is no easy
Efficient and stable extrapolation of prestack wavefields
Wu, Zedong
2013-09-22
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers and the image point, or in other words, prestack wavefields. Extrapolating such wavefields in time, nevertheless, is a big challenge because the radicand can be negative, thus reduce to a complex phase velocity, which will make the rank of the mixed domain matrix very high. Using the vertical offset between the sources and receivers, we introduce a method for deriving the DSR formulation, which gives us the opportunity to derive approximations for the mixed domain operator. The method extrapolates prestack wavefields by combining all data into one wave extrapolation procedure, allowing both upgoing and downgoing wavefields since the extrapolation is done in time, and doesn’t have the v(z) assumption in the offset axis of the media. Thus, the imaging condition is imposed by taking the zero-time and zero-offset slice from the multi-dimensional prestack wavefield. Unlike reverse time migration (RTM), no crosscorrelation is needed and we also have access to the subsurface offset information, which is important for migration velocity analysis. Numerical examples show the capability of this approach in dealing with complex velocity models and can provide a better quality image compared to RTM more efficiently.
The optimizied expansion method for wavefield extrapolation
Wu, Zedong
2013-01-01
Spectral methods are fast becoming an indispensable tool for wave-field extrapolation, especially in anisotropic media, because of its dispersion and artifact free, as well as highly accurate, solutions of the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain operator.In this abstract, we propose an optimized expansion method that can approximate this operator with its low rank representation. The rank defines the number of inverse FFT required per time extrapolation step, and thus, a lower rank admits faster extrapolations. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its low rank representation.Thus,we obtain more accurate wave-fields using lower rank representation, and thus cheaper extrapolations. The optimization operation to define the low rank representation depends only on the velocity model, and this is done only once, and valid for a full reverse time migration (many shots) or one iteration of full waveform inversion. Applications on the BP model yielded superior results than those obtained using the decomposition approach. For transversely isotopic media, the solutions were free of the shear wave artifacts, and does not require that eta>0.
Extrapolation Method for System Reliability Assessment
DEFF Research Database (Denmark)
Qin, Jianjun; Nishijima, Kazuyoshi; Faber, Michael Havbro
2012-01-01
of integrals with scaled domains. The performance of this class of approximation depends on the approach applied for the scaling and the functional form utilized for the extrapolation. A scheme for this task is derived here taking basis in the theory of asymptotic solutions to multinormal probability integrals...
Indian Academy of Sciences (India)
Admin
He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...
Seismic wave extrapolation using lowrank symbol approximation
Fomel, Sergey
2012-04-30
We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.
Effective orthorhombic anisotropic models for wavefield extrapolation
Ibanez-Jacome, W.
2014-07-18
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.
Statistical modeling and extrapolation of carcinogenesis data
International Nuclear Information System (INIS)
Krewski, D.; Murdoch, D.; Dewanji, A.
1986-01-01
Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis
Extrapolating phosphorus production to estimate resource reserves.
Vaccari, David A; Strigul, Nikolay
2011-08-01
Various indicators of resource scarcity and methods for extrapolating resource availability are examined for phosphorus. These include resource lifetime, and trends in resource price, ore grade and discovery rates, and Hubbert curve extrapolation. Several of these indicate increasing scarcity of phosphate resources. Calculated resource lifetime is subject to a number of caveats such as unanticipated future changes in resource discovery, mining and beneficiation technology, population growth or per-capita demand. Thus it should be used only as a rough planning index or as a relative indicator of potential scarcity. This paper examines the uncertainty in one method for estimating available resources from historical production data. The confidence intervals for the parameters and predictions of the Hubbert curves are computed as they relate to the amount of information available. These show that Hubbert-type extrapolations are not robust for predicting the ultimately recoverable reserves or year of peak production of phosphate rock. Previous successes of the Hubbert curve are for cases in which there exist alternative resources, which is not the situation for phosphate. It is suggested that data other than historical production, such as population growth, identified resources and economic factors, should be included in making such forecasts. Copyright © 2011 Elsevier Ltd. All rights reserved.
Residual extrapolation operators for efficient wavefield construction
Alkhalifah, Tariq Ali
2013-02-27
Solving the wave equation using finite-difference approximations allows for fast extrapolation of the wavefield for modelling, imaging and inversion in complex media. It, however, suffers from dispersion and stability-related limitations that might hamper its efficient or proper application to high frequencies. Spectral-based time extrapolation methods tend to mitigate these problems, but at an additional cost to the extrapolation. I investigate the prospective of using a residual formulation of the spectral approach, along with utilizing Shanks transform-based expansions, that adheres to the residual requirements, to improve accuracy and reduce the cost. Utilizing the fact that spectral methods excel (time steps are allowed to be large) in homogeneous and smooth media, the residual implementation based on velocity perturbation optimizes the use of this feature. Most of the other implementations based on the spectral approach are focussed on reducing cost by reducing the number of inverse Fourier transforms required in every step of the spectral-based implementation. The approach here fixes that by improving the accuracy of each, potentially longer, time step.
Harrison, Jere; Joshi, Abhijeet; Lake, Jonathan; Candler, Rob; Musumeci, Pietro
2012-07-01
A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15μm. Simulations indicate that magnetic fields as large as 1.5 T across 50μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.
Directory of Open Access Journals (Sweden)
Kristen D. Alexander
2012-01-01
Full Text Available We have employed capillary force deposition on ion beam patterned substrates to fabricate chains of 60 nm gold nanospheres ranging in length from 1 to 9 nanoparticles. Measurements of the surface-averaged SERS enhancement factor strength for these chains were then compared to the numerical predictions. The SERS enhancement conformed to theoretical predictions in the case of only a few chains, with the vast majority of chains tested not matching such behavior. Although all of the nanoparticle chains appear identical under electron microscope observation, the extreme sensitivity of the SERS enhancement to nanoscale morphology renders current nanofabrication methods insufficient for consistent production of coupled nanoparticle chains. Notwithstanding this fact, the aggregate data also confirmed that nanoparticle dimers offer a large improvement over the monomer enhancement while conclusively showing that, within the limitations imposed by current state-of-the-art nanofabrication techniques, chains comprising more than two nanoparticles provide only a marginal signal boost over the already considerable dimer enhancement.
Directory of Open Access Journals (Sweden)
Zhiyang Li
2015-09-01
Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.
Performance of an extrapolation chamber in computed tomography standard beams
Energy Technology Data Exchange (ETDEWEB)
Castro, Maysa C.; Silva, Natália F.; Caldas, Linda V.E., E-mail: mcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2017-07-01
Among the medical uses of ionizing radiations, the computed tomography (CT) diagnostic exams are responsible for the highest dose values to the patients. The dosimetry procedure in CT scanner beams makes use of pencil ionization chambers with sensitive volume lengths of 10 cm. The aim of its calibration is to compare the values that are obtained with the instrument to be calibrated and a standard reference system. However, there is no primary standard system for this kind of radiation beam. Therefore, an extrapolation ionization chamber built at the Calibration Laboratory (LCI), was used to establish a CT primary standard. The objective of this work was to perform some characterization tests (short- and medium-term stabilities, saturation curve, polarity effect and ion collection efficiency) in the standard X-rays beams established for computed tomography at the LCI. (author)
Biosimilars: From Extrapolation into Off Label Use.
Zhao, Sizheng; Nair, Jagdish R; Moots, Robert J
2017-01-01
Biologic drugs have revolutionised the management of many inflammatory conditions. Patent expirations have stimulated development of highly similar but non-identical molecules, the biosimilars. Extrapolation of indications is a key concept in the development of biosimilars. However, this has been met with concerns around mechanisms of action, equivalence in efficacy and immunogenicity, which are reviewed in this article. Narrative overview composed from literature search and the authors' experience. Literature search included Pubmed, Web of Science, and online document archives of the Food and Drug Administration and European Medicines Agency. The concepts of biosimilarity and extrapolation of indications are revisited. Concerns around extrapolation are exemplified using the biosimilar infliximab, CT-P13, focusing on mechanisms of action, immunogenicity and trial design. The opportunities and cautions for using biologics and biosimilars in unlicensed inflammatory conditions are reviewed. Biosimilars offer many potential opportunities in improving treatment access and increasing treatment options. The high cost associated with marketing approval means that many bio-originators may never become licenced for rarer inflammatory conditions, despite clinical efficacy. Biosimilars, with lower acquisition cost, may improve access for off-label use of biologics in the management of these patients. They may also provide opportunities to explore off-label treatment of conditions where biologic therapy is less established. However, this potential advantage must be balanced with the awareness that off-label prescribing can potentially expose patients to risky and ineffective treatments. Post-marketing surveillance is critical to developing long-term evidence to provide assurances on efficacy as well as safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Liu, W. J.; Hu, X. L.; Ying, L. Y.; Chen, S. Q.; Zhang, J. Y.; Akiyama, H.; Cai, Z. P.; Zhang, B. P.
2015-04-01
Cavity-length dependence of the property of optically pumped GaN-based vertical-cavity surface-emitting lasers (VCSELs) with two dielectric distributed Bragg reflectors was investigated. The cavity lengths were well controlled by employing etching with inductively coupled plasma and chemical mechanical polishing. It was found that the lasing characteristics including threshold, slope efficiency and spontaneous emission coupling factor were substantially improved with reducing the cavity length. In comparison with the device pumped by a 400 nm pulsed laser, the lasing spectrum was featured by a red shift and simultaneous broadening with increasing the pumping energy of a 355 nm pulsed laser. Moreover, the lasing threshold was much higher when pumped by a 355 nm pulsed laser. These were explained by taking into account of the significant heating effect under 355 nm pumping. Our results demonstrate that a short cavity length and good heat-dissipation are essential to GaN-based VCSELs.
Experiences and extrapolations from Hiroshima and Nagasaki
International Nuclear Information System (INIS)
Harwell, C.C.
1985-01-01
This paper examines the events following the atomic bombings of Hiroshima and Nagasaki in 1945 and extrapolates from these experiences to further understand the possible consequences of detonations on a local area from weapons in the current world nuclear arsenal. The first section deals with a report of the events that occurred in Hiroshima and Nagasaki just after the 1945 bombings with respect to the physical conditions of the affected areas, the immediate effects on humans, the psychological response of the victims, and the nature of outside assistance. Because there can be no experimental data to validate the effects on cities and their populations of detonations from current weapons, the data from the actual explosions on Hiroshima and Nagasaki provide a point of departure. The second section examines possible extrapolations from and comparisons with the Hiroshima and Nagasaki experiences. The limitations of drawing upon the Hiroshima and Nagasaki experiences are discussed. A comparison is made of the scale of effects from other major disasters for urban systems, such as damages from the conventional bombings of cities during World War II, the consequences of major earthquakes, the historical effects of the Black Plague and widespread famines, and other extreme natural events. The potential effects of detonating a modern 1 MT warhead on the city of Hiroshima as it exists today are simulated. This is extended to the local effects on a targeted city from a global nuclear war, and attention is directed to problems of estimating the societal effects from such a war
π π scattering by pole extrapolation methods
International Nuclear Information System (INIS)
Lott, F.W. III.
1977-01-01
A 25-inch hydrogen bubble chamber was used at the Lawrence Berkeley Laboratory Bevatron to produce 300,000 pictures of π + p interactions at an incident momentum of the π + of 2.67 GeV/c. The 2-prong events were processed using the FSD and the FOG-CLOUDY-FAIR data reduction system. Events of the nature π + p → π + pπ 0 and π + p → π + π + n with values of momentum transfer to the proton of -t less than or equal to 0.238 GeV 2 were selected. These events were used to extrapolate to the pion pole (t = m/sub π/ 2 ) in order to investigate the π π interaction with isospins of both T = 1 and T = 2. Two methods were used to do the extrapolation: the original Chew-Low method developed in 1959 and the Durr-Pilkuhn method developed in 1965 which takes into account centrifugal barrier penetration factors. At first it seemed that, while the Durr-Pilkuhn method gave better values for the total π π cross section, the Chew-Low method gave better values for the angular distribution. Further analysis, however, showed that if the requirement of total OPE (one-pion-exchange) were dropped, then the Durr-Pilkuhn method gave more reasonable values of the angular distribution as well as for the total π π cross section
Azimov, Ulugbek; Kim, Ki-Seong; Bae, Choongsik
2010-07-01
Low-Temperature Combustion (LTC) is becoming a promising technology for simultaneously reducing soot and NOx emissions from diesel engines. LTC regimes are evaluated by the flame lift-off length - the distance from the injector orifice to the location of hydroxyl luminescence closest to the injector in the flame jet. Various works have been dedicated to successful simulations of lifted flames of a diesel jet by use of various combustion modeling approaches. In this work, flame surface density and flamelet concepts were used to model the diesel lift-off length under LTC conditions. Numerical studies have been performed with the ECFM3Z model, n-Heptane and diesel fuels to determine the flame lift-off length and its correlation with soot formation under quiescent conditions. The numerical results showed good agreement with experimental data, which were obtained from an optically accessible constant volume chamber and presented at the Engine Combustion Network (ECN) of Sandia National Laboratories. It was shown that at a certain distance downstream from the injector orifice, stoichiometric scalar dissipation rate matched the extinction scalar dissipation rate. This computed extinction scalar dissipation rate correlated well with the flame lift-off length. For the range of conditions investigated, adequate quantitative agreement was obtained with the experimental measurements of lift-off length under various ambient gas O2 concentrations, ambient gas temperatures, ambient gas densities and fuel injection pressures. The results showed that the computed lift-off length values for most of the conditions lay in a reasonable range within the quasi-steady lift-off length values obtained from experiments. However, at ambient temperatures lower than 1000 K, the lift-off length values were under-predicted by the numerical analysis. This may be due to the use of the droplet evaporation model as it is believed that evaporation has a strong effect on the lift-off length.
Extrapolating from the geodynamo to exodynamos
Driscoll, Peter
2017-05-01
Planetary magnetic fields are unique in providing a window into the dynamics of the deep interior while being remotely detectable. However, direct detection of exoplanet magnetic fields, or “exodynamos”, have remained elusive. We discuss the basic requirements for generating a planetary dynamo and the physical parameters that control it's intensity, morphology, and evolution. Given that predictions for terrestrial exodynamos rely on extrapolations from our knowledge of the geodynamo we review recent ideas about the evolution of the geodynamo and how they compare to paleomagnetic data. Considering the potential importance of terrestrial magnetic fields for habitability we focus on the thermal and magnetic evolutions of Earth-like exoplanets. In particular, we explore the influence of tectonic mode, radioactivity, and tidal heating on terrestrial exodynamos.
Scintillation counting: an extrapolation into the future
International Nuclear Information System (INIS)
Ross, H.H.
1983-01-01
Progress in scintillation counting is intimately related to advances in a variety of other disciplines such as photochemistry, photophysics, and instrumentation. And while there is steady progress in the understanding of luminescent phenomena, there is a virtual explosion in the application of semiconductor technology to detectors, counting systems, and data processing. The exponential growth of this technology has had, and will continue to have, a profound effect on the art of scintillation spectroscopy. This paper will review key events in technology that have had an impact on the development of scintillation science (solid and liquid) and will attempt to extrapolate future directions based on existing and projected capability in associated fields. Along the way there have been occasional pitfalls and several false starts; these too will be discussed as a reminder that if you want the future to be different than the past, study the past
DEFF Research Database (Denmark)
Mertens, Kenneth; Ribeiro, Sofia; Ilham, Bouimetarhan
2009-01-01
surface sediment samples revealed that the average process length is related to summer salinity and temperature at a water depth of 30 m by the equation (salinity/temperature) = (0.078low asteriskaverage process length + 0.534) with R2 = 0.69. This relationship can be used to reconstruct palaeosalinities......, albeit with caution. The particular ecological window can be associated with known distributions of the corresponding motile stage Lingulodinium polyedrum (Stein) Dodge, 1989. Confocal laser microscopy showed that the average process length is positively related to the average distance between process...... bases (R2 = 0.78), and negatively related to the number of processes (R2 = 0.65). These results document the existence of two end members in cyst formation: one with many short, densely distributed processes and one with a few, long, widely spaced processes, which can be respectively related to low...
Chang, Cheng-Wei; Lin, Fan-Cheng; Chiu, Chun-Ya; Su, Chung-Yi; Huang, Jer-Shing; Perng, Tsong-Pyng; Yen, Ta-Jen
2014-07-23
We developed a HNO3-assisted polyol reduction method to synthesize ultralarge single-crystalline Ag microplates routinely. The edge length of the synthesized Ag microplates reaches 50 μm, and their top facets are (111). The mechanism for dramatically enlarging single-crystalline Ag structure stems from a series of competitive anisotropic growths, primarily governed by carefully tuning the adsorption of Ag(0) by ethylene glycol and the desorption of Ag(0) by a cyanide ion on Ag(100). Finally, we measured the propagation length of surface plasmon polaritons along the air/Ag interface under 534 nm laser excitation. Our single-crystalline Ag microplate exhibited a propagation length (11.22 μm) considerably greater than that of the conventional E-gun deposited Ag thin film (5.27 μm).
International Nuclear Information System (INIS)
Mohammad, Abubaker A.; Alkhaldi, Khaled H.A.E.; AlTuwaim, Mohammad S.; Al-Jimaz, Adel S.
2014-01-01
Highlights: • Effect of temperature and chain length on η and σ of DMF + 1-alkanol binary systems. • Viscosity and surface tension were obtained. • Δη, Δσ and G ∗E were calculated using the experimental data. • H σ and S σ were determined using the surface tension data. • Semi-empirical relations were used to estimate the viscosity of liquid mixtures. - Abstract: Viscosity and surface tension of binary systems of N,N-dimethylformamide DMF with higher 1-alkanols (C 8 –C 10 ) were measured at atmospheric pressure and four different temperatures over the entire range of mole fraction. The experimental measurements were used to calculate the deviations in viscosity and surface tension. Furthermore, the excess Gibbs free energy of activation, surface enthalpy and surface entropy of the (DMF + 1-alkanols) binary mixtures were determined. In addition, the deviation and excess properties were fitted to the method of Redlich–Kister (R–K) polynomial. Viscosity data of the binary systems were correlated with three different expressions (Grunberg and Nissan, the three-body, and four-body McAllister). The effects of the chain length of the higher 1-alkanols and temperature were investigated
A generalized sound extrapolation method for turbulent flows
Zhong, Siyang; Zhang, Xin
2018-02-01
Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.
Hard hadronic collisions: extrapolation of standard effects
International Nuclear Information System (INIS)
Ali, A.; Aurenche, P.; Baier, R.
1984-01-01
We study hard hadronic collisions for the proton-proton (pp) and the proton-antiproton (p anti p) option in the CERN LEP tunnel. Based on our current knowledge of hard collisions at the present CERN p anti p Collider, and with the help of quantum chromodynamics (QCD), we extrapolate to the next generation of hadron colliders with a centre-of-mass energy E/sub cm/ = 10 to 20 TeV. We estimate various signatures, trigger rates, event topologies, and associated distributions for a variety of old and new physical processes, involving prompt photons, leptons, jets, W +- and Z bosons in the final state. We also calculate the maximum fermion and boson masses accessible at the LEP Hadron Collider. The standard QCD and electroweak processes studied here, being the main body of standard hard collisions, quantify the challenge of extracting new physics with hadron colliders. We hope that our estimates will provide a useful profile of the final states, and that our experimental physics colleagues will find this of use in the design of their detectors. 84 references
Hard hadronic collisions - extrapolation of standard effects
International Nuclear Information System (INIS)
Ali, A.; Aurenche, P.; Douiri, A.; Berger, E.; Fontannaz, M.; Kinnunen, R.; Pietarinen, E.; Schiff, D.; Eijk, B. van; Ingelmann, G.; Rueckl, R.; Stirling, W.J.
1984-01-01
We study hard hadronic collisions for the proton-proton (pp) and the proton-antiproton (panti p) option in the CERN LEP tunnel. Based on our current knowledge of hard collisions at the present CERN panti p Collider, and with the help of quantum chromodynamics (QCD), we extrapolate to the next generation of hadron colliders with a centre-of-mass energy Esub(cm) = 10-20 TeV. We estimate various signatures, trigger rates, event topologies, and associated distributions for a variety of old and new physical processes, involving prompt photons, leptons, jets, Wsup(+-) and Z bosons in the final state. We also calculate the maximum fermion and boson masses accessible at the LEP Hadron Collider. The standard QCD and electroweak processes studied here, being the main body of standard hard collisions, quantify the challenge of extracting new physics with hadron colliders. We hope that our estimates will provide a useful profile of the final states, and that our experimental physics colleagues will find this of use in the design of their detectors. (orig.)
Extrapolative prediction using physically-based QSAR
Cleves, Ann E.; Jain, Ajay N.
2016-02-01
Surflex-QMOD integrates chemical structure and activity data to produce physically-realistic models for binding affinity prediction . Here, we apply QMOD to a 3D-QSAR benchmark dataset and show broad applicability to a diverse set of targets. Testing new ligands within the QMOD model employs automated flexible molecular alignment, with the model itself defining the optimal pose for each ligand. QMOD performance was compared to that of four approaches that depended on manual alignments (CoMFA, two variations of CoMSIA, and CMF). QMOD showed comparable performance to the other methods on a challenging, but structurally limited, test set. The QMOD models were also applied to test a large and structurally diverse dataset of ligands from ChEMBL, nearly all of which were synthesized years after those used for model construction. Extrapolation across diverse chemical structures was possible because the method addresses the ligand pose problem and provides structural and geometric means to quantitatively identify ligands within a model's applicability domain. Predictions for such ligands for the four tested targets were highly statistically significant based on rank correlation. Those molecules predicted to be highly active (pK_i ≥ 7.5) had a mean experimental pK_i of 7.5, with potent and structurally novel ligands being identified by QMOD for each target.
Sayago, David I.; Hoeft, Jon T.; Polcik, Martin; Kittel, Martin; Toomes, Rachel L.; Robinson, J.; Woodruff, David Phillip; Pascal, Mathieu; Lamont, Christine L.A.; Nisbet, Gareth
2003-01-01
New chemical-state-specific scanned-energy mode photoelectron diffraction experiments and density functional theory calculations, applied to CO, CO/H, and N2 adsorption on Ni(100), show that chemisorption bond length changes associated with large changes in bond strength are small, but those associated with changes in bond order are much larger, and are similar to those found in molecular systems. Specifically, halving the bond strength of atop CO to Ni increases the Ni-C distance by 0.06 Å...
40 CFR 86.435-78 - Extrapolated emission values.
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Extrapolated emission values. 86.435-78 Section 86.435-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.435-78 Extrapolated emission values...
A Method for Extrapolation of Atmospheric Soundings
2014-05-01
kinetic energy is decreased to better simulate conditions with low turbulent kinetic energy and the atmospheric boundary layer depth diagnosis is...altered. The WRF single-moment 5-class microphysics parameterization and the Kain-Fritsch cumulus parameterization are used. For radiation , the Rapid...Radiative Transfer Model is used for longwave and the Dudhia scheme for shortwave . The Noah land surface model is used to represent land surface
Mathematical Extrapolating of Highly Efficient Fin Systems
Directory of Open Access Journals (Sweden)
A.-R. A. Khaled
2011-01-01
Full Text Available Different high-performance fins are mathematically analyzed in this work. Initially, three types are considered: (i exponential, (ii parabolic, and (iii triangular fins. Analytical solutions are obtained. Accordingly, the effective thermal efficiency and the effective volumetric heat dissipation rate are calculated. The analytical results were validated against numerical solutions. It is found that the triangular fin has the maximum effective thermal length. In addition, the exponential pin fin is found to have the largest effective thermal efficiency. However, the effective efficiency for the straight one is the maximum when its effective thermal length based on profile area is greater than 1.4. Furthermore, the exponential straight fin is found to have effective volumetric heat dissipation that can be 440% and 580% above the parabolic and triangular straight fins, respectively. In contrast, the exponential pin fin is found to possess effective volumetric heat dissipation that can be 120% and 132% above the parabolic and triangular pin fins, respectively. Finally, new high performance fins are mathematically generated that can have effective volumetric heat dissipation of 24% and 12% above those of exponential pin and straight fins, respectively.
Fundamental length and relativistic length
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1988-01-01
It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem
Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...
Kim, Jung-Hoon; Ahn, Sung Il; Kim, Jae Hyun; Kim, Jong Soo; Cho, Kilwon; Jung, Jin Chul; Chang, Taihyun; Ree, Moonhor; Zin, Wang-Cheol
2008-10-21
The evaporation of sessile droplets placed on polymer surfaces was studied by microscopic observation of the changes in shape of aqueous solution droplets in which the alkyl lengths and the initial concentrations of sodium n-alkylates were varied. Although the initial contact angles of the droplets were not significantly different, the evaporation process varied significantly with the alkyl length of the sodium n-alkylate employed. For the sodium dodecanoate (C 12), showing the highest surface activity, the concentration was found to have a significant effect on the evaporation process of the droplets. In the evaporation of water droplets, variations in the three distinct stages were caused by the different concentration of solutes distributed near or at the air/water interface. It is revealed that the concentration of droplet solute near the air/water interface requires not only solvent evaporation but also some affinity of the solute for the interface. The initial C 12 concentration-dependence of the evaporation of C 12 solution droplets is discussed with particular emphasis on the sudden spreading or sudden contraction of the contact area near the end of evaporation. It is suggested that the cluster formation by C 12 molecules at the air/liquid interface during the evaporation causes Marangoni instability in an evaporating droplet, and the clusters are expected to move dynamically, depending on the droplet concentration of C 12, from the droplet center to the contact line and vice versa, showing Marangoni flow along the air/water interface.
Characterization of low energy X-rays beams with an extrapolation chamber
International Nuclear Information System (INIS)
Bastos, Fernanda Martins
2015-01-01
In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally, the first
Multiparameter extrapolation and deflation methods for solving equation systems
Directory of Open Access Journals (Sweden)
A. J. Hughes Hallett
1984-01-01
Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.
Low surface brightness galaxies in the Fornax Cluster: automated galaxy surface photometry
International Nuclear Information System (INIS)
Davies, J.I.; Phillipps, S.; Disney, M.J.
1988-01-01
A sample is presented of low surface brightness galaxies (with extrapolated central surface brightness fainter than 22.0 Bμ) in the Fornax Cluster region which has been measured by the APM machine. Photometric parameters, namely profile shape, scale length, central brightness and total magnitude, are derived for the sample galaxies and correlations between the parameters of low surface brightness dwarf galaxies are discussed, with particular reference to the selection limits. Contrary to previous authors we find no evidence for a luminosity-surface brightness correlation in the sense of lower surface brightness galaxies having lower luminosities and scale sizes. In fact, the present data suggest that it is the galaxies with the largest scale lengths which are more likely to be of very low surface brightness. In addition, the larger scale length galaxies occur preferentially towards the centre of the Cluster. (author)
Problems in the extrapolation of laboratory rheological data
Paterson, M. S.
1987-02-01
The many types of variables and deformation regimes that need to be taken into account in extrapolating rheological behaviour from the laboratory to the earth are reviewed. The problems of extrapolation are then illustrated with two particular cases. In the case of divine-rich rocks, recent experimental work indicates that, within present uncertainties of extrapolation, the flow in the upper mantle could be either grain size dependent and near-Newtonian or grain size independent and distinctly non-Newtonian. Both types of behaviour would be influenced by the present of trace amounts of water. In the case of quartz-rich rocks, the uncertainties are even greater and it is still premature to attempt any extrapolation to geological conditions except as an upper bound; the fugacity and the scale of dispersion of the water are probably two important variables but the quantitative laws governing their influence are not yet clear.
Biosimilar monoclonal antibodies : The scientific basis for extrapolation
Schellekens, Huub; Lietzan, Erika; Faccin, Freddy; Venema, Jaap
2015-01-01
Introduction: Biosimilars are biologic products that receive authorization based on an abbreviated regulatory application containing comparative quality and nonclinical and clinical data that demonstrate similarity to a licensed biologic product. Extrapolation of safety and efficacy has emerged as
Energy Technology Data Exchange (ETDEWEB)
Wang, Bin; Xu, Bingqian, E-mail: bxu@engr.uga.edu [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); Lou, Zhichao [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhang, Haiqian [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)
2016-03-21
The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.
Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian
2016-03-01
The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.
International Nuclear Information System (INIS)
Pradhan, T.
1975-01-01
The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)
Darinskii, A N; Weihnacht, M; Schmidt, H
2013-07-01
The paper studies numerically the bulk acoustic wave generation by the surface acoustic wave propagating across a grating created on the surface of an elastically anisotropic half-infinite substrate. The computations are fully based on the finite element method. Applying the discrete Fourier transformation to the displacement field found inside the substrate and using an orthogonality relation valid for plane modes we determine separately the spatial spectrum of the quasi longitudinal and the quasi transverse bulk waves, that is, the dependence of the amplitudes of these waves on the tangential component of the wave vector. The dependence is investigated of the central spectral peak height and shape on the frequency of the incident surface wave as well as on the thickness, the width, and the number of strips forming the grating. In particular, it is found that under certain conditions the central peak can be approximated fairly precisely by the central peak of a sinc-function describing the spectrum of the bounded acoustic beam of rectangular shape and of width equal to the length of the grating. Copyright © 2013 Elsevier B.V. All rights reserved.
Wavefield Extrapolation in Pseudo-depth Domain
Ma, Xuxin
2011-12-11
Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential
Li, Zhi; Tkatchenko, Alexandre; Franco, Ignacio
2018-03-01
We propose a computationally efficient strategy to accurately model nonreactive molecule-surface interactions that adapts density functional theory calculations with the Tkatchenko-Scheffler scheme for van der Waals interactions into a simple classical force field. The resulting force field requires just two adjustable parameters per atom type that are needed to capture short-range and polarization interactions. The developed strategy allows for classical molecular dynamics simulation of molecules on surfaces with the accuracy of high-level electronic structure methods but for system sizes (10 3 to 10 7 atoms) and timescales (picoseconds to microseconds) that go well beyond what can be achieved with first-principles methods. Parameters for H, sp 2 C, and O on Au(111) are developed and employed to atomistically model experiments that measure the conductance of a single polyfluorene on Au(111) as a continuous function of its length. The simulations qualitatively capture both the gross and fine features of the observed conductance decay during initial junction elongation and lead to a revised atomistic understanding of the experiment.
Out-of-sample extrapolation of learned manifolds.
Chin, Tat-Jun; Suter, David
2008-09-01
We investigate the problem of extrapolating the embedding of a manifold learned from finite samples to novel out-of-sample data. We concentrate on the manifold learning method called Maximum Variance Unfolding (MVU) for which the extrapolation problem is still largely unsolved. Taking the perspective of MVU learning being equivalent to Kernel PCA, our problem reduces to extending a kernel matrix generated from an unknown kernel function to novel points. Leveraging on previous developments, we propose a novel solution which involves approximating the kernel eigenfunction using Gaussian basis functions. We also show how the width of the Gaussian can be tuned to achieve extrapolation. Experimental results which demonstrate the effectiveness of the proposed approach are also included.
Lowrank seismic-wave extrapolation on a staggered grid
Fang, Gang
2014-05-01
© 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.
Li, Yuefeng; Xiao, Ziniu; Shi, Wenjing; Zhong, Qi; Wang, Qiguang; Li, Huanlian
2017-12-01
This study examines the seasonal connections between the interannual variations in LOD (length of day)/AAMglobe (the relative atmospheric angular momentum for the whole globe) and the ENSO-like SST (El Niño/Southern Oscillation-like sea surface temperature) pattern and corresponding zonal and vertical circulations. Consistent with previous studies, the ENSO-like SST impact the following season LOD/AAMglobe, with the strongest correlations in DJF (December, January, and February), when it is likely to be the peak El Niño/La Niña period. Lag correlations between the interannual variations in LOD/AAMglobe and surface temperature, and the interannual variations in LOD and both zonal circulation and vertical airflow around the equator, consistently indicate that the LOD/AAMglobe reflect the potential impacts of variations in the Earth's rotation rate on the following season's sea surface temperatures (SST) over the tropical central and eastern Pacific (where the ENSO-like SST pattern is located). Moreover, the centers of strongest variation in the AAMcolumn (the relative atmospheric angular momentum for an air column and the unit mass over a square meter) are located over the mid-latitudinal North Pacific in DJF and MAM (March, April, and May), and over the mid-latitudinal South Pacific in JJA (June, July, and August) and SON (September, October, and November). This suggests that the AAMcolumn over the mid-latitudinal Pacific around 30°N (30°S) dominate the modulation of Earth's rotation rate, and then impact the variations in LOD during DJF and MAM (JJA and SON).
Directory of Open Access Journals (Sweden)
Suárez Isaac
2017-02-01
Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.
Extrapolation of operators acting into quasi-Banach spaces
Lykov, K. V.
2016-01-01
Linear and sublinear operators acting from the scale of L_p spaces to a certain fixed quasinormed space are considered. It is shown how the extrapolation construction proposed by Jawerth and Milman at the end of 1980s can be used to extend a bounded action of an operator from the L_p scale to wider spaces. Theorems are proved which generalize Yano's extrapolation theorem to the case of a quasinormed target space. More precise results are obtained under additional conditions on the quasinorm. Bibliography: 35 titles.
Functional differential equations with unbounded delay in extrapolation spaces
Directory of Open Access Journals (Sweden)
Mostafa Adimy
2014-08-01
Full Text Available We study the existence, regularity and stability of solutions for nonlinear partial neutral functional differential equations with unbounded delay and a Hille-Yosida operator on a Banach space X. We consider two nonlinear perturbations: the first one is a function taking its values in X and the second one is a function belonging to a space larger than X, an extrapolated space. We use the extrapolation techniques to prove the existence and regularity of solutions and we establish a linearization principle for the stability of the equilibria of our equation.
Clements, Aspen R.; Berk, Brandon; Cooke, Ilsa R.; Garrod, Robin T.
2018-02-01
Using an off-lattice kinetic Monte Carlo model we reproduce experimental laboratory trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature. Extrapolation of the model to conditions appropriate to protoplanetary disks and interstellar dark clouds indicate that these ices may be less porous than laboratory ices.
Energy Technology Data Exchange (ETDEWEB)
Frunza, Stefan [National Institute of Materials Physics, R-077125 Magurele (Romania); Schoenhals, Andreas [BAM Federal Institute of Materials Research and Testing, D-12205 Berlin (Germany); Frunza, Ligia, E-mail: lfrunza@infim.ro [National Institute of Materials Physics, R-077125 Magurele (Romania); Beica, Traian; Zgura, Irina; Ganea, Paul [National Institute of Materials Physics, R-077125 Magurele (Romania); Stoenescu, Daniel [Telecom-Bretagne, Departement d' Optique, Technopole Brest-Iroise 29238 Cedex (France)
2010-06-16
Graphical abstract: The temperature dependence of the molecular mobility in composites shows an Arrhenius-type regime at low temperature and a glassy-type one at higher temperature separated by a crossover phenomenon. - Abstract: The molecular mobility of 4-butyl- and 4-pentyl-4'-cyanophenyl benzoate (CP4B, CP5B) and their composites prepared from aerosil A380 was investigated by broadband dielectric spectroscopy in a large temperature range. Thermogravimetric and infrared investigations were additionally performed. High silica density (larger than 7 g aerosil/1 g of liquid crystal) was selected to observe a thin layer adsorbed on the surface of the silica particles. The data were compared with those of the member of the series with six carbon atoms in the alkyl tail. Bulk CP4B and CP5B show the dielectric behaviour expected for liquid crystals. For the composites one relaxation process is observed at frequencies much lower than those for the corresponding bulk, which was assigned to the dynamics of the molecules in a surface layer. The temperature dependence of the relaxation rates (and of the dielectric strength) shows a crossover behaviour with two distinguished regimes. At higher temperatures the data obey the Vogel-Fulcher-Tammann law, whereas an Arrhenius law is observed at lower temperature, in a close similarity to the behaviour of a constrained dynamic glass transition. The estimated Vogel and crossover temperature is independent on the tail length, while the activation energy for the low temperature branch increases weakly with increasing the alkyl tail.
On extrapolation blowups in the $L_p$ scale
Czech Academy of Sciences Publication Activity Database
Capone, C.; Fiorenza, A.; Krbec, Miroslav
2006-01-01
Roč. 9, č. 4 (2006), s. 1-15 ISSN 1025-5834 R&D Projects: GA ČR(CZ) GA201/01/1201 Institutional research plan: CEZ:AV0Z10190503 Keywords : extrapolation * Lebesgue spaces * small Lebesgue spaces Subject RIV: BA - General Mathematics Impact factor: 0.349, year: 2004
Extrapolations of nuclear binding energies from new linear mass relations
DEFF Research Database (Denmark)
Hove, D.; Jensen, A. S.; Riisager, K.
2013-01-01
We present a method to extrapolate nuclear binding energies from known values for neighboring nuclei. We select four specific mass relations constructed to eliminate smooth variation of the binding energy as function nucleon numbers. The fast odd-even variations are avoided by comparing nuclei...
Outlier robustness for wind turbine extrapolated extreme loads
DEFF Research Database (Denmark)
Natarajan, Anand; Verelst, David Robert
2012-01-01
. Stochastic identification of numerical artifacts in simulated loads is demonstrated using the method of principal component analysis. The extrapolation methodology is made robust to outliers through a weighted loads approach, whereby the eigenvalues of the correlation matrix obtained using the loads with its...
Extrapolation of ZPR sodium void measurements to the power reactor
International Nuclear Information System (INIS)
Beck, C.L.; Collins, P.J.; Lineberry, M.J.; Grasseschi, G.L.
1976-01-01
Sodium-voiding measurements of ZPPR assemblies 2 and 5 are analyzed with ENDF/B Version IV data. Computations include directional diffusion coefficients to account for streaming effects resulting from the plate structure of the critical assembly. Bias factors for extrapolating critical assembly data to the CRBR design are derived from the results of this analysis
Directory of Open Access Journals (Sweden)
Jere Harrison
2012-07-01
Full Text Available A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15 μm. Simulations indicate that magnetic fields as large as 1.5 T across 50 μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5 μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.
Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy
Alkhalifah, Tariq Ali
2014-04-30
Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.
Uncertainty from Extrapolation of Cosmic Ray Air Shower Parameters
Abbasi, Rasha; Thomson, Gordon
In this work we investigate the uncertainties in the prediction of the average shower maximum, , by the currently used high energy cosmic ray shower simulation models. Recent measurements at the LHC have provided constrains on some of the parameters in these models. However, uncertainties in the prediction of remain due to extrapolation from accelerator data up to center of mass of 250 TeV. The extrapolation in the elasticity, multiplicity, and p-p cross section from the LHC energy range to 3 × 1019 eV in a cosmic ray's lab frame is investigated in this proceeding. Our calculation of the uncertainty in is approximately equal to the difference among the modern models being used in the field.
Assessment of Load Extrapolation Methods for Wind Turbines
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard; Veldkamp, Dick
2011-01-01
threshold method with two different threshold values. The comparisons show that the goodness of fit for the local distribution has a significant influence on the results, but the peak over threshold method with a threshold value on the mean plus 1.4 standard deviations generally gives the best results......In the present paper, methods for statistical load extrapolation of wind-turbine response are studied using a stationary Gaussian process model, which has approximately the same spectral properties as the response for the out-of-plane bending moment of a wind-turbine blade. For a Gaussian process......, an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper, three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima, and the peak over...
Assessment of load extrapolation methods for wind turbines
DEFF Research Database (Denmark)
Toft, H.S.; Sørensen, John Dalsgaard; Veldkamp, D.
2010-01-01
threshold method with two different threshold values. The comparisons show that the goodness of fit for the local distribution has a significant influence on the results, but the peak over threshold method with a threshold value on the mean plus 1.4 standard deviations generally gives the best results......In the present paper methods for statistical load extrapolation of wind turbine response are studied using a stationary Gaussian process model which has approximately the same spectral properties as the response for the flap bending moment of a wind turbine blade. For a Gaussian process...... an approximate analytical solution for the distribution of the peaks is given by Rice. In the present paper three different methods for statistical load extrapolation are compared with the analytical solution for one mean wind speed. The methods considered are global maxima, block maxima and the peak over...
The Atchafalaya River Delta. Report 3. Extrapolation of Delta Growth.
1982-07-01
Bathymetric surveys of Atchafalaya Bay. . 1 b. Discharge hydrographs at Sim esport . c. Suspended sediment concentrations at Simmesport. From these basic data...contained the same major floods as the first 10-yr period. The total volumes of water entering the system were nearly identical during the -. third and...using the reverse sequence is nearly identical with the condition predicted by the original sequence at year 50 of the extrapolation. The gulfward limit
Line-of-sight extrapolation noise in dust polarization
Poh, Jason; Dodelson, Scott
2017-05-01
The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g. 350 GHz) is due solely to dust and then extrapolate the signal down to a lower frequency (e.g. 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of ˜20 K , these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise on a greybody dust model consistent with Planck and Pan-STARRS observations, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r ≲0.0015 in the greybody dust models considered in this
Line-of-sight extrapolation noise in dust polarization
Energy Technology Data Exchange (ETDEWEB)
Poh, Jason; Dodelson, Scott
2017-05-19
The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r < 0.0015 .
Animal-to-Human Extrapolation Using Compartmental Models
1991-01-01
In this article, designates the excretory organ (for example, the kidney). The we will address the general methodology of extrapolation using symbol...must be true in any compartmental system because they are exposure (9). based on physical principles. In these equations the V1, Qj, k, In the setting...and diffusion approximation models to a simple perfusion-diffusion system governed by partial differential equations for v or, C,, which analytic
Effective Orthorhombic Anisotropic Models for Wave field Extrapolation
Ibanez Jacome, Wilson
2013-05-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the
Efficient anisotropic wavefield extrapolation using effective isotropic models
Alkhalifah, Tariq Ali
2013-06-10
Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.
Error estimates for extrapolations with matrix-product states
Hubig, C.; Haegeman, J.; Schollwöck, U.
2018-01-01
We introduce an error measure for matrix-product states without requiring the relatively costly two-site density-matrix renormalization group (2DMRG). This error measure is based on an approximation of the full variance 〈ψ |(Ĥ-E ) 2|ψ 〉 . When applied to a series of matrix-product states at different bond dimensions obtained from a single-site density-matrix renormalization group (1DMRG) calculation, it allows for the extrapolation of observables towards the zero-error case representing the exact ground state of the system. The calculation of the error measure is split into a sequential part of cost equivalent to two calculations of 〈ψ |H ̂|ψ 〉 and a trivially parallelized part scaling like a single operator application in 2DMRG. The reliability of this error measure is demonstrated by four examples: the L =30 ,S =1 /2 Heisenberg chain, the L =50 Hubbard chain, an electronic model with long-range Coulomb-like interactions, and the Hubbard model on a cylinder with a size of 10 ×4 . Extrapolation in this error measure is shown to be on par with extrapolation in the 2DMRG truncation error or the full variance 〈ψ |(Ĥ-E ) 2|ψ 〉 at a fraction of the computational effort.
An efficient wave extrapolation method for anisotropic media with tilt
Waheed, Umair bin
2015-03-23
Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.
A simple extrapolation of thermodynamic perturbation theory to infinite order.
Ghobadi, Ahmadreza F; Elliott, J Richard
2015-09-21
Recent analyses of the third and fourth order perturbation contributions to the equations of state for square well spheres and Lennard-Jones chains show trends that persist across orders and molecular models. In particular, the ratio between orders (e.g., A3/A2, where A(i) is the ith order perturbation contribution) exhibits a peak when plotted with respect to density. The trend resembles a Gaussian curve with the peak near the critical density. This observation can form the basis for a simple recursion and extrapolation from the highest available order to infinite order. The resulting extrapolation is analytic and therefore cannot fully characterize the critical region, but it remarkably improves accuracy, especially for the binodal curve. Whereas a second order theory is typically accurate for the binodal at temperatures within 90% of the critical temperature, the extrapolated result is accurate to within 99% of the critical temperature. In addition to square well spheres and Lennard-Jones chains, we demonstrate how the method can be applied semi-empirically to the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT).
Effective ellipsoidal models for wavefield extrapolation in tilted orthorhombic media
Waheed, Umair Bin
2016-04-22
Wavefield computations using the ellipsoidally anisotropic extrapolation operator offer significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate wavefield representation or imaging for media of orthorhombic symmetry. Therefore, we propose the use of ‘effective ellipsoidally anisotropic’ models that correctly capture the kinematic behaviour of wavefields for tilted orthorhombic (TOR) media. We compute effective velocities for the ellipsoidally anisotropic medium using kinematic high-frequency representation of the TOR wavefield, obtained by solving the TOR eikonal equation. The effective model allows us to use the cheaper ellipsoidally anisotropic wave extrapolation operators. Although the effective models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The proposed methodology offers a much better cost versus accuracy trade-off for wavefield computations in TOR media, particularly for media of low to moderate anisotropic strength. Furthermore, the computed wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference based TOR wave extrapolation scheme. We demonstrate applicability and usefulness of our formulation through numerical tests on synthetic TOR models. © 2016 Institute of Geophysics of the ASCR, v.v.i
Statistically extrapolated nowcasting of summertime precipitation over the Eastern Alps
Chen, Min; Bica, Benedikt; Tüchler, Lukas; Kann, Alexander; Wang, Yong
2017-07-01
This paper presents a new multiple linear regression (MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA (Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps. The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples, and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure-amplitude-location scores, used to evaluate the performance of the MLR approach, based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.
Extrapolated HPGe efficiency estimates based on a single calibration measurement
International Nuclear Information System (INIS)
Winn, W.G.
1994-01-01
Gamma spectroscopists often must analyze samples with geometries for which their detectors are not calibrated. The effort to experimentally recalibrate a detector for a new geometry can be quite time consuming, causing delay in reporting useful results. Such concerns have motivated development of a method for extrapolating HPGe efficiency estimates from an existing single measured efficiency. Overall, the method provides useful preliminary results for analyses that do not require exceptional accuracy, while reliably bracketing the credible range. The estimated efficiency element-of for a uniform sample in a geometry with volume V is extrapolated from the measured element-of 0 of the base sample of volume V 0 . Assuming all samples are centered atop the detector for maximum efficiency, element-of decreases monotonically as V increases about V 0 , and vice versa. Extrapolation of high and low efficiency estimates element-of h and element-of L provides an average estimate of element-of = 1/2 [element-of h + element-of L ] ± 1/2 [element-of h - element-of L ] (general) where an uncertainty D element-of = 1/2 (element-of h - element-of L ] brackets limits for a maximum possible error. The element-of h and element-of L both diverge from element-of 0 as V deviates from V 0 , causing D element-of to increase accordingly. The above concepts guided development of both conservative and refined estimates for element-of
Norde, Willem; Gage, D.
2004-01-01
Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective
Extrapolation of Survival Curves from Cancer Trials Using External Information.
Guyot, Patricia; Ades, Anthony E; Beasley, Matthew; Lueza, Béranger; Pignon, Jean-Pierre; Welton, Nicky J
2017-05-01
Estimates of life expectancy are a key input to cost-effectiveness analysis (CEA) models for cancer treatments. Due to the limited follow-up in Randomized Controlled Trials (RCTs), parametric models are frequently used to extrapolate survival outcomes beyond the RCT period. However, different parametric models that fit the RCT data equally well may generate highly divergent predictions of treatment-related gain in life expectancy. Here, we investigate the use of information external to the RCT data to inform model choice and estimation of life expectancy. We used Bayesian multi-parameter evidence synthesis to combine the RCT data with external information on general population survival, conditional survival from cancer registry databases, and expert opinion. We illustrate with a 5-year follow-up RCT of cetuximab plus radiotherapy v. radiotherapy alone for head and neck cancer. Standard survival time distributions were insufficiently flexible to simultaneously fit both the RCT data and external data on general population survival. Using spline models, we were able to estimate a model that was consistent with the trial data and all external data. A model integrating all sources achieved an adequate fit and predicted a 4.7-month (95% CrL: 0.4; 9.1) gain in life expectancy due to cetuximab. Long-term extrapolation using parametric models based on RCT data alone is highly unreliable and these models are unlikely to be consistent with external data. External data can be integrated with RCT data using spline models to enable long-term extrapolation. Conditional survival data could be used for many cancers and general population survival may have a role in other conditions. The use of external data should be guided by knowledge of natural history and treatment mechanisms.
Chiral and continuum extrapolation of partially-quenched hadron masses
International Nuclear Information System (INIS)
Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young
2005-01-01
Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement (∼1%) with the experimental value of M ρ from the former approach. These results are extended to the case of the nucleon mass
Chiral and continuum extrapolation of partially-quenched hadron masses
Energy Technology Data Exchange (ETDEWEB)
Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young
2005-09-29
Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement ({approx}1%) with the experimental value of M{sub {rho}} from the former approach. These results are extended to the case of the nucleon mass.
Dead time corrections using the backward extrapolation method
Energy Technology Data Exchange (ETDEWEB)
Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Dubi, C. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel); Geslot, B.; Blaise, P. [DEN/CAD/DER/SPEx/LPE, CEA Cadarache, Saint-Paul-les-Durance 13108 (France); Kolin, A. [Department of Physics, Nuclear Research Center NEGEV (NRCN), Beer-Sheva 84190 (Israel)
2017-05-11
Dead time losses in neutron detection, caused by both the detector and the electronics dead time, is a highly nonlinear effect, known to create high biasing in physical experiments as the power grows over a certain threshold, up to total saturation of the detector system. Analytic modeling of the dead time losses is a highly complicated task due to the different nature of the dead time in the different components of the monitoring system (e.g., paralyzing vs. non paralyzing), and the stochastic nature of the fission chains. In the present study, a new technique is introduced for dead time corrections on the sampled Count Per Second (CPS), based on backward extrapolation of the losses, created by increasingly growing artificially imposed dead time on the data, back to zero. The method has been implemented on actual neutron noise measurements carried out in the MINERVE zero power reactor, demonstrating high accuracy (of 1–2%) in restoring the corrected count rate. - Highlights: • A new method for dead time corrections is introduced and experimentally validated. • The method does not depend on any prior calibration nor assumes any specific model. • Different dead times are imposed on the signal and the losses are extrapolated to zero. • The method is implemented and validated using neutron measurements from the MINERVE. • Result show very good correspondence to empirical results.
Assessing ecological effects of radionuclides: data gaps and extrapolation issues
International Nuclear Information System (INIS)
Garnier-Laplace, Jacqueline; Gilek, Michael; Sundell-Bergman, Synnoeve; Larsson, Carl-Magnus
2004-01-01
By inspection of the FASSET database on radiation effects on non-human biota, one of the major difficulties in the implementation of ecological risk assessments for radioactive pollutants is found to be the lack of data for chronic low-level exposure. A critical review is provided of a number of extrapolation issues that arise in undertaking an ecological risk assessment: acute versus chronic exposure regime; radiation quality including relative biological effectiveness and radiation weighting factors; biological effects from an individual to a population level, including radiosensitivity and lifestyle variations throughout the life cycle; single radionuclide versus multi-contaminants. The specificities of the environmental situations of interest (mainly chronic low-level exposure regimes) emphasise the importance of reproductive parameters governing the demography of the population within a given ecosystem and, as a consequence, the structure and functioning of that ecosystem. As an operational conclusion to keep in mind for any site-specific risk assessment, the present state-of-the-art on extrapolation issues allows us to grade the magnitude of the uncertainties as follows: one species to another > acute to chronic = external to internal = mixture of stressors> individual to population> ecosystem structure to function
Application of the backward extrapolation method to pulsed neutron sources
Energy Technology Data Exchange (ETDEWEB)
Talamo, Alberto; Gohar, Yousry
2018-01-01
Particle detectors operated in pulse mode are subjected to the dead-time effect. When the average of the detector counts is constant over time, correcting for the dead-time effect is simple and can be accomplished by analytical formulas. However, when the average of the detector counts changes over time it is more difficult to take into account the dead-time effect. When a subcritical nuclear assembly is driven by a pulsed neutron source, simple analytical formulas cannot be applied to the measured detector counts to correct for the dead-time effect because of the sharp change of the detector counts over time. This work addresses this issue by using the backward extrapolation method. The latter can be applied not only to a continuous (e.g. californium) external neutron source but also to a pulsed external neutron source (e.g. by a particle accelerator) driving a subcritical nuclear assembly. The backward extrapolation method allows to obtain from the measured detector counts both the dead-time value and the real detector counts.
Guided wave tomography in anisotropic media using recursive extrapolation operators
Volker, Arno
2018-04-01
Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin
2014-05-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
UFOs in the LHC: Observations, studies and extrapolations
Baer, T; Cerutti, F; Ferrari, A; Garrel, N; Goddard, B; Holzer, EB; Jackson, S; Lechner, A; Mertens, V; Misiowiec, M; Nebot del Busto, E; Nordt, A; Uythoven, J; Vlachoudis, V; Wenninger, J; Zamantzas, C; Zimmermann, F; Fuster, N
2012-01-01
Unidentified falling objects (UFOs) are potentially a major luminosity limitation for nominal LHC operation. They are presumably micrometer sized dust particles which lead to fast beam losses when they interact with the beam. With large-scale increases and optimizations of the beam loss monitor (BLM) thresholds, their impact on LHC availability was mitigated from mid 2011 onwards. For higher beam energy and lower magnet quench limits, the problem is expected to be considerably worse, though. In 2011/12, the diagnostics for UFO events were significantly improved: dedicated experiments and measurements in the LHC and in the laboratory were made and complemented by FLUKA simulations and theoretical studies. The state of knowledge, extrapolations for nominal LHC operation and mitigation strategies are presented
Crack Length Detection by Digital Image Processing
DEFF Research Database (Denmark)
Lyngbye, Janus; Brincker, Rune
1990-01-01
It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better then that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...
Comparison of methods for extrapolating breaking creep results
International Nuclear Information System (INIS)
Lehmann, Daniel.
1980-06-01
Among all the methods of extrapolation, the following have been selected: - parametric methods (Larson-Miller, Dorn, Manson-Haferd); - digital and parametric method (minimum commitment); - digital method (finite differences); - descriptive method (Givar). The Larson-Miller, Dorn and Manson-Haferd methods are commonly used for analyzing the breaking creep results of materials for which the master curves can be described simply. The other methods have been developed in order to analyze the breaking creep results of materials where the structural changes over time modify the creep behaviour. In each case the assessment of the parameters is achieved by the least squares method. These methods were compared with each other on two steels, namely: Z6 CND 17-12 (316) and Z4 CND 35-20 (800 alloy). The various analyses performed show that (a) the predictions made as from the different methods are in good agreement between each other when there is a sufficient number of experimental values and (b) the predictions of the breaking times in the case of the 800 alloy differ from one method to the next. This result is due to the limited sampling data and to the complex behaviour of this alloy, the properties of which change with ageing [fr
Extrapolation of lattice gauge theories to the continuum limit
International Nuclear Information System (INIS)
Duncan, A.; Vaidya, H.
1978-01-01
The problem of extrapolating lattice gauge theories from the strong-coupling phase to the continuum critical point is studied for the Abelian (U(1)) and non-Abelian (SU(2)) theories in three (space--time) dimensions. A method is described for obtaining the asymptotic behavior, for large β, of such thermodynamic quantities and correlation functions as the free energy and Wilson loop function. Certain general analyticity and positivity properties (in the complex β-plane) are shown to lead, after appropriate analytic remappings, to a Stieltjes property of these functions. Rigorous theorems then guarantee uniform and monotone convergence of the Pade approximants, with exact pointwise upper and lower bounds. The first three Pade's are computed for both the free energy and the Wilson function. For the free energy, satisfactory agreement is with the asymptotic behavior computed by an explicit lattice calculation. The strong-coupling series for the Wilson function is found to be considerably more unstable in the lower order terms - correspondingly, convergence of the Pade's is found to be slower than in the free-energy case. It is suggested that higher-order calculations may allow a reasonably accurate determination of the string constant for the SU(2) theory. 14 references
Multivariable extrapolation of grand canonical free energy landscapes
Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.
2017-12-01
We derive an approach for extrapolating the free energy landscape of multicomponent systems in the grand canonical ensemble, obtained from flat-histogram Monte Carlo simulations, from one set of temperature and chemical potentials to another. This is accomplished by expanding the landscape in a Taylor series at each value of the order parameter which defines its macrostate phase space. The coefficients in each Taylor polynomial are known exactly from fluctuation formulas, which may be computed by measuring the appropriate moments of extensive variables that fluctuate in this ensemble. Here we derive the expressions necessary to define these coefficients up to arbitrary order. In principle, this enables a single flat-histogram simulation to provide complete thermodynamic information over a broad range of temperatures and chemical potentials. Using this, we also show how to combine a small number of simulations, each performed at different conditions, in a thermodynamically consistent fashion to accurately compute properties at arbitrary temperatures and chemical potentials. This method may significantly increase the computational efficiency of biased grand canonical Monte Carlo simulations, especially for multicomponent mixtures. Although approximate, this approach is amenable to high-throughput and data-intensive investigations where it is preferable to have a large quantity of reasonably accurate simulation data, rather than a smaller amount with a higher accuracy.
Characterization and application of two extrapolation chambers in standard X radiation beams
International Nuclear Information System (INIS)
Silva, Eric Alexandre Brito da
2011-01-01
The extrapolation chambers are ionization chambers with variable volume, and they are mainly utilized as beta radiation detectors. In this work two extrapolation chambers were characterized, a commercial PTW extrapolation chamber and another extrapolation chamber developed at the Calibration Laboratory of IPEN, for application as reference systems in mammography, conventional diagnostic radiology and radiotherapy beams. The results obtained from the characterization tests of the chamber response: leakage current, short- and medium terms stability, determination of the saturation currents and the ion collection efficiencies, angular and energy dependence, show that these extrapolation chambers may be utilized for low-energy X radiation beam dosimetry. The transmission factors in tissue and the calibration factors were also determined for all cited radiation qualities. Finally, a procedure was established for calibration of radiation detectors in standard X radiation beams, using the extrapolation chambers. (author)
Design and building of an extrapolation ionization chamber for beta dosimetry
International Nuclear Information System (INIS)
Silva, I.
1985-01-01
An extrapolation chamber was designed and built to be used in beta dosimetry. The basic characteristics of an extrapolation chamber are discussed, together with fundamental principle of the dosimetric method used. Details of the chamber's design and properties of materials employed are presented. A full evaluation of extrapolation chamber under irradiation from two 90 Sr + 90 Y beta sources is done. The geometric parameters of the chamber, leakage current and ion collection efficiency are determined. (Author) [pt
Directory of Open Access Journals (Sweden)
Chen Liling
2003-08-01
Full Text Available Abstract Background Bacterial macrofibers twist as they grow, writhe, supercoil and wind up into plectonemic structures (helical forms the individual filaments of which cannot be taken apart without unwinding that eventually carry loops at both of their ends. Terminal loops rotate about the axis of a fiber's shaft in contrary directions at increasing rate as the shaft elongates. Theory suggests that rotation rates should vary linearly along the length of a fiber ranging from maxima at the loop ends to zero at an intermediate point. Blocking rotation at one end of a fiber should lead to a single gradient: zero at the blocked end to maximum at the free end. We tested this conclusion by measuring directly the rotation at various distances along fiber length from the blocked end. The movement of supercoils over a solid surface was also measured in tethered macrofibers. Results Macrofibers that hung down from a floating wire inserted through a terminal loop grew vertically and produced small plectonemic structures by supercoiling along their length. Using these as markers for shaft rotation we observed a uniform gradient of initial rotation rates with slopes of 25.6°/min. mm. and 36.2°/min. mm. in two different fibers. Measurements of the distal tip rotation in a third fiber as a function of length showed increases proportional to increases in length with constant of proportionality 79.2 rad/mm. Another fiber tethered to the floor grew horizontally with a length-doubling time of 74 min, made contact periodically with the floor and supercoiled repeatedly. The supercoils moved over the floor toward the tether at approximately 0.06 mm/min, 4 times faster than the fiber growth rate. Over a period of 800 minutes the fiber grew to 23 mm in length and was entirely retracted back to the tether by a process involving 29 supercoils. Conclusions The rate at which growing bacterial macrofibers rotated about the axis of the fiber shaft measured at various
Uncertainty in vertical extrapolation of wind statistics: shear-exponent and WAsP/EWA methods
DEFF Research Database (Denmark)
Kelly, Mark C.
This report provides formulations for estimation of uncertainties involved in vertical extrapolation of winds, as well as the total uncertainty incurred when winds observed at one height are extrapolated to turbine hub height for wind resource assessment. This includes new derivations for uncerta......This report provides formulations for estimation of uncertainties involved in vertical extrapolation of winds, as well as the total uncertainty incurred when winds observed at one height are extrapolated to turbine hub height for wind resource assessment. This includes new derivations...
Bayesian Solutions for Handling Uncertainty in Survival Extrapolation.
Negrín, Miguel A; Nam, Julian; Briggs, Andrew H
2017-05-01
Survival extrapolation using a single, best-fit model ignores 2 sources of model uncertainty: uncertainty in the true underlying distribution and uncertainty about the stability of the model parameters over time. Bayesian model averaging (BMA) has been used to account for the former, but it can also account for the latter. We investigated BMA using a published comparison of the Charnley and Spectron hip prostheses using the original 8-year follow-up registry data. A wide variety of alternative distributions were fitted. Two additional distributions were used to address uncertainty about parameter stability: optimistic and skeptical. The optimistic (skeptical) model represented the model distribution with the highest (lowest) estimated probabilities of survival but reestimated using, as prior information, the most optimistic (skeptical) parameter estimated for intermediate follow-up periods. Distributions were then averaged assuming the same posterior probabilities for the optimistic, skeptical, and noninformative models. Cost-effectiveness was compared using both the original 8-year and extended 16-year follow-up data. We found that all models obtained similar revision-free years during the observed period. In contrast, there was variability over the decision time horizon. Over the observed period, we detected considerable uncertainty in the shape parameter for Spectron. After BMA, Spectron was cost-effective at a threshold of £20,000 with 93% probability, whereas the best-fit model was 100%; by contrast, with a 16-year follow-up, it was 0%. This case study casts doubt on the ability of the single best-fit model selected by information criteria statistics to adequately capture model uncertainty. Under this scenario, BMA weighted by posterior probabilities better addressed model uncertainty. However, there is still value in regularly updating health economic models, even where decision uncertainty is low.
Evaluating In Vitro-In Vivo Extrapolation of Toxicokinetics.
Wambaugh, John F; Hughes, Michael F; Ring, Caroline L; MacMillan, Denise K; Ford, Jermaine; Fennell, Timothy R; Black, Sherry R; Snyder, Rodney W; Sipes, Nisha S; Wetmore, Barbara A; Westerhout, Joost; Setzer, R Woodrow; Pearce, Robert G; Simmons, Jane Ellen; Thomas, Russell S
2018-05-01
Prioritizing the risk posed by thousands of chemicals potentially present in the environment requires exposure, toxicity, and toxicokinetic (TK) data, which are often unavailable. Relatively high throughput, in vitro TK (HTTK) assays and in vitro-to-in vivo extrapolation (IVIVE) methods have been developed to predict TK, but most of the in vivo TK data available to benchmark these methods are from pharmaceuticals. Here we report on new, in vivo rat TK experiments for 26 non-pharmaceutical chemicals with environmental relevance. Both intravenous and oral dosing were used to calculate bioavailability. These chemicals, and an additional 19 chemicals (including some pharmaceuticals) from previously published in vivo rat studies, were systematically analyzed to estimate in vivo TK parameters (e.g., volume of distribution [Vd], elimination rate). For each of the chemicals, rat-specific HTTK data were available and key TK predictions were examined: oral bioavailability, clearance, Vd, and uncertainty. For the non-pharmaceutical chemicals, predictions for bioavailability were not effective. While no pharmaceutical was absorbed at less than 10%, the fraction bioavailable for non-pharmaceutical chemicals was as low as 0.3%. Total clearance was generally more under-estimated for nonpharmaceuticals and Vd methods calibrated to pharmaceuticals may not be appropriate for other chemicals. However, the steady-state, peak, and time-integrated plasma concentrations of nonpharmaceuticals were predicted with reasonable accuracy. The plasma concentration predictions improved when experimental measurements of bioavailability were incorporated. In summary, HTTK and IVIVE methods are adequately robust to be applied to high throughput in vitro toxicity screening data of environmentally relevant chemicals for prioritizing based on human health risks.
Extrapolation bias and the predictability of stock returns by price-scaled variables
Cassella, Stefano; Gulen, H.
Using survey data on expectations of future stock returns, we recursively estimate the degree of extrapolative weighting in investors' beliefs (DOX). In an extrapolation framework, DOX determines the relative weight investors place on recent-versus-distant past returns. DOX varies considerably over
Oral-to-inhalation route extrapolation in occupational health risk assessment: A critical assessment
Rennen, M.A.J.; Bouwman, T.; Wilschut, A.; Bessems, J.G.M.; Heer, C.de
2004-01-01
Due to a lack of route-specific toxicity data, the health risks resulting from occupational exposure are frequently assessed by route-to-route (RtR) extrapolation based on oral toxicity data. Insight into the conditions for and the uncertainties connected with the application of RtR extrapolation
Extrapolating human judgments from skip-gram vector representations of word meaning.
Hollis, Geoff; Westbury, Chris; Lefsrud, Lianne
2017-08-01
There is a growing body of research in psychology that attempts to extrapolate human lexical judgments from computational models of semantics. This research can be used to help develop comprehensive norm sets for experimental research, it has applications to large-scale statistical modelling of lexical access and has broad value within natural language processing and sentiment analysis. However, the value of extrapolated human judgments has recently been questioned within psychological research. Of primary concern is the fact that extrapolated judgments may not share the same pattern of statistical relationship with lexical and semantic variables as do actual human judgments; often the error component in extrapolated judgments is not psychologically inert, making such judgments problematic to use for psychological research. We present a new methodology for extrapolating human judgments that partially addresses prior concerns of validity. We use this methodology to extrapolate human judgments of valence, arousal, dominance, and concreteness for 78,286 words. We also provide resources for users to extrapolate these human judgments for three million English words and short phrases. Applications for large sets of extrapolated human judgments are demonstrated and discussed.
Fuel cycle design for ITER and its extrapolation to DEMO
International Nuclear Information System (INIS)
Konishi, Satoshi; Glugla, Manfred; Hayashi, Takumi
2008-01-01
future energy source. Some of the subjects cannot be expected to be within the extrapolation of ITER technology and require long term efforts paralleling ITER
Park, G Barratt; Jiang, Jun; Field, Robert W
2016-04-14
The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3(') progression. We have recently made the first observation of low-lying levels with odd quanta of v3('), which allows us-in the current work-to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 (1)A1 state and indirect coupling with the repulsive 3 (1)A1 state. The degree of staggering in the ν3(') levels increases with quanta of bending excitation, which is consistent with the approach along the C̃ state potential energy surface to a conical intersection with the 2 (1)A1 surface at a bond angle of ∼145°.
Characterization of an extrapolation chamber in a 90Sr/90Y beta radiation field
International Nuclear Information System (INIS)
Oramas Polo, I.; Tamayo Garcia, J. A.
2015-01-01
The extrapolation chamber is a parallel plate chamber and variable volume based on the Bragg-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents the characterization of an extrapolation chamber in a 90 Sr/ 90 Y beta radiation field. The absorbed dose rate to tissue at a depth of 0.07 mm was calculated and is (0.13206±0.0028) μGy. The extrapolation chamber null depth was determined and its value is 60 μm. The influence of temperature, pressure and humidity on the value of the corrected current was also evaluated. Temperature is the parameter that has more influence on this value and the influence of pressure and the humidity is not very significant. Extrapolation curves were obtained. (Author)
Strong, James Asa; Elliott, Michael
2017-03-15
The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Jimenez C, L.F.
1995-01-01
The Interface System for the Extrapolation Chamber (SICE) contains several devices handled by a personal computer (PC), it is able to get the required data to calculate the absorbed dose due to Beta radiation. The main functions of the system are: a) Measures the ionization current or charge stored in the extrapolation chamber. b) Adjusts the distance between the plates of the extrapolation chamber automatically. c) Adjust the bias voltage of the extrapolation chamber automatically. d) Acquires the data of the temperature, atmospheric pressure, relative humidity of the environment and the voltage applied between the plates of the extrapolation chamber. e) Calculates the effective area of the plates of the extrapolation chamber and the real distance between them. f) Stores all the obtained information in hard disk or diskette. A comparison between the desired distance and the distance in the dial of the extrapolation chamber, show us that the resolution of the system is of 20 μm. The voltage can be changed between -399.9 V and +399.9 V with an error of less the 3 % with a resolution of 0.1 V. These uncertainties are between the accepted limits to be used in the determination of the absolute absorbed dose due to beta radiation. (Author)
Energy Technology Data Exchange (ETDEWEB)
Bastos, Fernanda Martins
2015-04-01
In laboratories involving Radiological Protection practices, it is usual to use reference radiations for calibrating dosimeters and to study their response in terms of energy dependence. The International Organization for Standardization (ISO) established four series of reference X-rays beams in the ISO- 4037 standard: the L and H series, as low and high air Kerma rates, respectively, the N series of narrow spectrum and W series of wide spectrum. The X-rays beams with tube potential below 30 kV, called 'low energy beams' are, in most cases, critical as far as the determination of their parameters for characterization purpose, such as half-value layer. Extrapolation chambers are parallel plate ionization chambers that have one mobile electrode that allows variation of the air volume in its interior. These detectors are commonly used to measure the quantity Absorbed Dose, mostly in the medium surface, based on the extrapolation of the linear ionization current as a function of the distance between the electrodes. In this work, a characterization of a model 23392 PTW extrapolation chamber was done in low energy X-rays beams of the ISO- 4037 standard, by determining the polarization voltage range through the saturation curves and the value of the true null electrode spacing. In addition, the metrological reliability of the extrapolation chamber was studied with measurements of the value of leakage current and repeatability tests; limit values were established for the proper use of the chamber. The PTW23392 extrapolation chamber was calibrated in terms of air Kerma in some of the ISO radiation series of low energy; the traceability of the chamber to the National Standard Dosimeter was established. The study of energy dependency of the extrapolation chamber and the assessment of the uncertainties related to the calibration coefficient were also done; it was shown that the energy dependence was reduced to 4% when the extrapolation technique was used. Finally
Maksimovic, M.; Zaslavsky, A.
2017-12-01
We will present extrapolation of the HELIOS & Ulysses proton density, temperature & bulk velocities back to the corona. Using simple mass flux conservations we show a very good agreement between these extrapolations and the current state knowledge of these parameters in the corona, based on SOHO mesurements. These simple extrapolations could potentially be very useful for the science planning of both the Parker Solar Probe and Solar Orbiter missions. Finally will also present some modelling considerations, based on simple energy balance equations which arise from these empirical observationnal models.
NLT and extrapolated DLT:3-D cinematography alternatives for enlarging the volume of calibration.
Hinrichs, R N; McLean, S P
1995-10-01
This study investigated the accuracy of the direct linear transformation (DLT) and non-linear transformation (NLT) methods of 3-D cinematography/videography. A comparison of standard DLT, extrapolated DLT, and NLT calibrations showed the standard (non-extrapolated) DLT to be the most accurate, especially when a large number of control points (40-60) were used. The NLT was more accurate than the extrapolated DLT when the level of extrapolation exceeded 100%. The results indicated that when possible one should use the DLT with a control object, sufficiently large as to encompass the entire activity being studied. However, in situations where the activity volume exceeds the size of one's DLT control object, the NLT method should be considered.
The extrapolation of creep rupture data by PD6605 - An independent case study
Energy Technology Data Exchange (ETDEWEB)
Bolton, J., E-mail: john.bolton@uwclub.net [65 Fisher Avenue, Rugby, Warks CV22 5HW (United Kingdom)
2011-04-15
The worked example presented in BSI document PD6605-1:1998, to illustrate the selection, validation and extrapolation of a creep rupture model using statistical analysis, was independently examined. Alternative rupture models were formulated and analysed by the same statistical methods, and were shown to represent the test data more accurately than the original model. Median rupture lives extrapolated from the original and alternative models were found to diverge widely under some conditions of practical interest. The tests prescribed in PD6605 and employed to validate the original model were applied to the better of the alternative models. But the tests were unable to discriminate between the two, demonstrating that these tests fail to ensure reliability in extrapolation. The difficulties of determining when a model is sufficiently reliable for use in extrapolation are discussed and some proposals are made.
CONSTRAINING THREE-DIMENSIONAL MAGNETIC FIELD EXTRAPOLATIONS USING THE TWIN PERSPECTIVES OF STEREO
International Nuclear Information System (INIS)
Conlon, Paul A.; Gallagher, Peter T.
2010-01-01
The three-dimensional magnetic topology of a solar active region (NOAA 10956) was reconstructed using a linear force-free field extrapolation constrained using the twin perspectives of STEREO. A set of coronal field configurations was initially generated from extrapolations of the photospheric magnetic field observed by the Michelson Doppler Imager on SOHO. Using an EUV intensity-based cost function, the extrapolated field lines that were most consistent with 171 A passband images from the Extreme UltraViolet Imager on STEREO were identified. This facilitated quantitative constraints to be placed on the twist (α) of the extrapolated field lines, where ∇ x B = αB. Using the constrained values of α, the evolution in time of twist, connectivity, and magnetic energy were then studied. A flux emergence event was found to result in significant changes in the magnetic topology and total magnetic energy of the region.
Files containing only extrapolated orbital metadata, to be read via SDP Toolkit, Binary Format
National Aeronautics and Space Administration — AM1EPHNE is the Terra Near Real Time (NRT) 2-hour spacecraft Extrapolated ephemeris data file in native format. The file name format is the following:...
Extrapolated Orbital data files to be read via SDP toolkit, Binary Format
National Aeronautics and Space Administration — AM1EPHNE is the Terra Near Real Time (NRT) 2-hour spacecraft Extrapolated ephemeris data file in native format. The file name format is the following:...
Design for low dose extrapolation of carcinogenicity data. Technical report No. 24
International Nuclear Information System (INIS)
Wong, S.C.
1979-06-01
Parameters for modelling dose-response relationships in carcinogenesis models were found to be very complicated, especially for distinguishing low dose effects. The author concluded that extrapolation always bears the danger of providing misleading information
Wavefield extrapolation in caustic-free normal ray coordinates
Ma, Xuxin
2012-11-04
Normal ray coordinates are conventionally constructed from ray tracing, which inherently requires smooth velocity profiles. To use rays as coordinates, the velocities have to be smoothed further to avoid caustics, which is detrimental to the mapping process. Solving the eikonal equation numerically for a line source at the surface provides a platform to map normal rays in complex unsmoothed velocity models and avoid caustics. We implement reverse-time migration (RTM) and downward continuation in the new ray coordinate system, which allows us to obtain efficient images and avoid some of the dip limitations of downward continuation.
Canela, Andrés; Klatt, Peter; Blasco, María A
2007-01-01
Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.
Romberg extrapolation for Euler summation-based cubature on regular regions.
Freeden, W; Gerhards, C
2017-01-01
Romberg extrapolation is a long-known method to improve the convergence rate of the trapezoidal rule on intervals. For simple regions such as the cube [Formula: see text] it is directly transferable to cubature in q dimensions. In this paper, we formulate Romberg extrapolation for Euler summation-based cubature on arbitrary q -dimensional regular regions [Formula: see text] and derive an explicit representation for the remainder term.
Tay, Kim Gaik; Kek, Sie Long; Abdul-Kahar, Rosmila
2015-05-01
In this paper, we have further improved the limitations of our previous two Richardson's extrapolation spreadsheet calculators for computing differentiations numerically. The new feature in this new Richardson's extrapolation spreadsheet calculator is fully automated up to any level based on the stopping criteria using VBA programming. The new version is more flexible because it is controlled by programming. Furthermore, it reduces computational time and CPU memory.
Extrapolation of π-meson form factor, zeros in the analyticity domain
International Nuclear Information System (INIS)
Morozov, P.T.
1978-01-01
The problem of a stable extrapolation from the cut to an arbitrary interior of the analyticity domain for the pion form factor is formulated and solved. As it is shown a stable solution can be derived if module representations with the Karleman weight function are used as the analyticity conditions. The case when the form factor has zeros is discussed. If there are zeros in the complex plane they must be taken into account when determining the extrapolation function
The Extrapolation-Accelerated Multilevel Aggregation Method in PageRank Computation
Directory of Open Access Journals (Sweden)
Bing-Yuan Pu
2013-01-01
Full Text Available An accelerated multilevel aggregation method is presented for calculating the stationary probability vector of an irreducible stochastic matrix in PageRank computation, where the vector extrapolation method is its accelerator. We show how to periodically combine the extrapolation method together with the multilevel aggregation method on the finest level for speeding up the PageRank computation. Detailed numerical results are given to illustrate the behavior of this method, and comparisons with the typical methods are also made.
Skeletal 212Pb retention following 224Ra injection: extrapolation of animal data to adult humans
International Nuclear Information System (INIS)
Schlenker, R.A.
1988-01-01
Two methods of interspecies extrapolation, one based on a correlation of skeletal 212 Pb/ 224 Ra with body weight, the other based on the mechanistic relationship between skeletal 212 Pb/ 224 Ra and reciprocal bone surface-to-volume ratio, lead to the conclusion that the retention of 212 Pb in the adult human skeleton is approximately complete a few days after injection. The correlation-based method gives most probable values for 212 Pb/ 224 Ra of 1.0 and 1.1 at 2 d and 7 d after injection, compared with values of 1.05 and 1.27 expected at these same times if the retention of 212 Pb were complete from the time of injection and if no 212 Pb were in the injection solution. The range of values corresponding to one geometric standard error on either side of the most probable value is 0.87 to 1.21 at 2 d post-injection. With the method based on the reciprocal bone surface-to-volume ratio, the best estimate of 212 Pb/ 224 Ra at 2 d after injection is 0.88, equal to the value observed in young adult beagles. An alternative interpretation of the results of this latter method leads to the conclusion that retention is complete, with 212 Pb/ 224 Ra equal to 1.0 for a 212 Pb-free injection solution and 1.1 for a solution containing 212 Pb in secular equilibrium with 224 Ra. This work, which uses 224 Ra daughter product retention data from mice, rats and dogs following 224Ra injection, provides a scientific foundation for retention assumptions made in the calculation of mean skeletal dose for adult humans. There now appear to be few uncertainties in these latter dose values, stemming from inaccurate retention assumptions; but substantial uncertainties remain in the mean skeletal dose values for juveniles and in the endosteal tissue doses regardless of age
Study of energy dependence of a extrapolation chamber in low energy X-rays beams
International Nuclear Information System (INIS)
Bastos, Fernanda M.; Silva, Teogenes A. da
2014-01-01
This work was with the main objective to study the energy dependence of extrapolation chamber in low energy X-rays to determine the value of the uncertainty associated with the variation of the incident radiation energy in the measures in which it is used. For studying the dependence of energy, were conducted comparative ionization current measurements between the extrapolation chamber and two ionization chambers: a chamber mammography, RC6M model, Radcal with energy dependence less than 5% and a 2575 model radioprotection chamber NE Technology; both chambers have very thin windows, allowing its application in low power beams. Measurements were made at four different depths of 1.0 to 4.0 mm extrapolation chamber, 1.0 mm interval, for each reference radiation. The study showed that there is a variable energy dependence on the volume of the extrapolation chamber. In other analysis, it is concluded that the energy dependence of extrapolation chamber becomes smaller when using the slope of the ionization current versus depth for the different radiation reference; this shows that the extrapolation technique, used for the absorbed dose calculation, reduces the uncertainty associated with the influence of the response variation with energy radiation
Rennen, Monique A J; Bouwman, Tialda; Wilschut, Annette; Bessems, Jos G M; Heer, Cees De
2004-02-01
Due to a lack of route-specific toxicity data, the health risks resulting from occupational exposure are frequently assessed by route-to-route (RtR) extrapolation based on oral toxicity data. Insight into the conditions for and the uncertainties connected with the application of RtR extrapolation has not been clearly described in a systematic manner. In our opinion, for a reliable occupational health risk assessment, it is necessary to have insight into the accuracy of the routinely applied RtR extrapolation and, if possible, to give a (semi-)quantitative estimate of the possible error introduced. Therefore, experimentally established no-observed-adverse-effect-levels for inhalation studies were compared to no-adverse-effect-levels predicted from oral toxicity studies by RtR extrapolation. From our database analysis it can be concluded that the widely used RtR extrapolation methodology based on correction for differences in (estimates of) absorption is not generally reliable and certainly not valid for substances inducing local effects. More experimental data are required (from unpublished data or new experiments) to get insight into the reliability of RtR extrapolation and the possibility to derive an assessment factor to account for the uncertainties. Moreover, validated screening methods to predict/exclude the occurrence of local effects after repeated exposure are warranted. Especially, in cases where chemical exposure by inhalation or skin contact cannot be excluded route-specific toxicity studies should be considered to prevent from inadequate estimates of human health risks.
In situ LTE exposure of the general public: Characterization and extrapolation.
Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc
2012-09-01
In situ radiofrequency (RF) exposure of the different RF sources is characterized in Reading, United Kingdom, and an extrapolation method to estimate worst-case long-term evolution (LTE) exposure is proposed. All electric field levels satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels with a maximal total electric field value of 4.5 V/m. The total values are dominated by frequency modulation (FM). Exposure levels for LTE of 0.2 V/m on average and 0.5 V/m maximally are obtained. Contributions of LTE to the total exposure are limited to 0.4% on average. Exposure ratios from 0.8% (LTE) to 12.5% (FM) are obtained. An extrapolation method is proposed and validated to assess the worst-case LTE exposure. For this method, the reference signal (RS) and secondary synchronization signal (S-SYNC) are measured and extrapolated to the worst-case value using an extrapolation factor. The influence of the traffic load and output power of the base station on in situ RS and S-SYNC signals are lower than 1 dB for all power and traffic load settings, showing that these signals can be used for the extrapolation method. The maximal extrapolated field value for LTE exposure equals 1.9 V/m, which is 32 times below the ICNIRP reference levels for electric fields. Copyright © 2012 Wiley Periodicals, Inc.
Clements, Aspen R; Berk, Brandon; Cooke, Ilsa R; Garrod, Robin T
2018-02-21
Dust grains in cold, dense interstellar clouds build up appreciable ice mantles through the accretion and subsequent surface chemistry of atoms and molecules from the gas. These mantles, of thicknesses on the order of 100 monolayers, are primarily composed of H 2 O, CO, and CO 2 . Laboratory experiments using interstellar ice analogues have shown that porosity could be present and can facilitate diffusion of molecules along the inner pore surfaces. However, the movement of molecules within and upon the ice is poorly described by current chemical kinetics models, making it difficult either to reproduce the formation of experimental porous ice structures or to extrapolate generalized laboratory results to interstellar conditions. Here we use the off-lattice Monte Carlo kinetics model MIMICK to investigate the effects that various deposition parameters have on laboratory ice structures. The model treats molecules as isotropic spheres of a uniform size, using a Lennard-Jones potential. We reproduce experimental trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature; ice density decreases when the incident angle or deposition rate is increased, while increasing temperature results in a more-compact water ice. The models indicate that the density behaviour at higher temperatures (≥80 K) is dependent on molecular rearrangement resulting from thermal diffusion. To reproduce trends at lower temperatures, it is necessary to take account of non-thermal diffusion by newly-adsorbed molecules, which bring kinetic energy both from the gas phase and from their acceleration into a surface binding site. Extrapolation of the model to conditions appropriate to protoplanetary disks, in which direct accretion of water from the gas-phase may be the dominant ice formation mechanism, indicate that these ices may be less porous than laboratory ices.
Telomere length and depression
DEFF Research Database (Denmark)
Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line
2017-01-01
BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...
Myofilament length dependent activation
Energy Technology Data Exchange (ETDEWEB)
de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)
2010-05-25
The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.
Upper Extremity Length Equalization
DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark
1992-01-01
Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...
Directory of Open Access Journals (Sweden)
F. K. Muthoni
2017-11-01
Full Text Available Sustainable intensification (SI is a viable pathway to increase agricultural production and improve ecosystem health. Scaling SI technologies in locations with similar biophysical conditions enhance adoption. This paper employs novel extrapolation detection (ExeDet algorithm and gridded bioclimatic layers to delineate extrapolation domains for improved maize variety (SC719 and inorganic fertilizers (YaraMila-CEREAL® and YaraBela-Sulfan® in Tanzania. Suitability was based on grain yields recorded in on-farm trials. The ExeDet algorithm generated three maps: (1 the dissimilarity between bioclimatic conditions in the reference trial sites and the target extrapolation domain (Novelty type-1, (2 the magnitude of novel correlations between covariates in extrapolation domain (Novelty type-2 and (3 the most limiting covariate. The novelty type1 and 2 maps were intersected and reclassified into five suitability classes. These classes were cross-tabulated to generate extrapolation suitability index (ESI for the candidate technology package. An impact based spatial targeting index (IBSTI was used to identify areas within the zones earmarked as suitable using ESI where the potential impacts for out scaling interventions can be maximized. Application of ESI and IBSTI is expected to guide extension and development agencies to prioritize scaling intervention based on both biophysical suitability and potential impact of particular technology package. Annual precipitation was most limiting factor in largest area of the extrapolation domain. Identification of the spatial distribution of the limiting factor is useful for recommending remedial measures to address the limiting factor that hinder a technology to achieve its full potential. The method outlined in this paper is replicable to other technologies that require extrapolation provided that representative reference trial data and appropriate biophysical grids are available.
CSIR Research Space (South Africa)
National Institute for Transport and Road
1977-01-01
Full Text Available Rumble surfaces are intermittent short lengths of coarse-textured road surfacings on which vehicle tyres produce a rumbling sound. used in conjunction with appropriate roadsigns and markings, they can reduce accidents on rural roads by alerting...
Pérez-Guisado, Joaquín; de Haro-Padilla, Jesús M; Rioja, Luis F; DeRosier, Leo C; de la Torre, Jorge I
2013-01-01
Objective: Serum albumin levels have been used to evaluate the severity of the burns and the nutrition protein status in burn people, specifically in the response of the burn patient to the nutrition. Although it hasn’t been proven if all these associations are fully funded. The aim of this retrospective study was to determine the relationship of serum albumin levels at 3-7 days after the burn injury, with the total body surface area burned (TBSA), the length of hospital stay (LHS) and the initiation of the oral/enteral nutrition (IOEN). Subject and methods: It was carried out with the health records of patients that accomplished the inclusion criteria and were admitted to the burn units at the University Hospital of Reina Sofia (Córdoba, Spain) and UAB Hospital at Birmingham (Alabama, USA) over a 10 years period, between January 2000 and December 2009. We studied the statistical association of serum albumin levels with the TBSA, LHS and IOEN by ANOVA one way test. The confidence interval chosen for statistical differences was 95%. Duncan’s test was used to determine the number of statistically significantly groups. Results: Were expressed as mean±standard deviation. We found serum albumin levels association with TBSA and LHS, with greater to lesser serum albumin levels found associated to lesser to greater TBSA and LHS. We didn’t find statistical association with IOEN. Conclusion: We conclude that serum albumin levels aren’t a nutritional marker in burn people although they could be used as a simple clinical tool to identify the severity of the burn wounds represented by the total body surface area burned and the lenght of hospital stay. PMID:23875122
Shiran, M R; Proctor, N J; Howgate, E M; Rowland-Yeo, K; Tucker, G T; Rostami-Hodjegan, A
2006-07-01
Previously in vitro-in vivo extrapolation (IVIVE) with the Simcyp Clearance and Interaction Simulator has been used to predict the clearance of 15 clinically used drugs in humans. The criteria for the selection of the drugs were that they are used as probes for the activity of specific cytochromes P450 (CYPs) or have a single CYP isoform as the major or sole contributor to their metabolism and that they do not exhibit non-linear kinetics in vivo. Where data were available for the clearance of the drugs in at least three animal species, the predictions from IVIVE have now been compared with those based on allometric scaling (AS). Adequate data were available for estimating oral clearance (CLp.o.) in 9 cases (alprazolam, sildenafil, caffeine, clozapine, cyclosporine, dextromethorphan, midazolam, omeprazole and tolbutamide) and intravenous clearance in 6 cases (CLi.v.) (cyclosporine, diclofenac, midazolam, omeprazole, theophylline and tolterodine). AS predictions were based on five different methods: (1) simple allometry (clearance versus body weight); (2) correction for maximum life-span potential (CL x MLP); (3) correction for brain weight (CL x BrW); (4) the use of body surface area; and (5) the rule of exponents. A prediction accuracy was indicated by mean-fold error and the Pearson product moment correlation coefficient. Predictions were considered successful if the mean-fold error was error range: 1.02-4.00). All five AS methods were accurate in 13, 11, 10, 10 and 14 cases, respectively. However, in some cases the error of AS exceeded fivefold. On the basis of the current results, IVIVE is more reliable than AS in predicting human clearance values for drugs mainly metabolized by CYP450 enzymes. This suggests that the place of AS methods in pre-clinical drug development warrants further scrutiny.
Chiral extrapolation of lattice data for the hyperfine splittings of heavy mesons
International Nuclear Information System (INIS)
Guo, X.; Thomas, A.W.
2002-01-01
Full text: Hyperfine splittings between the heavy vector (D*, B*) and pseudoscalar (D, B) mesons have been calculated numerically in lattice QCD, where the pion mass (which is related to the light quark mass) is much larger than its physical value. Naive linear chiral extrapolations of the lattice data to the physical mass of the pion lead to hyperfine splittings which are smaller than experimental data. In order to extrapolate these lattice data to the physical mass of the pion more reasonably, we apply the effective chiral perturbation theory for heavy mesons, which is invariant under chiral symmetry when the light quark masses go to zero and heavy quark symmetry when the heavy quark masses go to infinity. This leads to a phenomenological functional form with three parameters to extrapolate the lattice data. It is found that the extrapolated hyperfine splittings are even smaller than those obtained using linear extrapolation. We conclude that the source of the discrepancy between lattice data for hyperfine splittings and experiment must lie in non-chiral physics
Choice of order and extrapolation method in Aarseth-type N-body algorithms
Energy Technology Data Exchange (ETDEWEB)
Press, W.H.; Spergel, D.N.
1988-02-01
The force-versus-time history of a typical particle in a 50-body King model is taken as input data, and its extrapolatability is measured. Extrapolatability means how far the force can be extrapolated, measured in units of a locally defined rate-of-change time scale, and still be within a specified fractional accuracy of the true values. Greater extrapolatability means larger step size, hence greater efficiency, in an Aarseth-type N-body code. Extrapolatability is found to depend systematically on the order of the extrapolation method, but it goes to a finite limit in the limit of large order. A formula for choosing the optimal (most efficient) order for any desired accuracy is given; higher orders than are presently in use are indicated. Neither rational function extrapolation nor a somewhat vector-regularized polynomial method is found to be systematically better than component-wise polynomial extrapolation, indicating that extrapolatability can be viewed as an intrinsic property of the underlying N-body forces, independent of the extrapolation method. 13 references.
Mueller, David S.
2013-04-01
Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.
Relativistic Length Agony Continued
Redzic, D. V.
2014-06-01
We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.
DEFF Research Database (Denmark)
Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P
2008-01-01
Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...
The influence of an extrapolation chamber over the low energy X-ray beam radiation field
Energy Technology Data Exchange (ETDEWEB)
Tanuri de F, M. T.; Da Silva, T. A., E-mail: mttf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)
2016-10-15
The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)
The influence of an extrapolation chamber over the low energy X-ray beam radiation field
International Nuclear Information System (INIS)
Tanuri de F, M. T.; Da Silva, T. A.
2016-10-01
The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)
International Nuclear Information System (INIS)
Adi, Wisnu Ari; Sukirman, Engkir; Winatapura, Didin S.
2000-01-01
Technique of critical current density measurement (Jc) of HTc bulk ceramic superconductor has been performed by using linear extrapolation with four-point probes method. The measurement of critical current density HTc bulk ceramic superconductor usually causes damage in contact resistance. In order to decrease this damage factor, we introduce extrapolation method. The extrapolating data show that the critical current density Jc for YBCO (123) and BSCCO (2212) at 77 K are 10,85(6) Amp.cm - 2 and 14,46(6) Amp.cm - 2, respectively. This technique is easier, simpler, and the use of the current flow is low, so it will not damage the contact resistance of the sample. We expect that the method can give a better solution for bulk superconductor application. Key words. : superconductor, critical temperature, and critical current density
International Nuclear Information System (INIS)
Beresford, Nicholas A.; Wood, Michael D.; Vives i Batlle, Jordi; Yankovich, Tamara L.; Bradshaw, Clare; Willey, Neil
2016-01-01
We will never have data to populate all of the potential radioecological modelling parameters required for wildlife assessments. Therefore, we need robust extrapolation approaches which allow us to make best use of our available knowledge. This paper reviews and, in some cases, develops, tests and validates some of the suggested extrapolation approaches. The concentration ratio (CR product-diet or CR wo-diet ) is shown to be a generic (trans-species) parameter which should enable the more abundant data for farm animals to be applied to wild species. An allometric model for predicting the biological half-life of radionuclides in vertebrates is further tested and generally shown to perform acceptably. However, to fully exploit allometry we need to understand why some elements do not scale to expected values. For aquatic ecosystems, the relationship between log 10 (a) (a parameter from the allometric relationship for the organism-water concentration ratio) and log(K d ) presents a potential opportunity to estimate concentration ratios using K d values. An alternative approach to the CR wo-media model proposed for estimating the transfer of radionuclides to freshwater fish is used to satisfactorily predict activity concentrations in fish of different species from three lakes. We recommend that this approach (REML modelling) be further investigated and developed for other radionuclides and across a wider range of organisms and ecosystems. Ecological stoichiometry shows potential as an extrapolation method in radioecology, either from one element to another or from one species to another. Although some of the approaches considered require further development and testing, we demonstrate the potential to significantly improve predictions of radionuclide transfer to wildlife by making better use of available data. - Highlights: • Robust extrapolation approaches allowing best use of available knowledge are needed. • Extrapolation approaches are reviewed, developed
The optimized expansion based low-rank method for wavefield extrapolation
Wu, Zedong
2014-03-01
Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Naess, Arvid; Saha, Nilanjan
2011-01-01
within a hierarchical model where the variables that influence the loading are divided into ergodic variables and time-invariant non-ergodic variables. The presented method for statistical response load extrapolation was compared with the existing methods based on peak extrapolation for the blade out...... to cases where the Gumbel distribution is the appropriate asymptotic extreme value distribution. However, two extra parameters are introduced by which a more general and flexible class of extreme value distributions is obtained with the Gumbel distribution as a subclass. The general method is implemented...
African Journals Online (AJOL)
Administrator
Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...
Gap length distributions by PEPR
International Nuclear Information System (INIS)
Warszawer, T.N.
1980-01-01
Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)
Maucher, Fabian; Sutcliffe, Paul
2017-07-01
In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.
Pion nucleus scattering lengths
International Nuclear Information System (INIS)
Huang, W.T.; Levinson, C.A.; Banerjee, M.K.
1971-09-01
Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs
International Nuclear Information System (INIS)
Alvarez R, J.T.; Morales P, R.
1992-06-01
The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, ( 90 Sr/ 90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)
The 'extrapolated center of mass' concept suggests a simple control of balance in walking
Hof, At L.
Next to position x and velocity v of the whole body center of mass (CoM) the 'extrapolated center of mass' (XcoM) can be introduced: zeta = x + v/omega(0), where omega(0) is a constant related to stature. Based on the inverted pendulum model of balance, the XcoM enables to formulate the requirements
Jager, Tjalling; Klok, Chris
2010-11-12
The interest of environmental management is in the long-term health of populations and ecosystems. However, toxicity is usually assessed in short-term experiments with individuals. Modelling based on dynamic energy budget (DEB) theory aids the extraction of mechanistic information from the data, which in turn supports educated extrapolation to the population level. To illustrate the use of DEB models in this extrapolation, we analyse a dataset for life cycle toxicity of copper in the earthworm Dendrobaena octaedra. We compare four approaches for the analysis of the toxicity data: no model, a simple DEB model without reserves and maturation (the Kooijman-Metz formulation), a more complex one with static reserves and simplified maturation (as used in the DEBtox software) and a full-scale DEB model (DEB3) with explicit calculation of reserves and maturation. For the population prediction, we compare two simple demographic approaches (discrete time matrix model and continuous time Euler-Lotka equation). In our case, the difference between DEB approaches and population models turned out to be small. However, differences between DEB models increased when extrapolating to more field-relevant conditions. The DEB3 model allows for a completely consistent assessment of toxic effects and therefore greater confidence in extrapolating, but poses greater demands on the available data.
Extrapolating intensified forest inventory data to the surrounding landscape using landsat
Evan B. Brooks; John W. Coulston; Valerie A. Thomas; Randolph H. Wynne
2015-01-01
In 2011, a collection of spatially intensified plots was established on three of the Experimental Forests and Ranges (EFRs) sites with the intent of facilitating FIA program objectives for regional extrapolation. Characteristic coefficients from harmonic regression (HR) analysis of associated Landsat stacks are used as inputs into a conditional random forests model to...
Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity
Czech Academy of Sciences Publication Activity Database
Sokol, Zbyněk; Zacharov, Petr, jr.
2012-01-01
Roč. 138, č. 665 (2012), s. 1072-1082 ISSN 0035-9009 Institutional support: RVO:68378289 Keywords : precipitation forecast * radar extrapolation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.327, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/qj.970/abstract
Source-receiver two-way wave extrapolation for prestack exploding-reflector modelling and migration
Alkhalifah, Tariq Ali
2014-10-08
Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high-order partial differential equations in the source-receiver time domain. The fourth-order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P-waves and reduce to the zero-offset exploding-reflector solutions when the source coincides with the receiver. A challenge for implementing two-way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral-based extrapolation. Using spectral methods based on the low-rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach.
Accurate Conformational Energy Differences of Carbohydrates: A Complete Basis Set Extrapolation
Czech Academy of Sciences Publication Activity Database
Csonka, G. I.; Kaminský, Jakub
2011-01-01
Roč. 7, č. 4 (2011), s. 988-997 ISSN 1549-9618 Institutional research plan: CEZ:AV0Z40550506 Keywords : MP2 * basis set extrapolation * saccharides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.215, year: 2011
Potential Hydraulic Modelling Errors Associated with Rheological Data Extrapolation in Laminar Flow
International Nuclear Information System (INIS)
Shadday, Martin A. Jr.
1997-01-01
The potential errors associated with the modelling of flows of non-Newtonian slurries through pipes, due to inadequate rheological models and extrapolation outside of the ranges of data bases, are demonstrated. The behaviors of both dilatant and pseudoplastic fluids with yield stresses, and the errors associated with treating them as Bingham plastics, are investigated
DEFF Research Database (Denmark)
Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.
2011-01-01
in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto...
Groeneveld, C.N.; Hakkert, B.C.; Bos, P.M.J.; Heer, C.de
2004-01-01
For human risk assessment, experimental data often have to be extrapolated for exposure duration, which is generally done by means of default values. The purpose of the present study was twofold. First, to derive a statistical distribution for differences in exposure duration that can be used in a
Comparison of precipitation nowcasting by extrapolation and statistical-advection methods
Czech Academy of Sciences Publication Activity Database
Sokol, Zbyněk; Kitzmiller, D.; Pešice, Petr; Mejsnar, Jan
2013-01-01
Roč. 123, 1 April (2013), s. 17-30 ISSN 0169-8095 R&D Projects: GA MŠk ME09033 Institutional support: RVO:68378289 Keywords : Precipitation forecast * Statistical models * Regression * Quantitative precipitation forecast * Extrapolation forecast Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.421, year: 2013 http://www.sciencedirect.com/science/article/pii/S0169809512003390
Length-weight and length-length relationships of freshwater wild ...
African Journals Online (AJOL)
Length-weight and length-length relationships of freshwater wild catfish Mystus bleekeri from Nala Daik, Sialkot, Pakistan. ... Linear regression analysis was used, first to compute the degree of relationship between length and weight and then among total (TL), standard (SL) and fork lengths (FL). LWR exhibited a highly ...
Relativistic length agony continued
Directory of Open Access Journals (Sweden)
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R
2017-11-01
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water
Directory of Open Access Journals (Sweden)
S. A. Banin
2016-01-01
Full Text Available Forecasting methods, extrapolation ones in particular, are used in health care for medical, biological and clinical research. The author, using accessible internet space, has not met a single publication devoted to extrapolation of financial parameters of health care activities. This determined the relevance of the material presented in the article: based on health care financing dynamics in Russia in 2000–2010 the author examined possibility of application of basic perspective extrapolation methods - moving average, exponential smoothing and least squares. It is hypothesized that all three methods can equally forecast actual public expenditures on health care in medium term in Russia’s current financial and economic conditions. The study result was evaluated in two time periods: within the studied interval and a five-year period. It was found that within the study period all methods have an average relative extrapolation error of 3–5%, which means high precision of the forecast. The study shown a specific feature of the least squares method which were gradually accumulating results so their economic interpretation became possible only in the end of the studied period. That is why the extrapolating results obtained by least squares method are not applicable in an entire study period and rather have a theoretical value. Beyond the study period, however, this feature was found to be the most corresponding to the real situation. It was the least squares method that proved to be the most appropriate for economic interpretation of the forecast results of actual public expenditures on health care. The hypothesis was not confirmed, the author received three differently directed results, while each method had independent significance and its application depended on evaluation study objectives and real social, economic and financial situation in Russian health care system.
SU-D-204-02: BED Consistent Extrapolation of Mean Dose Tolerances
Energy Technology Data Exchange (ETDEWEB)
Perko, Z; Bortfeld, T; Hong, T; Wolfgang, J; Unkelbach, J [Massachusetts General Hospital, Boston, MA (United States)
2016-06-15
Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot
Baldwin, David H; Spromberg, Julann A; Collier, Tracy K; Scholz, Nathaniel L
2009-12-01
For more than a decade, numerous pesticides have been detected in river systems of the western United States that support anadromous species of Pacific salmon and steelhead. Over the same interval, several declining wild salmon populations have been listed as either threatened or endangered under the U.S. Endangered Species Act (ESA). Because pesticides occur in surface waters that provide critical habitat for ESA-listed stocks, they are an ongoing concern for salmon conservation and recovery throughout California and the Pacific Northwest. Because pesticide exposures are typically sublethal, a key question is whether toxicological effects at (or below) the scale of the individual animal ultimately reduce the productivity and recovery potential of wild populations. In this study we evaluate how the sublethal impacts of pesticides on physiology and behavior can reduce the somatic growth of juvenile chinook salmon (Oncorhynchus tshawytscha) and, by extension, subsequent size-dependent survival when animals migrate to the ocean and overwinter in their first year. Our analyses focused on the organophosphate and carbamate classes of insecticides. These neurotoxic chemicals have been widely detected in aquatic environments. They inhibit acetylcholinesterase, an enzyme in the salmon nervous system that regulates neurotransmitter-mediated signaling at synapses. Based on empirical data, we developed a model that explicitly links sublethal reductions in acetylcholinesterase activity to reductions in feeding behavior, food ration, growth, and size at migration. Individual size was then used to estimate size-dependent survival during migration and transition to the sea. Individual survival estimates were then integrated into a life-history population projection matrix and used to calculate population productivity and growth rate. Our results indicate that short-term (i.e., four-day) exposures that are representative of seasonal pesticide use may be sufficient to reduce the
Lifetime and Path Length of the Virtual Particle
International Nuclear Information System (INIS)
Lyuboshitz, V.L.; Lyuboshitz, V.V.
2005-01-01
The concepts of the lifetime and path length of a virtual particle are introduced. It is shown that, near the mass surface of the real particle, these quantities constitute a 4-vector. At very high energies, the virtual particle can propagate over considerable (even macroscopic) distances. The formulas for the lifetime and path length of an ultrarelativistic virtual electron in the process of bremsstrahlung in the Coulomb field of a nucleus are obtained. The lifetime and path length of the virtual photon at its conversion into an electron-positron pair are discussed. The connection between the path length of the virtual particle and the coherence length (formation length) is analyzed
Short cervical length dilemma.
Suhag, Anju; Berghella, Vincenzo
2015-06-01
Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality. With research efforts, the rate of PTB decreased to 11.4% in 2013. Transvaginal ultrasound (TVU) cervical length (CL) screening predicts PTB. In asymptomatic singletons without prior spontaneous PTB (sPTB), TVU CL screening should be done. If the cervix is 20 mm or less, vaginal progesterone is indicated. In asymptomatic singletons with prior sPTB, serial CL screening is indicated. In multiple gestations, routine cervical screening is not indicated. In symptomatic women with preterm labor, TVU CL screening and fetal fibronectin testing is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
P. R. Parthasarathy
2001-01-01
Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.
Primary length standard adjustment
Ševčík, Robert; Guttenová, Jana
2007-04-01
This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.
Uribe-Rivera, David E; Soto-Azat, Claudio; Valenzuela-Sánchez, Andrés; Bizama, Gustavo; Simonetti, Javier A; Pliscoff, Patricio
2017-07-01
Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as
Sun, Shuyu
2013-06-01
This paper introduces an efficient technique to generate new molecular simulation Markov chains for different temperature and density conditions, which allow for rapid extrapolation of canonical ensemble averages at a range of temperatures and densities different from the original conditions where a single simulation is conducted. Obtained information from the original simulation are reweighted and even reconstructed in order to extrapolate our knowledge to the new conditions. Our technique allows not only the extrapolation to a new temperature or density, but also the double extrapolation to both new temperature and density. The method was implemented for Lennard-Jones fluid with structureless particles in single-gas phase region. Extrapolation behaviors as functions of extrapolation ranges were studied. Limits of extrapolation ranges showed a remarkable capability especially along isochors where only reweighting is required. Various factors that could affect the limits of extrapolation ranges were investigated and compared. In particular, these limits were shown to be sensitive to the number of particles used and starting point where the simulation was originally conducted.
Yang, F; Sun, N; Sun, Y X; Shan, Q; Zhao, H Y; Zeng, D P; Zeng, Z L
2013-04-01
In this study, an oral physiologically based pharmacokinetics (PBPK) model was developed for florfenicol in crucian carp (Carassius auratus). Subsequently, oral-to-intramuscular extrapolation was performed and the two models were used to predict florfenicol concentrations in the edible tissues of crucian carp. The oral model gave good predictions in most tissues, except for kidney and liver in which the florfenicol concentrations were underestimated at the later time points. In contrast, using the intramuscular model, the concentrations in the kidney were overestimated at the later time points. Both models had the best predictive ability in the main edible tissue, the muscle. The oral model also accurately predicted the florfenicol concentrations in the muscle after multiple doses. The present study demonstrated the feasibility of predicting florfenicol concentrations in the edible tissues of crucian carp using a route-to-route extrapolation method. © 2012 Blackwell Publishing Ltd.
New allometric scaling relationships and applications for dose and toxicity extrapolation.
Cao, Qiming; Yu, Jimmy; Connell, Des
2014-01-01
Allometric scaling between metabolic rate, size, body temperature, and other biological traits has found broad applications in ecology, physiology, and particularly in toxicology and pharmacology. Basal metabolic rate (BMR) was observed to scale with body size and temperature. However, the mass scaling exponent was increasingly debated whether it should be 2/3, 3/4, or neither, and scaling with body temperature also attracted recent attention. Based on thermodynamic principles, this work reports 2 new scaling relationships between BMR, size, temperature, and biological time. Good correlations were found with the new scaling relationships, and no universal scaling exponent can be obtained. The new scaling relationships were successfully validated with external toxicological and pharmacological studies. Results also demonstrated that individual extrapolation models can be built to obtain scaling exponent specific to the interested group, which can be practically applied for dose and toxicity extrapolations. © The Author(s) 2014.
Linear extrapolation distance for a black cylindrical control rod with the pulsed neutron method
International Nuclear Information System (INIS)
Loewenhielm, G.
1978-03-01
The objective of this experiment was to measure the linear extrapolation distance for a central black cylindrical control rod in a cylindrical water moderator. The radius for both the control rod and the moderator was varied. The pulsed neutron technique was used and the decay constant was measured for both a homogeneous and a heterogeneous system. From the difference in the decay constants the extrapolation distance could be calculated. The conclusion is that within experimental error it is safe to use the approximate formula given by Pellaud or the more exact one given by Kavenoky. We can also conclude that linear anisotropic scattering is accounted for in a correct way in the approximate formula given by Pellaud and Prinja and Williams
{sup 131}I-SPGP internal dosimetry: animal model and human extrapolation
Energy Technology Data Exchange (ETDEWEB)
Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br; Figueiredo, Suely Gomes de [Universidade Federal do Espirito Santo, (UFES), Vitoria, ES (Brazil). Dept. de Ciencias Fisiologicas. Lab. de Quimica de Proteinas
2009-07-01
Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's {sup 125}ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the {sup 131}I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I were considered. (author)
DEFF Research Database (Denmark)
Kissling, W. Daniel; Dalby, Lars; Fløjgaard, Camilla
2014-01-01
that the consistency in data entry among multiple recorders was high. Data sources provided species-level diet information for a total of 2033 species (38% of all 5364 terrestrial mammal species, based on the IUCN taxonomy). For the remaining 3331 species, diet information was mostly extrapolated from genus-level diet......”, “Invertebrate”, “Plant”, “Seed”, “Fruit”, and “Leaf”) had high proportions of correctly predicted diet ranks; and (3) the potential of correctly extrapolating specific diet categories varied both within and among clades. Global maps of species richness and proportion showed congruence among trophic levels......Ecological trait data are essential for understanding the broad-scale distribution of biodiversity and its response to global change. For animals, diet represents a fundamental aspect of species’ evolutionary adaptations, ecological and functional roles, and trophic interactions. However...
Electric form factors of the octet baryons from lattice QCD and chiral extrapolation
International Nuclear Information System (INIS)
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.
2014-03-01
We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q 2 in the range 0.2-1.3 GeV 2 . The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ p G E p /G M p . This quantity decreases with Q 2 in a way qualitatively consistent with recent experimental results.
131I-SPGP internal dosimetry: animal model and human extrapolation
International Nuclear Information System (INIS)
Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soprani, Juliana; Santos, Raquel Gouvea dos; Figueiredo, Suely Gomes de
2009-01-01
Scorpaena plumieri is commonly called moreia-ati or manganga and is the most venomous and one of the most abundant fish species of the Brazilian coast. Soprani 2006, demonstrated that SPGP - an isolated protein from S. plumieri fish- possess high antitumoral activity against malignant tumours and can be a source of template molecules for the development (design) of antitumoral drugs. In the present work, Soprani's 125 ISPGP biokinetic data were treated by MIRD formalism to perform Internal Dosimetry studies. Absorbed doses due to the 131 I-SPGP uptake were determinate in several organs of mice, as well as in the implanted tumor. Doses obtained for animal model were extrapolated to humans assuming a similar ratio for various mouse and human tissues. For the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131 I were considered. (author)
Hatch, Harold W.; Jiao, Sally; Mahynski, Nathan A.; Blanco, Marco A.; Shen, Vincent K.
2017-12-01
Virial coefficients are predicted over a large range of both temperatures and model parameter values (i.e., alchemical transformation) from an individual Mayer-sampling Monte Carlo simulation by statistical mechanical extrapolation with minimal increase in computational cost. With this extrapolation method, a Mayer-sampling Monte Carlo simulation of the SPC/E (extended simple point charge) water model quantitatively predicted the second virial coefficient as a continuous function spanning over four orders of magnitude in value and over three orders of magnitude in temperature with less than a 2% deviation. In addition, the same simulation predicted the second virial coefficient if the site charges were scaled by a constant factor, from an increase of 40% down to zero charge. This method is also shown to perform well for the third virial coefficient and the exponential parameter for a Lennard-Jones fluid.
Vector extrapolation enhanced TSVD for linear discrete ill-posed problems
Jbilou, K.; Reichel, L.; Sadok, H.
2009-06-01
The truncated singular value decomposition (TSVD) is a popular solution method for small to moderately sized linear ill-posed problems. The truncation index can be thought of as a regularization parameter; its value affects the quality of the computed approximate solution. The choice of a suitable value of the truncation index generally is important, but can be difficult without auxiliary information about the problem being solved. This paper describes how vector extrapolation methods can be combined with TSVD, and illustrates that the determination of the proper value of the truncation index is less critical for the combined extrapolation-TSVD method than for TSVD alone. The numerical performance of the combined method suggests a new way to determine the truncation index.
International Nuclear Information System (INIS)
Tsvilyuk, I.S.; Avramenko, D.S.
1986-01-01
This paper carries out the comparative analysis of the suitability of parametric methods for describing and extrapolating the results of longterm tests on refractory materials. Diagrams are presented of the longterm strength of niobium based alloys tested in a vacuum of 1.3 X 10 -3 Pa. The predicted values and variance of the estimate of endurance of refractory alloys are presented by parametric dependences. The longterm strength characteristics can be described most adequately by the Manson-Sakkop and Sherby-Dorn methods. Several methods must be used to ensure the reliable extrapolation of the longterm strength characteristics to the time period an order of magnitude longer than the experimental data. The most suitable method cannot always be selected on the basis of the correlation ratio
{sup 131}I-CRTX internal dosimetry: animal model and human extrapolation
Energy Technology Data Exchange (ETDEWEB)
Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: hma@cdtn.br
2009-07-01
Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. {sup 125}I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, {sup 125}I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for {sup 131}I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from {sup 131}I in the tissue were considered in dose calculations. (author)
The design of L1-norm visco-acoustic wavefield extrapolators
Salam, Syed Abdul; Mousa, Wail A.
2018-04-01
Explicit depth frequency-space (f - x) prestack imaging is an attractive mechanism for seismic imaging. To date, the main focus of this method was data migration assuming an acoustic medium, but until now very little work assumed visco-acoustic media. Real seismic data usually suffer from attenuation and dispersion effects. To compensate for attenuation in a visco-acoustic medium, new operators are required. We propose using the L1-norm minimization technique to design visco-acoustic f - x extrapolators. To show the accuracy and compensation of the operators, prestack depth migration is performed on the challenging Marmousi model for both acoustic and visco-acoustic datasets. The final migrated images show that the proposed L1-norm extrapolation results in practically stable and improved resolution of the images.
131I-CRTX internal dosimetry: animal model and human extrapolation
International Nuclear Information System (INIS)
Andrade, Henrique Martins de; Ferreira, Andrea Vidal; Soares, Marcella Araugio; Silveira, Marina Bicalho; Santos, Raquel Gouvea dos
2009-01-01
Snake venoms molecules have been shown to play a role not only in the survival and proliferation of tumor cells but also in the processes of tumor cell adhesion, migration and angiogenesis. 125 I-Crtx, a radiolabeled version of a peptide derived from Crotalus durissus terrificus snake venom, specifically binds to tumor and triggers apoptotic signalling. At the present work, 125 I-Crtx biokinetic data (evaluated in mice bearing Erlich tumor) were treated by MIRD formalism to perform Internal Dosimetry studies. Doses in several organs of mice were determinate, as well as in implanted tumor, for 131 I-Crtx. Doses results obtained for animal model were extrapolated to humans assuming a similar concentration ratio among various tissues between mouse and human. In the extrapolation, it was used human organ masses from Cristy/Eckerman phantom. Both penetrating and non-penetrating radiation from 131 I in the tissue were considered in dose calculations. (author)
Source‐receiver two‐way wave extrapolation for prestack exploding‐reflector modeling and migration
Alkhalifah, Tariq Ali
2010-10-17
While most of the modern seismic imaging methods perform imaging by separating input data into parts (shot gathers), we develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield backward in time. While computationally extensive, this approach has the potential of generating accurate images, free of artifacts associated with conventional approaches. We derive novel high‐order partial differential equations in source‐receiver‐time domain. The fourth order nature of the extrapolation in time has four solutions two of which correspond to the ingoing and outgoing P‐waves and reduces to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. Using asymptotic approximations, we develop an approach to extrapolating the full prestack wavefield forward or backward in time.
Mazas, Franck; Hamm, Luc; Kergadallan, Xavier
2013-04-01
In France, the storm Xynthia of February 27-28th, 2010 reminded engineers and stakeholders of the necessity for an accurate estimation of extreme sea levels for the risk assessment in coastal areas. Traditionally, two main approaches exist for the statistical extrapolation of extreme sea levels: the direct approach performs a direct extrapolation on the sea level data, while the indirect approach carries out a separate analysis of the deterministic component (astronomical tide) and stochastic component (meteorological residual, or surge). When the tidal component is large compared with the surge one, the latter approach is known to perform better. In this approach, the statistical extrapolation is performed on the surge component then the distribution of extreme seal levels is obtained by convolution of the tide and surge distributions. This model is often referred to as the Joint Probability Method. Different models from the univariate extreme theory have been applied in the past for extrapolating extreme surges, in particular the Annual Maxima Method (AMM) and the r-largest method. In this presentation, we apply the Peaks-Over-Threshold (POT) approach for declustering extreme surge events, coupled with the Poisson-GPD model for fitting extreme surge peaks. This methodology allows a sound estimation of both lower and upper tails of the stochastic distribution, including the estimation of the uncertainties associated to the fit by computing the confidence intervals. After convolution with the tide signal, the model yields the distribution for the whole range of possible sea level values. Particular attention is paid to the necessary distinction between sea level values observed at a regular time step, such as hourly, and sea level events, such as those occurring during a storm. Extremal indexes for both surges and levels are thus introduced. This methodology will be illustrated with a case study at Brest, France.
A hybrid method without extrapolation step for solving variational inequality problems
Malitsky, Yu. V.; Semenov, V. V.
2015-01-01
In this paper, we introduce a new method for solving variational inequality problems with monotone and Lipschitz-continuous mapping in Hilbert space. The iterative process is based on two well-known projection method and the hybrid (or outer approximation) method. However we do not use an extrapolation step in the projection method. The absence of one projection in our method is explained by slightly different choice of sets in hybrid method. We prove a strong convergence of the sequences gen...
Kidney Length in Normal Korean Children
International Nuclear Information System (INIS)
Kim, In One; Cheon, Jung Eun; Lee, Young Seok; Lee, Sun Wha; Kim, Ok Hwa; Kim, Ji Hye; Kim, Hong Dae; Sim, Jung Suk
2010-01-01
Renal length offers important information to detect or follow-up various renal diseases. The purpose of this study was to determine the kidney length of normal Korean children in relation to age, height, weight, body surface area (BSA), and body mass index (BMI). Children between 1 month and 15 years of age without urological abnormality were recruited. Children below 3rd percentile and over 97th percentile for height or weight were excluded. Both renal lengths were measured in the prone position three times and then averaged by experienced radiologists. The mean length and standard deviation for each age group was obtained, and regression equation was calculated between renal length and age, weight, height, BSA, and BMI, respectively. Renal length was measured in 550 children. Renal length grows rapidly until 24 month, while the growth rate is reduced thereafter. The regression equation for age is: renal length (mm) = 45.953 + 1.064 x age (month, ≤ 24 months) (R2 = 0.720) or 62.173 + 0.203 x age (months, > 24 months) (R2 = 0.711). The regression equation for height is: renal length (mm) = 24.494 + 0.457 x height (cm) (R2 = 0.894). The regression equation for weight is: renal length (mm) = 38.342 + 2.117 x weight (kg, ≤18 kg) (R2 = 0.852) or 64.498 + 0.646 x weight (kg, > 18 kg) (R2 = 0.651). The regression equation for BSA is: renal length (mm) = 31.622 + 61.363 x BSA (m2, ≤ 0.7) (R2 = 0.857) or 52.717 + 29.959 x BSA (m2, > 0.7) (R2 = 0.715). The regression equation for BMI is: renal length (mm) = 44.474 + 1.163 x BMI (R2 = 0.079). This study provides data on the normal renal length and its association with age, weight, height, BSA and BMI. The results of this study will guide the detection and follow-up of renal diseases in Korean children
Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.
We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.
Evaluation of functioning of an extrapolation chamber using Monte Carlo method
International Nuclear Information System (INIS)
Oramas Polo, I.; Alfonso Laguardia, R.
2015-01-01
The extrapolation chamber is a parallel plate chamber and variable volume based on the Braff-Gray theory. It determines in absolute mode, with high accuracy the dose absorbed by the extrapolation of the ionization current measured for a null distance between the electrodes. This camera is used for dosimetry of external beta rays for radiation protection. This paper presents a simulation for evaluating the functioning of an extrapolation chamber type 23392 of PTW, using the MCNPX Monte Carlo method. In the simulation, the fluence in the air collector cavity of the chamber was obtained. The influence of the materials that compose the camera on its response against beta radiation beam was also analysed. A comparison of the contribution of primary and secondary radiation was performed. The energy deposition in the air collector cavity for different depths was calculated. The component with the higher energy deposition is the Polymethyl methacrylate block. The energy deposition in the air collector cavity for chamber depth 2500 μm is greater with a value of 9.708E-07 MeV. The fluence in the air collector cavity decreases with depth. It's value is 1.758E-04 1/cm 2 for chamber depth 500 μm. The values reported are for individual electron and photon histories. The graphics of simulated parameters are presented in the paper. (Author)
A new extrapolation cascadic multigrid method for three dimensional elliptic boundary value problems
Pan, Kejia; He, Dongdong; Hu, Hongling; Ren, Zhengyong
2017-09-01
In this paper, we develop a new extrapolation cascadic multigrid method, which makes it possible to solve three dimensional elliptic boundary value problems with over 100 million unknowns on a desktop computer in half a minute. First, by combining Richardson extrapolation and quadratic finite element (FE) interpolation for the numerical solutions on two-level of grids (current and previous grids), we provide a quite good initial guess for the iterative solution on the next finer grid, which is a third-order approximation to the FE solution. And the resulting large linear system from the FE discretization is then solved by the Jacobi-preconditioned conjugate gradient (JCG) method with the obtained initial guess. Additionally, instead of performing a fixed number of iterations as used in existing cascadic multigrid methods, a relative residual tolerance is introduced in the JCG solver, which enables us to obtain conveniently the numerical solution with the desired accuracy. Moreover, a simple method based on the midpoint extrapolation formula is proposed to achieve higher-order accuracy on the finest grid cheaply and directly. Test results from four examples including two smooth problems with both constant and variable coefficients, an H3-regular problem as well as an anisotropic problem are reported to show that the proposed method has much better efficiency compared to the classical V-cycle and W-cycle multigrid methods. Finally, we present the reason why our method is highly efficient for solving these elliptic problems.
A model for the data extrapolation of greenhouse gas emissions in the Brazilian hydroelectric system
Pinguelli Rosa, Luiz; Aurélio dos Santos, Marco; Gesteira, Claudio; Elias Xavier, Adilson
2016-06-01
Hydropower reservoirs are artificial water systems and comprise a small proportion of the Earth’s continental territory. However, they play an important role in the aquatic biogeochemistry and may affect the environment negatively. Since the 90s, as a result of research on organic matter decay in manmade flooded areas, some reports have associated greenhouse gas emissions with dam construction. Pioneering work carried out in the early period challenged the view that hydroelectric plants generate completely clean energy. Those estimates suggested that GHG emissions into the atmosphere from some hydroelectric dams may be significant when measured per unit of energy generated and should be compared to GHG emissions from fossil fuels used for power generation. The contribution to global warming of greenhouse gases emitted by hydropower reservoirs is currently the subject of various international discussions and debates. One of the most controversial issues is the extrapolation of data from different sites. In this study, the extrapolation from a site sample where measurements were made to the complete set of 251 reservoirs in Brazil, comprising a total flooded area of 32 485 square kilometers, was derived from the theory of self-organized criticality. We employed a power law for its statistical representation. The present article reviews the data generated at that time in order to demonstrate how, with the help of mathematical tools, we can extrapolate values from one reservoir to another without compromising the reliability of the results.
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs
Rada, Tibor
1948-01-01
RadÃ³'s colloquium is a systematic treatment of Lebesgue theory, with an emphasis on the work of Morrey and of RadÃ³ and his students, especially in two dimensions. At the time, there were important current problems surrounding Lebesgue's theory for parameterized and unparameterized surfaces, which the book addresses. The exposition begins with reviews of Lebesgue integration and relevant topics in topology, including FrÃ©chet equivalence, the approximation of monotone maps by homeomorphisms, Peano spaces, and a discussion of the topological index of maps into the plane. After a development of fu
Correlation lengths of electrostatic turbulence
International Nuclear Information System (INIS)
Guiziou, L.; Garbet, X.
1995-01-01
In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs
International Nuclear Information System (INIS)
Zhang Fan; Chen Wenzhen; Yu Lei
2008-01-01
During physical start-up of nuclear reactor, the curve got by lifting the con- trol rods to extrapolate to the critical state is often in protruding shape, by which the supercritical phenomena is led. In the paper, the reason why the curve was in protruding was analyzed. A correction method was introduced, and the calculations were carried out by the practical data used in a nuclear power plant. The results show that the correction method reverses the protruding shape of the extrapolating curve, and the risk of reactor supercritical phenomena can be reduced using the extrapolated curve got by the correction method during physical start-up of the reactor. (authors)
Directory of Open Access Journals (Sweden)
B. Deutsch
2010-10-01
Full Text Available Rates of denitrification in sediments were measured with the isotope pairing technique at different sites in the southern and central Baltic Sea. The rates varied between 0.5 μmol N m^{−2} h^{−1} in sands and 28.7 μmol N m^{−2} h^{−1} in muddy sediments and showed a good correlation to the organic carbon contents of the surface sediments. N-removal rates via sedimentary denitrification were estimated for the entire Baltic Sea calculating sediment specific denitrification rates and interpolating them to the whole Baltic Sea area. Another approach was carried out by using the relationship between the organic carbon content and the rate of denitrification. The N-removal by denitrification in sediments varied between 426–652 kt N a^{−1}, which is around 48–73% of the external N inputs delivered via rivers, coastal point sources, and atmospheric deposition. Moreover, an expansion of the anoxic bottom areas was considered under the assumption of a rising oxycline from 100 to 80 m water depth. This leads to an increase of the area with anoxic conditions and an overall decrease in sedimentary denitrification by 14%. Overall, we show here that this type of data extrapolation is a powerful tool to estimate the nitrogen losses for a whole coastal sea and may be applicable to other coastal regions and enclosed seas.
Cox, Kieran D; Black, Morgan J; Filip, Natalia; Miller, Matthew R; Mohns, Kayla; Mortimor, James; Freitas, Thaise R; Greiter Loerzer, Raquel; Gerwing, Travis G; Juanes, Francis; Dudas, Sarah E
2017-12-01
Diversity estimates play a key role in ecological assessments. Species richness and abundance are commonly used to generate complex diversity indices that are dependent on the quality of these estimates. As such, there is a long-standing interest in the development of monitoring techniques, their ability to adequately assess species diversity, and the implications for generated indices. To determine the ability of substratum community assessment methods to capture species diversity, we evaluated four methods: photo quadrat, point intercept, random subsampling, and full quadrat assessments. Species density, abundance, richness, Shannon diversity, and Simpson diversity were then calculated for each method. We then conducted a method validation at a subset of locations to serve as an indication for how well each method captured the totality of the diversity present. Density, richness, Shannon diversity, and Simpson diversity estimates varied between methods, despite assessments occurring at the same locations, with photo quadrats detecting the lowest estimates and full quadrat assessments the highest. Abundance estimates were consistent among methods. Sample-based rarefaction and extrapolation curves indicated that differences between Hill numbers (richness, Shannon diversity, and Simpson diversity) were significant in the majority of cases, and coverage-based rarefaction and extrapolation curves confirmed that these dissimilarities were due to differences between the methods, not the sample completeness. Method validation highlighted the inability of the tested methods to capture the totality of the diversity present, while further supporting the notion of extrapolating abundances. Our results highlight the need for consistency across research methods, the advantages of utilizing multiple diversity indices, and potential concerns and considerations when comparing data from multiple sources.
de Andres-Trelles, F
2015-07-01
Since medicines for psychiatric diseases are often studied in adults first, it would be useful if data from efficacy trials in adults could be extrapolated to children and adolescents. However, it is not sufficient to adapt the adult dosages to achieve systemic exposure levels similar to those effective in adults. This can be done with increasing predictive accuracy but before accepting that the same plasma levels should result in the same efficacy as in adults both the mechanism of action of the drug and the pathophysiology of the disease must be considered. For psychiatric disorders there is often insufficient evidence to support the assumptions for extrapolating efficacy as it is not even always sure that the same diagnostic categories correspond to the same disease in adults and children. Even when the basic biological alteration behind the disorder could be considered the same, the psychodynamic consequences and the role of non-pharmacological approaches to treatment may substantially differ across age groups. These facts, together with the absence of detailed historical data on the actual correlations between paediatric and adult responses for many types of psycho-therapeutic medicines, make it difficult to accept extrapolation as the main proof of efficacy in children and adolescents. A corollary is that since efficacy studies will normally be required, they should not be unduly postponed. For products addressing a medical need with good scientific plausibility, they should be initiated as soon as the anticipated safety concerns can be reasonably managed within the context of a paediatric clinical trial. Copyright © 2015. Published by Elsevier B.V.
Study of an extrapolation chamber in a standard diagnostic radiology beam by Monte Carlo simulation
International Nuclear Information System (INIS)
Vedovato, Uly Pita; Silva, Rayre Janaina Vieira; Neves, Lucio Pereira; Santos, William S.; Perini, Ana Paula; Belinato, Walmir
2016-01-01
In this work, we studied the influence of the components of an extrapolation ionization chamber in its response. This study was undertaken using the MCNP-5 Monte Carlo code, and the standard diagnostic radiology quality for direct beams (RQR5). Using tally F6 and 2.1 x 10 9 simulated histories, the results showed that the chamber design and material not alter significantly the energy deposited in its sensitive volume. The collecting electrode and support board were the components with more influence on the chamber response. (author)
An optimized finite element extrapolating method for 2D viscoelastic wave equation.
Xia, Hong; Luo, Zhendong
2017-01-01
In this study, we first present a classical finite element (FE) method for a two-dimensional (2D) viscoelastic wave equation and analyze the existence, stability, and convergence of the FE solutions. Then we establish an optimized FE extrapolating (OFEE) method based on a proper orthogonal decomposition (POD) method for the 2D viscoelastic wave equation and analyze the existence, stability, and convergence of the OFEE solutions and furnish the implement procedure of the OFEE method. Finally, we furnish a numerical example to verify that the numerical computing results correspond with the theoretical ones. This signifies that the OFEE method is feasible and efficient for solving the 2D viscoelastic wave equation.
Wouters, Sebastian; Limacher, Peter A; Van Neck, Dimitri; Ayers, Paul W
2012-04-07
We have implemented the sweep algorithm for the variational optimization of SU(2) U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit.
DEFF Research Database (Denmark)
Storhaug, Gaute; Andersen, Ingrid Marie Vincent
2015-01-01
to small storms. Model tests of three container ships have been carried out in different sea states under realistic assumptions. Preliminary extrapolation of the measured data suggested that moderate storms are dimensioning when whipping is included due to higher maximum speed in moderate storms......Whipping can contribute to increased fatigue and extreme loading of container ships, and guidelines have been made available by the leading class societies. Reports concerning the hogging collapse of MSC Napoli and MOL Comfort suggest that whipping contributed. The accidents happened in moderate...
International Nuclear Information System (INIS)
Kiradzhiev, G.
1987-01-01
Assessment was made of the activities of strontium-89 and strontium-90, which may aggravate the effect of external irradiation, causing changes in peripheral blood leucocytes. Extrapolation of the results was carried out on the basis of the so called radiosensitivity coefficients (laboratory rat/man). Inference is drawn that summing of the effects of the radiation factors may be expected in cases of external irradiation with 100 Gy and oral administration of 150-200 MBq strontium-89 or 60-90 MBq strontium-90 and through the air passages of 110-150 MBq strontium-89 or 40-60 MBq strontium-90
Making the most of what we have: application of extrapolation approaches in wildlife transfer models
Energy Technology Data Exchange (ETDEWEB)
Beresford, Nicholas A.; Barnett, Catherine L.; Wells, Claire [NERC Centre for Ecology and Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Vives i Batlle, Jordi [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Brown, Justin E.; Hosseini, Ali [Norwegian Radiation Protection Authority, P.O. Box 55, N-1332 Oesteraas (Norway); Yankovich, Tamara L. [International Atomic Energy Agency, Vienna International Centre, 1400, Vienna (Austria); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-10691 (Sweden); Willey, Neil [Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom)
2014-07-01
Radiological environmental protection models need to predict the transfer of many radionuclides to a large number of organisms. There has been considerable development of transfer (predominantly concentration ratio) databases over the last decade. However, in reality it is unlikely we will ever have empirical data for all the species-radionuclide combinations which may need to be included in assessments. To provide default values for a number of existing models/frameworks various extrapolation approaches have been suggested (e.g. using data for a similar organism or element). This paper presents recent developments in two such extrapolation approaches, namely phylogeny and allometry. An evaluation of how extrapolation approaches have performed and the potential application of Bayesian statistics to make best use of available data will also be given. Using a Residual Maximum Likelihood (REML) mixed-model regression we initially analysed a dataset comprising 597 entries for 53 freshwater fish species from 67 sites to investigate if phylogenetic variation in transfer could be identified. The REML analysis generated an estimated mean value for each species on a common scale after taking account of the effect of the inter-site variation. Using an independent dataset, we tested the hypothesis that the REML model outputs could be used to predict radionuclide activity concentrations in other species from the results of a species which had been sampled at a specific site. The outputs of the REML analysis accurately predicted {sup 137}Cs activity concentrations in different species of fish from 27 lakes. Although initially investigated as an extrapolation approach the output of this work is a potential alternative to the highly site dependent concentration ratio model. We are currently applying this approach to a wider range of organism types and different ecosystems. An initial analysis of these results will be presented. The application of allometric, or mass
TOP-DOWN WORKFORCE DEMAND EXTRAPOLATION BASED ON AN EC ENERGY ROADMAP SCENARIO
ROELOFS Ferry; VON ESTORFF Ulrik
2014-01-01
The EHRO-N team of JRC-IET provides the EC with essential data related to supply and demand for nuclear experts based on bottom-up information from the nuclear industry. The current paper deals with an alternative approach to derive figures for the demand side information of the nuclear workforce. Complementary to the bottom-up approach, a top-down modelling approach extrapolation of an EC Energy Roadmap nuclear energy demand scenario is followed here in addition to the survey information. ...
On the problem of extrapolating the data on Sr90 behaviour in dogs to a human organism
International Nuclear Information System (INIS)
Sarapul'tsev, I.A.; Razin, I.M.; Panchenko, I.Ya.
1976-01-01
Regularities in the metabolism of radiostrontium have been comparatively studied in dogs and man. The fact revealed that they are the same makes it possible to extrapolate the radiostrontium doses used for dogs to a human organism
Direct activity determination of Mn-54 and Zn-65 by a non-extrapolation liquid scintillation method
CSIR Research Space (South Africa)
Simpson, BRS
2004-02-01
Full Text Available The measurement of Mn-54 and Zn-65 by liquid scintillation coincidence counting results in low detection efficiencies. The activity obtained from the extrapolation of efficiency data can therefore become problematic if curvature is present...
Application of Two-Parameter Extrapolation for Solution of Boundary-Value Problem on Semi-Axis
Zhidkov, E P
2000-01-01
A method for refining approximate eigenvalues and eigenfunctions for a boundary-value problem on a half-axis is suggested. To solve the problem numerically, one has to solve a problem on a finite segment [0,R] instead of the original problem on the interval [0,\\infty). This replacement leads to eigenvalues' and eigenfunctions' errors. To choose R beforehand for obtaining their required accuracy is often impossible. Thus, one has to resolve the problem on [0,R] with larger R. If there are two eigenvalues or two eigenfunctions that correspond to different segments, the suggested method allows one to improve the accuracy of the eigenvalue and the eigenfunction for the original problem by means of extrapolation along the segment. This approach is similar to Richardson's method. Moreover, a two-parameter extrapolation is described. It is combination of the extrapolation along the segment and Richardson's extrapolation along a discretization step.
Increased identification of veterinary pharmaceutical contaminants in aquatic environments has raised concerns regarding potential adverse effects of these chemicals on non-target organisms. The purpose of this work was to develop a method for predictive species extrapolation ut...
International Nuclear Information System (INIS)
Spackman, Peter R.; Karton, Amir
2015-01-01
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L α two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol –1 . The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol –1
Energy Technology Data Exchange (ETDEWEB)
Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au [School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009 (Australia)
2015-05-15
Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.
Amir, Sahar Z.
2013-05-01
We introduce an efficient thermodynamically consistent technique to extrapolate and interpolate normalized Canonical NVT ensemble averages like pressure and energy for Lennard-Jones (L-J) fluids. Preliminary results show promising applicability in oil and gas modeling, where accurate determination of thermodynamic properties in reservoirs is challenging. The thermodynamic interpolation and thermodynamic extrapolation schemes predict ensemble averages at different thermodynamic conditions from expensively simulated data points. The methods reweight and reconstruct previously generated database values of Markov chains at neighboring temperature and density conditions. To investigate the efficiency of these methods, two databases corresponding to different combinations of normalized density and temperature are generated. One contains 175 Markov chains with 10,000,000 MC cycles each and the other contains 3000 Markov chains with 61,000,000 MC cycles each. For such massive database creation, two algorithms to parallelize the computations have been investigated. The accuracy of the thermodynamic extrapolation scheme is investigated with respect to classical interpolation and extrapolation. Finally, thermodynamic interpolation benefiting from four neighboring Markov chains points is implemented and compared with previous schemes. The thermodynamic interpolation scheme using knowledge from the four neighboring points proves to be more accurate than the thermodynamic extrapolation from the closest point only, while both thermodynamic extrapolation and thermodynamic interpolation are more accurate than the classical interpolation and extrapolation. The investigated extrapolation scheme has great potential in oil and gas reservoir modeling.That is, such a scheme has the potential to speed up the MCMC thermodynamic computation to be comparable with conventional Equation of State approaches in efficiency. In particular, this makes it applicable to large-scale optimization of L
Video error concealment using block matching and frequency selective extrapolation algorithms
P. K., Rajani; Khaparde, Arti
2017-06-01
Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.
Electric form factors of the octet baryons from lattice QCD and chiral extrapolation
Energy Technology Data Exchange (ETDEWEB)
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations
2014-03-15
We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.
Waheed, Umair bin
2014-08-01
The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.
EXTRAPOLATION METHOD FOR MAXIMAL AND 24-H AVERAGE LTE TDD EXPOSURE ESTIMATION.
Franci, D; Grillo, E; Pavoncello, S; Coltellacci, S; Buccella, C; Aureli, T
2018-01-01
The Long-Term Evolution (LTE) system represents the evolution of the Universal Mobile Telecommunication System technology. This technology introduces two duplex modes: Frequency Division Duplex and Time Division Duplex (TDD). Despite having experienced a limited expansion in the European countries since the debut of the LTE technology, a renewed commercial interest for LTE TDD technology has recently been shown. Therefore, the development of extrapolation procedures optimised for TDD systems becomes crucial, especially for the regulatory authorities. This article presents an extrapolation method aimed to assess the exposure to LTE TDD sources, based on the detection of the Cell-Specific Reference Signal power level. The method introduces a βTDD parameter intended to quantify the fraction of the LTE TDD frame duration reserved for downlink transmission. The method has been validated by experimental measurements performed on signals generated by both a vector signal generator and a test Base Transceiver Station installed at Linkem S.p.A facility in Rome. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
On Extrapolating Past the Range of Observed Data When Making Statistical Predictions in Ecology.
Directory of Open Access Journals (Sweden)
Paul B Conn
Full Text Available Ecologists are increasingly using statistical models to predict animal abundance and occurrence in unsampled locations. The reliability of such predictions depends on a number of factors, including sample size, how far prediction locations are from the observed data, and similarity of predictive covariates in locations where data are gathered to locations where predictions are desired. In this paper, we propose extending Cook's notion of an independent variable hull (IVH, developed originally for application with linear regression models, to generalized regression models as a way to help assess the potential reliability of predictions in unsampled areas. Predictions occurring inside the generalized independent variable hull (gIVH can be regarded as interpolations, while predictions occurring outside the gIVH can be regarded as extrapolations worthy of additional investigation or skepticism. We conduct a simulation study to demonstrate the usefulness of this metric for limiting the scope of spatial inference when conducting model-based abundance estimation from survey counts. In this case, limiting inference to the gIVH substantially reduces bias, especially when survey designs are spatially imbalanced. We also demonstrate the utility of the gIVH in diagnosing problematic extrapolations when estimating the relative abundance of ribbon seals in the Bering Sea as a function of predictive covariates. We suggest that ecologists routinely use diagnostics such as the gIVH to help gauge the reliability of predictions from statistical models (such as generalized linear, generalized additive, and spatio-temporal regression models.
General extrapolation model for an important chemical dose-rate effect
International Nuclear Information System (INIS)
Gillen, K.T.; Clough, R.L.
1984-12-01
In order to extrapolate material accelerated aging data, methodologies must be developed based on sufficient understanding of the processes leading to material degradation. One of the most important mechanisms leading to chemical dose-rate effects in polymers involves the breakdown of intermediate hydroperoxide species. A general model for this mechanism is derived based on the underlying chemical steps. The results lead to a general formalism for understanding dose rate and sequential aging effects when hydroperoxide breakdown is important. We apply the model to combined radiation/temperature aging data for a PVC material and show that this data is consistent with the model and that model extrapolations are in excellent agreement with 12-year real-time aging results from an actual nuclear plant. This model and other techniques discussed in this report can aid in the selection of appropriate accelerated aging methods and can also be used to compare and select materials for use in safety-related components. This will result in increased assurance that equipment qualification procedures are adequate
Edge-aware spatial-frequency extrapolation for consecutive block loss.
Liu, Hao; Wang, Dengcheng; Wang, Bing; Li, Kangda; Tang, Hainie
2016-01-01
To improve the spatial error concealment (SEC) for consecutive block loss, an edge-aware spatial-frequency extrapolation (ESFE) algorithm and its edge-guided parametric model are proposed by selectively incorporating the Hough-based edge synthesis into the frequency-based extrapolation architecture. The dominant edges that cross the missing blocks are firstly identified by the Canny detector, and then the robust Hough transformation is utilized to systematically connect these discontinuous edges. During the generation of edge-guided parametric model, the synthesized edges are utilized to divide the missing blocks into the structure-preserving regions, and thus the residual error is reliably reduced. By successively minimizing the weighted residual error and updating the parametric model, the known samples are approximated by a set of basis functions which are distributed in a region containing both known and unknown samples. Compared with other state-of-the-art SEC algorithms, experimental results show that the proposed ESFE algorithm can achieve better reconstruction quality for consecutive block loss while keeping relatively moderate computational complexity.
Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation
Zhang, Zhendong
2017-12-17
The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.
A method of creep rupture data extrapolation based on physical processes
International Nuclear Information System (INIS)
Leinster, M.G.
2008-01-01
There is a need for a reliable method to extrapolate generic creep rupture data to failure times in excess of the currently published times. A method based on well-understood and mathematically described physical processes is likely to be stable and reliable. Creep process descriptions have been developed based on accepted theory, to the extent that good fits with published data have been obtained. Methods have been developed to apply these descriptions to extrapolate creep rupture data to stresses below the published values. The relationship creep life parameter=f(ln(sinh(stress))) has been shown to be justifiable over the stress ranges of most interest, and gives realistic results at high temperatures and long times to failure. In the interests of continuity with past and present practice, the suggested method is intended to extend existing polynomial descriptions of life parameters at low stress. Where no polynomials exist, the method can be used to describe the behaviour of life parameters throughout the full range of a particular failure mode in the published data
Fugazzotto, Paul A
To assess the success and stability of 6-, 7-, 8-, and 9-mm-long, 6.5-mm-wide-neck tissue-level implants placed at the time of transalveolar sinus augmentation therapy, utilizing a trephine and osteotome approach, which were restored with single crowns. In total, 1,344 implants were placed by the author, varying in length from 6 to 9 mm, with parallel-wall 4.8-mm-diameter implant bodies and 6.5-mm-diameter implant necks. The implants were restored with single abutments and crowns by a variety of practitioners. They were followed for 60 to 229 months in function, with a mean time of 121.1 months in function. Implant success was evaluated by the author utilizing a combination of the Albrektsson et al criteria, and buccal and palatal/lingual bone sounding under anesthesia. The overall cumulative success rate was 98.8%. One hundred ninety 6-mm-long implants demonstrated a cumulative success rate of 97.5% at a mean time of 109.2 months in function. Eleven 7-mm-long implants demonstrated a cumulative success rate of 100% at a mean time of 218.5 months in function. One thousand ninety-four 8-mm-long implants demonstrated a cumulative success rate of 98.9% at a mean time of 112.3 months in function. Forty-nine 9-mm-long implants demonstrated a cumulative success rate of 100% at a mean time of 212.1 months in function. Implants of 6 to 9 mm in length, placed at the time of trephine and osteotome transalveolar sinus elevation procedures and restored with abutments and single crowns, demonstrate a high level of long-term clinical success, assuming specific comprehensive treatment criteria are met.
African Journals Online (AJOL)
Administrator
Length-weight measurements were taken from well-preserved fish specimens from which stomachs were extracted for the analysis of the food contents, using frequency of occurrence, numerical and gravimetric methods, as well as index of relative importance. The length-frequency analysis showed a size distribution with a ...
Comparison of fiber length analyzers
Don Guay; Nancy Ross Sutherland; Walter Rantanen; Nicole Malandri; Aimee Stephens; Kathleen Mattingly; Matt Schneider
2005-01-01
In recent years, several fiber new fiber length analyzers have been developed and brought to market. The new instruments provide faster measurements and the capability of both laboratory and on-line analysis. Do the various fiber analyzers provide the same length, coarseness, width, and fines measurements for a given fiber sample? This paper provides a comparison of...
Poppe, L.J.; Eliason, A.H.; Hastings, M.E.
2004-01-01
Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft
CT image construction of a totally deflated lung using deformable model extrapolation
International Nuclear Information System (INIS)
Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim
2011-01-01
Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The
The probabilistic distribution of metal whisker lengths
Energy Technology Data Exchange (ETDEWEB)
Niraula, D., E-mail: Dipesh.Niraula@rockets.utoledo.edu; Karpov, V. G., E-mail: victor.karpov@utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)
2015-11-28
Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local “dead region” of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the “dead regions,” which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.
Modeling the systemic retention of beryllium in rat. Extrapolation to human
International Nuclear Information System (INIS)
Montero Prieto, M.; Vidania Munoz, R. de
1994-01-01
In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs
Modeling of systematic retention of beryllium in rats. Extrapolation to humans
International Nuclear Information System (INIS)
Montero Prieto, M.; Vidania Munoz, R. de.
1994-01-01
In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and other animal species. Furchner's work includes the obtained model for whole body retention in rats but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with other previously published
Florez, W. F.; Portapila, M.; Hill, A. F.; Power, H.; Orsini, P.; Bustamante, C. A.
2015-03-01
The aim of this paper is to present how to implement a control volume approach improved by Hermite radial basis functions (CV-RBF) for geochemical problems. A multi-step strategy based on Richardson extrapolation is proposed as an alternative to the conventional dual step sequential non-iterative approach (SNIA) for coupling the transport equations with the chemical model. Additionally, this paper illustrates how to use PHREEQC to add geochemical reaction capabilities to CV-RBF transport methods. Several problems with different degrees of complexity were solved including cases of cation exchange, dissolution, dissociation, equilibrium and kinetics at different rates for mineral species. The results show that the solution and strategies presented here are effective and in good agreement with other methods presented in the literature for the same cases.
Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter
DEFF Research Database (Denmark)
Borg, J.; Christensen, P.
1995-01-01
The extrapolation chamber measurement method is the basic method for the determination of dose rates in beta radiation fields and the method has been used for the establishment of beta calibration fields. The paper describes important details of the method and presents results from the measurement...... of depth-dose profiles from different beta radiation fields with E(max) values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high...... sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value...
Energy Technology Data Exchange (ETDEWEB)
Dowding, Kevin J.; Hills, Richard Guy (New Mexico State University, Las Cruces, NM)
2005-04-01
Numerical models of complex phenomena often contain approximations due to our inability to fully model the underlying physics, the excessive computational resources required to fully resolve the physics, the need to calibrate constitutive models, or in some cases, our ability to only bound behavior. Here we illustrate the relationship between approximation, calibration, extrapolation, and model validation through a series of examples that use the linear transient convective/dispersion equation to represent the nonlinear behavior of Burgers equation. While the use of these models represents a simplification relative to the types of systems we normally address in engineering and science, the present examples do support the tutorial nature of this document without obscuring the basic issues presented with unnecessarily complex models.
Verloock, Leen; Joseph, Wout; Gati, Azeddine; Varsier, Nadège; Flach, Björn; Wiart, Joe; Martens, Luc
2013-06-01
An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2×2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders.
Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter
DEFF Research Database (Denmark)
Borg, J.; Christensen, P.
1995-01-01
of depth-dose profiles from different beta radiation fields with E(max) values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high......The extrapolation chamber measurement method is the basic method for the determination of dose rates in beta radiation fields and the method has been used for the establishment of beta calibration fields. The paper describes important details of the method and presents results from the measurement...... sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value...
Linear extrapolation of ultrarelativistic nucleon-nucleon scattering to nucleus-nucleus collisions
Jeon, Sangyong; Kapusta, Joseph
1997-07-01
We use a Glauber-like approach to describe very energetic nucleus-nucleus collisions as a sequence of binary nucleon-nucleon collisions. No free parameters are needed: All the information comes from simple parametrizations of nucleon-nucleon collision data. Produced mesons are assumed not to interact with each other or with the original baryons. Comparisons are made to published experimental measurements of baryon rapidity and transverse momentum distributions, negative hadron rapidity and transverse momentum distributions, average multiplicities of pions, kaons, hyperons, and antihyperons, and zero degree energy distributions for sulfur-sulfur collisions at 200 GeV/c per nucleon and for lead-lead collisions at 158 GeV/c per nucleon. Good agreement is found except that the number of strange particles produced, especially antihyperons, is too small compared with experiment. We call this model LEXUS: It is a base-line linear extrapolation of ultrarelativistic nucleon-nucleon scattering to heavy ion collisions.
Hematological responses after inhaling 238PuO2: An extrapolation from beagle dogs to humans
International Nuclear Information System (INIS)
Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.; Angerstein, D.A.
1994-01-01
The alpha emitter plutonium-238 ( 238 Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to 238 PuO 2 have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of 238 Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled 238 PuO 2 on peripheral blood cell counts in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting 238 PuO 2 particles and to extrapolate results to humans
Calibration of Pyrometers by Using Extrapolation and Interpolation Methods at NIM
Lu, X.; Yuan, Z.; Wang, J.; Bai, C.; Wang, T.; Dong, W.
2018-01-01
High-temperature fixed points (HTFPs) have been thoroughly investigated, and the performance of variable temperature blackbodies (VTBB) has also improved rapidly. These two are beginning to be used in the calibration of pyrometers; however, tungsten strip lamps (STSL) still play a role in the dissemination of the high-temperature scale in China. International Temperature Scale of 1990 values of HTFPs and the lamps were assigned on a primary standard pyrometer (PSP) and were traced to the primary standard of the high-temperature scale at the National Institute of Metrology. In this paper, two pyrometers calibrated by using extrapolation and interpolation methods are reported. The values of the calibration were compared against the STSL values and the PSP values on HTBB, and their uncertainties are calculated as well. Because the stability of the HTFPs was better than that of the lamps, the calibration chains based on the lamps are starting to be replaced by HTFPs and VTBBs in China.
Spin-Charge Separation in Finite Length Metallic Carbon Nanotubes
Zhang, Yongyou
2017-10-17
Using time-dependent density functional theory, we study the optical excitations in finite length carbon nanotubes. Evidence of spin-charge separation is given in the spacetime domain. We demonstrate that the charge density wave is due to collective excitations of electron singlets, while the accompanying spin density wave is due to those of electron triplets. The Tomonaga–Luttinger liquid parameter and density–density interaction are extrapolated from the first-principles excitation energies. We show that the density–density interaction increases with the length of the nanotube. The singlet and triplet excitation energies, on the other hand, decrease for increasing length of the nanotube. Their ratio is used to establish a first-principles approach for deriving the Tomonaga–Luttinger parameter (in excellent agreement with experimental data). Time evolution analysis of the charge and spin line densities evidences that the charge and spin density waves are elementary excitations of metallic carbon nanotubes. Their dynamics show no dependence on each other.
(Solid + liquid) solubility of organic compounds in organic solvents – Correlation and extrapolation
International Nuclear Information System (INIS)
Svärd, Michael; Rasmuson, Åke C.
2014-01-01
Highlights: • A novel, robust semi-empirical model for regression of solubility is presented. • The model fulfils thermodynamic boundary conditions at the melting point. • The activity coefficient is modelled with a scaled three-parameter Weibull function. • A three-parameter regression equation is derived from the semi-empirical model. • This equation provides good accuracy and robustness compared to standard models. - Abstract: A semi-empirical model is developed for the regression of (solid + liquid) solubility data with temperature. The model fulfils the required boundary conditions, allowing for robust extrapolation to higher and lower temperatures. The model combines a representation of the solid-state activity which accommodates a temperature-dependent heat capacity difference contribution with a scaled three-parameter Weibull function representing the temperature dependence of the solution activity coefficient at equilibrium. Evaluation of the model is based on previously published experimental calorimetric and solubility data of four organic compounds, fenoxycarb, fenofibrate, risperidone and butyl paraben, in five common organic solvents, methanol, ethyl acetate, acetone, acetonitrile, and toluene. The temperature dependence of the van’t Hoff enthalpy of solution and its components is analysed and discussed. Among the four compounds the influence of temperature on the enthalpy of fusion varies from moderate to substantial. Based on the semi-empirical model, a new equation containing three adjustable parameters is proposed for regression and extrapolation of solubility data for cases when only melting data and solubility data is available. The equation is shown to provide good accuracy and robustness when evaluated against the full semi-empirical model as well as against commonly used, more simple empirical equations. It is shown how such a model can be used to obtain an estimate of the heat capacity difference for cases where accurate
Mannocci, Laura; Roberts, Jason J; Miller, David L; Halpin, Patrick N
2017-06-01
As human activities expand beyond national jurisdictions to the high seas, there is an increasing need to consider anthropogenic impacts to species inhabiting these waters. The current scarcity of scientific observations of cetaceans in the high seas impedes the assessment of population-level impacts of these activities. We developed plausible density estimates to facilitate a quantitative assessment of anthropogenic impacts on cetacean populations in these waters. Our study region extended from a well-surveyed region within the U.S. Exclusive Economic Zone into a large region of the western North Atlantic sparsely surveyed for cetaceans. We modeled densities of 15 cetacean taxa with available line transect survey data and habitat covariates and extrapolated predictions to sparsely surveyed regions. We formulated models to reduce the extent of extrapolation beyond covariate ranges, and constrained them to model simple and generalizable relationships. To evaluate confidence in the predictions, we mapped where predictions were made outside sampled covariate ranges, examined alternate models, and compared predicted densities with maps of sightings from sources that could not be integrated into our models. Confidence levels in model results depended on the taxon and geographic area and highlighted the need for additional surveying in environmentally distinct areas. With application of necessary caution, our density estimates can inform management needs in the high seas, such as the quantification of potential cetacean interactions with military training exercises, shipping, fisheries, and deep-sea mining and be used to delineate areas of special biological significance in international waters. Our approach is generally applicable to other marine taxa and geographic regions for which management will be implemented but data are sparse. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Growth morphologies of crystal surfaces
Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz
1991-03-01
We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated
The length of the glaciers in the world
DEFF Research Database (Denmark)
Machguth, Horst; Huss, M.; Huss, M.
2014-01-01
Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present 5 a first global assessment of glacier length using...... a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼ 200000 glaciers around the globe. The evaluation...... highlights accurately calculated glacier length where DEM quality is good (East 10 Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers...
Relation between Tolman length and isothermal compressibility for simple liquids
International Nuclear Information System (INIS)
Wang Xiao-Song; Zhu Ru-Zeng
2013-01-01
The Tolman length δ 0 of a liquid with a plane surface has attracted increasing theoretical attention in recent years, but the expression of Tolman length in terms of observable quantities is still not very clear. In 2001, Bartell gave a simple expression of Tolman length δ 0 in terms of isothermal compressibility. However, this expression predicts that Tolman length is always negative, which is contrary to the results of molecular dynamics simulations (MDS) for simple liquids. In this paper, this contradiction is analyzed and the reason for the discrepancy in the sign is found. In addition, we introduce a new expression of Tolman length in terms of isothermal compressibility for simple fluids not near the critical points under some weak restrictions. The Tolman length of simple liquids calculated by using this formula is consistent with that obtained using MDS regarding the sign
Finite length thermal equilibria of a pure electron plasma column
International Nuclear Information System (INIS)
Prasad, S.A.; O'Neil, T.M.
1979-01-01
The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length
Dabdub, Donald; Seinfeld, John H.
The solution of chemical kinetics is generally the most computationally intensive step in atmospheric air quality models. The incorporation of ever more complex chemical mechanisms and physicochemical phenomena into these models stimulates the search for more accurate and efficient numerical ODE integration methods. We report here on a new method based on Richardson extrapolation to solve the chemical kinetics in air quality models. The extrapolation method presents high accuracy consistently for wide ranges of ROG/NO x ratios. The method is robust during sunrise and sunset transitions, when the rate of change of concentrations of a number of photochemically driven species is the greatest. In addition, the extrapolation algorithm is one of the most efficient computationally tested.
International Nuclear Information System (INIS)
Zhu Ning; Jiang Yong; Kato, Seizo
2005-01-01
This study uses ultrasound in combination with tomography to obtain three-dimensional temperature measurements using projection data obtained from limited projection angle. The main feature of the new computerized tomography (CT) reconstruction algorithm is to employ extrapolation scheme to make up for the incomplete projection data, it is based on the conventional filtered back projection (FBP) method while on top of that taking into account the correlation between the projection data and Fourier transform-based extrapolation. Computer simulation is conducted to verify the above algorithm. An experimental 3D temperature distribution measurement is also carried out to validate the proposed algorithm. The simulation and experimental results demonstrate that the extrapolated FBP CT algorithm is highly effective in dealing with projection data from limited projection angle
Energy Technology Data Exchange (ETDEWEB)
Rothe, R.E.
1997-12-01
Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments.
International Nuclear Information System (INIS)
Singh, N.P.; Zimmerman, C.J.; Taylor, G.N.; Wrenn, M.E.
1988-01-01
The concentrations and the organ distribution patterns of 228Th, 230Th and 232Th in two 9-y-old dogs of our beagle colony were determined. The dogs were exposed only to background environmental levels of Th isotopes through ingestion (food and water) and inhalation as are humans. The organ distribution patterns of the isotopes in the beagles were compared to the organ distribution patterns in humans to determine if it is appropriate to extrapolate the beagle organ burden data to humans. Among soft tissues, only the lungs, lymph nodes, kidney and liver, and skeleton contained measurable amounts of Th isotopes. The organ distribution pattern of Th isotopes in humans and dog are similar, the majority of Th being in the skeleton of both species. The average skeletal concentrations of 228Th in dogs were 30 to 40 times higher than the average skeletal concentrations of the parent 232Th, whereas the concentration of 228Th in human skeleton was only four to five times higher than 232Th. This suggests that dogs have a higher intake of 228Ra through food than humans. There is a similar trend in the accumulations of 232Th, 230Th and 228Th in the lungs of dog and humans. The percentages of 232Th, 230Th and 228Th in human lungs are 26, 9.7 and 4.8, respectively, compared to 4.2, 2.6 and 0.48, respectively, in dog lungs. The larger percentages of Th isotopes in human lungs may be due simply to the longer life span of humans. If the burdens of Th isotopes in human lungs are normalized to an exposure time of 9.2 y (mean age of dogs at the time of sacrifice), the percent burden of 232Th, 230Th and 228Th in human lungs are estimated to be 3.6, 1.3 and 0.66, respectively. These results suggest that the beagle may be an appropriate experimental animal for extrapolating the organ distribution pattern of Th in humans
Top-down workforce demand extrapolation based on an EC energy road-map scenario
International Nuclear Information System (INIS)
Roelofs, F.; Von Estorff, U.
2014-01-01
The EHRO-N team of JRC-IET provides the EC with essential data related to supply and demand for nuclear experts based on bottom-up information from the nuclear industry. The current paper deals with an alternative approach to derive figures for the demand side information of the nuclear workforce. Complementary to the bottom-up approach, a top-down modelling approach extrapolation of an EC Energy road-map nuclear energy demand scenario is followed here in addition to the survey information. In this top-down modelling approach, the number of nuclear power plants that are in operation and under construction is derived as a function of time from 2010 up to 2050 assuming that the current reactor park will be replaced by generic third generation reactors of 1400 MWe or 1000 MWe. Depending on the size of new build reactors, the analysis shows the number of new reactors required to fulfil the demand for nuclear energy. Based on workforce models for operation and construction of nuclear power plants, the model allows an extrapolation of these respective work-forces. Using the nuclear skills pyramid, the total workforce employed at a plant is broken down in a nuclear (experts), nuclearized, and nuclear aware workforce. With retirement profiles for nuclear power plants derived from the bottom-up EHRO-N survey, the replacement of the current workforce is taken into account. The peak of the new workforce (partly replacing the retiring workforce and additionally keeping up with the growing total workforce demand) for nuclear experts and nuclearized employees is to be expected at the end of the considered period (2050). However, the peak workforce for nuclear aware employees is to be expected around 2020. When comparing to historical data for the nuclear capacity being installed at the same time in Europe, it is clear that the expected future capacity to be installed at the same time in Europe is significantly lower (factor of 2) than in the early 1980's. However, it should
CEBAF Upgrade Bunch Length Measurements
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)
2016-05-01
Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.
Continuously variable focal length lens
Adams, Bernhard W; Chollet, Matthieu C
2013-12-17
A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.
Chenglin, L.; Charpentier, R.R.
2010-01-01
The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.
2.5-D and 3-D DC resistivity modelling using an extrapolation cascadic multigrid method
Pan, Kejia; Tang, Jingtian
2014-06-01
Multigrid methods are well known for their high efficiency in solving elliptic boundary value problems. In this study, an improved extrapolation cascadic multigrid (EXCMG) method is presented to solve large sparse systems of linear equations, which are discretized from both 2.5-D and 3-D DC resistivity modelling using the finite element methods. To increase the accuracy, the singularity generated by the source term is removed by reformulating the solution with the secondary potential. In addition, a set of new and efficient Fourier coefficient is presented to transform the solutions in the 2.5-D Fourier domain to the 3-D Cartesian domain. To show the efficiency and the ease-to-implement of EXCMG, we first implement the EXCMG methods to a two-layered model of both 2-D and 3-D and compare the results with the analytical solutions. It has been shown that the maximum relative error in apparent resistivity is no more than 0.4 per cent provided an appropriate grid size is chosen. Then the comparisons of EXCMG with two other iterative solvers [symmetric successive over-relaxation conjugate gradient (SSORCG) and incomplete Cholesky conjugate gradient (ICCG)] show that converging at a rate independent of the grid size, the EXCMG method is much more efficient than SSORCG and ICCG solvers. Moreover, the EXCMG method has been shown its potential for being generalized to large-scale 3-D problems, due to the fact that it becomes more efficient as the size of the problem increases.
Directory of Open Access Journals (Sweden)
Trevor G. Jones
2014-07-01
Full Text Available Information derived from high spatial resolution remotely sensed data is critical for the effective management of forested ecosystems. However, high spatial resolution data-sets are typically costly to acquire and process and usually provide limited geographic coverage. In contrast, moderate spatial resolution remotely sensed data, while not able to provide the spectral or spatial detail required for certain types of products and applications, offer inexpensive, comprehensive landscape-level coverage. This study assessed using an object-based approach to extrapolate detailed tree species heterogeneity beyond the extent of hyperspectral/LiDAR flightlines to the broader area covered by a Landsat scene. Using image segments, regression trees established ecologically decipherable relationships between tree species heterogeneity and the spectral properties of Landsat segments. The spectral properties of Landsat bands 4 (i.e., NIR: 0.76–0.90 µm, 5 (i.e., SWIR: 1.55–1.75 µm and 7 (SWIR: 2.08–2.35 µm were consistently selected as predictor variables, explaining approximately 50% of variance in richness and diversity. Results have important ramifications for ongoing management initiatives in the study area and are applicable to wide range of applications.
Cross-Species Extrapolation of Models for Predicting Lead Transfer from Soil to Wheat Grain.
Directory of Open Access Journals (Sweden)
Ke Liu
Full Text Available The transfer of Pb from the soil to crops is a serious food hygiene security problem in China because of industrial, agricultural, and historical contamination. In this study, the characteristics of exogenous Pb transfer from 17 Chinese soils to a popular wheat variety (Xiaoyan 22 were investigated. In addition, bioaccumulation prediction models of Pb in grain were obtained based on soil properties. The results of the analysis showed that pH and OC were the most important factors contributing to Pb uptake by wheat grain. Using a cross-species extrapolation approach, the Pb uptake prediction models for cultivar Xiaoyan 22 in different soil Pb levels were satisfactorily applied to six additional non-modeled wheat varieties to develop a prediction model for each variety. Normalization of the bioaccumulation factor (BAF to specific soil physico-chemistry is essential, because doing so could significantly reduce the intra-species variation of different wheat cultivars in predicted Pb transfer and eliminate the influence of soil properties on ecotoxicity parameters for organisms of interest. Finally, the prediction models were successfully verified against published data (including other wheat varieties and crops and used to evaluate the ecological risk of Pb for wheat in contaminated agricultural soils.
The risk of extrapolation in neuroanatomy: the case of the mammalian vomeronasal system
Directory of Open Access Journals (Sweden)
Ignacio Salazar
2009-10-01
Full Text Available The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS, and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.
Extrapolation of experimental data on late effects of low-dose radionuclides in man
International Nuclear Information System (INIS)
Kalistratova, V.S.; Nisimov, P.G.
1997-01-01
The situation of living of population on radionuclide contamination areas was simulated in the experimental study using white strainless rats of different ages. The significance of age for late stochastic effects of internal radionuclide contamination with low doses of 131 I, 137 Cs, 144 Ce and 106 Ru was studied. Some common regularities and differences in late effects formation depending on age were found. Results of the study showed that the number of tumors developed increased in groups of animals exposed at the youngest age. The younger animal at the moment of internal radionuclide contamination, the higher percentage of malignant tumors appeared. It was especially so for tumors of endocrine glands (pituitary, suprarenal,- and thyroid). Differences in late effects formation related to different type of radionuclide distribution within the body were estimated. On the base of extrapolation the conclusion was made that human organism being exposed at early postnatal or pubertal period could be the most radiosensitive (1.5-2.0 or sometimes even 3-5 times higher than adults). Data confirmed the opinion that children are the most critical part of population even in case of low dose radiation exposure. (author)
Spatial extrapolation of light use efficiency model parameters to predict gross primary production
Directory of Open Access Journals (Sweden)
Karsten Schulz
2011-12-01
Full Text Available To capture the spatial and temporal variability of the gross primary production as a key component of the global carbon cycle, the light use efficiency modeling approach in combination with remote sensing data has shown to be well suited. Typically, the model parameters, such as the maximum light use efficiency, are either set to a universal constant or to land class dependent values stored in look-up tables. In this study, we employ the machine learning technique support vector regression to explicitly relate the model parameters of a light use efficiency model calibrated at several FLUXNET sites to site-specific characteristics obtained by meteorological measurements, ecological estimations and remote sensing data. A feature selection algorithm extracts the relevant site characteristics in a cross-validation, and leads to an individual set of characteristic attributes for each parameter. With this set of attributes, the model parameters can be estimated at sites where a parameter calibration is not possible due to the absence of eddy covariance flux measurement data. This will finally allow a spatially continuous model application. The performance of the spatial extrapolation scheme is evaluated with a cross-validation approach, which shows the methodology to be well suited to recapture the variability of gross primary production across the study sites.
Mass, Measurement, Materials, and Mathematical Modeling: The Nuts and Bolts of Extrapolation
Directory of Open Access Journals (Sweden)
Scott A Sinex
2011-12-01
Full Text Available A simple activity is described which is appropriate for any class dealing with measurement. It introduces students to the important scientific process of mathematical modeling and online collaboration. Students, working in groups, determine the mass of a bolt indirectly by extrapolation from massing the bolt with one to five nuts on it and determining the equation of the line; the y-intercept being the mass of the bolt. Students gain experience with using a balance, graphing data, and analyzing results using algebraic skills. They calculate percent error after measuring the bolt’s mass directly and can compare this with the error limits from the least squares fit. Groups enter data into a web-based form and the data is examined by the class using Google Docs in a collaborative manner. After entering data in Google Docs, the students use an interactive Excel spreadsheet to compare their results to the best-fit line obtained by linear regression (pre-built into the spreadsheet for novices. In the spreadsheet, they further explore the model to gain an understanding and examine the influence of scatter (error in the data and material density.
Yu, Li-zhong; Ding, Guo-quan; Shi, Jian-wei; Yu, Shui-qiang; Zhu, Jiao-jun; Zhao, Lian-fu
2007-05-01
With 16 years old Larix kaempfersoil plantation in the mountainous area of eastern Liaoning Province as test object, this paper studied the effects of fertilization on the fine root diameter, root length, and specific root length (SRL) of the first to fifth order roots. The results showed that with ascending root orders, the mean fine root diameter and root length increased, while the SRL decreased significantly. Among the five order roots, the first order roots were the thinnest in diameter, the shortest in length, and the highest in SRL, but the fifth order roots were in reverse. The variance coefficients for the fine root diameter, root length, and SRL increased from the first to the fifth order roots. Except for the first order roots, soil depth had no significant influence on the fine root diameter, root length and SRL. Fertilization affected the fine root diameter, root length, and SRL of the first and the second order roots significantly, hut had little effects on other order roots. N fertilization decreased the mean diameter of the first and the second order roots significantly, and N or N + P fertilization decreased the mean length of the first order roots in surface soil (0-10 cm) significantly. The SRL of the first order roots in surface soil increased significantly under N fertilization.
Overview of bunch length measurements
International Nuclear Information System (INIS)
Lumpkin, A. H.
1999-01-01
An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed
Kondo length in bosonic lattices
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
A significant challenge in ecotoxicology has been determining chemical hazards to species with limited or no toxicity data. Currently, extrapolation tools like U.S. EPA’s Web-based Interspecies Correlation Estimation (Web-ICE; www3.epa.gov/webice) models categorize toxicity...
International Nuclear Information System (INIS)
Antonio, Patricia de Lara; Caldas, Linda V.E.; Oliveira, Mercia L.
2009-01-01
This work determines the depth dose in the water for clinical applicators of 90 Sr + 90 Y, using a extrapolation mini chamber developed at the IPEN, Sao Paulo, Brazil, and different thickness acrylic plates. The obtained results were compared with the international recommendations and were considered satisfactory
Fragki, Styliani; Piersma, Aldert H; Rorije, Emiel; Zeilmaker, Marco J
2017-01-01
Incorporation of kinetics to quantitative in vitro to in vivo extrapolations (QIVIVE) is a key step for the realization of a non-animal testing paradigm, in the sphere of regulatory toxicology. The use of Physiologically-Based Kinetic (PBK) modelling for determining systemic doses of chemicals at
Fragki, Styliani; Piersma, Aldert H; Rorije, Emiel; Zeilmaker, Marco J
2017-01-01
Incorporation of kinetics to quantitative in vitro to in vivo extrapolations (QIVIVE) is a key step for the realization of a non-animal testing paradigm, in the sphere of regulatory toxicology. The use of Physiologically-Based Kinetic (PBK) modelling for determining systemic doses of chemicals at
LaFlair, Geoffrey T.; Staples, Shelley
2017-01-01
Investigations of the validity of a number of high-stakes language assessments are conducted using an argument-based approach, which requires evidence for inferences that are critical to score interpretation (Chapelle, Enright, & Jamieson, 2008b; Kane, 2013). The current study investigates the extrapolation inference for a high-stakes test of…
Mueller, David S.
2013-01-01
Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current proﬁler (ADCP) streamﬂow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity
International Nuclear Information System (INIS)
Ackroyd, R.T.; Riyait, N.S.
1989-01-01
Conventional finite-element solutions of the even-parity transport equation for systems with voids treat the void as a region of low absorption. This treatment tends to give physically-unacceptable solutions to void problems as the void cross-section tends to zero. An explanation for the effect is proposed. Biased finite elements are used in two ways to obtain physically-acceptable solutions for the void regions. Two new methods are described and tested. The iterative method synthesizes finite-element solution using a sequence of problems with constant absorptions in the void regions. The sequence is terminated when the fluxes in the void regions become steady. The extrapolation method obtains a best approximation to the void solution by combining two or more independent biased trial functions in an optimum way. The extrapolation method is further subdivided into elementary and nodal or multiparameter extrapolation. The relevant theory of both the iteration and extrapolation methods is given. Several 2-D test problems using the above methods have been investigated. Results are compared with those obtained with other numerical methods and almost analytical results of the point kernel method for voids surrounded by purely absorbing media. (author)
Long-Period Tidal Variations in the Length of Day
Ray, Richard D.; Erofeeva, Svetlana Y.
2014-01-01
A new model of long-period tidal variations in length of day is developed. The model comprises 80 spectral lines with periods between 18.6 years and 4.7 days, and it consistently includes effects of mantle anelasticity and dynamic ocean tides for all lines. The anelastic properties followWahr and Bergen; experimental confirmation for their results now exists at the fortnightly period, but there remains uncertainty when extrapolating to the longest periods. The ocean modeling builds on recent work with the fortnightly constituent, which suggests that oceanic tidal angular momentum can be reliably predicted at these periods without data assimilation. This is a critical property when modeling most long-period tides, for which little observational data exist. Dynamic ocean effects are quite pronounced at shortest periods as out-of-phase rotation components become nearly as large as in-phase components. The model is tested against a 20 year time series of space geodetic measurements of length of day. The current international standard model is shown to leave significant residual tidal energy, and the new model is found to mostly eliminate that energy, with especially large variance reduction for constituents Sa, Ssa, Mf, and Mt.
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
[X]/〈X2m. − 1〉 are given. Cyclic codes of length 2m over the finite field Fq, of odd characteristic, are defined in terms of their generator polynomials. The exact minimum distance and the dimension of the codes are obtained. Keywords.
Diet, nutrition and telomere length.
Paul, Ligi
2011-10-01
The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA. Copyright © 2011 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
J. Vierinen
2011-06-01
Full Text Available We present a novel approach for modulating radar transmissions in order to improve target range and Doppler estimation accuracy. This is achieved by using non-uniform baud lengths. With this method it is possible to increase sub-baud range-resolution of phase coded radar measurements while maintaining a narrow transmission bandwidth. We first derive target backscatter amplitude estimation error covariance matrix for arbitrary targets when estimating backscatter in amplitude domain. We define target optimality and discuss different search strategies that can be used to find well performing transmission envelopes. We give several simulated examples of the method showing that fractional baud-length coding results in smaller estimation errors than conventional uniform baud length transmission codes when estimating the target backscatter amplitude at sub-baud range resolution. We also demonstrate the method in practice by analyzing the range resolved power of a low-altitude meteor trail echo that was measured using a fractional baud-length experiment with the EISCAT UHF system.
Femur length and biparietal diameter
African Journals Online (AJOL)
2014-12-02
Dec 2, 2014 ... Shipp TD, Bromley B, Mascola M, Benacerraf B. Variation in fetal femur length with respect to maternal race. J Ultrasound Med 2001;20:141‑4. 25. Deter RL, Harrist RB, Birnholz JC, Hadlock FP. Quantitative Obstetrical. Ultrasonography. New York: Wiley; 1986. 26. Yeh MN, Bracero L, Reilly KB, Murtha L, ...
Energy Technology Data Exchange (ETDEWEB)
Heil, Tobias, E-mail: tobiasheil@uni-muenster.de [Physikalisches Institut and Interdisziplinaeres Centrum fuer Elektronenmikroskopie und Mikroanalyse (ICEM), Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany); Gralla, Benedikt, E-mail: lexx.matrix@uni-muenster.de [Physikalisches Institut and Interdisziplinaeres Centrum fuer Elektronenmikroskopie und Mikroanalyse (ICEM), Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany); Epping, Michael, E-mail: michael.epping@uni-muenster.de [Physikalisches Institut and Interdisziplinaeres Centrum fuer Elektronenmikroskopie und Mikroanalyse (ICEM), Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany); Kohl, Helmut, E-mail: kohl@uni-muenster.de [Physikalisches Institut and Interdisziplinaeres Centrum fuer Elektronenmikroskopie und Mikroanalyse (ICEM), Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany)
2012-07-15
Over the last decades, elemental maps have become a powerful tool for the analysis of the spatial distribution of the elements within specimen. In energy-filtered transmission electron microscopy (EFTEM) one commonly uses two pre-edge and one post-edge image for the calculation of elemental maps. However, this so called three-window method can introduce serious errors into the extrapolated background for the post-edge window. Since this method uses only two pre-edge windows as data points to calculate a background model that depends on two fit parameters, the quality of the extrapolation can be estimated only statistically assuming that the background model is correct. In this paper, we will discuss a possibility to improve the accuracy and reliability of the background extrapolation by using a third pre-edge window. Since with three data points the extrapolation becomes over-determined, this change permits us to estimate not only the statistical uncertainly of the fit, but also the systematic error by using the experimental data. Furthermore we will discuss in this paper the acquisition parameters that should be used for the energy windows to reach an optimal signal-to-noise ratio (SNR) in the elemental maps. -- Highlights: Black-Right-Pointing-Pointer Comparison of three pre-edge windows to the regular two pre-edge windows. Black-Right-Pointing-Pointer Investigation of the optimal positioning of the third pre-edge window. Black-Right-Pointing-Pointer Description of the {chi}{sup 2} test for extrapolation quality check.
Spatial linear flows of finite length with nonuniform intensity distribution
Directory of Open Access Journals (Sweden)
Mikhaylov Ivan Evgrafovich
2014-02-01
Full Text Available Irrotational flows produced by spatial linear flows of finite length with different uneven lows of discharge over the flow length are represented in cylindrical coordinate system. Flows with the length 2a are placed in infinite space filled with ideal (inviscid fluid. In “А” variant discharge is fading linearly downward along the length of the flow. In “B” variant in upper half of the flow (length a discharge is fading linearly downward, in lower half of the flow discharge is fading linearly from the middle point to lower end. In “C” variant discharge of the flow is growing linearly from upper and lower ends to middle point.Equations for discharge distribution along the length of the flow are provided for each variant. Equations consist of two terms and include two dimensional parameters and current coordinate that allows integrating on flow length. Analytical expressions are derived for speed potential functions and flow speed components for flow speeds produced by analyzed flows. These analytical expressions consist of dimensional parameters of discharge distribution patterns along the length of the flow. Flow lines equation (meridional sections of flow surfaces for variants “A”, “B”, “C” is unsolvable in quadratures. Flow lines plotting is proposed to be made by finite difference method. Equations for flow line plotting are provided for each variant. Calculations of these equations show that the analyzed flows have the following flow lines: “A” has confocal hyperbolical curves, “B” and “C” have confocal hyperboles. Flow surfaces are confocal hyperboloids produced by rotation of these hyperboles about the axis passing through the flows. In “A” variant the space filled with fluid is separated by vividly horizontal flow surface in two parts. In upper part that includes the smaller part of the flow length flow lines are oriented downward, in lower part – upward. The equation defining coordinate of
Energy Technology Data Exchange (ETDEWEB)
Brunelli, Andrea; Zabeo, Alex; Semenzin, Elena; Hristozov, Danail; Marcomini, Antonio, E-mail: marcom@unive.it [University Ca’ Foscari of Venice, Department of Environmental Sciences, Informatics and Statistics (Italy)
2016-05-15
Long-term stability of two engineered nanomaterials (ENMs), i.e., the inorganic n-TiO{sub 2} and the organic Multi-Walled Carbon Nanotubes (MWCNTs), dispersed in artificial freshwater (5–100 mg l{sup −1}), was investigated from short-term settling velocity, particle size distribution, and surface charge. Hydrodynamic diameter and ζ-pot, calculated by means of dynamic and electrophoretic light scattering, respectively, qualitatively indicated a general ENMs dispersion instability over 1 h time. Sedimentation results, obtained by centrifugal separation analysis using the LUMiSizer over approx. 30 min analysis time, allowed to estimate the quantitative long-term (over 30 days) stability of ENMs. Settling data fitted satisfactorily with a first-order kinetic equation (R{sup 2} in the range of 0.918–0.989). The settling rate constant k values extrapolated at gravity spanned one order of magnitude, i.e., from 7.21 × 10{sup −5} to 4.12 × 10{sup −4} s{sup −1}, and with the increasing of initial ENMs concentration. Sedimentation velocities were in good agreement with short- to long-term literature data (7.8 × 10{sup −2}–1.7 × 10{sup −}1 m day{sup −1} vs. 5 × 10{sup −4}–3 × 10{sup −1} m day{sup −1} for n-TiO{sub 2} and 5.9 × 10{sup −2}–3.4 × 10{sup −1} m day{sup −1} vs. 2 × 10{sup −1}–1.2 m day{sup −1} for MWCNTs). n-TiO{sub 2} showed a higher long-term stability with respect to MWCNTs (average: 1 × 10{sup −1} ± 3.4 × 10{sup −2} m day{sup −1} instead of 1.7 × 10{sup −1} ± 1.1 × 10{sup −1} m day{sup −1}, respectively).
STEREOLOGICAL ESTIMATION OF TUBULAR LENGTH FROM THIN VERTICAL SECTIONS
Directory of Open Access Journals (Sweden)
Helle V Clausen
2011-05-01
Full Text Available In this study tubular structures are represented by stem villous arteries of the human placenta. The architecture of the vascular tree in the human placenta makes it appropriate to use vertical histological sections. Describing tubules, estimates of total length and diameter are informative. The aim of the study was to derive a new stereological estimator of the total length of circular tubules observed in thin vertical sections. Design: Dual perfusion fixed human placentas. Systematic, uniformly random sampling of vertical sections. Five-μm-sections were stained by haematoxylin and eosin (H&E and the vertical axis was identified in all sections. A test system with cycloid test lines was used. Since tubular surface area is proportional to length and diameter, S ∝ πdL, surface-weightening is equivalent to diameter×lengthweightening. As each diameter (extra weight is known, one may eliminate the diameter-weightening by computing the harmonic mean diameter, which is thus the correct, length-weighted mean tubular diameter, dL = d hS . Surface area is estimated in the ordinary way from vertical sections, and with unbiased and robust estimates of S and dL respectively, total length may be estimated L = S / πdhs Conclusion: A new stereological estimator of total length of a circular tubular structure observed in thin vertical sections is presented.
Accelerated aging embrittlement of cast duplex stainless steel: Activation energy for extrapolation
International Nuclear Information System (INIS)
Chung, H.M.; Chopra, O.K.
1989-05-01
Cast duplex stainless steels, used extensively in LWR systems for primary pressure boundary components such as primary coolant pipes, valves, and pumps, are susceptible to thermal aging embrittlement at reactor operating or higher temperatures. Since a realistic aging embrittlement for end-of-life or life-extension conditions (i.e., 32--50 yr of aging at 280--320 degree C) cannot be produced, it is customary to simulate the metallurgical structure by accelerated aging at ∼400 degree C. Over the past several years, extensive data on accelerated aging have been reported from a number of laboratories. The most important information from these studies is the activation energy, namely, the temperature dependence of the aging kinetics between 280 and 400 degree C, which is used to extrapolate the aging characteristics to reactor operating conditions. The activation energies (in the range of 18--50 kcal/mole) are, in general, sensitive to material grade, chemical composition, and fabrication process, and a few empirical correlations, obtained as a function of bulk chemical composition, have been reported. In this paper, a mechanistic understanding of the activation energy is described on the basis of the results of microstructural characterization of various heats of CF-3, -8, and -8M grades that were used in aging studies at different laboratories. The primary mechanism of aging embrittlement at temperatures between 280 and 400 degree C is the spinodal decomposition of the ferrite phase, and M 23 C 6 carbide precipitation on the ferrite/austenite boundaries is the secondary mechanism for high-carbon CF-8 grade. 20 refs., 10 figs., 3 tabs
Song, Yang; Hamtaei, Ehsan; Sethi, Sean K; Yang, Guang; Xie, Haibin; Mark Haacke, E
2017-12-01
To introduce a new approach to reconstruct high definition vascular images using COnstrained Data Extrapolation (CODE) and evaluate its capability in estimating vessel area and stenosis. CODE is based on the constraint that the full width half maximum of a vessel can be accurately estimated and, since it represents the best estimate for the width of the object, higher k-space data can be generated from this information. To demonstrate the potential of extracting high definition vessel edges using low resolution data, both simulated and human data were analyzed to better visualize the vessels and to quantify both area and stenosis measurements. The results from CODE using one-fourth of the fully sampled k-space data were compared with a compressed sensing (CS) reconstruction approach using the same total amount of data but spread out between the center of k-space and the outer portions of the original k-space to accelerate data acquisition by a factor of four. For a sufficiently high signal-to-noise ratio (SNR) such as 16 (8), we found that objects as small as 3 voxels in the 25% under-sampled data (6 voxels when zero-filled) could be used for CODE and CS and provide an estimate of area with an error 200 (30) times faster for CODE compared to CS in the simulated (human) data. CODE was capable of producing sharp sub-voxel edges and accurately estimating stenosis to within 5% for clinically relevant studies of vessels with a width of at least 3pixels in the low resolution images. Copyright © 2017 Elsevier Inc. All rights reserved.
Cross-species extrapolation of prediction models for cadmium transfer from soil to corn grain.
Directory of Open Access Journals (Sweden)
Hua Yang
Full Text Available Cadmium (Cd is a highly toxic heavy metal for both plants and animals. The presence of Cd in agricultural soils is of great concern regarding its transfer in the soil-plant system. This study investigated the transfer of Cd (exogenous salts from a wide range of Chinese soils to corn grain (Zhengdan 958. Through multiple stepwise regressions, prediction models were developed, with the combination of Cd bioconcentration factor (BCF of Zhengdan 958 and soil pH, organic matter (OM content, and cation exchange capacity (CEC. Moreover, these prediction models from Zhengdan 958 were applied to other non-model corn species through cross-species extrapolation approach. The results showed that the pH of the soil was the most important factor that controlled Cd uptake and lower pH was more favorable for Cd bioaccumulation in corn grain. There was no significant difference among three prediction models in the different Cd levels. When the prediction models were applied to other non-model corn species, the ratio ranges between the predicted BCF values and the measured BCF values were within an interval of 2 folds and close to the solid line of 1∶1 relationship. Furthermore, these prediction models also reduced the measured BCF intra-species variability for all non-model corn species. Therefore, the prediction models established in this study can be applied to other non-model corn species and be useful for predicting the Cd bioconcentration in corn grain and assessing the ecological risk of Cd in different soils.
Coelho, Luís; Cardoso, Hugo F V
2013-12-10
Timing of blunt force trauma in human bone is a critical forensic issue, but there is limited knowledge on how different environmental conditions, the duration of postmortem interval (PMI), different bone types and different animal models influence fracture morphology. This study aims at evaluating the influence of the type of postmortem environment and the duration of the postmortem period on fracture morphology, for distinguishing perimortem from postmortem fractures on different types of long bones from different species. Fresh limb segments from pig and goat were sequentially left to decompose, under 3 different environmental circumstances (surface, buried and submerged), resulting in sets with different PMI lengths (0, 28, 56, 84, 112, 140, 168 and 196 days), which were then fractured. Fractured bones (total=325; pig tibia=110; pig fibula=110; goat metatarsals=105) were classified according to the Fracture Freshness Index (FFI). Climatic data for the experiment location was collected. Statistical analysis included descriptive statistics, correlation analysis between FFI and PMI, Mann-Whitney U tests comparing FFI medians for different PMI's and linear regression analysis using PMI, pluviosity and temperature as predictors for FFI. Surface samples presented increases in FFI with increasing PMI, with positive correlations for all bone types. The same results were observed in submerged samples, except for pig tibia. Median FFI values for surface samples could distinguish bones with PMI=0 days from PMI≥56 days. Buried samples presented no significant correlation between FFI and PMI, and nonsignificant regression models. Regression analysis of surface and submerged samples suggested differences in FFI variation with PMI between bone types, although without statistical significance. Adding climatic data to surface regression models resulted in PMI no longer predicting FFI. When comparing different animal models, linear regressions suggested greater increases in
Directory of Open Access Journals (Sweden)
Eric Costello
2011-01-01
Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.
Keeping disease at arm's length
DEFF Research Database (Denmark)
Lassen, Aske Juul
2015-01-01
and physical activities at the activity centre. In this way, keeping disease at arm’s length is analysed as an ambiguous health strategy. The article shows the importance of looking into how active ageing is practised, as active ageing seems to work well in the everyday life of the older people by not giving......Many older people live with a range of chronic diseases. However, these diseases do not necessarily impede an active lifestyle. In this article the author analyses the relation between the active ageing discourse and the way older people at two Danish activity centres handle disease. How does...... active ageing change everyday life with chronic disease, and how do older people combine an active life with a range of chronic diseases? The participants in the study use activities to keep their diseases at arm’s length, and this distancing of disease at the same time enables them to engage in social...
Sonographic Measurement of Normal Splenic Length in Korean Adults
Energy Technology Data Exchange (ETDEWEB)
Shin, Sang Bum; Cheon, Byung Kook; Kim, Jong Min; Oh, Kyung Seoung; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk [Kosin University College of Medicine, Busan (Korea, Republic of)
1996-12-15
To establish upper limit of normal splenic length of Korean adults on ultrasonography and to determice the degree of interobserver and intraobserver variation. Ultrasonographic scans were performed to measure the maximum length of spleen in 105 of 150 adults selected by convenience sampling. Remained 45 cases with any conditions that could alter splenic size were excluded from this study. The maximum length of spleen was measured and correlated with body surface area, patient height, weight, age and sex. In 31 of the 105 adults we evaluated the interobserver and intraobserver variations in sonographic measurements of splenic length obtained by three radiologists in blind fashion. The mean splenic length in 105 adults was 8.56cm ({+-} 0.95). The splenic length positively correlated with body surface area, patient height and weight (P <0.001), and negatively correlated with patient age (P < 0.01). Male spleen (8.87 cm {+-} 1.07) was longer than female spleen (8.35 cm {+-} 0.81) (P < 0.05). The following guidelines are proposed for the upper limit of normal splenic length at different groups of body surface area: no longer than 10 cm at 1.20{approx}1.59 m{sup 2}, 11 cm at1.60{approx}1.79 m{sup 2}, and 12 cm at 1.80{approx}1.99 m{sup 2}. The mean interobserver variation between any two radiologists ranged from 0.32 cm ({+-} 0.29) to 0.39 cm ({+-} 0.33) and interobserver variations were within 1 cm in 96%. The mean intraobserver variations were within 0.5 cm in 91%. The splenic length closely correlated with body surface area, patient height, weight and age. Particularly the upper limit of normal splenic length changed according to body surface area. Interobserver variation about 1 cm and intraobserver variation about 0.5 cm should be considered in the measurement of the splenic length on ultrasonography
Energy Technology Data Exchange (ETDEWEB)
Silva, Eric A.B. da; Caldas, Linda V.E., E-mail: ebrito@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-10-26
The extrapolation chamber is a ionization chamber used for detection low energy radiation and can be used as an standard instrument for beta radiation beams. This type of ionization chamber have as main characteristic the variation of sensible volume. This paper performs a study of characterization of a PTW commercial extrapolation chamber, in the energy interval of the qualities of conventional radiodiagnostic
Diagnostic extrapolation of gross primary production from flux tower sites to the globe
Beer, Christian; Reichstein, Markus; Tomelleri, Enrico; Ciais, Philippe; Jung, Martin; Carvalhais, Nuno; Rödenbeck, Christian; Baldocchi, Dennis; Luyssaert, Sebastiaan; Papale, Dario
2010-05-01
The uptake of atmospheric CO2 by plant photosynthesis is the largest global carbon flux and is thought of driving most terrestrial carbon cycle processes. While the photosynthesis processes at the leaf and canopy levels are quite well understood, so far only very crude estimates of its global integral, the Gross Primary Production (GPP) can be found in the literature. Existing estimates have been lacking sound empirical basis. Reasons for such limitations lie in the absence of direct estimates of ecosystem-level GPP and methodological difficulties in scaling local carbon flux measurements to global scale across heterogeneous vegetation. Here, we present global estimates of GPP based on different diagnostic approaches. These up-scaling schemes integrated high-resolution remote sensing products, such as land cover, the fraction of photosynthetically active radiation (fAPAR) and leaf-area index, with carbon flux measurements from the global network of eddy covariance stations (FLUXNET). In addition, meteorological datasets from diverse sources and river runoff observations were used. All the above-mentioned approaches were also capable of estimating uncertainties. With six novel or newly parameterized and highly diverse up-scaling schemes we consistently estimated a global GPP of 122 Pg C y-1. In the quantification of the total uncertainties, we considered uncertainties arising from the measurement technique and data processing (i.e. partitioning into GPP and respiration). Furthermore, we accounted for the uncertainties of drivers and the structural uncertainties of the extrapolation approach. The total propagation led to a global uncertainty of 15 % of the mean value. Although our mean GPP estimate of 122 Pg C y-1 is similar to the previous postulate by Intergovernmental Panel on Climate Change in 2001, we estimated a different variability among ecoregions. The tropics accounted for 32 % of GPP showing a greater importance of tropical ecosystems for the global carbon
Comparison of extrapolation methods for creep rupture stresses of 12Cr and 18Cr10NiTi steels
International Nuclear Information System (INIS)
Ivarsson, B.
1979-01-01
As a part of a Soviet-Swedish research programme the creep rupture properties of two heat resisting steels namely a 12% Cr steel and an 18% Cr12% Ni titanium stabilized steel have been studied. One heat from each country of both steels were creep tested. The strength of the 12% Cr steels was similar to earlier reported strength values, the Soviet steel being some-what stronger due to a higher tungsten content. The strength of the Swedish 18/12 Ti steel agreed with earlier results, while the properties of the Soviet steel were inferior to those reported from earlier Soviet creep testings. Three extrapolation methods were compared on creep rupture data collected in both countries. Isothermal extrapolation and an algebraic method of Soviet origin gave in many cases rather similar results, while the parameter method recommended by ISO resulted in higher rupture strength values at longer times. (author)
International Nuclear Information System (INIS)
Ullemeyer, K; Keppler, R; Lokajíček, T; Vasin, R N; Behrmann, J H
2015-01-01
The elastic anisotropy of bulk rock depends on the mineral textures, the crack fabric and external parameters like, e.g., confining pressure. The texture-related contribution to elastic anisotropy can be predicted from the mineral textures, the largely sample-dependent contribution of the other parameters must be determined experimentally. Laboratory measurements of the elastic wave velocities are mostly limited to pressures of the intermediate crust. We describe a method, how the elastic wave velocity trends and, by this means, the elastic constants can be extrapolated to the pressure conditions of the lower crust. The extrapolated elastic constants are compared to the texture-derived ones. Pronounced elastic anisotropy is evident for phyllosilicate minerals, hence, the approach is demonstrated for two phyllosilicate-rich gneisses with approximately identical volume fractions of the phyllosilicates but different texture types. (paper)
DEFF Research Database (Denmark)
Thorndahl, Søren Liedtke; Rasmussen, Michael R.
2013-01-01
Model based short-term forecasting of urban storm water runoff can be applied in realtime control of drainage systems in order to optimize system capacity during rain and minimize combined sewer overflows, improve wastewater treatment or activate alarms if local flooding is impending. A novel...... online system, which forecasts flows and water levels in real-time with inputs from extrapolated radar rainfall data, has been developed. The fully distributed urban drainage model includes auto-calibration using online in-sewer measurements which is seen to improve forecast skills significantly....... The radar rainfall extrapolation (nowcast) limits the lead time of the system to two hours. In this paper, the model set-up is tested on a small urban catchment for a period of 1.5 years. The 50 largest events are presented....
International Nuclear Information System (INIS)
Brunori, G.; Cappellato, S.; Vacchiano, S.; Guglielmi, F.
1982-01-01
Inside Activity 3 ''Materials'' of WGCS, the member states UK and FRG have developed a work regarding extrapolation methods for creep data. This work has been done by comparising extrapolation methods in use in their countries by applying them to creep rupture strength data on AISI 316 SS obtained in UK and FRG. This work has been issued on April 1978 and the Community has dealed it to all Activity 3 Members. Italy, in the figure of NIRA S.p.A., has received, from the European Community a contract to extend the work to Italian and French data, using extrapolation methods currently in use in Italy. The work should deal with the following points: - Collect of Italian experimental data; - Chemical analysis on Italian Specimen; - Comparison among Italian experimental data with French, FRG and UK data; - Description of extrapolation methods in use in Italy; - Application of these extrapolation methods to Italian, French, British and Germany data; - Extensions of a Final Report
International Nuclear Information System (INIS)
Castillo, Jhonny Antonio Benavente
2011-01-01
The metrological coherence among standard systems is a requirement for assuring the reliability of dosimetric quantities measurements in ionizing radiation field. Scientific and technologic improvements happened in beta radiation metrology with the installment of the new beta secondary standard BSS2 in Brazil and with the adoption of the internationally recommended beta reference radiations. The Dosimeter Calibration Laboratory of the Development Center for Nuclear Technology (LCD/CDTN), in Belo Horizonte, implemented the BSS2 and methodologies are investigated for characterizing the beta radiation fields by determining the field homogeneity, the accuracy and uncertainties in the absorbed dose in air measurements. In this work, a methodology to be used for verifying the metrological coherence among beta radiation fields in standard systems was investigated; an extrapolation chamber and radiochromic films were used and measurements were done in terms of absorbed dose in air. The reliability of both the extrapolation chamber and the radiochromic film was confirmed and their calibrations were done in the LCD/CDTN in 90 Sr/ 90 Y, 85 Kr and 147 Pm beta radiation fields. The angular coefficients of the extrapolation curves were determined with the chamber; the field mapping and homogeneity were obtained from dose profiles and isodose with the radiochromic films. A preliminary comparison between the LCD/CDTN and the Instrument Calibration Laboratory of the Nuclear and Energy Research Institute / Sao Paulo (LCI/IPEN) was carried out. Results with the extrapolation chamber measurements showed in terms of absorbed dose in air rates showed differences between both laboratories up to de -I % e 3%, for 90 Sr/ 90 Y, 85 Kr and 147 Pm beta radiation fields, respectively. Results with the EBT radiochromic films for 0.1, 0.3 and 0.15 Gy absorbed dose in air, for the same beta radiation fields, showed differences up to 3%, -9% and -53%. The beta radiation field mappings with
Gaspar Ferrer, Leticia; López-Vicente, Manuel; Palazón Tabuenca, Leticia; Quijano Gaudes, Laura; Navas Izquierdo, Ana
2015-01-01
This study aims to assess soil redistribution in an agroforestry catchment characterized by abrupt topography and an intricate mosaic of land uses using 137Cs data and GIS. A new methodological approach using GIS is presented as an alternative of interpolation tools to extrapolating soil redistribution rates in complex landscapes. This approach divides the catchment into Homogeneous Physiographic Units (HPUs) based on unique land use, hydrological network and slope value.
Fagerlund, Göran
2000-01-01
The leaching process when water attacks concrete, and the effect of leaching on the strength and durability of a concrete structure, is analysed theoretically. Technique for prediction of the future leaching and structural stability is outlined. The analysis is to a certain extent supported by data from literature. The leaching process is divided in five different types: 1: Pure surface leaching 2: Surface leaching involving erosion 3: Homogeneous leaching over the entire structure 4...
Energy Technology Data Exchange (ETDEWEB)
Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)
2015-10-15
Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)
Directory of Open Access Journals (Sweden)
Yan Xia
2017-01-01
Full Text Available We improve data extrapolation for truncated computed tomography (CT projections by using Helgason-Ludwig (HL consistency conditions that mathematically describe the overlap of information between projections. First, we theoretically derive a 2D Fourier representation of the HL consistency conditions from their original formulation (projection moment theorem, for both parallel-beam and fan-beam imaging geometry. The derivation result indicates that there is a zero energy region forming a double-wedge shape in 2D Fourier domain. This observation is also referred to as the Fourier property of a sinogram in the previous literature. The major benefit of this representation is that the consistency conditions can be efficiently evaluated via 2D fast Fourier transform (FFT. Then, we suggest a method that extrapolates the truncated projections with data from a uniform ellipse of which the parameters are determined by optimizing these consistency conditions. The forward projection of the optimized ellipse can be used to complete the truncation data. The proposed algorithm is evaluated using simulated data and reprojections of clinical data. Results show that the root mean square error (RMSE is reduced substantially, compared to a state-of-the-art extrapolation method.
Scott, Bradley J; Klein, Agnes V; Wang, Jian
2015-03-01
Monoclonal antibodies have become mainstays of treatment for many diseases. After more than a decade on the Canadian market, a number of authorized monoclonal antibody products are facing patent expiry. Given their success, most notably in the areas of oncology and autoimmune disease, pharmaceutical and biotechnology companies are eager to produce their own biosimilar versions and have begun manufacturing and testing for a variety of monoclonal antibody products. In October of 2013, the first biosimilar monoclonal antibody products were approved by the European Medicines Agency (Remsima™ and Inflectra™). These products were authorized by Health Canada shortly after; however, while the EMA allowed for extrapolation to all of the indications held by the reference product, Health Canada limited extrapolation to a subset of the indications held by the reference product, Remicade®. The purpose of this review is to discuss the Canadian regulatory framework for the authorization of biosimilar mAbs with specific discussion around the clinical requirements for establishing (bio)-similarity and to present the principles that are used in the clinical assessment of New Drug Submissions for intended biosimilar monoclonal antibodies. Health Canada's current views regarding indication extrapolation, product interchangeability, and post-market surveillance are discussed as well. © 2014, The American College of Clinical Pharmacology.
Ketcheson, David I.
2014-06-13
We compare the three main types of high-order one-step initial value solvers: extrapolation, spectral deferred correction, and embedded Runge–Kutta pairs. We consider orders four through twelve, including both serial and parallel implementations. We cast extrapolation and deferred correction methods as fixed-order Runge–Kutta methods, providing a natural framework for the comparison. The stability and accuracy properties of the methods are analyzed by theoretical measures, and these are compared with the results of numerical tests. In serial, the eighth-order pair of Prince and Dormand (DOP8) is most efficient. But other high-order methods can be more efficient than DOP8 when implemented in parallel. This is demonstrated by comparing a parallelized version of the wellknown ODEX code with the (serial) DOP853 code. For an N-body problem with N = 400, the experimental extrapolation code is as fast as the tuned Runge–Kutta pair at loose tolerances, and is up to two times as fast at tight tolerances.
Cellular Mechanisms of Ciliary Length Control
Directory of Open Access Journals (Sweden)
Jacob Keeling
2016-01-01
Full Text Available Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.
Tolman's length and limiting supersaturation of vapor
Alekseechkin, Nikolay V.
2018-01-01
The classical Kelvin formula for the equilibrium vapor pressure over a droplet of radius R is extended to small radii and vapor non-ideality, from where the limiting supersaturation condition is obtained by relating the point R = 0 to the value of limiting (spinodal) supersaturation of vapor. The analysis of different dependences of the Tolman length on radius, δ (R) , obeying this condition suggests that (i) the value of δ (0) is positive and the function δ (R) decreases with increasing radius; (ii) the curvature effect (the dependence of surface tension on radius) in the nucleation region is determined by the value of δ (0) . At the same time, this effect is weakly sensitive to the form of the function δ (R) and insensitive to its asymptotic value δ∞ .
Franz Josef and Fox Glaciers, New Zealand: Historic length records
Purdie, Heather; Anderson, Brian; Chinn, Trevor; Owens, Ian; Mackintosh, Andrew; Lawson, Wendy
2014-10-01
Compilation of modern and historical length change records for Franz Josef and Fox Glaciers demonstrates that these glaciers have lost ~ 3 km in length and at least 3-4 km2 in area since the 1800s, with the greatest overall loss occurring between 1934 and 1983. Within this dramatic and ongoing retreat, both glaciers have experienced periods of re-advance. The record from Franz Josef Glacier is the most detailed, and shows major advances from 1946 to 1951 (340 m), 1965-1967 (400 m), 1983-1999 (1420 m) and 2004-2008 (280 m). At Fox Glacier the record is similar, with advances recorded during 1964-1968 (60 m), 1985-1999 (710 m) and 2004-2008 (290 m). Apart from the latest advance event, the magnitude of advance has been greater at Franz Josef Glacier, suggesting a higher length sensitivity. Analysis of the relationship between glacier length and a reconstructed annual equilibrium line altitude (ELA) record shows that the glaciers react very quickly to ELA variations - with the greatest correlation at 3-4 years' lag. The present (2014) retreat is the fastest retreat in the records of both glaciers. While decadal length fluctuations have been linked to hemispheric ocean-atmosphere variability, the overall reduction in length is a clear sign of twentieth century warming. However, documenting glacier length changes can be challenging; especially when increased surface debris-cover makes identification of the 'true' terminus a convoluted process.
Energy Technology Data Exchange (ETDEWEB)
Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.; Mundy, William R.; Eklund, Chris R.; Johnstone, Andrew F.M.; Mack, Cina M.; Pegram, Rex A., E-mail: pegram.rex@epa.gov
2015-02-15
Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neurons in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC
International Nuclear Information System (INIS)
Kawai, T.; Tasaki, S.; Ebisawa, T.; Hino, M.; Yamazaki, D.; Achiwa, N.
1999-01-01
Complete text of publication follows. A non-dispersive method is proposed for measuring the longitudinal coherence length of a neutron using a high frequency cold neutron pulser (hf-CNP) placed between two multilayer spin splitters (MSS) which composes the cold neutron spin interferometer. Two spin eigenstates of a neutron polarized x-y plane are split non-dispersively and longitudinally in time by the hf-CNP which could reflect two components alternatively in time. The reduction of the visibility of interference fringes after being superposed by the second MSS is measured as a function of the frequency of the pulser by TOF method. From the zero visibility point obtained by extrapolation one could obtain the longitudinal coherence length of the neutron. (author)
Complete Basis Set Extrapolation and Hybrid Schemes for Geometry Gradients of Noncovalent Complexes
Czech Academy of Sciences Publication Activity Database
Černý, Jiří; Pitoňák, M.; Riley, Kevin Eugene; Hobza, Pavel
2011-01-01
Roč. 7, č. 12 (2011), s. 3924-3934 ISSN 1549-9618 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z40550506 Keywords : potential-energy surface * benzene dimer * stacking * convergence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.215, year: 2011
Directory of Open Access Journals (Sweden)
Xia Zhao
2015-01-01
Full Text Available The appropriately landscaped highway scenes may not only help improve road safety and comfort but also help protect ecological environment. Yet there is very little research data on highway length threshold with consideration of distinctive landscape patterns. Against this backdrop, the paper aims to quantitatively analyze highway landscape’s effect on driving behavior based on drivers’ physiological performance and quantify highway length thresholds under three typical landscape patterns, namely, “open,” “semiopen,” and “vertical” ones. The statistical analysis was based on data collected in a driving simulator and electrocardiograph. Specifically, vehicle-related data, ECG data, and supplemental subjective stress perception were collected. The study extracted two characteristic indices, lane deviation and LF/HF, and extrapolated the drivers’ U-shaped physiological response to landscape patterns. Models on highway length were built based on LF/HF’s variation trend with highway length. The results revealed that the theoretical highway length threshold tended to increase when the landscape pattern was switched to open, semiopen, and vertical ones. And the reliability and accuracy of the results were validated by questionnaires and field operational tests. Findings from this research will assist practitioners in taking active environmental countermeasures pertaining to different roadside landscape patterns.
Normal standards for kidney length as measured with US in premature infants
International Nuclear Information System (INIS)
Schlesinger, A.E.; Hedlund, G.L.; Pierson, W.P.; Null, D.M.
1986-01-01
In order to develop normal standards for kidney length in premature infants, the authors measured kidney length by US imaging in 39 (to date) premature infants less than 72 hours old and without known renal disease. Kidney length was compared with four different parameters of body size, including gestational age, birth weight, birth length, and body surface area. Similar standards have been generated previously for normal renal length as measured by US imaging in full-term infants and older children. These standards have proven utility in cases of congenital and acquired disorders that abnormally increase or decrease renal size. Scatter plots of kidney length versus body weight and kidney length versus body surface area conformed well to a logarithmic distribution, with a high correlation coefficient and close-fitting 95% confidence limits (SEE = 2.05)
Czech Academy of Sciences Publication Activity Database
Stupakov, Oleksandr
2006-01-01
Roč. 307, - (2006), s. 279-287 ISSN 0304-8853 R&D Projects: GA AV ČR(CZ) 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic measurement * open magnetic sample * surface field determination * single-yoke setup * magnetic non-destructive testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006
Smith, Andrew K; Xu, Yanli; Ropella, Glen E P; Hunt, C Anthony
2018-04-01
An improved understanding of in vivo-to-in vitro hepatocyte changes is crucial to interpreting in vitro data correctly and further improving hepatocyte-based in vitro-to-in vivo extrapolations to human targets. We demonstrate using virtual experiments as a means of helping to untangle plausible causes of inaccurate extrapolations. We start with virtual mice that use biomimetic software livers. Previously, using these mice, we discovered model mechanisms that enabled achieving quantitative validation targets while also providing plausible causal explanations for temporal characteristics of acetaminophen hepatotoxicity. We isolated virtual hepatocytes, created a virtual culture, and then conducted dose-response experiments in both culture and mice. We expected to see differences between the two dose-response curves but were somewhat surprised that they crossed because it evidenced that simulated acetaminophen metabolism and toxicity are different for virtual culture and mouse contexts even though individual hepatocyte mechanisms were unchanged. Differences in dose-response curves provide a virtual example of an in vivo-to-in vitro disconnect. We use detailed results of experiments to explain this disconnect. Individual hepatocytes contribute differently to system-level phenomena. In liver, hepatocytes are exposed to acetaminophen sequentially. Relative production of the reactive acetaminophen metabolite is largest (smallest) in pericentral (periportal) hepatocytes. Because that sequential exposure is absent in culture, hepatocytes from different lobular locations do not respond the same. A virtual culture-to-mouse translation can stand as a scientifically challengeable hypothesis explaining an in vivo-to-in vitro disconnect. It provides a framework to develop more reliable interpretations of in vitro observations, which then may be used to improve extrapolations. Copyright © 2018 by The Author(s).
Directory of Open Access Journals (Sweden)
Orien M W Richmond
Full Text Available Species distribution models (SDMs are increasingly used for extrapolation, or predicting suitable regions for species under new geographic or temporal scenarios. However, SDM predictions may be prone to errors if species are not at equilibrium with climatic conditions in the current range and if training samples are not representative. Here the controversial "Pleistocene rewilding" proposal was used as a novel example to address some of the challenges of extrapolating modeled species-climate relationships outside of current ranges. Climatic suitability for three proposed proxy species (Asian elephant, African cheetah and African lion was extrapolated to the American southwest and Great Plains using Maxent, a machine-learning species distribution model. Similar models were fit for Oryx gazella, a species native to Africa that has naturalized in North America, to test model predictions. To overcome biases introduced by contracted modern ranges and limited occurrence data, random pseudo-presence points generated from modern and historical ranges were used for model training. For all species except the oryx, models of climatic suitability fit to training data from historical ranges produced larger areas of predicted suitability in North America than models fit to training data from modern ranges. Four naturalized oryx populations in the American southwest were correctly predicted with a generous model threshold, but none of these locations were predicted with a more stringent threshold. In general, the northern Great Plains had low climatic suitability for all focal species and scenarios considered, while portions of the southern Great Plains and American southwest had low to intermediate suitability for some species in some scenarios. The results suggest that the use of historical, in addition to modern, range information and randomly sampled pseudo-presence points may improve model accuracy. This has implications for modeling range shifts of
Directory of Open Access Journals (Sweden)
Arnaud Grüss
2018-01-01
Full Text Available To be able to simulate spatial patterns of predator-prey interactions, many spatially-explicit ecosystem modeling platforms, including Atlantis, need to be provided with distribution maps defining the annual or seasonal spatial distributions of functional groups and life stages. We developed a methodology combining extrapolation and interpolation of the predictions made by statistical habitat models to produce distribution maps for the fish and invertebrates represented in the Atlantis model of the Gulf of Mexico (GOM Large Marine Ecosystem (LME (“Atlantis-GOM”. This methodology consists of: (1 compiling a large monitoring database, gathering all the fisheries-independent and fisheries-dependent data collected in the northern (U.S. GOM since 2000; (2 compiling a large environmental database, storing all the environmental parameters known to influence the spatial distribution patterns of fish and invertebrates of the GOM; (3 fitting binomial generalized additive models (GAMs to the large monitoring and environmental databases, and geostatistical binomial generalized linear mixed models (GLMMs to the large monitoring database; and (4 employing GAM predictions to infer spatial distributions in the southern GOM, and GLMM predictions to infer spatial distributions in the U.S. GOM. Thus, our methodology allows for reasonable extrapolation in the southern GOM based on a large amount of monitoring and environmental data, and for interpolation in the U.S. GOM accurately reflecting the probability of encountering fish and invertebrates in that region. We used an iterative cross-validation procedure to validate GAMs. When a GAM did not pass the validation test, we employed a GAM for a related functional group/life stage to generate distribution maps for the southern GOM. In addition, no geostatistical GLMMs were fit for the functional groups and life stages whose depth, longitudinal and latitudinal ranges within the U.S. GOM are not entirely covered by
Reinvestigation on mixing length in an open channel turbulent flow
Kundu, Snehasis; Kumbhakar, Manotosh; Ghoshal, Koeli
2018-02-01
The present study proposes a model on vertical distribution of streamwise velocity in an open channel turbulent flow through a newly proposed mixing length, which is derived for both clear water and sediment-laden turbulent flows. The analysis is based on a theoretical consideration which explores the effect of density stratification on the streamwise velocity profile. The derivation of mixing length makes use of the diffusion equation where both the sediment diffusivity and momentum diffusivity are taken as a function of height from the channel bed. The damping factor present in the mixing length of sediment-fluid mixture contains velocity and concentration gradients. This factor is capable of describing the dip-phenomenon of velocity distribution. From the existing experimental data of velocity, the mixing length data are calculated. The pattern shows that mixing length increases from bed to the dip-position, having a larger value at dip-position and then decreases up to the water surface with a zero value thereat. The present model agrees well with these data sets and this behavior cannot be described by any other existing model. Finally, the proposed mixing length model is applied to find the velocity distribution in wide and narrow open channels. The derived velocity distribution is compared with laboratory channel data of velocity, and the comparison shows good agreement.
Rong, Lu; Latychevskaia, Tatiana; Wang, Dayong; Zhou, Xun; Huang, Haochong; Li, Zeyu; Wang, Yunxin
2014-07-14
We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO(2) pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detector's pixels. Absorption and phase-shifting images of a dragonfly's hindwing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 μm width cross veins.
Energy Technology Data Exchange (ETDEWEB)
Sussmann, R.; Homburg, F.; Freudenthaler, V.; Jaeger, H. [Frauenhofer Inst. fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen (Germany)
1997-12-31
The CCD image of a persistent contrail and the coincident LIDAR measurement are presented. To extrapolate the LIDAR derived optical thickness to the video field of view an anisotropy correction and calibration has to be performed. Observed bright halo components result from highly regular oriented hexagonal crystals with sizes of 200 {mu}m-2 mm. This explained by measured ambient humidities below the formation threshold of natural cirrus. Optical thickness from LIDAR shows significant discrepancies to the result from coincident NOAA-14 data. Errors result from anisotropy correction and parameterized relations between AVHRR channels and optical properties. (author) 28 refs.
Oh, Min-Su; Hwang, Geol; Han, Sanghoon; Kang, Hyun Sik; Kim, Seung Hyo; Kim, Young Don; Kang, Ki-Soo; Shin, Kyung-Sue; Lee, Mu Sook; Choi, Guk Myung; Han, Kyoung Hee
2016-07-01
Kidney length is the most useful parameter for clinical measurement of kidney size, and is useful to distinguish acute kidney injury from chronic kidney disease. In this prospective observational study of 437 normal children aged between 0 and kidney length was measured using sonography. There were good correlations between kidney length and somatic values, including age, weight, height, and body surface area. The rapid growth of height during the first 2 years of life was intimately associated with a similar increase in kidney length, suggesting that height should be considered an important factor correlating with kidney length. Based on our findings, the following regression equation for the reference values of bilateral kidney length for Korean children was obtained: kidney length of the right kidney (cm) = 0.051 × height (cm) + 2.102; kidney length of the left kidney (cm) = 0.051 × height (cm) + 2.280. This equation may aid in the diagnosis of various kidney disorders.
String matching with variable length gaps
DEFF Research Database (Denmark)
Bille, Philip; Gørtz, Inge Li; Vildhøj, Hjalte Wedel
2012-01-01
We consider string matching with variable length gaps. Given a string T and a pattern P consisting of strings separated by variable length gaps (arbitrary strings of length in a specified range), the problem is to find all ending positions of substrings in T that match P. This problem is a basic...
Accurate ab initio potential for HO2+ : CBS extrapolated energies and direct-fit diatomic curves
Xavier, F. George D.; Martínez-González, Marco; Varandas, A. J. C.
2018-01-01
A potential energy surface is reported at the complete basis set limit for the ground electronic state of HO2+ via a four dimensional interpolation in relaxed hyperspherical coordinates. The dissociated products OH+ and O2+ have also been studied at the complete basis set level and subsequently analytically modelled. In the case of O2+, the vibrational states predicted from the model potential have also been directly included in the fit. The potential form so obtained matches the RKR levels with a root mean square deviation below 1cm-1 . Spin orbit + relativistic effects have also been taken into account for the O2+ ion.
Ekin, Jack W.; Cheggour, Najib; Goodrich, Loren; Splett, Jolene
2017-03-01
In Part 2 of these articles, an extensive analysis of pinning-force curves and raw scaling data was used to derive the Extrapolative Scaling Expression (ESE). This is a parameterization of the Unified Scaling Law (USL) that has the extrapolation capability of fundamental unified scaling, coupled with the application ease of a simple fitting equation. Here in Part 3, the accuracy of the ESE relation to interpolate and extrapolate limited critical-current data to obtain complete I c(B,T,ɛ) datasets is evaluated and compared with present fitting equations. Accuracy is analyzed in terms of root mean square (RMS) error and fractional deviation statistics. Highlights from 92 test cases are condensed and summarized, covering most fitting protocols and proposed parameterizations of the USL. The results show that ESE reliably extrapolates critical currents at fields B, temperatures T, and strains ɛ that are remarkably different from the fitted minimum dataset. Depending on whether the conductor is moderate-J c or high-J c, effective RMS extrapolation errors for ESE are in the range 2-5 A at 12 T, which approaches the I c measurement error (1-2%). The minimum dataset for extrapolating full I c(B,T,ɛ) characteristics is also determined from raw scaling data. It consists of one set of I c(B,ɛ) data at a fixed temperature (e.g., liquid helium temperature), and one set of I c(B,T) data at a fixed strain (e.g., zero applied strain). Error analysis of extrapolations from the minimum dataset with different fitting equations shows that ESE reduces the percentage extrapolation errors at individual data points at high fields, temperatures, and compressive strains down to 1/10th to 1/40th the size of those for extrapolations with present fitting equations. Depending on the conductor, percentage fitting errors for interpolations are also reduced to as little as 1/15th the size. The extrapolation accuracy of the ESE relation offers the prospect of straightforward implementation of
Marn, Nina; Klanjscek, Tin; Stokes, Lesley; Jusup, Marko
2015-01-01
Sea turtles face threats globally and are protected by national and international laws. Allometry and scaling models greatly aid sea turtle conservation and research, and help to better understand the biology of sea turtles. Scaling, however, may differ between regions and/or life stages. We analyze differences between (i) two different regional subsets and (ii) three different life stage subsets of the western North Atlantic loggerhead turtles by comparing the relative growth of body width and depth in relation to body length, and discuss the implications. Results suggest that the differences between scaling relationships of different regional subsets are negligible, and models fitted on data from one region of the western North Atlantic can safely be used on data for the same life stage from another North Atlantic region. On the other hand, using models fitted on data for one life stage to describe other life stages is not recommended if accuracy is of paramount importance. In particular, young loggerhead turtles that have not recruited to neritic habitats should be studied and modeled separately whenever practical, while neritic juveniles and adults can be modeled together as one group. Even though morphometric scaling varies among life stages, a common model for all life stages can be used as a general description of scaling, and assuming isometric growth as a simplification is justified. In addition to linear models traditionally used for scaling on log-log axes, we test the performance of a saturating (curvilinear) model. The saturating model is statistically preferred in some cases, but the accuracy gained by the saturating model is marginal.
Directory of Open Access Journals (Sweden)
Nina Marn
Full Text Available Sea turtles face threats globally and are protected by national and international laws. Allometry and scaling models greatly aid sea turtle conservation and research, and help to better understand the biology of sea turtles. Scaling, however, may differ between regions and/or life stages. We analyze differences between (i two different regional subsets and (ii three different life stage subsets of the western North Atlantic loggerhead turtles by comparing the relative growth of body width and depth in relation to body length, and discuss the implications.Results suggest that the differences between scaling relationships of different regional subsets are negligible, and models fitted on data from one region of the western North Atlantic can safely be used on data for the same life stage from another North Atlantic region. On the other hand, using models fitted on data for one life stage to describe other life stages is not recommended if accuracy is of paramount importance. In particular, young loggerhead turtles that have not recruited to neritic habitats should be studied and modeled separately whenever practical, while neritic juveniles and adults can be modeled together as one group. Even though morphometric scaling varies among life stages, a common model for all life stages can be used as a general description of scaling, and assuming isometric growth as a simplification is justified. In addition to linear models traditionally used for scaling on log-log axes, we test the performance of a saturating (curvilinear model. The saturating model is statistically preferred in some cases, but the accuracy gained by the saturating model is marginal.
Stefanska, Anna M; Distlerová, Dorota; Musaus, Joachim; Olski, Thorsten M; Dunder, Kristina; Salmonson, Tomas; Mentzer, Dirk; Müller-Berghaus, Jan; Hemmings, Robert; Veselý, Richard
2017-10-01
The European Union (EU) Paediatric Regulation requires that all new medicinal products applying for a marketing authorisation (MA) in the EU provide a paediatric investigation plan (PIP) covering a clinical and non-clinical trial programme relating to the use in the paediatric population, unless a waiver applies. Conducting trials in children is challenging on many levels, including ethical and practical issues, which may affect the availability of the clinical evidence. In scientifically justified cases, extrapolation of data from other populations can be an option to gather evidence supporting the benefit-risk assessment of the medicinal product for paediatric use. The European Medicines Agency (EMA) is working on providing a framework for extrapolation that is scientifically valid, reliable and adequate to support MA of medicines for children. It is expected that the extrapolation framework together with therapeutic area guidelines and individual case studies will support future PIPs. Extrapolation has already been employed in several paediatric development programmes including biological treatment for immune-mediated diseases. This article reviews extrapolation strategies from MA applications for products for the treatment of juvenile idiopathic arthritis, paediatric psoriasis and paediatric inflammatory bowel disease. It also provides a summary of extrapolation advice expressed in relevant EMA guidelines and initiatives supporting the use of alternative approaches in paediatric medicine development. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Tremblay, Gabriel; Livings, Christopher; Crowe, Lydia; Kapetanakis, Venediktos; Briggs, Andrew
2016-01-01
Cost-effectiveness models for the treatment of long-term conditions often require information on survival beyond the period of available data. This paper aims to identify a robust and reliable method for the extrapolation of overall survival (OS) in patients with radioiodine-refractory differentiated thyroid cancer receiving lenvatinib or placebo. Data from 392 patients (lenvatinib: 261, placebo: 131) from the SELECT trial are used over a 34-month period of follow-up. A previously published criterion-based approach is employed to ascertain credible estimates of OS beyond the trial data. Parametric models with and without a treatment covariate and piecewise models are used to extrapolate OS, and a holistic approach, where a series of statistical and visual tests are considered collectively, is taken in determining the most appropriate extrapolation model. A piecewise model, in which the Kaplan-Meier survivor function is used over the trial period and an extrapolated tail is based on the Exponential distribution, is identified as the optimal model. In the absence of long-term survival estimates from clinical trials, survival estimates often need to be extrapolated from the available data. The use of a systematic method based on a priori determined selection criteria provides a transparent approach and reduces the risk of bias. The extrapolated OS estimates will be used to investigate the potential long-term benefits of lenvatinib in the treatment of radioiodine-refractory differentiated thyroid cancer patients and populate future cost-effectiveness analyses.
Sanz-Ruiz, P; Paz, E; Abenojar, J; Del Real, J C; Forriol, F; Vaquero, J
2014-01-01
The use of bone cement is widespread in orthopaedic surgery. Most of the mechanical tests are performed in dry medium, making it difficult to extrapolate the results. The objective of this study is to assess if the mechanical properties of polymethylmethacrylate (PMMA), obtained in previous reports, are still present in a liquid medium. An experimental study was designed with antibiotic (vancomycin) loaded PMMA. Four groups were defined according to the medium (dry or liquid) and the pre-conditioning in liquid medium (one week or one month). Wear and flexural strength tests were performed according to ASTM and ISO standards. Volumetric wear, friction coefficient, tensile strength, and Young's modulus were analyzed. All samples were examined by scanning electron microscopy. The samples tested in liquid medium showed lower wear and flexural strength values (P<.05). The kind of wear was modified from abrasive to adhesive in those samples studied in liquid medium. The samples with a pre-conditioning time showed lower values of wear (P<.05). Caution is recommended when extrapolating the results of previous PMMA results. The different mechanical strength of the cement in a liquid medium, observed in saline medium, is much closer to the clinical situation. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.
Ekin, Jack W; Goodrich, Loren; Splett, Jolene; Bordini, Bernardo; Richter, David
2016-01-01
A scaling study of several thousand Nb3Sn critical-current $(I_c)$ measurements is used to derive the Extrapolative Scaling Expression (ESE), a relation that can quickly and accurately extrapolate limited datasets to obtain full three-dimensional dependences of I c on magnetic field (B), temperature (T), and mechanical strain (ε). The relation has the advantage of being easy to implement, and offers significant savings in sample characterization time and a useful tool for magnet design. Thorough data-based analysis of the general parameterization of the Unified Scaling Law (USL) shows the existence of three universal scaling constants for practical Nb3Sn conductors. The study also identifies the scaling parameters that are conductor specific and need to be fitted to each conductor. This investigation includes two new, rare, and very large I c(B,T,ε) datasets (each with nearly a thousand I c measurements spanning magnetic fields from 1 to 16 T, temperatures from ~2.26 to 14 K, and intrinsic strains from –...
The surface brightness of spiral galaxies
International Nuclear Information System (INIS)
Phillipps, S.; Disney, M.
1983-01-01
It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)
International Nuclear Information System (INIS)
Stacey, W.M.; Hertel, N.E.; Hoffman, E.A.
1994-01-01
The potential for providing energy with minimal environmental impact is a powerful motivation for the development of fusion and is the long-term objective of most fusion programs. However, the societal acceptability of magnetic fusion may well be decided in the near-term when decisions are taken on the construction of DEMO to follow ITER (if not when the construction decision is taken on ITER). Component wastes were calculated for DEMOs based on each data base by first calculating reactor sizes needed to satisfy the physics, stress and radiation attenuation requirements, and then calculating component replacement rates based on radiation damage and erosion limits. Then, radioactive inventories were calculated and compared to a number of international criteria for open-quote near-surface close-quote burial. None of the components in either type of design would meet the Japanese LLW criterion ( 3 ) within 10 years of shutdown, although the advanced (V/Li) blanket would do so soon afterwards. The vanadium first wall, divertor and blanket would satisfy the IAEA LLW criterion (<2 mSv/h contact dose) within about 10 years after shutdown, but none of the stainless steel or copper components would. All the components in the advanced data base designs except the stainless steel vacuum vessel and shield readily satisfy the US extended 10CFR61 intruder dose criterion, but none of the components in the open-quotes ITER data baseclose quotes designs do so. It seems unlikely that a stainless steel first wall or a copper divertor plate could satisfy the US (class C) criterion for near surface burial, much less the more stringent international, criteria. On the other hand, the first wall, divertor and blanket of the V/Li system would still satisfy the intruder dose concentration limits even if the dose criterion was reduced by two orders of magnitude
Bhattarai, B. C.; Burkhart, J. F.; Xu, C. Y.; Stordal, F.
2017-12-01
We have conducted a multivariate regression analysis to estimate the aerosol optical depth (AOD) over the cryospheric portion of Nepalese Himalayan is introduced. Multivariate regression analysis is carried out to develop an AOD prediction. Prediction using five parameters. Three geophysical parameters: altitude, longitude and latitude, and two meteorologic variables: total columnar water vapor and surface pressure were taken into account for model development. The parameters were acquired from a 30 m resolution ASTER digital elevation model (DEM) and the meteorologic parameters were extracted from daily ERA-interim datasets. Seasonal and inter annual variability in aerosol optical depth is investigate using MODIS (MODerate Imaging Spectrophotometer) product over Nepal during 2000-2015. The result shows that the AOD in winter followed by Autumn is higher then in summer and elevation dependent. The empirical model developed from spatial average data ( 2000-2015) presented here is able to predict with coefficient of determination of 0.93. The model that we have presented in this paper, could potentially be applied to other mountain in mountain climate research.
Measurement of endodontic file lengths: calibrated versus uncalibrated digital images.
Loushine, R J; Weller, R N; Kimbrough, W F; Potter, B J
2001-12-01
This in vitro study compared the accuracy of file length measurements made on calibrated and uncalibrated direct digital images. Endodontic files of known lengths and ISO sizes were used in 10 single-rooted, relatively straight teeth within cadaver specimens. The crowns of the teeth were ground flat and an orthodontic wire of known length was secured to the coronal surface. This wire was placed mesiodistally and perpendicular to the root and served as the reference point for the file measurement and as a calibration reference length. A #20 file was hand-measured to a length that reached the apical third of each tooth. It was inserted and a radiographic image was secured. The instrument was remeasured three additional times at different lengths on the same tooth and reinserted before each image acquisition. Thus 40 digital images were acquired using a GE X-ray unit and a Schick Computed Dental Radiography (CDR) #2 sensor. These images were placed in random order, and an independent, blinded investigator determined the file lengths using on-screen calibrated and uncalibrated measurement of the CDR image with a straight-line and multiple-line measuring technique. The experimental measurements were compared with each other and with the known clinical measurements. A two-way analysis of variance indicated that there was a statistically significant difference showing that the calibrated measurements were more accurate than the uncalibrated measurements (p = 0.0001), and there was no significant difference between the straight-line and multiple-line measuring techniques (p = 0.14).
Determination of Onramp Weaving Length for Resolving Merging Dilemma
Directory of Open Access Journals (Sweden)
Chiu Liu
2012-03-01
Full Text Available It is physically known that onramp merging may turn out to be difficult if the onramp (weaving/merging length is too short because a driver under certain driving circumstances may find that either merging ahead or merging behind a neighboring vehicle on the adjacent highway lane cannot be completed. Various existing guidelines or design manuals provide no clear physical understanding and explanations to the design onramp weaving length but often based on evolved empirical experiences. By integrating human factors, vehicle dynamic characteristics, roadway surface condition, and the onramp weaving design into a single unified analytic framework, the onramp length required for a driver to merge into the highway traffic successfully is determined exactly with formulas and physical solutions to avoid the merging dilemma and enhance driving safety at highway interchanges. The design onramp weaving length is examined and evaluated with various foreseeable merging scenarios and physical examples. This analytic framework sheds light on the understanding of the onramp weaving the first time strictly on a physical human-vehicle-roadway interaction setting. Practitioners can easily apply these user friendly formulae and equations derived from the unified framework to calculate the onramp weaving length to resolve the merging dilemma and enhance driving safety for any highway interchanges.
Oh, Min-su; Hwang, Geol; Han, Sanghoon; Kang, Hyun Sik; Kim, Seung Hyo; Kim, Young Don; Kang, Ki-Soo; Shin, Kyung-Sue; Lee, Mu Sook; Choi, Guk Myung; Han, Kyoung Hee
2016-01-01
Kidney length is the most useful parameter for clinical measurement of kidney size, and is useful to distinguish acute kidney injury from chronic kidney disease. In this prospective observational study of 437 normal children aged between 0 and < 13 years, kidney length was measured using sonography. There were good correlations between kidney length and somatic values, including age, weight, height, and body surface area. The rapid growth of height during the first 2 years of life was intimat...
Directory of Open Access Journals (Sweden)
Tremblay G
2016-06-01
Full Text Available Gabriel Tremblay,1 Christopher Livings,2 Lydia Crowe,2 Venediktos Kapetanakis,2 Andrew Briggs3 1Global Health Economics and Health Technology Assessment, Eisai Inc., Woodcliff Lake, NJ, USA; 2Health Economics, Decision Resources Group, Bicester, Oxfordshire, 3Health Economics and Health Technology Assessment, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK Background: Cost-effectiveness models for the treatment of long-term conditions often require information on survival beyond the period of available data. Objectives: This paper aims to identify a robust and reliable method for the extrapolation of overall survival (OS in patients with radioiodine-refractory differentiated thyroid cancer receiving lenvatinib or placebo. Methods: Data from 392 patients (lenvatinib: 261, placebo: 131 from the SELECT trial are used over a 34-month period of follow-up. A previously published criterion-based approach is employed to ascertain credible estimates of OS beyond the trial data. Parametric models with and without a treatment covariate and piecewise models are used to extrapolate OS, and a holistic approach, where a series of statistical and visual tests are considered collectively, is taken in determining the most appropriate extrapolation model. Results: A piecewise model, in which the Kaplan–Meier survivor function is used over the trial period and an extrapolated tail is based on the Exponential distribution, is identified as the optimal model. Conclusion: In the absence of long-term survival estimates from clinical trials, survival estimates often need to be extrapolated from the available data. The use of a systematic method based on a priori determined selection criteria provides a transparent approach and reduces the risk of bias. The extrapolated OS estimates will be used to investigate the potential long-term benefits of lenvatinib in the treatment of radioiodine-refractory differentiated thyroid cancer patients and
Short Rayleigh Length Free Electron Lasers
Crooker, P P; Armstead, R L; Blau, J
2004-01-01
Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.
Directory of Open Access Journals (Sweden)
Pang Jingzhu
2016-01-01
Full Text Available The real contact arc length in grinding is one of the most important indicators in investigating of the material removal mechanism for precision machining. It is generally affected by a combination of plastic and thermal deformations in the machining process. This paper will provide a systematic investigation of the contact arc length in the cylindrical grinding of titanium alloy Ti-6Al-4V. A series of single grit experiments and grinding temperature measurements, together with FEM simulation, will be utilized to determine the real contact arc length. The contact behavior between a grinding wheel and the workpiece was investigated by the contact time in the workpice surface temperature curves. It was found that in FEM simulation, the real contact length was about 2 times of the geometric length. With the experimental results of the different grinding parameters, the real contact lengths calculated by temperature curves were about 1.5 - 2 times of the geometric length.
Radiographic assessment of endodontic working length
Osama S Alothmani; Lara T Friedlander; Nicholas P Chandler
2013-01-01
The use of radiographs for working length determination is usual practice in endodontics. Exposing radiographs following the principles of the paralleling technique allows more accurate length determination compared to the bisecting-angle method. However, it has been reported that up to 28.5% of cases can have the file tip extending beyond the confines of the root canals despite an acceptable radiographic appearance. The accuracy of radiographic working length determination could be affected ...
Energy Technology Data Exchange (ETDEWEB)
Schwahofer, Andrea [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Clinical Center Vivantes, Neukoelln (Germany). Dept. of Radiotherapy and Oncology; Baer, Esther [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Kuchenbecker, Stefan; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiology; Grossmann, J. Guenter [German Cancer Research Center, Heidelberg (Germany). Dept. of Medical Physics in Radiation Oncology; Ortenau Klinikum Offenburg-Gengenbach (Germany). Dept. of Radiooncology; Sterzing, Florian [Heidelberg Univ. (Germany). Dept. of Radiation Oncology; German Cancer Research Center, Heidelberg (Germany). Dept. of Radiotherapy
2015-07-01
Metal artifacts in computed tomography CT images are one of the main problems in radiation oncology as they introduce uncertainties to target and organ at risk delineation as well as dose calculation. This study is devoted to metal artifact reduction (MAR) based on the monoenergetic extrapolation of a dual energy CT (DECT) dataset. In a phantom study the CT artifacts caused by metals with different densities: aluminum (ρ{sub Al} = 2.7 g/cm{sup 3}), titanium (ρ{sub Ti} = 4.5 g/cm{sup 3}), steel (ρ{sub steel} = 7.9 g/cm{sup 3}) and tungsten (ρ{sub W} = 19.3 g/cm{sup 3}) have been investigated. Data were collected using a clinical dual source dual energy CT (DECT) scanner (Siemens Sector Healthcare, Forchheim, Germany) with tube voltages of 100 kV and 140 kV (Sn). For each tube voltage the data set in a given volume was reconstructed. Based on these two data sets a voxel by voxel linear combination was performed to obtain the monoenergetic data sets. The results were evaluated regarding the optical properties of the images as well as the CT values (HU) and the dosimetric consequences in computed treatment plans. A data set without metal substitute served as the reference. Also, a head and neck patient with dental fillings (amalgam ρ = 10 g/cm{sup 3}) was scanned with a single energy CT (SECT) protocol and a DECT protocol. The monoenergetic extrapolation was performed as described above and evaluated in the same way. Visual assessment of all data shows minor reductions of artifacts in the images with aluminum and titanium at a monoenergy of 105 keV. As expected, the higher the densities the more distinctive are the artifacts. For metals with higher densities such as steel or tungsten, no artifact reduction has been achieved. Likewise in the CT values, no improvement by use of the monoenergetic extrapolation can be detected. The dose was evaluated at a point 7 cm behind the isocenter of a static field. Small improvements (around 1%) can be seen with 105 ke
Energy Technology Data Exchange (ETDEWEB)
Molina, Raquel [Univ. of Sao Paulo (Brazil); Hu, Bitao [George Washington Univ., Washington, DC (United States); Doering, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Alexandru, Andrei [George Washington Univ., Washington, DC (United States)
2018-04-01
Several lattice QCD simulations of meson-meson scattering in p-wave and Isospin = 1 in Nf = 2 + 1 flavours have been carried out recently. Unitarized Chiral Perturbation Theory is used to perform extrapolations to the physical point. In contrast to previous findings on the analyses of Nf = 2 lattice data, where most of the data seems to be in agreement, some discrepancies are detected in the Nf = 2 + 1 lattice data analyses, which could be due to different masses of the strange quark, meson decay constants, initial constraints in the simulation, or other lattice artifacts. In addition, the low-energy constants are compared to the ones from a recent analysis of Nf = 2 lattice data.
Energy Technology Data Exchange (ETDEWEB)
Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.; Angerstein, D.A.
1994-11-01
The alpha emitter plutonium-238 ({sup 238}Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to {sup 238}PuO{sub 2} have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of {sup 238}Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled {sup 238}PuO{sub 2} on peripheral blood cell counts in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting {sup 238}PuO{sub 2} particles and to extrapolate results to humans.
International Nuclear Information System (INIS)
Schwahofer, Andrea; Clinical Center Vivantes, Neukoelln; Baer, Esther; Kuchenbecker, Stefan; Kachelriess, Marc; Grossmann, J. Guenter; Ortenau Klinikum Offenburg-Gengenbach; Sterzing, Florian; German Cancer Research Center, Heidelberg
2015-01-01
Metal artifacts in computed tomography CT images are one of the main problems in radiation oncology as they introduce uncertainties to target and organ at risk delineation as well as dose calculation. This study is devoted to metal artifact reduction (MAR) based on the monoenergetic extrapolation of a dual energy CT (DECT) dataset. In a phantom study the CT artifacts caused by metals with different densities: aluminum (ρ Al = 2.7 g/cm 3 ), titanium (ρ Ti = 4.5 g/cm 3 ), steel (ρ steel = 7.9 g/cm 3 ) and tungsten (ρ W = 19.3 g/cm 3 ) have been investigated. Data were collected using a clinical dual source dual energy CT (DECT) scanner (Siemens Sector Healthcare, Forchheim, Germany) with tube voltages of 100 kV and 140 kV (Sn). For each tube voltage the data set in a given volume was reconstructed. Based on these two data sets a voxel by voxel linear combination was performed to obtain the monoenergetic data sets. The results were evaluated regarding the optical properties of the images as well as the CT values (HU) and the dosimetric consequences in computed treatment plans. A data set without metal substitute served as the reference. Also, a head and neck patient with dental fillings (amalgam ρ = 10 g/cm 3 ) was scanned with a single energy CT (SECT) protocol and a DECT protocol. The monoenergetic extrapolation was performed as described above and evaluated in the same way. Visual assessment of all data shows minor reductions of artifacts in the images with aluminum and titanium at a monoenergy of 105 keV. As expected, the higher the densities the more distinctive are the artifacts. For metals with higher densities such as steel or tungsten, no artifact reduction has been achieved. Likewise in the CT values, no improvement by use of the monoenergetic extrapolation can be detected. The dose was evaluated at a point 7 cm behind the isocenter of a static field. Small improvements (around 1%) can be seen with 105 keV. However, the dose uncertainty remains of the
Ketcheson, David I.
2014-04-11
In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.
Information, polarization and term length in democracy
DEFF Research Database (Denmark)
Schultz, Christian
2008-01-01
accountable, but the re-election incentive leads to policy-distortion as the government seeks to manipulate swing voters' beliefs to make its ideology more popular. This creates a trade-off: A short term length improves accountability but gives distortions. A short term length is best for swing voters when......This paper considers term lengths in a representative democracy where the political issue divides the population on the left-right scale. Parties are ideologically different and better informed about the consequences of policies than voters are. A short term length makes the government more...
Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J; Baker, Timothy R; Troutman, John A; Hewitt, Nicola J; Goebel, Carsten
2015-09-01
Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. Copyright © 2015. Published by Elsevier Inc.
Directory of Open Access Journals (Sweden)
Azadeh Abdollahnejad
2018-02-01
Full Text Available The latest technological advances in space-borne imagery have significantly enhanced the acquisition of high-quality data. With the availability of very high-resolution satellites, such as Pléiades, it is now possible to estimate tree parameters at the individual level with high fidelity. Despite innovative advantages on high-precision satellites, data acquisition is not yet available to the public at a reasonable cost. Unmanned aerial vehicles (UAVs have the practical advantage of data acquisition at a higher spatial resolution than that of satellites. This study is divided into two main parts: (1 we describe the estimation of basic tree attributes, such as tree height, crown diameter, diameter at breast height (DBH, and stem volume derived from UAV data based on structure from motion (SfM algorithms; and (2 we consider the extrapolation of the UAV data to a larger area, using correlation between satellite and UAV observations as an economically viable approach. Results have shown that UAVs can be used to predict tree characteristics with high accuracy (i.e., crown projection, stem volume, cross-sectional area (CSA, and height. We observed a significant relation between extracted data from UAV and ground data with R2 = 0.71 for stem volume, R2 = 0.87 for height, and R2 = 0.60 for CSA. In addition, our results showed a high linear relation between spectral data from the UAV and the satellite (R2 = 0.94. Overall, the accuracy of the results between UAV and Pléiades was reasonable and showed that the used methods are feasible for extrapolation of extracted data from UAV to larger areas.
Lee, Yung-Shan; Lo, Justin C; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C
2017-07-01
Incorporating biotransformation in bioaccumulation assessments of hydrophobic chemicals in both aquatic and terrestrial organisms in a simple, rapid, and cost-effective manner is urgently needed to improve bioaccumulation assessments of potentially bioaccumulative substances. One approach to estimate whole-animal biotransformation rate constants is to combine in vitro measurements of hepatic biotransformation kinetics with in vitro to in vivo extrapolation (IVIVE) and bioaccumulation modeling. An established IVIVE modeling approach exists for pharmaceuticals (referred to in the present study as IVIVE-Ph) and has recently been adapted for chemical bioaccumulation assessments in fish. The present study proposes and tests an alternative IVIVE-B technique to support bioaccumulation assessment of hydrophobic chemicals with a log octanol-water partition coefficient (K OW ) ≥ 4 in mammals. The IVIVE-B approach requires fewer physiological and physiochemical parameters than the IVIVE-Ph approach and does not involve interconversions between clearance and rate constants in the extrapolation. Using in vitro depletion rates, the results show that the IVIVE-B and IVIVE-Ph models yield similar estimates of rat whole-organism biotransformation rate constants for hypothetical chemicals with log K OW ≥ 4. The IVIVE-B approach generated in vivo biotransformation rate constants and biomagnification factors (BMFs) for benzo[a]pyrene that are within the range of empirical observations. The proposed IVIVE-B technique may be a useful tool for assessing BMFs of hydrophobic organic chemicals in mammals. Environ Toxicol Chem 2017;36:1934-1946. © 2016 SETAC. © 2016 SETAC.
Cai, H.; Kessinger, C.; Rehak, N.; Pinto, J. O.; Megenhardt, D.; Albo, D.; Phillips, C.; Bankert, R.; Hawkins, J.
2012-12-01
Deep convection over the ocean poses a potentially great danger for trans-oceanic flights, as tragically demonstrated by the Air France Flight 447 accident of 2009. This paper describes a forecasting system that will produce 0-12 hr convective forecasts over the Gulf of Mexico domain using a blending technique that combines satellite-based extrapolation forecasts with Numerical Weather Prediction (NWP) model forecasts. Closely following the steps of the Federal Aviation Administration (FAA) Aviation Weather Research Program (AWRP) CoSPA development, a forecasting system is being developed to blend satellite-derived rain rate and cloud top height with their corresponding fields derived from the Global Forecasting System (GFS) NWP model. Forecasts will be computed over the 0-12 hr time frame within a domain that encompasses the greater Gulf of Mexico and parts of the continental United States. Tests of various extrapolation techniques have been completed and an optimum technique has been selected. Both the extrapolated and the GFS rain rate forecast performance statistics have been compiled. Considering the relative strength of the NWP model and the satellite-based extrapolation forecasts, a dynamical-weighting technique, similar to what is being used in CoSPA, has been tested. The weights are determined by past performance of extrapolation and model forecasts as a function of forecast lead time. A prototype blended forecasting system for oceanic convection using dynamical-weighting techniques has been developed and preliminary results of the blended forecasting system will be reported at the conference.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Length. 29.3037 Section 29.3037 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing.... Length, as an element of quality, does not apply to tobacco in strip form. (See Elements of quality.) [24...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Length. 29.6024 Section 29.6024 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6024 Length. The linear measurement of cured tobacco leaves from the...
Local gauge invariant QED with fundamental length
International Nuclear Information System (INIS)
Kadyshevsky, V.G.; Mateev, M.D.
1981-01-01
A local gauge theory of electromagnetic interactions with the fundamental length l as a new universal scale is worked out. The Lagrangian contains new extra terms in which the coupling constant is proportional to the fundamental length. The theory has an elegant geometrical basis: in momentum representation one faces de Sitter momentum space with curvature radius 1/l [ru
Analysis of ureteral length in adult cadavers
Directory of Open Access Journals (Sweden)
Hugo F. F. Novaes
2013-04-01
Full Text Available Introduction In some occasions, correlations between human structures can help planning surgical intra-abdominal interventions. The previous determination of ureteral length helps pre-operatory planning of surgeries, reduces costs of auxiliary exams, the correct choice of double-J catheter with low morbidity and fewer symptoms, and an adequate adhesion to treatment. Objective To evaluate ureteral length in adult cadavers and to analyze its correlation with anthropometric measures. Materials and Methods: From April 2009 to January 2012 we determined ureteral length of adult cadavers submitted to necropsy and obtained the following measures: height, distance from shoulder to wrist, elbow-wrist, xiphoid appendix-umbilicus, umbilicus-pubis, xiphoid appendix-pubis and between iliac spines. We analyzed the correlations between ureteral length and those anthropometric measures. Results We dissected 115 ureters from 115 adult corpses from April 2009 to January 2012. Median ureteral length didn't vary between sexes or according to height. It was observed no correlation among ureteral length and all considered anthropometric measures in all analyzed subgroups and in general population. There were no significant differences between right and left ureteral measures. Conclusions There is no difference of ureteral length in relation to height or gender (male or female. There is no significant correlation among ureteral length and the considered anthropometric measures.
The length of the male urethra
Directory of Open Access Journals (Sweden)
Tobias. S. Kohler
2008-08-01
Full Text Available PURPOSE: Catheter-based medical devices are an important component of the urologic armamentarium. To our knowledge, there is no population-based data regarding normal male urethral length. We evaluated the length of the urethra in men with normal genitourinary anatomy undergoing either Foley catheter removal or standard cystoscopy. MATERIALS AND METHODS: Male urethral length was obtained in 109 men. After study permission was obtained, the subject's penis was placed on a gentle stretch and the catheter was marked at the tip of the penis. The catheter was then removed and the distance from the mark to the beginning of the re-inflated balloon was measured. Alternatively, urethral length was measured at the time of cystoscopy, on removal of the cystoscope. Data on age, weight, and height was obtained in patients when possible. RESULTS: The mean urethral length was 22.3 cm with a standard deviation of 2.4 cm. Urethral length varied between 15 cm and 29 cm. No statistically significant correlation was found between urethral length and height, weight, body mass index (BMI, or age. CONCLUSIONS: Literature documenting the length of the normal male adult urethra is scarce. Our data adds to basic anatomic information of the male urethra and may be used to optimize genitourinary device design.
Paternal age and telomere length in twins
DEFF Research Database (Denmark)
Hjelmborg, Jacob B; Dalgård, Christine; Mangino, Massimo
2015-01-01
Telomere length, a highly heritable trait, is longer in offspring of older fathers. This perplexing feature has been attributed to the longer telomeres in sperm of older men and it might be an 'epigenetic' mechanism through which paternal age plays a role in telomere length regulation in humans...
Influence of mandibular length on mouth opening
Dijkstra, PU; Hof, AL; Stegenga, B; De Bont, LGM
Theoretically, mouth opening not only reflects the mobility of the temporomandibular joints (TMJs) but also the mandibular length. Clinically, the exact relationship between mouth opening, mandibular length, and mobility of TMJs is unclear. To study this relationship 91 healthy subjects, 59 women
Radiographic assessment of endodontic working length
Directory of Open Access Journals (Sweden)
Osama S Alothmani
2013-01-01
Full Text Available The use of radiographs for working length determination is usual practice in endodontics. Exposing radiographs following the principles of the paralleling technique allows more accurate length determination compared to the bisecting-angle method. However, it has been reported that up to 28.5% of cases can have the file tip extending beyond the confines of the root canals despite an acceptable radiographic appearance. The accuracy of radiographic working length determination could be affected by the location of the apical foramen, tooth type, canal curvature and superimposition of surrounding structures. Variations among observers by virtue of training and experience may also influence the accuracy of the procedure. The interpretation of radiographs could be affected by film speed and viewing conditions, with the superiority of digital imaging over conventional radiography for working length determination remaining debatable. The combination of several methods is recommended for acquiring the most accurate working length.
Economic issues of broiler production length
Directory of Open Access Journals (Sweden)
Szőllősi László
2014-01-01
Full Text Available The length of broiler production cycle is also an important factor when profitability is measured. This paper is to determine the effects of different market ages and down-time period, overall broiler production cycle length on performance and economic parameters based on Hungarian production and financial circumstances. A deterministic model was constructed to manage the function-like correlations of age-related daily weight gain, daily feed intake and daily mortality data. The results show that broiler production cycle length has a significant effect on production and economic performance. Cycle length is determined by the length of down-time and grow-out periods. If down-time period is reduced by one day, an average net income of EUR 0.55 per m2 is realizable. However, the production period is not directly proportional either with emerging costs or obtainable revenues. Profit maximization is attainable if the production period is 41-42 days.
Screening length in dusty plasma crystals
International Nuclear Information System (INIS)
Nikolaev, V S; Timofeev, A V
2016-01-01
Particles interaction and value of the screening length in dusty plasma systems are of great interest in dusty plasma area. Three inter-particle potentials (Debye potential, Gurevich potential and interaction potential in the weakly collisional regime) are used to solve equilibrium equations for two dusty particles suspended in a parabolic trap. The inter-particle distance dependence on screening length, trap parameter and particle charge is obtained. The functional form of inter-particle distance dependence on ion temperature is investigated and compared with experimental data at 200-300 K in order to test used potentials applicability to dusty plasma systems at room temperatures. The preference is given to the Yukawa-type potential including effective values of particle charge and screening length. The estimated effective value of the screening length is 5-15 times larger than the Debye length. (paper)
In vivo assessment of muscle fascicle length by extended field-of-view ultrasonography
DEFF Research Database (Denmark)
Noorkoiv, M; Stavnsbo, A; Aagaard, Per
2010-01-01
The present study examined the reliability and validity of in vivo vastus lateralis (VL) fascicle length (L(f)) assessment by extended field-of-view ultrasonography (EFOV US). Intraexperimenter and intersession reliability of EFOV US were tested. Further, L(f) measured from EFOV US images were...... compared to L(f) measured from static US images (6-cm FOV) where out-of-field fascicle portions were trigonometrically estimated (linear extrapolation). Finally, spatial accuracy of the EFOV technique was assessed by comparing L(f) measured on swine VL by EFOV US to actual measurements from digital...... and by dissective assessment (digital photographs) in isolated swine VL was 0.84% ± 2.6% with an ICC of 0.99 (CI = 0.94-1.00). These results show that EFOV US is a reliable and valid method for the measurement of long muscle fascicle in vivo. Thus EFOV US analysis was proven more accurate for the assessment...
Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.
2018-02-01
In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting
Directory of Open Access Journals (Sweden)
F. AMEUR
2017-03-01
Full Text Available In the Saïss plain, the access to groundwater enabled the rapid transformation of farming systems (extension of arboriculture and horticulture and the production of wealth. However, these changes affect only a minority of farmers who are able to access and use groundwater. This rapid agricultural development has contributed to the creation of social and economic inequalities, but also to a decline of groundwater tables. The actual groundwater abstractions for agriculture are not monitored and it is difficult to determine the share of different types of farming systems and farmers responsible for the groundwater withdrawals and identify the levers to control groundwater overexploitation. The aim of the paper is to develop and compare four methods to estimate and extrapolate agricultural groundwater withdrawals, distinguishing between uses and users. Our observations show that in the study area (4200 ha in Saïss, located in the province of El Hajeb, the groundwater inequalities are primarily a function of unequal access to land, because 0.5% of the farmers (who are large investors contribute to 27% of the groundwater use, on 33% of the total surface area. Conversely, the beneficiaries of the agrarian reform (26% of the area account for only 14% of the overexploitation. But the land inequality is not always the cause of inequality of groundwater use, since lessees, practicing intensive horticulture, are responsible for 33% of the groundwater use on only 11% of the surface area. We evaluated the appropriateness of different methods of extrapolation of agricultural groundwater use, based on the objectives and the effort required to obtain the necessary data. It is important to make visible inequalities in groundwater use, to analyze the overexploitation issue and enhance the effectiveness of the control of the groundwater use.
Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability
International Nuclear Information System (INIS)
Amira Amir Hassan; Amir Hashim Mohd Yatim
2015-01-01
Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)
Zero-point length from string fluctuations
International Nuclear Information System (INIS)
Fontanini, Michele; Spallucci, Euro; Padmanabhan, T.
2006-01-01
One of the leading candidates for quantum gravity, viz. string theory, has the following features incorporated in it. (i) The full spacetime is higher-dimensional, with (possibly) compact extra-dimensions; (ii) there is a natural minimal length below which the concept of continuum spacetime needs to be modified by some deeper concept. On the other hand, the existence of a minimal length (zero-point length) in four-dimensional spacetime, with obvious implications as UV regulator, has been often conjectured as a natural aftermath of any correct quantum theory of gravity. We show that one can incorporate the apparently unrelated pieces of information-zero-point length, extra-dimensions, string T-duality-in a consistent framework. This is done in terms of a modified Kaluza-Klein theory that interpolates between (high-energy) string theory and (low-energy) quantum field theory. In this model, the zero-point length in four dimensions is a 'virtual memory' of the length scale of compact extra-dimensions. Such a scale turns out to be determined by T-duality inherited from the underlying fundamental string theory. From a low energy perspective short distance infinities are cutoff by a minimal length which is proportional to the square root of the string slope, i.e., α ' . Thus, we bridge the gap between the string theory domain and the low energy arena of point-particle quantum field theory
International Nuclear Information System (INIS)
Laurens, Georges
1971-01-01
180000 pictures taken in the 2 m CERN hydrogen bubble chamber with an incident beam of 2.77 GeV/e were examined. High statistics obtained in the whole angular production range allowed to study the dσ/dt differential cross section behaviour, the mass and width of the ρ meson, and the multipole parameters of this resonance. Nevertheless, the aim of this experiment was the application of the CHEW - LOW extrapolation method. Different types of extrapolation procedures were compared. Phase shift analysis of the elastic ππ scattering between 500 and 1100 MeV, performed with conformal mappings, allowed to determine the values of the S 0 , S 2 , P 1 , D 0 , D 2 waves. Forward dispersion relations were used to obtain scattering length values of the S 2 and P 1 phase shifts. (author) [fr
International Nuclear Information System (INIS)
Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A.; Hewitt, Nicola J.; Goebel, Carsten
2015-01-01
Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K m and V max values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C max was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human skin explants and
Directory of Open Access Journals (Sweden)
Luigi Margiotta-Casaluci
Full Text Available Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis. To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 µg/L to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (H(TPCs. Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the H(TPC range, whereas no effects were observed at plasma concentrations below the H(TPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool
Energy Technology Data Exchange (ETDEWEB)
Manwaring, John, E-mail: manwaring.jd@pg.com [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Rothe, Helga [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany); Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A. [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Hewitt, Nicola J. [SWS, Erzhausen (Germany); Goebel, Carsten [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany)
2015-09-01
Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human
Bunch Length Measurements in SPEAR3
Energy Technology Data Exchange (ETDEWEB)
Corbett, W.J.; Fisher, A.; Huang, X.; Safranek, J.; Sebek, J.; /SLAC; Lumpkin, A.; /Argonne; Sannibale, F.; /LBL, Berkeley; Mok, W.; /Unlisted
2007-11-28
A series of bunch length measurements were made in SPEAR3 for two different machine optics. In the achromatic optics the bunch length increases from the low-current value of 16.6ps rms to about 30ps at 25ma/bunch yielding an inductive impedance of -0.17{Omega}. Reducing the momentum compaction factor by a factor of {approx}60 [1] yields a low-current bunch length of {approx}4ps rms. In this paper we review the experimental setup and results.
Dynamic Leidenfrost Effect: Relevant Time and Length Scales
Shirota, Minori; van Limbeek, Michiel A. J.; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef
2016-02-01
When a liquid droplet impacts a hot solid surface, enough vapor may be generated under it to prevent its contact with the solid. The minimum solid temperature for this so-called Leidenfrost effect to occur is termed the Leidenfrost temperature, or the dynamic Leidenfrost temperature when the droplet velocity is non-negligible. We observe the wetting or drying and the levitation dynamics of the droplet impacting on an (isothermal) smooth sapphire surface using high-speed total internal reflection imaging, which enables us to observe the droplet base up to about 100 nm above the substrate surface. By this method we are able to reveal the processes responsible for the transitional regime between the fully wetting and the fully levitated droplet as the solid temperature increases, thus shedding light on the characteristic time and length scales setting the dynamic Leidenfrost temperature for droplet impact on an isothermal substrate.
Excessive extrapolations in cosmology
Czech Academy of Sciences Publication Activity Database
Křížek, Michal; Somer, L.
2016-01-01
Roč. 22, č. 3 (2016), s. 270-280 ISSN 0202-2893 Institutional support: RVO:67985840 Keywords : cosmology * friedmann equation Subject RIV: BA - General Mathematics Impact factor: 0.734, year: 2016 http://link.springer.com/article/10.1134%2FS0202289316030105
Van der Kallen, Wilberd|info:eu-repo/dai/nl/117156108
2015-01-01
Let R be a noetherian ring of dimension d and let n be an integer so that n≤d≤2n-3. Let (a
The length of the world's glaciers - a new approach for the global calculation of center lines
DEFF Research Database (Denmark)
Machguth, Horst; Huss, M.
2014-01-01
Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier...... length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all similar to 200 000 glaciers around...... the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation...
Coherent Smith-Purcell radiation as a diagnostic for sub-picosecond electron bunch length
International Nuclear Information System (INIS)
Nguyen, D.C.
1996-01-01
We suggest a novel technique of measuring sub-picosecond electron bunch length base on coherent Smith-Purcell radiation (SPR) emitted when electrons pass close to the surface of a metal grating. With electron bunch lengths comparable to the grating period, we predict that coherent SPR will be emitted at large angles with respect to direction of beam propagation. As the bunch length shortens, the coherent SPR will be enhanced over the incoherent component that is normally observed at small angles. Furthermore, the angular distribution of the coherent SPR will be shifted toward smaller angles as the bunch length becomes much smaller than the grating period. By measuring the angular distribution of the coherent SPR, one can determine the bunch length of sub-picosecond electron pulses. This new technique is easy to implement and appears capable of measuring femtosecond electron bunch lengths
Bunch length diagnostics with coherent relativistic electron radiation
Ayzatsky, M I; Kushnir, V A; Mitrochenko, V V
2001-01-01
One of the most important problems when designing resonance electron linacs with a high beam brightness is creation of an equipment for electron bunch length diagnostics. One of ways to solve this problem is based on analysis of radiation from relativistic electrons (transition,synchrotron etc.). The paper presents results of calculations and experiments on studying the millimeter-band radiation that is a beam exited on the surface of the grating periodic structure and in a linac beam pipe. Experiments were carried out on the linac LIC with 13 MeV particle energy and 0.8 A pulse beam current. The possibility of observed radiation application for estimation of the bunch length value, monitoring its variation and for optimization of the accelerator operating mode was shown experimentally.
Impedance of finite length resistive cylinder
Directory of Open Access Journals (Sweden)
S. Krinsky
2004-11-01
Full Text Available We determine the impedance of a cylindrical metal tube (resistor of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a. In the equilibrium regime, ka^{2}≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka^{2}≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.
FULL LENGTH RESEARCH ARTICLE Adamu & Babatunde (2008 ...
African Journals Online (AJOL)
Dr. Ahmed
FULL LENGTH RESEARCH ARTICLE. Adamu & Babatunde (2008) SWJ:21-25. Comparative Studies On the Dying rate Migration. COMPARATIVE STUDIES ON DYEING RATE MIGRATION AND WASH FASTNESS PROPERTIES OF AZO DYES. DERIVED FROM 2-AMINOTHIAZOLE DERIVATIVES ON ACETATE FABRICS.
Identification of amplified fragment length polymorphism (AFLP ...
African Journals Online (AJOL)
Identification of amplified fragment length polymorphism (AFLP) fragments linked to soybean mosaic virus resistance gene in Glycine soja and conversion to a sequence characterized amplified regions (SCAR) marker for rapid selection.
Martian Length of Day Measurements from Rovers
Eubanks, T. M.; Bills, B.
2012-06-01
Changes in the Martian Length of Day (LOD) can be determined at a scientifically use level by a combination of regular (but not necessarily frequent) range and Doppler measurements from Earth and dead reckoning in a Kalman filter.
Complementary DNA-amplified fragment length polymorphism ...
African Journals Online (AJOL)
Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.
Relationship between morphological and amplified fragment length ...
African Journals Online (AJOL)
Relationship between morphological and amplified fragment length polymorphism (AFLP) marker based genetic distance with heterosis in hot pepper (Capsicum annuum L.) SL Krishnamurthy, A Mohan Rao, K Madhavi Reddy, S Ramesh, Shailaja Hittalmani, Rao M. Gopinath ...
Chord length distribution for a compound capsule
International Nuclear Information System (INIS)
Pitřík, Pavel
2017-01-01
Chord length distribution is a factor important in the calculation of ionisation chamber responses. This article describes Monte Carlo calculations of the chord length distribution for a non-convex compound capsule. A Monte Carlo code was set up for generation of random chords and calculation of their lengths based on the input number of generations and cavity dimensions. The code was written in JavaScript and can be executed in the majority of HTML viewers. The plot of occurrence of cords of different lengths has 3 peaks. It was found that the compound capsule cavity cannot be simply replaced with a spherical cavity of a triangular design. Furthermore, the compound capsule cavity is directionally dependent, which must be taken into account in calculations involving non-isotropic fields of primary particles in the beam, unless equilibrium of the secondary charged particles is attained. (orig.)
Mixing lengths scaling in a gravity flow
Energy Technology Data Exchange (ETDEWEB)
Ecke, Robert E [Los Alamos National Laboratory; Rivera, Micheal [Los Alamos National Laboratory; Chen, Jun [Los Alamos National Laboratory; Ecke, Robert E [Los Alamos National Laboratory
2009-01-01
We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).
CPS Trawl Life History Length Frequency Data
National Oceanic and Atmospheric Administration, Department of Commerce — Length distribution of a subset of individuals from a species (mainly non-target) caught during SWFSC-FRD fishery independent trawl surveys of coastal pelagic...
Industrial characterization of nano-scale roughness on polished surfaces
DEFF Research Database (Denmark)
Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik; Pilny, Lukas
2015-01-01
We report a correlation between the scattering value “Aq” and the ISO standardized roughness parameter Rq. The Aq value is a measure for surface smoothness, and can easily be determined from an optical scattering measurement. The correlation equation extrapolates the Aq value from a narrow measur...
Process for fabricating continuous lengths of superconductor
Kroeger, Donald M.; List, III, Frederick A.
1998-01-01
A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.
Length and coverage of inhibitory decision rules
Alsolami, Fawaz
2012-01-01
Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.
Derived length for arbitrary topological spaces
Directory of Open Access Journals (Sweden)
A. J. Jayanthan
1992-01-01
Full Text Available The notion of derived length is as old as that of ordinal numbers itself. It is also known as the Cantor-Bendixon length. It is defined only for dispersed (that is scattered spaces. In this paper this notion has been extended in a natural way for all topological spaces such that all its pleasing properties are retained. In this process we solve a problem posed by V. Kannan. ([1] Page 158.
The SME gauge sector with minimum length
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Louzada, H.L.C. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)
2017-12-15
We study the gauge sector of the Standard Model Extension (SME) with the Lorentz covariant deformed Heisenberg algebra associated to the minimum length. In order to find and estimate corrections, we clarify whether the violation of Lorentz symmetry and the existence of a minimum length are independent phenomena or are, in some way, related. With this goal, we analyze the dispersion relations of this theory. (orig.)
Tourism and fashion: factors affecting trip length
Calderón García, María Haydeé; G. Gallarza, Martina; Fayos Gardó, Teresa; O'Sullivan, P.
2016-01-01
Tourism and shopping are closely related, and the influence of fashion shopping on a tourist's decision to travel is especially significant. The concept of cognitive and hedonic involvement enables us to relate the importance given to shopping by consumers of fashion products and of tourism services. This research analyses whether tourist involvement in fashion shopping has an impact on the length of their stay in a destination. In addition, it examines whether trip length is conditioned by t...
Energy Technology Data Exchange (ETDEWEB)
Maingi, R [PPPL
2014-07-01
Large edge localized modes (ELMs) typically accompany good H-mode confinement in fusion devices, but can present problems for plasma facing components because of high transient heat loads. Here the range of techniques for ELM control deployed in fusion devices is reviewed. The two baseline strategies in the ITER baseline design are emphasized: rapid ELM triggering and peak heat flux control via pellet injection, and the use of magnetic perturbations to suppress or mitigate ELMs. While both of these techniques are moderately well developed, with reasonable physical bases for projecting to ITER, differing observations between multiple devices are also discussed to highlight the needed community R & D. In addition, recent progress in ELM-free regimes, namely Quiescent H-mode, I-mode, and Enhanced Pedestal H-mode is reviewed, and open questions for extrapolability are discussed. Finally progress and outstanding issues in alternate ELM control techniques are reviewed: supersonic molecular beam injection, edge electron cyclotron heating, lower hybrid heating and/or current drive, controlled periodic jogs of the vertical centroid position, ELM pace-making via periodic magnetic perturbations, ELM elimination with lithium wall conditioning, and naturally occurring small ELM regimes.
Bowman, Christine M; Benet, Leslie Z
2016-11-01
Predicting in vivo pharmacokinetic parameters such as clearance from in vitro data is a crucial part of the drug-development process. There is a commonly cited trend that drugs that are highly protein-bound and are substrates for hepatic uptake transporters often yield the worst predictions. Given this information, 11 different data sets using human microsomes and hepatocytes were evaluated to search for trends in accuracy, extent of protein binding, and drug classification based on the Biopharmaceutics Drug Disposition Classification System (BDDCS), which makes predictions about transporter effects. As previously reported, both in vitro systems (microsomes and hepatocytes) gave a large number of inaccurate results, defined as predictions falling more than 2-fold outside of in vivo values. The weighted average of the percentage of inaccuracy was 66.5%. BDDCS class 2 drugs, which are subject to transporter effects in vivo unlike class 1 compounds, had a higher percentage of inaccurate predictions and often had slightly larger bias. However, since the weighted average of the percentage of inaccuracy was still high in both classes (81.9% for class 2 and 62.3% for class 1), it may be currently hard to use BDDCS class to predict potential accuracy. The results of this study emphasize the need for improved in vitro to in vivo extrapolation experimental methods, as using physiologically based scaling is still not accurate, and BDDCS cannot currently help predict accurate results. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
International Nuclear Information System (INIS)
Ducasse, Q.; Jurado, B.; Mathieu, L.; Marini, P.; Morillon, B.; Aiche, M.; Tsekhanovich, I.
2016-01-01
The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In Boutoux et al. (2013) [10] we developed the EXtrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the 238 U(d,p) 239 U and 238 U( 3 He,d) 239 Np reactions. We have performed Hauser–Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of 239 Np below the neutron separation energy allowed us to validate the EXEM.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Chaowei; Wu, S. T.; Hu, Qiang [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2014-05-10
Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.
Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DW...
cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...
Interaction of turbulent length scales with wind turbine blades
Torres-Nieves, Sheilla N.
Understanding the effects of free-stream turbulence (FST) and surface roughness on the flow around wind turbine blades is imperative in the quest for higher wind turbine efficiency, specially under stall conditions. While many investigations have focused on the aerodynamic loads on wind turbine airfoils, there are no studies that examine the effects of free-stream turbulence and surface roughness on the velocity field around a wind turbine airfoil. Hence, the aim of this investigation is to study the influence of high levels of FST on the flow around smooth and rough surfaces with pressure gradients. Moreover, of great importance in this study is the examination of how the length scales of turbulence and surface roughness interact in the flow over wind turbine airfoils to affect flow separation. Particle Image Velocimetry measurements were performed to analyze the overall flow around a S809 wind turbine blade. Results indicate that when the flow is fully attached, free-stream turbulence significantly decreases aerodynamic efficiency by 82%, yielding to higher loads and fatigue on the blades. On the contrary, when the flow is separated, the effect is reversed and aerodynamic performance is slightly improved (i.e., by 5%) by the presence of the free-stream turbulence. Analysis of the mean flow over the suction surface shows that, under stall conditions, free-stream turbulence delays separation, and surface roughness advances separation. Interestingly, the highly non-linear interaction between free-stream turbulence and surface roughness results in the further advancement of separation. Of particular interest is the study of the region closer to the wall (i.e., the boundary layer), where the flow interacts with both the surface of the blade and the free-stream. Turbulent boundary layer experiments subject to an external favorable pressure gradient (FPG) were performed to study the influence of FST, surface roughness and external pressure gradient (present around the
Multi length-scale characterisation inorganic materials series
Bruce, Duncan W; Walton, Richard I
2013-01-01
Whereas the first five volumes in the Inorganic Materials Series focused on particular classes of materials (synthesis, structures, chemistry, and properties), it is now very timely to provide complementary volumes that introduce and review state-of-the-art techniques for materials characterization. This is an important way of emphasizing the interplay of chemical synthesis and physical characterization. The methods reviewed include spectroscopic, diffraction, and surface techniques that examine the structure of materials on all length scales, from local atomic structure to long-range crystall
Thompson, Joseph T; Shelton, Ryan M; Kier, William M
2014-06-15
Hollow cylindrical muscular organs are widespread in animals and are effective in providing support for locomotion and movement, yet are subject to significant non-uniformities in circumferential muscle strain. During contraction of the mantle of squid, the circular muscle fibers along the inner (lumen) surface of the mantle experience circumferential strains 1.3 to 1.6 times greater than fibers along the outer surface of the mantle. This transmural gradient of strain may require the circular muscle fibers near the inner and outer surfaces of the mantle to operate in different regions of the length-tension curve during a given mantle contraction cycle. We tested the hypothesis that circular muscle contractile properties vary transmurally in the mantle of the Atlantic longfin squid, Doryteuthis pealeii. We found that both the length-twitch force and length-tetanic force relationships of the obliquely striated, central mitochondria-poor (CMP) circular muscle fibers varied with radial position in the mantle wall. CMP circular fibers near the inner surface of the mantle produced higher force relative to maximum isometric tetanic force, P0, at all points along the ascending limb of the length-tension curve than CMP circular fibers near the outer surface of the mantle. The mean ± s.d. maximum isometric tetanic stresses at L₀ (the preparation length that produced the maximum isometric tetanic force) of 212 ± 105 and 290 ± 166 kN m(-2) for the fibers from the outer and inner surfaces of the mantle, respectively, did not differ significantly (P=0.29). The mean twitch:tetanus ratios for the outer and inner preparations, 0.60 ± 0.085 and 0.58 ± 0.10, respectively, did not differ significantly (P=0.67). The circular fibers did not exhibit length-dependent changes in contraction kinetics when given a twitch stimulus. As the stimulation frequency increased, L₀ was approximately 1.06 times longer than LTW, the mean preparation length that yielded maximum isometric twitch
Ultrasound Assessment of Cervical Length in Pregnancy
Directory of Open Access Journals (Sweden)
An-Shine Chao
2008-09-01
Full Text Available Cervical length in high-risk women for preterm birth has to be identified before early second trimester. Sequential evaluations lead to high predictive significance. The mean cervical length at 24 weeks is about 35 mm when measured by transvaginal ultrasound. A short cervix is defined as a cervix that is less than 25 mm and funneling, i.e. ballooning of the membranes into a dilated internal os, but with a closed external os. Factors such as short cervical length, uterine anomaly, previous cervical surgery, multiple gestation and positive fetal fibronectin results are associated with preterm delivery. Serial transvaginal ultrasound examinations during the early second trimester would provide longitudinal changes in the cervical length. The use of 17α-hydroxyprogesterone caproate and cerclage has shown to be beneficial in preventing preterm delivery. When combined with other predictors such as occiput position, parity, maternal age and body mass index, cervical length is a useful parameter for predicting the feasibility of labor induction and successful delivery.
Length expectation values in quantum Regge calculus
International Nuclear Information System (INIS)
Khatsymovsky, V.M.
2004-01-01
Regge calculus configuration superspace can be embedded into a more general superspace where the length of any edge is defined ambiguously depending on the 4-tetrahedron containing the edge. Moreover, the latter superspace can be extended further so that even edge lengths in each the 4-tetrahedron are not defined, only area tensors of the 2-faces in it are. We make use of our previous result concerning quantization of the area tensor Regge calculus which gives finite expectation values for areas. Also our result is used showing that quantum measure in the Regge calculus can be uniquely fixed once we know quantum measure on (the space of the functionals on) the superspace of the theory with ambiguously defined edge lengths. We find that in this framework quantization of the usual Regge calculus is defined up to a parameter. The theory may possess nonzero (of the order of Planck scale) or zero length expectation values depending on whether this parameter is larger or smaller than a certain value. Vanishing length expectation values means that the theory is becoming continuous, here dynamically in the originally discrete framework
Functional scoliosis caused by leg length discrepancy
Daniszewska, Barbara; Zolynski, Krystian
2010-01-01
Introduction Leg length discrepancy (LLD) causes pelvic obliquity in the frontal plane and lumbar scoliosis with convexity towards the shorter extremity. Leg length discrepancy is observed in 3-15% of the population. Unequalized lower limb length discrepancy leads to posture deformation, gait asymmetry, low back pain and discopathy. Material and methods In the years 1998-2006, 369 children, aged 5 to 17 years (209 girls, 160 boys) with LLD-related functional scoliosis were treated. An external or internal shoe lift was applied. Results Among 369 children the discrepancy of 0.5 cm was observed in 27, 1 cm in 329, 1.5 cm in 9 and 2 cm in 4 children. During the first follow-up examination, within 2 weeks, the adjustment of the spine to new static conditions was noted and correction of the curve in 316 examined children (83.7%). In 53 children (14.7%) the correction was observed later and was accompanied by slight low back pain. The time needed for real equalization of limbs was 3 to 24 months. The time needed for real equalization of the discrepancy was 11.3 months. Conclusions Leg length discrepancy equalization results in elimination of scoliosis. Leg length discrepancy < 2 cm is a static disorder; that is why measurements should be performed in a standing position using blocks of adequate thickness and the position of the posterior superior iliac spine should be estimated. PMID:22371777
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Fragki, Styliani; Piersma, Aldert H; Rorije, Emiel; Zeilmaker, Marco J
2017-10-01
Incorporation of kinetics to quantitative in vitro to in vivo extrapolations (QIVIVE) is a key step for the realization of a non-animal testing paradigm, in the sphere of regulatory toxicology. The use of Physiologically-Based Kinetic (PBK) modelling for determining systemic doses of chemicals at the target site is accepted to be an indispensable element for such purposes. Nonetheless, PBK models are usually designed for a single or a group of compounds and are considered demanding, with respect to experimental data needed for model parameterization. Alternatively, we evaluate here the use of a more generic approach, i.e. the so-called IndusChemFate model, which is based on incorporated QSAR model parametrization. The model was used to simulate the in vivo kinetics of three diverse classes of developmental toxicants: triazoles, glycol ethers' alkoxyacetic acid metabolites and phthalate primary metabolites. The model required specific input per each class of compounds. These compounds were previously tested in three alternative assays: the whole-embryo culture (WEC), the zebrafish embryo test (ZET), and the mouse embryonic stem cell test (EST). Thereafter, the PBK-simulated blood levels at toxic in vivo doses were compared to the respective in vitro effective concentrations. Comparisons pertaining to relative potency and potency ranking with integration of kinetics were similar to previously obtained comparisons. Additionally, all three in vitro systems produced quite comparable results, and hence, a combination of alternative tests is still preferable for predicting the endpoint of developmental toxicity in vivo. This approach is put forward as biologically more plausible since plasma concentrations, rather than external administered doses, constitute the most direct in vivo dose metric. Copyright © 2017 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Zhaojun Li
Full Text Available There has been increasing concern in recent years regarding lead (Pb transfer in the soil-plant system. In this study the transfer of Pb (exogenous salts was investigated from a wide range of Chinese soils to corn grain (Zhengdan 958. Prediction models were developed with combination of the Pb bioconcentration factor (BCF of Zhengdan 958, and soil pH, organic matter (OM content, and cation exchange capacity (CEC through multiple stepwise regressions. Moreover, these prediction models from Zhengdan 958 were applied to other non-model corn species through cross-species extrapolation approach. The results showed that the soil pH and OM were the major factors that controlled Pb transfer from soil to corn grain. The lower pH and OM could improve the bioaccumulation of Pb in corn grain. No significant differences were found between two prediction models derived from the different exogenous Pb contents. When the prediction models were applied to other non-model corn species, the ratio ranges between the predicted BCF values and the measured BCF values were within an interval of 2-fold and close to the solid line of 1∶1 relationship. Moreover, the prediction model i.e. Log[BCF] = -0.098 pH-0.150 log[OM] -1.894 at the treatment of high Pb can effectively reduce the measured BCF intra-species variability for all non-model corn species. These suggested that this prediction model derived from the high Pb content was more adaptable to be applied to other non-model corn species to predict the Pb bioconcentration in corn grain and assess the ecological risk of Pb in different agricultural soils.
International Nuclear Information System (INIS)
Whyatt, G.A.
1995-07-01
Testing was performed to determine if gravel particles will creep into and puncture the high-density polyethylene (HDPE) liner in the catch basin of a grout vault over a nominal 30-year period. Testing was performed to support a design without a protective geotextile cover after the geotextile was removed from the design. Recently, a protective geotextile cover over the liner was put back into the design. The data indicate that the geotextile has an insignificant effect on the creep of gravel into the liner. However, the geotextile may help to protect the liner during construction. Two types of tests were performed to evaluate the potential for creep-related puncture. In the first type of test, a very sensitive instrument measured the rate at which a probe crept into HDPE over a 20-minute period at temperatures of 176 degrees F to 212 degrees F (80 degrees C to 100 degrees C). The second type of test consisted of placing the liner between gravel and mortar at 194 degrees F (90 degrees C) and 45.1 psi overburden pressure for periods up to 1 year. By combining data from the two tests, the long-term behavior of the creep was extrapolated to 30 years of service. After 30 years of service, the liner will be in a nearly steady condition and further creep will be extremely small. The results indicate that the creep of gravel into the liner will not create a puncture during service at 194 degrees F (90 degrees C). The estimated creep over 30 years is expected to be less than 25 mils out of the total initial thickness of 60 mils. The test temperature of 194 degrees F (90 degrees C) corresponds to the design basis temperature of the vault. Lower temperatures are expected at the liner, which makes the test conservative. Only the potential for failure of the liner resulting from creep of gravel is addressed in this report
Environmental stresses disrupt telomere length homeostasis.
Directory of Open Access Journals (Sweden)
Gal Hagit Romano
Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.
Extending electronic length frequency analysis in R
DEFF Research Database (Denmark)
Taylor, M. H.; Mildenberger, Tobias K.
2017-01-01
of the asymptotic length parameter (L-infinity) are found to have significant effects on parameter estimation error. An outlook provides context as to the significance of the R-based implementation for further testing and development, as well as the general relevance of the method for data-limited stock assessment.......Electronic length frequency analysis (ELEFAN) is a system of stock assessment methods using length-frequency (LFQ) data. One step is the estimation of growth from the progression of LFQ modes through time using the von Bertalanffy growth function (VBGF). The option to fit a seasonally oscillating...... with known values, the accuracy of the soVBGF parameter estimation was evaluated. The results indicate that both optimisation approaches are capable of finding high scoring solutions, yet settings regarding the initial restructuring process for LFQ bin scoring (i.e. "moving average,") and the fixing...
Resonance effects in neutron scattering lengths
International Nuclear Information System (INIS)
Lynn, J.E.
1989-01-01
The nature of neutron scattering lengths is described and the nuclear effects giving rise to their variation is discussed. Some examples of the shortcomings of the available nuclear data base, particularly for heavy nuclei, are given. Methods are presented for improving this data base, in particular for obtaining the energy variation of the complex coherent scattering length from long to sub-angstrom wave lengths from the available sources of slow neutron cross section data. Examples of this information are given for several of the rare earth nuclides. Some examples of the effect of resonances in neutron reflection and diffraction are discussed. This report documents a seminar given at Argonne National Laboratory in March 1989. 18 refs., 18 figs
Minimal Length Scale Scenarios for Quantum Gravity.
Hossenfelder, Sabine
2013-01-01
We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.
Nuclear reactor with scrammable part length rod
International Nuclear Information System (INIS)
Bevilacqua, F.
1979-01-01
A new part length rod is provided. It may be used to control xenon induced power oscillations but to contribute to shutdown reactivity when a rapid shutdown of the reactor is required. The part length rod consists of a control rod with three regions. The lower control region is a longer weaker active portion separated from an upper stronger shorter poison section by an intermediate section which is a relative non-absorber of neutrons. The combination of the longer weaker control section with the upper high worth poison section permits the part length rod of this to be scrammed into the core when a reactor shutdown is required but also permits the control rod to be used as a tool to control power distribution in both the axial and radial directions during normal operation
Minimal Length Scale Scenarios for Quantum Gravity
Directory of Open Access Journals (Sweden)
Sabine Hossenfelder
2013-01-01
Full Text Available We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.
New plasma diagnosis by coherence length spectroscopy
International Nuclear Information System (INIS)
Poolyarat, N.; Kim, Y.W.
2008-01-01
A new methodology and instrumentation have been developed for diagnosis of dense high temperature plasmas. In a plasma medium, collision processes shorten the optical coherence length at a given emission wavelength. By measuring the coherence length, the rate of collisions a radiating particle experiences can be determined. A map of the collision rates throughout the plasma can speak volumes about the atomic and thermal state of the plasma. Both the time-integrated and time-resolved interference fringes are obtained using emissions due to the transition between 3s 2 3p 5 ( 2 P o 3/2 )4p and 3s 2 3p 5 ( 2 P o 3/2 )7d. We have observed that the coherence length indeed decreases with increasing collision rate, and in addition, as a function of time as a result of cumulative collisions. The coherence length was found to be 4200±800 nm at 50 torr where the collision frequency is 2.14x10 11 s -1 , and 2400±130 nm at 140 torr where the collision frequency is 8.13x10 11 s -1 . We have also discovered that the coherence length varies with the direction of the viewing line of sight into the discharge plasma. The anisotropy results from the non-uniform structure in the discharge current, and this is further investigated by intentionally deforming the tip of the cathode. A photographic examination of both the cathode and the anode disc confirms the non-axis-symmetric structure of the plasma, which leads to the asymmetry in the plasma, in agreement with the angular dependence of the coherence length. (author)
Sighting optics including an optical element having a first focal length and a second focal length
Crandall, David Lynn [Idaho Falls, ID
2011-08-01
One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.
Cutting Whole Length or Partial Length of Internal Anal Sphincter in Managementof Fissure in Ano
Directory of Open Access Journals (Sweden)
Furat Shani Aoda
2017-12-01
Full Text Available A chronic anal fissure is a common painful perianal condition.The main operative procedure to treat this painful condition is a lateral internal sphincteretomy (LIS.The aim of study is to compare the outcome and complications of closed LIS up to the dentate line (whole length of internal sphincter or up to the fissure apex (partial length of internal sphincter in the treatment of anal fissure.It is a prospective comparativestudy including 100 patients with chronic fissure in ano. All patients assigned to undergo closed LIS. Those patients were randomly divided into two groups: 50 patients underwent LIS to the level of dentate line (whole length and other 50 patients underwent LIS to the level of fissure apex (partial length. Patients were followed up weekly in the 1st month, twice monthly in the second month then monthly for next 2 months and finally after 1 year. There was satisfactory relief of pain in all patients in both groups & complete healing of the fissure occurred. Regarding post operative incontinence no major degree of incontinence occur in both group but minor degree of incontinence persists In 7 patients after whole length LIS after one year. In conclusion, both whole length & partial length LIS associated with improvement of pain, good chance of healing but whole length LIS associated with more chance of long term flatus incontinence. Hence,we recommend partial length LIS as treatment forchronic anal fissure.
Apparatus for fabricating continuous lengths of superconductor
Kroeger, Donald M.; List, III, Frederick A.
2001-01-01
A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.
Stride length: measuring its instantaneous value
International Nuclear Information System (INIS)
Campiglio, G C; Mazzeo, J R
2007-01-01
Human gait has been studied from different viewpoints: kinematics, dynamics, sensibility and others. Many of its characteristics still remain open to research, both for normal gait and for pathological gait. Objective measures of some of its most significant spatial/temporal parameters are important in this context. Stride length, one of these parameters, is defined as the distance between two consecutive contacts of one foot with ground. On this work we present a device designed to provide automatic measures of stride length. Its features make it particularly appropriate for the evaluation of pathological gait
Jaikumar, A.; Emery, T. S.; Kandlikar, S. G.
2018-02-01
Enhanced boiling structures based on the concept of separate liquid-vapor (L-V) pathways rely on the motion of the bubbles departing from the nucleating regions (NRs) to induce a macroconvective liquid jet impingement flow over adjacent non-boiling regions. Heat transfer in the non-boiling regions can be improved by incorporating microchannels which act as feeder channels (FCs) that also improve liquid directionality towards the NR. We hypothesize that the single-phase flow characteristics in the developing region of the FC contribute to the boiling enhancement and explore the interplay between the FC length, developing flow length, and departure bubble diameter. FC lengths shorter than the developing flow length benefit from the enhancement due to developing boundary layers over their entire length. However, FC lengths shorter than the departure bubble diameter suffer from bubble interference while FC lengths that are considerably longer than the developing flow length exhibit lower heat transfer rates in the fully developed region. This hypothesis was verified by conducting pool boiling experiments with four feeder channel lengths between 1 mm and 3 mm using HFE-7000, PP1, PP1C, and water. Three distinct regions: (i) interfering bubble, (ii) efficient L-V pathways, and (iii) diminished jet were identified to explain the boiling performance enhancement. This analysis will be beneficial in the pursuit to enhance critical heat flux (CHF) and heat transfer coefficient (HTC) on surfaces utilizing macroconvection mechanisms during boiling with different liquids.
Branch length similarity entropy-based descriptors for shape representation
Kwon, Ohsung; Lee, Sang-Hee
2017-11-01
In previous studies, we showed that the branch length similarity (BLS) entropy profile could be successfully used for the shape recognition such as battle tanks, facial expressions, and butterflies. In the present study, we proposed new descriptors, roundness, symmetry, and surface roughness, for the recognition, which are more accurate and fast in the computation than the previous descriptors. The roundness represents how closely a shape resembles to a circle, the symmetry characterizes how much one shape is similar with another when the shape is moved in flip, and the surface roughness quantifies the degree of vertical deviations of a shape boundary. To evaluate the performance of the descriptors, we used the database of leaf images with 12 species. Each species consisted of 10 - 20 leaf images and the total number of images were 160. The evaluation showed that the new descriptors successfully discriminated the leaf species. We believe that the descriptors can be a useful tool in the field of pattern recognition.
Allometric relationships between the length of pregnancy and body parameters in mammals
Atanasov, A. T.; Todorova, M.; Valev, D. T.; Todorova, R.
2014-10-01
In this manuscript we investigated the presence of allometric relationships between the length of pregnancy and the body parameters in mammals. The relationships between the length of pregnancy T (d) and the square of body length H2 (m2), body surface S (m2), body mass to surface ratio M/S (kg/m2) and body-mass index (BMI) (M/H2) were investigated in mammals: Metatheria and Placentalia, including animals with body mass ranging from 8g in Common shrew to 15t in Killer whale. In result, the found power equations are: T = 114.3 (H2)0.352; T= 120.4 S0.38; T = 9.147 (M/S)0.757 and T = 17.6 BMI0.605. The study showed that the M/S ratio and BMI are nearly equivalent characteristics in relation to length of pregnancy.
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Hair length. 551.4 Section 551.4 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INSTITUTIONAL MANAGEMENT MISCELLANEOUS Grooming § 551.4... Warden shall require an inmate with long hair to wear a cap or hair net when working in food service or...
The heritability of leucocyte telomere length dynamics
DEFF Research Database (Denmark)
Hjelmborg, Jacob B; Dalgård, Christine; Möller, Sören
2015-01-01
BACKGROUND: Leucocyte telomere length (LTL) is a complex trait associated with ageing and longevity. LTL dynamics are defined by LTL and its age-dependent attrition. Strong, but indirect evidence suggests that LTL at birth and its attrition during childhood largely explains interindividual LTL...
Telomere length in interstitial lung diseases
Snetselaar, Reinier; Van Moorsel, Coline H M; Kazemier, Karin M.; Van Der Vis, Joanne J.; Zanen, Pieter; Van Oosterhout, Matthijs F M; Grutters, Jan C.
2015-01-01
Background: Interstitial lung disease (ILD) is a heterogeneous group of rare diseases that primarily affect the pulmonary interstitium. Studies have implicated a role for telomere length (TL) maintenance in ILD, particularly in idiopathic interstitial pneumonia (IIP). Here, we measure TL in a wide
Minimum Description Length Shape and Appearance Models
DEFF Research Database (Denmark)
Thodberg, Hans Henrik
2003-01-01
The Minimum Description Length (MDL) approach to shape modelling is reviewed. It solves the point correspondence problem of selecting points on shapes defined as curves so that the points correspond across a data set. An efficient numerical implementation is presented and made available as open s...
Scattering lengths of calcium and barium isotopes
Dammalapati, U.; Willmann, L.; Knoop, S.
2011-01-01
We have calculated the s-wave scattering length of all the even isotopes of calcium (Ca) and barium (Ba) in order to investigate the prospect of Bose-Einstein condensation (BEC). For Ca we have used an accurate molecular potential based on detailed spectroscopic data. Our calculations show that Ca
Information-theoretic lengths of Jacobi polynomials
Energy Technology Data Exchange (ETDEWEB)
Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)
2010-07-30
The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.
Link lengths and their growth powers
International Nuclear Information System (INIS)
Huh, Youngsik; No, Sungjong; Oh, Seungsang; Rawdon, Eric J
2015-01-01
For a certain infinite family F of knots or links, we study the growth power ratios of their stick number, lattice stick number, minimum lattice length and minimum ropelength compared with their minimum crossing number c(K) for every K∈F. It is known that the stick number and lattice stick number grow between the (1/2) and linear power of the crossing number, and minimum lattice length and minimum ropelength grow with at least the (3/4) power of crossing number (which is called the four-thirds power law). Furthermore, the minimal lattice length and minimum ropelength grow at most as O (c(K)[ln(c(K))] 5 ), but it is unknown whether any family exhibits superlinear growth. For any real number r between (1/2) and 1, we give an infinite family of non-splittable prime links in which the stick number and lattice stick number grow exactly as the rth power of crossing number. Furthermore for any real number r between (3/4) and 1, we give another infinite family of non-splittable prime links in which the minimum lattice length and minimum ropelength grow exactly as the rth power of crossing number. (paper)