WorldWideScience

Sample records for surface excitation parameter

  1. Surface excitation parameter for rough surfaces

    International Nuclear Information System (INIS)

    Da, Bo; Salma, Khanam; Ji, Hui; Mao, Shifeng; Zhang, Guanghui; Wang, Xiaoping; Ding, Zejun

    2015-01-01

    Graphical abstract: - Highlights: • Instead of providing a general mathematical model of roughness, we directly use a finite element triangle mesh method to build a fully 3D rough surface from the practical sample. • The surface plasmon excitation can be introduced to the realistic sample surface by dielectric response theory and finite element method. • We found that SEP calculated based on ideal plane surface model are still reliable for real sample surface with common roughness. - Abstract: In order to assess quantitatively the importance of surface excitation effect in surface electron spectroscopy measurement, surface excitation parameter (SEP) has been introduced to describe the surface excitation probability as an average number of surface excitations that electrons can undergo when they move through solid surface either in incoming or outgoing directions. Meanwhile, surface roughness is an inevitable issue in experiments particularly when the sample surface is cleaned with ion beam bombardment. Surface roughness alters not only the electron elastic peak intensity but also the surface excitation intensity. However, almost all of the popular theoretical models for determining SEP are based on ideal plane surface approximation. In order to figure out whether this approximation is efficient or not for SEP calculation and the scope of this assumption, we proposed a new way to determine the SEP for a rough surface by a Monte Carlo simulation of electron scattering process near to a realistic rough surface, which is modeled by a finite element analysis method according to AFM image. The elastic peak intensity is calculated for different electron incident and emission angles. Assuming surface excitations obey the Poisson distribution the SEPs corrected for surface roughness are then obtained by analyzing the elastic peak intensity for several materials and for different incident and emission angles. It is found that the surface roughness only plays an

  2. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  3. S-parameters for weakly excited slots

    DEFF Research Database (Denmark)

    Albertsen, Niels Christian

    1999-01-01

    A simple approach to account for parasitic effects in weakly excited slots cut in the broad wall of a rectangular waveguide is proposed......A simple approach to account for parasitic effects in weakly excited slots cut in the broad wall of a rectangular waveguide is proposed...

  4. Sea surface stability parameters

    International Nuclear Information System (INIS)

    Weber, A.H.; Suich, J.E.

    1978-01-01

    A number of studies dealing with climatology of the Northwest Atlantic Ocean have been published in the last ten years. These published studies have dealt with directly measured meteorological parameters, e.g., wind speed, temperature, etc. This information has been useful because of the increased focus on the near coastal zone where man's activities are increasing in magnitude and scope, e.g., offshore power plants, petroleum production, and the subsequent environmental impacts of these activities. Atmospheric transport of passive or nonpassive material is significantly influenced by the turbulence structure of the atmosphere in the region of the atmosphere-ocean interface. This research entails identification of the suitability of standard atmospheric stability parameters which can be used to determine turbulence structure; the calculation of these parameters for the near-shore and continental shelf regions of the U.S. east coast from Cape Hatteras to Miami, Florida; and the preparation of a climatology of these parameters. In addition, a climatology for average surface stress for the same geographical region is being prepared

  5. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, I.P.; Bozhevolnyi, S.I.; Brucoli, G.

    2008-01-01

    The issue of efficient local coupling of light into surface plasmon polariton (SPP) modes is an important concern in miniaturization of plasmonic components. Here we present experimental and numerical investigations of efficiency of local SPP excitation on gold ridges of rectangular profile...... positioned on a gold film. The excitation is accomplished by illuminating the metal surface normally with a focused laser beam. Wavelength dependence and dependence of the efficiency on geometrical parameters of ridges are examined. Using leakage radiation microscopy, the efficiency of ˜20% is demonstrated...

  6. Study of excitation energy dependence of nuclear level density parameter

    International Nuclear Information System (INIS)

    Mohanto, G.; Nayak, B.K.; Saxena, A.

    2016-01-01

    In the present study, we have populated CN by fusion reaction and excitation energy of the intermediate nuclei is determined after first chance α-emission to investigate excitation energy dependence of the NLD parameter. Evaporated neutron spectra were measured following alpha evaporation for obtaining NLD parameter for the reaction 11 B + 197 Au, populating CN 208 Po. This CN after evaporating an α-particle populates intermediate nucleus 204 Pb. The 204 Pb has magic number of Z=82. Our aim is to study the excitation energy dependence of NLD parameter for closed shell nuclei

  7. Continuous excitation chlorophyll fluorescence parameters: a review for practitioners.

    Science.gov (United States)

    Banks, Jonathan M

    2017-08-01

    This review introduces, defines and critically reviews a number of chlorophyll fluorescence parameters with specific reference to those derived from continuous excitation chlorophyll fluorescence. A number of common issues and criticisms are addressed. The parameters fluorescence origin (F0) and the performance indices (PI) are discussed as examples. This review attempts to unify definitions for the wide range of parameters available for measuring plant vitality, facilitating their calculation and use. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  9. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect......We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic...

  10. Surface and bulk excitations in condensed matter

    International Nuclear Information System (INIS)

    Ritchie, R.H.

    1988-01-01

    In this lecture collective and single-particle electron excitations of solids will be discussed with emphasis on the properties of metallic and semiconducting materials. However, some of the general properties of long-wavelength collective modes to be discussed are valid for insulators as well, and some considerations apply to nuclear excitations such as optical or acoustical phonons, dipolar plasmons, etc. The concept of elementary excitations in solids, pioneered by Bohm and Pines almost 4 decades ago, has proved to be extremely useful in understanding the properties of systems of many particles, especially in respect to the response to the action of external probes. 32 refs., 12 figs

  11. Ion neutralization at metal surfaces by surface-plasmon excitation

    International Nuclear Information System (INIS)

    Almulhem, A.A.

    1988-01-01

    Electron capture by ions scattered from metal surfaces is usually assumed to occur via resonance tunneling or Auger neutralization. A new mechanism is proposed, wherein a surface plasmon is excited during the electron capture. The Fock-Tani transformation is used to transform the Hamiltonian into a form which explicitly contains a term that corresponds to this process. Using this term, the matrix elements are calculated analytically and used to evaluate the transition rate as a function of distance from the surface. Since this is a rearrangement process, the matrix element contains an orthogonalization term. The theory is applied to the scattering of protons from an aluminum surface in which the proton captures an electron into the 1s state. From the results obtained for the transition rate and neutral fractions, it is concluded that this process is important, at least in the low energy region. When the calculations are done with the orthogonalization term in the matrix element neglected, the transition rate and neutral fraction increased appreciably. This shows the importance of this term, and implies that it cannot be neglected as was done in other theories of neutralization at metal surfaces

  12. Switchable directional excitation surface plasmon polaritons with dielectric nanoantennas

    DEFF Research Database (Denmark)

    Sinev, I.; Komissarenko, F.; Bogdanov, A.

    2017-01-01

    We demonstrate directional launching of surface plasmon polaritons on thin goldfilm with a single silicon nanosphere. The directivity pattern of the excited surface waves exhibits rapid switching from forward to backward excitation, which is driven by the mutual interference of magnetic and elect...... and electric dipole moments supported by the dielectric nanoantenna....

  13. Impact polarization and alignment creation parameters via stepwise excitation processes

    International Nuclear Information System (INIS)

    Csanak, G.; Cartwright, D.C.; Kazantsev, S.A.; Bray, I.

    1998-01-01

    W report here results from first order many body theory, distorted wave approximation, and converged close coupling calculations for polarization fractions and alignment creation parameters in the case of 2 1 S → n 1 P(n 3 - 5), 2 3 S → n 1 P(n = 2 - 5), 2 1 S → n 1 D(n = 3 - 5), 2 3 S → n 1 D(n = 3 - 5), 2 3 S → n 3 D(n = 3 - 5), and 2 1 S → n 3 D(n = 3 - 5) excitations in helium for electron impact energies from threshold to several hundred eV. (author)

  14. Planar UV excilamp excited by a surface barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Guivan, N N [Department of Quantum Electronics, Uzhgorod National University, Pidgirna 46, Uzhgorod 88000 (Ukraine); Janca, J [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic); Brablec, A [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic); Stahel, P [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic); SlavIcek, P [Department of Physical Electronics, Masaryk University, Kotlarska 2, Brno 61137 (Czech Republic); Shimon, L L [Department of Quantum Electronics, Uzhgorod National University, Pidgirna 46, Uzhgorod 88000 (Ukraine)

    2005-09-07

    In this paper, the typical characteristics of a planar excilamp based on KrCl* and XeCl* exciplex molecules are presented. The excitation of the working mixture Kr/Xe/Cl{sub 2} is realized by means of the surface barrier discharge at pressures of 0.1-1 bar. The following properties are measured and discussed: spectra emitted by the plasma in the UV/VIS/NIR spectral range, intensity of emitted light versus total pressure in the discharge, the composition of the working mixture and the power of emitted light. The radiation power versus input electric power, and space distribution of the emitted light including basic electrical parameters of the discharge were also measured. It was shown that the characteristic power of UV radiation emitted in the spectral range 200-400 nm is about 6 mW cm{sup -2} while the efficiency could be about 8%.

  15. Surface excitation correction of electron IMFP of selected polymers

    International Nuclear Information System (INIS)

    Gergely, G.; Orosz, G.T.; Lesiak, B.; Jablonski, A.; Toth, J.; Varga, D.

    2004-01-01

    Complete text of publication follows. The IMFP [1] of selected polymers: polythiophenes, polyanilines, polyethylene (PE) [2] was determined by EPES [3] experiments, using Si, Ge and Ag (for PE) reference samples. Experiments were evaluated by Monte Carlo (MC) simulations [1] applying the NIST 64 (1996 and 2002) databases and IMFP data of Tanuma and Gries [1]. The integrated experimental elastic peak ratios of sample and reference are different from those calculated by Monte Carlo (MC) simulation [1]. The difference was attributed to the difference of surface excitation parameters (SEP) [4] of the sample and reference. The SEP parameters of the reference samples were taken from Chen and Werner. A new procedure was developed for experimental determination of the SEP parameters of polymer samples. It is a trial and error method for optimising the SEP correction of the IMFP and the correction of experimental elastic peak ratio [4]. Experiments made with a HSA spectrometer [5] covered the E = 0.2-2 keV energy range. The improvements with SEP correction appears in reduc- ing the difference between the corrected and MC calculated IMFPs, assuming Gries and Tanuma's et al IMFPs [1] for polymers and standard respectively. The experimental peak areas were corrected for the hydrogen peak. For the direct detection of hydrogen see Ref. [6] and [7]. Results obtained with the different NIST 64 databases and atomic potentials [8] are presented. This work was supported by the Hungarian Science Foundation of OTKA: T037709 and T038016. (author)

  16. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  17. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Holograms for power-efficient excitation of optical surface waves

    Science.gov (United States)

    Ignatov, Anton I.; Merzlikin, Alexander M.

    2018-02-01

    A method for effective excitation of optical surface waves based on holography principles has been proposed. For a particular example of excitation of a plasmonic wave in a dielectric layer on metal the efficiency of proposed volume holograms in the dielectric layer has been analyzed in comparison with optimized periodic gratings in the dielectric layer. Conditions when the holograms are considerably more efficient than the gratings have been found out. In addition, holograms recorded in two iterations have been proposed and studied. Such holograms are substantially more efficient than the optimized periodic gratings for all incidence angles of an exciting Gaussian beam. The proposed method is universal: it can be extended for efficient excitation of different types of optical surface waves and optical waveguide modes.

  19. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed; Guenneau, Sé bastien; Bagci, Hakan

    2013-01-01

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  20. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  1. Amplitude and phase of surface plasmon polaritons excited at a step edge

    DEFF Research Database (Denmark)

    Klick, Alwin; de la Cruz, Sergio; Lemke, Christoph

    2016-01-01

    A combined experimental and theoretical study on the laser-induced excitation of surface plasmon polaritons (SPP) at well-defined step edges of a gold–vacuum interface is presented. As a relevant parameter determining the coupling efficiency between laser field and SPP, we identify the ratio betw...

  2. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... mode exploited in plasmonic waveguides with extreme light confinement is a very important factor that should be taken into account in the design of nanoplasmonic circuits and devices....

  3. Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Yu Jian-Bo

    2011-01-01

    Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface-bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the S0 and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Localization of optical excitations on random surfaces: SNOM studies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Localization of optical excitations on nanostructured metal surfaces and fractal colloid silver aggregates are studied by using a scanning near-field optical microscope (SNOM). The SNOM images obtained in both configurations exhibit spatially localized (within 150 to 250 nm) light intensity...

  5. Methodology to estimate parameters of an excitation system based on experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra-Montes, A.J. [Carrera 80 No 65-223, Bloque M8 oficina 113, Escuela de Mecatronica, Universidad Nacional de Colombia, Medellin (Colombia); Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Ramirez-Scarpetta, J.M. [Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Malik, O.P. [2500 University Drive N.W., Electrical and Computer Engineering Department, University of Calgary, Calgary, Alberta (Canada)

    2011-01-15

    A methodology to estimate the parameters of a potential-source controlled rectifier excitation system model is presented in this paper. The proposed parameter estimation methodology is based on the characteristics of the excitation system. A comparison of two pseudo random binary signals, two sampling periods for each one, and three estimation algorithms is also presented. Simulation results from an excitation control system model and experimental results from an excitation system of a power laboratory setup are obtained. To apply the proposed methodology, the excitation system parameters are identified at two different levels of the generator saturation curve. The results show that it is possible to estimate the parameters of the standard model of an excitation system, recording two signals and the system operating in closed loop with the generator. The normalized sum of squared error obtained with experimental data is below 10%, and with simulation data is below 5%. (author)

  6. Excitation of propagating surface plasmons with a scanning tunnelling microscope.

    Science.gov (United States)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10  µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  7. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  8. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.

    2016-01-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  9. Self-excitation of Rydberg atoms at a metal surface

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....

  10. Excitations of surface plasmon polaritons by attenuated total reflection, revisited

    International Nuclear Information System (INIS)

    Barchesi, D.; Otto, A.

    2013-01-01

    Many textbooks and review papers are devoted to plasmonics based on a selection of the numerous bibliography. But none describes the details of the first culmination of plasmonics in 1968, when surface plasmons become a field of optics. The coupling of light with the surface plasmon leads to the surface plasmon polariton (SPP). Therefore, the authors chose to associate historical insight (not avoiding a personal touch), a modern mathematical formulation of the excitation of the SPP by attenuated total reflection (ATR), considered as well understood since decades, and experimental applications since 1969, including recent developments.

  11. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  12. Alternative approach to the surface-excitation model

    International Nuclear Information System (INIS)

    Krohn, V.E.

    1981-01-01

    Although the development of the surface-excitation model of sputtered-ion emission involved a detailed description of the ionization process, one can arrive at the same result by assuming an equilibrium treatment, e.g. the Saha-Langmuir equation, with the temperature falling as the collision casade develops. This suggests that, even if situations are found where the surface-excitation model is successful, it does not follow that the original detailed description of the ionization process is correct. Nevertheless, the surface-excitation model does contain an interesting new idea which should not be overlooked, i.e. that atoms sputtered during the early stages of a collision cascade will be relatively energetic, and to the extent that the Saha-Langmuir equation has some applicability, will have a probability of positive ionization which will be low for atoms of low ionization potential (I phi), relative to lower-energy atoms emitted during the later stages of the collision cascade. The extended abstract will discuss recent experimental results

  13. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  14. Excitation of surface and volume plasmons in a metal nanosphere by fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Gildenburg, V. B., E-mail: gil@appl.sci-nnov.ru; Kostin, V. A.; Pavlichenko, I. A. [University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation); Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation)

    2016-03-15

    Collective multipole oscillations (surface and volume plasmons) excited in a metal nanosphere by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk (dielectric) losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons (at small or large cluster radii, respectively) and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed; the first of them is found to be in good enough agreement with the data of scanning transmission electron microscopy experiments. It is shown that, in the general case, a pronounced contribution to the formation of the loss spectrum is given by the both surface and volume plasmons with low and high multipole indices. In particular, at long electron passage time, the integral (averaged over the impact parameter) loss spectrum which is calculated for the free-electron cluster model contains two main peaks: a broad peak from merging of many high-order multipole resonances of the surface plasmons and a narrower peak of nearly the same height from merged volume plasmons excited by the electrons that travel through the central region of the cluster. Comparatively complex dependences of the calculated excitation coefficients and damping constants of various plasmons on the order of the excited multipole result in wide diversity of possible types of the loss spectrum even for the same cluster material and should be taken into account in interpretation of corresponding

  15. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-01-01

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 μm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  16. Excitation of propagating surface plasmons with a scanning tunnelling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G, E-mail: Elizabeth.Boer-Duchemin@u-psud.fr [Institut des Sciences Moleculaire d' Orsay (ISMO), CNRS Universite Paris-Sud, 91405 Orsay (France)

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10 {mu}m. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  17. On geometry-dependent vortex stability and topological spin excitations on curved surfaces with cylindrical symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, V.L.; Apolonio, F.A.; Oliveira-Neto, N.M.

    2013-01-01

    We study the Heisenberg model on cylindrically symmetric curved surfaces. Two kinds of excitations are considered. The first is given by the isotropic regime, yielding the sine-Gordon equation and π solitons are predicted. The second one is given by the XY model, leading to a vortex turning around the surface. Helical states are also considered, however, topological arguments cannot be used to ensure its stability. The energy and the anisotropy parameter which stabilizes the vortex state are explicitly calculated for two surfaces: catenoid and hyperboloid. The results show that the anisotropy and the vortex energy depends on the underlying geometry. -- Highlights: •Applying the anisotropic Heisenberg model on curved surfaces. •Appearance of topological solitons on curved surfaces with cylindrical symmetry. •Calculus of the vortex energy, which depends on curvature. •Discussion on features of non-topological helical-like states. •Vortex stability ensured by the anisotropy parameter value

  18. Relaxation of excited surface states of thin Ge-implanted silica films probed by OSEE spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, A.F., E-mail: a.f.zatsepin@urfu.ru [Ural Federal University, Mira Street 19, 620002 Ekaterinburg (Russian Federation); Buntov, E.A.; Mikhailovich, A.P.; Slesarev, A.I. [Ural Federal University, Mira Street 19, 620002 Ekaterinburg (Russian Federation); Schmidt, B. [Research Center Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, D-01314 Dresden (Germany); Czarnowski, A. von; Fitting, Hans-Joachim [Institute of Physics, University of Rostock, Universitätsplatz 3, D-18051 Rostock (Germany)

    2016-01-15

    As an example of thin silica films, 30 nm SiO{sub 2}–Si heterostructures implanted with Ge{sup +} ions (10{sup 16} cm{sup −2} fluence) and rapid thermally annealed (RTA) at 950 °C are studied by means of optically stimulated electron emission (OSEE) in the spectral region of optical transparency for bulk silica. Quartz glass samples were used as references. Experimental data revealed a strong dependence between electron emission spectral features and RTA annealing time. The spectral contributions of both surface band tail states and interband transitions were clearly distinguished. The application of emission Urbach rule as well as Kane and Pässler equations allowed to analyze the OSEE spectra at different optical excitation energy ranges and to retrieve the important microstructural and energy parameters. The observed correlations between parameter values of Urbach- and Kane-related models suggest the implantation-induced conversion of both the vibrational subsystem and energy band of surface and interface electronic states. - Highlights: • Peculiarities of electron emission from excited surface states of SiO{sub 2}:Ge structures are studied. • Spectral contributions of surface band tails and interband transitions are distinguished. • Urbach and Kane models allow to examine photo-thermal emission mechanism. • Surface energy gap and structural disorder parameters are determined.

  19. Computer screen photo-excited surface plasmon resonance imaging.

    Science.gov (United States)

    Filippini, Daniel; Winquist, Fredrik; Lundström, Ingemar

    2008-09-12

    Angle and spectra resolved surface plasmon resonance (SPR) images of gold and silver thin films with protein deposits is demonstrated using a regular computer screen as light source and a web camera as detector. The screen provides multiple-angle illumination, p-polarized light and controlled spectral radiances to excite surface plasmons in a Kretchmann configuration. A model of the SPR reflectances incorporating the particularities of the source and detector explain the observed signals and the generation of distinctive SPR landscapes is demonstrated. The sensitivity and resolution of the method, determined in air and solution, are 0.145 nm pixel(-1), 0.523 nm, 5.13x10(-3) RIU degree(-1) and 6.014x10(-4) RIU, respectively, encouraging results at this proof of concept stage and considering the ubiquity of the instrumentation.

  20. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  1. Surface parameter characterization of surface vibrations in linear chains

    International Nuclear Information System (INIS)

    Majlis, N.; Selzer, S.; Puszkarski, H.; Diep-The-Hung

    1982-12-01

    We consider the vibrations of a linear monatomic chain with a complex surface potential defined by the surface pinning parameter a=Aesup(-i psi). It is found that in the case of a semi-infinite chain a is connected with the surface vibration wave number k=s+it by the exact relations: s=psi, t=lnA. We also show that the solutions found can be regarded as approximate ones (in the limit L>>1) for surface vibrations of a finite chain consisting of L atoms. (author)

  2. Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory

    Science.gov (United States)

    Tu, X.; Zhao, P.; Zhou, Y. F.

    2017-12-01

    In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.

  3. Estimation of gloss from rough surface parameters

    Science.gov (United States)

    Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin

    2005-12-01

    Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.

  4. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  5. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  6. Determination of minimum impact parameter by modified touching spheres schemes for intermediate energy Coulomb excitation experiments

    International Nuclear Information System (INIS)

    Kumar, Rajiv; Sharma, Shagun; Singh, Pradeep; Kharab, Rajesh

    2016-01-01

    The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)

  7. Electron-impact coherence parameters for 41 P 1 excitation of zinc

    Science.gov (United States)

    Piwiński, Mariusz; Kłosowski, Łukasz; Chwirot, Stanisław; Fursa, Dmitry V.; Bray, Igor; Das, Tapasi; Srivastava, Rajesh

    2018-04-01

    We present electron-impact coherence parameters (EICP) for electron-impact excitation of 41 P 1 state of zinc atoms for collision energies 40 eV and 60 eV. The experimental results are presented together with convergent close-coupling and relativistic distorted-wave approximation theoretical predictions. The results are compared and discussed with EICP data for collision energies 80 eV and 100 eV.

  8. Stabilization of Voltage Parameters of Induction Generator Excited by a Voltage Inverter

    Directory of Open Access Journals (Sweden)

    Padalko D.A.

    2017-12-01

    Full Text Available The article reveals the operational aspects of induction generator. Methods for stabilization of induction generator (IG parameters under inverter excitation are investigated. The study was carried out using mathematical description and simulation modeling in MATLAB Simulink. The paper provides analysis of causes of generated voltage amplitude and frequency displacement when the loading condition and the rate vary. Due to the parametric resonance nature of IG self-excitation, the author introduces the expression that allows estimating the capacitor capacitance required to maintain the generation process, depending on the rotor speed of electric machine, load nature and rate. Based on the studies, it was proved that it is possible to stabilize the IG voltage parameters by maintaining the magnetizing circuit inductance Lm at the constant level., and realizing a control law close to U/f = const. The study proves that using the inverter together with the voltage regulator allows ensuring the quality of electricity corresponding to modern standards. The necessity of problem solving of the required quality of the voltage by the harmonic component for the exciter - inverter with PWM is shown. The prospects of the power generation system based on induction machine (IM with a semiconductor frequency converter, which serves as an adjustable supplier of capacitive current for IM for autonomous objects, are substantiated. The use of semiconductor frequency converters makes it possible to provide high stability of the output voltage parameters and good speed of the mechatronic generation system with an asynchronous machine.

  9. Impact-parameter dependence of giant resonance excitations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Gruenschloss, A.; Boretzky, K.; Aumann, T.

    1999-09-01

    Angular distributions of Xe fragments produced in peripheral collisions of a 136 Xe beam (700 MeV/nucleon) with 208 Pb and nat Sn targets were measured. Equivalent sharp-cutoff minimum impact parameters were derived on the basis of a semi-classical description for the electromagnetic excitation of one- and two-phonon giant resonances. The results are compared with current standard parametrizations of minimum impact parameters and with the soft-spheres model using realistic mass density distributions for projectile and targets. (orig.)

  10. Stabilization of spiral wave and turbulence in the excitable media using parameter perturbation scheme

    International Nuclear Information System (INIS)

    Ma Jun; Wang Chunni; Li Yanlong; Pu Zhongsheng; Jin Wuyin

    2008-01-01

    This paper proposes a scheme of parameter perturbation to suppress the stable rotating spiral wave, meandering spiral wave and turbulence in the excitable media, which is described by the modified Fitzhugh–Nagumo (MFHN) model. The controllable parameter in the MFHN model is perturbed with a weak pulse and the pulse period is decided by the rotating period of the spiral wave approximatively. It is confirmed that the spiral wave and spiral turbulence can be suppressed greatly. Drift and instability of spiral wave can be observed in the numerical simulation tests before the whole media become homogeneous finally. (general)

  11. Test and Control System for Chlorophyll Fluorescence Parameters Using LED as Excitation Source

    Directory of Open Access Journals (Sweden)

    Zou Qiuying

    2014-05-01

    Full Text Available A new scheme on test and control system for chlorophyll fluorescence is presented in this work, which uses light-emitting diode (LED excitation by means of measuring the fluorescence parameter fpsII. The system takes programmable power supply as LEDs illumination drive power with high sensitivity and signal-to-noise ratio. MINIPAM is used to measure fluorescence parameter fpsII and keeps communication with upper PC by serial port. The upper PC can control the power supply and process the data received from MINIPAM by software which is programmed in VB6. The results show that the system has a lot of advantages such as high accuracy and convenience. The effect of environmental factors on fluorescence parameters is analyzed comprehensively. It will be a practical measurement and control system for photosynthetic ability and have wide application foreground.

  12. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...

  13. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan; Zhang, Xueqian; Yang, Quanlong; Tian, Chunxiu; Xu, Yuehong; Zhang, Jianbing; Zhao, Hongwei; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling

  14. High Temperature Surface Parameters for Solar Power

    National Research Council Canada - National Science Library

    Butler, C. F; Jenkins, R. J; Rudkin, R. L; Laughridge, F. I

    1960-01-01

    ... at a given distance from the sun. Thermal conversion efficiencies with a concentration ratio of 50 have been computed for each surface when exposed to solar radiation at the Earth's mean orbital radius...

  15. Electromagnetic excitation of phonons at C(001) surfaces

    International Nuclear Information System (INIS)

    Perez-Sanchez, F L; Perez-Rodriguez, F

    2009-01-01

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  16. Electromagnetic excitation of phonons at C(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, F L [Escuela de Ciencias, Universidad Autonoma ' Benito Juarez' de Oaxaca, Avenida Universidad S/N, Ex-Hacienda de Cinco Senores, Ciudad Universitaria, Oaxaca de Juarez, Oaxaca, 68120 (Mexico); Perez-Rodriguez, F, E-mail: fperez@sirio.ifuap.buap.m [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Post. J-48, Puebla 72570 (Mexico)

    2009-09-02

    The photon-phonon coupling at C(001)-(2 x 1) surfaces and its manifestation in far-infrared reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled system of equations for the electromagnetic field and lattice vibrations, described within the adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface phonons in good agreement with available HREELS experiments and predictions of vibrational modes for diamond (001)-(2 x 1) surfaces from ABCM and ab initio calculations. Interestingly, the reflectance anisotropy spectra for a C(001)-(2 x 1) surface turn out to be qualitatively different from the spectra for a Si(001)-(2 x 1) surface, reported previously.

  17. Optimization of surface roughness parameters in dry turning

    OpenAIRE

    R.A. Mahdavinejad; H. Sharifi Bidgoli

    2009-01-01

    Purpose: The precision of machine tools on one hand and the input setup parameters on the other hand, are strongly influenced in main output machining parameters such as stock removal, toll wear ratio and surface roughnes.Design/methodology/approach: There are a lot of input parameters which are effective in the variations of these output parameters. In CNC machines, the optimization of machining process in order to predict surface roughness is very important.Findings: From this point of view...

  18. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...... be estimated, which is not possible in traditional Delta SCF because of very delocalized Kohn-Sham orbitals. The method is applied to N2, CO, and NO adsorbed on different metallic surfaces and compared to ordinary Delta SCF without our modification, spatially constrained DFT, and inverse...

  19. Nowcasting Surface Meteorological Parameters Using Successive Correction Method

    National Research Council Canada - National Science Library

    Henmi, Teizi

    2002-01-01

    The successive correction method was examined and evaluated statistically as a nowcasting method for surface meteorological parameters including temperature, dew point temperature, and horizontal wind vector components...

  20. Optimized surface-slab excited-state muffin-tin potential and surface core level shifts

    International Nuclear Information System (INIS)

    Rundgren, J.

    2003-01-01

    An optimized muffin-tin (MT) potential for surface slabs with preassigned surface core-level shifts (SCLS's) is presented. By using the MT radii as adjustable parameters the model is able to conserve the definition of the SCLS with respect to the bulk and concurrently to generate a potential that is continuous at the MT radii. The model is conceived for elastic electron scattering in a surface slab with exchange-correlation interaction described by the local density approximation. The model employs two data bases for the self-energy of the signal electron (after Hedin and Lundqvist or Sernelius). The potential model is discussed in detail with two surface structures Be(101-bar0), for which SCLS's are available, and Cu(111)p(2x2)Cs, in which the close-packed radii of the atoms are extremely different. It is considered plausible that tensor LEED based on an optimized MT potential can be used for determining SCLS's

  1. Excitation of surface waves of ultracold neutrons on absorbing trap walls as anomalous loss factor

    International Nuclear Information System (INIS)

    Bokun, R.Ch.

    2006-01-01

    One analyzed probability of excitation of surface waves of ultracold neutrons in terms of a plane model consisting of three media: vacuum, a finite depth neutron absorbing substance layer and a neutron reflecting substrate. One demonstrated the absence of the mentioned surface waves in terms of the generally accepted model of two media: vacuum contiguous to the plane surface of a substance filled half-space. One pointed out the effect of the excited surface waves of ultracold neutrons on the increase of their anomalous losses in traps [ru

  2. Excitation of Surface Electromagnetic Waves on Railroad Rail

    Science.gov (United States)

    1978-03-31

    UMTA's Office of Rail Technology research programs aim to improve urban rail transportation systems safety. This rail-transit research study attempts to develop an onboard, separate and independent obstacle-detection system--Surface Electromagnetic W...

  3. Near-Field Spectral Effects due to Electromagnetic Surface Excitations

    OpenAIRE

    Shchegrov , Andrei ,; Joulain , Karl; Carminati , Rémi; Greffet , Jean-Jacques

    2000-01-01

    International audience; We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can display remarkable differences in the near and the far zones. The spectral changes occur due to the loss of evanescent modes and are especially pronounced for systems which support surface waves. PACS numbers: 78.20. – e, 05.40. – a, 44.40. + a, 87.64.Xx Spectroscopy of electromagnetic radiation is perhaps the most powerful exploration tool employed in natural sciences: ast...

  4. Excitation energies, photoionization cross sections, and asymmetry parameters of the methyl and silyl radicals.

    Science.gov (United States)

    Velasco, A M; Lavín, C; Dolgounitcheva, O; Ortiz, J V

    2014-08-21

    Vertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH3(+) and SiH3(+). Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH3 and SiH3 radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state's outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photon energy range of 10-11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.

  5. Statistical fission parameters for nuclei at high excitation and angular momenta

    International Nuclear Information System (INIS)

    Blann, M.; Komoto, T.A.

    1982-01-01

    Experimental fusion/fission excitation functions are analyzed by the statistical model with modified rotating liquid drop model barriers and with single particle level densities modeled for deformation for ground state (a/sub ν/) and saddle point nuclei (a/sub f/). Values are estimated for the errors in rotating liquid drop model barriers for the different systems analyzed. These results are found to correlate well with the trends predicted by the finite range model of Krappe, Nix, and Sierk, although the discrepancies seem to be approximately 1 MeV greater than the finite range model predictions over the limited range tested. The a priori values calculated for a/sub f/ and a/sub ν/ are within +- 2% of optimum free parameter values. Analyses for barrier decrements explore the importance of collective enhancement on level densities and of nuclear deformation in calculating transmission coefficients. A calculation is performed for the 97 Rh nucleus for which a first order angular momentum scaling is used for the J = 0 finite range corrections. An excellent fit is found for the fission excitation function in this approach. Results are compared in which rotating liquid drop model barriers are decremented by a constant energy, or alternatively multiplied by a constant factor. Either parametrization is shown to be capable of satisfactorily reproducing the data although their J = 0 extrapolated values differ markedly from one another. This underscores the dangers inherent in arbitrary barrier extrapolations

  6. Use of seismic pulses in surface sources of excitation

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, L.

    1982-01-01

    A discussion is held of the experimental use of surface plus seismic sources. An examination is made of the technicalgeophysical criteria for using the pulse sources. Results are presented from measurements and tests obtained with the help of an air cushion and dinoseis. A comparison is made of the amplitude spectra of the seismic recordings obtained with the help of blasting, dinoseis and air cushion. Possibilities and limitations for using the surface sources in industrial exploration for oil and gas are discussed. Seismic profile is presented which intersects the Tisu River. It was obtained with the help of a dinoseis which notes a sharp change in the wave pattern.

  7. Excited-state formation as H+ and He+ ions scatter from metal surfaces

    International Nuclear Information System (INIS)

    Baird, W.E.; Zivitz, M.; Thomas, E.W.

    1975-01-01

    Impact of 10-to30KeV H + or He + ions on polycrystalline metal surfaces causes some projectiles to be backscattered in a neutral excited state. These projectiles subsequently radiatively decay, emitting Doppler-broadened spectral lines. By analysis of the spectral shape of these lines, we are able to determine the probability of radiationless deexcitation of the excited backscattered atoms. Quantitative measurements of spectral intensity indicate that less than 1% of all projectiles are backscattered in an excited state. The relative variation of total spectral line intensity with angle of projectile incidence and with projectile primary energy has been successfully predicted using a model which assumes that the probability for excited-state formation is independent of the scattered projectile's energy and direction. The variation in total spectral line intensity with target atomic number is predicted, and the sputtering and excitation of Al under He + impact is briefly examined

  8. Excitation functions of parameters in Erlang distribution, Schwinger mechanism, and Tsallis statistics in RHIC BES program

    International Nuclear Information System (INIS)

    Gao, Li-Na; Liu, Fu-Hu; Lacey, Roy A.

    2016-01-01

    Experimental results of the transverse-momentum distributions of φ mesons and Ω hyperons produced in gold-gold (Au-Au) collisions with different centrality intervals, measured by the STAR Collaboration at different energies (7.7, 11.5, 19.6, 27, and 39 GeV) in the beam energy scan (BES) program at the relativistic heavy-ion collider (RHIC), are approximately described by the single Erlang distribution and the two-component Schwinger mechanism. Moreover, the STAR experimental transverse-momentum distributions of negatively charged particles, produced in Au-Au collisions at RHIC BES energies, are approximately described by the two-component Erlang distribution and the single Tsallis statistics. The excitation functions of free parameters are obtained from the fit to the experimental data. A weak softest point in the string tension in Ω hyperon spectra is observed at 7.7 GeV. (orig.)

  9. Magnetic field effects on electrical parameters of rf excited CO{sub 2} lasers

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, S.H. [Laser Research Institute and Physics Department of Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of)]. E-mail: h-tavassoli@cc.sbu.ac.ir; Latifi, H. [Laser Research Institute and Physics Department of Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of)

    2005-02-14

    In the present Letter a rf excited CO{sub 2} laser embedded in an external, constant, and homogeneous magnetic field is considered. The magnetic field effects on some discharge parameters such as V-I characteristics, impedance of sheaths and positive column of plasma, intensity of visible emission from plasma and thickness of positive column are investigated. There is an increase in thickness of positive column and output power in presence of magnetic field. Magnetic field leads to an increase in the discharge voltage and impedance for lower current densities and a decrease for higher ones. There is a current density in which the magnetic field has no effects on discharge voltage and impedance. There are two peaks on intensity of visible emission from the discharge which at higher magnetic field are pushed out toward the electrodes.

  10. Renormalization of Optical Excitations in Molecules near a Metal Surface

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2011-01-01

    consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional...

  11. Surface fields on the source-excited dielectric wedge

    DEFF Research Database (Denmark)

    Balling, P

    1973-01-01

    Approximate surface fields due to a plane-wave solution and a local-mode solution are compared. The plane-wave solution, which is new, is shown to agree well with experiment. The local-mode solution, which often has been applied to tapered waveguides and antennas, fails near the cutoffs of the su...

  12. Interference effects in plasom excitation by particles reflected near a metal surface

    International Nuclear Information System (INIS)

    Denton, C.D.; Gervasoni, J.L.; Barrachina, R.O.; Arista, N.R.; Universidad Nacional de Cuyo, Mendoza

    1993-01-01

    Using the dielectric formalism and the specular reflection model, we evaluate the probability of surface and bulk plasmon excitation by particles reflected in the proximity of a metal surface. We obtain a strong oscillatory behaviour as a function of the penetration distance. (author)

  13. Microwave power coupling in a surface wave excited plasma

    Directory of Open Access Journals (Sweden)

    Satyananda Kar

    2015-01-01

    Full Text Available In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP. In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.

  14. Excitation of nanowire surface plasmons by silicon vacancy centers in nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Davydov, Valery A.; Agafonov, Viatcheslav N.

    2017-01-01

    Silicon vacancy (SiV) centers in diamonds have emerged as a very promising candidate for quantum emitters due to their narrow emission line resulting in their indistinguishability. While many different quantum emitters have already been used for the excitation of various propagating plasmonic modes......, the corresponding exploitation of SiV centers has remained so far uncharted territory. Here, we report on the excitation of surface plasmon modes supported by silver nanowires using SiV centers in nanodiamonds. The coupling of SiV center fluorescence to surface plasmons is observed, when a nanodiamond situated...

  15. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    Science.gov (United States)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-07-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy-Bessel-Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light-matter interaction and optical sensing performance.

  16. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-01-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy–Bessel–Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light–matter interaction and optical sensing performance. (paper)

  17. A global data set of land-surface parameters

    International Nuclear Information System (INIS)

    Claussen, M.; Lohmann, U.; Roeckner, E.; Schulzweida, U.

    1994-01-01

    A global data set of land surface parameters is provided for the climate model ECHAM developed at the Max-Planck-Institut fuer Meteorologie in Hamburg. These parameters are: background (surface) albedo α, surface roughness length z 0y , leaf area index LAI, fractional vegetation cover or vegetation ratio c y , and forest ratio c F . The global set of surface parameters is constructed by allocating parameters to major exosystem complexes of Olson et al. (1983). The global distribution of ecosystem complexes is given at a resolution of 0.5 0 x 0.5 0 . The latter data are compatible with the vegetation types used in the BIOME model of Prentice et al. (1992) which is a potential candidate of an interactive submodel within a comprehensive model of the climate system. (orig.)

  18. Variability of surface meteorological parameters over the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A

    different parameters shows that the sea surface temperature and air temperature are positively and significantly correlated over the study area. A similar relationship is found between wind speed and cloudiness amount. Wind speed and cloudiness...

  19. Excitation of the Uller-Zenneck electromagnetic surface waves in the prism-coupled configuration

    Science.gov (United States)

    Rasheed, Mehran; Faryad, Muhammad

    2017-08-01

    A configuration to excite the Uller-Zenneck surface electromagnetic waves at the planar interfaces of homogeneous and isotropic dielectric materials is proposed and theoretically analyzed. The Uller-Zenneck waves are surface waves that can exist at the planar interface of two dissimilar dielectric materials of which at least one is a lossy dielectric material. In this paper, a slab of a lossy dielectric material was taken with lossless dielectric materials on both sides. A canonical boundary-value problem was set up and solved to find the possible Uller-Zenneck waves and waveguide modes. The Uller-Zenneck waves guided by the slab of the lossy dielectric material were found to be either symmetric or antisymmetric and transmuted into waveguide modes when the thickness of that slab was increased. A prism-coupled configuration was then successfully devised to excite the Uller-Zenneck waves. The results showed that the Uller-Zenneck waves are excited at the same angle of incidence for any thickness of the slab of the lossy dielectric material, whereas the waveguide modes can be excited when the slab is sufficiently thick. The excitation of Uller-Zenneck waves at the planar interfaces with homogeneous and all-dielectric materials can usher in new avenues for the applications for electromagnetic surface waves.

  20. Surface boiling - an obvious but like no other decay mode of highly excited atomic nuclei

    International Nuclear Information System (INIS)

    Toke, J.

    2012-01-01

    Essentials of a generalized compound nucleus model are introduced based on a concept of an open microcanonical ensemble which considers explicitly the role of the diffuse surface domain and of the thermal expansion of nuclear systems in the quest for maximum entropy. This obvious generalization offers a unique and universal thermodynamic framework for understanding the changes in the gross behavior of excited nuclear systems with increasing excitation energy and, specifically, the competition between different statistical decay modes, including classical evaporation and binary fission, but also the Coulomb fragmentation of excited systems into multiple fragments - the famed multifragmentation. Importantly, the formalism offers a natural explanation, in terms of boiling or spinodal vaporization, for the experimentally observed appearance of limiting excitation energy that can be thermalized by an exited nuclear system and the associated limiting temperature. It is shown that it is the thermal expansion that leads to volume boiling in an infinite matter and surface boiling in finite nuclei. The latter constitutes an important and universal, but hitherto unappreciated decay mode of highly excited nuclei, a mode here named surface spinodal vaporization. It is also shown that in iso-asymmetric systems, thermal expansion leads to what constitutes distillation - a decay mode here named distillative spinodal vaporization

  1. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-01-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  2. Optimization of tube parameters in a tube excited X-ray fluorescence (TEXRF) system using secondary fluorescers

    International Nuclear Information System (INIS)

    Islam, A.; Biswas, S.K.

    1995-12-01

    A study of the optimization of excitation parameters in a tube excited X-ray fluorescence system (TEXRF) having Mo as the primary target has been carried out for biological matrix. Fe, Zn and Mo were used as the secondary fluorecers. For the present investigation a cellulose based synthetic standard containing K, Cr, Ni, Zn, Se and Y was excited with the TEXRF system. All experiments were carried out under the same experimental conditions except the tube potential. For each fluorescer the minimum detection limits (MDL) of excited elements were calculated for the corresponding tube voltage. The MDLs were found to be increasing with decreasing atomic number and it was also observed that the maximum sensitivity with Fe and Zn secondary fluorescers for elements analyzed occurred around 35 kV of the excitation potential. For Mo secondary fluorescer maximum sensitivity was found at higher excitation potential. In most cases MDLs were minimum at 40-45 kV of the excitation potential. 5 refs., 12 figs

  3. Measurement of resonance parameters of orbitally excited narrow B0 mesons.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-13

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.

  4. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  5. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  6. Giant enhancement of sum-frequency yield by surface-plasmon excitation

    NARCIS (Netherlands)

    van der Ham, E. W. M.; Vrehen, Q. H. F.; Eliel, E. R.; Yakovlev, V. A.; Valieva, E. V.; Kuzik, L. A.; Petrov, J. E.; Sychugov, V. A.; van der Meer, A. F. G.

    1999-01-01

    We show experimentally that the radiation generated in infrared-visible sum-frequency mixing at an air-silver interface can be greatly enhanced when the visible input beam excites a surface plasmon-polariton at the interface. With either a prism or a grating used to couple the visible radiation with

  7. Investigation of the surface current excitation by a relativistic electron electromagnetic field

    International Nuclear Information System (INIS)

    Naumenko, G; Shevelev, M; Potylitsyn, A; Popov, Yu; Sukhikh, L

    2010-01-01

    Surface current method and pseudo-photon ones are widely used in the problems of diffraction and transition radiation of relativistic electron in conductive targets. The simple analysis disclosed the contradiction between these methods in respect to the surface current excitation on target surfaces. This contradiction was resolved experimentally by the measurement of a surface current on the upstream and downstream target surfaces in diffraction radiation geometry. The experimental test showed, that no surface current is induced on the target downstream surface under the influence of a relativistic electron electromagnetic field in contrast to the upstream surface. This is important for the understanding of a forward transition and diffraction radiation nature and electromagnetic field evolution in interaction processes.

  8. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

    Science.gov (United States)

    Shirhatti, Pranav R.; Rahinov, Igor; Golibrzuch, Kai; Werdecker, Jörn; Geweke, Jan; Altschäffel, Jan; Kumar, Sumit; Auerbach, Daniel J.; Bartels, Christof; Wodtke, Alec M.

    2018-06-01

    The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for 1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

  9. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  10. Nanoantennas for surface enhanced infrared spectroscopy: Effects of interaction and higher order resonant excitations

    Directory of Open Access Journals (Sweden)

    J. Aizpurua

    2011-09-01

    Full Text Available The sensitivity in surface enhanced infrared spectroscopy (SEIRS strongly depends on where the resonant excitation is spectrally located compared to the molecular vibration that is to be enhanced. In this contribution, we study the effect of coupling in the electromagnetic properties of 2D gold nanorod arrays in the IR. We also study the SEIRS activity of higher order resonant excitations in long nanoantennas to identify polaritonic signals of a supporting SiO2 layer with nanometer thickness (3 nm on a silicon substrate.

  11. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit

    Science.gov (United States)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-06-01

    We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.

  12. Surface emission of InxGa1-xN epilayers under strong optical excitation

    International Nuclear Information System (INIS)

    Jiang, H.X.; Lin, J.Y.; Khan, M.A.; Chen, Q.; Yang, J.W.

    1997-01-01

    Effects of strong optical excitation on the properties of surface emission from an InGaN/GaN heterostructure grown by metal-organic chemical-vapor deposition have been investigated. An intriguing feature observed was that as the excitation intensity increased the surface emission spectrum evolved abruptly from a single dominating band to two dominating bands at a critical intensity. This phenomenon has a sharp phase transition or a switching character and can be accounted for by (i) the formation of an electron endash hole plasma state in the InGaN vertical cavity under strong optical excitation, (ii) the photoreflectance effect (variation of index of refraction with excitation intensity), and (c) the Fabry endash Pacute erot interference effect in the InGaN vertical cavity. These findings are expected to have impact on the design of the laser structures, in particular on the design of the vertical-cavity surface-emitting laser diodes based on III-nitride wide-band-gap semiconductors. copyright 1997 American Institute of Physics

  13. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    Science.gov (United States)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  14. Reducing surface roughness by optimising the turning parameters

    Directory of Open Access Journals (Sweden)

    Senthil Kumar, K.

    2013-08-01

    Full Text Available Modern manufacturers worldwide look for the cheapest quality-manufactured machined components to compete in the market. Good surface quality is desired for the proper functioning of the parts produced. The surface quality is influenced by the cutting speed, feed rate, depth of cut, and many other parameters. In this paper, the Taguchi method a powerful tool to design optimisation for quality is used to find the optimal machining parameters for the turning operation. An orthogonal array, the signal-to-noise (S/N ratio, and the analysis of variance (ANOVA are employed to investigate the machining characteristics of super duplex stainless steel bars using uncoated carbide cutting tools. The effect of machining parameters on surface roughness was discovered. Confirmation tests were conducted at optimal conditions to compare the experimental results with the predicted values.

  15. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hemmen, J. Leo van [Physik Department, Technical University of Munich, 85747 Garching (Germany)]. E-mail: lvh@tum.de; Leibold, Christian [Physik Department, Technical University of Munich, 85747 Garching (Germany)

    2007-06-15

    Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level.

  16. Elementary excitations of biomembranes: Differential geometry of undulations in elastic surfaces

    International Nuclear Information System (INIS)

    Hemmen, J. Leo van; Leibold, Christian

    2007-01-01

    Biomembrane undulations are elementary excitations in the elastic surfaces of cells and vesicles. As such they can provide surprising insights into the mechanical processes that shape and stabilize biomembranes. We explain how naturally these undulations can be described by classical differential geometry. In particular, we apply the analytical formalism of differential-geometric calculus to the surfaces generated by a cell membrane and underlying cytoskeleton. After a short derivation of the energy due to a membrane's elasticity, we show how undulations arise as elementary excitations originating from the second derivative of an energy functional. Furthermore, we expound the efficiency of classical differential-geometric formalism to understand the effect of differential operators that characterize processes involved in membrane physics. As an introduction to concepts the paper is self-contained and rarely exceeds calculus level

  17. Statistics of ductile fracture surfaces: the effect of material parameters

    DEFF Research Database (Denmark)

    Ponson, Laurent; Cao, Yuanyuan; Bouchaud, Elisabeth

    2013-01-01

    distributed. The three dimensional analysis permits modeling of a three dimensional material microstructure and of the resulting three dimensional stress and deformation states that develop in the fracture process region. Material parameters characterizing void nucleation are varied and the statistics...... of the resulting fracture surfaces is investigated. All the fracture surfaces are found to be self-affine over a size range of about two orders of magnitude with a very similar roughness exponent of 0.56 ± 0.03. In contrast, the full statistics of the fracture surfaces is found to be more sensitive to the material...

  18. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  19. One-parameter family of solitons from minimal surfaces

    Indian Academy of Sciences (India)

    solitons arising from a one parameter family of minimal surfaces. The process enables us to generate a new solution of the B–I equation from a given complex solution of a special type (which are abundant). We illustrate this with many examples. We find that the action or the energy of this family of solitons remains invariant ...

  20. The Role of Electronic Excitations on Chemical Reaction Dynamics at Metal, Semiconductor and Nanoparticle Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tully, John C. [Yale Univ., New Haven, CT (United States)

    2017-06-10

    Chemical reactions are often facilitated and steered when carried out on solid surfaces, essential for applications such as heterogeneous catalysis, solar energy conversion, corrosion, materials processing, and many others. A critical factor that can determine the rates and pathways of chemical reactions at surfaces is the efficiency and specificity of energy transfer; how fast does energy move around and where does it go? For reactions on insulator surfaces energy transfer generally moves in and out of vibrations of the adsorbed molecule and the underlying substrate. By contrast, on metal surfaces, metallic nanoparticles and semiconductors, another pathway for energy flow opens up, excitation and de-excitation of electrons. This so-called “nonadiabatic” mechanism often dominates the transfer of energy and can directly impact the course of a chemical reaction. Conventional computational methods such as molecular dynamics simulation do not account for this nonadiabatic behavior. The current DOE-BES funded project has focused on developing the underlying theoretical foundation and the computational methodology for the prediction of nonadiabatic chemical reaction dynamics at surfaces. The research has successfully opened up new methodology and new applications for molecular simulation. In particular, over the last three years, the “Electronic Friction” theory, pioneered by the PI, has now been developed into a stable and accurate computational method that is sufficiently practical to allow first principles “on-the-fly” simulation of chemical reaction dynamics at metal surfaces.

  1. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  2. Calculation of nuclear level density parameters of some light deformed medical radionuclides using collective excitation modes of observed nuclear spectra

    International Nuclear Information System (INIS)

    Okuducu, S.; Sarac, H.; Akti, N. N.; Boeluekdemir, M. H.; Tel, E.

    2010-01-01

    In this study the nuclear energy level density based on nuclear collective excitation mechanism has been identified in terms of the low-lying collective level bands at near the neutron binding energy. Nuclear level density parameters of some light deformed medical radionuclides used widely in medical applications have been calculated by using different collective excitation modes of observed nuclear spectra. The calculated parameters have been used successfully in estimation of the neutron-capture cross section basic data for the production of new medical radionuclides. The investigated radionuclides have been considered in the region of mass number 40< A< 100. The method used in the present work assumes equidistance spacing of the collective coupled state bands of the interest radionuclides. The present calculated results have been compared with the compiled values from the literatures for s-wave neutron resonance data.

  3. Influence of gas discharge parameters on emissions from a dielectric barrier discharge excited argon excimer lamp

    Directory of Open Access Journals (Sweden)

    Mike Collier

    2011-11-01

    Full Text Available A dielectric barrier discharge excited neutral argon (Ar I excimer lamp has been developed and characterised. The aim of this study was to develop an excimer lamp operating at atmospheric pressure that can replace mercury lamps and vacuum equipment used in the sterilisation of medical equipment and in the food industry. The effects of discharge gas pressure, flow rate, excitation frequency and pulse width on the intensity of the Ar I vacuum ultraviolet (VUV emission at 126 nm and near infrared (NIR lines at 750.4 nm and 811.5 nm have been investigated. These three lines were chosen as they represent emissions resulting from de-excitation of excimer states that emit energetic photons with an energy of 9.8 eV. We observed that the intensity of the VUV Ar2* excimer emission at 126 nm increased with increasing gas pressure, but decreased with increasing excitation pulse frequency and pulse width. In contrast, the intensities of the NIR lines decreased with increasing gas pressure and increased with increasing pulse frequency and pulse width. We have demonstrated that energetic VUV photons of 9.8 eV can be efficiently generated in a dielectric barrier discharge in Ar.

  4. Estimating Modal Parameters of Civil Engineering Structures subject to Ambient and Harmonic Excitation

    DEFF Research Database (Denmark)

    Andersen, Palle; Brincker, Rune; Ventura, Carlos

    In this paper addresses the problems of separating structural modes and harmonics arising from sinusoidal excitation. Though the problem is mostly know in mechanical engineering applications such as rotating machinery, some civil engineering applications experiences the same challenges. A robust...... and fast harmonic detection procedure is presented and illustrated on a civil engineering case....

  5. Land surface and climate parameters and malaria features in Vietnam

    Science.gov (United States)

    Liou, Y. A.; Anh, N. K.

    2017-12-01

    Land surface parameters may affect local microclimate, which in turn alters the development of mosquito habitats and transmission risks (soil-vegetation-atmosphere-vector borne diseases). Forest malaria is a chromic issue in Southeast Asian countries, in particular, such as Vietnam (in 1991, approximate 2 million cases and 4,646 deaths were reported (https://sites.path.org)). Vietnam has lowlands, sub-tropical high humidity, and dense forests, resulting in wide-scale distribution and high biting rate of mosquitos in Vietnam, becoming a challenging and out of control scenario, especially in Vietnamese Central Highland region. It is known that Vietnam's economy mainly relies on agriculture and malaria is commonly associated with poverty. There is a strong demand to investigate the relationship between land surface parameters (land cover, soil moisture, land surface temperature, etc.) and climatic variables (precipitation, humidity, evapotranspiration, etc.) in association with malaria distribution. GIS and remote sensing have been proven their powerful potentials in supporting environmental and health studies. The objective of this study aims to analyze physical attributes of land surface and climate parameters and their links with malaria features. The outcomes are expected to illustrate how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, a platform with promising possibilities of allowing disease early-warning systems with citizen participation will be proposed.

  6. Accurate adiabatic energy surfaces for the ground and first excited states of He2+

    International Nuclear Information System (INIS)

    Lee, E.P.F.

    1993-01-01

    Different factors affecting the accuracy of the computed energy surfaces of the ground and first excited state of He 2 + have been examined, including the choice of the one-and many-particle bases, the configurational space in the MRCI (multi-reference configuration interaction) calculations and other corrections such as the Davidson and the full counterpoise (CP) correction. From basis-variation studies, it was concluded that multi-reference direct-CI calculations (MRDCI) using CASSCF MOs and/or natural orbitals (NOs) from a smaller CISD calculation, gave results close to full CI. The computed dissociation energies, D e , for the ground and first excited state of He 2 + were 2.4670 (2.4659) eV and 17.2 (17.1) cm -1 , respectively, at the highest level [without and with CP correction for basis-set superposition errors (BSSE)] of calculation with an [11s8p3d1f] GTO contraction, in reasonably good agreement with previous calculations, and estimated correct values, where available. It is believed that the computed D e , and the energy surface for the first excited state should be reasonably accurate. However, for the ground state, the effects of multiple f functions and/or functions of higher angular momentum have not been investigated owing to limitation of the available computing resources. This is probably the only weakness is the present study. (Author)

  7. In vitro and in vivo photothermal cancer therapy using excited gold nanorod surface plasmons

    Science.gov (United States)

    Chen, Cheng-Lung; Liu, Bruce; Ou, Min-Nan; Chang, Fu-Hsiung; Lin, Win-Li; Chia, Chih-Ta; Chen, Yang-Yuan

    2013-03-01

    The application of heat to eliminate or restrain specific cancer cells is proposed as an encouraging approach in optimizing cancer therapy. This talk presents the in vitro and in vivo photothermal cancer therapy using photo-excited gold nanorods (Au NRs), and studies the impact of thermal heat on the necrosis of tumor tissue. The therapeutic efficacy in vivo was evaluated by analyzing tumor size change, vascular development, and histological images. The safety standard for the therapy process and administration of Au NRs were conducted to exclude side effects arising from the irradiation and materials. It is found that the smaller size of Au NRs exhibits better therapeutic efficacy due to their optical absorption efficiency and space distribution uniformity in the cell. The generation of local heating from excited Au NR surface plasmons is high enough to make the tumor tissue gradually develop to an eschar; resulting in a dramatic size decreases in these treated tumors.

  8. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    International Nuclear Information System (INIS)

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-01-01

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed

  9. Effect of surface parameter of interband surface mode frequencies of finite diatomic chain

    International Nuclear Information System (INIS)

    Puszkarski, H.

    1982-07-01

    The surface modes of a finite diatomic chain of alternating atoms (M 1 not= M 2 ) are investigated. The surface force constants are assumed to differ from the bulk ones, with the resulting surface parameter a-tilde identical on both ends of the chain. Criteria, governing the existence of interband surface (IBS) modes with frequencies lying in the forbidden gap between acoustical and optical bulk bands for natural (a = 1) as well as non-natural (a not= 1) surface defect, are analysed by the difference equation method. It is found that the IBS modes localize, depending on the value of the surface parameter a, either at the surface of lighter atoms (if a-tilde is positive), or at that of heavier atoms (if a-tilde is negative). Two, one of no IBS modes are found to exist in the chain depending on the relation between the mass ratio and surface parameter - quantities on which the surface localization increment t-tilde depends. If two modes are present (one acoustical and the other optical), their frequencies are disposed symmetrically with respect to the middle of the forbidden gap, provided the surface defect is natural, or asymmetrically - if it is other than natural. If the localization of the IBS mode exceeds a well defined critical value tsub(c), the mode frequency becomes complex, indicating that the mode undergoes a damping. A comparison of the present results and those obtained by Wallis for the diatomic chain with natural surface defect is also given. (author)

  10. Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei, E-mail: nanoyang@qq.com; Jiang, Zhongcheng; Dong, Jiazhang; Zhang, Liuqian [Hunan University, College of Materials Science and Engineering (China); Pan, Anlian, E-mail: anlian.pan@gmail.com; Zhuang, Xiujuan [Hunan University, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province (China)

    2015-10-15

    We report a scheme for investigating two-step stimulated structure change of luminescence centers. Amorphous silica nanospheres with uniform diameter of 9–15 nm have been synthesized by Stöber method. Strong hydroxyl-related infrared-absorption band is observed in infrared spectrum. The surface hydroxyl groups exert great influence on the luminescent behavior of silica. They provide stable and intermediate energy states to accommodate excitation electrons. The existence of these surface states reduces the energy barrier of photochemical reactions, creating conditions for two-step excitation process. By carefully examining excitation and emission process, the nearest excitation band is absent in both optical absorption spectrum and excitation spectrum. This later generated state confirms the generation of new luminescence centers as well as the existence of photochemical reactions. Stimulated by different energies, two-step excitation process impels different photochemical reactions, prompting generation of different lattice defects on surface area of silica. Thereby, tunable luminescence is achieved. After thermal treatment, strong gap excitation band appears with the disappearance of strong surface excitation band. Strong blue luminescence also disappears. The research is significance to precise introducing structural defects and controlling position of luminescence peaks.

  11. Identification of the structure parameters using short-time non-stationary stochastic excitation

    Science.gov (United States)

    Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra

    2011-07-01

    In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.

  12. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  13. On the theory of inelastic scattering of slow electrons by surface excitations: 2. Thin film formalism

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1982-08-01

    A quantum-mechanical theory for the inelastic scattering of slow electrons (ISSE) by surface excitations in a thin film is developed. The scattered wave function inside the thin film is obtained by solving the inhomogeneous Schroedinger equation, and it is found to contain terms which show that the back scattered intensity is smaller than the forward scattered intensity. A scattering cross-section for forward scattering is derived and is found to be dependent on transmission factors, wavevectors and fluctuations of the scattering potential. (author)

  14. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  15. Impact of initial surface parameters on the final quality of laser micro-polished surfaces

    Science.gov (United States)

    Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.

    2012-03-01

    Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.

  16. Potential fields on the ventricular surface of the exposed dog heart during normal excitation.

    Science.gov (United States)

    Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S; Taccardi, B

    1983-06-01

    We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.

  17. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients.

    Science.gov (United States)

    Sczesny-Kaiser, Matthias; Höffken, Oliver; Aach, Mirko; Cruciger, Oliver; Grasmücke, Dennis; Meindl, Renate; Schildhauer, Thomas A; Schwenkreis, Peter; Tegenthoff, Martin

    2015-08-20

    Reorganization in the sensorimotor cortex accompanied by increased excitability and enlarged body representations is a consequence of spinal cord injury (SCI). Robotic-assisted bodyweight supported treadmill training (BWSTT) was hypothesized to induce reorganization and improve walking function. To assess whether BWSTT with hybrid assistive limb® (HAL®) exoskeleton affects cortical excitability in the primary somatosensory cortex (S1) in SCI patients, as measured by paired-pulse somatosensory evoked potentials (ppSEP) stimulated above the level of injury. Eleven SCI patients took part in HAL® assisted BWSTT for 3 months. PpSEP were conducted before and after this training period, where the amplitude ratios (SEP amplitude following double pulses - SEP amplitude following single pulses) were assessed and compared to eleven healthy control subjects. To assess improvement in walking function, we used the 10-m walk test, timed-up-and-go test, the 6-min walk test, and the lower extremity motor score. PpSEPs were significantly increased in SCI patients as compared to controls at baseline. Following training, ppSEPs were increased from baseline and no longer significantly differed from controls. Walking parameters also showed significant improvements, yet there was no significant correlation between ppSEP measures and walking parameters. The findings suggest that robotic-assisted BWSTT with HAL® in SCI patients is capable of inducing cortical plasticity following highly repetitive, active locomotive use of paretic legs. While there was no significant correlation of excitability with walking parameters, brain areas other than S1 might reflect improvement of walking functions. EEG and neuroimaging studies may provide further information about supraspinal plastic processes and foci in SCI rehabilitation.

  18. IDENTIFICATION OF MODAL PARAMETERS OF VIBRATING STRUCTURES WITH UNKNOWN ORSTOCHASTIC EXCITATION

    OpenAIRE

    Amaro Baldeón, Roberto; Gardel Kurka, Paulo

    2014-01-01

    The Vector Autoregressive Moving Average (VARMA) Model is used to identify dynamical characteristics of a structural system in the presence of noise. In order to estimate the parameters of the VARMA Model, the Spliid’s fast algorithm is used. To determine the modal parameters the companion matrix is built with the autoregressive part of the VARMA Model. The performance of this method here discussed is presented by means of simulations, using three degrees of freedom mass-dampingstiffness vibr...

  19. Measurements of lambda and chi parameters for excitation of the 21P state of helium at 80 eV

    International Nuclear Information System (INIS)

    Slevin, J.; Porter, H.Q.; Eminyan, M.; Defrance, A.; Vassilev, G.

    1980-01-01

    Electron-photon angular correlations have been measured for excitation of the 2 1 P state of helium at an incident energy of 80 eV over the range 10-115 0 of electron scattering angles. analysis of the data yields values for the alignment and orientation parameters lambda and |chi| which are in excellent agreement with data of Hollywood et al (J. Phys. B.; 12: 819 (1979)) but the data for lambda are in marked disagreement with the results of Steph and Golden (preprint. Univ. of Oklahoma (1979)) at electron scattering angles thetasub(c)> 70 0 . (author)

  20. Calculation of parameters of the interaction potential between excited alkali atoms and mercury atoms: The Cs*, Pr*-Hg interaction

    International Nuclear Information System (INIS)

    Glushkov, A.V.

    1994-01-01

    Based on the method of effective potential involving the new polarization interaction potential calculated from polarization diagrams of the perturbation theory in the Thomas-Fermi approximation, the main parameters of the interatomic potentials (equilibrium distances, potential well depth) are evaluated for a system consisting of an alkali atom in the ground and excited states and of a mercury atom. The results of calculations of quasi-molecular terms for the A-Hg system, where A = Na, Cs, Fr, are reported, some of which are obtained for the first time. A comparison is made with available experimental and theoretical data. 29 refs., 2 figs., 1 tab

  1. A search for parameters of universal sub-barrier fusion excitation function

    Energy Technology Data Exchange (ETDEWEB)

    Qu, W.W. [Medical College of Soochow University, School of Radiation Medicine and Protection, Soochow (China); Zhang, G.L. [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Wolski, R. [Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow (Poland)

    2016-11-15

    Many fusion experimental data have been analyzed in terms of a simple universal function which could be used for predictions of fusion cross section below the barrier for arbitrary systems. Sub-barrier fusions based on the concept of Q -fusion value dependence were studied. It is attempted to parameterize the energy-reduced fusion excitation functions around the Coulomb barriers by an analytical phenomenological function. It was found that the speed of driving nuclei towards fusion is faster with the increase of mass asymmetry of colliding systems and those systems with a large difference of the ratio of neutrons to protons. However, a general trend with respect to total mass has not been observed. An exposition of more qualitative conclusions is hindered by apparent inconsistencies of measured fusion cross sections. (orig.)

  2. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements

    Directory of Open Access Journals (Sweden)

    Steffi L. Colyer, Polly M. McGuigan

    2018-03-01

    Full Text Available Textile electromyography (EMG electrodes embedded in clothing allow muscle excitation to be recorded in previously inaccessible settings; however, their ability to accurately and reliably measure EMG during dynamic tasks remains largely unexplored. To quantify the validity and reliability of textile electrodes, 16 recreationally active males completed two identical testing sessions, within which three functional movements (run, cycle and squat were performed twice: once wearing EMG shorts (measuring quadriceps, hamstrings and gluteals myoelectric activity and once with surface EMG electrodes attached to the vastus lateralis, biceps femoris and gluteus maximus. EMG signals were identically processed to provide average rectified EMG (normalized to walking and excitation length. Results were compared across measurement systems and demonstrated good agreement between the magnitude of muscle excitation when EMG activity was lower, but agreement was poorer when excitation was higher. The length of excitation bursts was consistently longer when measured using textile vs. surface EMG electrodes. Comparable between-session (day-to-day repeatability was found for average rectified EMG (mean coefficient of variation, CV: 42.6 and 41.2% and excitation length (CV: 12.9 and 9.8% when using textile and surface EMG, respectively. Additionally, similar within-session repeatability (CV was recorded for average rectified EMG (13.8 and 14.1% and excitation length (13.0 and 12.7% for textile and surface electrodes, respectively. Generally, textile EMG electrodes appear to be capable of providing comparable muscle excitation information and reproducibility to surface EMG during dynamic tasks. Textile EMG shorts could therefore be a practical alternative to traditional laboratory-based methods allowing muscle excitation information to be collected in more externally-valid training environments.

  3. Determination of elastic mechanical characteristics of surface coatings from analysis of signals obtained by impulse excitation

    Science.gov (United States)

    Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.

    2018-01-01

    Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.

  4. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  5. Non-destructive testing process by Eddy current and device using a multifrequency excitation and enabling the elimination of parameters

    International Nuclear Information System (INIS)

    Pigeon, Michel.

    1975-01-01

    A non-destructive testing process by Eddy current is described, in which a probe is moved near the part to be tested; the probe is fed with an excitation current at n different frequencies and the components at each of the n frequencies are analysed in the measurement signal delivered by the probe. It is characterised in that its resistive part X in phase with the excitation current at the same frequency and its reactive part Y in quadrature are determined for each components; parts X 1 and Y 1 of a component at one frequency are modified so that they coincide, in the area corresponding to the defect of a parameter to be eliminated, with parts X 2 and Y 2 of a component at another frequency; parts X 1 and Y 1 thus modified are deducted from parts X 2 and Y 2 and this provides a new set of resistive and reative parts X' and Y', making it possible to obtain a representative curve for which the contribution of the unwanted parameter has been eliminated [fr

  6. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  7. Story damage index of seismically-excited buildings based on modal parameters

    International Nuclear Information System (INIS)

    Wang J.-F.; Lin, C.-C.; Yen, S.-M.

    2005-01-01

    In this paper, a story damage index (SDI) for buildings is developed and expressed as a simple formula based on modal parameters extracted from real earthquake response records. It is useful because only one set of modal parameters is required for the calculation of the SDI to show the degree of damage of the story in question. According to numerical simulation results of five-story buildings with various story stiffness reductions and floor mass distributions, it is proven that the proposed SDI has both high accuracy and high reliability. This SDI is also applied to the damage assessment of a 7-story reinforced concrete hotel building in Van Nuys, California, which experienced severe structural damage during the 1994 Northridge earthquake. With both its fundamental frequency and mode shape identified by the SRIM (System Realization using Information Matrix) identification technique, it is shown that the SDI agrees fairly well with the results of the visual inspection, and is valuable in practical application. (authors)

  8. Optimization of the parameters of power sources excited by β-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bulyarskiy, S. V., E-mail: bulyar2954@mail.ru; Lakalin, A. V. [Russian Academy of Sciences, Institute of Nanotechnology of Microelectronics (Russian Federation); Abanin, I. E.; Amelichev, V. V. [Technological Center (Russian Federation); Svetuhin, V. V. [Ulyanovsk State University (Russian Federation)

    2017-01-15

    The experimental results and calculations of the efficiency of the energy conversion of Ni-63 β-radiation sources to electricity using silicon p–i–n diodes are presented. All calculations are performed taking into account the energy distribution of β-electrons. An expression for the converter open-circuit voltage is derived taking into account the distribution of high-energy electrons in the space-charge region of the p–i–n diode. Ways of optimizing the converter parameters by improving the technology of diodes and optimizing the emitter active layer and i-region thicknesses of the semiconductor converter are shown. The distribution of the conversion losses to the source and radiation detector and the losses to high-energy electron entry into the semiconductor is calculated. Experimental values of the conversion efficiency of 0.4–0.7% are in good agreement with the calculated parameters.

  9. Excitation of waves in plasma near the ion cyclotron frequency using surface-wave antennas with auxillary passive gaps

    International Nuclear Information System (INIS)

    Longinov, A.V.; Lukinov, V.A.

    1992-01-01

    It is proposed to use a system of auxiliary passive gaps to excite waves in a plasma traveling in one direction parallel to the magnetic field, in order to localize the radiating surface of a surface-wave antenna. Using excitation of ion Bernstein waves in the plasma as an example the main properties of such an antenna system have been studied. It is shown that the use of passive gaps permits high directionality to be achieved for the radiation and allows the size of the radiating surface of the antenna to be controlled. 10 refs., 6 figs

  10. Surface plasmon-enhanced two-photon excited whispering-gallery modes ultraviolet laser from Zno microwire

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2017-11-01

    Full Text Available The two-photon excited UV laser with narrow line width and high Q value was obtained. The total internal reflection from the four side surfaces of the quadrilateral-ZnO microwire offered the whispering gallery mode (WGM resonant cavity. The UV emission, resonant mechanism, and laser mode characteristics were discussed in detail for this special type of micro-cavity. In addition, in order to enhance the power of the two-photon excited UV laser, the surface plasmon enhancement by the Au nanoparticles was also performed and explained well by the theory of the localized surface plasmon.

  11. Slide-free histology via MUSE: UV surface excitation microscopy for imaging unsectioned tissue (Conference Presentation)

    Science.gov (United States)

    Levenson, Richard M.; Harmany, Zachary; Demos, Stavros G.; Fereidouni, Farzad

    2016-03-01

    Widely used methods for preparing and viewing tissue specimens at microscopic resolution have not changed for over a century. They provide high-quality images but can involve time-frames of hours or even weeks, depending on logistics. There is increasing interest in slide-free methods for rapid tissue analysis that can both decrease turn-around times and reduce costs. One new approach is MUSE (microscopy with UV surface excitation), which exploits the shallow penetration of UV light to excite fluorescent signals from only the most superficial tissue elements. The method is non-destructive, and eliminates requirement for conventional histology processing, formalin fixation, paraffin embedding, or thin sectioning. It requires no lasers, confocal, multiphoton or optical coherence tomography optics. MUSE generates diagnostic-quality histological images that can be rendered to resemble conventional hematoxylin- and eosin-stained samples, with enhanced topographical information, from fresh or fixed, but unsectioned tissue, rapidly, with high resolution, simply and inexpensively. We anticipate that there could be widespread adoption in research facilities, hospital-based and stand-alone clinical settings, in local or regional pathology labs, as well as in low-resource environments.

  12. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  13. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    International Nuclear Information System (INIS)

    Marinov, Daniil; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine; Guerra, Vasco

    2013-01-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1–5 Torr and discharge currents ∼40–120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O 3 * , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O 3 * is strongly coupled with those of atomic oxygen and O 2 (a 1 Δ g ) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established. (paper)

  14. Photochemistry of ethylene: A multireference configuration interaction investigation of the excited-state energy surfaces

    International Nuclear Information System (INIS)

    Barbatti, M.; Paier, J.; Lischka, H.

    2004-01-01

    Multireference configuration interaction with singles and doubles (MR-CISD) calculations have been performed for the optimization of conical intersections and stationary points on the ethylene excited-state energy surfaces using recently developed methods for the computation of analytic gradients and nonadiabatic coupling terms. Basis set dependence and the effect of various choices of reference spaces for the MR-CISD calculations have been investigated. The crossing seam between the S 0 and S 1 states has been explored in detail. This seam connects all conical intersections presently known for ethylene. Major emphasis has been laid on the hydrogen-migration path. Starting in the V state of twisted-orthogonal ethylene, a barrierless path to ethylidene was found. The feasibility of ethylidene formation will be important for the explanation of the relative yield of cis and trans H 2 elimination

  15. Electron-Impact Excitation of Uracil Luminescence on a Ceramic Surface

    Science.gov (United States)

    Shafranyosh, I. I.; Mitropolskiy, I. E.; Kuzma, V. V.; Svyda, Yu. Yu.; Sukhoviya, M. I.

    2018-03-01

    Photoelectron spectroscopy was applied to pyrimidine nitrogenous bases, an important class of six-membered heterocyclic compounds incorporated into nucleic acids. The emission spectrum of uracil adsorbed on a ceramic surface that was obtained by bombardment with 600-eV electrons in a high vacuum was analyzed. Broad bands with maxima at 335, 435, and 495 nm were observed in the UV and visible regions. The strongest band (λ = 335 nm) was attributed to fluorescence and corresponded to a singlet-singlet transition from the first excited electronic state into the molecular ground state. Electronic transitions from a triplet T1 into the ground state formed a weaker phosphorescence band (λ = 435 nm). The nature of the band maximum at 495 nm is discussed. The obtained luminescence spectrum was compared with photoluminescence spectra in various phases.

  16. Convergence of surface diffusion parameters with model crystal size

    Science.gov (United States)

    Cohen, Jennifer M.; Voter, Arthur F.

    1994-07-01

    A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.

  17. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  18. Excitation of higher radial modes of azimuthal surface waves in the electron cyclotron frequency range by rotating relativistic flow of electrons in cylindrical waveguides partially filled by plasmas

    Science.gov (United States)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.

  19. Surface plasmon excitation using a Fourier-transform infrared spectrometer: Live cell and bacteria sensing

    Science.gov (United States)

    Lirtsman, Vladislav; Golosovsky, Michael; Davidov, Dan

    2017-10-01

    We report an accessory for beam collimation to be used as a plug-in for a conventional Fourier-Transform Infrared (FTIR) spectrometer. The beam collimator makes use of the built-in focusing mirror of the FTIR spectrometer which focuses the infrared beam onto the pinhole mounted in the place usually reserved for the sample. The beam is collimated by a small parabolic mirror and is redirected to the sample by a pair of plane mirrors. The reflected beam is conveyed by another pair of plane mirrors to the built-in detector of the FTIR spectrometer. This accessory is most useful for the surface plasmon excitation. We demonstrate how it can be employed for label-free and real-time sensing of dynamic processes in bacterial and live cell layers. In particular, by measuring the intensity of the CO2 absorption peak one can assess the cell layer metabolism, while by measuring the position of the surface plasmon resonance one assesses the cell layer morphology.

  20. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    International Nuclear Information System (INIS)

    Kumar, Shailesh; Lausen, Jens L; Andersen, Sebastian K H; Roberts, Alexander S; Radko, Ilya P; Bozhevolnyi, Sergey I; Garcia-Ortiz, Cesar E; Smith, Cameron L C; Kristensen, Anders

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes. (paper)

  1. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  2. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus.

    Science.gov (United States)

    Naylor, David E; Liu, Hantao; Niquet, Jerome; Wasterlain, Claude G

    2013-06-01

    After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. On the theory of inelastic scattering of slow electrons by surface excitations: 1. Half-space formalism

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1982-08-01

    A quantum-mechanical theory for the inelastic scattering of slow electrons (ISSE) by surface excitations is developed within the half-space model. The process of transmission of incident electrons into the crystal is described by the homogeneous Schroedinger equation, while the scattering process inside the crystal is described by an inhomogeneous Schroedinger equation. The scattering cross-section for ISSE by surface excitations is derived and is found to be small since it is dependent on an inverse sum of wavevectors which is large. It is also dependent on the fluctuations in the scattering potential. (author)

  4. The apparent effect of sample surface damage on the dielectric parameters of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A. [Physics Department, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)], E-mail: Japie.Engelbrecht@nmmu.ac.za; Hashe, N.G. [Physics Department, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Hillie, K.T. [CSIR-NML Laboratory, P.O. Box 395, Pretoria 0001 (South Africa); Claassens, C.H. [Physics Department, University of the Free State, Bloemfontein 9300 (South Africa)

    2007-12-15

    The dielectric and optical parameters determined by infrared reflectance spectroscopy and computer simulation of a set of GaAs substrates of various surface topologies are reported. The influence of surface damage on the parameters is noted.

  5. The apparent effect of sample surface damage on the dielectric parameters of GaAs

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Hashe, N.G.; Hillie, K.T.; Claassens, C.H.

    2007-01-01

    The dielectric and optical parameters determined by infrared reflectance spectroscopy and computer simulation of a set of GaAs substrates of various surface topologies are reported. The influence of surface damage on the parameters is noted

  6. Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations

    International Nuclear Information System (INIS)

    Do, Duy Minh; Gao, Wei; Song, Chongmin; Tangaramvong, Sawekchai

    2014-01-01

    This paper presents the non-deterministic dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations. Random ground acceleration from earthquake motion is adopted to illustrate the stochastic process force. The exact change ranges of natural frequencies, random vibration displacement and stress responses of structures are investigated under the interval analysis framework. Formulations for structural reliability are developed considering the safe boundary and structural random vibration responses as interval parameters. An improved particle swarm optimization algorithm, namely randomised lower sequence initialized high-order nonlinear particle swarm optimization algorithm, is employed to capture the better bounds of structural dynamic characteristics, random vibration responses and reliability. Three numerical examples are used to demonstrate the presented method for interval random vibration analysis and reliability assessment of structures. The accuracy of the results obtained by the presented method is verified by the randomised Quasi-Monte Carlo simulation method (QMCSM) and direct Monte Carlo simulation method (MCSM). - Highlights: • Interval uncertainty is introduced into structural random vibration responses. • Interval dynamic reliability assessments of structures are implemented. • Boundaries of structural dynamic response and reliability are achieved

  7. Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source

    International Nuclear Information System (INIS)

    Kousaka, Hiroyuki; Ono, Kouichi

    2003-01-01

    The electromagnetic fields and plasma parameters have been studied in an azimuthally symmetric surface wave-excited plasma (SWP) source, by using a two-dimensional numerical analysis based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The FDTD/fluid hybrid simulation was performed for different gas pressures in Ar and different microwave powers at 2.45 GHz, showing that the surface waves (SWs) occur along the plasma-dielectric interfaces to sustain overdense plasmas. The numerical results indicated that the electromagnetic SWs consist of two different waves, Wave-1 and Wave-2, having relatively shorter and longer wavelengths. The Wave-1 was seen to fade away with increasing pressure and increasing power, while the Wave-2 remained relatively unchanged over the range of pressure and power investigated. The numerical results revealed that the Wave-1 propagates as backward SWs whose phase velocity and group velocity point in the opposite directions. In contrast, the Wave-2 appeared to form standing waves, being ascribed to a superposition of forward SWs whose phase and group velocities point in the same direction. The fadeaway of the Wave-1 or backward SWs at increased pressures and increased powers was seen with the damping rate increasing in the axial direction, being related to the increased plasma electron densities. A comparison with the conventional FDTD simulation indicated that such fine structure of the electromagnetic fields of SWs is not observed in the FDTD simulation with spatially uniform and time-independent plasma distributions; thus, the FDTD/fluid hybrid model should be employed in simulating the electromagnetic fields and plasma parameters in SWPs with high accuracy

  8. The effect of selected parameters of the honing process on cylinder liner surface topography

    International Nuclear Information System (INIS)

    Pawlus, P; Dzierwa, A; Michalski, J; Reizer, R; Wieczorowski, M; Majchrowski, R

    2014-01-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable. (papers)

  9. [Experimental studies on the diffusion of excitation on the right ventricular surface in the dog, during normal and stimulated beats].

    Science.gov (United States)

    Arisi, G; Macchi, E; Baruffi, S; Musso, E; Spaggiari, S; Stilli, D; Taccardi, B

    1982-01-01

    Previous work on the spread of excitation on the dog's ventricular surface enabled us to locate up to 30 breakthrough points (BKTPs) where excitation reaches the ventricular surface. In particular the equipotential contour maps enabled us to detect 3 to 5 BKTPs on the anterior right ventricular surface, near the a-v groove when a large part of ventricular surface was still at rest. With a view to investigating the mechanism underlying the early excitation of these basal regions, we stimulated the heart at several right ventricular BKTPs and in other points located at a distance from the BKTPs. The instantaneous equipotential maps showed that after stimulation most right ventricular BKTPs remained in the same position as observed the normal beats. The early appearance of epicardial wavefronts in the basal region and generally in other areas of the right ventricle was attributed to the rapid propagation of excitation waves through the Purkinje network, probably associated to a short transmural crossing time, due to a local thinness of the ventricular wall.

  10. Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco-Pena, Victor [Antennas Group - TERALAB, Universidad Publica de Navarra, Campus Arrosadia, 31006, Pamplona (Spain); Minin, Igor V.; Minin, Oleg V. [National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050 (Russian Federation); Beruete, Miguel [Antennas Group - TERALAB, Universidad Publica de Navarra, Campus Arrosadia, 31006, Pamplona (Spain); Institute of Smart Cities, Public University of Navarra, 31006, Pamplona (Spain)

    2016-10-15

    In this paper we study the excitation of photonic nanojets (PNJ) in 3D dielectric cuboids by surface plasmons at telecommunication wavelengths. The analysis is done using the effective refractive index approach. It is shown that the refractive index contrast between the regions with and without cuboid should be roughly less than 2 in order to generate jets at the output of the cuboid. The best performance at λ{sub 0} = 1550 nm is obtained when the height of the cuboid is 160 nm producing a jet just at the output interface with a subwavelength resolution of 0.68λ{sub 0} and a high intensity enhancement (x 5) at the focus. The multi-wavelength response is also studied demonstrating that it is possible to use the proposed structure at different wavelengths. Finally, the backscattering enhancement is numerically evaluated by inserting a metal particle within the PNJ region, demonstrating a maximum value of ∝2.44 dB for a gold sphere of radius 0.1λ{sub 0}. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Multi-Parameter Analysis of Surface Finish in Electro-Discharge Machining of Tool Steels

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2006-10-01

    Full Text Available The paper presents a multi- parameter analysis of surface finish imparted to tool-steel plates by electro-discharge machining (EDM is presented. The interrelationship between surface texture parameters and process parameters is emphasized. An increased number of parameters is studied including amplitude, spacing, hybrid and fractal parameters,, as well. The correlation of these parameters with the machining conditions is investigated. Observed characteristics become more pronounced, when intensifying machining conditions. Close correlation exists between certain surface finish parameters and EDM input variables and single and multiple statistical regression models are developed.

  12. The central object R 136 in the gas nebula 30 Doradus - Structure, color, mass and excitation parameter

    Science.gov (United States)

    Feitzinger, J. V.; Schlosser, W.; Schmidt-Kaler, T.; Winkler, C.

    1980-04-01

    Photographic observations with the 3,6 m ESO and 0,61 m Bochum telescopes in different colours of the central part of the 30 Doradus Nebula are presented. The structure of the central object R 136 is studied by image analysis methods, i.e. digitalisation and contrast enhancement. The central object R 136 of the supergiant gas nebula 30 Doradus consists of three components; the main component covers an area of (0.7 pc)2. The components show a colour gradient, R 136a being much bluer than R 136c. This composite structure is seen in photographic IR, U and V likewise. A plot of the spectral intensity distribution from λ = 73 cm to 1550 Å of the central 2'.5 × 2'.5 region of 30 Doradus is given. The main contribution in the UV can be attributed to R 136. This object dominates the of the central part of 30 Doradus. It determines together with 16 other bright stars in the center the excitation parameter of the nebula. Its effective temperature lies between 50000 and 55000K and the tipper and lower mass values are 250 and 103 solar masses. The bolometric magnitude is brighter than -l4m. The inner structure of 30 Doradus can be explained as the result of the stellar-wind of R 136.

  13. Simulation of the photodynamics of azobenzene on its first excited state: Comparison of full multiple spawning and surface hopping treatments

    International Nuclear Information System (INIS)

    Toniolo, A.; Ciminelli, C.; Persico, M.; Martinez, T.J.

    2005-01-01

    We have studied the cis→trans and trans→cis photoisomerization of azobenzene after n→π* excitation using the full multiple spawning (FMS) method for nonadiabatic wave-packet dynamics with potential-energy surfaces and couplings determined 'on the fly' from a reparametrized multiconfigurational semiempirical method. We compare the FMS results with a previous direct dynamics treatment using the same potential-energy surfaces and couplings, but with the nonadiabatic dynamics modeled using a semiclassical surface hopping (SH) method. We concentrate on the dynamical effects that determine the photoisomerization quantum yields, namely, the rate of radiationless electronic relaxation and the character of motion along the reaction coordinate. The quantal and semiclassical results are in good general agreement, confirming our previous analysis of the photodynamics. The SH method slightly overestimates the rate of excited state decay, leading in this case to lower quantum yields

  14. Post-excitation of sputtered neutral atoms and application to the surface microanalysis by ionoluminescence

    International Nuclear Information System (INIS)

    Bourdilot, M.; Paletto, S.; Goutte, R.; Guillaud, C.

    1975-01-01

    During the bombardment of a solid target by a positive ion beam, an emission of light proceeding of the deexcitation of the neutral atoms which are sputtered in an excited state, is observed. This phenomenon is used in ionoluminescence analysis. By exciting the neutral atoms sputtered with an auxiliary discharge it is seen that: it is possible to increase, under certain experimental conditions, the sensibility of the ionoluminescence method. This post-excitation is particularly efficient with targets having an high sputtering coefficient [fr

  15. How to Select the most Relevant Roughness Parameters of a Surface: Methodology Research Strategy

    Science.gov (United States)

    Bobrovskij, I. N.

    2018-01-01

    In this paper, the foundations for new methodology creation which provides solving problem of surfaces structure new standards parameters huge amount conflicted with necessary actual floors quantity of surfaces structure parameters which is related to measurement complexity decreasing are considered. At the moment, there is no single assessment of the importance of a parameters. The approval of presented methodology for aerospace cluster components surfaces allows to create necessary foundation, to develop scientific estimation of surfaces texture parameters, to obtain material for investigators of chosen technological procedure. The methods necessary for further work, the creation of a fundamental reserve and development as a scientific direction for assessing the significance of microgeometry parameters are selected.

  16. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance

    Science.gov (United States)

    Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek

    2018-05-01

    Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

  17. Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, K.; Trinkunas, G.; Hoek, van A.; Croce, R.; Amerongen, van H.

    2008-01-01

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  18. Determination of the excitation migration time in Photosystem II - Consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, Koen; Trinkunas, Gediminas; van Hoek, Arie; Croce, Roberta; van Amerongen, Herbert

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  19. Determination of the excitation migration time in Photosystem II. Consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, Koen; Trinkunas, Gediminas; van Hoek, Arie; Croce, Roberta; van Amerongen, Herbert

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  20. Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

    Energy Technology Data Exchange (ETDEWEB)

    Sobota, Jonathan

    2012-03-14

    Using femtosecond time- and angle-resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi{sub 2}Se{sub 3}. We studied p-type Bi{sub 2}Se{sub 3}, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a meta-stable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10 ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents.

  1. a Research on Monitoring Surface Deformation and Relationships with Surface Parameters in Qinghai Tibetan Plateau Permafrost

    Science.gov (United States)

    Mi, S. J.; Li, Y. T.; Wang, F.; Li, L.; Ge, Y.; Luo, L.; Zhang, C. L.; Chen, J. B.

    2017-09-01

    The Qinghai Tibetan Plateau permafrost has been the largest permafrost region in middle-low latitude in the world for its high altitude. For the large area permafrost, especially surface deformation brought by it, have serious influence on the road engineering, road maintaining and regional economic development. Consequently, it is essential to monitor the surface deformation and study factors that influent it. We monitored an area named Wudaoliang from July 25, 2015 to June 1, 2016 and 15 Sentinel images were obtained during this time. The area we chose is about 35 kilometers long and 2 kilometers wide, and the national road 109 of China passes through the area. The traditional PS-INSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) method is not suitable because less historical images in the research area and leading to the number of PS (Persistent Scatterer) points is not enough to obtain accurate deformation results. Therefore, in this paper, we used another method which named QUASI-PSInSAR (QUASI Persistent Scatterer Interferometric Synthetic Aperture Radar) to acquire deformation for it has the advantage to weaken or eliminate the effects of spatial and temporal correlation, which has proved by other scholar. After processing 15 images in the SARproz software, we got the conclusions that, 1) the biggest deformation velocity in the whole area was about 127.9mm/year and about 109.3 mm/year in the road; 2) apparent deformation which have surface deformation more than 30mm/year was about 1.7Km in the road. Meanwhile, soil moisture(SM), Land surface temperature (LST) and surface water(SW), which are primary parameters of the land surface over the same time were reversed by using Sentinel data, Landsat data and ZY-3 data, respectively. After analyzing SM, LST , SW and deformation, we obtained that wet areas which had bigger SM, lower LST and more SW, had greater percentage of severe deformation than arid areas; besides, deformation pattern were

  2. Excitation of Surface Plasmon Polaritons by Fluorescent Light from Organic Nanofibers

    DEFF Research Database (Denmark)

    Sobolewska, Elżbieta Karolina; Jozefowski, Leszek; Kawalec, Tomasz

    2017-01-01

    -coherent excitation indicates its prospect for future integrated systems. To support our experimental results, we investigate the proposed geometries by analytical calculations and finite-difference-time-domain (FDTD) modelling. The experimentally obtained angular leakage radiation peak positions can readily...... be predicted by our analytical calculations. Nevertheless, the experimental results exhibit a distinct asymmetry in the peak intensities. In agreement with our FDTD calculations, we address this asymmetrical SPP excitation to the nanofiber molecular orientation. The proposed structure’s high flexibility...

  3. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  4. Low-energy excitations and Fermi surface topology of parent cobaltate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, M.Z. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)], E-mail: mzhasan@princeton.edu; Qian, D. [Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Foo, M.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2007-09-01

    The essential framework for cuprate superconductivity is that of a spin-1/2 electron system in the vicinity of a half filled (Mott limit) lattice. Of all oxide superconductors, this framework is most closely matched in the sodium doped cobalt oxides except that it is realized on a triangular lattice. We employ angle-resolved photoemission spectroscopy to study the quasiparticle dynamics of the parent cobaltate superconductor. Results reveal a single hole-like Fermi surface generated by the crossing of heavy ({approx}15 m{sub e} {approx} 3m{sub LDA}) quasiparticles with a negative effective hopping (t{sub eff} < 0). The observed ground state as given by the topology of the Fermi surface is found be very close to a collective charge instability with {radical}(3)x{radical}(3) symmetry. The measured electron dynamic parameters reveal the unusual character of the parent cobaltate class likely due to small and almost isotropic Fermi velocity (v{sub F}(k{sup {yields}}){approx}v{sub F}{approx}0.4{+-}0.1 eV A) observed. ARPES data is consistent with bulk thermodynamic specific heat and quantum oscillation measurements.

  5. Comparison of distributed vortex receptivity coefficients at excitation of 3D TS-waves in presence and absence of surface waviness and pressure gradient

    Science.gov (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Mischenko, D. A.; Fedenkova, A. A.

    2016-10-01

    The paper is devoted to quantitative experimental investigation of effective mechanisms of excitation of 3D TS instability waves due to distributed boundary layer receptivity to free-stream vortices. Experiments carried out in a self-similar boundary layer with Hartree parameter βH = -0.115 and concentrated on studying two receptivity mechanisms connected with distributed scattering of 3D unsteady free-stream vortices both on the natural boundary layer nonuniformity (smooth surface) and on 2D surface nonuniformity (waviness). Obtained quantitative characteristics (distributed receptivity coefficients) are compared directly with those obtained in Blasius boundary layer. It is found that the adverse pressure gradient leads to reduction of efficiency of the vortex-roughness receptivity mechanism.

  6. Influence of additive laser manufacturing parameters on surface using density of partially melted particles

    Science.gov (United States)

    Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves

    2016-12-01

    Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.

  7. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    Present day knowledge of the magnitude of the strain levels in the ground associated with geotechnical structures, together with an increasing number of projects requiring the best estimates of ground movements around excavations, has led to, inter alia, increased interest in measuring the very......-small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  8. Effect of machining parameters on surface finish of Inconel 718 in end milling

    Directory of Open Access Journals (Sweden)

    Sarkar Bapi

    2017-01-01

    Full Text Available Surface finish is an important criteria in machining process and selection of proper machining parameters is important to obtain good surface finish. In the present work effects of the machining parameters in end milling of Inconel 718 were investigated. Central composite design was used to design the total number of experiments. A Mathematical model for surface roughness has been developed using response surface methodology. In this study, the influence of cutting parameters such as cutting speed, feed rate and depth of cut on surface roughness was analyzed. The study includes individual effect of cutting parameters on surface roughness as well as their interaction. The analysis of variance (ANOVA was employed to find the validity of the developed model. The results show that depth of cut mostly affected the surface roughness. It is also observed that surface roughness values are comparable in both dry and wet machining conditions.

  9. Excitation mechanism in the photoisomerization of a surface-bound azobenzene derivative: Role of the metallic substrate

    Science.gov (United States)

    Hagen, Sebastian; Kate, Peter; Leyssner, Felix; Nandi, Dhananjay; Wolf, Martin; Tegeder, Petra

    2008-10-01

    Two-photon photoemission spectroscopy is employed to elucidate the electronic structure and the excitation mechanism in the photoinduced isomerization of the molecular switch tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). Our results demonstrate that the optical excitation and the mechanism of molecular switching at a metal surface is completely different compared to the corresponding process for the free molecule. In contrast to direct (intramolecular) excitation operative in the isomerization in the liquid phase, the conformational change in the surface-bound TBA is driven by a substrate-mediated charge transfer process. We find that photoexcitation above a threshold hν ≈2.2 eV leads to hole formation in the Au d-band followed by a hole transfer to the highest occupied molecular orbital of TBA. This transiently formed positive ion resonance subsequently results in a conformational change. The photon energy dependent photoisomerization cross section exhibit an unusual shape for a photochemical reaction of an adsorbate on a metal surface. It shows a thresholdlike behavior below hν ≈2.2 eV and above hν ≈4.4 eV. These thresholds correspond to the minimum energy required to create single or multiple hot holes in the Au d-bands, respectively. This study provides important new insights into the use of light to control the structure and function of molecular switches in direct contact with metal electrodes.

  10. Impulse excitation scanning acoustic microscopy for local quantification of Rayleigh surface wave velocity using B-scan analysis

    Science.gov (United States)

    Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.

    2018-01-01

    A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.

  11. Excitation mechanism in the photoisomerization of a surface-bound azobenzene derivative: Role of the metallic substrate

    International Nuclear Information System (INIS)

    Hagen, Sebastian; Kate, Peter; Leyssner, Felix; Nandi, Dhananjay; Wolf, Martin; Tegeder, Petra

    2008-01-01

    Two-photon photoemission spectroscopy is employed to elucidate the electronic structure and the excitation mechanism in the photoinduced isomerization of the molecular switch tetra-tert-butyl-azobenzene (TBA) adsorbed on Au(111). Our results demonstrate that the optical excitation and the mechanism of molecular switching at a metal surface is completely different compared to the corresponding process for the free molecule. In contrast to direct (intramolecular) excitation operative in the isomerization in the liquid phase, the conformational change in the surface-bound TBA is driven by a substrate-mediated charge transfer process. We find that photoexcitation above a threshold hν≅2.2 eV leads to hole formation in the Au d-band followed by a hole transfer to the highest occupied molecular orbital of TBA. This transiently formed positive ion resonance subsequently results in a conformational change. The photon energy dependent photoisomerization cross section exhibit an unusual shape for a photochemical reaction of an adsorbate on a metal surface. It shows a thresholdlike behavior below hν≅2.2 eV and above hν≅4.4 eV. These thresholds correspond to the minimum energy required to create single or multiple hot holes in the Au d-bands, respectively. This study provides important new insights into the use of light to control the structure and function of molecular switches in direct contact with metal electrodes.

  12. Near-field excitation exchange between motionless point atoms located near the conductive surface

    Science.gov (United States)

    Kuraptsev, Aleksei S.; Sokolov, Igor M.

    2018-04-01

    On the basis of quantum microscopic approach we study the excitation dynamics of two motionless point atoms located near the perfectly conducting mirror. We have analyzed the spontaneous decay rate of individual atoms near the mirror as well as the strength of dipole-dipole interaction between different atoms. It is shown that the spontaneous decay rate of an excited atom significantly depends on the distance from this atom to the mirror. In the case when the interatomic separation is less or comparable with the wavelength of resonant radiation, the spontaneous decay dynamics of an excited atom is described by multi-exponential law. It depends both the interatomic separation and the spatial orientation of diatomic quasimolecule.

  13. Influence of growth parameters on the surface morphology and ...

    Indian Academy of Sciences (India)

    Unknown

    surface features of the grown film like terracing, inclusions, meniscus lines, etc are ... Recently, studies carried out on the growth of InSb ..... is a critical factor in any epitaxial growth process and can ... However, this approach can lead to.

  14. Effects of XPS operational parameters on investigated sample surfaces

    International Nuclear Information System (INIS)

    Mrad, O.; Ismail, I.

    2013-04-01

    In this work, we studied the effects of the operating conditions of the xray photoelectron spectroscopy analysis technique (XPS) on the investigated samples. Firstly, the performances of the whole system have been verified as well as the accuracy of the analysis. Afterwards, the problem of the analysis of insulating samples caused by the charge buildup on the surface has been studied. The use of low-energy electron beam (<100 eV) to compensate the surface charge has been applied. The effect of X-ray on the samples have been assessed and was found to be nondestructive within the analysis time. The effect of low- and high-energy electron beams on the sample surface have been investigated. Highenergy electrons were found to have destructive effect on organic samples. The sample heating procedure has been tested and its effect on the chemical stat of the surface was followed. Finally, the ion source was used to determine the elements distribution and the chemical stat of different depths of the sample. A method has been proposed to determine these depths (author).

  15. DETERMINATION OF OPTIMAL BALL BURNISHING PARAMETERS FOR SURFACE ROUGHNESS OF ALUMINUM ALLOY

    Directory of Open Access Journals (Sweden)

    D.B. Patel

    2013-06-01

    Full Text Available Burnishing is a cold-working process, which easily produces a smooth and work-hardened surface through the plastic deformation of surface irregularities. In the present work, the influences of the main burnishing parameters (speed, feed, force, number of tool passes, and ball diameter on the surface roughness are studied. It is found that the burnishing forces and the number of tool passes are the parameters that have the greatest effect on the workpiece surface during the burnishing process.

  16. How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study.

    Science.gov (United States)

    Komoto, Keenan T; Kowalczyk, Tim

    2016-10-06

    To support the development and characterization of chromophores with targeted photophysical properties, excited-state electronic structure calculations should rapidly and accurately predict how derivatization of a chromophore will affect its excitation and emission energies. This paper examines whether a time-independent excited-state density functional theory (DFT) approach meets this need through a case study of BODIPY chromophore photophysics. A restricted open-shell Kohn-Sham (ROKS) treatment of the S 1 excited state of BODIPY dyes is contrasted with linear-response time-dependent density functional theory (TDDFT). Vertical excitation energies predicted by the two approaches are remarkably different due to overestimation by TDDFT and underestimation by ROKS relative to experiment. Overall, ROKS with a standard hybrid functional provides the more accurate description of the S 1 excited state of BODIPY dyes, but excitation energies computed by the two methods are strongly correlated. The two approaches also make similar predictions of shifts in the excitation energy upon functionalization of the chromophore. TDDFT and ROKS models of the S 1 potential energy surface are then examined in detail for a representative BODIPY dye through molecular dynamics sampling on both model surfaces. We identify the most significant differences in the sampled surfaces and analyze these differences along selected normal modes. Differences between ROKS and TDDFT descriptions of the S 1 potential energy surface for this BODIPY derivative highlight the continuing need for validation of widely used approximations in excited state DFT through experimental benchmarking and comparison to ab initio reference data.

  17. Bayesian estimation of regularization parameters for deformable surface models

    International Nuclear Information System (INIS)

    Cunningham, G.S.; Lehovich, A.; Hanson, K.M.

    1999-01-01

    In this article the authors build on their past attempts to reconstruct a 3D, time-varying bolus of radiotracer from first-pass data obtained by the dynamic SPECT imager, FASTSPECT, built by the University of Arizona. The object imaged is a CardioWest total artificial heart. The bolus is entirely contained in one ventricle and its associated inlet and outlet tubes. The model for the radiotracer distribution at a given time is a closed surface parameterized by 482 vertices that are connected to make 960 triangles, with nonuniform intensity variations of radiotracer allowed inside the surface on a voxel-to-voxel basis. The total curvature of the surface is minimized through the use of a weighted prior in the Bayesian framework, as is the weighted norm of the gradient of the voxellated grid. MAP estimates for the vertices, interior intensity voxels and background count level are produced. The strength of the priors, or hyperparameters, are determined by maximizing the probability of the data given the hyperparameters, called the evidence. The evidence is calculated by first assuming that the posterior is approximately normal in the values of the vertices and voxels, and then by evaluating the integral of the multi-dimensional normal distribution. This integral (which requires evaluating the determinant of a covariance matrix) is computed by applying a recent algorithm from Bai et. al. that calculates the needed determinant efficiently. They demonstrate that the radiotracer is highly inhomogeneous in early time frames, as suspected in earlier reconstruction attempts that assumed a uniform intensity of radiotracer within the closed surface, and that the optimal choice of hyperparameters is substantially different for different time frames

  18. Effect of electro-co-deposition parameters on surface mechanical ...

    Indian Academy of Sciences (India)

    Particle size distribution of procured TiO2 powder. ... substrate were obtained by using Philips X'Pert System. ... by a drop. In case of Cu–TiO2 composite coating also similar trend in RTC of (220) was ... of hydrogen evolution at the cathode surface due to over voltage. At 30 g l−1 TiO2 with 5 A dm−2 current density the.

  19. Near-field optical microscopy of localized excitations on rough surfaces: influence of a probe

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Starting from the general principles of near-field optical microscopy. I consider the influence of a probe when being used to image localized dipolar excitations and suggest a way of evaluating the perturbation thus introduced. Using the rigorous microscopic (electric) point-dipole description, I...

  20. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  1. Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces.

    Science.gov (United States)

    Kowalski, Karol

    2009-05-21

    In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.

  2. An unscaled parameter to measure the order of surfaces: a new surface elaboration to increase cells adhesion.

    Science.gov (United States)

    Bigerelle, M; Anselme, K; Dufresne, E; Hardouin, P; Iost, A

    2002-08-01

    We present a new parameter to quantify the order of a surface. This parameter is scale-independent and can be used to compare the organization of a surface at different scales of range and amplitude. To test the accuracy of this roughness parameter versus a hundred existing ones, we created an original statistical bootstrap method. In order to assess the physical relevance of this new parameter, we elaborated a great number of surfaces with various roughness amplitudes on titanium and titanium-based alloys using different physical processes. Then we studied the influence of the roughness amplitude on in vitro adhesion and proliferation of human osteoblasts. It was then shown that our new parameter best discriminates among the cell adhesion phenomena than others' parameters (Average roughness (Ra em leader )): cells adhere better on isotropic surfaces with a low order, provided this order is quantified on a scale that is more important than that of the cells. Additionally, on these low ordered metallic surfaces, the shape of the cells presents the same morphological aspect as that we can see on the human bone trabeculae. The method used to prepare these isotropic surfaces (electroerosion) could be undoubtedly and easily applied to prepare most biomaterials with complex geometries and to improve bone implant integration. Moreover, the new order parameter we developed may be particularly useful for the fundamental understanding of the mechanism of bone cell installation on a relief and of the formation of bone cell-material interface.

  3. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward......, the limits of the range in reaction rate, which can be Studied are estimated. (c) 2005 Elsevier B.V. All rights reserved.......Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...... limit for the lateral resolution of the measurement, and that a flow rate of the order of 240 (ml/min)(n) is sufficient to achieve this resolution. The sensitivity is reasonable also with high flow rates, due to the presence of a pocket of stagnant gas under the tip of the capillary. Furthermore...

  4. Experimental and Numerical Investigation of Design Parameters for Hydronic Embedded Thermally Active Surfaces

    DEFF Research Database (Denmark)

    Marcos-Meson, Victor; Pomianowski, Michal Zbigniew; E. Poulsen, Søren

    2015-01-01

    This paper evaluates the principal design parameters affecting the thermal performance of embedded hydronic Thermally Active Surfaces (TAS), combining the Response Surface Method (RSM) with the Finite Elements Method (FEM). The study ranks the combined effects of the parameters on the heat flux i...

  5. On the spectra and coherence of some surface meteorological parameters in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Fernandes, A.A.

    . In addition to peaks in the annual, semiannual and four-month periodicities, the various surface parameters exhibited some energy at 2, 3 and 4 year cycles. It was also found that most of the surface meteorological parameters were coherent (at 95% confidence...

  6. Electronic excitation of Ti atoms sputtered by energetic Ar+ and He+ from clean and monolayer oxygen covered surfaces

    International Nuclear Information System (INIS)

    Pellin, M.J.; Gruen, D.M.; Young, C.E.; Wiggins, M.D.; Argonne National Lab., IL

    1983-01-01

    Electronic excitation of Ti atoms ejected during energetic ion bombardment (Ar + , He + ) of well characterized clean and oxygen covered polycrystalline Ti metal surfaces has been determined. For states with 0 to 2 eV and 3 to 5.5 eV of electronic energy, static mode laser fluorescence spectroscopy (LFS) and static mode spontaneous fluorescence spectroscopy (SFS) were used respectively. These experiments which were carried out in a UHV ( -10 Torr) system equipped with an Auger spectrometer provide measurements of the correlation between oxygen coverage (0 to 3 monolayers) and the excited state distribution of sputtered Ti atoms. The experimentally determined electronic partition function of Ti atoms does not show an exponential dependence on energy (E) above the ground state but rather an E -2 or E -3 power law dependence. (orig.)

  7. Surface and bulk plasmon excitations in carbon nanotubes. Comparison with the hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Zapata Herrera, Mario [Instituto Balseiro and Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. Bariloche (Argentina)], E-mail: mzapatah@gmail.com; Gervasoni, Juana L. [Instituto Balseiro and Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. Bariloche (Argentina); Carrera de Investigador Cientificoy Tecnologico del CONICET (Argentina)], E-mail: gervason@cab.cnea.gov.ar

    2009-01-15

    In this work, we compare two models describing the interaction of external charged particles with carbon nanotubes. One is the semiclassical dielectric response model (DRM) in the Drude approximation, which approximate the valence electrons of the system by a gas of non interacting classical particles. The other is the hydrodynamic model (HDM) which uses Fluid Dynamics to describe their collective excitations. We found that both models agree for those cases where it is possible to define a dispersion relation which depends on a single frequency {omega}{sub p}. We found that in the description of the electronic response of a single-walled carbon nanotube (SWCNT) with the DRM, the connection between a three- and a two-dimensional system is non trivial and the equivalence is not direct. In spite of this, the DRM can be an important basic tool for the calculation and physical interpretation of the plasmon excitations in a nanodimensions system.

  8. MODELING AND OPTIMIZATION OF CYLINDRICAL GRINDING PARAMETERS FOR MRR AND SURFACE ROUGHNESS

    OpenAIRE

    Kshitij R Patil1, Rupesh J Karande2, Dadaso D. Mohite3, Vishwas S Jadhav4

    2017-01-01

    Cylindrical grinding is one of the important metal cutting processes used extensively in the finishing operations. The grinding process plays an important role in every manufacturing activity. The surface properties can be altered by changing various grinding parameters in order to achieve best surface finish resulting in low surface roughness value and with possible maximum metal removal rate. Four parameters, namely spindle speed, feed rate, depth of cut and hardness of material were identi...

  9. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

    Science.gov (United States)

    Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.

    2016-11-01

    With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

  10. Global High Resolution Sea Surface Flux Parameters From Multiple Satellites

    Science.gov (United States)

    Zhang, H.; Reynolds, R. W.; Shi, L.; Bates, J. J.

    2007-05-01

    Advances in understanding the coupled air-sea system and modeling of the ocean and atmosphere demand increasingly higher resolution data, such as air-sea fluxes of up to 3 hourly and every 50 km. These observational requirements can only be met by utilizing multiple satellite observations. Generation of such high resolution products from multiple-satellite and in-situ observations on an operational basis has been started at the U.S. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center. Here we describe a few products that are directly related to the computation of turbulent air-sea fluxes. Sea surface wind speed has been observed from in-situ instruments and multiple satellites, with long-term observations ranging from one satellite in the mid 1987 to six or more satellites since mid 2002. A blended product with a global 0.25° grid and four snapshots per day has been produced for July 1987 to present, using a near Gaussian 3-D (x, y, t) interpolation to minimize aliases. Wind direction has been observed from fewer satellites, thus for the blended high resolution vector winds and wind stresses, the directions are taken from the NCEP Re-analysis 2 (operationally run near real time) for climate consistency. The widely used Reynolds Optimum Interpolation SST analysis has been improved with higher resolutions (daily and 0.25°). The improvements use both infrared and microwave satellite data that are bias-corrected by in- situ observations for the period 1985 to present. The new versions provide very significant improvements in terms of resolving ocean features such as the meandering of the Gulf Stream, the Aghulas Current, the equatorial jets and other fronts. The Ta and Qa retrievals are based on measurements from the AMSU sounder onboard the NOAA satellites. Ta retrieval uses AMSU-A data, while Qa retrieval uses both AMSU-A and AMSU-B observations. The retrieval algorithms are developed using the neural network approach. Training

  11. Effect of an external alternating electric field non-monochromaticity on parametric excitation of surface ion cyclotron X-modes

    International Nuclear Information System (INIS)

    Girka, V O; Puzyrkov, S Yu; Shpagina, V O; Shpagina, L O

    2012-01-01

    The application of an external alternating electric field in the range of ion cyclotron frequencies is a well-known method for the excitation of surface electromagnetic waves. The present paper is devoted to the development of a kinetic theory of parametric excitation of these eigenwaves propagating across an external steady magnetic field along the plasma boundary at the second harmonic of the ion cyclotron frequency. Unlike previous papers on this subject, parametric excitation of surface ion cyclotron X-modes is studied here under the condition of non-monochromaticity of an external alternating electric field. Non-monochromaticity of the external alternating electric field is modeled by the superposition of two uniform and monochromatic electric fields with different amplitudes and frequencies. The nonlinear boundary condition is formulated for a tangential magnetic field of the studied surface waves. An infinite set of equations for the harmonics of a tangential electric field is solved using the approximation of the wave packet consisting of the main harmonic and two nearest satellite harmonics. Two different regimes of instability have been considered. If one of the applied generators has an operation frequency that is close to the ion cyclotron frequency, then changing the amplitude of the second generator allows one to enhance the growth rate of the parametric instability or to diminish it. But if the operation frequencies of the both generators are not close to the ion cyclotron frequency, then changing the amplitudes of their fields allows one to decrease the growth rate of the instability and even to suppress its development. The problem is studied both analytically and numerically.

  12. A new ab initio potential energy surface for the collisional excitation of N2H+ by H2

    International Nuclear Information System (INIS)

    Spielfiedel, Annie; Balança, Christian; Feautrier, Nicole; Senent, Maria Luisa; Kalugina, Yulia; Scribano, Yohann; Lique, François

    2015-01-01

    We compute a new potential energy surface (PES) for the study of the inelastic collisions between N 2 H + and H 2 molecules. A preliminary study of the reactivity of N 2 H + with H 2 shows that neglecting reactive channels in collisional excitation studies is certainly valid at low temperatures. The four dimensional (4D) N 2 H + –H 2 PES is obtained from electronic structure calculations using the coupled cluster with single, double, and perturbative triple excitation level of theory. The atoms are described by the augmented correlation consistent triple zeta basis set. Both molecules were treated as rigid rotors. The potential energy surface exhibits a well depth of ≃2530 cm −1 . Considering this very deep well, it appears that converged scattering calculations that take into account the rotational structure of both N 2 H + and H 2 should be very difficult to carry out. To overcome this difficulty, the “adiabatic-hindered-rotor” treatment, which allows para-H 2 (j = 0) to be treated as if it were spherical, was used in order to reduce the scattering calculations to a 2D problem. The validity of this approach is checked and we find that cross sections and rate coefficients computed from the adiabatic reduced surface are in very good agreement with the full 4D calculations

  13. A new ab initio potential energy surface for the collisional excitation of N2H(+) by H2.

    Science.gov (United States)

    Spielfiedel, Annie; Senent, Maria Luisa; Kalugina, Yulia; Scribano, Yohann; Balança, Christian; Lique, François; Feautrier, Nicole

    2015-07-14

    We compute a new potential energy surface (PES) for the study of the inelastic collisions between N2H(+) and H2 molecules. A preliminary study of the reactivity of N2H(+) with H2 shows that neglecting reactive channels in collisional excitation studies is certainly valid at low temperatures. The four dimensional (4D) N2H(+)-H2 PES is obtained from electronic structure calculations using the coupled cluster with single, double, and perturbative triple excitation level of theory. The atoms are described by the augmented correlation consistent triple zeta basis set. Both molecules were treated as rigid rotors. The potential energy surface exhibits a well depth of ≃2530 cm(-1). Considering this very deep well, it appears that converged scattering calculations that take into account the rotational structure of both N2H(+) and H2 should be very difficult to carry out. To overcome this difficulty, the "adiabatic-hindered-rotor" treatment, which allows para-H2(j = 0) to be treated as if it were spherical, was used in order to reduce the scattering calculations to a 2D problem. The validity of this approach is checked and we find that cross sections and rate coefficients computed from the adiabatic reduced surface are in very good agreement with the full 4D calculations.

  14. Excitation of surface waves and electrostatic fields by a RF (radiofrequency systems) wave in a plasma sheath with current

    International Nuclear Information System (INIS)

    Gutierrez Tapia, C.

    1990-01-01

    It is shown in a one-dimensional model that when a current in a plasma sheath is present, the excitation of surface waves and electrostatic fields by a RF wave is possible in the sheath. This phenomena depends strongly on the joint action of Miller's and driven forces. It is also shown that the action of these forces are carried out at different characteristic times when the wave front travels through the plasma sheath. The influence of the current, in the steady limit, is taken into account by a small functional variation of the density perturbations and generated electrostatic field. (Author)

  15. Improved geophysical excitation of length-of-day constrained by Earth orientation parameters and satellite gravimetry products

    Science.gov (United States)

    Yu, Nan; Li, Jiancheng; Ray, Jim; Chen, Wei

    2018-05-01

    At time scales shorter than about two years, non-tidal LOD variations are mainly excited by angular momentum exchanges between the atmospheric, oceanic, and continental hydrological fluid envelopes and the underlying solid Earth. But, neither agreement among different geophysical models for the fluid dynamics nor consistency with geodetic observations of LOD has reached satisfactory levels. This is mainly ascribed to significant discrepancies and uncertainties in the theories and assumptions adopted by different modeling groups, in their numerical methods, and in the accuracy and coverage of global input data fields. Based on careful comparisons with more accurate geodetic measurements and satellite gravimetry products (from satellite laser ranging, SLR), observed length-of day (LOD) and C20 geopotential time series can provide strong constraints to evaluate or form combined geophysical models. In this study, wavelet decomposition is used to extract several narrow-band components to compare in addition to considering the total signals. We then make refinements to the least difference combination (LDC) method proposed by Chen et al. (2013b) to form multi-model geophysical excitations. Two combination variants, called the weighted mean combination (WMC2 and WMC4), are also evaluated. All the multi-model methods attempt to extract the best-modeled frequency components from each geophysical model by relying on geodetic excitation and the C20 series as references. The comparative performances of the three combinations LDC, WMC2 and WMC4 and the original single models are determined. We find that (1) the Estimating the Circulation and Climate of the Ocean (ECCO) and Max-Planck-Institute for Meteorology Ocean Model (MPIOM) give a more reliable view of the ocean redistributions than the Ocean Model for Circulation and Tides (OMCT) used by European Centre for Medium-Range Weather Forecasts (ECMWF), especially for the annual component; (2) C20 series from SLR can provide a

  16. Effect of laser cutting parameters on surface roughness of stainless steel 307

    Directory of Open Access Journals (Sweden)

    Amal NASSAR

    2016-12-01

    Full Text Available Optimal parameters of laser cutting are an important step to improve surface quality of cutting edge in the laser cutting of stainless steel 307. This paper presents a new approach for optimizing the cutting parameters on stainless steel. Based on 33 full factorial experimental design, cutting experiments were conducted for stainless steel 307 plates using a laser machine (AMADA FONT 3015. The cutting parameters such as, cutting speed, cutting power and gas pressure are optimized for maximizing surface quality. The results indicated that cutting power and cutting speed play an important role in surface quality.

  17. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  18. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  19. Topological spin excitations induced by an external magnetic field coupled to a surface with rotational symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2013-01-01

    We study the Heisenberg model in an external magnetic field on curved surfaces with rotational symmetry. The Euler-Lagrange static equations, derived from the Hamiltonian, lead to the inhomogeneous double sine-Gordon equation. Nonetheless, if the magnetic field is coupled to the metric elements of the surface, and consequently to its curvature, the homogeneous double sine-Gordon equation emerges and a 2π-soliton solution is obtained. In order to satisfy the self-dual equations, surface deformations are predicted to appear at the sector where the spin direction is opposite to the magnetic field. On the basis of the model, we find the characteristic length of the 2π-soliton for three specific rotationally symmetric surfaces: the cylinder, the catenoid, and the hyperboloid. On finite surfaces, such as the sphere, torus, and barrels, fractional 2π-solitons are predicted to appear. (author)

  20. Excitation of magnetic inhomogeneities in three-layer ferromagnetic structure with different parameters of the magnetic anisotropy and exchange

    Energy Technology Data Exchange (ETDEWEB)

    Ekomasov, E.G., E-mail: EkomasovEG@gmail.com [Bashkir State University, 32, Validy Str., Ufa, 450076 (Russian Federation); Murtazin, R.R. [Bashkir State University, 32, Validy Str., Ufa, 450076 (Russian Federation); Nazarov, V.N. [Institute of Molecule and Crystal Physics Ufa Research Centre of Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa, 450075 (Russian Federation)

    2015-07-01

    The generation and evolution of magnetic inhomogeneities, emerging in a thin flat layer with the parameters of the magnetic anisotropy and exchange interaction, with the parameters different from other two thick layers of the three-layer ferromagnetic structure, were investigated. The parameters ranges that determine the possibility of their existence were found. The possibility of the external magnetic field influence on the structure and dynamic properties of localized magnetic inhomogeneities was shown. - Highlights: • The generation of magnetic inhomogeneities in the three-layer ferromagnetic. • The influence of an external field on the parameters of magnetic inhomogeneities. • Numerical study of the structure and dynamics of magnetic inhomogeneities.

  1. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Directory of Open Access Journals (Sweden)

    Walla Frederik

    2018-01-01

    Full Text Available We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM. The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  2. Calculation of parameter failure probability of thermodynamic system by response surface and importance sampling method

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Chen Lisheng; Zhang Yangwei

    2012-01-01

    In this paper, the combined method of response surface and importance sampling was applied for calculation of parameter failure probability of the thermodynamic system. The mathematics model was present for the parameter failure of physics process in the thermodynamic system, by which the combination arithmetic model of response surface and importance sampling was established, then the performance degradation model of the components and the simulation process of parameter failure in the physics process of thermodynamic system were also present. The parameter failure probability of the purification water system in nuclear reactor was obtained by the combination method. The results show that the combination method is an effective method for the calculation of the parameter failure probability of the thermodynamic system with high dimensionality and non-linear characteristics, because of the satisfactory precision with less computing time than the direct sampling method and the drawbacks of response surface method. (authors)

  3. EFFECT OF PLASMA CUTTING PARAMETERS UPON SHAPES OF BEARING CURVE OF C45 STEEL SURFACE

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2015-08-01

    Full Text Available The article presents the results of studies on the effect of plasma cutting technological parameters upon the shape of bearing curves and the parameters of the curve. The topography of surface formed by plasma cutting were analyzed. For measuring surface roughness and determining the bearing curve the appliance T8000 RC120 – 400 by Hommel-Etamic was used together with software.

  4. Synthesis of nanoscale copper nitride thin film and modification of the surface under high electronic excitation.

    Science.gov (United States)

    Ghosh, S; Tripathi, A; Ganesan, V; Avasthi, D K

    2008-05-01

    Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.

  5. Analyzing parameters optimisation in minimising warpage on side arm using response surface methodology (RSM)

    Science.gov (United States)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    This paper presents a systematic methodology to analyse the warpage of the side arm part using Autodesk Moldflow Insight software. Response Surface Methodology (RSM) was proposed to optimise the processing parameters that will result in optimal solutions by efficiently minimising the warpage of the side arm part. The variable parameters considered in this study was based on most significant parameters affecting warpage stated by previous researchers, that is melt temperature, mould temperature and packing pressure while adding packing time and cooling time as these is the commonly used parameters by researchers. The results show that warpage was improved by 10.15% and the most significant parameters affecting warpage are packing pressure.

  6. Surface thickness effects and splitting of multipole excitations in deformed nuclei. [Sum rule, hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Christillin, P [Scuola Normale Superiore, Pisa (Italy); Lipparini, E; Stringari, S [Dipartimento Matematica e Fisica, Trento, Italy

    1978-09-25

    A sum-rule approach is used to study the influence of surface thickness upon the splitting of dipole and isoscalar quadrupole energies in deformed nuclei. It is shown that hydrodynamic model results are recovered in the case of a deformed skin thickness. A constant skin thickness leads in the dipole case to slightly different predictions which seem in better agreement with experiments. The splitting of the isoscalar quadrupole mode is not sensitive to the surface thickness shape.

  7. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  8. Analysis of WEDM Process Parameters on Surface Roughness and Kerf using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2017-12-01

    Full Text Available In obtaining the best quality of engineering parts, the quality of machined surface plays an essential role. The fatigue strength, wear resistance, and corrosion of workpiece are some of the aspects of the qualities that can be improved. This paper investigates the effect of wire electrical discharge machining (WEDM process parameters on surface roughness and kerf on stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The selected process parameters are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical models using Taguchi method were developed for the estimation of surface roughness and kerf. The analysis revealed that off time has major influence on surface roughness and kerf. The optimum machining parameters for minimum surface roughness and kerf were found to be 10 V open voltage, 2.84 µs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  9. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    Science.gov (United States)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  10. Photon energy dependence of left-right asymmetry parameters of Kr 4p photoelectrons in the vicinity of 3d resonant excitations

    International Nuclear Information System (INIS)

    Ricz, S.; Holste, K.; Borovik, Jr.A.A.; Bernhardt, D.; Schippers, S.; Muller, A.; Kover, A.; Varga, D.

    2011-01-01

    Complete text of publication follows. A left-right asymmetry was observed experimentally for the outer s-shell photoelectrons of noble gases and of the H 2 molecule in our previous studies (see the cited articles for the definition of 'left' and 'right' as well as for the details of the experimental method). Recently, the angular distribution of 4p photoelectrons of Kr was measured with linearly polarized synchrotron radiation in the photon energy range (90 - 94.4 eV) of the 3d -1 → np resonant excitations in order to determine the anisotropy parameters. Now, also the left-right asymmetry parameters have been determined from the measured spectra of Ref. [3]. The experiment was performed at beamline BW3 of the DORIS III storage ring at HASYLAB (Hamburg, Germany). The emitted electrons were analyzed using the ESA-22D electrostatic electron spectrometer. Fig. 1 shows the measured left-right asymmetry parameters (A LR ) of the two fine structure components of Kr 4p photoelectrons. The asymmetry parameters (A LR ) are increasing with increasing photon energies reaching a maximum value of 0.04, definitely different from zero when considering the error bars. Furthermore, the left-right asymmetry parameters oscillate around the (3d 3/2,5/2 ) -1 → 5p resonant excitation for both fine structure components. Currently, we do not know what kind of interaction can produce a left-right asymmetry in photon-atom collisions but the shape of the oscillations shows interference between the unknown and the resonant excitation channels. One of the most important observations is that the sign of A LR changes from positive to negative and then back again to positive just within a narrow photon energy range of only 250 meV around the (3d 5/2 ) -1 → 5p resonant excitation. Within such a narrow range artificial asymmetry of the experimental setup is totally unconceivable. Acknowledgements. The authors thank the DORIS III staff for providing excellent working conditions. This work was

  11. The dynamic deformation of a layered viscoelastic medium under surface excitation

    International Nuclear Information System (INIS)

    Aglyamov, Salavat R; Karpiouk, Andrei B; Emelianov, Stanislav Y; Wang, Shang; Li, Jiasong; Larin, Kirill V; Twa, Michael

    2015-01-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation. (paper)

  12. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    Science.gov (United States)

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  13. Enamel surface topography analysis for diet discrimination. A methodology to enhance and select discriminative parameters

    Science.gov (United States)

    Francisco, Arthur; Blondel, Cécile; Brunetière, Noël; Ramdarshan, Anusha; Merceron, Gildas

    2018-03-01

    Tooth wear and, more specifically, dental microwear texture is a dietary proxy that has been used for years in vertebrate paleoecology and ecology. DMTA, dental microwear texture analysis, relies on a few parameters related to the surface complexity, anisotropy and heterogeneity of the enamel facets at the micrometric scale. Working with few but physically meaningful parameters helps in comparing published results and in defining levels for classification purposes. Other dental microwear approaches are based on ISO parameters and coupled with statistical tests to find the more relevant ones. The present study roughly utilizes most of the aforementioned parameters in their more or less modified form. But more than parameters, we here propose a new approach: instead of a single parameter characterizing the whole surface, we sample the surface and thus generate 9 derived parameters in order to broaden the parameter set. The identification of the most discriminative parameters is performed with an automated procedure which is an extended and refined version of the workflows encountered in some studies. The procedure in its initial form includes the most common tools, like the ANOVA and the correlation analysis, along with the required mathematical tests. The discrimination results show that a simplified form of the procedure is able to more efficiently identify the desired number of discriminative parameters. Also highlighted are some trends like the relevance of working with both height and spatial parameters, as well as the potential benefits of dimensionless surfaces. On a set of 45 surfaces issued from 45 specimens of three modern ruminants with differences in feeding preferences (grazing, leaf-browsing and fruit-eating), it is clearly shown that the level of wear discrimination is improved with the new methodology compared to the other ones.

  14. Experimental research of the influence of the strength of ore samples on the parameters of an electromagnetic signal during acoustic excitation in the process of uniaxial compression

    Science.gov (United States)

    Yavorovich, L. V.; Bespal`ko, A. A.; Fedotov, P. I.

    2018-01-01

    Parameters of electromagnetic responses (EMRe) generated during uniaxial compression of rock samples under excitation by deterministic acoustic pulses are presented and discussed. Such physical modeling in the laboratory allows to reveal the main regularities of electromagnetic signals (EMS) generation in rock massive. The influence of the samples mechanical properties on the parameters of the EMRe excited by an acoustic signal in the process of uniaxial compression is considered. It has been established that sulfides and quartz in the rocks of the Tashtagol iron ore deposit (Western Siberia, Russia) contribute to the conversion of mechanical energy into the energy of the electromagnetic field, which is expressed in an increase in the EMS amplitude. The decrease in the EMS amplitude when the stress-strain state of the sample changes during the uniaxial compression is observed when the amount of conductive magnetite contained in the rock is increased. The obtained results are important for the physical substantiation of testing methods and monitoring of changes in the stress-strain state of the rock massive by the parameters of electromagnetic signals and the characteristics of electromagnetic emission.

  15. The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films

    Science.gov (United States)

    Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.

    2018-04-01

    In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.

  16. Topological surface states interacting with bulk excitations in the Kondo insulator SmB6 revealed via planar tunneling spectroscopy.

    Science.gov (United States)

    Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H

    2016-06-14

    Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3 Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6 The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6.

  17. Impact parameter selected nuclear temperatures of hot nuclei from excited state populations for 40Ar+197Au reactions at E/A=25MeV

    International Nuclear Information System (INIS)

    Li Zuyu; He Zhiyong; Duan Limin; Jin Genming; Wu Heyu; Zhang Baoguo; Wen Wanxin; Qi Yujin; Luo Qingzheng; Dai Guangxi; Wang Hongwei

    1997-01-01

    Nuclear temperatures extracted from excited state populations were measured as a function of linear momentum transfer (LMT) for 40 Ar+ 197 Au reactions at 25MeV/nucleon. The emission temperatures increased slightly with increasing linear momentum transfer or decreasing impact parameter. Taking into account the corrections of detection efficiency and sequential feeding from higher-lying states, a temperature of T∼4MeV was deduced for central collisions. For peripheral collisions the extracted temperatures increased with the energy of the particles. (orig.)

  18. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.

    2016-01-01

    ) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon...

  19. Fundamentally excited flow past a surface-mounted rib. Part I ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    structures contrary to the traditional belief that large eddies break into small scales at the .... The instantaneous streamwise velocity component (u(x,y,t)) can be decomposed into ..... rib surface where the velocity in the shear layer reaches a maximum value. ..... measurements and mode generation in the pairing process.

  20. The Response Surface Methodology speeds up the search for optimal parameters in the photoinactivation of E. coli by Photodynamic Therapy.

    Science.gov (United States)

    Amaral, Larissa S; Azevedo, Eduardo B; Perussi, Janice R

    2018-02-27

    Antimicrobial Photodynamic Inactivation (a-PDI) is based on the oxidative destruction of biological molecules by reactive oxygen species generated by the photo-excitation of a photosensitive molecule. When the a-PDT is performed along with the use of mathematical models, the optimal conditions for maximum inactivation are easily found. Experimental designs allow a multivariate analysis of the experimental parameters. This is usually made using a univariate approach, which demands a large number of experiments, being time and money consuming. This paper presents the use of the response surface methodology for improving the search for the best conditions to reduce E. coli survival levels by a-PDT using methylene blue (MB) and toluidine blue (TB) as photosensitizers and white light. The goal was achieved by analyzing the effects and interactions of the three main parameters involved in the process: incubation time (IT), photosensitizer concentration (C PS ), and light dose (LD). The optimization procedure began with a full 2 3 factorial design, followed by a central composite one, in which the optimal conditions were estimated. For MB, C PS was the most important parameter followed by LD and IT whereas, for TB, the main parameter was LD followed by C PS and IT. Using the estimated optimal conditions for inactivation, MB was able to inactivate 99.999999% CFU mL -1 of E. coli with IT of 28 min, LD of 31 J cm -2 , and C PS of 32 μmol L -1 , while TB required 18 min, 39 J cm -2 , and 37 μmol L -1 . The feasibility of using the response surface methodology with a-PDT was demonstrated, enabling enhanced photoinactivation efficiency and fast results with a minimal number of experiments. Copyright © 2018. Published by Elsevier B.V.

  1. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  2. Functional parameter screening for predicting durability of rolling sliding contacts with different surface finishes

    Science.gov (United States)

    Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.

    2018-06-01

    The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.

  3. Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.

    Science.gov (United States)

    Qiu, J; Ran, D F; Liu, Y B; Liu, L H

    2016-07-10

    Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.

  4. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  5. Excitation of a surface wave by an s-polarized electromagnetic wave incident upon a boundary of a dense magnetoactive plasma

    International Nuclear Information System (INIS)

    Dragila, R.; Vukovic, S.

    1988-01-01

    The properties of surfave waves that are associated with a boundary between a rare plasma and a dense magnetoactive plasma and that propagate along a dc magnetic field are investigated. It is shown that the presence of the magnetic field introduces symmetry in terms of the polarization of the incident electromagnetic wave that excites the surface waves. A surface wave excited by an incident p-polarized (s-polarized) electromagnetic wave leaks in the form of an s-polarized (p-polarized) electromagnetic wave. The rate of rotation of polarization is independent of the polarization of the incident wave. Because a surface wave can leak in the form of an s-polarized electromagnetic wave, it can also be pumped by such a wave, and conditions were found for excitation of a surface wave by an s-polarized incident electromagnetic wave

  6. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  7. Four-parameter model for polarization-resolved rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  8. Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration

    Czech Academy of Sciences Publication Activity Database

    Bulíř, Jiří; Zikmund, Tomáš; Novotný, Michal; Lančok, Ján; Fekete, Ladislav; Juha, Libor

    2016-01-01

    Roč. 122, č. 4 (2016), s. 1-7, č. článku 412. ISSN 0947-8396 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA MŠk(CZ) LM2011029 Institutional support: RVO:68378271 Keywords : local surface plasmon resonance * luminescence * XUV laser * LiF Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  9. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.S.

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin's resonant energy transfer hopping mechanism.

  10. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Eric Scott [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin`s resonant energy transfer hopping mechanism.

  11. Vibration Analysis of 5-DOF Vehicle Model under Stochastic Road Surface Excitation

    Directory of Open Access Journals (Sweden)

    Zhang Yanlong

    2016-01-01

    Full Text Available Considering human body vertical motion, vehicle body vertical motion, pitch movement and vertical jump of front and rear wheels, a five-degree-of-freedom vehicle model is established to study basic driving characteristics of the vehicle. Using Fourier transform method, acceleration power spectral density of the seat and the mean square value curves of seat vertical weighted acceleration are obtained by numerical simulation. Combined with comfort provision standards, the influence of vehicle model parameters and speed on seat acceleration power spectral density and vertical root-mean-square value of seat weighted acceleration are analyzed. Results show that the stiffness and damping of the seat have no significant effect on seat acceleration power spectral density, and seat acceleration PSD increases with increasing front or rear suspension stiffness, but it decreases with increasing front or rear suspension damping. It should also be concluded that the model stiffness and the mean square value of seat vertical weighted acceleration present positive correlation in general, but seat vertical weighted acceleration decrease first and then increase when model damping increase. Such analysis results can provide reference for the parameter optimization design of the automobile.

  12. Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer

    International Nuclear Information System (INIS)

    Dilmohamud, B A; Seeneevassen, J; Rughooputh, S D D V; Ramasami, P

    2005-01-01

    An apparatus was devised using the Traube Stalagmometer for the determination of the surface tension of the alcohols methanol, ethanol, propan-1-ol and butan-1-ol. Measurements were made under atmospheric pressure at temperatures between 288.15 K and 313.15 K. The surface tension values were correlated with temperature and surface thermodynamic parameters, namely surface entropy and surface enthalpy, were also calculated. The results obtained are in agreement with the literature and they are promising for the use of this low cost arrangement for accurate measurement of surface tension. Surface tension values were obtained with a maximum error of 0.5 mN m -1 and a maximum standard deviation of 0.8 mN m -1 . We recommend this arrangement for students in advanced university courses and it can also be used for research work

  13. Effects of surface motion and electron-hole pair excitations in CO2 dissociation and scattering on Ni(100)

    Science.gov (United States)

    Luo, Xuan; Zhou, Xueyao; Jiang, Bin

    2018-05-01

    The energy transfer between different channels is an important aspect in chemical reactions at surfaces. We investigate here in detail the energy transfer dynamics in a prototypical system, i.e., reactive and nonreactive scattering of CO2 on Ni(100), which is related to heterogeneous catalytic processes with Ni-based catalysts for CO2 reduction. On the basis of our earlier nine-dimensional potential energy surface for CO2/Ni(100), dynamical calculations have been done using the generalized Langevin oscillator (GLO) model combined with local density friction approximation (LDFA), in which the former accounts for the surface motion and the latter accounts for the low-energy electron-hole pair (EHP) excitation. In spite of its simplicity, it is found that the GLO model yields quite satisfactory results, including the significant energy loss and product energy disposal, trapping, and steering dynamics, all of which agree well with the ab initio molecular dynamics ones where many surface atoms are explicitly involved with high computational cost. However, the GLO model fails to describe the reactivity enhancement due to the lattice motion because it intrinsically does not incorporate the variance of barrier height on the surface atom displacement. On the other hand, in LDFA, the energy transferred to EHPs is found to play a minor role and barely alter the dynamics, except for slightly reducing the dissociation probabilities. In addition, vibrational state-selected dissociative sticking probabilities are calculated and previously observed strong mode specificity is confirmed. Our work suggests that further improvement of the GLO model is needed to consider the lattice-induced barrier lowering.

  14. Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process

    Directory of Open Access Journals (Sweden)

    M. H. El-Axir

    2017-10-01

    Full Text Available The influence of some turning variables and tool overhang on surface roughness parameters and residual stress induced due to machining 6061-T6 aluminum alloy is investigated in this paper. Four input parameters (cutting speed, feed rate, depth of cut and tool overhang are considered. Tests are carried out by precision turning operation on a lathe. Design of experiment techniques, i.e. response surface methodology (RSM and Taguchi's technique have been used to accomplish the objective of the experimental study. Surface roughness parameters are measured using a portable surface roughness device while residual stresses are measured employing deflection-etching technique using electrochemical analysis. The results obtained reveal that feed and rotational speed play significant role in determining the average surface roughness. Furthermore, the depth of cut and tool overhang are less significant parameters, whereas tool overhang interacts with feed rate. The best result of surface roughness was obtained using low or medium values of overhang with low speed and /or feed rate. Minimum maximum tensile residual stress can be obtained with a combination of tool overhang of 37 mm with very low depth of cut, low rotational speed and feed rate of 0.188 mm/rev.

  15. Low-energy excitations and Fermi surface topology of parent cobaltate superconductor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Qian, D.; Foo, M.; Cava, R.J.

    2007-01-01

    The essential framework for cuprate superconductivity is that of a spin-1/2 electron system in the vicinity of a half filled (Mott limit) lattice. Of all oxide superconductors, this framework is most closely matched in the sodium doped cobalt oxides except that it is realized on a triangular lattice. We employ angle-resolved photoemission spectroscopy to study the quasiparticle dynamics of the parent cobaltate superconductor. Results reveal a single hole-like Fermi surface generated by the crossing of heavy (∼15 m e ∼ 3m LDA ) quasiparticles with a negative effective hopping (t eff F (k → )∼v F ∼0.4±0.1 eV A) observed. ARPES data is consistent with bulk thermodynamic specific heat and quantum oscillation measurements

  16. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    and alignment are taking place, guiding all the molecules towards the intersections with the ground state PES, where transitions to the ground state PES will occur with minimum energy dissipation. The accumulated kinetic energy may be used to overcome the chemical reaction barrier. While recombination chemical...... be readily produced. Products of chemical adsorption and/or chemical reactions induced within adsorbates are aggregated on the surface and observed by light scattering. We will demonstrate how pressure and spectral dependencies of the chemical outcomes, polarization of the light and interference of two laser...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  17. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  18. Software measurement standards for areal surface texture parameters: part 2—comparison of software

    International Nuclear Information System (INIS)

    Harris, P M; Smith, I M; Giusca, C; Leach, R K; Wang, C

    2012-01-01

    A companion paper in this issue describes reference software for the evaluation of areal surface texture parameters, focusing on the definitions of the parameters and giving details of the numerical algorithms employed in the software to implement those definitions. The reference software is used as a benchmark against which software in a measuring instrument can be compared. A data set is used as input to both the software under test and the reference software, and the results delivered by the software under test are compared with those provided by the reference software. This paper presents a comparison of the results returned by the reference software with those reported by proprietary software for surface texture measurement. Differences between the results can be used to identify where algorithms and software for evaluating the parameters differ. They might also be helpful in identifying where parameters are not sufficiently well-defined in standards. (paper)

  19. Influence of differentiation of potential parameters for each excited level of the target nucleus on neutron inelastic cross section calculations

    International Nuclear Information System (INIS)

    Cabezas, R.; Lubian, J.; Moreno, E.

    1992-01-01

    In this paper scattering of neutron in medium mass nuclei (48 < a < 64) at low energies (1-5 Mev) is analyzed. The Hauser-Feshbach-Moldauer formalism and the coupled channel method is used in a combined way. In both cases, the deformed optical potential in the frame of the harmonic vibrational models is considered of integral and total cross section and angular distribution enphasized. It's shown that the use of different set parameters has a mose influence at low energies and represented a contribution of 10% of the calculated cross section with the same potential

  20. Role of roughness parameters on the tribology of randomly nano-textured silicon surface.

    Science.gov (United States)

    Gualtieri, E; Pugno, N; Rota, A; Spagni, A; Lepore, E; Valeri, S

    2011-10-01

    This experimental work is oriented to give a contribution to the knowledge of the relationship among surface roughness parameters and tribological properties of lubricated surfaces; it is well known that these surface properties are strictly related, but a complete comprehension of such correlations is still far to be reached. For this purpose, a mechanical polishing procedure was optimized in order to induce different, but well controlled, morphologies on Si(100) surfaces. The use of different abrasive papers and slurries enabled the formation of a wide spectrum of topographical irregularities (from the submicro- to the nano-scale) and a broad range of surface profiles. An AFM-based morphological and topographical campaign was carried out to characterize each silicon rough surface through a set of parameters. Samples were subsequently water lubricated and tribologically characterized through ball-on-disk tribometer measurements. Indeed, the wettability of each surface was investigated by measuring the water droplet contact angle, that revealed a hydrophilic character for all the surfaces, even if no clear correlation with roughness emerged. Nevertheless, this observation brings input to the purpose, as it allows to exclude that the differences in surface profile affect lubrication. So it is possible to link the dynamic friction coefficient of rough Si samples exclusively to the opportune set of surface roughness parameters that can exhaustively describe both height amplitude variations (Ra, Rdq) and profile periodicity (Rsk, Rku, Ic) that influence asperity-asperity interactions and hydrodynamic lift in different ways. For this main reason they cannot be treated separately, but with dependent approach through which it was possible to explain even counter intuitive results: the unexpected decreasing of friction coefficient with increasing Ra is justifiable by a more consistent increasing of kurtosis Rku.

  1. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    International Nuclear Information System (INIS)

    Yacob, S; Ariffin, N; Ali, R; Arshad, A; Wahab, M I A; Ismail, S A; Roji, NS M; Din, W B W; Zakaria, M H; Abdullah, A; Yusof, M I; Kamarulzaman, K Z; Mahyuddin, A; Hamzah, M N; Roslan, R; MAli, M A; Ahsan, Q

    2015-01-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld. (paper)

  2. Optimisation of process parameters on thin shell part using response surface methodology (RSM)

    Science.gov (United States)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    This study is carried out to focus on optimisation of process parameters by simulation using Autodesk Moldflow Insight (AMI) software. The process parameters are taken as the input in order to analyse the warpage value which is the output in this study. There are some significant parameters that have been used which are melt temperature, mould temperature, packing pressure, and cooling time. A plastic part made of Polypropylene (PP) has been selected as the study part. Optimisation of process parameters is applied in Design Expert software with the aim to minimise the obtained warpage value. Response Surface Methodology (RSM) has been applied in this study together with Analysis of Variance (ANOVA) in order to investigate the interactions between parameters that are significant to the warpage value. Thus, the optimised warpage value can be obtained using the model designed using RSM due to its minimum error value. This study comes out with the warpage value improved by using RSM.

  3. Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2

    International Nuclear Information System (INIS)

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-01-01

    Highlights: • Both surface plasmon resonance and band-gap excitation were used for H 2 production. • Au/Gr/TiO 2 composite photocatalyst was synthesized. • Au/Gr/TiO 2 exhibited enhancement of light absorption and charge separation. • H 2 production rate of Au/Gr/TiO 2 was about 2 times as high as that of Au/TiO 2 . - Abstract: H 2 production over Au/Gr/TiO 2 composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO 2 using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO 2 with band-gap excitation. Surface photovoltage and UV–vis absorption measurements revealed that compared with Au/TiO 2 , Au/Gr/TiO 2 displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H 2 production rate of Au/Gr/TiO 2 composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO 2 . This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy

  4. Optical characteristics and parameters of the plasma of a barrier discharge excited in a mixture of mercury dibromide vapor with nitrogen and helium

    Science.gov (United States)

    Malinina, A. A.; Guivan, N. N.; Shimon, L. L.; Shuaibov, A. K.

    2010-09-01

    Results are presented from experimental and theoretical studies of the optical characteristics and parameters of the plasma of an atmospheric-pressure barrier discharge excited in a HgBr2: N2: He mixture, which was used as the working medium of a small-size (with a radiation area of 8 cm2) exciplex gas-discharge radiation source. The mean radiation power of 87 mW was achieved at the radiation wavelength λmax = 502 nm. The electron energy distribution function, the transport characteristics, the specific energy lost in the processes involving electrons, the electron temperature and density, and the rate constants of elastic and inelastic electron scattering by the components of the working mixture were calculated as functions of the reduced field E/ N. The plasma of a discharge excited in a HgBr2: N2: He mixture can be used as the working medium of a small-size blue-green radiation source. Such a source can find application in biotechnology, photonics, and medicine and can also be used to manufacture gas-discharge display panels.

  5. Evaluation of an X-ray-excited optical microscope for chemical imaging of metal and other surfaces.

    Science.gov (United States)

    Sabbe, Pieter-Jan; Dowsett, Mark; Hand, Matthew; Grayburn, Rosie; Thompson, Paul; Bras, Wim; Adriaens, Annemie

    2014-12-02

    The application of a modular system for the nondestructive chemical imaging of metal and other surfaces is described using heritage metals as an example. The custom-built X-ray-excited optical luminescence (XEOL) microscope, XEOM 1, images the chemical state and short-range atomic order of the top 200 nm of both amorphous and crystalline surfaces. A broad X-ray beam is used to illuminate large areas (up to 4 mm(2)) of the sample, and the resulting XEOL emission is collected simultaneously for each pixel by a charge-coupled device sensor to form an image. The input X-ray energy is incremented across a range typical for the X-ray absorption near-edge structure (XANES) and an image collected for each increment. The use of large-footprint beams combined with parallel detection allows the power density to be kept low and facilitates complete nondestructive XANES mapping on a reasonable time scale. In this study the microscope was evaluated by imaging copper surfaces with well-defined patterns of different corrosion products (cuprite Cu2O and nantokite CuCl). The images obtained show chemical contrast, and filtering the XEOL light allowed different corrosion products to be imaged separately. Absorption spectra extracted from software-selected regions of interest exhibit characteristic XANES fingerprints for the compounds present. Moreover, when the X-ray absorption edge positions were extracted from each spectrum, an oxidation state map of the sample could be compiled. The results show that this method allows one to obtain nondestructive and noninvasive information at the micrometer scale while using full-field imaging.

  6. Coupling between magnetic and superconducting order parameters and evidence for the spin excitation gap in the superconducting state of a heavy fermion superconductor UPd2Al3

    International Nuclear Information System (INIS)

    Metoki, Naoto; Haga, Yoshinori; Koike, Yoshihiro; Aso, Naofumi; Onuki, Yoshichika

    1997-01-01

    Neutron scattering experiments have been carried out in order to study the interplay between magnetism and superconductivity in a heavy fermion superconductor, UPd 2 Al 3 . We have observed 1% suppression of the (0 0 0.5) magnetic peak intensity below the superconducting transition temperature T c . This is direct evidence for the coupling of the magnetic order parameter with the superconducting one. Furthermore, we have observed a spin excitation gap associated with superconductivity. The gap energy ΔE g increases continuously from ΔE g =0 to 0.4 meV with decreasing temperature from T c to 0.4 K. This gap energy corresponds to 2k B T c , which is smaller than the superconducting gap expected from the BCS theory (3.5k B T c ). These results are indicative of the strong interplay between magnetism and superconductivity. (author)

  7. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Directory of Open Access Journals (Sweden)

    Jinghui Peng

    2014-07-01

    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  8. Statistical analysis of surface roughness in turning based on cutting parameters and tool vibrations with response surface methodology (RSM)

    Science.gov (United States)

    Touati, Soufiane; Mekhilef, Slimane

    2018-03-01

    In this paper, we present an experimental study to determine the effect of the cutting conditions and tool vibration on the surface roughness in finish turning of 32CrMoV12-28 steel, using carbide cutting tool YT15. For these purposes, a linear quadratic model in interaction of connecting surface roughness (Ra, Rz) with different combinations of cutting parameters such as cutting speed, feed rate, depth of cut and tool vibration, in radial and in tangential cutting force directions (Vy) and (Vz) is elaborated. In order to express the degree of interaction of cutting parameters and tool vibration, a multiple linear regression and response surface methodology are adopted. The application of this statistical technique for predicting the surface roughness shows that the feed rate is the most dominant factor followed by the cutting speed. However, the depth of the cut and tool vibrations have secondary effect. The presented models have some interest since they are used in the cutting process optimization.

  9. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    Science.gov (United States)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  10. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces

    Directory of Open Access Journals (Sweden)

    Fabiana M. Flores

    2015-06-01

    Full Text Available Background: Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. Objective: To test whether different types of surfaces promote changes in the amplitude (ACOP and velocity (VCOP of the center of pressure (COP displacement during the rider's contact with the saddle on the horse's back. Method: Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. Results: ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019. The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006. The VCOP did not differ between the surfaces. Conclusion: Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  11. Parameters of the center of pressure displacement on the saddle during hippotherapy on different surfaces.

    Science.gov (United States)

    Flores, Fabiana M; Dagnese, Frederico; Mota, Carlos B; Copetti, Fernando

    2015-01-01

    Hippotherapy uses horseback riding movements for therapeutic purposes. In addition to the horse's movement, the choice of equipment and types of floor are also useful in the intervention. The quantification of dynamic parameters that define the interaction of the surface of contact between horse and rider provides insight into how the type of floor surface variations act upon the subject's postural control. To test whether different types of surfaces promote changes in the amplitude (ACOP) and velocity (VCOP) of the center of pressure (COP) displacement during the rider's contact with the saddle on the horse's back. Twenty two healthy adult male subjects with experience in riding were evaluated. The penetration resistances of asphalt, sand and grass surfaces were measured. The COP data were collected on the three surfaces using a pressure measurement mat. ACOP values were higher in sand, followed by grass and asphalt, with significant differences between sand and asphalt (anteroposterior, p=0.042; mediolateral, p=0.019). The ACOP and VCOP values were higher in the anteroposterior than in the mediolateral direction on all surfaces (ACOP, p=0.001; VCOP, p=0.006). The VCOP did not differ between the surfaces. Postural control, measured by the COP displacement, undergoes variations in its amplitude as a result of the type of floor surface. Therefore, these results reinforce the importance of the choice of floor surface when defining the strategy to be used during hippotherapy intervention.

  12. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  13. The effect of machining parameters on surface roughness during turning of stainless steel

    International Nuclear Information System (INIS)

    El-Belazi, Khalid M.

    1991-03-01

    Surface roughness is a direct consequence of the cutting tool action, its assessment and control represent an effective way by which the machining process can be studied. The control of surface roughness has become increasingly important during the last thirty years, because the quality of surface is extremely important for machined components that have been designed to stand to static and cyclic loads. This work has two major goals. The first is to develop a new theoretical model based on the assumption that the shape of the cutting tool nose is elliptical to evaluate the surface roughness parameters. The second is to investigate the effect of cutting speed, feed rate, overhang length, tool nose radius (circular sharp), and depth of cut on surface roughness of turned surfaces of austenitic stainless steel grade 12X18H10T. It was found from the theoretical part that the surface roughness values obtained from the elliptical model are much better than those obtained from the other models. It was found from the experimental work that the surface roughness values increase by increasing cutting speed, feed rate, depth of cut, and overhang length, and fluctuates when using cutting tools with various nose radii, during turning of the above mentioned steel by using a brazed carbide cutting tool. (author)

  14. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    Science.gov (United States)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  15. The influence of land surface parameters on energy flux densities derived from remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Tittebrand, A.; Schwiebus, A. [Inst. for Hydrology und Meteorology, TU Dresden (Germany); Berger, F.H. [Observatory Lindenberg, German Weather Service, Lindenberg (Germany)

    2005-04-01

    Knowledge of the vegetation properties surface reflectance, normalised difference vegetation index (NDVI) and leaf area index (LAI) are essential for the determination of the heat and water fluxes between terrestrial ecosystems and the atmosphere. Remote sensing data can be used to derive spatial estimates of the required surface properties. The determination of land surface parameters and their influence on radiant and energy flux densities is investigated with data of different remote sensing systems. Sensitivity studies show the importance of correctly derived land surface properties to estimate the key quantity of the hydrological cycle, the evapotranspiration (L.E), most exactly. In addition to variable parameters like LAI or NDVI there are also parameters which are can not be inferred from satellite data but needed for the Penman-Monteith approach. Fixed values are assumed for these variables because they have little influence on L.E. Data of Landsat-7 ETM+ and NOAA-16 AVHRR are used to show results in different spatial resolution. The satellite derived results are compared with ground truth data provided by the Observatory Lindenberg of the German Weather Service. (orig.)

  16. Influence of autoclave sterilization on the surface parameters and mechanical properties of six orthodontic wires.

    Science.gov (United States)

    Pernier, C; Grosgogeat, B; Ponsonnet, L; Benay, G; Lissac, M

    2005-02-01

    Orthodontic wires are frequently packaged in individual sealed bags in order to avoid cross-contamination. The instructions on the wrapper generally advise autoclave sterilization of the package and its contents if additional protection is desired. However, sterilization can modify the surface parameters and the mechanical properties of many types of material. The aim of this research was to determine the influence of one of the most widely used sterilization processes, autoclaving (18 minutes at 134 degrees C, as recommended by the French Ministry of Health), on the surface parameters and mechanical properties of six wires currently used in orthodontics (one stainless steel alloy: Tru-Chrome RMO; two nickel-titanium shape memory alloys: Neo Sentalloy and Neo Sentalloy with Ionguard GAC; and three titanium-molybdenum alloys: TMA(R) and Low Friction TMA Ormco and Resolve GAC). The alloys were analysed on receipt and after sterilization, using surface structure observation techniques, including optical, scanning electron and atomic force microscopy and profilometry. The mechanical properties were assessed by three-point bending tests. The results showed that autoclave sterilization had no adverse effects on the surface parameters or on the selected mechanical properties. This supports the possibility for practitioners to systematically sterilize wires before placing them in the oral environment.

  17. Search for 2νββ excited state transitions and HPGe characterization for surface events in GERDA phase II

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bjoern

    2016-03-01

    } transitions, respectively. These limits are more than two orders of magnitude larger than previous ones and could exclude many old matrix element calculations. In addition to the excited state searches, important measurements and improvements for GERDA Phase II upgrades are performed within this dissertation. 30 new BEGe detectors are characterized for their surface and active volume properties which is an essential ingredient for all future physics analyses in GERDA. These precision measurements reduce the systematic uncertainty of the active volume to a subdominant level. In extension to this, a new model for simulating pulse shapes of n{sup +} electrode surface events is developed. With this model it is demonstrated that the dominant background of {sup 42}K on the detector surfaces can be suppressed by a factor of 145 with an A/E pulse shape cut in Phase II. A further suppression of background is obtained by a liquid argon scintillation light veto. With newly developed Monte Carlo simulations, including the optical scintillation photons, it is demonstrated that {sup 208}Tl in the detectors holders can be suppressed by a factor of 134. {sup 42}K homogeneously distributed in the LAr can be suppressed with this veto in combination with pulse shape cuts by a factor of 170 for BEGe detectors. The characterization measurements and the developed simulation tools presented within this dissertation will help to enhance the sensitivity for all 0/2νββ decay modes and will allow to construct an improved background model in GERDA Phase II.

  18. Investigation of helium plasma stream parameters in experiments on surface modification

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Tsarenko, A.V. and eds.

    2005-01-01

    The main objection of this study is adjustment of plasma treatment regimes for different materials that allows achieving optimal thickness of modified layer with simultaneously minimal value of surface roughness. With use of optical spectroscopy, detailed information about the basic plasma parameters - electron density, electron and ion temperatures, plasma stream duration and velocity, was obtained. Integrated spectra of plasma radiation were analyzed. The majority of helium and impurity spectral lines were investigated on a subject of Stark broadening. Plasma pressure and energy density values measured with piezodetectors and calorimeters are in good agreement with plasma parameters obtained by optical techniques

  19. Wavelet theory and belt finishing process, influence of wavelet shape on the surface roughness parameter values

    International Nuclear Information System (INIS)

    Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El

    2011-01-01

    This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.

  20. Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF)

    Science.gov (United States)

    Surip, S. N.; Aziz, F. M. A.; Bonnia, N. N.; Sekak, K. A.; Zakaria, M. N.

    2017-09-01

    In recent times, nanofibers have attracted the attention of researchers due to their pronounced micro and nano structural characteristics that enable the development of advanced materials that have sophisticated applications. The production of nanofibers by the electrospinning process is influenced both by the electrostatic forces and the viscoelastic behavior of the polymer. Process parameters, like solution feed rate, applied voltage, nozzle-collector distance, and spinning environment, and material properties, like solution concentration, viscosity, surface tension, conductivity, and solvent vapor pressure, influence the structure and properties of electrospun nanofibers. Significant work has been done to characterize the properties of PALF nanofibers as a function of process and material parameters.

  1. Comparison of segmentation techniques to determine the geometric parameters of structured surfaces

    International Nuclear Information System (INIS)

    MacAulay, Gavin D; Giusca, Claudiu L; Leach, Richard K; Senin, Nicola

    2014-01-01

    Structured surfaces, defined as surfaces characterized by topography features whose shape is defined by design specifications, are increasingly being used in industry for a variety of applications, including improving the tribological properties of surfaces. However, characterization of such surfaces still remains an issue. Techniques have been recently proposed, based on identifying and extracting the relevant features from a structured surface so they can be verified individually, using methods derived from those commonly applied to standard-sized parts. Such emerging approaches show promise but are generally complex and characterized by multiple data processing steps making performance difficult to assess. This paper focuses on the segmentation step, i.e. partitioning the topography so that the relevant features can be separated from the background. Segmentation is key for defining the geometric boundaries of the individual feature, which in turn affects any computation of feature size, shape and localization. This paper investigates the effect of varying the segmentation algorithm and its controlling parameters by considering a test case: a structured surface for bearing applications, the relevant features being micro-dimples designed for friction reduction. In particular, the mechanisms through which segmentation leads to identification of the dimple boundary and influences dimensional properties, such as dimple diameter and depth, are illustrated. It is shown that, by using different methods and control parameters, a significant range of measurement results can be achieved, which may not necessarily agree. Indications on how to investigate the influence of each specific choice are given; in particular, stability of the algorithms with respect to control parameters is analyzed as a means to investigate ease of calibration and flexibility to adapt to specific, application-dependent characterization requirements. (paper)

  2. Experimental parameters for quantitative surface analysis by medium energy ion scattering, ch. 1

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Kersten, H.H.; Colenbrander, B.G.; Jongh, A.P. de; Saris, F.W.

    1976-01-01

    A new UHV chamber for surface and surface layer analysis by collision spectroscopy of backscattered ions at medium energies is described. Experimental parameters like energy, angular and depth resolution, crystal alignment and background pressure are discussed. Formulae based on the use of an electrostatic energy analyser show that the analysis can be quantitative. Effects of beam induced build-up of a hydro-carbon layer, sputter cleaning and creation of radiation damage have been investigated for Cu (110) and Ni (110). Detection sensitivity for Carbon, Oxygen and Sulfur on Cu and Ni has been found to be 0.2, 0.1 and 0.03 of a monolayer respectively

  3. On the spectrum emitted by excited particles ejected from the surface of a calcium target by a beam of Ar+ ions

    International Nuclear Information System (INIS)

    Kiyan, T.S.; Gritsyna, V.V.; Fogel, Ya.M.

    1976-01-01

    The spectrum of the luminous aureole near the calcium target radiated by excited particles ejected from its surface by a beam of Ar + (energy 30 keV, current density 200 μA/cm 2 ) was investigated. This spectrum contains lines of the singlet and triplet systems of the one-and-two-electron excited states of the calcium atom and some bands of CaO and O + 2 molecules. The width of a conductivity band of CaO was measured. Some information on oxidation processes on calcium in a residual gas and rarefied nitrogen atmosphere was obtained. (Auth.)

  4. High frequency time modulation of neutrons by LiNbO3 crystals with surface acoustic waves excited under the diffraction condition

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Granzer, E.; Kikuta, Seishi; Tomimitsu, Hiroshi; Doi, Kenji.

    1985-01-01

    High frequency time modulation of neutrons was investigated by using Y-cut LiNbO 3 crystals with surface acoustic waves excited. A double crystal arrangement of (+, -) parallel setting was used for 030 symmetric Bragg-case reflections. Synchronized standing waves with a resonance frequency of 14.26 MHz were excited on the both crystals. Variation of the diffracted intensity with phase difference between two standing waves was studied. The result showed an intensity change of diffracted neutrons with twice the resonance frequency. (author)

  5. Parameters-related uncertainty in modeling sugar cane yield with an agro-Land Surface Model

    Science.gov (United States)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Ruget, F.; Gabrielle, B.

    2012-12-01

    Agro-Land Surface Models (agro-LSM) have been developed from the coupling of specific crop models and large-scale generic vegetation models. They aim at accounting for the spatial distribution and variability of energy, water and carbon fluxes within soil-vegetation-atmosphere continuum with a particular emphasis on how crop phenology and agricultural management practice influence the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty in these models is related to the many parameters included in the models' equations. In this study, we quantify the parameter-based uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS on a multi-regional approach with data from sites in Australia, La Reunion and Brazil. First, the main source of uncertainty for the output variables NPP, GPP, and sensible heat flux (SH) is determined through a screening of the main parameters of the model on a multi-site basis leading to the selection of a subset of most sensitive parameters causing most of the uncertainty. In a second step, a sensitivity analysis is carried out on the parameters selected from the screening analysis at a regional scale. For this, a Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used. First, we quantify the sensitivity of the output variables to individual input parameters on a regional scale for two regions of intensive sugar cane cultivation in Australia and Brazil. Then, we quantify the overall uncertainty in the simulation's outputs propagated from the uncertainty in the input parameters. Seven parameters are identified by the screening procedure as driving most of the uncertainty in the agro-LSM ORCHIDEE-STICS model output at all sites. These parameters control photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), root

  6. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    Science.gov (United States)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  7. Influence of Drilling Parameters on Torque during Drilling of GFRP Composites Using Response Surface Methodology

    Science.gov (United States)

    Mohan, N. S.; Kulkarni, S. M.

    2018-01-01

    Polymer based composites have marked their valuable presence in the area of aerospace, defense and automotive industry. Components made of composite, are assembled to main structure by fastener, which require accurate, precise high quality holes to be drilled. Drilling the hole in composite with accuracy require control over various processes parameters viz., speed, feed, drill bit size and thickens of specimen. TRIAC VMC machining center is used to drill the hole and to relate the cutting and machining parameters on the torque. MINITAB 14 software is used to analyze the collected data. As a function of cutting and specimen parameters this method could be useful for predicting torque parameters. The purpose of this work is to investigate the effect of drilling parameters to get low torque value. Results show that thickness of specimen and drill bit size are significant parameters influencing the torque and spindle speed and feed rate have least influence and overlaid plot indicates a feasible and low region of torque is observed for medium to large sized drill bits for the range of spindle speed selected. Response surface contour plots indicate the sensitivity of the drill size and specimen thickness to the torque.

  8. Enhancing photocatalysis in SrTiO3 by using Ag nanoparticles: A two-step excitation model for surface plasmon-enhanced photocatalysis

    International Nuclear Information System (INIS)

    Ma, Lei; Sun, Tao; Cai, Hua; Zhou, Zhi-Quan; Sun, Jian; Lu, Ming

    2015-01-01

    Surface plasmon (SP)-enhanced ultraviolet and visible photocatalytic activities of SrTiO 3 (STO) are observed after incorporating Ag nanoparticles (Ag-NPs) on STO surfaces. A two-step excitation model is proposed to explain the SP-enhanced photocatalysis. The point of the model is that an electron at the valence band of STO is first excited onto the Fermi level of Ag-NP by the SP field generated on the Ag-NP, and then injected into the conduction band of STO from the SP band, leaving a hole at the valence band of STO. A full redox catalytic reaction at the surface of STO is then available. For Ag-NP incorporated STO, up-converted and inter-band photoluminescence emissions of STO are observed, and nonlinear evolutions of photocatalytic activity with illumination light powers are found. Furthermore, near infrared photocatalysis is detected. These results support the proposed model

  9. Investigation of the physical parameters of duplex stainless steel (DSS surface integrity after turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2015-01-01

    Full Text Available The article presents the influence of machining parameters on the microhardness of surface integrity (SI after turning by means of a coated sintered carbide wedge with a coating with ceramic intermediate layer. The investigation comprised the influence of cutting speed on the SI microhardness in dry machining. The material under investigation was duplex stainless steel with two-phase ferritic-austenitic structure. The results obtained allow for conclusions concerning the exploitation features of processed machine parts.

  10. Measurement of hydrogeologic parameters of Indian volcanic rocks by sub-surface hydronuclear techniques

    International Nuclear Information System (INIS)

    Bardhan, M.

    1977-01-01

    Sub-surface hydronuclear techniques namely neutron-neutron, gamma-gamma and tracer dilution logging and single and double well tracer methods were adopted to investigate the hitherto inadequately studied hydrophysical properties of the Deccan lava flows which constitute the principal Indian volcanic suit of rocks. The hydrogeologic parameters measured in the field pertain to hydrostratigraphy, hydrostorage properties and geohydraulic characteristics of these layered hard formations. Results of the studies are presented and discussed briefly. (author)

  11. SENSITIVITY OF BODY SWAY PARAMETERS DURING QUIET STANDING TO MANIPULATION OF SUPPORT SURFACE SIZE

    Directory of Open Access Journals (Sweden)

    Sarabon Nejc

    2010-09-01

    Full Text Available The centre of pressure (COP movement during stance maintenance on a stable surface is commonly used to describe and evaluate static balance. The aim of our study was to test sensitivity of individual COP parameters to different stance positions which were used to address size specific changes in the support surface. Twenty-nine subjects participated in the study. They carried out three 60-second repetitions of each of the five balance tasks (parallel stance, semi-tandem stance, tandem stance, contra-tandem stance, single leg stance. Using the force plate, the monitored parameters included the total COP distance, the distance covered in antero-posterior and medio-lateral directions, the maximum oscillation amplitude in antero-posterior and medio-lateral directions, the total frequency of oscillation, as well as the frequency of oscillation in antero-posterior and medio-lateral directions. The parameters which describe the total COP distance were the most sensitive to changes in the balance task, whereas the frequency of oscillation proved to be sensitive to a slightly lesser extent. Reductions in the support surface size in each of the directions resulted in proportional changes of antero-posterior and medio- lateral directions. The frequency of oscillation did not increase evenly with the increase in the level of difficulty of the balance task, but reached a certain value, above which it did not increase. Our study revealed the monitored parameters of the COP to be sensitive to the support surface size manipulations. The results of the study provide an important source for clinical and research use of the body sway measurements.

  12. Estimation of real-time runway surface contamination using flight data recorder parameters

    Science.gov (United States)

    Curry, Donovan

    Within this research effort, the development of an analytic process for friction coefficient estimation is presented. Under static equilibrium, the sum of forces and moments acting on the aircraft, in the aircraft body coordinate system, while on the ground at any instant is equal to zero. Under this premise the longitudinal, lateral and normal forces due to landing are calculated along with the individual deceleration components existent when an aircraft comes to a rest during ground roll. In order to validate this hypothesis a six degree of freedom aircraft model had to be created and landing tests had to be simulated on different surfaces. The simulated aircraft model includes a high fidelity aerodynamic model, thrust model, landing gear model, friction model and antiskid model. Three main surfaces were defined in the friction model; dry, wet and snow/ice. Only the parameters recorded by an FDR are used directly from the aircraft model all others are estimated or known a priori. The estimation of unknown parameters is also presented in the research effort. With all needed parameters a comparison and validation with simulated and estimated data, under different runway conditions, is performed. Finally, this report presents results of a sensitivity analysis in order to provide a measure of reliability of the analytic estimation process. Linear and non-linear sensitivity analysis has been performed in order to quantify the level of uncertainty implicit in modeling estimated parameters and how they can affect the calculation of the instantaneous coefficient of friction. Using the approach of force and moment equilibrium about the CG at landing to reconstruct the instantaneous coefficient of friction appears to be a reasonably accurate estimate when compared to the simulated friction coefficient. This is also true when the FDR and estimated parameters are introduced to white noise and when crosswind is introduced to the simulation. After the linear analysis the

  13. The Influence Study of Ultrasonic honing parameters to workpiece surface temperature

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoqiang

    2016-01-01

    Full Text Available Ultrasonic vibration honing(UVH, a machine technology, has a lot of advantages. Lower grinding temperature is a significant character and is beneficial for both processing and workpiece surface. But the high temperature caused by big honing pressure becomes the main factor to produce workpiece heat damage in grinding zone. In various honing parameter combinations, the showing effect is different. Based on the thermodynamics classical theory, established the heat transfer equation for grinding zone, simplified the model and obtained the two-dimenssion temperature field expression for workpiece, then simulated the temperature changing trend in a variety of conditions. It is shown that themain temp is in a range of 700K to 1200K. In addition, the variation is huge for every parameter. The study provides a theoretical basis for deeply seeking reasonable machining parameter and obtaining better workpiece quality.

  14. Procedure to approximately estimate the uncertainty of material ratio parameters due to inhomogeneity of surface roughness

    International Nuclear Information System (INIS)

    Hüser, Dorothee; Thomsen-Schmidt, Peter; Hüser, Jonathan; Rief, Sebastian; Seewig, Jörg

    2016-01-01

    Roughness parameters that characterize contacting surfaces with regard to friction and wear are commonly stated without uncertainties, or with an uncertainty only taking into account a very limited amount of aspects such as repeatability of reproducibility (homogeneity) of the specimen. This makes it difficult to discriminate between different values of single roughness parameters. Therefore uncertainty assessment methods are required that take all relevant aspects into account. In the literature this is rarely performed and examples specific for parameters used in friction and wear are not yet given. We propose a procedure to derive the uncertainty from a single profile employing a statistical method that is based on the statistical moments of the amplitude distribution and the autocorrelation length of the profile. To show the possibilities and the limitations of this method we compare the uncertainty derived from a single profile with that derived from a high statistics experiment. (paper)

  15. The effect of drilling parameters for surface roughness in drilling of AA7075 alloy

    Directory of Open Access Journals (Sweden)

    Yaşar Nafiz

    2017-01-01

    Full Text Available AA7075 aluminum alloy has been very popular significantly interest in the production of structural components in automotive and aviation applications due to its high strength, low density, good plasticity and better machinability comparable to many metals. Particularly, final products must have uniformly high quality to ensure essential safety standards in the aircraft industry. The optimization of hole quality which can variable according to tool geometry and drilling parameters is important in spite of high machinability rate of AA7075 alloy. In this study, the effects of drilling parameters on average surface roughness (Ra has been investigated in drilling of AA7075 with tungsten carbide drills. Machining experiments were performed with three different drill point angles and three different levels of cutting parameters (feed rate, cutting speed. The effects of drilling parameters on thrust force has been determined with ANOVA in %95 confidence level. Feed rate was determined as the most important factor on Ra according to ANOVA results. Moreover, it was shown that increasing feed rate leads to increase of Ra while increasing drill point angle leads to decrease of Ra. The optimum surface roughness was obtained with point angle of 130°, cutting speed of 40 m/min and feed rate of 0.1 mm/rev, thereby the validity of optimization was confirmed with Taguchi method.

  16. Effects of Spatial Sampling Interval on Roughness Parameters and Microwave Backscatter over Agricultural Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Matías Ernesto Barber

    2016-06-01

    Full Text Available The spatial sampling interval, as related to the ability to digitize a soil profile with a certain number of features per unit length, depends on the profiling technique itself. From a variety of profiling techniques, roughness parameters are estimated at different sampling intervals. Since soil profiles have continuous spectral components, it is clear that roughness parameters are influenced by the sampling interval of the measurement device employed. In this work, we contributed to answer which sampling interval the profiles needed to be measured at to accurately account for the microwave response of agricultural surfaces. For this purpose, a 2-D laser profiler was built and used to measure surface soil roughness at field scale over agricultural sites in Argentina. Sampling intervals ranged from large (50 mm to small ones (1 mm, with several intermediate values. Large- and intermediate-sampling-interval profiles were synthetically derived from nominal, 1 mm ones. With these data, the effect of sampling-interval-dependent roughness parameters on backscatter response was assessed using the theoretical backscatter model IEM2M. Simulations demonstrated that variations of roughness parameters depended on the working wavelength and was less important at L-band than at C- or X-band. In any case, an underestimation of the backscattering coefficient of about 1-4 dB was observed at larger sampling intervals. As a general rule a sampling interval of 15 mm can be recommended for L-band and 5 mm for C-band.

  17. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Science.gov (United States)

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  18. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  19. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Directory of Open Access Journals (Sweden)

    Pablo Zuluaga-Ramírez

    2015-11-01

    Full Text Available This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL and realistic variable amplitude loads (VAL, representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.

  20. Optimal Machining Parameters for Achieving the Desired Surface Roughness in Turning of Steel

    Directory of Open Access Journals (Sweden)

    LB Abhang

    2012-06-01

    Full Text Available Due to the widespread use of highly automated machine tools in the metal cutting industry, manufacturing requires highly reliable models and methods for the prediction of output performance in the machining process. The prediction of optimal manufacturing conditions for good surface finish and dimensional accuracy plays a very important role in process planning. In the steel turning process the tool geometry and cutting conditions determine the time and cost of production which ultimately affect the quality of the final product. In the present work, experimental investigations have been conducted to determine the effect of the tool geometry (effective tool nose radius and metal cutting conditions (cutting speed, feed rate and depth of cut on surface finish during the turning of EN-31 steel. First and second order mathematical models are developed in terms of machining parameters by using the response surface methodology on the basis of the experimental results. The surface roughness prediction model has been optimized to obtain the surface roughness values by using LINGO solver programs. LINGO is a mathematical modeling language which is used in linear and nonlinear optimization to formulate large problems concisely, solve them, and analyze the solution in engineering sciences, operation research etc. The LINGO solver program is global optimization software. It gives minimum values of surface roughness and their respective optimal conditions.

  1. Influence of the electromagnetic parameters on the surface wave attenuation in thin absorbing layers

    Science.gov (United States)

    Li, Yinrui; Li, Dongmeng; Wang, Xian; Nie, Yan; Gong, Rongzhou

    2018-05-01

    This paper describes the relationships between the surface wave attenuation properties and the electromagnetic parameters of radar absorbing materials (RAMs). In order to conveniently obtain the attenuation constant of TM surface waves over a wide frequency range, the simplified dispersion equations in thin absorbing materials were firstly deduced. The validity of the proposed method was proved by comparing with the classical dispersion equations. Subsequently, the attenuation constants were calculated separately for the absorbing layers with hypothetical relative permittivity and permeability. It is found that the surface wave attenuation properties can be strongly tuned by the permeability of RAM. Meanwhile, the permittivity should be appropriate so as to maintain high cutoff frequency. The present work provides specific methods and designs to improve the attenuation performances of radar absorbing materials.

  2. Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data

    Science.gov (United States)

    Abdolghafoorian, A.; Farhadi, L.

    2017-12-01

    Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and

  3. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  4. Dependence of Excited State Potential Energy Surfaces on the Spatial Overlap of the Kohn-Sham Orbitals and the Amount of Nonlocal Hartree-Fock Exchange in Time-Dependent Density Functional Theory.

    Science.gov (United States)

    Plötner, Jürgen; Tozer, David J; Dreuw, Andreas

    2010-08-10

    Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.

  5. Simulation of Nanowires on Metal Vicinal Surfaces: Effect of Growth Parameters and Energetic Barriers

    Science.gov (United States)

    Hamouda, Ajmi B. H.; Blel, Sonia; Einstein, T. L.

    2012-02-01

    Growing one-dimensional metal structures is an important task in the investigation of the electronic and magnetic properties of new devices. We used kinetic Monte-Carlo (kMC) method to simulate the formation of nanowires of several metallic and non-metallic adatoms on Cu and Pt vicinal surfaces. We found that mono-atomic chains form on step-edges due to energetic barriers (the so-called Ehrlich-shwoebel and exchange barriers) on step-edge. Creation of perfect wires is found to depend on growth parameters and binding energies. We measure the filling ratio of nanowires for different chemical species in a wide range of temperature and flux. Perfect wires were obtained at lower deposition rate for all tested adatoms, however we notice different temperature ranges. Our results were compared with experimental ones [Gambardella et al., Surf. Sci.449, 93-103 (2000), PRB 61, 2254-2262, (2000)]. We review the role of impurities in nanostructuring of surfaces [Hamouda et al., Phys. Rev. B 83, 035423, (2011)] and discuss the effect of their energetic barriers on the obtained quality of nanowires. Our work provides experimentalists with optimum growth parameters for the creation of a uniform distribution of wires on surfaces.

  6. Quantification of the lift height for magnetic force microscopy using 3D surface parameters

    International Nuclear Information System (INIS)

    Nenadovic, M.; Strbac, S.; Rakocevic, Z.

    2010-01-01

    In this work, the quantitative conditions for the lift height for imaging of the magnetic field using magnetic force microscopy (MFM) were optimized. A thin cobalt film deposited on a monocrystalline silicon (1 0 0) substrate with a thickness of 55 nm and a thin nickel film deposited on a glass with a thickness of 600 nm were used as samples. The topography of the surface was acquired by tapping mode atomic force microscopy (AFM), while MFM imaging was performed in the lift mode for various lift heights. It was determined that the sensitivity of the measurements was about 10% higher for images obtained at a scan angle of 90 o compared to a scan angle of 0 deg. Therefore, the three-dimensional surface texture parameters, i.e., average roughness, skewness, kurtosis and the bearing ratio, were determined in dependence on the lift height for a scan angle of 90 deg. The results of the analyses of the surface parameters showed that the influence of the substrate and its texture on the magnetic force image could be neglected for lift heights above 40 nm and that the upper lift height limit is 100 nm. It was determined that the optimal values of the lift heights were in the range from 60 to 80 nm, depending on the nature of the sample and on the type of the tip used.

  7. Synchrotron radiation induced TXRF of low Z elements on Si wafer surfaces at SSRL-comparison of excitation geometries and condition

    International Nuclear Information System (INIS)

    Streli, C.; Wobrauschek, P.; Kregsamer, P.; Pepponi, G.; Pianetta, P.; Pahlke, S.; Fabry, L.

    2000-01-01

    The determination of low Z elements, like Na and Al at ultra trace levels on Si wafer surfaces is demanded by semiconductor industry. SR-TXRF is a promising method to fulfill the task, if a special energy dispersive detector with an ultra thin window is used. Synchrotron radiation is the ideal suited excitation source for TXRF of low Z elements due to its intensive, natural collimated and linear polarized radiation with wide spectral range down to low energies even below 1 keV. TXRF offers some advantages for wafer surface analysis like nondestructive investigation and mapping capability. Experiments have been performed at SSRL beamline 3-4, a bending magnet beamline using white (<3 keV) and monochromatic radiation, as well as on beamline 3-3, using a crystal monochromator as well as a multilayer monochromator. A comparison of excitation detection geometries was performed, using a sidelooking detector with vertical positioned wafer as well as a downlooking detector with a horizontally arranged wafer. The advantages and disadvantages of the various geometries and excitation conditions are presented and the results compared. Detection limits are in the 100 fg range for Na, determined with droplet samples on Si wafer surfaces. (author)

  8. Selective Laser Sintering of PA2200: Effects of print parameters on density, accuracy, and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-12

    Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.

  9. A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces

    Science.gov (United States)

    Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang

    2018-02-01

    Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.

  10. The Diagnosis of Plasma Parameters in Surface Alloying Technique by Optical Emission Spectrometry

    International Nuclear Information System (INIS)

    Fu Yabo; Zhang Yuefei; Chen Qiang; Zhang Guangqiu; Gao Yuan; Wang Jianzhong; Kui Xiaoyun

    2006-01-01

    Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH 4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1.71x10 15 /cm 3 to 6.64x10 15 /cm 3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma

  11. Tear Osmolarity and Correlation With Ocular Surface Parameters in Patients With Dry Eye.

    Science.gov (United States)

    Mathews, Priya M; Karakus, Sezen; Agrawal, Devika; Hindman, Holly B; Ramulu, Pradeep Y; Akpek, Esen K

    2017-11-01

    To analyze the distribution of tear film osmolarity in patients with dry eye and its association with other ocular surface parameters. Tear osmolarity and other quantitative dry eye parameters were obtained from patients with 1) clinically significant dry eye (significant symptoms and ocular surface staining, n = 131), 2) symptoms-only dry eye (significant symptoms but no significant ocular surface staining, n = 52), and 3) controls (no significant symptoms or staining, n = 42). Tear osmolarity varied significantly across groups (P = 0.01), with patients with clinically significant dry eye having the highest tear osmolarity (312.0 ± 16.9 mOsm/L), control patients having the lowest tear osmolarity (305.6 ± 9.7 mOsm/L), and patients with symptoms-only dry eye falling in between (307.4 ± 5.6 mOsm/L). Patients with clinically significant dry eye also tended to have a greater intereye difference in osmolarity (12.0 ± 13.4) than did the individuals with symptoms-only dry eye (9.1 ± 12.4) and controls (9.0 ± 7.4) (P = 0.06). In multivariable regression models, higher tear osmolarity was associated with higher Ocular Surface Disease Index, discomfort subscore (P = 0.02), and higher corneal and conjunctival staining scores (P eye tear osmolarity was not correlated with the corresponding tear film breakup time or Schirmer test (P > 0.05 for both). Individuals with symptomatic dry eye that is not yet clinically significant seem to have higher and more variable osmolarity measurements than controls, potentially indicating that changes in osmolarity precede clinical findings.

  12. Nonlinear estimation of weathering rate parameters for uranium in surface soil near a nuclear facility

    International Nuclear Information System (INIS)

    Killough, G.G.; Rope, S.K.; Shleien, B.; Voilleque, P.G.

    1999-01-01

    A dynamic mass-balance model has been calibrated by a nonlinear parameter estimation method, using time-series measurements of uranium in surface soil near the former Feed Materials Production Center (FMPC) near Fernald, Ohio, USA. The time-series data, taken at six locations near the site boundary since 1971, show a statistically significant downtrend of above-background uranium concentration in surface soil for all six locations. The dynamic model is based on first-order kinetics in a surface-soil compartment 10 cm in depth. Median estimates of weathering rate coefficients for insoluble uranium in this soil compartment range from about 0.065-0.14 year -1 , corresponding to mean transit times of about 7-15 years, depending on the location sampled. The model, calibrated by methods similar to those discussed in this paper, has been used to simulate surface soil kinetics of uranium for a dose reconstruction study. It was also applied, along with other data, to make confirmatory estimates of airborne releases of uranium from the FMPC between 1951 and 1988. Two soil-column models (one diffusive and one advective, the latter similar to a catenary first-order kinetic box model) were calibrated to profile data taken at one of the six locations in 1976. The temporal predictions of the advective model approximate the trend of the time series data for that location. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Adsorption and diffusion of Ga and N adatoms on GaN surfaces: Comparing the effects of Ga coverage and electronic excitation

    Science.gov (United States)

    Takeuchi, Noboru; Selloni, Annabella; Myers, T. H.; Doolittle, A.

    2005-09-01

    We present density-functional-theory calculations of the binding and diffusion of Ga and N adatoms on GaN (0001) and (000-1) surfaces under different conditions, including stoichiometric and Ga-rich surfaces, as well as in the presence of electron-hole (e-h) pairs induced by light- or electron-beam irradiation. We find that both Ga-rich conditions and electronic excitations cause a significant reduction of the adatom diffusion barriers, as required to improve the quality of the material. However, the two effects are nonadditive, as the influence of e-h pairs are found to be less important for the more metallic situations.

  14. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    International Nuclear Information System (INIS)

    Soh, Wee Tee; Ong, C. K.; Peng, Bin

    2015-01-01

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films

  15. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  16. Research of state of metal welded joint by deformation and corrosion surface projection parameters

    Directory of Open Access Journals (Sweden)

    Demchenko Maria Vyacheslavovna

    2017-10-01

    Full Text Available At industrial enterprises in building structures and equipment one can see corrosion damage, as well as damage accumulated during operation period. The areas of stress concentration are welded joints as their structure is heterogeneous. From the point of view of the scale hierarchy, the welded joint represents the welded and base metal zones at the meso-macrolevel, the weld zone, the thermal zone, the base metal at the micro-mesolevel, the grain constituents at the nano-microlevel. Borders are the stress concentrators at different scale levels, thus they becomes the most dangerous places of metal structure. Modeling by the molecular dynamics method at the atomic level has shown nanocracks initiation in triple junctions of grain boundaries and on the ledges of the grain boundaries. Due to active development of nanotechnology, it became possible to evaluate the state of the weld metal at the nanoscale, where irreversible changes take place from the very beginning. Existing methods of nondestructive testing can detect damage only at the meso- and macrolevel. Modern equipment makes it possible to use other methods of control and approaches. For example, according to GOST R55046-2012 and R57223-2016, the analysis of the parameters of the surface projection deformation performed by confocal laser scanning microscopy should be taken into account when the evaluation of state of metal pipelines is carried out. However, there is a problem to monitore it due to various factors affecting the surface during operation. The paper proposes an additional method to estimate the state of weld metal at any stage of deformation that uses 3D analysis of the parameters of the «artificial» corrosion relief of surface. During the operation period changes in the stress-strain state and structure of the metal take place, as the result the character and depth of etching of the grains of the structural components and their boundaries change too. Evaluation of the

  17. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  18. Selecting the thermo-cyclic treatment’s optimum parameters based analysis of fractal surfaces indicators

    Directory of Open Access Journals (Sweden)

    Вікторія Юріївна Іващенко

    2015-03-01

    Full Text Available Optimization of complex modes of heat treatments, in which control the properties of processed steel occurs by varying the large number of parameters, is quite time-consuming process. The influence of thermal processes on the formation of the metal structure manifested at the level of micro- and meso-sizes, which are realized qualitatively different mechanisms of destruction. Method of multi-factual description of the fracture’s surfaces, which was got after tests of mechanical properties, was used for the choice of the optimum thermo-cyclic mode with the variable temperatures Tmax and Tmin in cycles in this work. It vas founded the number of TCT-mode’s cycles and order changing Tmax affect the processes of dislocation motion and the formation of micro-voids in the metal. This work shows the relationship between these processes and fractal indices. Fractal indices of micro levels correlate to the dislocation density of the structure, and the meso-level indices - to the percentage reduction of area at fracture. It was proved that the analysis of the topography of the fracture’s surfaces using fractal indices to determine the optimal combination of processing parameters required to obtain the best mechanical properties. The new TCT-modes with variable temperature settings can be seen as reinforcing thermal technology that promotes self-organization phase-structural state of steels because it is able to generate an effective barrier to the movement of dislocations and cracks promotion

  19. Synergistic estimation of surface parameters from jointly using optical and microwave observations in EOLDAS

    Science.gov (United States)

    Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian

    2017-04-01

    The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both

  20. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension

    Science.gov (United States)

    Maiti, Amitesh; McGrother, Simon

    2004-01-01

    Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren [J. Chem. Phys. 107, 4423 (1997)] established an important link between DPD and the Flory-Huggins χ-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.

  1. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  2. Change of surface colour parameters during storage of paprika (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Belović Miona M.

    2014-01-01

    Full Text Available The change of paprika surface colour during three years of storage was monitored by measuring CIEL*a*b* colour parameters once a year. Ten commercial and three branded paprika samples, originating from Hungary, Austria and Serbia, were stored in original packaging at ambient temperature in dark during the storage period. The colour of paprika powder was measured by Chroma Meter CR-400 (Konica Minolta, Japan, using attachment for granular materials CR-A50. Directly measured colour parameters were CIE L* (lightness, a* (+a* = redness, -a* = greenness, b* (+b* = yellowness, -b* = blueness and dominant wavelength (DWL, while derived colour parameters were chroma (C*, hue angle (h°, and total colour change (ΔE. Paprika samples had similar granulation, and therefore it was concluded that it did not influence the colour reflection. The change of reflected colour of paprika powder during storage can be characterized by increase of CIE L* and b* colour values and decrease of a* colour value. Therefore, chroma values remained almost unchanged, while hue angle showed shift in spectrum from red-orange to orange-yellow, similarly to dominant wavelength. The paprika samples changed their colour most rapidly during the first year of storage, except the branded paprika from Serbia. Commercial paprika samples from Serbian market changed their colour more rapidly comparing to other investigated samples.

  3. Modulation of surface meteorological parameters by extratropical planetary-scale Rossby waves

    Directory of Open Access Journals (Sweden)

    K. Niranjan Kumar

    2016-01-01

    Full Text Available This study examines the link between upper-tropospheric planetary-scale Rossby waves and surface meteorological parameters based on the observations made in association with the Ganges Valley Aerosol Experiment (GVAX campaign at an extratropical site at Aryabhatta Research Institute of Observational Sciences, Nainital (29.45° N, 79.5° E during November–December 2011. The spectral analysis of the tropospheric wind field from radiosonde measurements indicates a predominance power of around 8 days in the upper troposphere during the observational period. An analysis of the 200 hPa meridional wind (v200 hPa anomalies from the Modern-Era Retrospective Analysis for Research and Applications (MERRA reanalysis shows distinct Rossby-wave-like structures over a high-altitude site in the central Himalayan region. Furthermore, the spectral analysis of global v200 hPa anomalies indicates the Rossby waves are characterized by zonal wave number 6. The amplification of the Rossby wave packets over the site leads to persistent subtropical jet stream (STJ patterns, which further affects the surface weather conditions. The propagating Rossby waves in the upper troposphere along with the undulations in the STJ create convergence and divergence regions in the mid-troposphere. Therefore, the surface meteorological parameters such as the relative humidity, wind speeds, and temperature are synchronized with the phase of the propagating Rossby waves. Moreover, the present study finds important implications for medium-range forecasting through the upper-level Rossby waves over the study region.

  4. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    Science.gov (United States)

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  5. Satellite-derived land surface parameters for mesoscale modelling of the Mexico City basin

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2006-01-01

    Full Text Available Mesoscale meteorological modelling is an important tool to help understand air pollution and heat island effects in urban areas. Accurate wind simulations are difficult to obtain in areas of weak synoptic forcing. Local factors have a dominant role in the circulation and include land surface parameters and their interaction with the atmosphere. This paper examines an episode during the MCMA-2003 field campaign held in the Mexico City Metropolitan Area (MCMA in April of 2003. Because the episode has weak synoptic forcing, there is the potential for the surface heat budget to influence the local meteorology. High resolution satellite observations are used to specify the land use, vegetation fraction, albedo and surface temperature in the MM5 model. Making use of these readily available data leads to improved meteorological simulations in the MCMA, both for the wind circulation patterns and the urban heat island. Replacing values previously obtained from land-use tables with actual measurements removes the number of unknowns in the model and increases the accuracy of the energy budget. In addition to improving the understanding of local meteorology, this sets the stage for the use of advanced urban modules.

  6. Lateral Trunk Surface as a new parameter to estimate live body weight by Visual Image Analysis

    Directory of Open Access Journals (Sweden)

    S. Terramoccia

    2010-02-01

    Full Text Available Live weight of 74 milking Mediterranean buffaloes (Bubalus bubalis L. have been estimated by Visual Image Analysis. The total surface of lateral profile, tested in previous researches with viable result, was substituted by the measurement of the Lateral Trunk Surface (LTrS. The measurements were recorded by a camera equipped by a laser distance recorder and data were elaborated by a specific software. This parameter, eliminating the surface of neck, head and legs, that are less easily measurable, simplified and accelerated the procedure. Correlation between LTrS and live weight was r = 0.90 (P < 0.01. A significant equation (P < 0.01 was obtained from the recorded data of a random sample of 38 buffaloes. When the validation of the equation was tested on the other 36 subjects, the estimated live weight had a mean of 691.74 kg ± 68.55. This was corresponding to a 1.08% overestimation of the real weight.

  7. Image-based Exploration of Iso-surfaces for Large Multi- Variable Datasets using Parameter Space.

    KAUST Repository

    Binyahib, Roba S.

    2013-05-13

    With an increase in processing power, more complex simulations have resulted in larger data size, with higher resolution and more variables. Many techniques have been developed to help the user to visualize and analyze data from such simulations. However, dealing with a large amount of multivariate data is challenging, time- consuming and often requires high-end clusters. Consequently, novel visualization techniques are needed to explore such data. Many users would like to visually explore their data and change certain visual aspects without the need to use special clusters or having to load a large amount of data. This is the idea behind explorable images (EI). Explorable images are a novel approach that provides limited interactive visualization without the need to re-render from the original data [40]. In this work, the concept of EI has been used to create a workflow that deals with explorable iso-surfaces for scalar fields in a multivariate, time-varying dataset. As a pre-processing step, a set of iso-values for each scalar field is inferred and extracted from a user-assisted sampling technique in time-parameter space. These iso-values are then used to generate iso- surfaces that are then pre-rendered (from a fixed viewpoint) along with additional buffers (i.e. normals, depth, values of other fields, etc.) to provide a compressed representation of iso-surfaces in the dataset. We present a tool that at run-time allows the user to interactively browse and calculate a combination of iso-surfaces superimposed on each other. The result is the same as calculating multiple iso- surfaces from the original data but without the memory and processing overhead. Our tool also allows the user to change the (scalar) values superimposed on each of the surfaces, modify their color map, and interactively re-light the surfaces. We demonstrate the effectiveness of our approach over a multi-terabyte combustion dataset. We also illustrate the efficiency and accuracy of our

  8. High-speed infrared thermography for the measurement of microscopic boiling parameters on micro- and nano-structured surfaces

    International Nuclear Information System (INIS)

    Park, Youngjae; Kim, Hyungdae; Kim, Hyungmo; Kim, Joonwon

    2014-01-01

    Micro- and nano-scale structures on boiling surfaces can enhance nucleate boiling heat transfer coefficient (HTC) and critical heat flux (CHF). A few studies were conducted to explain the enhancements of HTC and CHF using the microscopic boiling parameters. Quantitative measurements of microscopic boiling parameters are needed to understand the physical mechanism of the boiling heat transfer augmentation on structured surfaces. However, there is no existing experimental techniques to conveniently measure the boiling parameters on the structured surfaces because of the small (surfaces. The visualization results are analyzed to obtain the microscopic boiling parameters. Finally, quantitative microscopic boiling parameters are used to interpret the enhancement of HTC and CHF. In this study, liquid-vapor phase distributions of each surface were clearly visualized by IR thermography during the nucleate boiling phenomena. From the visualization results, following microscopic boiling parameters were quantitatively measured by image processing. - Number density of dry patch, NDP IR thermography technique was demonstrated by nucleate pool boiling experiments with M- and N surfaces. The enhancement of HTC and CHF could be explained by microscopic boiling parameters

  9. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  10. Experimental Research and Mathematical Modeling of Parameters Effecting on Cutting Force and SurfaceRoughness in CNC Turning Process

    Science.gov (United States)

    Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.

    2018-01-01

    In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.

  11. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  12. CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces

    Science.gov (United States)

    2002-09-30

    CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces Alan W. Decho Department...TITLE AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces 5a. CONTRACT...structures produced by bacteria. Their growth appears to depend on biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired

  13. A Simple Numerical Body Surface Mapping Parameter Signifies Successful Percutaneous Coronary Artery Intervention.

    Science.gov (United States)

    Simonyi, Gábor; Kirschner, Róbert; Szűcs, Endre; Préda, István; Duray, Gábor; Medvegy, Nóra; Horvath, Bálint; Medvegy, Mihály

    2016-03-01

    In coronary artery disease (CAD), body surface potential mapping (BSPM) may reveal minor electrical potential changes appearing in the depolarization phase even if pathological changes are absent on the conventional 12-lead ECG. We hypothesized that a simple BSPM parameter, Max/Min signifies successful percutaneous coronary intervention (PCI). Ninety-two adult Caucasian patients with stable CAD and positive exercise test underwent coronary angiography. Seventy patients (age, 59 ± 8; 46 males) were revascularized by PCI (left anterior descending [LAD] in 38, right [RCA] in 17 and left circumflex [LCX] coronary artery in 15). Control groups contained 22 patients (age, 60 ± 8; 14 males) without intervention and 35 healthy subjects (age, 58 ± 2; 15 males). Left ventricular ejection fraction (LVEF, transthoracic echocardiography) and Max/Min BSPM parameter (63-lead Montreal system) were evaluated before and 4-40 days following coronary angiography. Max/Min was defined by the ratio of the highest maximum to the deepest minimum potential of all leads recorded by BSPM. Before PCI, Max/Min value of patients with LAD lesion (0.83 [0.74; 0.93]) was significantly lower while that with RCA lesion (1.63 [1.35; 1.99]) was significantly higher than that of healthy group (1.01 [0.970; 1.13]) (P intervention. LVEF significantly increased (from 46.50% [43.00; 51.00] to 49.00% [46.00; 51.00]) only after LAD PCI. Max/Min parameter is suitable to follow patients after LAD and RCA PCI. © 2015 Wiley Periodicals, Inc.

  14. A new ab initio potential energy surface for the collisional excitation of N{sub 2}H{sup +} by H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Spielfiedel, Annie; Balança, Christian; Feautrier, Nicole, E-mail: nicole.feautrier@obspm.fr [LERMA, Observatoire de Paris, Sorbonne Université, UPMC Univ Paris 06, CNRS-UMR 8112, F-92195 Meudon (France); Senent, Maria Luisa [Departamento de Química y Física Teóricas, IEM-CSIC, Serrano 121, Madrid 28006 (Spain); Kalugina, Yulia [LOMC—UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France); Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation); Scribano, Yohann [LUPM—UMR 5299, CNRS-Université de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex (France); Lique, François, E-mail: francois.lique@univ-lehavre.fr [LERMA, Observatoire de Paris, Sorbonne Université, UPMC Univ Paris 06, CNRS-UMR 8112, F-92195 Meudon (France); LOMC—UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)

    2015-07-14

    We compute a new potential energy surface (PES) for the study of the inelastic collisions between N{sub 2}H{sup +} and H{sub 2} molecules. A preliminary study of the reactivity of N{sub 2}H{sup +} with H{sub 2} shows that neglecting reactive channels in collisional excitation studies is certainly valid at low temperatures. The four dimensional (4D) N{sub 2}H{sup +}–H{sub 2} PES is obtained from electronic structure calculations using the coupled cluster with single, double, and perturbative triple excitation level of theory. The atoms are described by the augmented correlation consistent triple zeta basis set. Both molecules were treated as rigid rotors. The potential energy surface exhibits a well depth of ≃2530 cm{sup −1}. Considering this very deep well, it appears that converged scattering calculations that take into account the rotational structure of both N{sub 2}H{sup +} and H{sub 2} should be very difficult to carry out. To overcome this difficulty, the “adiabatic-hindered-rotor” treatment, which allows para-H{sub 2}(j = 0) to be treated as if it were spherical, was used in order to reduce the scattering calculations to a 2D problem. The validity of this approach is checked and we find that cross sections and rate coefficients computed from the adiabatic reduced surface are in very good agreement with the full 4D calculations.

  15. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    Science.gov (United States)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  16. Penetration to the Earth's surface of standing Alfvén waves excited by external currents in the ionosphere

    Directory of Open Access Journals (Sweden)

    A. S. Leonovich

    1996-05-01

    Full Text Available The problem of boundary conditions for monochromatic Alfvén waves, excited in the magnetosphere by external currents in the ionospheric E-layer, is solved analytically. Waves with large azimuthal wave numbers m»1 are considered. In our calculations, we used a model for the horizontally homogeneous ionosphere with an arbitrary inclination of geomagnetic field lines and a realistic height disribution of Alfvén velocity and conductivity tensor components. A relationship between such Alfvén waves on the upper ionospheric boundary with electromagnetic oscillations on the ground was detected, and the spatial structure of these oscillations determined.

  17. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  18. Key parameters of the sediment surface morphodynamics in an estuary - An assessment of model solutions

    Science.gov (United States)

    Sampath, D. M. R.; Boski, T.

    2018-05-01

    Large-scale geomorphological evolution of an estuarine system was simulated by means of a hybrid estuarine sedimentation model (HESM) applied to the Guadiana Estuary, in Southwest Iberia. The model simulates the decadal-scale morphodynamics of the system under environmental forcing, using a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters, constrained by empirical knowledge of estuarine sedimentary dynamics and topography. The key controlling parameters of the model are bed friction (f), current velocity power of the erosion rate function (N), and sea-level rise rate. An assessment of sensitivity of the simulated sediment surface elevation (SSE) change to these controlling parameters was performed. The model predicted the spatial differentiation of accretion and erosion, the latter especially marked in the mudflats within mean sea level and low tide level and accretion was mainly in a subtidal channel. The average SSE change mutually depended on both the friction coefficient and power of the current velocity. Analysis of the average annual SSE change suggests that the state of intertidal and subtidal compartments of the estuarine system vary differently according to the dominant processes (erosion and accretion). As the Guadiana estuarine system shows dominant erosional behaviour in the context of sea-level rise and sediment supply reduction after the closure of the Alqueva Dam, the most plausible sets of parameter values for the Guadiana Estuary are N = 1.8 and f = 0.8f0, or N = 2 and f = f0, where f0 is the empirically estimated value. For these sets of parameter values, the relative errors in SSE change did not exceed ±20% in 73% of simulation cells in the studied area. Such a limit of accuracy can be acceptable for an idealized modelling of coastal evolution in response to uncertain sea-level rise scenarios in the context of reduced sediment supply due to flow regulation. Therefore, the idealized but cost

  19. Parameters effects study on pulse laser for the generation of surface acoustic waves in human skin detection applications

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen

    2015-10-01

    Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.

  20. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

    Science.gov (United States)

    Yu, Fengyi; Wei, Yanhong

    2018-05-01

    The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

  1. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  2. Analysis of process parameters in surface grinding using single objective Taguchi and multi-objective grey relational grade

    Directory of Open Access Journals (Sweden)

    Prashant J. Patil

    2016-09-01

    Full Text Available Close tolerance and good surface finish are achieved by means of grinding process. This study was carried out for multi-objective optimization of MQL grinding process parameters. Water based Al2O3 and CuO nanofluids of various concentrations are used as lubricant for MQL system. Grinding experiments were carried out on instrumented surface grinding machine. For experimentation purpose Taguchi's method was used. Important process parameters that affect the G ratio and surface finish in MQL grinding are depth of cut, type of lubricant, feed rate, grinding wheel speed, coolant flow rate, and nanoparticle size. Grinding performance was calculated by the measurement G ratio and surface finish. For improvement of grinding process a multi-objective process parameter optimization is performed by use of Taguchi based grey relational analysis. To identify most significant factor of process analysis of variance (ANOVA has been used.

  3. Optimization of extraction parameters of pentacyclic triterpenoids from Swertia chirata stem using response surface methodology.

    Science.gov (United States)

    Pandey, Devendra Kumar; Kaur, Prabhjot

    2018-03-01

    In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p  < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).

  4. Multi-parameter Full-waveform Inversion for Acoustic VTI Medium with Surface Seismic Data

    Science.gov (United States)

    Cheng, X.; Jiao, K.; Sun, D.; Huang, W.; Vigh, D.

    2013-12-01

    Full-waveform Inversion (FWI) attracts wide attention recently in oil and gas industry as a new promising tool for high resolution subsurface velocity model building. While the traditional common image point gather based tomography method aims to focus post-migrated data in depth domain, FWI aims to directly fit the observed seismic waveform in either time or frequency domain. The inversion is performed iteratively by updating the velocity fields to reduce the difference between the observed and the simulated data. It has been shown the inversion is very sensitive to the starting velocity fields, and data with long offsets and low frequencies is crucial for the success of FWI to overcome this sensitivity. Considering the importance of data with long offsets and low frequencies, in most geologic environment, anisotropy is an unavoidable topic for FWI especially at long offsets, since anisotropy tends to have more pronounced effects on waves traveled for a great distance. In VTI medium, this means more horizontal velocity will be registered in middle-to-long offset data, while more vertical velocity will be registered in near-to-middle offset data. Up to date, most of real world applications of FWI still remain in isotropic medium, and only a few studies have been shown to account for anisotropy. And most of those studies only account for anisotropy in waveform simulation, but not invert for those anisotropy fields. Multi-parameter inversion for anisotropy fields, even in VTI medium, remains as a hot topic in the field. In this study, we develop a strategy for multi-parameter FWI for acoustic VTI medium with surface seismic data. Because surface seismic data is insensitivity to the delta fields, we decide to hold the delta fields unchanged during our inversion, and invert only for vertical velocity and epsilon fields. Through parameterization analysis and synthetic tests, we find that it is more feasible to invert for the parameterization as vertical and horizontal

  5. Application of Response Surface Methodology (RSM for Optimization of Operating Parameters and Performance Evaluation of Cooling Tower Cold Water Temperature

    Directory of Open Access Journals (Sweden)

    Ramkumar RAMAKRISHNAN

    2012-01-01

    Full Text Available The performance of a cooling tower was analyzed with various operating parameters tofind the minimum cold water temperature. In this study, optimization of operating parameters wasinvestigated. An experimental design was carried out based on central composite design (CCD withresponse surface methodology (RSM. This paper presents optimum operating parameters and theminimum cold water temperature using the RSM method. The RSM was used to evaluate the effectsof operating variables and their interaction towards the attainment of their optimum conditions.Based on the analysis, air flow, hot water temperature and packing height were high significanteffect on cold water temperature. The optimum operating parameters were predicted using the RSMmethod and confirmed through experiment.

  6. Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ergün EKİCİ

    2014-12-01

    Full Text Available Hadfield steel (X120Mn12 is widely used in the engineering applications due to its excellent wear resistance. In this study, the effects of the cutting parameters on the surface roughness were investigated in relation to the lathe process carried out on Hadfield steel. The experiments were conducted at a cutting speed of 80, 110, 140 m/min, feed rate of 0.2, 0.3, 0.4 mm/rev and depth of cut 0.2, 0.4, 0.6 mm, using coated carbide tools. Regarding the evaluation of the machinability of Hadfield steel, a model was formed utilizing the response surface method (RSM. For the determination of the effects of the cutting parameters on the surface roughness, the central composite design (CCD and variance analysis (ANOVA were used. By means of the model formed as a result of the experimental study, it was demonstrated that among the cutting parameters, the feed rate is the most effective parameter on the surface roughness, with a contribution ratio of 90.28%. It was determined that the surface roughness increases with increasing feed rate. With respect to the effect on the surface roughness, the feed rate was followed by the cutting speed with a contribution ratio of 3.1% and the cutting depth with a contribution ratio of 1.7%.

  7. Resonance Raman and surface-enhanced resonance Raman spectra of LH2 antenna complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. excited in the Qx and Qy transitions.

    Science.gov (United States)

    Chumanov, G; Picorel, R; Ortiz de Zarate, I; Cotton, T M; Seibert, M

    2000-05-01

    Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.

  8. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Denis-Alpizar, Otoniel, E-mail: otonieldenisalpizar@gmail.com [Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex (France); Departamento de Física, Universidad de Matanzas, Matanzas 40100 (Cuba); Kalugina, Yulia [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre (France); Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin av., Tomsk 634050 (Russian Federation); Stoecklin, Thierry [Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex (France); Vera, Mario Hernández [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Lique, François, E-mail: francois.lique@univ-lehavre.fr [Departamento de Física, Universidad de Matanzas, Matanzas 40100 (Cuba)

    2013-12-14

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1} was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.

  9. On Rhythms in Neuronal Networks with Recurrent Excitation.

    Science.gov (United States)

    Börgers, Christoph; Takeuchi, R Melody; Rosebrock, Daniel T

    2018-02-01

    We investigate rhythms in networks of neurons with recurrent excitation, that is, with excitatory cells exciting each other. Recurrent excitation can sustain activity even when the cells in the network are driven below threshold, too weak to fire on their own. This sort of "reverberating" activity is often thought to be the basis of working memory. Recurrent excitation can also lead to "runaway" transitions, sudden transitions to high-frequency firing; this may be related to epileptic seizures. Not all fundamental questions about these phenomena have been answered with clarity in the literature. We focus on three questions here: (1) How much recurrent excitation is needed to sustain reverberating activity? How does the answer depend on parameters? (2) Is there a positive minimum frequency of reverberating activity, a positive "onset frequency"? How does it depend on parameters? (3) When do runaway transitions occur? For reduced models, we give mathematical answers to these questions. We also examine computationally to which extent our findings are reflected in the behavior of biophysically more realistic model networks. Our main results can be summarized as follows. (1) Reverberating activity can be fueled by extremely weak slow recurrent excitation, but only by sufficiently strong fast recurrent excitation. (2) The onset of reverberating activity, as recurrent excitation is strengthened or external drive is raised, occurs at a positive frequency. It is faster when the external drive is weaker (and the recurrent excitation stronger). It is slower when the recurrent excitation has a longer decay time constant. (3) Runaway transitions occur only with fast, not with slow, recurrent excitation. We also demonstrate that the relation between reverberating activity fueled by recurrent excitation and runaway transitions can be visualized in an instructive way by a (generalized) cusp catastrophe surface.

  10. The effects of processing parameters on the properties of micro-scale porous surface for a micro-channel reactor

    International Nuclear Information System (INIS)

    Feng, Yanbing; Mei, Deqing; Qian, Miao; Yi, Zoudongyi; Chen, Zichen

    2017-01-01

    To improve the performance of hydrogen production via a microchannel reactor with a porous surface, the process of layered powder sintering and dissolution method is optimized, and the effects of processing parameters on the morphological and mechanical properties of the porous surface structure are studied. Based on the preliminary experiments, three key parameters in the process are the size of the NaCl particle, the compaction pressure, and the sintering temperature. Besides, the porous surface structures are evaluated by the specific surface area and compression strength to optimize the influencing variables. Results show that the specific surface area of porous surface structure is determined mainly by the size of NaCl particle, while the pressure and temperature have little influence unexpectedly within the range of experimental condition. With the increase of temperature and pressure, the compression strength will be enhanced, but the increase of the size of NaCl particles will cause the decrease of compression strength. The optimum compaction pressure, sintering temperature, and size of the NaCl particle are obtained respectively. Finally, the optimum parameters have been used to manufacture the micro-channel catalyst support with a porous surface, and its hydrogen production can be maximumly enhanced by 90% compared with the surface fabricated with NaCl particles of 125–150 µ m. (paper)

  11. Optimization of Extraction Parameters of Phenolic Compounds from Sarcopoterium spinosum Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ceren Sunguc

    2017-07-01

    Full Text Available The shrublands are very common in Urla-Çeşme-Karaburun peninsula located in the western point of Turkey. Prickly shrubby burnet (Sarcopoterium spinosum L. is one of the common weed which has intensive thorns making its consumption for the local domestic animals. However, Sarcopoterium spinosum is a valuable and common medicinal plant in the Mediterranean region. Crude extract of S. spinosum leaves exhibited higher antioxidant activity, as 3143.5± 238.5 µM TEAC (Trolox Equivalent Antioxidant Capacity/g dry weight (DW, when compared to other medicinal plants found in the literature. The aim of this study was to determine the effect of extraction parameters on the content and biological activity of the extract by response surface methodology (RSM as well as to identify its major compounds. High Performance Liquid Chromatography (HPLC was employed to investigate the phenolic content of S. spinosum extract. The composition of the phenolic contents including hyperoside and isoquercetin, the latter being the major component, in S. spinosum extract has been shown for the first time by HPLC. Antimicrobial activity of S. spinosum extract, identified by minimum inhibition concentration (MIC assay, indicated that the crude extract had antifungal activity against Candida albicans.

  12. Reliability of surface electromyography timing parameters in gait in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    Malone, Ailish

    2012-02-01

    The aims of this study were to validate a computerised method to detect muscle activity from surface electromyography (SEMG) signals in gait in patients with cervical spondylotic myelopathy (CSM), and to evaluate the test-retest reliability of the activation times designated by this method. SEMG signals were recorded from rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG), during gait in 12 participants with CSM on two separate test days. Four computerised activity detection methods, based on the Teager-Kaiser Energy Operator (TKEO), were applied to a subset of signals and compared to visual interpretation of muscle activation. The most accurate method was then applied to all signals for evaluation of test-retest reliability. A detection method based on a combined slope and amplitude threshold showed the highest agreement (87.5%) with visual interpretation. With respect to reliability, the standard error of measurement (SEM) of the timing of RF, TA and MG between test days was 5.5% stride duration or less, while the SEM of BF was 9.4%. The timing parameters of RF, TA and MG designated by this method were considered sufficiently reliable for use in clinical practice, however the reliability of BF was questionable.

  13. Effects of cutting parameters and machining environments on surface roughness in hard turning using design of experiment

    Science.gov (United States)

    Mia, Mozammel; Bashir, Mahmood Al; Dhar, Nikhil Ranjan

    2016-07-01

    Hard turning is gradually replacing the time consuming conventional turning process, which is typically followed by grinding, by producing surface quality compatible to grinding. The hard turned surface roughness depends on the cutting parameters, machining environments and tool insert configurations. In this article the variation of the surface roughness of the produced surfaces with the changes in tool insert configuration, use of coolant and different cutting parameters (cutting speed, feed rate) has been investigated. This investigation was performed in machining AISI 1060 steel, hardened to 56 HRC by heat treatment, using coated carbide inserts under two different machining environments. The depth of cut, fluid pressure and material hardness were kept constant. The Design of Experiment (DOE) was performed to determine the number and combination sets of different cutting parameters. A full factorial analysis has been performed to examine the effect of main factors as well as interaction effect of factors on surface roughness. A statistical analysis of variance (ANOVA) was employed to determine the combined effect of cutting parameters, environment and tool configuration. The result of this analysis reveals that environment has the most significant impact on surface roughness followed by feed rate and tool configuration respectively.

  14. Alignment and orientation parameters for excitation of the ground state of helium to the 21P state by 81 eV electrons

    International Nuclear Information System (INIS)

    Fon, W.C.; Berrington, K.A.; Kingston, A.E.

    1979-01-01

    Five-state R-matrix calculations are used to calculate the differential cross sections, lambda, chi, Asub(2+)sup(col), Asub(1+)sup(col), Asub(2+)sup(col), /0sub(1-)sup(col)/ and theta sub(min) for electron excitation of the 1 1 S to 2 1 P state of helium at 81 eV. The results are compared with recent experimental results of Hollywood, Crowe and Williams (J. Phys. B.; 12: 819 (1979)). (author)

  15. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    Science.gov (United States)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model

  16. Applications of high order harmonic radiation to UVX-solids interaction: high excitation density in electronic relaxation dynamics and surface damaging

    International Nuclear Information System (INIS)

    De Grazia, M.

    2007-12-01

    The new sources of radiation in the extreme-UV (X-UV: 10-100 nm), which deliver spatially coherent, ultra-short and intense pulses, allow studying high flux processes and ultra-fast dynamics in various domains. The thesis work presents two applications of the high-order laser harmonics (HH) to solid state physics. In Part I, we describe the optimization of the harmonic for studies of X-UV/solids interaction. In Part II, we investigate effects of high excitation density in the dynamics of electron relaxation in dielectric scintillator crystals - tungstates and fluorides, using time-resolved luminescence spectroscopy. Quenching of luminescence at short time gives evidence of the competition between radiative and non-radiative recombination of self-trapped excitons (STE). The non-radiative channel is identified to mutual interaction of STE at high excitation density. In Part III, we study the X-UV induced damage mechanism in various materials, either conductor (amorphous carbon) or insulators (organic polymers, e.g., PMMA). In PMMA-Plexiglas, in the desorption regime (0.2 mJ/cm 2 , i.e., below damage threshold), the surface modifications reflect X-UV induced photochemical processes that are tentatively identified, as a function of dose: at low dose, polymer chain scission followed by the blow-up of the volatile, low-molecular fragments leads to crater formation; at high dose, cross-linking in the near-surface layer of remaining material leads to surface hardening. These promising results have great perspectives considering the performances already attained and planned in the next future in the development of the harmonic sources. (author)

  17. Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods.

    Science.gov (United States)

    Gozem, Samer; Melaccio, Federico; Lindh, Roland; Krylov, Anna I; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2013-10-08

    The photoisomerization of the retinal chromophore of visual pigments proceeds along a complex reaction coordinate on a multidimensional surface that comprises a hydrogen-out-of-plane (HOOP) coordinate, a bond length alternation (BLA) coordinate, a single bond torsion and, finally, the reactive double bond torsion. These degrees of freedom are coupled with changes in the electronic structure of the chromophore and, therefore, the computational investigation of the photochemistry of such systems requires the use of a methodology capable of describing electronic structure changes along all those coordinates. Here, we employ the penta-2,4-dieniminium (PSB3) cation as a minimal model of the retinal chromophore of visual pigments and compare its excited state isomerization paths at the CASSCF and CASPT2 levels of theory. These paths connect the cis isomer and the trans isomer of PSB3 with two structurally and energetically distinct conical intersections (CIs) that belong to the same intersection space. MRCISD+Q energy profiles along these paths provide benchmark values against which other ab initio methods are validated. Accordingly, we compare the energy profiles of MRPT2 methods (CASPT2, QD-NEVPT2, and XMCQDPT2) and EOM-SF-CC methods (EOM-SF-CCSD and EOM-SF-CCSD(dT)) to the MRCISD+Q reference profiles. We find that the paths produced with CASSCF and CASPT2 are topologically and energetically different, partially due to the existence of a "locally excited" region on the CASPT2 excited state near the Franck-Condon point that is absent in CASSCF and that involves a single bond, rather than double bond, torsion. We also find that MRPT2 methods as well as EOM-SF-CCSD(dT) are capable of quantitatively describing the processes involved in the photoisomerization of systems like PSB3.

  18. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources

    Science.gov (United States)

    István, Krisztina; Keresztury, Gábor; Szép, Andrea

    2003-06-01

    A comparative study of the feasibility and efficiency of Raman spectroscopic detection of thin layer chromatography (TLC) spots of some weak Raman scatterers (essential amino acids, namely, glycine and L-forms of alanine, serine, valine, proline, hydroxyproline, and phenylalanine) was carried out using four different visible and near-infrared (NIR) laser radiations with wavelengths of 532, 633, 785, and 1064 nm. Three types of commercial TLC plates were tested and the possibility of inducing surface enhanced Raman scattering (SERS) by means of Ag-sol was also investigated. The spectra obtained from spotted analytes adsorbed on TLC plates were of very different quality strongly depending on the excitation wavelength, the wetness of the samples, and the compounds examined. The best results were obtained with the simple silica TLC plate, and it has been established that the longest wavelength (lowest energy) NIR excitation of a Nd:YAG laser is definitely more suitable for generating normal Raman scattering of analyte spots than any of the visible radiations. Concerning SERS with application of Ag-sol to the TLC spots, 1-3 orders of magnitude enhancement was observed with wet samples, the greatest with the 532 nm radiation and gradually smaller with the longer wavelength excitations. It is shown, however, that due to severe adsorption-induced spectral distortions and increased sensitivity to microscopic inhomogeneity of the sample, none of the SERS spectra obtained with the dispersive Raman microscope operating in the visible region were superior to the best NIR normal FT-Raman spectra, as far as sample identification is concerned.

  19. Estimation of subsurface hydrological parameters around Akwuke, Enugu, Nigeria using surface resistivity measurements

    International Nuclear Information System (INIS)

    Utom, Ahamefula U; Odoh, Benard I; Egboka, Boniface C E; Egboka, Nkechi E; Okeke, Harold C

    2013-01-01

    As few boreholes may be available and carrying out pumping tests can be expensive and time consuming, relationships between aquifer characteristics and the electrical parameters of different geoelectric layers exist. Data from 19 vertical electrical soundings (VESs; 13 of these selected for evaluation) was recorded with a Schlumberger electrode configuration in the area around Akwuke, Enugu, Nigeria. The data was interpreted by computer iterative modelling with curve matching for calibration purposes. Geoelectric cross-sections along a number of lines were prepared to ascertain the overall distribution of the resistivity responses of the subsurface lithology. Identified probable shallow aquifer resistivity, thickness and depth values are in the range of 28–527 Ωm, 2.1–22.5 m and 3.1–28.3 m respectively. As our aquifer system consists of fine-grained, clay–silty sand materials, a modification of the Archie equations (Waxman–Smits model) was adopted to determine the true formation factor using the relationship between the apparent formation factor and the pore water resistivity. This representation of the effects of a separate conducting path due to the presence of clay particles in the aquifer materials was used in making reliable estimations of aquifer properties. The average hydraulic conductivity of 8.96 × 10 −4 m s −1 transmissivity ranging between 1.88 × 10 −3 and 2.02 × 10 −3 m 2 s −1 estimated from surface resistivity measurements correlated well with the available field data. Results of the study also showed a direct relationship between aquifer transmissivity and modified transverse resistance (R 2 = 0.85). (paper)

  20. Pinus sylvestris L. needle surface wettability parameters as indicators of atmospheric environment pollution impacts: Novel contact angle hysteresis methodology

    Science.gov (United States)

    Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz

    2014-02-01

    An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p biological systems.

  1. An international comparison of surface texture parameters quantification on polymer artefacts using optical instruments

    DEFF Research Database (Denmark)

    Tosello, Guido; Haitjema, H.; Leach, R.K.

    2016-01-01

    An international comparison of optical instruments measuring polymer surfaces with arithmetic mean height values in the sub-micrometre range has been carried out. The comparison involved sixteen optical surface texture instruments (focus variation instruments, confocal microscopes and coherent...

  2. Voiced Excitations

    National Research Council Canada - National Science Library

    Holzricher, John

    2004-01-01

    To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...

  3. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  4. Improvements to the swath-level near-surface atmospheric state parameter retrievals within the NRL Ocean Surface Flux System (NFLUX)

    Science.gov (United States)

    May, J. C.; Rowley, C. D.; Meyer, H.

    2017-12-01

    The Naval Research Laboratory (NRL) Ocean Surface Flux System (NFLUX) is an end-to-end data processing and assimilation system used to provide near-real-time satellite-based surface heat flux fields over the global ocean. The first component of NFLUX produces near-real-time swath-level estimates of surface state parameters and downwelling radiative fluxes. The focus here will be on the satellite swath-level state parameter retrievals, namely surface air temperature, surface specific humidity, and surface scalar wind speed over the ocean. Swath-level state parameter retrievals are produced from satellite sensor data records (SDRs) from four passive microwave sensors onboard 10 platforms: the Special Sensor Microwave Imager/Sounder (SSMIS) sensor onboard the DMSP F16, F17, and F18 platforms; the Advanced Microwave Sounding Unit-A (AMSU-A) sensor onboard the NOAA-15, NOAA-18, NOAA-19, Metop-A, and Metop-B platforms; the Advanced Technology Microwave Sounder (ATMS) sensor onboard the S-NPP platform; and the Advanced Microwave Scannin Radiometer 2 (AMSR2) sensor onboard the GCOM-W1 platform. The satellite SDRs are translated into state parameter estimates using multiple polynomial regression algorithms. The coefficients to the algorithms are obtained using a bootstrapping technique with all available brightness temperature channels for a given sensor, in addition to a SST field. For each retrieved parameter for each sensor-platform combination, unique algorithms are developed for ascending and descending orbits, as well as clear vs cloudy conditions. Each of the sensors produces surface air temperature and surface specific humidity retrievals. The SSMIS and AMSR2 sensors also produce surface scalar wind speed retrievals. Improvement is seen in the SSMIS retrievals when separate algorithms are used for the even and odd scans, with the odd scans performing better than the even scans. Currently, NFLUX treats all SSMIS scans as even scans. Additional improvement in all of

  5. The Role of Friction Stir Processing (FSP Parameters on TiC Reinforced Surface Al7075-T651 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Felipe García-Vázquez

    Full Text Available Abstract: Aluminum alloys are very promising for structural applications in aerospace, military and transportation industries due to their light weight, high strength-to-weight ratio and excellent resistance to corrosion. In comparison to unreinforced aluminum alloys, aluminum/aluminum alloy matrix composites reinforced with ceramic phases exhibit higher strength and hardness, improved tribological characteristics. A novel surface modifying technique, friction stir processing (FSP, has been developed for fabrication of surface composite with an improved performance. The effect of FSP parameters such as number of passes, direction of each pass, sealed or unsealed groove on microstructure was investigated. In this work, nano-particles of TiC (2% in weight were added to aluminum alloy AA7075-T651 to produce a functional surface. Fixed parameters for this AA7075 alloy were used; rotation speed of 1000 rpm, travel speed of 300 mm/min and pin penetration of 2.8 mm. Optical microscopy (OM, scanning electron microscopy (SEM and atomic force microscopy (AFM were employed to study the microstructure of the fabricated surface composites. The results indicated that the selected FSP parameters influenced the area of surface composite, distribution of TiC particles and micro-hardness of the surface composites. Finally, in order to evaluate rate wear the pin on disk test was carried out.

  6. Image-based Exploration of Iso-surfaces for Large Multi- Variable Datasets using Parameter Space.

    KAUST Repository

    Binyahib, Roba S.

    2013-01-01

    -surfaces superimposed on each other. The result is the same as calculating multiple iso- surfaces from the original data but without the memory and processing overhead. Our tool also allows the user to change the (scalar) values superimposed on each of the surfaces

  7. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  8. Optimisation on processing parameters for minimising warpage on side arm using response surface methodology (RSM) and particle swarm optimisation (PSO)

    Science.gov (United States)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Sazli, M.; Yahya, Z. R.

    2017-09-01

    This study presents the application of optimisation method to reduce the warpage of side arm part. Autodesk Moldflow Insight software was integrated into this study to analyse the warpage. The design of Experiment (DOE) for Response Surface Methodology (RSM) was constructed and by using the equation from RSM, Particle Swarm Optimisation (PSO) was applied. The optimisation method will result in optimised processing parameters with minimum warpage. Mould temperature, melt temperature, packing pressure, packing time and cooling time was selected as the variable parameters. Parameters selection was based on most significant factor affecting warpage stated by previous researchers. The results show that warpage was improved by 28.16% for RSM and 28.17% for PSO. The warpage improvement in PSO from RSM is only by 0.01 %. Thus, the optimisation using RSM is already efficient to give the best combination parameters and optimum warpage value for side arm part. The most significant parameters affecting warpage are packing pressure.

  9. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  10. Correlation of III/V semiconductor etch results with physical parameters of high-density reactive plasmas excited by electron cyclotron resonance

    Science.gov (United States)

    Gerhard, FRANZ; Ralf, MEYER; Markus-Christian, AMANN

    2017-12-01

    Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance (ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine- and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe, plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V) characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar- and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the non-invasive optical method of emission spectroscopy, particularly actinometry, was investigated, and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and

  11. Effect of machining parameters on surface textures in EDM of Fe-Mn-Al alloy

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hou, Max Ti-Kuang

    2007-01-01

    In this work, the surface characteristics caused by EDM were analyzed by means of the atomic force microscopy (AFM) technique. An empirical model of Fe-Mn-Al alloy was proposed based on the experimental data. A qualitative energy dispersive spectroscopic analyzer was used to measure the chemical composition of the specimen. Surface hardness was determined with a microhardness tester. Experimental results indicate that the EDM process causes a ridged surface and induces machining damage in the surface layer, and increases the surface roughness. The depth of micro-cracks, micro-voids and machined damage increase with an increase in the amount of pulsed current and pulse-on duration. The effect of the magnitude of the pulse-on duration on the surface texture of the specimen is more significant than the pulsed current. Furthermore, the AFM method reveals the 3D surface textures of the EDM specimen with a nanometer scale

  12. Subsurface excitations in a metal

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Sosolik, C. E.

    2009-01-01

    We investigate internal hot carrier excitations in a Au thin film bombarded by hyperthermal and low energy alkali and noble gas ions. Excitations within the thin film of a metal-oxide-semiconductor device are measured revealing that ions whose velocities fall below the classical threshold given...... by the free-electron model of a metal still excite hot carriers. Excellent agreement between these results and a nonadiabatic model that accounts for the time-varying ion-surface interaction indicates that the measured excitations are due to semilocalized electrons near the metal surface....

  13. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

    Science.gov (United States)

    Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander

    2015-09-28

    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  14. Application of silver films with different roughness parameter for septic human serum albumin detection by Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Zyubin, A. Y.; Konstantinova, E. I.; Matveeva, K. I.; Slezhkin, V. A.; Samusev, I. G.; Demin, M. V.; Bryukhanov, V. V.

    2018-01-01

    In this paper, the rough silver films parameters investigation, used as media for surface enhancement Raman spectroscopy for health and septic human serum albumin (HSA) study results have been presented. The detection of small concentrations of HSA isolated from blood serum and it main vibrational groups identification has been done.

  15. Effect of operational conditions of electroerosion machining on the surface microgeometry parameters of steels and alloys

    International Nuclear Information System (INIS)

    Foteev, N.K.

    1976-01-01

    Studies the influence of pulse duration and a series of operating conditions of a ShGI-40-440 spark-machining generator on changes in the basic surface microgeometry characteristics of components of stainless steel 1Kh18N10T, steel St 45 and hard alloy T14K8. The microgeometry characteristics of spark-machined surfaces differ significantly from the corresponding characteristics of surfaces machined by cutting and vibro-rolling

  16. Parameters Studies on Surface Initiated Rolling Contact Fatigue of Turnout Rails by Three-Level Unreplicated Saturated Factorial Design

    Directory of Open Access Journals (Sweden)

    Xiaochuan Ma

    2018-03-01

    Full Text Available Surface initiated rolling contact fatigue (RCF, mainly characterized by cracks and material stripping, is a common type of damage to turnout rails, which can not only shorten service life of turnout but also lead to poor running safety of vehicle. The rail surface initiated RCF of turnouts is caused by a long-term accumulation, the size and distribution of which are related to the dynamic parameters of the complicated vehicle-turnout system. In order to simulate the accumulation of rail damage, some random samples of dynamic parameters significantly influencing it should be input. Based on the three-level unreplicated saturated factorial design, according to the evaluation methods of H, P and B statistic values, six dynamic parameters that influence the rail surface initiated RCF in turnouts, namely running speed of vehicle, axle load, wheel-rail profiles, integral vertical track stiffness and wheel-rail friction coefficient, are obtained by selecting 13 dynamic parameters significantly influencing the dynamic vehicle-turnout interaction as the analysis factors, considering four dynamic response results, i.e., the normal wheel-rail contact force, longitudinal creep force, lateral creep force and wheel-rail contact patch area as the observed parameters. In addition, the rail surface initiated RCF behavior in turnouts under different wheel-rail creep conditions is analyzed, considering the relative motion of stock/switch rails. The results show that the rail surface initiated RCF is mainly caused by the tangential stress being high under small creep conditions, the normal and tangential stresses being high under large creep conditions, and the normal stress being high under pure spin creep conditions.

  17. Evaluation of Parameters Affecting Magnetic Abrasive Finishing on Concave Freeform Surface of Al Alloy via RSM Method

    Directory of Open Access Journals (Sweden)

    Mehrdad Vahdati

    2016-01-01

    Full Text Available The attempts of researchers in industries to obtain accurate and high quality surfaces led to the invention of new methods of finishing. Magnetic abrasive finishing (MAF is a relatively new type of finishing in which the magnetic field is used to control the abrasive tools. Applications such as the surface of molds are ones of the parts which require very high surface smoothness. Usually this type of parts has freeform surface. In this study, the effect of magnetic abrasive process parameters on freeform surfaces of parts made of aluminum is examined. This method is obtained through combination of magnetic abrasive process and Control Numerical Computer (CNC. The use of simple hemisphere for installation on the flat area of the magnets as well as magnets’ spark in curve form is a measure done during testing the experiments. The design of experiments is based on response surface methodology. The gap, the rotational speed of the spindle, and the feed rate are found influential and regression equations governing the process are also determined. The impact of intensity of the magnetic field is obtained using the finite element software of Maxwell. Results show that in concave areas of the surface, generally speaking, the surface roughness decreases to 0.2 μm from its initial 1.3 μm roughness. However, in some points the lowest surface roughness of 0.08 μm was measured.

  18. Antiphase Fermi-surface modulations accompanying displacement excitation in a parent compound of iron-based superconductors

    Science.gov (United States)

    Okazaki, Kozo; Suzuki, Hakuto; Suzuki, Takeshi; Yamamoto, Takashi; Someya, Takashi; Ogawa, Yu; Okada, Masaru; Fujisawa, Masami; Kanai, Teruto; Ishii, Nobuhisa; Itatani, Jiro; Nakajima, Masamichi; Eisaki, Hiroshi; Fujimori, Atsushi; Shin, Shik

    2018-03-01

    We investigate the transient electronic structure of BaFe2As2 , a parent compound of iron-based superconductors, by time- and angle-resolved photoemission spectroscopy. In order to probe the entire Brillouin zone, we utilize extreme ultraviolet photons and observe photoemission intensity oscillation with the frequency of the A1 g phonon which is antiphase between the zone-centered hole Fermi surfaces (FSs) and zone-cornered electron FSs. We attribute the antiphase behavior to the warping in one of the zone-centered hole FSs accompanying the displacement of the pnictogen height and find that this displacement is the same direction as that induced by substitution of P for As, where superconductivity is induced by a structural modification without carrier doping in this system.

  19. Determination of optimum "multi-channel surface wave method" field parameters.

    Science.gov (United States)

    2012-12-01

    Multi-channel surface wave methods (especially the multi-channel analyses of surface wave method; MASW) are routinely used to : determine the shear-wave velocity of the subsurface to depths of 100 feet for site classification purposes. Users are awar...

  20. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  1. Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes

    Science.gov (United States)

    Guerrero, José-Luis; Pernica, Patricia; Wheater, Howard; Mackay, Murray; Spence, Chris

    2017-12-01

    Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere - heat-exchange fluxes - is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM), a one-dimensional integral lake model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity of simulated fluxes to changes in model parameters, i.e., turbulent transport parameters and the light extinction coefficient (Kd). A C++ open-source software package, Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), was used to perform sensitivity analysis (SA) and identify the parameters that dominate model behavior. The generalized likelihood uncertainty estimation (GLUE) was applied to quantify the fluxes' uncertainty, comparing daily-averaged eddy-covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested, and the posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant parameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue - different parameter-value combinations yielding equivalent results - the answer to the question was unequivocal: Kd, a measure of how much light penetrates the lake, dominates sensible and latent heat fluxes, and the uncertainty in their estimates is strongly related to the accuracy with which Kd is determined. This is important since accurate and continuous measurements of Kd could reduce modeling uncertainty.

  2. Excited fermions

    International Nuclear Information System (INIS)

    Boudjema, F.; Djouadi, A.; Kneur, J.L.

    1992-01-01

    The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs

  3. Uncertainty Quantification and Regional Sensitivity Analysis of Snow-related Parameters in the Canadian LAnd Surface Scheme (CLASS)

    Science.gov (United States)

    Badawy, B.; Fletcher, C. G.

    2017-12-01

    The parameterization of snow processes in land surface models is an important source of uncertainty in climate simulations. Quantifying the importance of snow-related parameters, and their uncertainties, may therefore lead to better understanding and quantification of uncertainty within integrated earth system models. However, quantifying the uncertainty arising from parameterized snow processes is challenging due to the high-dimensional parameter space, poor observational constraints, and parameter interaction. In this study, we investigate the sensitivity of the land simulation to uncertainty in snow microphysical parameters in the Canadian LAnd Surface Scheme (CLASS) using an uncertainty quantification (UQ) approach. A set of training cases (n=400) from CLASS is used to sample each parameter across its full range of empirical uncertainty, as determined from available observations and expert elicitation. A statistical learning model using support vector regression (SVR) is then constructed from the training data (CLASS output variables) to efficiently emulate the dynamical CLASS simulations over a much larger (n=220) set of cases. This approach is used to constrain the plausible range for each parameter using a skill score, and to identify the parameters with largest influence on the land simulation in CLASS at global and regional scales, using a random forest (RF) permutation importance algorithm. Preliminary sensitivity tests indicate that snow albedo refreshment threshold and the limiting snow depth, below which bare patches begin to appear, have the highest impact on snow output variables. The results also show a considerable reduction of the plausible ranges of the parameters values and hence reducing their uncertainty ranges, which can lead to a significant reduction of the model uncertainty. The implementation and results of this study will be presented and discussed in details.

  4. Process Parameter Identification in Thin Film Flows Driven by a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Satyananda Panda

    2014-01-01

    Full Text Available The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009 who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.

  5. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting

    Science.gov (United States)

    Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-01-01

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part’s surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM. PMID:28937638

  6. Investigation of the influence of pretreatment parameters on the surface characteristics of amorphous metal for use in power industry

    Science.gov (United States)

    Nieroda, Jolanta; Rybak, Andrzej; Kmita, Grzegorz; Sitarz, Maciej

    2018-05-01

    Metallic glasses are metallic materials, which exhibit an amorphous structure. These are mostly three or more component alloys, and some of them are magnetic metals. Materials of this kind are characterized by high electrical resistivity and at the same time exhibit very good magnetic properties (e.g. low-magnetization loss). The above mentioned properties are very useful in electrical engineering industry and this material is more and more popular as a substance for high-efficiency electrical devices production. This industry area is still evolving, and thus even higher efficiency of apparatus based on amorphous material is expected. A raw material must be carefully investigated and characterized before the main production process is started. Presented work contains results of complementary examination of amorphous metal Metglas 2605. Studies involve two ways to obtain clean and oxidized surface with high reactivity, namely degreasing followed by annealing process and plasma treatment. The amorphous metal parameters were examined by means of several techniques: surface free energy (SFE) measurements by sessile drop method, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and both ex situ and in situ Raman spectroscopy. Additionally, influence of plasma parameters on wetting properties were optimized in systematic way with Design of Experiments (DOE) method. A wide range of used methods allow to fully investigate the amorphous metal material during preliminary preparation of surface. Obtained results provide information about appropriate parameters that should be applied in order to obtain highly reactive surface with functional oxide layer on it.

  7. Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface

    International Nuclear Information System (INIS)

    Mendez-Vilas, A.; Bruque, J.M.; Gonzalez-Martin, M.L.

    2007-01-01

    In the field of biomaterials surfaces, the ability of the atomic force microscope (AFM) to access the surface structure at unprecedented spatial (vertical and lateral) resolution, is helping in a better understanding on how topography affects the overall interaction of biological cells with the material surface. Since cells in a wide range of sizes are in contact with the biomaterial surface, a quantification of the surface structure in such a wide range of dimensional scales is needed. With the advent of the AFM, this can be routinely done in the lab. In this work, we show that even when it is clear that such a scale-dependent study is needed, AFM maps of the biomaterial surface taken at different scanning lengths are not completely consistent when they are taken at the same scanning resolution, as it is usually done: AFM images of different scanning areas have different point-to-point physical distances. We show that this effect influences the quantification of the average (R a ) and rms (R q ) roughness parameters determined at different length scales. This is the first time this inconsistency is reported and should be taken into account when roughness is measured in this way. Since differences will be in general in the range of nanometres, this is especially interesting for those processes involving the interaction of the biomaterial surface with small biocolloids as bacteria, while this effect should not represent any problems for larger animal cells

  8. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  9. Shaping surface of palladium nanospheres through the control of reaction parameters

    International Nuclear Information System (INIS)

    Wang Lianmeng; Tan Enzhong; Guo Lin; Wang Lihua; Han Xiaodong

    2011-01-01

    Solid, cracked, and flower-shaped surfaces of palladium nanospheres with high yields and good uniformity were successfully prepared by a wet chemical method. On the basis of the experimental data, the same size of palladium nanosphere with different surface morphologies can be regulated only by changing the amount of ammonium hydroxide and reductant in one experimental system. The as-prepared products were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). In addition, surface-enhanced Raman scattering (SERS) spectra on the as-prepared different surface of palladium nanospheres exhibit high activity towards p-aminothiophenol (PATP) detection, and the result further reveals that the predominance of the a1 vibration mode in the SERS spectra via an electromagnetic (EM) mechanism is significant.

  10. A Mathematical Method to Calculate Tumor Contact Surface Area: An Effective Parameter to Predict Renal Function after Partial Nephrectomy.

    Science.gov (United States)

    Hsieh, Po-Fan; Wang, Yu-De; Huang, Chi-Ping; Wu, Hsi-Chin; Yang, Che-Rei; Chen, Guang-Heng; Chang, Chao-Hsiang

    2016-07-01

    We proposed a mathematical formula to calculate contact surface area between a tumor and renal parenchyma. We examined the applicability of using contact surface area to predict renal function after partial nephrectomy. We performed this retrospective study in patients who underwent partial nephrectomy between January 2012 and December 2014. Based on abdominopelvic computerized tomography or magnetic resonance imaging, we calculated the contact surface area using the formula (2*π*radius*depth) developed by integral calculus. We then evaluated the correlation between contact surface area and perioperative parameters, and compared contact surface area and R.E.N.A.L. (Radius/Exophytic/endophytic/Nearness to collecting system/Anterior/Location) score in predicting a reduction in renal function. Overall 35, 26 and 45 patients underwent partial nephrectomy with open, laparoscopic and robotic approaches, respectively. Mean ± SD contact surface area was 30.7±26.1 cm(2) and median (IQR) R.E.N.A.L. score was 7 (2.25). Spearman correlation analysis showed that contact surface area was significantly associated with estimated blood loss (p=0.04), operative time (p=0.04) and percent change in estimated glomerular filtration rate (p contact surface area and R.E.N.A.L. score independently affected percent change in estimated glomerular filtration rate (p contact surface area was a better independent predictor of a greater than 10% change in estimated glomerular filtration rate compared to R.E.N.A.L. score (AUC 0.86 vs 0.69). Using this simple mathematical method, contact surface area was associated with surgical outcomes. Compared to R.E.N.A.L. score, contact surface area was a better predictor of functional change after partial nephrectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    Science.gov (United States)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  12. Effect of Physical Property and Surface Morphology of Copper Foil at Electrodeposition Parameter

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Gyu; Park, Il Song; Lee, Man Hyung; Seol, Kyeong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-06-15

    The effect of additives, current density and plated temperature on the surface morphology and physical property, during copper electrodeposition on polyimide (PI) film was investigated. Two kinds of additives, Cl and leveler (additive B), were used in this study. Electrochemical experiments were performed in conjunction with SEM, XRD and four-point probe to characterize the morphology and mechanical characteristics of copper electrodeposited in the presence of the additives. The surface roughness, crystal growth orientation and resistivity was controlled by the concentration of additive B. High resistivity and lower peel strength were observed on the surface of the copper layer electroplated in the electrolyte without additive B. However, a uniform surface, lower resistivity and high flexibility were obtained with a combination of 20 ppm Cl and 100 ppm additive B. Large particles were observed on the surface of the copper layer electroplated using a current density of 25 mA/cm{sup 2}, but a uniform surface and lower resistivity were obtained using a current density of 10 mA/cm{sup 2}. One of the required important properties of FCCL is flexibility of the copper foil. High flexibility of FCCL was obtained at a low current density, rather than a high current density. Moreover, a reasonable current density is 20 mA/cm{sup 2}, considering the productivity and mechanical properties of copper foil.

  13. Ab Initio Potential Energy Surfaces for Both the Ground (X̃1A′ and Excited (A∼1A′′ Electronic States of HSiBr and the Absorption and Emission Spectra of HSiBr/DSiBr

    Directory of Open Access Journals (Sweden)

    Anyang Li

    2012-01-01

    Full Text Available Ab initio potential energy surfaces for the ground (X̃1A′ and excited (A˜A′′1 electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.

  14. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values

  15. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  16. Effect of Irradiation Parameters on Morphology of Polishing DF2 (AISI-O1 Surface by Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2007-01-01

    Full Text Available Pulse Nd:YAG laser was used to polish DF2 cold work steel. Influence of irradiation parameters on the 3D surface morphology was studied by 3D profilometer, scanning electron microscopy (SEM, and atomic force microscope (AFM. Results among the tests showed when DF2 specimens were irradiated with parameters of (i laser input energy P=1 J, (ii pulse feedrate=300 mm/min, (iii pulse duration (PD =3 milliseconds, and (iv pulse frequency f=20∼25 Hz, laser polishing of DF2 cold work steel seemed to be successful.

  17. Angle resolved photoemission study of Fermi surfaces and single-particle excitations of quasi-low dimensional materials

    Science.gov (United States)

    Gweon, Gey-Hong

    Using angle resolved photoemission spectroscopy (ARPES) as the main experimental tool and the single particle Green's function as the main theoretical tool, materials of various degrees of low dimensionality and different ground states are studied. The underlying theme of this thesis is that of one dimensional physics, which includes charge density waves (CDW's) and the Luttinger liquid (LL). The LL is the prime example of a lattice non-Fermi liquid (non-FL) and CDW fluctuations also give non-FL behaviors. Non-FL physics is an emerging paradigm of condensed matter physics. It is thought by some researchers that one dimensional LL behavior is a key element in solving the high temperature superconductivity problem. TiTe2 is a quasi-2 dimensional (quasi-2D) Fermi liquid (FL) material very well suited for ARPES lineshape studies. I report ARPES spectra at 300 K which show an unusual behavior of a peak moving through the Fermi energy (EF). I also report a good fit of the ARPES spectra at 25 K obtained by using a causal Green's function proposed by K. Matho. SmTe3 is a quasi-2D CDW material. The near EF ARPES spectra and intensity map reveal rich details of an anisotropic gap and imperfectly nested Fermi surface (FS) for a high temperature CDW. A simple model of imperfect nesting can be constructed from these data and predicts a CDW wavevector in very good agreement with the value known from electron diffraction. NaMo6O17 and KMo 6O17 are also quasi-2D CDW materials. The "hidden nesting" or "hidden 1 dimensionality" picture for the CDW is confirmed very well by our direct image of the FS. K0.3MoO3, the so-called "blue bronze," is a quasi-1 dimensional (quasi-1D) CDW material. Even in its metallic phase above the CDW transition temperature, its photoemission spectra show an anomalously weak intensity at EF and no clear metallic Fermi edge. I compare predictions of an LL model and a CDW fluctuation model regarding these aspects, and find that the LL scenario explains them

  18. Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters

    DEFF Research Database (Denmark)

    Møller, S.; Sternberg, Claus; Poulsen, L. K.

    1995-01-01

    species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume......, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surfacegrowing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found...

  19. Excited-state potential-energy surfaces of metal-adsorbed organic molecules from linear expansion Δ-self-consistent field density-functional theory (ΔSCF-DFT).

    Science.gov (United States)

    Maurer, Reinhard J; Reuter, Karsten

    2013-07-07

    Accurate and efficient simulation of excited state properties is an important and much aspired cornerstone in the study of adsorbate dynamics on metal surfaces. To this end, the recently proposed linear expansion Δ-self-consistent field method by Gavnholt et al. [Phys. Rev. B 78, 075441 (2008)] presents an efficient alternative to time consuming quasi-particle calculations. In this method, the standard Kohn-Sham equations of density-functional theory are solved with the constraint of a non-equilibrium occupation in a region of Hilbert-space resembling gas-phase orbitals of the adsorbate. In this work, we discuss the applicability of this method for the excited-state dynamics of metal-surface mounted organic adsorbates, specifically in the context of molecular switching. We present necessary advancements to allow for a consistent quality description of excited-state potential-energy surfaces (PESs), and illustrate the concept with the application to Azobenzene adsorbed on Ag(111) and Au(111) surfaces. We find that the explicit inclusion of substrate electronic states modifies the topologies of intra-molecular excited-state PESs of the molecule due to image charge and hybridization effects. While the molecule in gas phase shows a clear energetic separation of resonances that induce isomerization and backreaction, the surface-adsorbed molecule does not. The concomitant possibly simultaneous induction of both processes would lead to a significantly reduced switching efficiency of such a mechanism.

  20. Effect of Surface Texturing Parameters on the Lubrication Characteristics of an Axial Piston Pump Valve Plate

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Wang

    2018-05-01

    Full Text Available In this article, a geometrical model of different microtextures is established for an axial piston pump valve plate. A finite differential method was used to solve the Reynolds equation for the oil film thickness and pressure, which were simulated under different microtextures. The influence of microtexture shape and structure on performance was studied and optimal parameters sought. Different convergence gaps are formed by different microtexture radii, and they produce different hydrodynamic effects. The lubrication characteristics of the valve plate are better when a microtexture is used and are influenced by the type of microtexture. We reached the following conclusions: (1 The lubrication characteristics of the valve plate are influenced by different microtexture parameters and can be improved by optimizing the microtexture parameters; (2 There is an optimal parameter combination when adding microtexture with three shapes (spherical, cylindrical and square and the optimal dimensionless oil film pressure lubrication characteristics can be obtained; (3 The degree of improvement in the dimensionless oil film pressure lubrication characteristics was (listed from highest to lowest: micro-hemispherical texture > micro-cylindrical texture > micro-square texture.

  1. Textural parameters distribution in sediments surface of the Uruguay river background between km 221 and 254

    International Nuclear Information System (INIS)

    Capeluto, W.; Campos, T. de los

    2010-01-01

    The aim of this paper is to analyze the distribution of textural statistical parameters and spatial variation in the morphology of the sediment areas. The geology of the area comprises alluvial and alluvial deposits of variable thicknesses overlying deposits of Fray Bent os, Salto and Guichon formations that occasionally emerge in the river bed

  2. Influence of Cutting Parameters on the Surface Roughness and Hole Diameter of Drilling Making Parts of Alluminium Alloy

    Directory of Open Access Journals (Sweden)

    Andrius Stasiūnas

    2013-02-01

    Full Text Available The article researches the drilling process of an aluminium alloy. The paper is aimed at analyzing the influence of cutting speed, feed and hole depth considering hole diameter and hole surface roughness of aluminum alloy 6082 in the dry drilling process and at making empirical formulas for cutting parameters. The article also describes experimental techniques and equipment, tools and measuring devices. Experimental studies have been carried out using different cutting parameters. The obtained results have been analyzed using computer software. According to the existing techniques for measuring, surface roughness and hole diameters have been measured, empirical models have been created and the results of the conducted experiments have been inspected. The findings and recommendations are presented at the end of the work.Artcile in Lithuanian

  3. Optimization of Surface Roughness Parameters of Al-6351 Alloy in EDC Process: A Taguchi Coupled Fuzzy Logic Approach

    Science.gov (United States)

    Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar

    2017-10-01

    This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.

  4. Simulation optimization of filament parameters for uniform depositions of diamond films on surfaces of ultra-large circular holes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinchang, E-mail: wangxinchangz@163.com; Shen, Xiaotian; Sun, Fanghong; Shen, Bin

    2016-12-01

    Highlights: • A verified simulation model using a novel filament arrangement is constructed. • Influences of filament parameters are clarified. • A coefficient between simulated and experimental results is proposed. • Orthogonal simulations are adopted to optimize filament parameters. • A general filament arrangement suitable for different conditions is determined. - Abstract: Chemical vapor deposition (CVD) diamond films have been widely applied as protective coatings on varieties of anti-frictional and wear-resistant components, owing to their excellent mechanical and tribological properties close to the natural diamond. In applications of some components, the inner hole surface will serve as the working surface that suffers severe frictional or erosive wear. It is difficult to realize uniform depositions of diamond films on surfaces of inner holes, especially ultra-large inner holes. Adopting a SiC compact die with an aperture of 80 mm as an example, a novel filament arrangement with a certain number of filaments evenly distributed on a circle is designed, and specific effects of filament parameters, including the filament number, arrangement direction, filament temperature, filament diameter, circumradius and the downward translation, on the substrate temperature distribution are studied by computational fluid dynamics (CFD) simulations based on the finite volume method (FVM), adopting a modified computational model well consistent with the actual deposition environment. Corresponding temperature measurement experiments are also conducted to verify the rationality of the computational model. From the aspect of depositing uniform boron-doped micro-crystalline, undoped micro-crystalline and undoped fine-grained composite diamond (BDM-UMC-UFGCD) film on such the inner hole surface, filament parameters as mentioned above are accurately optimized and compensated by orthogonal simulations. Moreover, deposition experiments adopting compensated optimized

  5. The use of interpractive graphic displays for interpretation of surface design parameters

    Science.gov (United States)

    Talcott, N. A., Jr.

    1981-01-01

    An interactive computer graphics technique known as the Graphic Display Data method has been developed to provide a convenient means for rapidly interpreting large amounts of surface design data. The display technique should prove valuable in such disciplines as aerodynamic analysis, structural analysis, and experimental data analysis. To demonstrate the system's features, an example is presented of the Graphic Data Display method used as an interpretive tool for radiation equilibrium temperature distributions over the surface of an aerodynamic vehicle. Color graphic displays were also examined as a logical extension of the technique to improve its clarity and to allow the presentation of greater detail in a single display.

  6. Prediction of surface roughness in turning of Ti-6Al-4V using cutting parameters, forces and tool vibration

    Science.gov (United States)

    Sahu, Neelesh Kumar; Andhare, Atul B.; Andhale, Sandip; Raju Abraham, Roja

    2018-04-01

    Present work deals with prediction of surface roughness using cutting parameters along with in-process measured cutting force and tool vibration (acceleration) during turning of Ti-6Al-4V with cubic boron nitride (CBN) inserts. Full factorial design is used for design of experiments using cutting speed, feed rate and depth of cut as design variables. Prediction model for surface roughness is developed using response surface methodology with cutting speed, feed rate, depth of cut, resultant cutting force and acceleration as control variables. Analysis of variance (ANOVA) is performed to find out significant terms in the model. Insignificant terms are removed after performing statistical test using backward elimination approach. Effect of each control variables on surface roughness is also studied. Correlation coefficient (R2 pred) of 99.4% shows that model correctly explains the experiment results and it behaves well even when adjustment is made in factors or new factors are added or eliminated. Validation of model is done with five fresh experiments and measured forces and acceleration values. Average absolute error between RSM model and experimental measured surface roughness is found to be 10.2%. Additionally, an artificial neural network model is also developed for prediction of surface roughness. The prediction results of modified regression model are compared with ANN. It is found that RSM model and ANN (average absolute error 7.5%) are predicting roughness with more than 90% accuracy. From the results obtained it is found that including cutting force and vibration for prediction of surface roughness gives better prediction than considering only cutting parameters. Also, ANN gives better prediction over RSM models.

  7. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  8. Optimisation of process parameters on thin shell part using response surface methodology (RSM) and genetic algorithm (GA)

    Science.gov (United States)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    This study conducts the simulation on optimisation of injection moulding process parameters using Autodesk Moldflow Insight (AMI) software. This study has applied some process parameters which are melt temperature, mould temperature, packing pressure, and cooling time in order to analyse the warpage value of the part. Besides, a part has been selected to be studied which made of Polypropylene (PP). The combination of the process parameters is analysed using Analysis of Variance (ANOVA) and the optimised value is obtained using Response Surface Methodology (RSM). The RSM as well as Genetic Algorithm are applied in Design Expert software in order to minimise the warpage value. The outcome of this study shows that the warpage value improved by using RSM and GA.

  9. Impact of Optimized Land Surface Parameters on the Land-Atmosphere Coupling in WRF Simulations of Dry and Wet Extremes

    Science.gov (United States)

    Kumar, S.; Santanello, J. A.; Peters-Lidard, C. D.; Harrison, K.

    2011-12-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spinup of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.

  10. Surface peroneal nerve stimulation in lower limb hemiparesis : Effect on quantitative gait parameters

    NARCIS (Netherlands)

    Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas; Buurke, Jaap H.; Ijzerman, Maarten J.; Chae, John

    2015-01-01

    Objective: The objective of this study was to evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation vs. usual care via quantitative gait analysis. Design: This study is a randomized controlled clinical trial. Setting: The

  11. Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering

    DEFF Research Database (Denmark)

    Ostrikov, K.; Tsakadze, E.L.; Tsakadze, Z.L.

    2005-01-01

    . Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing...... applications and surface engineering. (c) 2005 Elsevier B.V. All rights reserved....

  12. Site specificity of biosphere parameter values in performance assessments of near-surface repositories

    International Nuclear Information System (INIS)

    Zeevaert, Th.; Volckaert, G.; Vandecasleele

    1993-01-01

    The contribution is dealing with the performance assessment model for near surface repositories in Belgium. It consists of four submodels called: site, aquifer, biosphere and dose. For some characteristic radionuclides, results of the study are shown for a typical site, and differences in doses assessed with the generic approach discussed. Shortcomings are indicated

  13. Analyzing the effect of cutting parameters on surface roughness and tool wear when machining nickel based hastelloy - 276

    International Nuclear Information System (INIS)

    Khidhir, Basim A; Mohamed, Bashir

    2011-01-01

    Machining parameters has an important factor on tool wear and surface finish, for that the manufacturers need to obtain optimal operating parameters with a minimum set of experiments as well as minimizing the simulations in order to reduce machining set up costs. The cutting speed is one of the most important cutting parameter to evaluate, it clearly most influences on one hand, tool life, tool stability, and cutting process quality, and on the other hand controls production flow. Due to more demanding manufacturing systems, the requirements for reliable technological information have increased. For a reliable analysis in cutting, the cutting zone (tip insert-workpiece-chip system) as the mechanics of cutting in this area are very complicated, the chip is formed in the shear plane (entrance the shear zone) and is shape in the sliding plane. The temperature contributed in the primary shear, chamfer and sticking, sliding zones are expressed as a function of unknown shear angle on the rake face and temperature modified flow stress in each zone. The experiments were carried out on a CNC lathe and surface finish and tool tip wear are measured in process. Machining experiments are conducted. Reasonable agreement is observed under turning with high depth of cut. Results of this research help to guide the design of new cutting tool materials and the studies on evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy - 276 machining.

  14. PARAMETER DESIGN OF AN ELECTRO PNEUMATIC SYSTEM USING RESPONSE SURFACE METHODOLOGY

    OpenAIRE

    Rajakannu Amuthakkannan

    2014-01-01

    In the present scenario, more number of software based mechanical systems are coming with advanced technologies like embedded system control or computer system control for various industrial applications. Mechatronics is a popular technology in the evolutionary process of modern engineering automation system design. The ineffective parameter design in software based mechatronics system may produce the severe consequences in the application field, even there is a chance of accidents. So, caref...

  15. Predictive Models for Different Roughness Parameters During Machining Process of Peek Composites Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mata-Cabrera Francisco

    2013-10-01

    Full Text Available Polyetheretherketone (PEEK composite belongs to a group of high performance thermoplastic polymers and is widely used in structural components. To improve the mechanical and tribological properties, short fibers are added as reinforcement to the material. Due to its functional properties and potential applications, it’s impor- tant to investigate the machinability of non-reinforced PEEK (PEEK, PEEK rein- forced with 30% of carbon fibers (PEEK CF30, and reinforced PEEK with 30% glass fibers (PEEK GF30 to determine the optimal conditions for the manufacture of the parts. The present study establishes the relationship between the cutting con- ditions (cutting speed and feed rate and the roughness (Ra , Rt , Rq , Rp , by develop- ing second order mathematical models. The experiments were planned as per full factorial design of experiments and an analysis of variance has been performed to check the adequacy of the models. These state the adequacy of the derived models to obtain predictions for roughness parameters within ranges of parameters that have been investigated during the experiments. The experimental results show that the most influence of the cutting parameters is the feed rate, furthermore, proved that glass fiber reinforcements produce a worse machinability.

  16. Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters

    Science.gov (United States)

    Caricato, A. P.; Leggieri, G.; Martino, M.; Vantaggiato, A.; Valerini, D.; Cretì, A.; Lomascolo, M.; Manera, M. G.; Rella, R.; Anni, M.

    2010-12-01

    Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran—THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70±20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.

  17. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  18. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  19. Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic).

    Science.gov (United States)

    Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta

    2016-12-01

    The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.

  20. TD-DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10-hydroxybenzo[h]quinoline: Topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-01-01

    Here, we report a Density Functional Theoretical (DFT) study on the photophysics of a potent Excited-State Intramolecular Proton Transfer (ESIPT) molecular system, viz., 10-hydroxybenzo[h]quinoline (HBQ). Particular emphasis has been rendered on the assessment of the proton transfer reaction in HBQ in the ground and excited-states through elucidation and a careful perusal of the potential energy surfaces (PES). The non-viability of Ground-State Intramolecular Proton Transfer (GSIPT) process is dictated by a high-energy barrier coupled with no energy minimum for the proton transferred (K-form) form at the ground-state (S 0 ) PES. Remarkable reduction of the barrier along with thermodynamic stability inversion between the enol (E-form) and the keto forms (K-form) of HBQ upon photoexcitation from S 0 to the S 1 -state advocate for the operation of ESIPT process. These findings have been cross-validated on the lexicon of analysis of optimized geometry parameters, Mulliken's charge distribution on the heavy atoms, and molecular orbitals (MO) of the E- and the K-forms of HBQ. Our computational results also corroborate to experimental observations. From the modulations in optimized geometry parameters in course of the PT process a critical assessment has been endeavoured to delve into the movement of the proton during the process. Additional stress has been placed on the analysis of the intramolecular hydrogen bonding (IMHB) interaction in HBQ. The IMHB interaction has been explored by calculation of electron density ρ(r) and the Laplacian ∇ 2 ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and by calculation of interaction between σ* of OH with the lone pair of the nitrogen atom using Natural Bond Orbital (NBO) analysis. - Highlights: → Theoretical modelling of the photophysics of an ESIPT probe 10-hydroxybenzo[h]quinoline (HBQ). → Calculation of intramolecular hydrogen bond (IMHB) energy. → Role of hyperconjugative charge transfer

  1. Effect of electroerosion grinding parameters on surface quality of cylindrical pieces out of tungsten monocrystals

    International Nuclear Information System (INIS)

    Zolotykh, B.N.; Marchuk, A.I.; Nikiforov, S.V.; Serdobov, B.F.; Yakunkin, M.M.

    1978-01-01

    Experimental data are presented on the examination of the electroerosion grinding of cylindrical parts made up of tungsten single crystals. Special attention has been paid to a comparative analysis of the influence of the electroerosion cutting out and grinding on the quality characteristics of a surface. The surface quality was assessed according to a widening of the X-ray emission line (110) by means of round diffraction patterns and by the metallographic method. It is shown that the microdistortions after the electroerosion grinding are considerably greater than those resulting from the electroerosion cutting out; however, after the electroerosion grinding the number of microcracks is considerably smaller. The experimental results obtained underwent a theoretical analysis within the framework of the Mitchell-Rockswell-Hirsch dislocation theory of failure of space-centered single crystals

  2. Hyper fast radiative transfer for the physical retrieval of surface parameters from SEVIRI observations

    International Nuclear Information System (INIS)

    Liuzzi, G; Masiello, G; Serio, C; Blasi, M G; Venafra, S

    2015-01-01

    This paper describes the theoretical aspects of a fast scheme for the physical retrieval of surface temperature and emissivity from SEVIRI data, their implementation and some sample results obtained. The scheme is based on a Kalman Filter approach, which effectively exploits the temporal continuity in the observations of the geostationary Meteosat Second Generation (MSG) platform, on which SEVIRI (Spinning Enhanced Visible and InfraRed Imager) operates. Such scheme embodies in its core a physical retrieval algorithm, which employs an hyper fast radiative transfer code highly customized for this retrieval task. Radiative transfer and its customizations are described in detail. Fastness, accuracy and stability of the code are fully documented for a variety of surface features, showing a peculiar application to the massive Greek forest fires in August 2007. (paper)

  3. Spectral and parameter estimation problems arising in the metrology of high performance mirror surfaces

    International Nuclear Information System (INIS)

    Church, E.L.; Takacs, P.Z.

    1986-04-01

    The accurate characterization of mirror surfaces requires the estimation of two-dimensional distribution functions and power spectra from trend-contaminated profile measurements. The rationale behind this, and our measurement and processing procedures, are described. The distinction between profile and area spectra is indicated, and since measurements often suggest inverse-power-law forms, a discussion of classical and fractal models of processes leading to these forms is included. 9 refs

  4. Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations

    Science.gov (United States)

    Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-08-01

    TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.

  5. Geometric Parameters of Cutting Tools that Can be Used for Forming Sided Surfaces with Variable Profile

    Directory of Open Access Journals (Sweden)

    Razumov M.

    2017-03-01

    Full Text Available This article describes machining technology of polyhedral surfaces with varying profile, which is provided by planetary motion of multiblade block tools. The features of the technology and urgency of the problem is indicated. The purpose of the study is to determine the minimum value of the clearance angle of the tool. Also, the study is carried out about changing the value of the front and rear corners during the formation of polygonal surface using a planetary gear. The scheme of calculating the impact of various factors on the value of the minimum clearance angle of the tool and kinematic front and rear corners of the instrument is provided. The mathematical formula for calculating the minimum clearance angle of the tool is given. Also, given the formula for determining the front and rear corners of the tool during driving. This study can be used in the calculation of the design operations forming multifaceted external surfaces with a variable profile by using the planetary gear.

  6. Associations between motor unit action potential parameters and surface EMG features.

    Science.gov (United States)

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit

  7. New techniques for improved performance in surface blasting operation and optimisation of blast design parameters

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.P. [Central Mining Research Institute, Dhanbad (India). Blasting Dept.

    1999-02-01

    Experimental blasts were conducted for optimisation of blasting parameters using separate technologies involving non-electric initiation systems, air decking accessories in conjunction with different explosive products like emulsion (cartridge and site-mixed), slurries (cartridge and site-mixed) and ANFO. The cost associated with each such technology was then compared with the conventional methods of drilling and blasting operations. The results of cost analyses are given. Theoretical and practical aspects of such technologies and their best possible usage in order to establish the desired fragmentation, muck profile, wall control and ultimately the accepted level of costs are mentioned in subsequent sections. 16 refs., 17 figs., 8 plates, 11 tabs.

  8. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej, E-mail: maciej.sowa@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Woszczak, Maja; Kazek-Kęsik, Alicja [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Dercz, Grzegorz [Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1A, 41-500 Chorzów (Poland); Korotin, Danila M. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Zhidkov, Ivan S. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Kurmaev, Ernst Z. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Basiaga, Marcin [Faculty of Biomedical Engineering, Silesian University of Technology, Gen. de Gaulle’a Street 66, 41-800 Zabrze (Poland); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2017-06-15

    Highlights: • 2-step plasma electrolytic oxidation (PEO) of tantalum was investigated. • PEO coatings surface composition were reflected by the composition of anodizing baths. • Hydrophobic surfaces were obtained from acetate and formate containing baths. • Bioactive phases were identified. - Abstract: This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm{sup −2}) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H{sub 2}PO{sub 2}){sub 2} solution, which was then modified by the addition of 1.15 M Ca(HCOO){sub 2} as well as 1.15 M and 1.5 M Mg(CH{sub 3}COO){sub 2}. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO{sup −} and CH{sub 3}COO{sup −} ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  9. Peeling back the lithosphere: Controlling parameters, surface expressions and the future directions in delamination modeling

    Science.gov (United States)

    Göğüş, Oğuz H.; Ueda, Kosuke

    2018-06-01

    Geodynamical models investigate the rheological and physical properties of the lithosphere that peels back (delaminates) from the upper-middle crust. Meanwhile, model predictions are used to relate to a set of observations in the geological context to the test the validity of delamination. Here, we review numerical and analogue models of delamination from these perspectives and provide a number of first-order topics which future modeling studies may address. Models suggest that the presence of the weak lower crust that resides between the strong mantle lithosphere (at least 100 times more viscous/stronger) and the strong upper crust is necessary to develop delamination. Lower crustal weakening may be induced by melt infiltration, shear heating or it naturally occurs through the jelly sandwich type strength profile of the continental lithosphere. The negative buoyancy of the lithosphere required to facilitate the delamination is induced by the pre-existing ocean subduction and/or the lower crustal eclogitization. Surface expression of the peeling back lithosphere has a distinct transient and migratory imprint on the crust, resulting in rapid surface uplift/subsidence, magmatism, heating and shortening/extension. New generation of geodynamical experiments can explain how different types of melting (e.g hydrated, dry melting) occurs with delamination. Reformation of the lithosphere after removal, three dimensional aspects, and the termination of the process are key investigation areas for future research. The robust model predictions, as with other geodynamic modeling studies should be reconciled with observations.

  10. Quantifying the Contributions of Environmental Parameters to Ceres Surface Net Radiation Error in China

    Science.gov (United States)

    Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.

    2018-04-01

    Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.

  11. Aero-thermal optimization of film cooling flow parameters on the suction surface of a high pressure turbine blade

    Science.gov (United States)

    El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid

    2012-11-01

    This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.

  12. Hourly to Decadal variability of sea surface carbon parameters in the north western Mediteranean Sea

    Science.gov (United States)

    Boutin, Jacqueline; Merlivat, Liliane; Antoine, David; Beaumont, Laurence; Golbol, Melek; Velluci, Vincenzo

    2017-04-01

    Sea surface CO2 fugacity, fCO2, is recorded hourly in the north western Mediterranean Sea since 2013 by two CARIOCA (Carbon Interface Ocean Atmosphere) sensors installed on the BOUSSOLE (Buoy for the acquisition of long term optical time series, http://www.obs-vlfr.fr/Boussole/html/project/introduction.php) mooring at 3m and 10m depth. fCO2 exhibits a large seasonal cycle, about 150 microatm peak to peak, very consistent with earlier CARIOCA measurements taken in 1995-1999 at the DYFAMED site (located 6km apart from the BOUSSOLE mooring) (Hood and Merlivat, JMR, 2001; Copin-Montegut et al., Mar. Chem., 2004): this seasonal cycle is driven primarily by intense mixing in Winter, biological uptake during Spring and warming during Summer. Interannual variability of these processes leads to interannual variability of monthly mean fCO2 that can reach more than 20 microatm. The short term variability (1 hour to 1 week) is large, especially during Summer 2014 (more than 40 microatm) due to a very strong vertical stratification and to the influence of internal waves. The hourly CARIOCA measurements allow to correctly filter out the high frequency variability while the three year long time series allow to smooth out interannual variability. Hence, for the first time, we get a precise estimate of the change of fCO2 in surface waters within 20 years. Over the 1995-2015 interval, we estimate an increase of fCO2 computed at a constant temperature of 13˚ C equal to 1.8 microatm per year. Given the alkalinity/salinity relationship in this region, we estimate mean annual rates of change of -0.0023+/-0.0001 pH unit and of +1.47+/-0.03 μmol kg-1 for pH and DIC respectively. These results give a quantitative estimate of the penetration of anthropogenic carbon in the surface waters of the northwestern Mediterranean Sea, about 80% via air-sea exchange and 20% via transport of carbon from the Atlantic across the Strait of Gibraltar as suggested by Palmieri et al (BG, 2015). We estimate

  13. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ANILÚ MIRANDA-MEDINA

    2018-03-01

    Full Text Available Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these flavonoids, an optimization was performed using a Box-Behnken experimental design and response surface methodology (RSM. Three levels of ethanol concentration, temperature and solid-solvent ratio (SSR were investigated. The optimization model showed that with 96 % EtOH, 65 °C, and 1:50 SSR, the highest anthocyanin concentration of 150 mg/100 g was obtained.

  14. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    Science.gov (United States)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  15. Observations of the atmospheric surface layer parameters during the total solar eclipse of March 29th, in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Founda, Dimitra; Lykoudis, Spyridon; Psiloglou, Basil E.; Petrakis, Michael; Zerefos, Christos [Inst. for Environmental Research and Sustainable Development, National Observatory of Athens (Greece)

    2009-10-15

    This study examines the effect of the total solar eclipse of March 29{sup th} 2006, on some parameters of the atmospheric surface layer. The eclipse effects on the mean, but also turbulent parameters of the wind were studied at Kastelorizo, a small island of southeastern Greece situated within the totality path of the eclipse. Although the eclipse effect on the mean flow was partly masked by the synoptic situation, the analysis of the intensive (high frequency) wind measurements showed a decrease of the turbulent processes with reduced values of the turbulent kinetic energy and shear stress for a short period around the maximum phase of the eclipse. The buoyancy flux decreased by one order of magnitude during the phenomenon. The power spectra of the three wind components were found to be lower by almost one order of magnitude near the total phase when compared to spectra after the end of the eclipse. (orig.)

  16. Parameter estimation of a two-horizon soil profile by combining crop canopy and surface soil moisture observations using GLUE

    Science.gov (United States)

    Sreelash, K.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Guérif, M.; Buis, S.; Durand, P.; Gascuel-Odoux, C.

    2012-08-01

    SummaryEstimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to

  17. IEP as a parameter characterizing the pH-dependent surface charging of materials other than metal oxides.

    Science.gov (United States)

    Kosmulski, Marek

    2012-01-01

    The numerical values of points of zero charge (PZC, obtained by potentiometric titration) and of isoelectric points (IEP) of various materials reported in the literature have been analyzed. In sets of results reported for the same chemical compound (corresponding to certain chemical formula and crystallographic structure), the IEP are relatively consistent. In contrast, in materials other than metal oxides, the sets of PZC are inconsistent. In view of the inconsistence in the sets of PZC and of the discrepancies between PZC and IEP reported for the same material, it seems that IEP is more suitable than PZC as the unique number characterizing the pH-dependent surface charging of materials other than metal oxides. The present approach is opposite to the usual approach, in which the PZC and IEP are considered as two equally important parameters characterizing the pH-dependent surface charging of materials other than metal oxides. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis.

    Science.gov (United States)

    Cao, Wenhong; Zhang, Chaohua; Hong, Pengzhi; Ji, Hongwu

    2008-07-01

    Protein hydrolysates were prepared from the head waste of Penaens vannamei, a China seawater major shrimp by autolysis method. Autolysis conditions (viz., temperature, pH and substrate concentration) for preparing protein hydrolysates from the head waste proteins were optimized by response surface methodology (RSM) using a central composite design. Model equation was proposed with regard to the effect of temperature, pH and substrate concentration. Substrate concentration at 23% (w/v), pH at 7.85 and temperature at 50°C were found to be the optimal conditions to obtain a higher degree of hydrolysis close to 45%. The autolysis reaction was nearly finished in the initial 3h. The amino acid compositions of the autolysis hydrolysates prepared using the optimized conditions in different time revealed that the hydrolysates can be used as a functional food ingredient or flavor enhancer. Endogenous enzymes in the shrimp heads had a strong autolysis capacity (AC) for releasing threonine, serine, valine, isoleucine, tyrosine, histidine and tryptophan. Endogenous enzymes had a relatively lower AC for releasing cystine and glycine. Copyright © 2008. Published by Elsevier Ltd.

  19. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    Science.gov (United States)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  20. Investigation of siting parameters for near surface disposal of low-level nuclear waste. Final report

    International Nuclear Information System (INIS)

    Schell, W.R.; Sanchez, A.L.; Thomas, E.D.

    1985-01-01

    A study was initiated in April 1984 to evaluate actual problems associated with and to recommend improvements for near surface disposal of low-level radioactive wastes in the State of Pennsylvania and the humid Northeast. The results of field measurements showed some vertical transport of 137 Cs and other fallout radionuclides in 210 Pb dated peat cores from the unsaturated zone. Under the natural acid rain conditions (pH 4.0), the most mobile radionuclide, 137 Cs, gave diffusion coefficients of 10 -7 to 10 -9 cm 2 /sec in the different organic rich soils. Both the upward and downward migration of radionuclides resulted from the hydrological cycle of evapotranspiration and precipitation which gave diffusive mixing of mobile radionuclides. The distribution coefficient, K/sub d/ values, for several radionuclides in the organic rich soils were found to be equal to or greater than those measured previously for inorganic clay and sediment matrices. To insure that radionuclides do not enter water supplies in the humid Northeast where pH 4.0 rain is encountered, a peat liner should be considered in the multibarrier design of repositories. 32 refs., 16 figs., 8 tabs

  1. Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior

    Directory of Open Access Journals (Sweden)

    Ariba Siddiqi

    2016-01-01

    Full Text Available Age-related neuromuscular change of Tibialis Anterior (TA is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD as suitable features to identify age-associated changes in the surface electromyogram (sEMG. Eighteen younger (20–30 years and 18 older (60–85 years cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG’s maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes.

  2. Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior.

    Science.gov (United States)

    Siddiqi, Ariba; Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant

    2016-01-01

    Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20-30 years) and 18 older (60-85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG's maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes.

  3. Excitation system testing in HPP 'Uvac'

    Directory of Open Access Journals (Sweden)

    Milojčić Nemanja

    2011-01-01

    Full Text Available The excitation system of hydro unit in HPP 'Uvac' and results of testings of excitation system performed for achieving of unit's mathematical model are presented in this paper. Description of excitation system equipment, parameters of regulators and results obtained after testings are presented. The presented results showed that the regulators are properly adjusted and that the excitation system is completely functional and reliable.

  4. ANALYSIS OF THE INTRA-CITY VARIATION OF URBAN HEAT ISLAND AND ITS RELATION TO LAND SURFACE/COVER PARAMETERS

    Directory of Open Access Journals (Sweden)

    D. Gerçek

    2016-06-01

    Full Text Available Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI, imperviousness (NDISI, albedo, solar insolation, Sky View Factor (SVF, building

  5. Analysis of the Intra-City Variation of Urban Heat Island and its Relation to Land Surface/cover Parameters

    Science.gov (United States)

    Gerçek, D.; Güven, İ. T.; Oktay, İ. Ç.

    2016-06-01

    Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope

  6. Fermi surfaces, spin-mixing parameter, and colossal anisotropy of spin relaxation in transition metals from ab initio theory

    Science.gov (United States)

    Zimmermann, Bernd; Mavropoulos, Phivos; Long, Nguyen H.; Gerhorst, Christian-Roman; Blügel, Stefan; Mokrousov, Yuriy

    2016-04-01

    The Fermi surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by ab initio calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [B. Zimmermann et al., Phys. Rev. Lett. 109, 236603 (2012), 10.1103/PhysRevLett.109.236603]. We analyze in detail the origin of the gigantic anisotropy in 5 d hcp metals as compared to 5 d cubic metals by band structure calculations and discuss the stability of our results against an applied magnetic field. We further present calculations of light (4 d and 3 d ) hcp crystals, where we find a huge increase of the EYP anisotropy, reaching colossal values as large as 6000 % in hcp Ti. We attribute these findings to the reduced strength of spin-orbit coupling, which promotes the anisotropic spin-flip hot loops at the Fermi surface. In order to conduct these investigations, we developed an adapted tetrahedron-based method for the precise calculation of Fermi surfaces of complicated shape and accurate Fermi-surface integrals within the full-potential relativistic Korringa-Kohn-Rostoker Green function method.

  7. Effects of chlorine and other water quality parameters on the release of silver nanoparticles from a ceramic surface.

    Science.gov (United States)

    Bielefeldt, Angela R; Stewart, Michael W; Mansfield, Elisabeth; Scott Summers, R; Ryan, Joseph N

    2013-08-01

    A quartz crystal microbalance was used to determine the effects of different water quality parameters on the detachment of silver nanoparticles from surfaces representative of ceramic pot filters (CPFs). Silver nanoparticles stabilized with casein were used in the experiments. The average hydrodynamic diameter of the nanoparticles ranged from 20 nm to 100 nm over a pH range of 6.5-10.5. The isoelectric point was about 3.5 and the zeta potential was -45 mV from pH 4.5 to 9.5. The silver nanoparticles were deposited onto silica surfaces and a quartz crystal microbalance was used to monitor silver release from the surface. At environmentally relevant ranges of pH (4.8-9.3), ionic strength (0 and 150 mol/m(3) NaNO3 or 150 mol/m(3) Ca(NO3)2), and turbidity (0 and 51.5 NTU kaolin clay), the rates of silver release were similar. A high concentration of sodium chloride and bacteria (Echerichia coli in 10% tryptic soy broth) caused rapid silver release. Water containing sodium hypochlorite removed 85% of the silver from the silica surface within 3 h. The results suggest that contact between CPFs and prechlorinated water or bleach CPF cleaning should be avoided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Elucidating the role of surface passivating ligand structural parameters in hole wave function delocalization in semiconductor cluster molecules.

    Science.gov (United States)

    Teunis, Meghan B; Nagaraju, Mulpuri; Dutta, Poulami; Pu, Jingzhi; Muhoberac, Barry B; Sardar, Rajesh; Agarwal, Mangilal

    2017-09-28

    This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) 34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS 2 - ), carboxylate (-COO - ), and amine (-NH 2 )], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) 34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.

  9. [Chlorine coatings on skin surfaces. II. Parameters influencing the coating strength].

    Science.gov (United States)

    Gottardi, W; Karl, A

    1991-05-01

    Although active chlorine compounds have been used for more than 140 years (Semmelweis, 1848) as a skin disinfectant the phenomenon of the "chlorine covers" not earlier than 1988 has been described for the first time (Hyg. + Med. 13 (1988) 157). It deals with a chemical alteration of the uppermost skin layer which comes apparent in an oxydizing action against aqueous iodide. Its origin is chlorine covalently bound in the form of N-Cl functions to the protein matrix of the horny skin. Since the chlorine covers exhibit a persistant disinfecting activity which might be important for practice, the factors influencing their strength have been established. The most important are: the kind of the chlorine system, the concentration (oxydation capacity), pH, temperature and the volume of the used solution, the time of action, the application technique and the state of the skin. Variations of the latter can be observed at different skin areas of one and the same person as well as at the same areas of different persons, and result in differences of the cover strength up to 100%. The stability on dry skin is very good, showing a decomposition rate of approximately 1.2% per hour. However on skin surfaces moistened by sweat (e.g. hands covered by surgeons gloves) the chlorine cover is disingrated much more faster (decomposition rate: 40-50% per hour). Washing with soap as well as the action of alcohols cause virtually no decrease in the cover strength, while wetting by solutions of reducing agents (e.g. thiosulfate, cysteine, iodide) provokes a fast decomposition suitable for removing the chlorine covers.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Optimization of Process Parameters for ε-Polylysine Production by Response Surface Methods

    Directory of Open Access Journals (Sweden)

    Maxiaoqi Zhu

    2016-01-01

    Full Text Available ε-Polylysine (ε-PL is a highly safe natural food preservative with a broad antimicrobial spectrum, excellent corrosion resistances, and great commercial potentials. In the present work, we evaluated the ε-PL adsorption performances of HZB-3B and D155 resins and optimized the adsorption and desorption conditions by single-factor test, response surface method, and orthogonal design. The complexes of resin and ε-PL were characterized by SEM and FITR. The results indicated that D155 resin had the best ε-PL adsorption performance and was selected for the separation and purification of ε-PL. The conditions for the static adsorption of ε-PL on D155 resin were optimized as follows: ε-PL solution 40 g/L, pH 8.5, resins 15 g/L, and absorption time 14 h. The adsorption efficiency of ε-PL under the optimal conditions was 96.84%. The ε-PL adsorbed on the D155 resin was easily desorbed with 0.4 mol/L HCl at 30°C in 10 h. The highest desorption efficiency was 97.57% and the overall recovery of ε-PL was 94.49% under the optimal conditions. The excellent ε-PL adsorption and desorption properties of D155 resin including high selectivity and adsorption capacity, easy desorption, and high stability make it a good candidate for the isolation of ε-PL from fermentation broths.

  11. Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.

    Science.gov (United States)

    Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M

    2017-11-22

    The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in

  12. Effect of various physical parameters on surface and build-up dose for 15-MV X-rays

    International Nuclear Information System (INIS)

    Yadav, Girigesh; Yadav, R.S.; Kumar, Alok

    2010-01-01

    The purpose of this study was to find out the effect of various physical parameters on the skin and build-up doses of 15-MV photon beams. The effects of field dimensions, acrylic shadow tray, focus to-skin distance (FSD) on surface and buildup dose were determined for open, motorized 60 deg wedge (MW) and blocked fields. A 'Markus' plane parallel plate chamber was used for these measurements in an Elekta (6-15MV) linear accelerator. The surface dose for MW fields was lower than the dose for an open field, but the trend reversed for large fields and higher degree wedges. With the use of an acrylic shadow tray, the surface dose increased for all field sizes, but the increase was dominant for large fields. The surface dose for blocked fields was lower than the dose for open fields. The percentage depth dose of 10 x 10 cm 2 field at surface (PDD 0 ) for open beam were 13.89%, 11.71%, and 10.74% at 80 cm, 100 cm, and 120 cm FSD, respectively. The blocking tray increased PDD 0 of 10 x 10 cm 2 field to 26.29%, 14.01%, and 11.53%, while the motorized 60 deg wedge decreased PDD 0 to 11.32%, 9.7%, and 8.9 % at these FSDs. The maximum PDD difference seen at surface (i.e. skin) for 5x5 cm 2 , 15x15 cm 2 , and 30x30 cm 2 are 0.5%, 4.6%, and 5.6% for open field and 0.9%, 4.7%, and 7.2% for motorized 60 deg wedge field, when FSDs varied from 80 cm to 120 cm. The maximum PDD difference seen at surface for 5x5 cm 2 , 15x15 cm 2 , and 30x30 cm 2 fields are 5.6%, 22.8%, and 29.6%, respectively, for a 1.0-cm perspex-blocking tray as the FSD is changed. The maximum PDD difference was seen at the surface (i.e. skin) and this decreased with increasing depth. (author)

  13. Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites

    International Nuclear Information System (INIS)

    Sutton, J.L.; Leovy, C.B.; Tillman, J.E.

    1978-01-01

    Wind speed, ambient and surface temperatures from both Viking Landers have been used to compute bulk Richardson numbers and Monin-Obukhov lengths during the earliest phase of the Mars missions. These parameters are used to estimate drag and heat transfer coefficients, friction velocities and surface heat fluxes at the two sites. The principal uncertainty is in the specification of the roughness length. Maximum heat fluxes occur near local noon at both sites, and are estimated to be in the range 15--20 W m -2 at the Viking 1 site and 10--15 W m -2 at the Viking 2 site. Maximum values of friction velocity occur in late morning at Viking 1 and are estimated to be 0.4--0.6 m s -1 . They occur shortly after drawn at the Viking 2 site where peak values are estimated to be in the range 0.25--0.35 m s -1 . Extension of these calculations to later times during the mission will require allowance for dust opacity effects in the estimation of surface temperature and in the correction of radiation errors of the Viking 2 temperature sensor

  14. Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys

    Science.gov (United States)

    Ahuir-Torres, J. I.; Arenas, M. A.; Perrie, W.; de Damborenea, J.

    2018-04-01

    Laser texturing can be used for surface modification of metallic alloys in order to improve their properties under service conditions. The generation of textures is determined by the relationship between the laser processing parameters and the physicochemical properties of the alloy to be modified. In the present work the basic mechanism of dimple generation is studied in two alloys of technological interest, titanium alloy Ti6Al4V and aluminium alloy AA2024-T3. Laser treatment was performed using a pulsed solid state Nd: Vanadate (Nd: YVO4) laser with a pulse duration of 10 ps, operating at a wavelength of 1064 nm and 5 kHz repetition rate. Dimpled surface geometries were generated through ultrafast laser ablation while varying pulse energy between 1 μJ and 20 μJ/pulse and with pulse numbers from 10 to 200 pulses per spot. In addition, the generation of Laser Induced Periodic Surface Structures (LIPSS) nanostructures in both alloys, as well as the formation of random nanostructures in the impact zones are discussed.

  15. Influence of Selective Laser Melting Processing Parameters of Co-Cr-W Powders on the Roughness of Exterior Surfaces

    Science.gov (United States)

    Baciu, M. A.; Baciu, E. R.; Bejinariu, C.; Toma, S. L.; Danila, A.; Baciu, C.

    2018-06-01

    Selective Laser Melting (SLM) represents an Additive Manufacturing method widely used in medical practice, mainly in dental medicine. The powder of 59% Co, 25% Cr, 2.5% W alloy (Starbond CoS Powder 55, S&S Scheftner C, Germany) was processed (SLM) on a Realizer SLM 50 device (SLM Solution, Germany). After laser processing and simple sanding with Al2O3 or two-phase sanding (Al2O3 and glass balls), measurements of surface roughness were conducted. This paper presents the influences exercised by laser power (P = 60 W, 80 W and 100 W), the scanning speed (vscan = 333 mm/s, 500 mm/s and 1000 mm/s) and exposure time (te = 20 µs, 40 µs and 60 µs) on the roughness of surfaces obtained by SLM processing. Based on the experimental results obtained for roughness (Ra), some recommendations regarding the choice of favorable combinations among the values of technological parameters under study in order to obtain the surface quality necessary for subsequent applications of the processed parts (SLM) have been made.

  16. An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation

    International Nuclear Information System (INIS)

    Kim, Jung-Ha; Hill, Robin; Kuncic, Zdenka

    2012-01-01

    The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc/BEAMnrc MC codes, there are several user-specified parameters and customized transport algorithms, which may affect the calculation results. In order to fully utilize the MC methods available in these codes, it is essential to understand all these options and to use them appropriately. In this study, the effects of the electron transport algorithms in EGSnrc/BEAMnrc, which are often a trade-off between calculation accuracy and efficiency, were investigated in the buildup region of a homogeneous water phantom and also in a heterogeneous phantom using the DOSRZnrc user code. The algorithms and parameters investigated include: boundary crossing algorithm (BCA), skin depth, electron step algorithm (ESA), global electron cutoff energy (ECUT) and electron production cutoff energy (AE). The variations in calculated buildup doses were found to be larger than 10% for different user-specified transport parameters. We found that using BCA = EXACT gave the best results in terms of accuracy and efficiency in calculating buildup doses using DOSRZnrc. In addition, using the ESA = PRESTA-I option was found to be the best way of reducing the total calculation time without losing accuracy in the results at high energies (few keV ∼ MeV). We also found that although choosing a higher ECUT/AE value in the beam modelling can dramatically improve computation efficiency, there is a significant trade-off in surface dose uncertainty. Our study demonstrates that a careful choice of user-specified transport parameters is required when conducting similar MC calculations. (note)

  17. Influence of the "surface effect" on the segregation parameters of S in Fe(100): A multi-scale modelling and Auger Electron Spectroscopy study

    Science.gov (United States)

    Barnard, P. E.; Terblans, J. J.; Swart, H. C.

    2015-12-01

    The article takes a new look at the process of atomic segregation by considering the influence of surface relaxation on the segregation parameters; the activation energy (Q), segregation energy (ΔG), interaction parameter (Ω) and the pre-exponential factor (D0). Computational modelling, namely Density Functional Theory (DFT) and the Modified Darken Model (MDM) in conjunction with Auger Electron Spectroscopy (AES) was utilized to study the variation of the segregation parameters for S in the surface region of Fe(100). Results indicate a variation in each of the segregation parameters as a function of the atomic layer under consideration. Values of the segregation parameters varied more dramatically as the surface layer is approached, with atomic layer 2 having the largest deviations in comparison to the bulk values. This atomic layer had the highest Q value and formed the rate limiting step for the segregation of S towards the Fe(100) surface. It was found that the segregation process is influenced by two sets of segregation parameters, those of the surface region formed by atomic layer 2, and those in the bulk material. This article is the first to conduct a full scale investigation on the influence of surface relaxation on segregation and labelled it the "surface effect".

  18. The influence of the carbon surface chemical composition on Dubinin-Astakhov equation parameters calculated from SF{sub 6} adsorption data-grand canonical Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A [Department of Chemistry, Physicochemistry of Carbon Materials Research Group, N Copernicus University, Gagarin Street 7, 87-100 Torun (Poland); Kowalczyk, Piotr [Nanochemistry Research Institute, Curtin University, PO Box U1987, Perth, WA 6845 (Australia); Harris, Peter J F, E-mail: aterzyk@chem.uni.torun.pl [Centre for Advanced Microscopy, University of Reading, Whiteknights, Reading RG6 6AF (United Kingdom)

    2011-10-05

    Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF{sub 6} adsorption isotherm data cannot be used for characterization of the porosity. (paper)

  19. Enhancing Global Land Surface Hydrology Estimates from the NASA MERRA Reanalysis Using Precipitation Observations and Model Parameter Adjustments

    Science.gov (United States)

    Reichle, Rolf; Koster, Randal; DeLannoy, Gabrielle; Forman, Barton; Liu, Qing; Mahanama, Sarith; Toure, Ally

    2011-01-01

    The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\\-tERRA output for land surface hydrological studies.

  20. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  1. Identification of Control Parameters for Brass Player’s Embouchure by Measuring Contact Pressure on the Teeth Buccal Surface

    Science.gov (United States)

    Kourakata, Itaru; Moriyama, Kozo; Hara, Toshiaki

    For the technical improvement for brass instrument players it is important to obtain the detailed control parameters for embouchure building. While many investigators have reported the preliminary data on the muscle behavior, the precise aspects are unrevealed so far. The purpose of the present paper is to study dynamic perioral muscle behavior of French horn players and to investigate their lip valve function by measuring the contact pressure on teeth buccal surface during playing. It was shown from the experimental results that the advanced players contracted depressor angulioris and levator angulioris especially for high tone playing. It is considered that the combined contraction by these muscles contributes to forming smaller lip aperture being suitable to produce higher tones. Inversely a strong contraction of m. buccinator, which is widely believed to work to give hard tension to player’s lip, was observed insignificantly in the advanced players.

  2. Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L.

    Directory of Open Access Journals (Sweden)

    J. Prakash Maran

    2013-09-01

    Full Text Available In this study, a comparative approach was made between artificial neural network (ANN and response surface methodology (RSM to predict the mass transfer parameters of osmotic dehydration of papaya. The effects of process variables such as temperature, osmotic solution concentration and agitation speed on water loss, weight reduction, and solid gain during osmotic dehydration were investigated using a three-level three-factor Box-Behnken experimental design. Same design was utilized to train a feed-forward multilayered perceptron (MLP ANN with back-propagation algorithm. The predictive capabilities of the two methodologies were compared in terms of root mean square error (RMSE, mean absolute error (MAE, standard error of prediction (SEP, model predictive error (MPE, chi square statistic (χ2, and coefficient of determination (R2 based on the validation data set. The results showed that properly trained ANN model is found to be more accurate in prediction as compared to RSM model.

  3. Electronic parameters and top surface chemical stability of RbPb{sub 2}Br{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Principles for Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Tarasova, A.Yu. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer Bridgman growth of RbPb{sub 2}Br{sub 5} crystal. Black-Right-Pointing-Pointer Electronic structure measurements with XPS. Black-Right-Pointing-Pointer Optical crystalline surface fabrication. - Abstract: The RbPb{sub 2}Br{sub 5} crystal has been grown by Bridgman method. The electronic structure of RbPb{sub 2}Br{sub 5} has been measured with XPS for a powder sample. High chemical stability of RbPb{sub 2}Br{sub 5} surface is verified by weak intensity of O 1s core level recorded by XPS and structural RHEED measurements. Chemical bonding effects have been observed by the comparative analysis of element core levels and crystal structure of RbPb{sub 2}Br{sub 5} and several rubidium- and lead-containing bromides using binding energy difference parameters {Delta}{sub Rb} = (BE Rb 3d - BE Br 3d) and {Delta}{sub Pb} = (BE Pb 4f{sub 7/2} - BE Br 3d).

  4. Nox diffusion-simulation in an urban area in using the vertical diffusion diagram including a surface roughness parameter

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Hitoshi; Fujimoto, Akira; Nakano, Hiroshi

    1988-03-31

    In recent years, in order to attain a total quantity regulation of air pollution and to prepare a local air-control program, a diffusion simulation is often made using a Gaussian plume model. NOx diffusion simulation of the urban area was carried out using a vertical diffusion width by taking a parameter of ground-surface roughness using Smith's correction to the Gaussian model. For the diffusion of car exhaust gas, comparison was made for the estimate and the measurement by jointly using the values of ground-surface roughness and the initial diffusion width. As a result, change in the diffusion width of the car exhaust gas due to the urban buildings was expressed at a necessary practical level by giving the height of the point of calculation, 1 - 3 m in the central part and 30 cm at the peripheral part, and giving the initial diffusion width of roughly half to equal size of initial diffusion width to the average height of the buildings. (2 figs, 8 tabs, 20 refs)

  5. Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion.

    Science.gov (United States)

    Xu, Enbo; Pan, Xiaowei; Wu, Zhengzong; Long, Jie; Li, Jingpeng; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2016-12-01

    For the purpose of investigating the effect of enzyme concentration (EC), barrel temperature (BT), moisture content (MC), and screw speed (SS) on processing parameters (product temperature, die pressure and special mechanical energy (SME)) and product responses (extent of gelatinization (GE), retention rate of total phenolic content (TPC-RR)), rice flour extruded with thermostable α-amylase was analyzed by response surface methodology. Stepwise regression models were computed to generate response surface and contour plots, revealing that both TPC-RR and GE increased as increasing MC while expressed different sensitivities to BT during enzymatic extrusion. Phenolics preservation was benefited from low SME. According to multiple-factor optimization, the conditions required to obtain the target SME (10kJ/kg), GE (100%) and TPC-RR (85%) were: EC=1.37‰, BT=93.01°C, MC=44.30%, and SS=171.66rpm, with the actual values (9.49kJ/kg, 99.96% and 87.10%, respectively) showing a good fit to the predicted values. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  6. Sorption of phenol from synthetic aqueous solution by activated saw dust: Optimizing parameters with response surface methodology

    Directory of Open Access Journals (Sweden)

    Omprakash Sahu

    2017-12-01

    Full Text Available Organic pollutants have an adverse effect on the neighboring environment. Industrial activates are the major sources of different organic pollutants. These primary pollutants react with surrounding and forms secondary pollutant, which persists for a long time. The present investigation has been carried out on the surface of activated sawdust for phenol eliminations. The process parameters initial concentration, contact time, adsorbent dose and pH were optimized by the response surface methodology (RSM. The numerical optimization of sawdust (SD, initial concentration 10 mg/l, contact time 1.5 h, adsorbent dose 4 g and pH 2, the optimum response result was 78.3% adsorption. Analysis of variance (ANOVA was used to judge the adequacy of the central composite design and quadratic model found to be suitable. The coefficient of determination values was found to be maximum Adj R2 0.7223, and Pre R2 0.5739 and significant regression at 95% confidence level values.

  7. Excited state potential energy surfaces and their interactions in FeIV[double bond, length as m-dash]O active sites

    Czech Academy of Sciences Publication Activity Database

    Srnec, Martin; Wong, S. D.; Solomon, E. I.

    2014-01-01

    Roč. 43, č. 47 (2014), s. 17567-17577 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : excited state potential energy * chemical analysis * Frontier molecular orbitals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  8. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    International Nuclear Information System (INIS)

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Arain, Muhammad Balal; Afridi, Hassan Imran; Kandhro, Ghulam Abbas; Sarfraz, Raja Adil; Jamal, Muhammad Khan; Shah, Abdul Qadir

    2009-01-01

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 μg l -1 . Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 μg l -1 , respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 μg l -1 . The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na + , K + , and SO 4 2- were found to be higher in surface and ground water, while elevated levels of Ca 2+ and Cl - were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  9. Parameter optimization and evaluation of mechanical and thermal properties of nanographene reinforced Al 6060 surface composite using FSP

    Science.gov (United States)

    Kalyanamanohar, V.; Appalachari, D. Gireesh Chandra

    2018-04-01

    Friction stir processing (FSP) is emerging as a promising technique for making surface composites. FSP can improve surface properties such as hardness, strength, ductility, corrosion resistance, fatigue life and formability without affecting the bulk properties of the material. The literatures reported that FSP can produces very fine equiaxed and homogeneous grain structure for different Al alloys. Al 6060 is heat treatable alloy which has high thermal and electrical properties than remaining Al alloys. Al 6060 is being used where high rate of heat exchange is needed i.e. engine cylinders, heat exchangers etc. As derived from the carbon materials, like graphene and CNTs dissipates heat rapidly that improves the life of the engine cylinders and heat exchangers. In this work, nanographene is reinforced in the Al 6060 using friction stir processing at different rotational speeds, traverse speeds, and at constant load and tool tilt angle. After processed, the effect of process parameters on microstructure of the surface composite was investigated. The SEM studies shows that the FSP produces very fine and homogenous grain structure and it is observed that smaller grain size structure is obtained at lower traverse speed and higher rotational speeds. Significant improvement in ultimate tensile strength(22.9%) and hardness (22.44%) when compared friction stir processed plate at 1400 rotational speed and 20mm/min traverse speed with base Al 6060 plate. Coefficient of thermal expansion test of nanographene reinforced Al 6060 shows 7.33% decrease in its coefficient of thermal expansion as graphene has tendency to reduce the anisotropic nature.

  10. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_KU2004@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas, E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sarfraz, Raja Adil, E-mail: rajaadilsarfraz@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Jamal, Muhammad Khan, E-mail: mkhanjamali@yahoo.com [Government Degree College Usta Muhammad, Balochistan 08300 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2009-07-30

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 {mu}g l{sup -1}. Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 {mu}g l{sup -1}, respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 {mu}g l{sup -1}. The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na{sup +}, K{sup +}, and SO{sub 4}{sup 2-} were found to be higher in surface and ground water, while elevated levels of Ca{sup 2+} and Cl{sup -} were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  11. Impact of hydrogeological and geomechanical properties on surface uplift at a CO2 injection site: Parameter estimation and uncertainty quantification

    Science.gov (United States)

    Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.

    2013-12-01

    It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office

  12. State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2017-09-01

    Full Text Available Land surface models (LSMs use a large cohort of parameters and state variables to simulate the water and energy balance at the soil–atmosphere interface. Many of these model parameters cannot be measured directly in the field, and require calibration against measured fluxes of carbon dioxide, sensible and/or latent heat, and/or observations of the thermal and/or moisture state of the soil. Here, we evaluate the usefulness and applicability of four different data assimilation methods for joint parameter and state estimation of the Variable Infiltration Capacity Model (VIC-3L and the Community Land Model (CLM using a 5-month calibration (assimilation period (March–July 2012 of areal-averaged SPADE soil moisture measurements at 5, 20, and 50 cm depths in the Rollesbroich experimental test site in the Eifel mountain range in western Germany. We used the EnKF with state augmentation or dual estimation, respectively, and the residual resampling PF with a simple, statistically deficient, or more sophisticated, MCMC-based parameter resampling method. The performance of the calibrated LSM models was investigated using SPADE water content measurements of a 5-month evaluation period (August–December 2012. As expected, all DA methods enhance the ability of the VIC and CLM models to describe spatiotemporal patterns of moisture storage within the vadose zone of the Rollesbroich site, particularly if the maximum baseflow velocity (VIC or fractions of sand, clay, and organic matter of each layer (CLM are estimated jointly with the model states of each soil layer. The differences between the soil moisture simulations of VIC-3L and CLM are much larger than the discrepancies among the four data assimilation methods. The EnKF with state augmentation or dual estimation yields the best performance of VIC-3L and CLM during the calibration and evaluation period, yet results are in close agreement with the PF using MCMC resampling. Overall, CLM demonstrated the

  13. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra

    Science.gov (United States)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.

    2017-05-01

    This paper describes the second part of a series of investigation to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for 5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the sequential forward selection method, the common bands for different aerosol mixture types and surface types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90% of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance. However, the information content in these common bands from each TEMPO individual observation is insufficient for the simultaneous retrieval of surface's PC weight coefficients and multiple aerosol parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO in multiple consecutive days, 1-3 additional aerosol parameters could be retrieved. Consequently, a self-adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-consecutive observations is recommended to derive

  14. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    Science.gov (United States)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  15. Diagnostics of N2 Ar plasma mixture excited in a 13.56 MHz hollow cathode discharge system: application to remote plasma treatment of polyamide surface

    Science.gov (United States)

    Saloum, S.; Naddaf, M.; Alkhaled, B.

    2008-02-01

    N2-x% Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double Langmuir probe, as a function of experimental parameters: total pressure (5-33 Pa), and different fractions of argon (7 <= x <= 80), at a constant applied RF power of 300 W. N2 dissociation degree has been investigated qualitatively by both the actinometry method and the ratio I_N/I_{N_2} of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N2 second positive system at 337.1 nm. Both methods showed that the increase in argon fraction enhances the dissociation of N2, with a maximum at x = 50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of the N2 second positive system increases with both argon fraction and total pressure increase, it lies between 4900 and 12 300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N_{2}^{+} density varies between 5 × 109 and 1.4 × 1010 cm-3 and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide (PA) surface interaction, in the remote plasma zone, has been studied through OES analysis during plasma treatment of PA to monitor the possible emissions due to the polymer etching. An increase in atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from the CN (B 2Σ+-X 2Σ+) violet system were observed. The PA surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased.

  16. Diagnostics of N2-Ar plasma mixture excited in A 13.56 MHz hollow cathode discharge system: Application to remote plasma treatment of polyamide surface

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.; Al-khaled, B.

    2009-01-01

    N 2 -x % Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double langmuir probe, as a function of experimental parameters: Total pressure (5-33 Pa), and different fractions of argon (7≤ x ≤ 80), at a constant applied RF power of 300 W. N 2 dissociation degree has been investigated qualitatively by both actinometry method and the ratio of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N 2 second positive system at 337.1 nm. Both methods showed that the increase of argon fraction enhances the dissociation of N 2 , with a maximum at x=50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of N 2 second positive system increases with both argon fraction and total pressure increase, it lies between 4900 K and 12300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N 2 + density varies between 5.10 9 cm-3 and 1.4 10 10 cm -3 , and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide surface interaction, in the remote plasma zone, has been studied through optical emission spectroscopy analysis during plasma treatment of polyamide to monitor the possible emissions due to the polymer etching. An increase of atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from CN (B 2 Σ + -X 2 Σ + ) violet system were observed. The polyamide surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased. (author)

  17. Diagnostics of N2-Ar plasma mixture excited in a 13.56 MHz hollow cathode discharge system: application to remote plasma treatment of polyamide surface

    International Nuclear Information System (INIS)

    Saloum, S; Naddaf, M; Alkhaled, B

    2008-01-01

    N 2 -x% Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double Langmuir probe, as a function of experimental parameters: total pressure (5-33 Pa), and different fractions of argon (7 ≤ x ≤ 80), at a constant applied RF power of 300 W. N 2 dissociation degree has been investigated qualitatively by both the actinometry method and the ratio I N /I N 2 of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N 2 second positive system at 337.1 nm. Both methods showed that the increase in argon fraction enhances the dissociation of N 2 , with a maximum at x = 50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of the N 2 second positive system increases with both argon fraction and total pressure increase, it lies between 4900 and 12 300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N 2 + density varies between 5 x 10 9 and 1.4 x 10 10 cm -3 and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide (PA) surface interaction, in the remote plasma zone, has been studied through OES analysis during plasma treatment of PA to monitor the possible emissions due to the polymer etching. An increase in atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from the CN (B 2 Σ + -X 2 Σ + ) violet system were observed. The PA surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased

  18. Diagnostics of N{sub 2}-Ar plasma mixture excited in a 13.56 MHz hollow cathode discharge system: application to remote plasma treatment of polyamide surface

    Energy Technology Data Exchange (ETDEWEB)

    Saloum, S; Naddaf, M; Alkhaled, B [Atomic Energy Commission of Syria (AECS), Physics Department, PO Box 6091, Damascus (Syrian Arab Republic)], E-mail: scientific@aec.org.sy

    2008-02-21

    N{sub 2}-x% Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double Langmuir probe, as a function of experimental parameters: total pressure (5-33 Pa), and different fractions of argon (7 {<=} x {<=} 80), at a constant applied RF power of 300 W. N{sub 2} dissociation degree has been investigated qualitatively by both the actinometry method and the ratio I{sub N}/I{sub N{sub 2}} of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N{sub 2} second positive system at 337.1 nm. Both methods showed that the increase in argon fraction enhances the dissociation of N{sub 2}, with a maximum at x = 50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of the N{sub 2} second positive system increases with both argon fraction and total pressure increase, it lies between 4900 and 12 300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N{sub 2}{sup +} density varies between 5 x 10{sup 9} and 1.4 x 10{sup 10} cm{sup -3} and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide (PA) surface interaction, in the remote plasma zone, has been studied through OES analysis during plasma treatment of PA to monitor the possible emissions due to the polymer etching. An increase in atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from the CN (B {sup 2}{sigma}{sup +}-X {sup 2}{sigma}{sup +}) violet system were observed. The PA surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased.

  19. Nuclear wobbling-phonon excitations with alignments

    International Nuclear Information System (INIS)

    Hamamoto, I.

    2003-01-01

    Wobbling-phonon excitations, which are recently observed in 71 163 Lu 92 , are studied. The presence of alignments in nuclei makes it easier for wobbling excitations to appear at lower angular momenta of the yrast spectra. A family of rotational bands with wobbling excitations, which have nearly the same nuclear intrinsic structure, have been pinned down by observing specific electromagnetic decay properties between them. The triaxiality parameter γ = +20 deg. is obtained for the nuclear shape from measured E2 transition probabilities

  20. Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment

    Science.gov (United States)

    Hamedi, M. J.; Torkamany, M. J.; Sabbaghzadeh, J.

    2011-04-01

    Commercial titanium sheets pre-coated with 300-μm thick graphite layer were treated by employing a pulsed Nd:YAG laser in order to enhance surface properties such as wear and erosion resistance. Laser in-situ alloying method produced a composite layer by melting the titanium substrate and dissolution of graphite in the melt pool. Correlations between pulsed laser parameters, microstructure and microhardness of the synthesized composite coatings were investigated. Effects of pulse duration and overlapping factor on the microstructure and hardness of the alloyed layer were deduced from Vickers micro-indentation tests, XRD, SEM and metallographic analyses of cross sections of the generated layer. Results show that the composite cladding layer was constituted with TiC intermetallic phase between the titanium matrix in particle and dendrite forms. The dendritic morphology of composite layer was changed to cellular grain structure by increasing laser pulse duration and irradiated energy. High values of the measured hardness indicate that deposited titanium carbide increases in the conditions with more pulse duration and low process speed. This occurs due to more dissolution of carbon into liquid Ti by heat input increasing and positive influence of the Marangoni flow in the melted zone.

  1. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis.

    Science.gov (United States)

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing

    2011-01-01

    Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station

    Directory of Open Access Journals (Sweden)

    M. G. Manoj

    2011-03-01

    Full Text Available Atmospheric gravity waves, which are a manifestation of the fluctuations in buoyancy of the air parcels, are well known for their direct influence on concentration of atmospheric trace gases and aerosols, and also on oscillations of meteorological variables such as temperature, wind speed, visibility and so on. The present paper reports quasi-periodic oscillations in the lidar backscatter signal strength due to aerosol fluctuations in the nocturnal boundary layer, studied with a high space-time resolution polarimetric micro pulse lidar and concurrent meteorological parameters over a tropical station in India. The results of the spectral analysis of the data, archived on some typical clear-sky conditions during winter months of 2008 and 2009, exhibit a prominent periodicity of 20–40 min in lidar-observed aerosol variability and show close association with those observed in the near-surface temperature and wind at 5% statistical significance. Moreover, the lidar aerosol backscatter signal strength variations at different altitudes, which have been generated from the height-time series of the one-minute interval profiles at 2.4 m vertical resolution, indicate vertical propagation of these waves, exchanging energy between lower and higher height levels. Such oscillations are favoured by the stable atmospheric background condition and peculiar topography of the experimental site. Accurate representation of these buoyancy waves is essential in predicting the sporadic fluctuations of weather in the tropics.

  3. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    Science.gov (United States)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for

  4. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  5. Coherence between interannual variability of sea level with some surface met-ocean parameters at Cochin, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, K.

    for Cochin (southwest coast of India) using long term time series data. Among the parameters, SST, relative density and sea level showed statistically significant long term trends. All the parameters, when smoothed, showed statistically significant...

  6. Optimization of reaction parameters of radiation induced grafting of 1-vinylimidazole onto poly(ethylene-co-tetraflouroethene) using response surface method

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud, E-mail: mahmoudeithar@fkkksa.utm.my [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia); Aly, Amgad Ahmed; Saidi, Hamdani; Ahmad, Arshad [Institute of Hydrogen Economy, International Campus, Universiti Teknologi Malaysia, 54100 Kuala Lumpur (Malaysia)

    2011-11-15

    Radiation induced grafting of 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) was investigated. The grafting parameters such as absorbed dose, monomer concentration, grafting time and temperature were optimized using response surface method (RSM). The Box-Behnken module available in the design expert software was used to investigate the effect of reaction conditions (independent parameters) varied in four levels on the degree of grafting (G%) (response parameter). The model yielded a polynomial equation that relates the linear, quadratic and interaction effects of the independent parameters to the response parameter. The analysis of variance (ANOVA) was used to evaluate the results of the model and detect the significant values for the independent parameters. The optimum parameters to achieve a maximum G% were found to be monomer concentration of 55 vol%, absorbed dose of 100 kGy, time in the range of 14-20 h and a temperature of 61 {sup o}C. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate the properties of the obtained films and provide evidence for grafting. - Highlights: > A precursor for phosphoric acid membrane for a high temperature PEM fuel cell was prepared. > The grafting parameters for radiation induced grafting of 1-VIm onto ETFE film were optimized. > Surface response method was used to predict the degree of grafting. > The predicted value agreed well with the experimental data as indicated by a 3% deviation. > The number of the experiments and cost of radiation induced grafting were reduced.

  7. Impact of dielectric parameters on the reflectivity of 3C–SiC wafers with a rough surface morphology in the reststrahlen region

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Janzén, E.; Henry, A.; Rooyen, I.J. van

    2014-01-01

    A layer-on-substrate model is used to obtain the infrared reflectance for 3C–SiC with a rough surface morphology. The effect of varying dielectric parameters of the “damaged layer” on the observed reflectivity of the 3C–SiC in the reststrahlen region is assessed. Different simulated reflectance spectra are obtained to those if the dielectric parameters of the “substrate” were varied. Most notable changes in the shape of the simulated reststrahlen peak are observed for changes in the high frequency dielectric constant, the phonon damping constant, the phonon frequencies and “thickness” of damaged surface layer.

  8. Impact of dielectric parameters on the reflectivity of 3C–SiC wafers with a rough surface morphology in the reststrahlen region

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Janzén, E.; Henry, A. [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Rooyen, I.J. van [Fuel Performance and Design Department, Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2014-04-15

    A layer-on-substrate model is used to obtain the infrared reflectance for 3C–SiC with a rough surface morphology. The effect of varying dielectric parameters of the “damaged layer” on the observed reflectivity of the 3C–SiC in the reststrahlen region is assessed. Different simulated reflectance spectra are obtained to those if the dielectric parameters of the “substrate” were varied. Most notable changes in the shape of the simulated reststrahlen peak are observed for changes in the high frequency dielectric constant, the phonon damping constant, the phonon frequencies and “thickness” of damaged surface layer.

  9. Modeling of the effect of freezer conditions on the principal constituent parameters of ice cream by using response surface methodology.

    Science.gov (United States)

    Inoue, K; Ochi, H; Taketsuka, M; Saito, H; Sakurai, K; Ichihashi, N; Iwatsuki, K; Kokubo, S

    2008-05-01

    A systematic analysis was carried out by using response surface methodology to create a quantitative model of the synergistic effects of conditions in a continuous freezer [mix flow rate (L/h), overrun (%), cylinder pressure (kPa), drawing temperature ( degrees C), and dasher speed (rpm)] on the principal constituent parameters of ice cream [rate of fat destabilization (%), mean air cell diameter (mum), and mean ice crystal diameter (mum)]. A central composite face-centered design was used for this study. Thirty-one combinations of the 5 above-mentioned freezer conditions were designed (including replicates at the center point), and ice cream samples were manufactured and examined in a continuous freezer under the selected conditions. The responses were the 3 variables given above. A quadratic model was constructed, with the freezer conditions as the independent variables and the ice cream characteristics as the dependent variables. The coefficients of determination (R(2)) were greater than 0.9 for all 3 responses, but Q(2), the index used here for the capability of the model for predicting future observed values of the responses, was negative for both the mean ice crystal diameter and the mean air cell diameter. Therefore, pruned models were constructed by removing terms that had contributed little to the prediction in the original model and by refitting the regression model. It was demonstrated that these pruned models provided good fits to the data in terms of R(2), Q(2), and ANOVA. The effects of freezer conditions were expressed quantitatively in terms of the 3 responses. The drawing temperature ( degrees C) was found to have a greater effect on ice cream characteristics than any of the other factors.

  10. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    Science.gov (United States)

    Bharatish, A.; Soundarapandian, S.

    2018-04-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  11. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  12. Numerical simulation of the cavitation's hydrodynamic excitement

    International Nuclear Information System (INIS)

    Hassis, H.; Dueymes, E.; Lauro, J.F.

    1993-01-01

    First, we study the motion, the velocity, the phases plane and the acoustic sources associated to a spherical bubble in a compressible or incompressible medium. The bubble can be excited by periodic or random excitements. We study the parameters which influence their behaviour: periodicity or not of motion, implosion and explosion or oscillation of bubble. We take into account this behaviour in a model of cavitation: it is a numerical simulation using population of bubbles which are with positions (in the cavitation volume) and sizes are random. These bubbles are excited by a random excitement: a model of turbulent flow or implosion and explosion of bubble. (author)

  13. HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 x 1) Surface

    International Nuclear Information System (INIS)

    Ree, J.; Yoon, S. H.; Park, K. G.; Kim, Y. H.

    2004-01-01

    We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 x 1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond (vHSi = 0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond

  14. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    Science.gov (United States)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  15. Spectrochemical analysis using laser plasma excitation

    International Nuclear Information System (INIS)

    Radziemski, L.J.

    1989-01-01

    This paper reports on analyses of gases, liquids, particles, and surfaces in which laser plasma is used to vaporize and excite a material. The authors present a discussion of the interaction between laser radiation and a solid and some recent analytical results using laser plasma excitation on metals. The use of laser plasmas as an ablation source is also discussed

  16. Evolution of Excited Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Sugai, H.

    1984-01-01

    Convective cells are excited externally in a fully ionized magnetized plasma and their space-time evolution is investigated by two-dimensional potential measurements. A positive cell is excited externally by control of the end losses in the 'scrape off' layer of a plasma column produced by surface...

  17. Soliton excitation in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.

    1995-10-01

    Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs

  18. Application of Finite Element Method to Analyze the Influences of Process Parameters on the Cut Surface in Fine Blanking Processes by Using Clearance-Dependent Critical Fracture Criteria

    Directory of Open Access Journals (Sweden)

    Phyo Wai Myint

    2018-04-01

    Full Text Available The correct choice of process parameters is important in predicting the cut surface and obtaining a fully-fine sheared surface in the fine blanking process. The researchers used the value of the critical fracture criterion obtained by long duration experiments to predict the conditions of cut surfaces in the fine blanking process. In this study, the clearance-dependent critical ductile fracture criteria obtained by the Cockcroft-Latham and Oyane criteria were used to reduce the time and cost of experiments to obtain the value of the critical fracture criterion. The Finite Element Method (FEM was applied to fine blanking processes to study the influences of process parameters such as the initial compression, the punch and die corner radii and the shape and size of the V-ring indenter on the length of the sheared surface. The effects of stress triaxiality and punch diameters on the cut surface produced by the fine blanking process are also discussed. The verified process parameters and tool geometry for obtaining a fully-fine sheared SPCC surface are described. The results showed that the accurate and stable prediction of ductile fracture initiation can be achieved using the Oyane criterion.

  19. MOCVD growth and characterization of near-surface InGaN/GaN single quantum wells for non-radiative coupling of optical excitations

    DEFF Research Database (Denmark)

    Svensk, O.; Suihkonen, S.; Sintonen, S.

    2012-01-01

    We report a study of the structural and optical properties of near‐surface InGaN/GaN single quantum wells, grown by metalorganic chemical vapour deposition, as a function of underneath layer structure and GaN capping thickness. Special attention is paid to characterize properties which...... are important for non‐radiative coupling applications, such as emission intensity at peak wavelength and surface morphology. We observe that utilization of indium containing underneath structures results in high optical quality while increasing surface roughness. Optical performance can be further improved...

  20. PC-version of RAM6-code for calculation of parameters of the effective logarithmic boundary condition at the absorbent rod surface in reactor

    International Nuclear Information System (INIS)

    Le Van Ngoc; Ngo Dang Nhan

    1990-01-01

    The RAM-6 code for calculation of parameters of the effective logarithmic boundary condition at the absorbent rod surface in reactor is suitably modofied to work on IBM PC, the instructions for its usage are presented and capabilities of the personal cpmputer oriented RAM-6 code are demonstrated. (author). 4 refs, 5 tabs, 2 figs

  1. Selection of Levels of Dressing Process Parameters by Using TOPSIS Technique for Surface Roughness of En-31 Work piece in CNC Cylindrical Grinding Machine

    Science.gov (United States)

    Patil, Sanjay S.; Bhalerao, Yogesh J.

    2017-02-01

    Grinding is metal cutting process used for mainly finishing the automobile components. The grinding wheel performance becomes dull by using it most of times. So it should be reshaping for consistent performance. It is necessary to remove dull grains of grinding wheel which is known as dressing process. The surface finish produced on the work piece is dependent on the dressing parameters in sub-sequent grinding operation. Multi-point diamond dresser has four important parameters such as the dressing cross feed rate, dressing depth of cut, width of the diamond dresser and drag angle of the dresser. The range of cross feed rate level is from 80-100 mm/min, depth of cut varies from 10 - 30 micron, width of diamond dresser is from 0.8 - 1.10mm and drag angle is from 40o - 500, The relative closeness to ideal levels of dressing parameters are found for surface finish produced on the En-31 work piece during sub-sequent grinding operation by using Technique of Order Preference by Similarity to Ideal Solution (TOPSIS).In the present work, closeness to ideal solution i.e. levels of dressing parameters are found for Computer Numerical Control (CNC) cylindrical angular grinding machine. After the TOPSIS technique, it is found that the value of Level I is 0.9738 which gives better surface finish on the En-31 work piece in sub-sequent grinding operation which helps the user to select the correct levels (combinations) of dressing parameters.

  2. Experiences With an Optimal Estimation Algorithm for Surface and Atmospheric Parameter Retrieval From Passive Microwave Data in the Arctic

    DEFF Research Database (Denmark)

    Scarlat, Raul Cristian; Heygster, Georg; Pedersen, Leif Toudal

    2017-01-01

    is constrained using numerical weather prediction data in order to retrieve a set of geophysical parameters that best fit the measurements. A sensitivity study demonstrates the method is robust and that the solution it provides is not dependent on initialization conditions. The retrieval parameters have been...

  3. Effect of turning parameters on surface roughness of A356/5% SiC composite produced by electromagnetic stir casting

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, S. P.; Kumar, Sudhir; Kumar, Ajay [Noida Institute of Engineering Technology, U.P (India)

    2012-12-15

    In the present investigation, A356 alloy 5 wt% SiC composite is fabricated by electromagnetic stir casting process. An attempt has been made to investigate the effect of CNC lathe process parameters like cutting speed, depth of cut, and feed rate on surface roughness during machining of A356 alloy 5 wt% SiC particulate metal-matrix composites in dry condition. Response surface methodology (Box Behnken Method) is chosen to design the experiments. The results reveal that cutting speed increases surface roughness decreases, whereas depth of cut and feed increase surface roughness increase. Optimum values of speed (190 m/min), feed (0.14 mm/rev) and depth of cut (0.20 mm) during turning of A356 alloy 5 wt% SiC composites to minimize the surface roughness (3.15>m) have been find out. The mechanical properties of A356 alloy 5 wt% SiC were also analyzed.

  4. Investigation of the effect of cutting speed on the Surface Roughness parameters in CNC End Milling using Artificial Neural Network

    International Nuclear Information System (INIS)

    Al Hazza, Muataz H F; Adesta, Erry Y T

    2013-01-01

    This research presents the effect of high cutting speed on the surface roughness in the end milling process by using the Artificial Neural Network (ANN). An experimental investigation was conducted to measure the surface roughness for end milling. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted. The artificial neural network (ANN) was applied to simulate and study the effect of high cutting speed on the surface roughness

  5. Magnetic excitations in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Furdyna, J.K.; Liu, X.; Zhou, Y.Y.

    2009-01-01

    Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors

  6. An exciton approach to the excited states of two electron atoms. II Determination of spectroscopic parameters, polarizabilites and dispersion coefficients of H-, He, Li+, Be2+ and Ne8+

    International Nuclear Information System (INIS)

    Schipper, P.E.; Martire, B.

    1985-01-01

    The exciton model is applied quantitatively to a description of the excited states of representative members of the helium isoelectronic series; viz. H + , He, Li + , Be 2+ and Ne 8+ . The energies of the eight lowest excited states are in good agreement with experiment, for a relatively small (1s-4p) hydrogenic basis; the ground state is obtained with slightly less precision. Response properties including oscillator strengths, polarizabilites and dispersion interaction coefficients are also calculated. The method leads to particularly simple interpretations of the wave functions and the energies

  7. A method for sensible heat flux model parameterization based on radiometric surface temperature and environmental factors without involving the parameter KB-1

    Science.gov (United States)

    Zhuang, Qifeng; Wu, Bingfang; Yan, Nana; Zhu, Weiwei; Xing, Qiang

    2016-05-01

    Sensible heat flux is a key component of land-atmosphere interaction. In most parameterizations it is calculated with surface-air temperature differences and total aerodynamic resistance to heat transfer (Rae) that is related to the KB-1 parameter. Suitable values are hard to obtain since KB-1 is related both to canopy characteristics and environmental conditions. In this paper, a parameterize method for sensible heat flux over vegetated surfaces (maize field and grass land in the Heihe river basin of northwest China) was proposed based on the radiometric surface temperature, surface resistance (Rs) and vapor pressures (saturated and actual) at the surface and the atmosphere above the canopy. A biophysics-based surface resistance model was revised to compute surface resistance with several environmental factors. The total aerodynamic resistance to heat transfer is directly calculated by combining the biophysics-based surface resistance and vapor pressures. One merit of this method is that the calculation of KB-1 can be avoided. The method provides a new way to estimate sensible heat flux over vegetated surfaces and its performance compares well to the LAS measured sensible heat and other empirical or semi-empirical KB-1 based estimations.

  8. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  9. Excited charmed mesons

    International Nuclear Information System (INIS)

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one

  10. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  11. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected

  12. The Effect of Shoe Sole Tread Groove Depth on the Gait Parameters during Walking on Dry and Slippery Surface

    Directory of Open Access Journals (Sweden)

    M Ziaei

    2012-12-01

    Full Text Available Background: Prevention of slipping accidents requires provision of adequate friction through the use of suitable combinations of footwear and underfoot surfaces. Shoe sole tread groove is one of the important factors on friction coefficient during walking. Objective: To measure the effect of different shoe sole tread groove depths and different surfaces on the required quotient of friction (Q, heel strike velocity and occurrence time of ground reaction forces (GRF in stance phase during walking on slippery and dry surfaces. Methods: In this semi-experimental study, 22 healthy men were studied under different conditions. The studied independent variables were shoe groove depths (included 1, 2.5 and 5 mm and type of walking surface (dry and slippery. Biomechanical gait analysis was carried out with 396 single steps. Data were collected by motion analysis system and two force platform. Results: The occurrence time of GRF was significantly faster on dry surface than slippery surface (p<0.01. Q was significantly lower on slippery surface and with groove depths of 1 and 2.5 mm. The highest value of Q was observed with the deepest groove depth of 5 mm. Heel strike velocity did not differ significantly in the 6 conditions tested. Conclusion: Tread groove depth is a significant factor affecting the Q at the shoes-surface interface on dry and slippery floors. It seems that deeper groove is more appropriate for maintaining the stability during walking. The walking surface affects the occurrence time of GRF; the force components occur sooner on the dry than slippery surface.

  13. Excitation functions of parameters extracted from three-source (net-)proton rapidity distributions in Au-Au and Pb-Pb collisions over an energy range from AGS to RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Li-Na; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics, Taiyuan, Shanxi (China); Sun, Yan; Sun, Zhu [Shanxi Datong University, Department of Physics, Datong, Shanxi (China); Lacey, Roy A. [Stony Brook University, Departments of Chemistry and Physics, Stony Brook, NY (United States)

    2017-03-15

    Experimental results of the rapidity spectra of protons and net-protons (protons minus antiprotons) emitted in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions, measured by a few collaborations at the alternating gradient synchrotron (AGS), super proton synchrotron (SPS), and relativistic heavy ion collider (RHIC), are described by a three-source distribution. The values of the distribution width σ{sub C} and fraction k{sub C} of the central rapidity region, and the distribution width σ{sub F} and rapidity shift Δy of the forward/backward rapidity regions, are then obtained. The excitation function of σ{sub C} increases generally with increase of the center-of-mass energy per nucleon pair √(s{sub NN}). The excitation function of σ{sub F} shows a saturation at √(s{sub NN}) = 8.8 GeV. The excitation function of k{sub C} shows a minimum at √(s{sub NN}) = 8.8 GeV and a saturation at √(s{sub NN}) ∼ 17 GeV. The excitation function of Δy increases linearly with ln(√(s{sub NN})) in the considered energy range. (orig.)

  14. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study

    Science.gov (United States)

    Wylie, B.K.; Meyer, D.J.; Tieszen, L.L.; Mannel, S.

    2002-01-01

    Quantification of biophysical parameters is needed by terrestrial process modeling and other applications. A study testing the role of multispectral data for monitoring biophysical parameters was conducted over a network of grassland field sites in the Great Plains of North America. Grassland biophysical parameters [leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fPAR), and biomass] and their relationships with ground radiometer normalized difference vegetation index (NDVI) were established in this study (r2=.66–.85) from data collected across the central and northern Great Plains in 1995. These spectral/biophysical relationships were compared to 1996 field data from the Tallgrass Prairie Preserve in northeastern Oklahoma and showed no consistent biases, with most regression estimates falling within the respective 95% confidence intervals. Biophysical parameters were estimated for 21 “ground pixels” (grids) at the Tallgrass Prairie Preserve in 1996, representing three grazing/burning treatments. Each grid was 30×30 m in size and was systematically sampled with ground radiometer readings. The radiometric measurements were then converted to biophysical parameters and spatially interpolated using geostatistical kriging. Grid-based biophysical parameters were monitored through the growing season and regressed against Landsat Thematic Mapper (TM) NDVI (r2=.92–.94). These regression equations were used to estimate biophysical parameters for grassland TM pixels over the Tallgrass Prairie Preserve in 1996. This method maintained consistent regression development and prediction scales and attempted to minimize scaling problems associated with mixed land cover pixels. A method for scaling Landsat biophysical parameters to coarser resolution satellite data sets (1 km2) was also investigated.

  15. Coulomb excitation of atoms by fast multicharged ions

    International Nuclear Information System (INIS)

    Yudin, G.L.

    1980-01-01

    Investigated is coulomb eXcitation of discrete levels of a hydrogen-like atom by a fast multicharged ion. Obtained are dependences of probabilities of channels 1S→nS and 1S→nP on the sight parameter in the zero order of sudden excitation theory. 1S-2S transition is considered in detail. Carried out are calculations for excitation of the hydrogen atom by the wholy bare carbon atom. It is shown, that at low values of excitation pr.ocess parameter eta excitation probability is a monotonously decreasing function of the impact parameter. With the growth of eta the situation is changed, and at low impact parameters the probability of 1S-2S transition is decreased. At high impact parameters approximation of sudden excitations is unacceptable, here lagging of coulomb interaction is essential

  16. Research on the Effects of Process Parameters on Surface Roughness in Wet-Activated Silicon Direct Bonding Base on Orthogonal Experiments

    Directory of Open Access Journals (Sweden)

    Lei NIE

    2015-11-01

    Full Text Available Surface roughness is a very important index in silicon direct bonding and it is affected by processing parameters in the wet-activated process. These parameters include the concentration of activation solution, holding time and treatment temperature. The effects of these parameters were investigated by means of orthogonal experiments. In order to analyze the wafer roughness more accurately, the bear ratio of the surface was used as the evaluation index. From the results of the experiments, it could be concluded that the concentration of the activation solution affected the roughness directly and the higher the concentration, the lower the roughness. Holding time did not affect the roughness as acutely as that of the concentration, but a reduced activation time decreased the roughness perceptibly. It was also discovered that the treatment temperature had a weak correlation with the surface roughness. Based on these conclusions, the parameters of concentration, temperature and holding time were optimized respectively as NH4OH:H2O2=1:1 (without water, 70 °C and 5 min. The results of bonding experiments proved the validity of the conclusions of orthogonal experiments.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9711

  17. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  18. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  19. Inelastic scattering of {sup 9}Li and excitation mechanism of its first excited state

    Energy Technology Data Exchange (ETDEWEB)

    Al Falou, H. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Kanungo, R., E-mail: ritu@triumf.ca [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Andreoiu, C.; Cross, D.S. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Davids, B.; Djongolov, M. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Gallant, A.T. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of British Columbia, British Columbia V6T 1Z4 (Canada); Galinski, N.; Howell, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Kshetri, R.; Niamir, D. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Orce, J.N. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics, University of the Western Cape, P/B X17, Bellville, ZA-7535 (South Africa); Shotter, A.C. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Sjue, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Tanihata, I. [Research Center for Nuclear Physics, Osaka University, Mihogaoka, Ibaraki, Osaka 567 0047 (Japan); Thompson, I.J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Triambak, S. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Uchida, M. [Astronomy and Physics Department, Saint Mary' s University, Halifax, Nova Scotia B3H 3C3 (Canada); Walden, P. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Wiringa, R.B. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-04-25

    The first measurement of inelastic scattering of {sup 9}Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution.

  20. Inelastic scattering of 9Li and excitation mechanism of its first excited state

    International Nuclear Information System (INIS)

    Al Falou, H.; Kanungo, R.; Andreoiu, C.; Cross, D.S.; Davids, B.; Djongolov, M.; Gallant, A.T.; Galinski, N.; Howell, D.; Kshetri, R.; Niamir, D.; Orce, J.N.; Shotter, A.C.; Sjue, S.; Tanihata, I.; Thompson, I.J.; Triambak, S.; Uchida, M.; Walden, P.; Wiringa, R.B.

    2013-01-01

    The first measurement of inelastic scattering of 9 Li from deuterons at the ISAC facility is reported. The measured angular distribution for the first excited state confirms the nature of excitation to be an E2 transition. The quadrupole deformation parameter is extracted from an analysis of the angular distribution